Merge tag 'nfs-for-3.7-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *match_clock,
86                     intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *match_clock,
90                         intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                       int target, int refclk, intel_clock_t *match_clock,
95                       intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98                            int target, int refclk, intel_clock_t *match_clock,
99                            intel_clock_t *best_clock);
100
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103                         int target, int refclk, intel_clock_t *match_clock,
104                         intel_clock_t *best_clock);
105
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
108 {
109         if (IS_GEN5(dev)) {
110                 struct drm_i915_private *dev_priv = dev->dev_private;
111                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112         } else
113                 return 27;
114 }
115
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117         .dot = { .min = 25000, .max = 350000 },
118         .vco = { .min = 930000, .max = 1400000 },
119         .n = { .min = 3, .max = 16 },
120         .m = { .min = 96, .max = 140 },
121         .m1 = { .min = 18, .max = 26 },
122         .m2 = { .min = 6, .max = 16 },
123         .p = { .min = 4, .max = 128 },
124         .p1 = { .min = 2, .max = 33 },
125         .p2 = { .dot_limit = 165000,
126                 .p2_slow = 4, .p2_fast = 2 },
127         .find_pll = intel_find_best_PLL,
128 };
129
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131         .dot = { .min = 25000, .max = 350000 },
132         .vco = { .min = 930000, .max = 1400000 },
133         .n = { .min = 3, .max = 16 },
134         .m = { .min = 96, .max = 140 },
135         .m1 = { .min = 18, .max = 26 },
136         .m2 = { .min = 6, .max = 16 },
137         .p = { .min = 4, .max = 128 },
138         .p1 = { .min = 1, .max = 6 },
139         .p2 = { .dot_limit = 165000,
140                 .p2_slow = 14, .p2_fast = 7 },
141         .find_pll = intel_find_best_PLL,
142 };
143
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145         .dot = { .min = 20000, .max = 400000 },
146         .vco = { .min = 1400000, .max = 2800000 },
147         .n = { .min = 1, .max = 6 },
148         .m = { .min = 70, .max = 120 },
149         .m1 = { .min = 10, .max = 22 },
150         .m2 = { .min = 5, .max = 9 },
151         .p = { .min = 5, .max = 80 },
152         .p1 = { .min = 1, .max = 8 },
153         .p2 = { .dot_limit = 200000,
154                 .p2_slow = 10, .p2_fast = 5 },
155         .find_pll = intel_find_best_PLL,
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159         .dot = { .min = 20000, .max = 400000 },
160         .vco = { .min = 1400000, .max = 2800000 },
161         .n = { .min = 1, .max = 6 },
162         .m = { .min = 70, .max = 120 },
163         .m1 = { .min = 10, .max = 22 },
164         .m2 = { .min = 5, .max = 9 },
165         .p = { .min = 7, .max = 98 },
166         .p1 = { .min = 1, .max = 8 },
167         .p2 = { .dot_limit = 112000,
168                 .p2_slow = 14, .p2_fast = 7 },
169         .find_pll = intel_find_best_PLL,
170 };
171
172
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174         .dot = { .min = 25000, .max = 270000 },
175         .vco = { .min = 1750000, .max = 3500000},
176         .n = { .min = 1, .max = 4 },
177         .m = { .min = 104, .max = 138 },
178         .m1 = { .min = 17, .max = 23 },
179         .m2 = { .min = 5, .max = 11 },
180         .p = { .min = 10, .max = 30 },
181         .p1 = { .min = 1, .max = 3},
182         .p2 = { .dot_limit = 270000,
183                 .p2_slow = 10,
184                 .p2_fast = 10
185         },
186         .find_pll = intel_g4x_find_best_PLL,
187 };
188
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190         .dot = { .min = 22000, .max = 400000 },
191         .vco = { .min = 1750000, .max = 3500000},
192         .n = { .min = 1, .max = 4 },
193         .m = { .min = 104, .max = 138 },
194         .m1 = { .min = 16, .max = 23 },
195         .m2 = { .min = 5, .max = 11 },
196         .p = { .min = 5, .max = 80 },
197         .p1 = { .min = 1, .max = 8},
198         .p2 = { .dot_limit = 165000,
199                 .p2_slow = 10, .p2_fast = 5 },
200         .find_pll = intel_g4x_find_best_PLL,
201 };
202
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204         .dot = { .min = 20000, .max = 115000 },
205         .vco = { .min = 1750000, .max = 3500000 },
206         .n = { .min = 1, .max = 3 },
207         .m = { .min = 104, .max = 138 },
208         .m1 = { .min = 17, .max = 23 },
209         .m2 = { .min = 5, .max = 11 },
210         .p = { .min = 28, .max = 112 },
211         .p1 = { .min = 2, .max = 8 },
212         .p2 = { .dot_limit = 0,
213                 .p2_slow = 14, .p2_fast = 14
214         },
215         .find_pll = intel_g4x_find_best_PLL,
216 };
217
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219         .dot = { .min = 80000, .max = 224000 },
220         .vco = { .min = 1750000, .max = 3500000 },
221         .n = { .min = 1, .max = 3 },
222         .m = { .min = 104, .max = 138 },
223         .m1 = { .min = 17, .max = 23 },
224         .m2 = { .min = 5, .max = 11 },
225         .p = { .min = 14, .max = 42 },
226         .p1 = { .min = 2, .max = 6 },
227         .p2 = { .dot_limit = 0,
228                 .p2_slow = 7, .p2_fast = 7
229         },
230         .find_pll = intel_g4x_find_best_PLL,
231 };
232
233 static const intel_limit_t intel_limits_g4x_display_port = {
234         .dot = { .min = 161670, .max = 227000 },
235         .vco = { .min = 1750000, .max = 3500000},
236         .n = { .min = 1, .max = 2 },
237         .m = { .min = 97, .max = 108 },
238         .m1 = { .min = 0x10, .max = 0x12 },
239         .m2 = { .min = 0x05, .max = 0x06 },
240         .p = { .min = 10, .max = 20 },
241         .p1 = { .min = 1, .max = 2},
242         .p2 = { .dot_limit = 0,
243                 .p2_slow = 10, .p2_fast = 10 },
244         .find_pll = intel_find_pll_g4x_dp,
245 };
246
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248         .dot = { .min = 20000, .max = 400000},
249         .vco = { .min = 1700000, .max = 3500000 },
250         /* Pineview's Ncounter is a ring counter */
251         .n = { .min = 3, .max = 6 },
252         .m = { .min = 2, .max = 256 },
253         /* Pineview only has one combined m divider, which we treat as m2. */
254         .m1 = { .min = 0, .max = 0 },
255         .m2 = { .min = 0, .max = 254 },
256         .p = { .min = 5, .max = 80 },
257         .p1 = { .min = 1, .max = 8 },
258         .p2 = { .dot_limit = 200000,
259                 .p2_slow = 10, .p2_fast = 5 },
260         .find_pll = intel_find_best_PLL,
261 };
262
263 static const intel_limit_t intel_limits_pineview_lvds = {
264         .dot = { .min = 20000, .max = 400000 },
265         .vco = { .min = 1700000, .max = 3500000 },
266         .n = { .min = 3, .max = 6 },
267         .m = { .min = 2, .max = 256 },
268         .m1 = { .min = 0, .max = 0 },
269         .m2 = { .min = 0, .max = 254 },
270         .p = { .min = 7, .max = 112 },
271         .p1 = { .min = 1, .max = 8 },
272         .p2 = { .dot_limit = 112000,
273                 .p2_slow = 14, .p2_fast = 14 },
274         .find_pll = intel_find_best_PLL,
275 };
276
277 /* Ironlake / Sandybridge
278  *
279  * We calculate clock using (register_value + 2) for N/M1/M2, so here
280  * the range value for them is (actual_value - 2).
281  */
282 static const intel_limit_t intel_limits_ironlake_dac = {
283         .dot = { .min = 25000, .max = 350000 },
284         .vco = { .min = 1760000, .max = 3510000 },
285         .n = { .min = 1, .max = 5 },
286         .m = { .min = 79, .max = 127 },
287         .m1 = { .min = 12, .max = 22 },
288         .m2 = { .min = 5, .max = 9 },
289         .p = { .min = 5, .max = 80 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 225000,
292                 .p2_slow = 10, .p2_fast = 5 },
293         .find_pll = intel_g4x_find_best_PLL,
294 };
295
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297         .dot = { .min = 25000, .max = 350000 },
298         .vco = { .min = 1760000, .max = 3510000 },
299         .n = { .min = 1, .max = 3 },
300         .m = { .min = 79, .max = 118 },
301         .m1 = { .min = 12, .max = 22 },
302         .m2 = { .min = 5, .max = 9 },
303         .p = { .min = 28, .max = 112 },
304         .p1 = { .min = 2, .max = 8 },
305         .p2 = { .dot_limit = 225000,
306                 .p2_slow = 14, .p2_fast = 14 },
307         .find_pll = intel_g4x_find_best_PLL,
308 };
309
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311         .dot = { .min = 25000, .max = 350000 },
312         .vco = { .min = 1760000, .max = 3510000 },
313         .n = { .min = 1, .max = 3 },
314         .m = { .min = 79, .max = 127 },
315         .m1 = { .min = 12, .max = 22 },
316         .m2 = { .min = 5, .max = 9 },
317         .p = { .min = 14, .max = 56 },
318         .p1 = { .min = 2, .max = 8 },
319         .p2 = { .dot_limit = 225000,
320                 .p2_slow = 7, .p2_fast = 7 },
321         .find_pll = intel_g4x_find_best_PLL,
322 };
323
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326         .dot = { .min = 25000, .max = 350000 },
327         .vco = { .min = 1760000, .max = 3510000 },
328         .n = { .min = 1, .max = 2 },
329         .m = { .min = 79, .max = 126 },
330         .m1 = { .min = 12, .max = 22 },
331         .m2 = { .min = 5, .max = 9 },
332         .p = { .min = 28, .max = 112 },
333         .p1 = { .min = 2, .max = 8 },
334         .p2 = { .dot_limit = 225000,
335                 .p2_slow = 14, .p2_fast = 14 },
336         .find_pll = intel_g4x_find_best_PLL,
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340         .dot = { .min = 25000, .max = 350000 },
341         .vco = { .min = 1760000, .max = 3510000 },
342         .n = { .min = 1, .max = 3 },
343         .m = { .min = 79, .max = 126 },
344         .m1 = { .min = 12, .max = 22 },
345         .m2 = { .min = 5, .max = 9 },
346         .p = { .min = 14, .max = 42 },
347         .p1 = { .min = 2, .max = 6 },
348         .p2 = { .dot_limit = 225000,
349                 .p2_slow = 7, .p2_fast = 7 },
350         .find_pll = intel_g4x_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000},
356         .n = { .min = 1, .max = 2 },
357         .m = { .min = 81, .max = 90 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 10, .max = 20 },
361         .p1 = { .min = 1, .max = 2},
362         .p2 = { .dot_limit = 0,
363                 .p2_slow = 10, .p2_fast = 10 },
364         .find_pll = intel_find_pll_ironlake_dp,
365 };
366
367 static const intel_limit_t intel_limits_vlv_dac = {
368         .dot = { .min = 25000, .max = 270000 },
369         .vco = { .min = 4000000, .max = 6000000 },
370         .n = { .min = 1, .max = 7 },
371         .m = { .min = 22, .max = 450 }, /* guess */
372         .m1 = { .min = 2, .max = 3 },
373         .m2 = { .min = 11, .max = 156 },
374         .p = { .min = 10, .max = 30 },
375         .p1 = { .min = 2, .max = 3 },
376         .p2 = { .dot_limit = 270000,
377                 .p2_slow = 2, .p2_fast = 20 },
378         .find_pll = intel_vlv_find_best_pll,
379 };
380
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382         .dot = { .min = 20000, .max = 165000 },
383         .vco = { .min = 5994000, .max = 4000000 },
384         .n = { .min = 1, .max = 7 },
385         .m = { .min = 60, .max = 300 }, /* guess */
386         .m1 = { .min = 2, .max = 3 },
387         .m2 = { .min = 11, .max = 156 },
388         .p = { .min = 10, .max = 30 },
389         .p1 = { .min = 2, .max = 3 },
390         .p2 = { .dot_limit = 270000,
391                 .p2_slow = 2, .p2_fast = 20 },
392         .find_pll = intel_vlv_find_best_pll,
393 };
394
395 static const intel_limit_t intel_limits_vlv_dp = {
396         .dot = { .min = 162000, .max = 270000 },
397         .vco = { .min = 5994000, .max = 4000000 },
398         .n = { .min = 1, .max = 7 },
399         .m = { .min = 60, .max = 300 }, /* guess */
400         .m1 = { .min = 2, .max = 3 },
401         .m2 = { .min = 11, .max = 156 },
402         .p = { .min = 10, .max = 30 },
403         .p1 = { .min = 2, .max = 3 },
404         .p2 = { .dot_limit = 270000,
405                 .p2_slow = 2, .p2_fast = 20 },
406         .find_pll = intel_vlv_find_best_pll,
407 };
408
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410 {
411         unsigned long flags;
412         u32 val = 0;
413
414         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416                 DRM_ERROR("DPIO idle wait timed out\n");
417                 goto out_unlock;
418         }
419
420         I915_WRITE(DPIO_REG, reg);
421         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422                    DPIO_BYTE);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO read wait timed out\n");
425                 goto out_unlock;
426         }
427         val = I915_READ(DPIO_DATA);
428
429 out_unlock:
430         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431         return val;
432 }
433
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435                              u32 val)
436 {
437         unsigned long flags;
438
439         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441                 DRM_ERROR("DPIO idle wait timed out\n");
442                 goto out_unlock;
443         }
444
445         I915_WRITE(DPIO_DATA, val);
446         I915_WRITE(DPIO_REG, reg);
447         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448                    DPIO_BYTE);
449         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450                 DRM_ERROR("DPIO write wait timed out\n");
451
452 out_unlock:
453        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454 }
455
456 static void vlv_init_dpio(struct drm_device *dev)
457 {
458         struct drm_i915_private *dev_priv = dev->dev_private;
459
460         /* Reset the DPIO config */
461         I915_WRITE(DPIO_CTL, 0);
462         POSTING_READ(DPIO_CTL);
463         I915_WRITE(DPIO_CTL, 1);
464         POSTING_READ(DPIO_CTL);
465 }
466
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468 {
469         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470         return 1;
471 }
472
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
474         {
475                 .callback = intel_dual_link_lvds_callback,
476                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477                 .matches = {
478                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480                 },
481         },
482         { }     /* terminating entry */
483 };
484
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486                               unsigned int reg)
487 {
488         unsigned int val;
489
490         /* use the module option value if specified */
491         if (i915_lvds_channel_mode > 0)
492                 return i915_lvds_channel_mode == 2;
493
494         if (dmi_check_system(intel_dual_link_lvds))
495                 return true;
496
497         if (dev_priv->lvds_val)
498                 val = dev_priv->lvds_val;
499         else {
500                 /* BIOS should set the proper LVDS register value at boot, but
501                  * in reality, it doesn't set the value when the lid is closed;
502                  * we need to check "the value to be set" in VBT when LVDS
503                  * register is uninitialized.
504                  */
505                 val = I915_READ(reg);
506                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507                         val = dev_priv->bios_lvds_val;
508                 dev_priv->lvds_val = val;
509         }
510         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511 }
512
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514                                                 int refclk)
515 {
516         struct drm_device *dev = crtc->dev;
517         struct drm_i915_private *dev_priv = dev->dev_private;
518         const intel_limit_t *limit;
519
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522                         /* LVDS dual channel */
523                         if (refclk == 100000)
524                                 limit = &intel_limits_ironlake_dual_lvds_100m;
525                         else
526                                 limit = &intel_limits_ironlake_dual_lvds;
527                 } else {
528                         if (refclk == 100000)
529                                 limit = &intel_limits_ironlake_single_lvds_100m;
530                         else
531                                 limit = &intel_limits_ironlake_single_lvds;
532                 }
533         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534                         HAS_eDP)
535                 limit = &intel_limits_ironlake_display_port;
536         else
537                 limit = &intel_limits_ironlake_dac;
538
539         return limit;
540 }
541
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543 {
544         struct drm_device *dev = crtc->dev;
545         struct drm_i915_private *dev_priv = dev->dev_private;
546         const intel_limit_t *limit;
547
548         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549                 if (is_dual_link_lvds(dev_priv, LVDS))
550                         /* LVDS with dual channel */
551                         limit = &intel_limits_g4x_dual_channel_lvds;
552                 else
553                         /* LVDS with dual channel */
554                         limit = &intel_limits_g4x_single_channel_lvds;
555         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557                 limit = &intel_limits_g4x_hdmi;
558         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559                 limit = &intel_limits_g4x_sdvo;
560         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561                 limit = &intel_limits_g4x_display_port;
562         } else /* The option is for other outputs */
563                 limit = &intel_limits_i9xx_sdvo;
564
565         return limit;
566 }
567
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
569 {
570         struct drm_device *dev = crtc->dev;
571         const intel_limit_t *limit;
572
573         if (HAS_PCH_SPLIT(dev))
574                 limit = intel_ironlake_limit(crtc, refclk);
575         else if (IS_G4X(dev)) {
576                 limit = intel_g4x_limit(crtc);
577         } else if (IS_PINEVIEW(dev)) {
578                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579                         limit = &intel_limits_pineview_lvds;
580                 else
581                         limit = &intel_limits_pineview_sdvo;
582         } else if (IS_VALLEYVIEW(dev)) {
583                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584                         limit = &intel_limits_vlv_dac;
585                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586                         limit = &intel_limits_vlv_hdmi;
587                 else
588                         limit = &intel_limits_vlv_dp;
589         } else if (!IS_GEN2(dev)) {
590                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591                         limit = &intel_limits_i9xx_lvds;
592                 else
593                         limit = &intel_limits_i9xx_sdvo;
594         } else {
595                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596                         limit = &intel_limits_i8xx_lvds;
597                 else
598                         limit = &intel_limits_i8xx_dvo;
599         }
600         return limit;
601 }
602
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
605 {
606         clock->m = clock->m2 + 2;
607         clock->p = clock->p1 * clock->p2;
608         clock->vco = refclk * clock->m / clock->n;
609         clock->dot = clock->vco / clock->p;
610 }
611
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613 {
614         if (IS_PINEVIEW(dev)) {
615                 pineview_clock(refclk, clock);
616                 return;
617         }
618         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619         clock->p = clock->p1 * clock->p2;
620         clock->vco = refclk * clock->m / (clock->n + 2);
621         clock->dot = clock->vco / clock->p;
622 }
623
624 /**
625  * Returns whether any output on the specified pipe is of the specified type
626  */
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
628 {
629         struct drm_device *dev = crtc->dev;
630         struct intel_encoder *encoder;
631
632         for_each_encoder_on_crtc(dev, crtc, encoder)
633                 if (encoder->type == type)
634                         return true;
635
636         return false;
637 }
638
639 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641  * Returns whether the given set of divisors are valid for a given refclk with
642  * the given connectors.
643  */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646                                const intel_limit_t *limit,
647                                const intel_clock_t *clock)
648 {
649         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
650                 INTELPllInvalid("p1 out of range\n");
651         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
652                 INTELPllInvalid("p out of range\n");
653         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
654                 INTELPllInvalid("m2 out of range\n");
655         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
656                 INTELPllInvalid("m1 out of range\n");
657         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658                 INTELPllInvalid("m1 <= m2\n");
659         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
660                 INTELPllInvalid("m out of range\n");
661         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
662                 INTELPllInvalid("n out of range\n");
663         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664                 INTELPllInvalid("vco out of range\n");
665         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666          * connector, etc., rather than just a single range.
667          */
668         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669                 INTELPllInvalid("dot out of range\n");
670
671         return true;
672 }
673
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676                     int target, int refclk, intel_clock_t *match_clock,
677                     intel_clock_t *best_clock)
678
679 {
680         struct drm_device *dev = crtc->dev;
681         struct drm_i915_private *dev_priv = dev->dev_private;
682         intel_clock_t clock;
683         int err = target;
684
685         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686             (I915_READ(LVDS)) != 0) {
687                 /*
688                  * For LVDS, if the panel is on, just rely on its current
689                  * settings for dual-channel.  We haven't figured out how to
690                  * reliably set up different single/dual channel state, if we
691                  * even can.
692                  */
693                 if (is_dual_link_lvds(dev_priv, LVDS))
694                         clock.p2 = limit->p2.p2_fast;
695                 else
696                         clock.p2 = limit->p2.p2_slow;
697         } else {
698                 if (target < limit->p2.dot_limit)
699                         clock.p2 = limit->p2.p2_slow;
700                 else
701                         clock.p2 = limit->p2.p2_fast;
702         }
703
704         memset(best_clock, 0, sizeof(*best_clock));
705
706         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707              clock.m1++) {
708                 for (clock.m2 = limit->m2.min;
709                      clock.m2 <= limit->m2.max; clock.m2++) {
710                         /* m1 is always 0 in Pineview */
711                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712                                 break;
713                         for (clock.n = limit->n.min;
714                              clock.n <= limit->n.max; clock.n++) {
715                                 for (clock.p1 = limit->p1.min;
716                                         clock.p1 <= limit->p1.max; clock.p1++) {
717                                         int this_err;
718
719                                         intel_clock(dev, refclk, &clock);
720                                         if (!intel_PLL_is_valid(dev, limit,
721                                                                 &clock))
722                                                 continue;
723                                         if (match_clock &&
724                                             clock.p != match_clock->p)
725                                                 continue;
726
727                                         this_err = abs(clock.dot - target);
728                                         if (this_err < err) {
729                                                 *best_clock = clock;
730                                                 err = this_err;
731                                         }
732                                 }
733                         }
734                 }
735         }
736
737         return (err != target);
738 }
739
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                         int target, int refclk, intel_clock_t *match_clock,
743                         intel_clock_t *best_clock)
744 {
745         struct drm_device *dev = crtc->dev;
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         intel_clock_t clock;
748         int max_n;
749         bool found;
750         /* approximately equals target * 0.00585 */
751         int err_most = (target >> 8) + (target >> 9);
752         found = false;
753
754         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755                 int lvds_reg;
756
757                 if (HAS_PCH_SPLIT(dev))
758                         lvds_reg = PCH_LVDS;
759                 else
760                         lvds_reg = LVDS;
761                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762                     LVDS_CLKB_POWER_UP)
763                         clock.p2 = limit->p2.p2_fast;
764                 else
765                         clock.p2 = limit->p2.p2_slow;
766         } else {
767                 if (target < limit->p2.dot_limit)
768                         clock.p2 = limit->p2.p2_slow;
769                 else
770                         clock.p2 = limit->p2.p2_fast;
771         }
772
773         memset(best_clock, 0, sizeof(*best_clock));
774         max_n = limit->n.max;
775         /* based on hardware requirement, prefer smaller n to precision */
776         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777                 /* based on hardware requirement, prefere larger m1,m2 */
778                 for (clock.m1 = limit->m1.max;
779                      clock.m1 >= limit->m1.min; clock.m1--) {
780                         for (clock.m2 = limit->m2.max;
781                              clock.m2 >= limit->m2.min; clock.m2--) {
782                                 for (clock.p1 = limit->p1.max;
783                                      clock.p1 >= limit->p1.min; clock.p1--) {
784                                         int this_err;
785
786                                         intel_clock(dev, refclk, &clock);
787                                         if (!intel_PLL_is_valid(dev, limit,
788                                                                 &clock))
789                                                 continue;
790                                         if (match_clock &&
791                                             clock.p != match_clock->p)
792                                                 continue;
793
794                                         this_err = abs(clock.dot - target);
795                                         if (this_err < err_most) {
796                                                 *best_clock = clock;
797                                                 err_most = this_err;
798                                                 max_n = clock.n;
799                                                 found = true;
800                                         }
801                                 }
802                         }
803                 }
804         }
805         return found;
806 }
807
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810                            int target, int refclk, intel_clock_t *match_clock,
811                            intel_clock_t *best_clock)
812 {
813         struct drm_device *dev = crtc->dev;
814         intel_clock_t clock;
815
816         if (target < 200000) {
817                 clock.n = 1;
818                 clock.p1 = 2;
819                 clock.p2 = 10;
820                 clock.m1 = 12;
821                 clock.m2 = 9;
822         } else {
823                 clock.n = 2;
824                 clock.p1 = 1;
825                 clock.p2 = 10;
826                 clock.m1 = 14;
827                 clock.m2 = 8;
828         }
829         intel_clock(dev, refclk, &clock);
830         memcpy(best_clock, &clock, sizeof(intel_clock_t));
831         return true;
832 }
833
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *match_clock,
838                       intel_clock_t *best_clock)
839 {
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.p1 = 2;
843                 clock.p2 = 10;
844                 clock.n = 2;
845                 clock.m1 = 23;
846                 clock.m2 = 8;
847         } else {
848                 clock.p1 = 1;
849                 clock.p2 = 10;
850                 clock.n = 1;
851                 clock.m1 = 14;
852                 clock.m2 = 2;
853         }
854         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855         clock.p = (clock.p1 * clock.p2);
856         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857         clock.vco = 0;
858         memcpy(best_clock, &clock, sizeof(intel_clock_t));
859         return true;
860 }
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863                         int target, int refclk, intel_clock_t *match_clock,
864                         intel_clock_t *best_clock)
865 {
866         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867         u32 m, n, fastclk;
868         u32 updrate, minupdate, fracbits, p;
869         unsigned long bestppm, ppm, absppm;
870         int dotclk, flag;
871
872         flag = 0;
873         dotclk = target * 1000;
874         bestppm = 1000000;
875         ppm = absppm = 0;
876         fastclk = dotclk / (2*100);
877         updrate = 0;
878         minupdate = 19200;
879         fracbits = 1;
880         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881         bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883         /* based on hardware requirement, prefer smaller n to precision */
884         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885                 updrate = refclk / n;
886                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888                                 if (p2 > 10)
889                                         p2 = p2 - 1;
890                                 p = p1 * p2;
891                                 /* based on hardware requirement, prefer bigger m1,m2 values */
892                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893                                         m2 = (((2*(fastclk * p * n / m1 )) +
894                                                refclk) / (2*refclk));
895                                         m = m1 * m2;
896                                         vco = updrate * m;
897                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
898                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899                                                 absppm = (ppm > 0) ? ppm : (-ppm);
900                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901                                                         bestppm = 0;
902                                                         flag = 1;
903                                                 }
904                                                 if (absppm < bestppm - 10) {
905                                                         bestppm = absppm;
906                                                         flag = 1;
907                                                 }
908                                                 if (flag) {
909                                                         bestn = n;
910                                                         bestm1 = m1;
911                                                         bestm2 = m2;
912                                                         bestp1 = p1;
913                                                         bestp2 = p2;
914                                                         flag = 0;
915                                                 }
916                                         }
917                                 }
918                         }
919                 }
920         }
921         best_clock->n = bestn;
922         best_clock->m1 = bestm1;
923         best_clock->m2 = bestm2;
924         best_clock->p1 = bestp1;
925         best_clock->p2 = bestp2;
926
927         return true;
928 }
929
930 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931 {
932         struct drm_i915_private *dev_priv = dev->dev_private;
933         u32 frame, frame_reg = PIPEFRAME(pipe);
934
935         frame = I915_READ(frame_reg);
936
937         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938                 DRM_DEBUG_KMS("vblank wait timed out\n");
939 }
940
941 /**
942  * intel_wait_for_vblank - wait for vblank on a given pipe
943  * @dev: drm device
944  * @pipe: pipe to wait for
945  *
946  * Wait for vblank to occur on a given pipe.  Needed for various bits of
947  * mode setting code.
948  */
949 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         int pipestat_reg = PIPESTAT(pipe);
953
954         if (INTEL_INFO(dev)->gen >= 5) {
955                 ironlake_wait_for_vblank(dev, pipe);
956                 return;
957         }
958
959         /* Clear existing vblank status. Note this will clear any other
960          * sticky status fields as well.
961          *
962          * This races with i915_driver_irq_handler() with the result
963          * that either function could miss a vblank event.  Here it is not
964          * fatal, as we will either wait upon the next vblank interrupt or
965          * timeout.  Generally speaking intel_wait_for_vblank() is only
966          * called during modeset at which time the GPU should be idle and
967          * should *not* be performing page flips and thus not waiting on
968          * vblanks...
969          * Currently, the result of us stealing a vblank from the irq
970          * handler is that a single frame will be skipped during swapbuffers.
971          */
972         I915_WRITE(pipestat_reg,
973                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
975         /* Wait for vblank interrupt bit to set */
976         if (wait_for(I915_READ(pipestat_reg) &
977                      PIPE_VBLANK_INTERRUPT_STATUS,
978                      50))
979                 DRM_DEBUG_KMS("vblank wait timed out\n");
980 }
981
982 /*
983  * intel_wait_for_pipe_off - wait for pipe to turn off
984  * @dev: drm device
985  * @pipe: pipe to wait for
986  *
987  * After disabling a pipe, we can't wait for vblank in the usual way,
988  * spinning on the vblank interrupt status bit, since we won't actually
989  * see an interrupt when the pipe is disabled.
990  *
991  * On Gen4 and above:
992  *   wait for the pipe register state bit to turn off
993  *
994  * Otherwise:
995  *   wait for the display line value to settle (it usually
996  *   ends up stopping at the start of the next frame).
997  *
998  */
999 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1000 {
1001         struct drm_i915_private *dev_priv = dev->dev_private;
1002
1003         if (INTEL_INFO(dev)->gen >= 4) {
1004                 int reg = PIPECONF(pipe);
1005
1006                 /* Wait for the Pipe State to go off */
1007                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008                              100))
1009                         WARN(1, "pipe_off wait timed out\n");
1010         } else {
1011                 u32 last_line, line_mask;
1012                 int reg = PIPEDSL(pipe);
1013                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
1015                 if (IS_GEN2(dev))
1016                         line_mask = DSL_LINEMASK_GEN2;
1017                 else
1018                         line_mask = DSL_LINEMASK_GEN3;
1019
1020                 /* Wait for the display line to settle */
1021                 do {
1022                         last_line = I915_READ(reg) & line_mask;
1023                         mdelay(5);
1024                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1025                          time_after(timeout, jiffies));
1026                 if (time_after(jiffies, timeout))
1027                         WARN(1, "pipe_off wait timed out\n");
1028         }
1029 }
1030
1031 static const char *state_string(bool enabled)
1032 {
1033         return enabled ? "on" : "off";
1034 }
1035
1036 /* Only for pre-ILK configs */
1037 static void assert_pll(struct drm_i915_private *dev_priv,
1038                        enum pipe pipe, bool state)
1039 {
1040         int reg;
1041         u32 val;
1042         bool cur_state;
1043
1044         reg = DPLL(pipe);
1045         val = I915_READ(reg);
1046         cur_state = !!(val & DPLL_VCO_ENABLE);
1047         WARN(cur_state != state,
1048              "PLL state assertion failure (expected %s, current %s)\n",
1049              state_string(state), state_string(cur_state));
1050 }
1051 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
1054 /* For ILK+ */
1055 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1056                            struct intel_pch_pll *pll,
1057                            struct intel_crtc *crtc,
1058                            bool state)
1059 {
1060         u32 val;
1061         bool cur_state;
1062
1063         if (HAS_PCH_LPT(dev_priv->dev)) {
1064                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065                 return;
1066         }
1067
1068         if (WARN (!pll,
1069                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1070                 return;
1071
1072         val = I915_READ(pll->pll_reg);
1073         cur_state = !!(val & DPLL_VCO_ENABLE);
1074         WARN(cur_state != state,
1075              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076              pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078         /* Make sure the selected PLL is correctly attached to the transcoder */
1079         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1080                 u32 pch_dpll;
1081
1082                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1083                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1086                           cur_state, crtc->pipe, pch_dpll)) {
1087                         cur_state = !!(val >> (4*crtc->pipe + 3));
1088                         WARN(cur_state != state,
1089                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1090                              pll->pll_reg == _PCH_DPLL_B,
1091                              state_string(state),
1092                              crtc->pipe,
1093                              val);
1094                 }
1095         }
1096 }
1097 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1099
1100 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101                           enum pipe pipe, bool state)
1102 {
1103         int reg;
1104         u32 val;
1105         bool cur_state;
1106
1107         if (IS_HASWELL(dev_priv->dev)) {
1108                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109                 reg = DDI_FUNC_CTL(pipe);
1110                 val = I915_READ(reg);
1111                 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112         } else {
1113                 reg = FDI_TX_CTL(pipe);
1114                 val = I915_READ(reg);
1115                 cur_state = !!(val & FDI_TX_ENABLE);
1116         }
1117         WARN(cur_state != state,
1118              "FDI TX state assertion failure (expected %s, current %s)\n",
1119              state_string(state), state_string(cur_state));
1120 }
1121 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125                           enum pipe pipe, bool state)
1126 {
1127         int reg;
1128         u32 val;
1129         bool cur_state;
1130
1131         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133                         return;
1134         } else {
1135                 reg = FDI_RX_CTL(pipe);
1136                 val = I915_READ(reg);
1137                 cur_state = !!(val & FDI_RX_ENABLE);
1138         }
1139         WARN(cur_state != state,
1140              "FDI RX state assertion failure (expected %s, current %s)\n",
1141              state_string(state), state_string(cur_state));
1142 }
1143 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147                                       enum pipe pipe)
1148 {
1149         int reg;
1150         u32 val;
1151
1152         /* ILK FDI PLL is always enabled */
1153         if (dev_priv->info->gen == 5)
1154                 return;
1155
1156         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157         if (IS_HASWELL(dev_priv->dev))
1158                 return;
1159
1160         reg = FDI_TX_CTL(pipe);
1161         val = I915_READ(reg);
1162         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163 }
1164
1165 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166                                       enum pipe pipe)
1167 {
1168         int reg;
1169         u32 val;
1170
1171         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173                 return;
1174         }
1175         reg = FDI_RX_CTL(pipe);
1176         val = I915_READ(reg);
1177         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181                                   enum pipe pipe)
1182 {
1183         int pp_reg, lvds_reg;
1184         u32 val;
1185         enum pipe panel_pipe = PIPE_A;
1186         bool locked = true;
1187
1188         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189                 pp_reg = PCH_PP_CONTROL;
1190                 lvds_reg = PCH_LVDS;
1191         } else {
1192                 pp_reg = PP_CONTROL;
1193                 lvds_reg = LVDS;
1194         }
1195
1196         val = I915_READ(pp_reg);
1197         if (!(val & PANEL_POWER_ON) ||
1198             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199                 locked = false;
1200
1201         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202                 panel_pipe = PIPE_B;
1203
1204         WARN(panel_pipe == pipe && locked,
1205              "panel assertion failure, pipe %c regs locked\n",
1206              pipe_name(pipe));
1207 }
1208
1209 void assert_pipe(struct drm_i915_private *dev_priv,
1210                  enum pipe pipe, bool state)
1211 {
1212         int reg;
1213         u32 val;
1214         bool cur_state;
1215
1216         /* if we need the pipe A quirk it must be always on */
1217         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218                 state = true;
1219
1220         reg = PIPECONF(pipe);
1221         val = I915_READ(reg);
1222         cur_state = !!(val & PIPECONF_ENABLE);
1223         WARN(cur_state != state,
1224              "pipe %c assertion failure (expected %s, current %s)\n",
1225              pipe_name(pipe), state_string(state), state_string(cur_state));
1226 }
1227
1228 static void assert_plane(struct drm_i915_private *dev_priv,
1229                          enum plane plane, bool state)
1230 {
1231         int reg;
1232         u32 val;
1233         bool cur_state;
1234
1235         reg = DSPCNTR(plane);
1236         val = I915_READ(reg);
1237         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238         WARN(cur_state != state,
1239              "plane %c assertion failure (expected %s, current %s)\n",
1240              plane_name(plane), state_string(state), state_string(cur_state));
1241 }
1242
1243 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
1246 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247                                    enum pipe pipe)
1248 {
1249         int reg, i;
1250         u32 val;
1251         int cur_pipe;
1252
1253         /* Planes are fixed to pipes on ILK+ */
1254         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255                 reg = DSPCNTR(pipe);
1256                 val = I915_READ(reg);
1257                 WARN((val & DISPLAY_PLANE_ENABLE),
1258                      "plane %c assertion failure, should be disabled but not\n",
1259                      plane_name(pipe));
1260                 return;
1261         }
1262
1263         /* Need to check both planes against the pipe */
1264         for (i = 0; i < 2; i++) {
1265                 reg = DSPCNTR(i);
1266                 val = I915_READ(reg);
1267                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268                         DISPPLANE_SEL_PIPE_SHIFT;
1269                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1270                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271                      plane_name(i), pipe_name(pipe));
1272         }
1273 }
1274
1275 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276 {
1277         u32 val;
1278         bool enabled;
1279
1280         if (HAS_PCH_LPT(dev_priv->dev)) {
1281                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282                 return;
1283         }
1284
1285         val = I915_READ(PCH_DREF_CONTROL);
1286         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287                             DREF_SUPERSPREAD_SOURCE_MASK));
1288         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289 }
1290
1291 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292                                        enum pipe pipe)
1293 {
1294         int reg;
1295         u32 val;
1296         bool enabled;
1297
1298         reg = TRANSCONF(pipe);
1299         val = I915_READ(reg);
1300         enabled = !!(val & TRANS_ENABLE);
1301         WARN(enabled,
1302              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303              pipe_name(pipe));
1304 }
1305
1306 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307                             enum pipe pipe, u32 port_sel, u32 val)
1308 {
1309         if ((val & DP_PORT_EN) == 0)
1310                 return false;
1311
1312         if (HAS_PCH_CPT(dev_priv->dev)) {
1313                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316                         return false;
1317         } else {
1318                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319                         return false;
1320         }
1321         return true;
1322 }
1323
1324 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325                               enum pipe pipe, u32 val)
1326 {
1327         if ((val & PORT_ENABLE) == 0)
1328                 return false;
1329
1330         if (HAS_PCH_CPT(dev_priv->dev)) {
1331                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332                         return false;
1333         } else {
1334                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335                         return false;
1336         }
1337         return true;
1338 }
1339
1340 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341                               enum pipe pipe, u32 val)
1342 {
1343         if ((val & LVDS_PORT_EN) == 0)
1344                 return false;
1345
1346         if (HAS_PCH_CPT(dev_priv->dev)) {
1347                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348                         return false;
1349         } else {
1350                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351                         return false;
1352         }
1353         return true;
1354 }
1355
1356 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357                               enum pipe pipe, u32 val)
1358 {
1359         if ((val & ADPA_DAC_ENABLE) == 0)
1360                 return false;
1361         if (HAS_PCH_CPT(dev_priv->dev)) {
1362                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363                         return false;
1364         } else {
1365                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366                         return false;
1367         }
1368         return true;
1369 }
1370
1371 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1372                                    enum pipe pipe, int reg, u32 port_sel)
1373 {
1374         u32 val = I915_READ(reg);
1375         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1376              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1377              reg, pipe_name(pipe));
1378
1379         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1380              && (val & DP_PIPEB_SELECT),
1381              "IBX PCH dp port still using transcoder B\n");
1382 }
1383
1384 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1385                                      enum pipe pipe, int reg)
1386 {
1387         u32 val = I915_READ(reg);
1388         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1389              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1390              reg, pipe_name(pipe));
1391
1392         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1393              && (val & SDVO_PIPE_B_SELECT),
1394              "IBX PCH hdmi port still using transcoder B\n");
1395 }
1396
1397 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1398                                       enum pipe pipe)
1399 {
1400         int reg;
1401         u32 val;
1402
1403         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1404         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1405         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1406
1407         reg = PCH_ADPA;
1408         val = I915_READ(reg);
1409         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1410              "PCH VGA enabled on transcoder %c, should be disabled\n",
1411              pipe_name(pipe));
1412
1413         reg = PCH_LVDS;
1414         val = I915_READ(reg);
1415         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1416              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1417              pipe_name(pipe));
1418
1419         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1420         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1421         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1422 }
1423
1424 /**
1425  * intel_enable_pll - enable a PLL
1426  * @dev_priv: i915 private structure
1427  * @pipe: pipe PLL to enable
1428  *
1429  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1430  * make sure the PLL reg is writable first though, since the panel write
1431  * protect mechanism may be enabled.
1432  *
1433  * Note!  This is for pre-ILK only.
1434  *
1435  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1436  */
1437 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1438 {
1439         int reg;
1440         u32 val;
1441
1442         /* No really, not for ILK+ */
1443         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1444
1445         /* PLL is protected by panel, make sure we can write it */
1446         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1447                 assert_panel_unlocked(dev_priv, pipe);
1448
1449         reg = DPLL(pipe);
1450         val = I915_READ(reg);
1451         val |= DPLL_VCO_ENABLE;
1452
1453         /* We do this three times for luck */
1454         I915_WRITE(reg, val);
1455         POSTING_READ(reg);
1456         udelay(150); /* wait for warmup */
1457         I915_WRITE(reg, val);
1458         POSTING_READ(reg);
1459         udelay(150); /* wait for warmup */
1460         I915_WRITE(reg, val);
1461         POSTING_READ(reg);
1462         udelay(150); /* wait for warmup */
1463 }
1464
1465 /**
1466  * intel_disable_pll - disable a PLL
1467  * @dev_priv: i915 private structure
1468  * @pipe: pipe PLL to disable
1469  *
1470  * Disable the PLL for @pipe, making sure the pipe is off first.
1471  *
1472  * Note!  This is for pre-ILK only.
1473  */
1474 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1475 {
1476         int reg;
1477         u32 val;
1478
1479         /* Don't disable pipe A or pipe A PLLs if needed */
1480         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1481                 return;
1482
1483         /* Make sure the pipe isn't still relying on us */
1484         assert_pipe_disabled(dev_priv, pipe);
1485
1486         reg = DPLL(pipe);
1487         val = I915_READ(reg);
1488         val &= ~DPLL_VCO_ENABLE;
1489         I915_WRITE(reg, val);
1490         POSTING_READ(reg);
1491 }
1492
1493 /* SBI access */
1494 static void
1495 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1496 {
1497         unsigned long flags;
1498
1499         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1500         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1501                                 100)) {
1502                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1503                 goto out_unlock;
1504         }
1505
1506         I915_WRITE(SBI_ADDR,
1507                         (reg << 16));
1508         I915_WRITE(SBI_DATA,
1509                         value);
1510         I915_WRITE(SBI_CTL_STAT,
1511                         SBI_BUSY |
1512                         SBI_CTL_OP_CRWR);
1513
1514         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1515                                 100)) {
1516                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1517                 goto out_unlock;
1518         }
1519
1520 out_unlock:
1521         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1522 }
1523
1524 static u32
1525 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1526 {
1527         unsigned long flags;
1528         u32 value = 0;
1529
1530         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1531         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1532                                 100)) {
1533                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1534                 goto out_unlock;
1535         }
1536
1537         I915_WRITE(SBI_ADDR,
1538                         (reg << 16));
1539         I915_WRITE(SBI_CTL_STAT,
1540                         SBI_BUSY |
1541                         SBI_CTL_OP_CRRD);
1542
1543         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1544                                 100)) {
1545                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1546                 goto out_unlock;
1547         }
1548
1549         value = I915_READ(SBI_DATA);
1550
1551 out_unlock:
1552         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1553         return value;
1554 }
1555
1556 /**
1557  * intel_enable_pch_pll - enable PCH PLL
1558  * @dev_priv: i915 private structure
1559  * @pipe: pipe PLL to enable
1560  *
1561  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1562  * drives the transcoder clock.
1563  */
1564 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1565 {
1566         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1567         struct intel_pch_pll *pll;
1568         int reg;
1569         u32 val;
1570
1571         /* PCH PLLs only available on ILK, SNB and IVB */
1572         BUG_ON(dev_priv->info->gen < 5);
1573         pll = intel_crtc->pch_pll;
1574         if (pll == NULL)
1575                 return;
1576
1577         if (WARN_ON(pll->refcount == 0))
1578                 return;
1579
1580         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1581                       pll->pll_reg, pll->active, pll->on,
1582                       intel_crtc->base.base.id);
1583
1584         /* PCH refclock must be enabled first */
1585         assert_pch_refclk_enabled(dev_priv);
1586
1587         if (pll->active++ && pll->on) {
1588                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1589                 return;
1590         }
1591
1592         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1593
1594         reg = pll->pll_reg;
1595         val = I915_READ(reg);
1596         val |= DPLL_VCO_ENABLE;
1597         I915_WRITE(reg, val);
1598         POSTING_READ(reg);
1599         udelay(200);
1600
1601         pll->on = true;
1602 }
1603
1604 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1605 {
1606         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1607         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1608         int reg;
1609         u32 val;
1610
1611         /* PCH only available on ILK+ */
1612         BUG_ON(dev_priv->info->gen < 5);
1613         if (pll == NULL)
1614                return;
1615
1616         if (WARN_ON(pll->refcount == 0))
1617                 return;
1618
1619         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1620                       pll->pll_reg, pll->active, pll->on,
1621                       intel_crtc->base.base.id);
1622
1623         if (WARN_ON(pll->active == 0)) {
1624                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1625                 return;
1626         }
1627
1628         if (--pll->active) {
1629                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1630                 return;
1631         }
1632
1633         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1634
1635         /* Make sure transcoder isn't still depending on us */
1636         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1637
1638         reg = pll->pll_reg;
1639         val = I915_READ(reg);
1640         val &= ~DPLL_VCO_ENABLE;
1641         I915_WRITE(reg, val);
1642         POSTING_READ(reg);
1643         udelay(200);
1644
1645         pll->on = false;
1646 }
1647
1648 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1649                                     enum pipe pipe)
1650 {
1651         int reg;
1652         u32 val, pipeconf_val;
1653         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1654
1655         /* PCH only available on ILK+ */
1656         BUG_ON(dev_priv->info->gen < 5);
1657
1658         /* Make sure PCH DPLL is enabled */
1659         assert_pch_pll_enabled(dev_priv,
1660                                to_intel_crtc(crtc)->pch_pll,
1661                                to_intel_crtc(crtc));
1662
1663         /* FDI must be feeding us bits for PCH ports */
1664         assert_fdi_tx_enabled(dev_priv, pipe);
1665         assert_fdi_rx_enabled(dev_priv, pipe);
1666
1667         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1668                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1669                 return;
1670         }
1671         reg = TRANSCONF(pipe);
1672         val = I915_READ(reg);
1673         pipeconf_val = I915_READ(PIPECONF(pipe));
1674
1675         if (HAS_PCH_IBX(dev_priv->dev)) {
1676                 /*
1677                  * make the BPC in transcoder be consistent with
1678                  * that in pipeconf reg.
1679                  */
1680                 val &= ~PIPE_BPC_MASK;
1681                 val |= pipeconf_val & PIPE_BPC_MASK;
1682         }
1683
1684         val &= ~TRANS_INTERLACE_MASK;
1685         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1686                 if (HAS_PCH_IBX(dev_priv->dev) &&
1687                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1688                         val |= TRANS_LEGACY_INTERLACED_ILK;
1689                 else
1690                         val |= TRANS_INTERLACED;
1691         else
1692                 val |= TRANS_PROGRESSIVE;
1693
1694         I915_WRITE(reg, val | TRANS_ENABLE);
1695         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1696                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1697 }
1698
1699 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1700                                      enum pipe pipe)
1701 {
1702         int reg;
1703         u32 val;
1704
1705         /* FDI relies on the transcoder */
1706         assert_fdi_tx_disabled(dev_priv, pipe);
1707         assert_fdi_rx_disabled(dev_priv, pipe);
1708
1709         /* Ports must be off as well */
1710         assert_pch_ports_disabled(dev_priv, pipe);
1711
1712         reg = TRANSCONF(pipe);
1713         val = I915_READ(reg);
1714         val &= ~TRANS_ENABLE;
1715         I915_WRITE(reg, val);
1716         /* wait for PCH transcoder off, transcoder state */
1717         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1718                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1719 }
1720
1721 /**
1722  * intel_enable_pipe - enable a pipe, asserting requirements
1723  * @dev_priv: i915 private structure
1724  * @pipe: pipe to enable
1725  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1726  *
1727  * Enable @pipe, making sure that various hardware specific requirements
1728  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1729  *
1730  * @pipe should be %PIPE_A or %PIPE_B.
1731  *
1732  * Will wait until the pipe is actually running (i.e. first vblank) before
1733  * returning.
1734  */
1735 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1736                               bool pch_port)
1737 {
1738         int reg;
1739         u32 val;
1740
1741         /*
1742          * A pipe without a PLL won't actually be able to drive bits from
1743          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1744          * need the check.
1745          */
1746         if (!HAS_PCH_SPLIT(dev_priv->dev))
1747                 assert_pll_enabled(dev_priv, pipe);
1748         else {
1749                 if (pch_port) {
1750                         /* if driving the PCH, we need FDI enabled */
1751                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1752                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1753                 }
1754                 /* FIXME: assert CPU port conditions for SNB+ */
1755         }
1756
1757         reg = PIPECONF(pipe);
1758         val = I915_READ(reg);
1759         if (val & PIPECONF_ENABLE)
1760                 return;
1761
1762         I915_WRITE(reg, val | PIPECONF_ENABLE);
1763         intel_wait_for_vblank(dev_priv->dev, pipe);
1764 }
1765
1766 /**
1767  * intel_disable_pipe - disable a pipe, asserting requirements
1768  * @dev_priv: i915 private structure
1769  * @pipe: pipe to disable
1770  *
1771  * Disable @pipe, making sure that various hardware specific requirements
1772  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1773  *
1774  * @pipe should be %PIPE_A or %PIPE_B.
1775  *
1776  * Will wait until the pipe has shut down before returning.
1777  */
1778 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1779                                enum pipe pipe)
1780 {
1781         int reg;
1782         u32 val;
1783
1784         /*
1785          * Make sure planes won't keep trying to pump pixels to us,
1786          * or we might hang the display.
1787          */
1788         assert_planes_disabled(dev_priv, pipe);
1789
1790         /* Don't disable pipe A or pipe A PLLs if needed */
1791         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1792                 return;
1793
1794         reg = PIPECONF(pipe);
1795         val = I915_READ(reg);
1796         if ((val & PIPECONF_ENABLE) == 0)
1797                 return;
1798
1799         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1800         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1801 }
1802
1803 /*
1804  * Plane regs are double buffered, going from enabled->disabled needs a
1805  * trigger in order to latch.  The display address reg provides this.
1806  */
1807 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1808                                       enum plane plane)
1809 {
1810         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1811         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1812 }
1813
1814 /**
1815  * intel_enable_plane - enable a display plane on a given pipe
1816  * @dev_priv: i915 private structure
1817  * @plane: plane to enable
1818  * @pipe: pipe being fed
1819  *
1820  * Enable @plane on @pipe, making sure that @pipe is running first.
1821  */
1822 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1823                                enum plane plane, enum pipe pipe)
1824 {
1825         int reg;
1826         u32 val;
1827
1828         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1829         assert_pipe_enabled(dev_priv, pipe);
1830
1831         reg = DSPCNTR(plane);
1832         val = I915_READ(reg);
1833         if (val & DISPLAY_PLANE_ENABLE)
1834                 return;
1835
1836         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1837         intel_flush_display_plane(dev_priv, plane);
1838         intel_wait_for_vblank(dev_priv->dev, pipe);
1839 }
1840
1841 /**
1842  * intel_disable_plane - disable a display plane
1843  * @dev_priv: i915 private structure
1844  * @plane: plane to disable
1845  * @pipe: pipe consuming the data
1846  *
1847  * Disable @plane; should be an independent operation.
1848  */
1849 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1850                                 enum plane plane, enum pipe pipe)
1851 {
1852         int reg;
1853         u32 val;
1854
1855         reg = DSPCNTR(plane);
1856         val = I915_READ(reg);
1857         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1858                 return;
1859
1860         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1861         intel_flush_display_plane(dev_priv, plane);
1862         intel_wait_for_vblank(dev_priv->dev, pipe);
1863 }
1864
1865 int
1866 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1867                            struct drm_i915_gem_object *obj,
1868                            struct intel_ring_buffer *pipelined)
1869 {
1870         struct drm_i915_private *dev_priv = dev->dev_private;
1871         u32 alignment;
1872         int ret;
1873
1874         switch (obj->tiling_mode) {
1875         case I915_TILING_NONE:
1876                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1877                         alignment = 128 * 1024;
1878                 else if (INTEL_INFO(dev)->gen >= 4)
1879                         alignment = 4 * 1024;
1880                 else
1881                         alignment = 64 * 1024;
1882                 break;
1883         case I915_TILING_X:
1884                 /* pin() will align the object as required by fence */
1885                 alignment = 0;
1886                 break;
1887         case I915_TILING_Y:
1888                 /* FIXME: Is this true? */
1889                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1890                 return -EINVAL;
1891         default:
1892                 BUG();
1893         }
1894
1895         dev_priv->mm.interruptible = false;
1896         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1897         if (ret)
1898                 goto err_interruptible;
1899
1900         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1901          * fence, whereas 965+ only requires a fence if using
1902          * framebuffer compression.  For simplicity, we always install
1903          * a fence as the cost is not that onerous.
1904          */
1905         ret = i915_gem_object_get_fence(obj);
1906         if (ret)
1907                 goto err_unpin;
1908
1909         i915_gem_object_pin_fence(obj);
1910
1911         dev_priv->mm.interruptible = true;
1912         return 0;
1913
1914 err_unpin:
1915         i915_gem_object_unpin(obj);
1916 err_interruptible:
1917         dev_priv->mm.interruptible = true;
1918         return ret;
1919 }
1920
1921 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1922 {
1923         i915_gem_object_unpin_fence(obj);
1924         i915_gem_object_unpin(obj);
1925 }
1926
1927 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1928  * is assumed to be a power-of-two. */
1929 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1930                                                         unsigned int bpp,
1931                                                         unsigned int pitch)
1932 {
1933         int tile_rows, tiles;
1934
1935         tile_rows = *y / 8;
1936         *y %= 8;
1937         tiles = *x / (512/bpp);
1938         *x %= 512/bpp;
1939
1940         return tile_rows * pitch * 8 + tiles * 4096;
1941 }
1942
1943 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1944                              int x, int y)
1945 {
1946         struct drm_device *dev = crtc->dev;
1947         struct drm_i915_private *dev_priv = dev->dev_private;
1948         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949         struct intel_framebuffer *intel_fb;
1950         struct drm_i915_gem_object *obj;
1951         int plane = intel_crtc->plane;
1952         unsigned long linear_offset;
1953         u32 dspcntr;
1954         u32 reg;
1955
1956         switch (plane) {
1957         case 0:
1958         case 1:
1959                 break;
1960         default:
1961                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1962                 return -EINVAL;
1963         }
1964
1965         intel_fb = to_intel_framebuffer(fb);
1966         obj = intel_fb->obj;
1967
1968         reg = DSPCNTR(plane);
1969         dspcntr = I915_READ(reg);
1970         /* Mask out pixel format bits in case we change it */
1971         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1972         switch (fb->bits_per_pixel) {
1973         case 8:
1974                 dspcntr |= DISPPLANE_8BPP;
1975                 break;
1976         case 16:
1977                 if (fb->depth == 15)
1978                         dspcntr |= DISPPLANE_15_16BPP;
1979                 else
1980                         dspcntr |= DISPPLANE_16BPP;
1981                 break;
1982         case 24:
1983         case 32:
1984                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1985                 break;
1986         default:
1987                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1988                 return -EINVAL;
1989         }
1990         if (INTEL_INFO(dev)->gen >= 4) {
1991                 if (obj->tiling_mode != I915_TILING_NONE)
1992                         dspcntr |= DISPPLANE_TILED;
1993                 else
1994                         dspcntr &= ~DISPPLANE_TILED;
1995         }
1996
1997         I915_WRITE(reg, dspcntr);
1998
1999         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2000
2001         if (INTEL_INFO(dev)->gen >= 4) {
2002                 intel_crtc->dspaddr_offset =
2003                         gen4_compute_dspaddr_offset_xtiled(&x, &y,
2004                                                            fb->bits_per_pixel / 8,
2005                                                            fb->pitches[0]);
2006                 linear_offset -= intel_crtc->dspaddr_offset;
2007         } else {
2008                 intel_crtc->dspaddr_offset = linear_offset;
2009         }
2010
2011         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2012                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2013         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2014         if (INTEL_INFO(dev)->gen >= 4) {
2015                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2016                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2017                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2018                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2019         } else
2020                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2021         POSTING_READ(reg);
2022
2023         return 0;
2024 }
2025
2026 static int ironlake_update_plane(struct drm_crtc *crtc,
2027                                  struct drm_framebuffer *fb, int x, int y)
2028 {
2029         struct drm_device *dev = crtc->dev;
2030         struct drm_i915_private *dev_priv = dev->dev_private;
2031         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2032         struct intel_framebuffer *intel_fb;
2033         struct drm_i915_gem_object *obj;
2034         int plane = intel_crtc->plane;
2035         unsigned long linear_offset;
2036         u32 dspcntr;
2037         u32 reg;
2038
2039         switch (plane) {
2040         case 0:
2041         case 1:
2042         case 2:
2043                 break;
2044         default:
2045                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046                 return -EINVAL;
2047         }
2048
2049         intel_fb = to_intel_framebuffer(fb);
2050         obj = intel_fb->obj;
2051
2052         reg = DSPCNTR(plane);
2053         dspcntr = I915_READ(reg);
2054         /* Mask out pixel format bits in case we change it */
2055         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056         switch (fb->bits_per_pixel) {
2057         case 8:
2058                 dspcntr |= DISPPLANE_8BPP;
2059                 break;
2060         case 16:
2061                 if (fb->depth != 16)
2062                         return -EINVAL;
2063
2064                 dspcntr |= DISPPLANE_16BPP;
2065                 break;
2066         case 24:
2067         case 32:
2068                 if (fb->depth == 24)
2069                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2070                 else if (fb->depth == 30)
2071                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2072                 else
2073                         return -EINVAL;
2074                 break;
2075         default:
2076                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2077                 return -EINVAL;
2078         }
2079
2080         if (obj->tiling_mode != I915_TILING_NONE)
2081                 dspcntr |= DISPPLANE_TILED;
2082         else
2083                 dspcntr &= ~DISPPLANE_TILED;
2084
2085         /* must disable */
2086         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2087
2088         I915_WRITE(reg, dspcntr);
2089
2090         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2091         intel_crtc->dspaddr_offset =
2092                 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2093                                                    fb->bits_per_pixel / 8,
2094                                                    fb->pitches[0]);
2095         linear_offset -= intel_crtc->dspaddr_offset;
2096
2097         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2098                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2099         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2100         I915_MODIFY_DISPBASE(DSPSURF(plane),
2101                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2102         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2103         I915_WRITE(DSPLINOFF(plane), linear_offset);
2104         POSTING_READ(reg);
2105
2106         return 0;
2107 }
2108
2109 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2110 static int
2111 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2112                            int x, int y, enum mode_set_atomic state)
2113 {
2114         struct drm_device *dev = crtc->dev;
2115         struct drm_i915_private *dev_priv = dev->dev_private;
2116
2117         if (dev_priv->display.disable_fbc)
2118                 dev_priv->display.disable_fbc(dev);
2119         intel_increase_pllclock(crtc);
2120
2121         return dev_priv->display.update_plane(crtc, fb, x, y);
2122 }
2123
2124 static int
2125 intel_finish_fb(struct drm_framebuffer *old_fb)
2126 {
2127         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2128         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2129         bool was_interruptible = dev_priv->mm.interruptible;
2130         int ret;
2131
2132         wait_event(dev_priv->pending_flip_queue,
2133                    atomic_read(&dev_priv->mm.wedged) ||
2134                    atomic_read(&obj->pending_flip) == 0);
2135
2136         /* Big Hammer, we also need to ensure that any pending
2137          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2138          * current scanout is retired before unpinning the old
2139          * framebuffer.
2140          *
2141          * This should only fail upon a hung GPU, in which case we
2142          * can safely continue.
2143          */
2144         dev_priv->mm.interruptible = false;
2145         ret = i915_gem_object_finish_gpu(obj);
2146         dev_priv->mm.interruptible = was_interruptible;
2147
2148         return ret;
2149 }
2150
2151 static int
2152 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2153                     struct drm_framebuffer *fb)
2154 {
2155         struct drm_device *dev = crtc->dev;
2156         struct drm_i915_private *dev_priv = dev->dev_private;
2157         struct drm_i915_master_private *master_priv;
2158         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2159         struct drm_framebuffer *old_fb;
2160         int ret;
2161
2162         /* no fb bound */
2163         if (!fb) {
2164                 DRM_ERROR("No FB bound\n");
2165                 return 0;
2166         }
2167
2168         if(intel_crtc->plane > dev_priv->num_pipe) {
2169                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2170                                 intel_crtc->plane,
2171                                 dev_priv->num_pipe);
2172                 return -EINVAL;
2173         }
2174
2175         mutex_lock(&dev->struct_mutex);
2176         ret = intel_pin_and_fence_fb_obj(dev,
2177                                          to_intel_framebuffer(fb)->obj,
2178                                          NULL);
2179         if (ret != 0) {
2180                 mutex_unlock(&dev->struct_mutex);
2181                 DRM_ERROR("pin & fence failed\n");
2182                 return ret;
2183         }
2184
2185         if (crtc->fb)
2186                 intel_finish_fb(crtc->fb);
2187
2188         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2189         if (ret) {
2190                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2191                 mutex_unlock(&dev->struct_mutex);
2192                 DRM_ERROR("failed to update base address\n");
2193                 return ret;
2194         }
2195
2196         old_fb = crtc->fb;
2197         crtc->fb = fb;
2198         crtc->x = x;
2199         crtc->y = y;
2200
2201         if (old_fb) {
2202                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2203                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2204         }
2205
2206         intel_update_fbc(dev);
2207         mutex_unlock(&dev->struct_mutex);
2208
2209         if (!dev->primary->master)
2210                 return 0;
2211
2212         master_priv = dev->primary->master->driver_priv;
2213         if (!master_priv->sarea_priv)
2214                 return 0;
2215
2216         if (intel_crtc->pipe) {
2217                 master_priv->sarea_priv->pipeB_x = x;
2218                 master_priv->sarea_priv->pipeB_y = y;
2219         } else {
2220                 master_priv->sarea_priv->pipeA_x = x;
2221                 master_priv->sarea_priv->pipeA_y = y;
2222         }
2223
2224         return 0;
2225 }
2226
2227 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2228 {
2229         struct drm_device *dev = crtc->dev;
2230         struct drm_i915_private *dev_priv = dev->dev_private;
2231         u32 dpa_ctl;
2232
2233         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2234         dpa_ctl = I915_READ(DP_A);
2235         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2236
2237         if (clock < 200000) {
2238                 u32 temp;
2239                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2240                 /* workaround for 160Mhz:
2241                    1) program 0x4600c bits 15:0 = 0x8124
2242                    2) program 0x46010 bit 0 = 1
2243                    3) program 0x46034 bit 24 = 1
2244                    4) program 0x64000 bit 14 = 1
2245                    */
2246                 temp = I915_READ(0x4600c);
2247                 temp &= 0xffff0000;
2248                 I915_WRITE(0x4600c, temp | 0x8124);
2249
2250                 temp = I915_READ(0x46010);
2251                 I915_WRITE(0x46010, temp | 1);
2252
2253                 temp = I915_READ(0x46034);
2254                 I915_WRITE(0x46034, temp | (1 << 24));
2255         } else {
2256                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2257         }
2258         I915_WRITE(DP_A, dpa_ctl);
2259
2260         POSTING_READ(DP_A);
2261         udelay(500);
2262 }
2263
2264 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2265 {
2266         struct drm_device *dev = crtc->dev;
2267         struct drm_i915_private *dev_priv = dev->dev_private;
2268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2269         int pipe = intel_crtc->pipe;
2270         u32 reg, temp;
2271
2272         /* enable normal train */
2273         reg = FDI_TX_CTL(pipe);
2274         temp = I915_READ(reg);
2275         if (IS_IVYBRIDGE(dev)) {
2276                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2277                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2278         } else {
2279                 temp &= ~FDI_LINK_TRAIN_NONE;
2280                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2281         }
2282         I915_WRITE(reg, temp);
2283
2284         reg = FDI_RX_CTL(pipe);
2285         temp = I915_READ(reg);
2286         if (HAS_PCH_CPT(dev)) {
2287                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2288                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2289         } else {
2290                 temp &= ~FDI_LINK_TRAIN_NONE;
2291                 temp |= FDI_LINK_TRAIN_NONE;
2292         }
2293         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2294
2295         /* wait one idle pattern time */
2296         POSTING_READ(reg);
2297         udelay(1000);
2298
2299         /* IVB wants error correction enabled */
2300         if (IS_IVYBRIDGE(dev))
2301                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2302                            FDI_FE_ERRC_ENABLE);
2303 }
2304
2305 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2306 {
2307         struct drm_i915_private *dev_priv = dev->dev_private;
2308         u32 flags = I915_READ(SOUTH_CHICKEN1);
2309
2310         flags |= FDI_PHASE_SYNC_OVR(pipe);
2311         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2312         flags |= FDI_PHASE_SYNC_EN(pipe);
2313         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2314         POSTING_READ(SOUTH_CHICKEN1);
2315 }
2316
2317 /* The FDI link training functions for ILK/Ibexpeak. */
2318 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2319 {
2320         struct drm_device *dev = crtc->dev;
2321         struct drm_i915_private *dev_priv = dev->dev_private;
2322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323         int pipe = intel_crtc->pipe;
2324         int plane = intel_crtc->plane;
2325         u32 reg, temp, tries;
2326
2327         /* FDI needs bits from pipe & plane first */
2328         assert_pipe_enabled(dev_priv, pipe);
2329         assert_plane_enabled(dev_priv, plane);
2330
2331         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2332            for train result */
2333         reg = FDI_RX_IMR(pipe);
2334         temp = I915_READ(reg);
2335         temp &= ~FDI_RX_SYMBOL_LOCK;
2336         temp &= ~FDI_RX_BIT_LOCK;
2337         I915_WRITE(reg, temp);
2338         I915_READ(reg);
2339         udelay(150);
2340
2341         /* enable CPU FDI TX and PCH FDI RX */
2342         reg = FDI_TX_CTL(pipe);
2343         temp = I915_READ(reg);
2344         temp &= ~(7 << 19);
2345         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2346         temp &= ~FDI_LINK_TRAIN_NONE;
2347         temp |= FDI_LINK_TRAIN_PATTERN_1;
2348         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2349
2350         reg = FDI_RX_CTL(pipe);
2351         temp = I915_READ(reg);
2352         temp &= ~FDI_LINK_TRAIN_NONE;
2353         temp |= FDI_LINK_TRAIN_PATTERN_1;
2354         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2355
2356         POSTING_READ(reg);
2357         udelay(150);
2358
2359         /* Ironlake workaround, enable clock pointer after FDI enable*/
2360         if (HAS_PCH_IBX(dev)) {
2361                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2362                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2363                            FDI_RX_PHASE_SYNC_POINTER_EN);
2364         }
2365
2366         reg = FDI_RX_IIR(pipe);
2367         for (tries = 0; tries < 5; tries++) {
2368                 temp = I915_READ(reg);
2369                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2370
2371                 if ((temp & FDI_RX_BIT_LOCK)) {
2372                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2373                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2374                         break;
2375                 }
2376         }
2377         if (tries == 5)
2378                 DRM_ERROR("FDI train 1 fail!\n");
2379
2380         /* Train 2 */
2381         reg = FDI_TX_CTL(pipe);
2382         temp = I915_READ(reg);
2383         temp &= ~FDI_LINK_TRAIN_NONE;
2384         temp |= FDI_LINK_TRAIN_PATTERN_2;
2385         I915_WRITE(reg, temp);
2386
2387         reg = FDI_RX_CTL(pipe);
2388         temp = I915_READ(reg);
2389         temp &= ~FDI_LINK_TRAIN_NONE;
2390         temp |= FDI_LINK_TRAIN_PATTERN_2;
2391         I915_WRITE(reg, temp);
2392
2393         POSTING_READ(reg);
2394         udelay(150);
2395
2396         reg = FDI_RX_IIR(pipe);
2397         for (tries = 0; tries < 5; tries++) {
2398                 temp = I915_READ(reg);
2399                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2400
2401                 if (temp & FDI_RX_SYMBOL_LOCK) {
2402                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2403                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2404                         break;
2405                 }
2406         }
2407         if (tries == 5)
2408                 DRM_ERROR("FDI train 2 fail!\n");
2409
2410         DRM_DEBUG_KMS("FDI train done\n");
2411
2412 }
2413
2414 static const int snb_b_fdi_train_param[] = {
2415         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2416         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2417         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2418         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2419 };
2420
2421 /* The FDI link training functions for SNB/Cougarpoint. */
2422 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2423 {
2424         struct drm_device *dev = crtc->dev;
2425         struct drm_i915_private *dev_priv = dev->dev_private;
2426         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2427         int pipe = intel_crtc->pipe;
2428         u32 reg, temp, i, retry;
2429
2430         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2431            for train result */
2432         reg = FDI_RX_IMR(pipe);
2433         temp = I915_READ(reg);
2434         temp &= ~FDI_RX_SYMBOL_LOCK;
2435         temp &= ~FDI_RX_BIT_LOCK;
2436         I915_WRITE(reg, temp);
2437
2438         POSTING_READ(reg);
2439         udelay(150);
2440
2441         /* enable CPU FDI TX and PCH FDI RX */
2442         reg = FDI_TX_CTL(pipe);
2443         temp = I915_READ(reg);
2444         temp &= ~(7 << 19);
2445         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2446         temp &= ~FDI_LINK_TRAIN_NONE;
2447         temp |= FDI_LINK_TRAIN_PATTERN_1;
2448         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2449         /* SNB-B */
2450         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2451         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2452
2453         reg = FDI_RX_CTL(pipe);
2454         temp = I915_READ(reg);
2455         if (HAS_PCH_CPT(dev)) {
2456                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2457                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2458         } else {
2459                 temp &= ~FDI_LINK_TRAIN_NONE;
2460                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2461         }
2462         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2463
2464         POSTING_READ(reg);
2465         udelay(150);
2466
2467         if (HAS_PCH_CPT(dev))
2468                 cpt_phase_pointer_enable(dev, pipe);
2469
2470         for (i = 0; i < 4; i++) {
2471                 reg = FDI_TX_CTL(pipe);
2472                 temp = I915_READ(reg);
2473                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2474                 temp |= snb_b_fdi_train_param[i];
2475                 I915_WRITE(reg, temp);
2476
2477                 POSTING_READ(reg);
2478                 udelay(500);
2479
2480                 for (retry = 0; retry < 5; retry++) {
2481                         reg = FDI_RX_IIR(pipe);
2482                         temp = I915_READ(reg);
2483                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484                         if (temp & FDI_RX_BIT_LOCK) {
2485                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2486                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2487                                 break;
2488                         }
2489                         udelay(50);
2490                 }
2491                 if (retry < 5)
2492                         break;
2493         }
2494         if (i == 4)
2495                 DRM_ERROR("FDI train 1 fail!\n");
2496
2497         /* Train 2 */
2498         reg = FDI_TX_CTL(pipe);
2499         temp = I915_READ(reg);
2500         temp &= ~FDI_LINK_TRAIN_NONE;
2501         temp |= FDI_LINK_TRAIN_PATTERN_2;
2502         if (IS_GEN6(dev)) {
2503                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2504                 /* SNB-B */
2505                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2506         }
2507         I915_WRITE(reg, temp);
2508
2509         reg = FDI_RX_CTL(pipe);
2510         temp = I915_READ(reg);
2511         if (HAS_PCH_CPT(dev)) {
2512                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2513                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2514         } else {
2515                 temp &= ~FDI_LINK_TRAIN_NONE;
2516                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2517         }
2518         I915_WRITE(reg, temp);
2519
2520         POSTING_READ(reg);
2521         udelay(150);
2522
2523         for (i = 0; i < 4; i++) {
2524                 reg = FDI_TX_CTL(pipe);
2525                 temp = I915_READ(reg);
2526                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2527                 temp |= snb_b_fdi_train_param[i];
2528                 I915_WRITE(reg, temp);
2529
2530                 POSTING_READ(reg);
2531                 udelay(500);
2532
2533                 for (retry = 0; retry < 5; retry++) {
2534                         reg = FDI_RX_IIR(pipe);
2535                         temp = I915_READ(reg);
2536                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537                         if (temp & FDI_RX_SYMBOL_LOCK) {
2538                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2539                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2540                                 break;
2541                         }
2542                         udelay(50);
2543                 }
2544                 if (retry < 5)
2545                         break;
2546         }
2547         if (i == 4)
2548                 DRM_ERROR("FDI train 2 fail!\n");
2549
2550         DRM_DEBUG_KMS("FDI train done.\n");
2551 }
2552
2553 /* Manual link training for Ivy Bridge A0 parts */
2554 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2555 {
2556         struct drm_device *dev = crtc->dev;
2557         struct drm_i915_private *dev_priv = dev->dev_private;
2558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2559         int pipe = intel_crtc->pipe;
2560         u32 reg, temp, i;
2561
2562         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2563            for train result */
2564         reg = FDI_RX_IMR(pipe);
2565         temp = I915_READ(reg);
2566         temp &= ~FDI_RX_SYMBOL_LOCK;
2567         temp &= ~FDI_RX_BIT_LOCK;
2568         I915_WRITE(reg, temp);
2569
2570         POSTING_READ(reg);
2571         udelay(150);
2572
2573         /* enable CPU FDI TX and PCH FDI RX */
2574         reg = FDI_TX_CTL(pipe);
2575         temp = I915_READ(reg);
2576         temp &= ~(7 << 19);
2577         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2578         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2579         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2580         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2581         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2582         temp |= FDI_COMPOSITE_SYNC;
2583         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2584
2585         reg = FDI_RX_CTL(pipe);
2586         temp = I915_READ(reg);
2587         temp &= ~FDI_LINK_TRAIN_AUTO;
2588         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2589         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2590         temp |= FDI_COMPOSITE_SYNC;
2591         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2592
2593         POSTING_READ(reg);
2594         udelay(150);
2595
2596         if (HAS_PCH_CPT(dev))
2597                 cpt_phase_pointer_enable(dev, pipe);
2598
2599         for (i = 0; i < 4; i++) {
2600                 reg = FDI_TX_CTL(pipe);
2601                 temp = I915_READ(reg);
2602                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2603                 temp |= snb_b_fdi_train_param[i];
2604                 I915_WRITE(reg, temp);
2605
2606                 POSTING_READ(reg);
2607                 udelay(500);
2608
2609                 reg = FDI_RX_IIR(pipe);
2610                 temp = I915_READ(reg);
2611                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2612
2613                 if (temp & FDI_RX_BIT_LOCK ||
2614                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2615                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2616                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2617                         break;
2618                 }
2619         }
2620         if (i == 4)
2621                 DRM_ERROR("FDI train 1 fail!\n");
2622
2623         /* Train 2 */
2624         reg = FDI_TX_CTL(pipe);
2625         temp = I915_READ(reg);
2626         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2627         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2628         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2629         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2630         I915_WRITE(reg, temp);
2631
2632         reg = FDI_RX_CTL(pipe);
2633         temp = I915_READ(reg);
2634         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2636         I915_WRITE(reg, temp);
2637
2638         POSTING_READ(reg);
2639         udelay(150);
2640
2641         for (i = 0; i < 4; i++) {
2642                 reg = FDI_TX_CTL(pipe);
2643                 temp = I915_READ(reg);
2644                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645                 temp |= snb_b_fdi_train_param[i];
2646                 I915_WRITE(reg, temp);
2647
2648                 POSTING_READ(reg);
2649                 udelay(500);
2650
2651                 reg = FDI_RX_IIR(pipe);
2652                 temp = I915_READ(reg);
2653                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2654
2655                 if (temp & FDI_RX_SYMBOL_LOCK) {
2656                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2657                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2658                         break;
2659                 }
2660         }
2661         if (i == 4)
2662                 DRM_ERROR("FDI train 2 fail!\n");
2663
2664         DRM_DEBUG_KMS("FDI train done.\n");
2665 }
2666
2667 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2668 {
2669         struct drm_device *dev = intel_crtc->base.dev;
2670         struct drm_i915_private *dev_priv = dev->dev_private;
2671         int pipe = intel_crtc->pipe;
2672         u32 reg, temp;
2673
2674         /* Write the TU size bits so error detection works */
2675         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2676                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2677
2678         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2679         reg = FDI_RX_CTL(pipe);
2680         temp = I915_READ(reg);
2681         temp &= ~((0x7 << 19) | (0x7 << 16));
2682         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2683         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2684         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2685
2686         POSTING_READ(reg);
2687         udelay(200);
2688
2689         /* Switch from Rawclk to PCDclk */
2690         temp = I915_READ(reg);
2691         I915_WRITE(reg, temp | FDI_PCDCLK);
2692
2693         POSTING_READ(reg);
2694         udelay(200);
2695
2696         /* On Haswell, the PLL configuration for ports and pipes is handled
2697          * separately, as part of DDI setup */
2698         if (!IS_HASWELL(dev)) {
2699                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2700                 reg = FDI_TX_CTL(pipe);
2701                 temp = I915_READ(reg);
2702                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2703                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2704
2705                         POSTING_READ(reg);
2706                         udelay(100);
2707                 }
2708         }
2709 }
2710
2711 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2712 {
2713         struct drm_device *dev = intel_crtc->base.dev;
2714         struct drm_i915_private *dev_priv = dev->dev_private;
2715         int pipe = intel_crtc->pipe;
2716         u32 reg, temp;
2717
2718         /* Switch from PCDclk to Rawclk */
2719         reg = FDI_RX_CTL(pipe);
2720         temp = I915_READ(reg);
2721         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2722
2723         /* Disable CPU FDI TX PLL */
2724         reg = FDI_TX_CTL(pipe);
2725         temp = I915_READ(reg);
2726         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2727
2728         POSTING_READ(reg);
2729         udelay(100);
2730
2731         reg = FDI_RX_CTL(pipe);
2732         temp = I915_READ(reg);
2733         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2734
2735         /* Wait for the clocks to turn off. */
2736         POSTING_READ(reg);
2737         udelay(100);
2738 }
2739
2740 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2741 {
2742         struct drm_i915_private *dev_priv = dev->dev_private;
2743         u32 flags = I915_READ(SOUTH_CHICKEN1);
2744
2745         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2746         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2747         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2748         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2749         POSTING_READ(SOUTH_CHICKEN1);
2750 }
2751 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2752 {
2753         struct drm_device *dev = crtc->dev;
2754         struct drm_i915_private *dev_priv = dev->dev_private;
2755         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2756         int pipe = intel_crtc->pipe;
2757         u32 reg, temp;
2758
2759         /* disable CPU FDI tx and PCH FDI rx */
2760         reg = FDI_TX_CTL(pipe);
2761         temp = I915_READ(reg);
2762         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2763         POSTING_READ(reg);
2764
2765         reg = FDI_RX_CTL(pipe);
2766         temp = I915_READ(reg);
2767         temp &= ~(0x7 << 16);
2768         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2769         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2770
2771         POSTING_READ(reg);
2772         udelay(100);
2773
2774         /* Ironlake workaround, disable clock pointer after downing FDI */
2775         if (HAS_PCH_IBX(dev)) {
2776                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2777                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2778                            I915_READ(FDI_RX_CHICKEN(pipe) &
2779                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2780         } else if (HAS_PCH_CPT(dev)) {
2781                 cpt_phase_pointer_disable(dev, pipe);
2782         }
2783
2784         /* still set train pattern 1 */
2785         reg = FDI_TX_CTL(pipe);
2786         temp = I915_READ(reg);
2787         temp &= ~FDI_LINK_TRAIN_NONE;
2788         temp |= FDI_LINK_TRAIN_PATTERN_1;
2789         I915_WRITE(reg, temp);
2790
2791         reg = FDI_RX_CTL(pipe);
2792         temp = I915_READ(reg);
2793         if (HAS_PCH_CPT(dev)) {
2794                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2795                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2796         } else {
2797                 temp &= ~FDI_LINK_TRAIN_NONE;
2798                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2799         }
2800         /* BPC in FDI rx is consistent with that in PIPECONF */
2801         temp &= ~(0x07 << 16);
2802         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2803         I915_WRITE(reg, temp);
2804
2805         POSTING_READ(reg);
2806         udelay(100);
2807 }
2808
2809 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2810 {
2811         struct drm_device *dev = crtc->dev;
2812         struct drm_i915_private *dev_priv = dev->dev_private;
2813         unsigned long flags;
2814         bool pending;
2815
2816         if (atomic_read(&dev_priv->mm.wedged))
2817                 return false;
2818
2819         spin_lock_irqsave(&dev->event_lock, flags);
2820         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2821         spin_unlock_irqrestore(&dev->event_lock, flags);
2822
2823         return pending;
2824 }
2825
2826 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2827 {
2828         struct drm_device *dev = crtc->dev;
2829         struct drm_i915_private *dev_priv = dev->dev_private;
2830
2831         if (crtc->fb == NULL)
2832                 return;
2833
2834         wait_event(dev_priv->pending_flip_queue,
2835                    !intel_crtc_has_pending_flip(crtc));
2836
2837         mutex_lock(&dev->struct_mutex);
2838         intel_finish_fb(crtc->fb);
2839         mutex_unlock(&dev->struct_mutex);
2840 }
2841
2842 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2843 {
2844         struct drm_device *dev = crtc->dev;
2845         struct intel_encoder *intel_encoder;
2846
2847         /*
2848          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2849          * must be driven by its own crtc; no sharing is possible.
2850          */
2851         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2852
2853                 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2854                  * CPU handles all others */
2855                 if (IS_HASWELL(dev)) {
2856                         /* It is still unclear how this will work on PPT, so throw up a warning */
2857                         WARN_ON(!HAS_PCH_LPT(dev));
2858
2859                         if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
2860                                 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2861                                 return true;
2862                         } else {
2863                                 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2864                                               intel_encoder->type);
2865                                 return false;
2866                         }
2867                 }
2868
2869                 switch (intel_encoder->type) {
2870                 case INTEL_OUTPUT_EDP:
2871                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2872                                 return false;
2873                         continue;
2874                 }
2875         }
2876
2877         return true;
2878 }
2879
2880 /* Program iCLKIP clock to the desired frequency */
2881 static void lpt_program_iclkip(struct drm_crtc *crtc)
2882 {
2883         struct drm_device *dev = crtc->dev;
2884         struct drm_i915_private *dev_priv = dev->dev_private;
2885         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2886         u32 temp;
2887
2888         /* It is necessary to ungate the pixclk gate prior to programming
2889          * the divisors, and gate it back when it is done.
2890          */
2891         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2892
2893         /* Disable SSCCTL */
2894         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2895                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2896                                         SBI_SSCCTL_DISABLE);
2897
2898         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2899         if (crtc->mode.clock == 20000) {
2900                 auxdiv = 1;
2901                 divsel = 0x41;
2902                 phaseinc = 0x20;
2903         } else {
2904                 /* The iCLK virtual clock root frequency is in MHz,
2905                  * but the crtc->mode.clock in in KHz. To get the divisors,
2906                  * it is necessary to divide one by another, so we
2907                  * convert the virtual clock precision to KHz here for higher
2908                  * precision.
2909                  */
2910                 u32 iclk_virtual_root_freq = 172800 * 1000;
2911                 u32 iclk_pi_range = 64;
2912                 u32 desired_divisor, msb_divisor_value, pi_value;
2913
2914                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2915                 msb_divisor_value = desired_divisor / iclk_pi_range;
2916                 pi_value = desired_divisor % iclk_pi_range;
2917
2918                 auxdiv = 0;
2919                 divsel = msb_divisor_value - 2;
2920                 phaseinc = pi_value;
2921         }
2922
2923         /* This should not happen with any sane values */
2924         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2925                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2926         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2927                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2928
2929         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2930                         crtc->mode.clock,
2931                         auxdiv,
2932                         divsel,
2933                         phasedir,
2934                         phaseinc);
2935
2936         /* Program SSCDIVINTPHASE6 */
2937         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2938         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2939         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2940         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2941         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2942         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2943         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2944
2945         intel_sbi_write(dev_priv,
2946                         SBI_SSCDIVINTPHASE6,
2947                         temp);
2948
2949         /* Program SSCAUXDIV */
2950         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2951         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2952         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2953         intel_sbi_write(dev_priv,
2954                         SBI_SSCAUXDIV6,
2955                         temp);
2956
2957
2958         /* Enable modulator and associated divider */
2959         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2960         temp &= ~SBI_SSCCTL_DISABLE;
2961         intel_sbi_write(dev_priv,
2962                         SBI_SSCCTL6,
2963                         temp);
2964
2965         /* Wait for initialization time */
2966         udelay(24);
2967
2968         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2969 }
2970
2971 /*
2972  * Enable PCH resources required for PCH ports:
2973  *   - PCH PLLs
2974  *   - FDI training & RX/TX
2975  *   - update transcoder timings
2976  *   - DP transcoding bits
2977  *   - transcoder
2978  */
2979 static void ironlake_pch_enable(struct drm_crtc *crtc)
2980 {
2981         struct drm_device *dev = crtc->dev;
2982         struct drm_i915_private *dev_priv = dev->dev_private;
2983         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2984         int pipe = intel_crtc->pipe;
2985         u32 reg, temp;
2986
2987         assert_transcoder_disabled(dev_priv, pipe);
2988
2989         /* For PCH output, training FDI link */
2990         dev_priv->display.fdi_link_train(crtc);
2991
2992         intel_enable_pch_pll(intel_crtc);
2993
2994         if (HAS_PCH_LPT(dev)) {
2995                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2996                 lpt_program_iclkip(crtc);
2997         } else if (HAS_PCH_CPT(dev)) {
2998                 u32 sel;
2999
3000                 temp = I915_READ(PCH_DPLL_SEL);
3001                 switch (pipe) {
3002                 default:
3003                 case 0:
3004                         temp |= TRANSA_DPLL_ENABLE;
3005                         sel = TRANSA_DPLLB_SEL;
3006                         break;
3007                 case 1:
3008                         temp |= TRANSB_DPLL_ENABLE;
3009                         sel = TRANSB_DPLLB_SEL;
3010                         break;
3011                 case 2:
3012                         temp |= TRANSC_DPLL_ENABLE;
3013                         sel = TRANSC_DPLLB_SEL;
3014                         break;
3015                 }
3016                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3017                         temp |= sel;
3018                 else
3019                         temp &= ~sel;
3020                 I915_WRITE(PCH_DPLL_SEL, temp);
3021         }
3022
3023         /* set transcoder timing, panel must allow it */
3024         assert_panel_unlocked(dev_priv, pipe);
3025         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3026         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3027         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3028
3029         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3030         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3031         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3032         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3033
3034         if (!IS_HASWELL(dev))
3035                 intel_fdi_normal_train(crtc);
3036
3037         /* For PCH DP, enable TRANS_DP_CTL */
3038         if (HAS_PCH_CPT(dev) &&
3039             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3040              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3041                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3042                 reg = TRANS_DP_CTL(pipe);
3043                 temp = I915_READ(reg);
3044                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3045                           TRANS_DP_SYNC_MASK |
3046                           TRANS_DP_BPC_MASK);
3047                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3048                          TRANS_DP_ENH_FRAMING);
3049                 temp |= bpc << 9; /* same format but at 11:9 */
3050
3051                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3052                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3053                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3054                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3055
3056                 switch (intel_trans_dp_port_sel(crtc)) {
3057                 case PCH_DP_B:
3058                         temp |= TRANS_DP_PORT_SEL_B;
3059                         break;
3060                 case PCH_DP_C:
3061                         temp |= TRANS_DP_PORT_SEL_C;
3062                         break;
3063                 case PCH_DP_D:
3064                         temp |= TRANS_DP_PORT_SEL_D;
3065                         break;
3066                 default:
3067                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3068                         temp |= TRANS_DP_PORT_SEL_B;
3069                         break;
3070                 }
3071
3072                 I915_WRITE(reg, temp);
3073         }
3074
3075         intel_enable_transcoder(dev_priv, pipe);
3076 }
3077
3078 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3079 {
3080         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3081
3082         if (pll == NULL)
3083                 return;
3084
3085         if (pll->refcount == 0) {
3086                 WARN(1, "bad PCH PLL refcount\n");
3087                 return;
3088         }
3089
3090         --pll->refcount;
3091         intel_crtc->pch_pll = NULL;
3092 }
3093
3094 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3095 {
3096         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3097         struct intel_pch_pll *pll;
3098         int i;
3099
3100         pll = intel_crtc->pch_pll;
3101         if (pll) {
3102                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3103                               intel_crtc->base.base.id, pll->pll_reg);
3104                 goto prepare;
3105         }
3106
3107         if (HAS_PCH_IBX(dev_priv->dev)) {
3108                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3109                 i = intel_crtc->pipe;
3110                 pll = &dev_priv->pch_plls[i];
3111
3112                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3113                               intel_crtc->base.base.id, pll->pll_reg);
3114
3115                 goto found;
3116         }
3117
3118         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3119                 pll = &dev_priv->pch_plls[i];
3120
3121                 /* Only want to check enabled timings first */
3122                 if (pll->refcount == 0)
3123                         continue;
3124
3125                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3126                     fp == I915_READ(pll->fp0_reg)) {
3127                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3128                                       intel_crtc->base.base.id,
3129                                       pll->pll_reg, pll->refcount, pll->active);
3130
3131                         goto found;
3132                 }
3133         }
3134
3135         /* Ok no matching timings, maybe there's a free one? */
3136         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3137                 pll = &dev_priv->pch_plls[i];
3138                 if (pll->refcount == 0) {
3139                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3140                                       intel_crtc->base.base.id, pll->pll_reg);
3141                         goto found;
3142                 }
3143         }
3144
3145         return NULL;
3146
3147 found:
3148         intel_crtc->pch_pll = pll;
3149         pll->refcount++;
3150         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3151 prepare: /* separate function? */
3152         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3153
3154         /* Wait for the clocks to stabilize before rewriting the regs */
3155         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3156         POSTING_READ(pll->pll_reg);
3157         udelay(150);
3158
3159         I915_WRITE(pll->fp0_reg, fp);
3160         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3161         pll->on = false;
3162         return pll;
3163 }
3164
3165 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3166 {
3167         struct drm_i915_private *dev_priv = dev->dev_private;
3168         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3169         u32 temp;
3170
3171         temp = I915_READ(dslreg);
3172         udelay(500);
3173         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3174                 /* Without this, mode sets may fail silently on FDI */
3175                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3176                 udelay(250);
3177                 I915_WRITE(tc2reg, 0);
3178                 if (wait_for(I915_READ(dslreg) != temp, 5))
3179                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3180         }
3181 }
3182
3183 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3184 {
3185         struct drm_device *dev = crtc->dev;
3186         struct drm_i915_private *dev_priv = dev->dev_private;
3187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3188         struct intel_encoder *encoder;
3189         int pipe = intel_crtc->pipe;
3190         int plane = intel_crtc->plane;
3191         u32 temp;
3192         bool is_pch_port;
3193
3194         WARN_ON(!crtc->enabled);
3195
3196         if (intel_crtc->active)
3197                 return;
3198
3199         intel_crtc->active = true;
3200         intel_update_watermarks(dev);
3201
3202         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3203                 temp = I915_READ(PCH_LVDS);
3204                 if ((temp & LVDS_PORT_EN) == 0)
3205                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3206         }
3207
3208         is_pch_port = intel_crtc_driving_pch(crtc);
3209
3210         if (is_pch_port) {
3211                 ironlake_fdi_pll_enable(intel_crtc);
3212         } else {
3213                 assert_fdi_tx_disabled(dev_priv, pipe);
3214                 assert_fdi_rx_disabled(dev_priv, pipe);
3215         }
3216
3217         for_each_encoder_on_crtc(dev, crtc, encoder)
3218                 if (encoder->pre_enable)
3219                         encoder->pre_enable(encoder);
3220
3221         /* Enable panel fitting for LVDS */
3222         if (dev_priv->pch_pf_size &&
3223             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3224                 /* Force use of hard-coded filter coefficients
3225                  * as some pre-programmed values are broken,
3226                  * e.g. x201.
3227                  */
3228                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3229                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3230                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3231         }
3232
3233         /*
3234          * On ILK+ LUT must be loaded before the pipe is running but with
3235          * clocks enabled
3236          */
3237         intel_crtc_load_lut(crtc);
3238
3239         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3240         intel_enable_plane(dev_priv, plane, pipe);
3241
3242         if (is_pch_port)
3243                 ironlake_pch_enable(crtc);
3244
3245         mutex_lock(&dev->struct_mutex);
3246         intel_update_fbc(dev);
3247         mutex_unlock(&dev->struct_mutex);
3248
3249         intel_crtc_update_cursor(crtc, true);
3250
3251         for_each_encoder_on_crtc(dev, crtc, encoder)
3252                 encoder->enable(encoder);
3253
3254         if (HAS_PCH_CPT(dev))
3255                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3256 }
3257
3258 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3259 {
3260         struct drm_device *dev = crtc->dev;
3261         struct drm_i915_private *dev_priv = dev->dev_private;
3262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3263         struct intel_encoder *encoder;
3264         int pipe = intel_crtc->pipe;
3265         int plane = intel_crtc->plane;
3266         u32 reg, temp;
3267
3268
3269         if (!intel_crtc->active)
3270                 return;
3271
3272         for_each_encoder_on_crtc(dev, crtc, encoder)
3273                 encoder->disable(encoder);
3274
3275         intel_crtc_wait_for_pending_flips(crtc);
3276         drm_vblank_off(dev, pipe);
3277         intel_crtc_update_cursor(crtc, false);
3278
3279         intel_disable_plane(dev_priv, plane, pipe);
3280
3281         if (dev_priv->cfb_plane == plane)
3282                 intel_disable_fbc(dev);
3283
3284         intel_disable_pipe(dev_priv, pipe);
3285
3286         /* Disable PF */
3287         I915_WRITE(PF_CTL(pipe), 0);
3288         I915_WRITE(PF_WIN_SZ(pipe), 0);
3289
3290         for_each_encoder_on_crtc(dev, crtc, encoder)
3291                 if (encoder->post_disable)
3292                         encoder->post_disable(encoder);
3293
3294         ironlake_fdi_disable(crtc);
3295
3296         intel_disable_transcoder(dev_priv, pipe);
3297
3298         if (HAS_PCH_CPT(dev)) {
3299                 /* disable TRANS_DP_CTL */
3300                 reg = TRANS_DP_CTL(pipe);
3301                 temp = I915_READ(reg);
3302                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3303                 temp |= TRANS_DP_PORT_SEL_NONE;
3304                 I915_WRITE(reg, temp);
3305
3306                 /* disable DPLL_SEL */
3307                 temp = I915_READ(PCH_DPLL_SEL);
3308                 switch (pipe) {
3309                 case 0:
3310                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3311                         break;
3312                 case 1:
3313                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3314                         break;
3315                 case 2:
3316                         /* C shares PLL A or B */
3317                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3318                         break;
3319                 default:
3320                         BUG(); /* wtf */
3321                 }
3322                 I915_WRITE(PCH_DPLL_SEL, temp);
3323         }
3324
3325         /* disable PCH DPLL */
3326         intel_disable_pch_pll(intel_crtc);
3327
3328         ironlake_fdi_pll_disable(intel_crtc);
3329
3330         intel_crtc->active = false;
3331         intel_update_watermarks(dev);
3332
3333         mutex_lock(&dev->struct_mutex);
3334         intel_update_fbc(dev);
3335         mutex_unlock(&dev->struct_mutex);
3336 }
3337
3338 static void ironlake_crtc_off(struct drm_crtc *crtc)
3339 {
3340         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3341         intel_put_pch_pll(intel_crtc);
3342 }
3343
3344 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3345 {
3346         if (!enable && intel_crtc->overlay) {
3347                 struct drm_device *dev = intel_crtc->base.dev;
3348                 struct drm_i915_private *dev_priv = dev->dev_private;
3349
3350                 mutex_lock(&dev->struct_mutex);
3351                 dev_priv->mm.interruptible = false;
3352                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3353                 dev_priv->mm.interruptible = true;
3354                 mutex_unlock(&dev->struct_mutex);
3355         }
3356
3357         /* Let userspace switch the overlay on again. In most cases userspace
3358          * has to recompute where to put it anyway.
3359          */
3360 }
3361
3362 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3363 {
3364         struct drm_device *dev = crtc->dev;
3365         struct drm_i915_private *dev_priv = dev->dev_private;
3366         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3367         struct intel_encoder *encoder;
3368         int pipe = intel_crtc->pipe;
3369         int plane = intel_crtc->plane;
3370
3371         WARN_ON(!crtc->enabled);
3372
3373         if (intel_crtc->active)
3374                 return;
3375
3376         intel_crtc->active = true;
3377         intel_update_watermarks(dev);
3378
3379         intel_enable_pll(dev_priv, pipe);
3380         intel_enable_pipe(dev_priv, pipe, false);
3381         intel_enable_plane(dev_priv, plane, pipe);
3382
3383         intel_crtc_load_lut(crtc);
3384         intel_update_fbc(dev);
3385
3386         /* Give the overlay scaler a chance to enable if it's on this pipe */
3387         intel_crtc_dpms_overlay(intel_crtc, true);
3388         intel_crtc_update_cursor(crtc, true);
3389
3390         for_each_encoder_on_crtc(dev, crtc, encoder)
3391                 encoder->enable(encoder);
3392 }
3393
3394 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3395 {
3396         struct drm_device *dev = crtc->dev;
3397         struct drm_i915_private *dev_priv = dev->dev_private;
3398         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3399         struct intel_encoder *encoder;
3400         int pipe = intel_crtc->pipe;
3401         int plane = intel_crtc->plane;
3402
3403
3404         if (!intel_crtc->active)
3405                 return;
3406
3407         for_each_encoder_on_crtc(dev, crtc, encoder)
3408                 encoder->disable(encoder);
3409
3410         /* Give the overlay scaler a chance to disable if it's on this pipe */
3411         intel_crtc_wait_for_pending_flips(crtc);
3412         drm_vblank_off(dev, pipe);
3413         intel_crtc_dpms_overlay(intel_crtc, false);
3414         intel_crtc_update_cursor(crtc, false);
3415
3416         if (dev_priv->cfb_plane == plane)
3417                 intel_disable_fbc(dev);
3418
3419         intel_disable_plane(dev_priv, plane, pipe);
3420         intel_disable_pipe(dev_priv, pipe);
3421         intel_disable_pll(dev_priv, pipe);
3422
3423         intel_crtc->active = false;
3424         intel_update_fbc(dev);
3425         intel_update_watermarks(dev);
3426 }
3427
3428 static void i9xx_crtc_off(struct drm_crtc *crtc)
3429 {
3430 }
3431
3432 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3433                                     bool enabled)
3434 {
3435         struct drm_device *dev = crtc->dev;
3436         struct drm_i915_master_private *master_priv;
3437         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3438         int pipe = intel_crtc->pipe;
3439
3440         if (!dev->primary->master)
3441                 return;
3442
3443         master_priv = dev->primary->master->driver_priv;
3444         if (!master_priv->sarea_priv)
3445                 return;
3446
3447         switch (pipe) {
3448         case 0:
3449                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3450                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3451                 break;
3452         case 1:
3453                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3454                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3455                 break;
3456         default:
3457                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3458                 break;
3459         }
3460 }
3461
3462 /**
3463  * Sets the power management mode of the pipe and plane.
3464  */
3465 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3466 {
3467         struct drm_device *dev = crtc->dev;
3468         struct drm_i915_private *dev_priv = dev->dev_private;
3469         struct intel_encoder *intel_encoder;
3470         bool enable = false;
3471
3472         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3473                 enable |= intel_encoder->connectors_active;
3474
3475         if (enable)
3476                 dev_priv->display.crtc_enable(crtc);
3477         else
3478                 dev_priv->display.crtc_disable(crtc);
3479
3480         intel_crtc_update_sarea(crtc, enable);
3481 }
3482
3483 static void intel_crtc_noop(struct drm_crtc *crtc)
3484 {
3485 }
3486
3487 static void intel_crtc_disable(struct drm_crtc *crtc)
3488 {
3489         struct drm_device *dev = crtc->dev;
3490         struct drm_connector *connector;
3491         struct drm_i915_private *dev_priv = dev->dev_private;
3492
3493         /* crtc should still be enabled when we disable it. */
3494         WARN_ON(!crtc->enabled);
3495
3496         dev_priv->display.crtc_disable(crtc);
3497         intel_crtc_update_sarea(crtc, false);
3498         dev_priv->display.off(crtc);
3499
3500         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3501         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3502
3503         if (crtc->fb) {
3504                 mutex_lock(&dev->struct_mutex);
3505                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3506                 mutex_unlock(&dev->struct_mutex);
3507                 crtc->fb = NULL;
3508         }
3509
3510         /* Update computed state. */
3511         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3512                 if (!connector->encoder || !connector->encoder->crtc)
3513                         continue;
3514
3515                 if (connector->encoder->crtc != crtc)
3516                         continue;
3517
3518                 connector->dpms = DRM_MODE_DPMS_OFF;
3519                 to_intel_encoder(connector->encoder)->connectors_active = false;
3520         }
3521 }
3522
3523 void intel_modeset_disable(struct drm_device *dev)
3524 {
3525         struct drm_crtc *crtc;
3526
3527         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3528                 if (crtc->enabled)
3529                         intel_crtc_disable(crtc);
3530         }
3531 }
3532
3533 void intel_encoder_noop(struct drm_encoder *encoder)
3534 {
3535 }
3536
3537 void intel_encoder_destroy(struct drm_encoder *encoder)
3538 {
3539         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3540
3541         drm_encoder_cleanup(encoder);
3542         kfree(intel_encoder);
3543 }
3544
3545 /* Simple dpms helper for encodres with just one connector, no cloning and only
3546  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3547  * state of the entire output pipe. */
3548 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3549 {
3550         if (mode == DRM_MODE_DPMS_ON) {
3551                 encoder->connectors_active = true;
3552
3553                 intel_crtc_update_dpms(encoder->base.crtc);
3554         } else {
3555                 encoder->connectors_active = false;
3556
3557                 intel_crtc_update_dpms(encoder->base.crtc);
3558         }
3559 }
3560
3561 /* Cross check the actual hw state with our own modeset state tracking (and it's
3562  * internal consistency). */
3563 static void intel_connector_check_state(struct intel_connector *connector)
3564 {
3565         if (connector->get_hw_state(connector)) {
3566                 struct intel_encoder *encoder = connector->encoder;
3567                 struct drm_crtc *crtc;
3568                 bool encoder_enabled;
3569                 enum pipe pipe;
3570
3571                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3572                               connector->base.base.id,
3573                               drm_get_connector_name(&connector->base));
3574
3575                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3576                      "wrong connector dpms state\n");
3577                 WARN(connector->base.encoder != &encoder->base,
3578                      "active connector not linked to encoder\n");
3579                 WARN(!encoder->connectors_active,
3580                      "encoder->connectors_active not set\n");
3581
3582                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3583                 WARN(!encoder_enabled, "encoder not enabled\n");
3584                 if (WARN_ON(!encoder->base.crtc))
3585                         return;
3586
3587                 crtc = encoder->base.crtc;
3588
3589                 WARN(!crtc->enabled, "crtc not enabled\n");
3590                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3591                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3592                      "encoder active on the wrong pipe\n");
3593         }
3594 }
3595
3596 /* Even simpler default implementation, if there's really no special case to
3597  * consider. */
3598 void intel_connector_dpms(struct drm_connector *connector, int mode)
3599 {
3600         struct intel_encoder *encoder = intel_attached_encoder(connector);
3601
3602         /* All the simple cases only support two dpms states. */
3603         if (mode != DRM_MODE_DPMS_ON)
3604                 mode = DRM_MODE_DPMS_OFF;
3605
3606         if (mode == connector->dpms)
3607                 return;
3608
3609         connector->dpms = mode;
3610
3611         /* Only need to change hw state when actually enabled */
3612         if (encoder->base.crtc)
3613                 intel_encoder_dpms(encoder, mode);
3614         else
3615                 WARN_ON(encoder->connectors_active != false);
3616
3617         intel_modeset_check_state(connector->dev);
3618 }
3619
3620 /* Simple connector->get_hw_state implementation for encoders that support only
3621  * one connector and no cloning and hence the encoder state determines the state
3622  * of the connector. */
3623 bool intel_connector_get_hw_state(struct intel_connector *connector)
3624 {
3625         enum pipe pipe = 0;
3626         struct intel_encoder *encoder = connector->encoder;
3627
3628         return encoder->get_hw_state(encoder, &pipe);
3629 }
3630
3631 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3632                                   const struct drm_display_mode *mode,
3633                                   struct drm_display_mode *adjusted_mode)
3634 {
3635         struct drm_device *dev = crtc->dev;
3636
3637         if (HAS_PCH_SPLIT(dev)) {
3638                 /* FDI link clock is fixed at 2.7G */
3639                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3640                         return false;
3641         }
3642
3643         /* All interlaced capable intel hw wants timings in frames. Note though
3644          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3645          * timings, so we need to be careful not to clobber these.*/
3646         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3647                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3648
3649         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3650          * with a hsync front porch of 0.
3651          */
3652         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3653                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3654                 return false;
3655
3656         return true;
3657 }
3658
3659 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3660 {
3661         return 400000; /* FIXME */
3662 }
3663
3664 static int i945_get_display_clock_speed(struct drm_device *dev)
3665 {
3666         return 400000;
3667 }
3668
3669 static int i915_get_display_clock_speed(struct drm_device *dev)
3670 {
3671         return 333000;
3672 }
3673
3674 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3675 {
3676         return 200000;
3677 }
3678
3679 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3680 {
3681         u16 gcfgc = 0;
3682
3683         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3684
3685         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3686                 return 133000;
3687         else {
3688                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3689                 case GC_DISPLAY_CLOCK_333_MHZ:
3690                         return 333000;
3691                 default:
3692                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3693                         return 190000;
3694                 }
3695         }
3696 }
3697
3698 static int i865_get_display_clock_speed(struct drm_device *dev)
3699 {
3700         return 266000;
3701 }
3702
3703 static int i855_get_display_clock_speed(struct drm_device *dev)
3704 {
3705         u16 hpllcc = 0;
3706         /* Assume that the hardware is in the high speed state.  This
3707          * should be the default.
3708          */
3709         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3710         case GC_CLOCK_133_200:
3711         case GC_CLOCK_100_200:
3712                 return 200000;
3713         case GC_CLOCK_166_250:
3714                 return 250000;
3715         case GC_CLOCK_100_133:
3716                 return 133000;
3717         }
3718
3719         /* Shouldn't happen */
3720         return 0;
3721 }
3722
3723 static int i830_get_display_clock_speed(struct drm_device *dev)
3724 {
3725         return 133000;
3726 }
3727
3728 struct fdi_m_n {
3729         u32        tu;
3730         u32        gmch_m;
3731         u32        gmch_n;
3732         u32        link_m;
3733         u32        link_n;
3734 };
3735
3736 static void
3737 fdi_reduce_ratio(u32 *num, u32 *den)
3738 {
3739         while (*num > 0xffffff || *den > 0xffffff) {
3740                 *num >>= 1;
3741                 *den >>= 1;
3742         }
3743 }
3744
3745 static void
3746 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3747                      int link_clock, struct fdi_m_n *m_n)
3748 {
3749         m_n->tu = 64; /* default size */
3750
3751         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3752         m_n->gmch_m = bits_per_pixel * pixel_clock;
3753         m_n->gmch_n = link_clock * nlanes * 8;
3754         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3755
3756         m_n->link_m = pixel_clock;
3757         m_n->link_n = link_clock;
3758         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3759 }
3760
3761 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3762 {
3763         if (i915_panel_use_ssc >= 0)
3764                 return i915_panel_use_ssc != 0;
3765         return dev_priv->lvds_use_ssc
3766                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3767 }
3768
3769 /**
3770  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3771  * @crtc: CRTC structure
3772  * @mode: requested mode
3773  *
3774  * A pipe may be connected to one or more outputs.  Based on the depth of the
3775  * attached framebuffer, choose a good color depth to use on the pipe.
3776  *
3777  * If possible, match the pipe depth to the fb depth.  In some cases, this
3778  * isn't ideal, because the connected output supports a lesser or restricted
3779  * set of depths.  Resolve that here:
3780  *    LVDS typically supports only 6bpc, so clamp down in that case
3781  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3782  *    Displays may support a restricted set as well, check EDID and clamp as
3783  *      appropriate.
3784  *    DP may want to dither down to 6bpc to fit larger modes
3785  *
3786  * RETURNS:
3787  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3788  * true if they don't match).
3789  */
3790 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3791                                          struct drm_framebuffer *fb,
3792                                          unsigned int *pipe_bpp,
3793                                          struct drm_display_mode *mode)
3794 {
3795         struct drm_device *dev = crtc->dev;
3796         struct drm_i915_private *dev_priv = dev->dev_private;
3797         struct drm_connector *connector;
3798         struct intel_encoder *intel_encoder;
3799         unsigned int display_bpc = UINT_MAX, bpc;
3800
3801         /* Walk the encoders & connectors on this crtc, get min bpc */
3802         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3803
3804                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3805                         unsigned int lvds_bpc;
3806
3807                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3808                             LVDS_A3_POWER_UP)
3809                                 lvds_bpc = 8;
3810                         else
3811                                 lvds_bpc = 6;
3812
3813                         if (lvds_bpc < display_bpc) {
3814                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3815                                 display_bpc = lvds_bpc;
3816                         }
3817                         continue;
3818                 }
3819
3820                 /* Not one of the known troublemakers, check the EDID */
3821                 list_for_each_entry(connector, &dev->mode_config.connector_list,
3822                                     head) {
3823                         if (connector->encoder != &intel_encoder->base)
3824                                 continue;
3825
3826                         /* Don't use an invalid EDID bpc value */
3827                         if (connector->display_info.bpc &&
3828                             connector->display_info.bpc < display_bpc) {
3829                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3830                                 display_bpc = connector->display_info.bpc;
3831                         }
3832                 }
3833
3834                 /*
3835                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3836                  * through, clamp it down.  (Note: >12bpc will be caught below.)
3837                  */
3838                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3839                         if (display_bpc > 8 && display_bpc < 12) {
3840                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3841                                 display_bpc = 12;
3842                         } else {
3843                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3844                                 display_bpc = 8;
3845                         }
3846                 }
3847         }
3848
3849         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3850                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3851                 display_bpc = 6;
3852         }
3853
3854         /*
3855          * We could just drive the pipe at the highest bpc all the time and
3856          * enable dithering as needed, but that costs bandwidth.  So choose
3857          * the minimum value that expresses the full color range of the fb but
3858          * also stays within the max display bpc discovered above.
3859          */
3860
3861         switch (fb->depth) {
3862         case 8:
3863                 bpc = 8; /* since we go through a colormap */
3864                 break;
3865         case 15:
3866         case 16:
3867                 bpc = 6; /* min is 18bpp */
3868                 break;
3869         case 24:
3870                 bpc = 8;
3871                 break;
3872         case 30:
3873                 bpc = 10;
3874                 break;
3875         case 48:
3876                 bpc = 12;
3877                 break;
3878         default:
3879                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3880                 bpc = min((unsigned int)8, display_bpc);
3881                 break;
3882         }
3883
3884         display_bpc = min(display_bpc, bpc);
3885
3886         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3887                       bpc, display_bpc);
3888
3889         *pipe_bpp = display_bpc * 3;
3890
3891         return display_bpc != bpc;
3892 }
3893
3894 static int vlv_get_refclk(struct drm_crtc *crtc)
3895 {
3896         struct drm_device *dev = crtc->dev;
3897         struct drm_i915_private *dev_priv = dev->dev_private;
3898         int refclk = 27000; /* for DP & HDMI */
3899
3900         return 100000; /* only one validated so far */
3901
3902         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3903                 refclk = 96000;
3904         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3905                 if (intel_panel_use_ssc(dev_priv))
3906                         refclk = 100000;
3907                 else
3908                         refclk = 96000;
3909         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3910                 refclk = 100000;
3911         }
3912
3913         return refclk;
3914 }
3915
3916 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3917 {
3918         struct drm_device *dev = crtc->dev;
3919         struct drm_i915_private *dev_priv = dev->dev_private;
3920         int refclk;
3921
3922         if (IS_VALLEYVIEW(dev)) {
3923                 refclk = vlv_get_refclk(crtc);
3924         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3925             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3926                 refclk = dev_priv->lvds_ssc_freq * 1000;
3927                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3928                               refclk / 1000);
3929         } else if (!IS_GEN2(dev)) {
3930                 refclk = 96000;
3931         } else {
3932                 refclk = 48000;
3933         }
3934
3935         return refclk;
3936 }
3937
3938 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3939                                       intel_clock_t *clock)
3940 {
3941         /* SDVO TV has fixed PLL values depend on its clock range,
3942            this mirrors vbios setting. */
3943         if (adjusted_mode->clock >= 100000
3944             && adjusted_mode->clock < 140500) {
3945                 clock->p1 = 2;
3946                 clock->p2 = 10;
3947                 clock->n = 3;
3948                 clock->m1 = 16;
3949                 clock->m2 = 8;
3950         } else if (adjusted_mode->clock >= 140500
3951                    && adjusted_mode->clock <= 200000) {
3952                 clock->p1 = 1;
3953                 clock->p2 = 10;
3954                 clock->n = 6;
3955                 clock->m1 = 12;
3956                 clock->m2 = 8;
3957         }
3958 }
3959
3960 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3961                                      intel_clock_t *clock,
3962                                      intel_clock_t *reduced_clock)
3963 {
3964         struct drm_device *dev = crtc->dev;
3965         struct drm_i915_private *dev_priv = dev->dev_private;
3966         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3967         int pipe = intel_crtc->pipe;
3968         u32 fp, fp2 = 0;
3969
3970         if (IS_PINEVIEW(dev)) {
3971                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3972                 if (reduced_clock)
3973                         fp2 = (1 << reduced_clock->n) << 16 |
3974                                 reduced_clock->m1 << 8 | reduced_clock->m2;
3975         } else {
3976                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3977                 if (reduced_clock)
3978                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3979                                 reduced_clock->m2;
3980         }
3981
3982         I915_WRITE(FP0(pipe), fp);
3983
3984         intel_crtc->lowfreq_avail = false;
3985         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3986             reduced_clock && i915_powersave) {
3987                 I915_WRITE(FP1(pipe), fp2);
3988                 intel_crtc->lowfreq_avail = true;
3989         } else {
3990                 I915_WRITE(FP1(pipe), fp);
3991         }
3992 }
3993
3994 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3995                               struct drm_display_mode *adjusted_mode)
3996 {
3997         struct drm_device *dev = crtc->dev;
3998         struct drm_i915_private *dev_priv = dev->dev_private;
3999         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4000         int pipe = intel_crtc->pipe;
4001         u32 temp;
4002
4003         temp = I915_READ(LVDS);
4004         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4005         if (pipe == 1) {
4006                 temp |= LVDS_PIPEB_SELECT;
4007         } else {
4008                 temp &= ~LVDS_PIPEB_SELECT;
4009         }
4010         /* set the corresponsding LVDS_BORDER bit */
4011         temp |= dev_priv->lvds_border_bits;
4012         /* Set the B0-B3 data pairs corresponding to whether we're going to
4013          * set the DPLLs for dual-channel mode or not.
4014          */
4015         if (clock->p2 == 7)
4016                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4017         else
4018                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4019
4020         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4021          * appropriately here, but we need to look more thoroughly into how
4022          * panels behave in the two modes.
4023          */
4024         /* set the dithering flag on LVDS as needed */
4025         if (INTEL_INFO(dev)->gen >= 4) {
4026                 if (dev_priv->lvds_dither)
4027                         temp |= LVDS_ENABLE_DITHER;
4028                 else
4029                         temp &= ~LVDS_ENABLE_DITHER;
4030         }
4031         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4032         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4033                 temp |= LVDS_HSYNC_POLARITY;
4034         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4035                 temp |= LVDS_VSYNC_POLARITY;
4036         I915_WRITE(LVDS, temp);
4037 }
4038
4039 static void vlv_update_pll(struct drm_crtc *crtc,
4040                            struct drm_display_mode *mode,
4041                            struct drm_display_mode *adjusted_mode,
4042                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4043                            int refclk, int num_connectors)
4044 {
4045         struct drm_device *dev = crtc->dev;
4046         struct drm_i915_private *dev_priv = dev->dev_private;
4047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4048         int pipe = intel_crtc->pipe;
4049         u32 dpll, mdiv, pdiv;
4050         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4051         bool is_hdmi;
4052
4053         is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4054
4055         bestn = clock->n;
4056         bestm1 = clock->m1;
4057         bestm2 = clock->m2;
4058         bestp1 = clock->p1;
4059         bestp2 = clock->p2;
4060
4061         /* Enable DPIO clock input */
4062         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4063                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4064         I915_WRITE(DPLL(pipe), dpll);
4065         POSTING_READ(DPLL(pipe));
4066
4067         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4068         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4069         mdiv |= ((bestn << DPIO_N_SHIFT));
4070         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4071         mdiv |= (1 << DPIO_K_SHIFT);
4072         mdiv |= DPIO_ENABLE_CALIBRATION;
4073         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4074
4075         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4076
4077         pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4078                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4079                 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4080         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4081
4082         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4083
4084         dpll |= DPLL_VCO_ENABLE;
4085         I915_WRITE(DPLL(pipe), dpll);
4086         POSTING_READ(DPLL(pipe));
4087         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4088                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4089
4090         if (is_hdmi) {
4091                 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4092
4093                 if (temp > 1)
4094                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4095                 else
4096                         temp = 0;
4097
4098                 I915_WRITE(DPLL_MD(pipe), temp);
4099                 POSTING_READ(DPLL_MD(pipe));
4100         }
4101
4102         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4103 }
4104
4105 static void i9xx_update_pll(struct drm_crtc *crtc,
4106                             struct drm_display_mode *mode,
4107                             struct drm_display_mode *adjusted_mode,
4108                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4109                             int num_connectors)
4110 {
4111         struct drm_device *dev = crtc->dev;
4112         struct drm_i915_private *dev_priv = dev->dev_private;
4113         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4114         int pipe = intel_crtc->pipe;
4115         u32 dpll;
4116         bool is_sdvo;
4117
4118         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4119                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4120
4121         dpll = DPLL_VGA_MODE_DIS;
4122
4123         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4124                 dpll |= DPLLB_MODE_LVDS;
4125         else
4126                 dpll |= DPLLB_MODE_DAC_SERIAL;
4127         if (is_sdvo) {
4128                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4129                 if (pixel_multiplier > 1) {
4130                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4131                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4132                 }
4133                 dpll |= DPLL_DVO_HIGH_SPEED;
4134         }
4135         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4136                 dpll |= DPLL_DVO_HIGH_SPEED;
4137
4138         /* compute bitmask from p1 value */
4139         if (IS_PINEVIEW(dev))
4140                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4141         else {
4142                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4143                 if (IS_G4X(dev) && reduced_clock)
4144                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4145         }
4146         switch (clock->p2) {
4147         case 5:
4148                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4149                 break;
4150         case 7:
4151                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4152                 break;
4153         case 10:
4154                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4155                 break;
4156         case 14:
4157                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4158                 break;
4159         }
4160         if (INTEL_INFO(dev)->gen >= 4)
4161                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4162
4163         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4164                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4165         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4166                 /* XXX: just matching BIOS for now */
4167                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4168                 dpll |= 3;
4169         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4170                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4171                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4172         else
4173                 dpll |= PLL_REF_INPUT_DREFCLK;
4174
4175         dpll |= DPLL_VCO_ENABLE;
4176         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4177         POSTING_READ(DPLL(pipe));
4178         udelay(150);
4179
4180         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4181          * This is an exception to the general rule that mode_set doesn't turn
4182          * things on.
4183          */
4184         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4185                 intel_update_lvds(crtc, clock, adjusted_mode);
4186
4187         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4188                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4189
4190         I915_WRITE(DPLL(pipe), dpll);
4191
4192         /* Wait for the clocks to stabilize. */
4193         POSTING_READ(DPLL(pipe));
4194         udelay(150);
4195
4196         if (INTEL_INFO(dev)->gen >= 4) {
4197                 u32 temp = 0;
4198                 if (is_sdvo) {
4199                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4200                         if (temp > 1)
4201                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4202                         else
4203                                 temp = 0;
4204                 }
4205                 I915_WRITE(DPLL_MD(pipe), temp);
4206         } else {
4207                 /* The pixel multiplier can only be updated once the
4208                  * DPLL is enabled and the clocks are stable.
4209                  *
4210                  * So write it again.
4211                  */
4212                 I915_WRITE(DPLL(pipe), dpll);
4213         }
4214 }
4215
4216 static void i8xx_update_pll(struct drm_crtc *crtc,
4217                             struct drm_display_mode *adjusted_mode,
4218                             intel_clock_t *clock,
4219                             int num_connectors)
4220 {
4221         struct drm_device *dev = crtc->dev;
4222         struct drm_i915_private *dev_priv = dev->dev_private;
4223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4224         int pipe = intel_crtc->pipe;
4225         u32 dpll;
4226
4227         dpll = DPLL_VGA_MODE_DIS;
4228
4229         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4230                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4231         } else {
4232                 if (clock->p1 == 2)
4233                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4234                 else
4235                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4236                 if (clock->p2 == 4)
4237                         dpll |= PLL_P2_DIVIDE_BY_4;
4238         }
4239
4240         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4241                 /* XXX: just matching BIOS for now */
4242                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4243                 dpll |= 3;
4244         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4245                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4246                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4247         else
4248                 dpll |= PLL_REF_INPUT_DREFCLK;
4249
4250         dpll |= DPLL_VCO_ENABLE;
4251         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4252         POSTING_READ(DPLL(pipe));
4253         udelay(150);
4254
4255         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4256          * This is an exception to the general rule that mode_set doesn't turn
4257          * things on.
4258          */
4259         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4260                 intel_update_lvds(crtc, clock, adjusted_mode);
4261
4262         I915_WRITE(DPLL(pipe), dpll);
4263
4264         /* Wait for the clocks to stabilize. */
4265         POSTING_READ(DPLL(pipe));
4266         udelay(150);
4267
4268         /* The pixel multiplier can only be updated once the
4269          * DPLL is enabled and the clocks are stable.
4270          *
4271          * So write it again.
4272          */
4273         I915_WRITE(DPLL(pipe), dpll);
4274 }
4275
4276 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4277                               struct drm_display_mode *mode,
4278                               struct drm_display_mode *adjusted_mode,
4279                               int x, int y,
4280                               struct drm_framebuffer *fb)
4281 {
4282         struct drm_device *dev = crtc->dev;
4283         struct drm_i915_private *dev_priv = dev->dev_private;
4284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4285         int pipe = intel_crtc->pipe;
4286         int plane = intel_crtc->plane;
4287         int refclk, num_connectors = 0;
4288         intel_clock_t clock, reduced_clock;
4289         u32 dspcntr, pipeconf, vsyncshift;
4290         bool ok, has_reduced_clock = false, is_sdvo = false;
4291         bool is_lvds = false, is_tv = false, is_dp = false;
4292         struct intel_encoder *encoder;
4293         const intel_limit_t *limit;
4294         int ret;
4295
4296         for_each_encoder_on_crtc(dev, crtc, encoder) {
4297                 switch (encoder->type) {
4298                 case INTEL_OUTPUT_LVDS:
4299                         is_lvds = true;
4300                         break;
4301                 case INTEL_OUTPUT_SDVO:
4302                 case INTEL_OUTPUT_HDMI:
4303                         is_sdvo = true;
4304                         if (encoder->needs_tv_clock)
4305                                 is_tv = true;
4306                         break;
4307                 case INTEL_OUTPUT_TVOUT:
4308                         is_tv = true;
4309                         break;
4310                 case INTEL_OUTPUT_DISPLAYPORT:
4311                         is_dp = true;
4312                         break;
4313                 }
4314
4315                 num_connectors++;
4316         }
4317
4318         refclk = i9xx_get_refclk(crtc, num_connectors);
4319
4320         /*
4321          * Returns a set of divisors for the desired target clock with the given
4322          * refclk, or FALSE.  The returned values represent the clock equation:
4323          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4324          */
4325         limit = intel_limit(crtc, refclk);
4326         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4327                              &clock);
4328         if (!ok) {
4329                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4330                 return -EINVAL;
4331         }
4332
4333         /* Ensure that the cursor is valid for the new mode before changing... */
4334         intel_crtc_update_cursor(crtc, true);
4335
4336         if (is_lvds && dev_priv->lvds_downclock_avail) {
4337                 /*
4338                  * Ensure we match the reduced clock's P to the target clock.
4339                  * If the clocks don't match, we can't switch the display clock
4340                  * by using the FP0/FP1. In such case we will disable the LVDS
4341                  * downclock feature.
4342                 */
4343                 has_reduced_clock = limit->find_pll(limit, crtc,
4344                                                     dev_priv->lvds_downclock,
4345                                                     refclk,
4346                                                     &clock,
4347                                                     &reduced_clock);
4348         }
4349
4350         if (is_sdvo && is_tv)
4351                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4352
4353         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4354                                  &reduced_clock : NULL);
4355
4356         if (IS_GEN2(dev))
4357                 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4358         else if (IS_VALLEYVIEW(dev))
4359                 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4360                                refclk, num_connectors);
4361         else
4362                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4363                                 has_reduced_clock ? &reduced_clock : NULL,
4364                                 num_connectors);
4365
4366         /* setup pipeconf */
4367         pipeconf = I915_READ(PIPECONF(pipe));
4368
4369         /* Set up the display plane register */
4370         dspcntr = DISPPLANE_GAMMA_ENABLE;
4371
4372         if (pipe == 0)
4373                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4374         else
4375                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4376
4377         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4378                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4379                  * core speed.
4380                  *
4381                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4382                  * pipe == 0 check?
4383                  */
4384                 if (mode->clock >
4385                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4386                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4387                 else
4388                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4389         }
4390
4391         /* default to 8bpc */
4392         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4393         if (is_dp) {
4394                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4395                         pipeconf |= PIPECONF_BPP_6 |
4396                                     PIPECONF_DITHER_EN |
4397                                     PIPECONF_DITHER_TYPE_SP;
4398                 }
4399         }
4400
4401         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4402         drm_mode_debug_printmodeline(mode);
4403
4404         if (HAS_PIPE_CXSR(dev)) {
4405                 if (intel_crtc->lowfreq_avail) {
4406                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4407                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4408                 } else {
4409                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4410                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4411                 }
4412         }
4413
4414         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4415         if (!IS_GEN2(dev) &&
4416             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4417                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4418                 /* the chip adds 2 halflines automatically */
4419                 adjusted_mode->crtc_vtotal -= 1;
4420                 adjusted_mode->crtc_vblank_end -= 1;
4421                 vsyncshift = adjusted_mode->crtc_hsync_start
4422                              - adjusted_mode->crtc_htotal/2;
4423         } else {
4424                 pipeconf |= PIPECONF_PROGRESSIVE;
4425                 vsyncshift = 0;
4426         }
4427
4428         if (!IS_GEN3(dev))
4429                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4430
4431         I915_WRITE(HTOTAL(pipe),
4432                    (adjusted_mode->crtc_hdisplay - 1) |
4433                    ((adjusted_mode->crtc_htotal - 1) << 16));
4434         I915_WRITE(HBLANK(pipe),
4435                    (adjusted_mode->crtc_hblank_start - 1) |
4436                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4437         I915_WRITE(HSYNC(pipe),
4438                    (adjusted_mode->crtc_hsync_start - 1) |
4439                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4440
4441         I915_WRITE(VTOTAL(pipe),
4442                    (adjusted_mode->crtc_vdisplay - 1) |
4443                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4444         I915_WRITE(VBLANK(pipe),
4445                    (adjusted_mode->crtc_vblank_start - 1) |
4446                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4447         I915_WRITE(VSYNC(pipe),
4448                    (adjusted_mode->crtc_vsync_start - 1) |
4449                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4450
4451         /* pipesrc and dspsize control the size that is scaled from,
4452          * which should always be the user's requested size.
4453          */
4454         I915_WRITE(DSPSIZE(plane),
4455                    ((mode->vdisplay - 1) << 16) |
4456                    (mode->hdisplay - 1));
4457         I915_WRITE(DSPPOS(plane), 0);
4458         I915_WRITE(PIPESRC(pipe),
4459                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4460
4461         I915_WRITE(PIPECONF(pipe), pipeconf);
4462         POSTING_READ(PIPECONF(pipe));
4463         intel_enable_pipe(dev_priv, pipe, false);
4464
4465         intel_wait_for_vblank(dev, pipe);
4466
4467         I915_WRITE(DSPCNTR(plane), dspcntr);
4468         POSTING_READ(DSPCNTR(plane));
4469
4470         ret = intel_pipe_set_base(crtc, x, y, fb);
4471
4472         intel_update_watermarks(dev);
4473
4474         return ret;
4475 }
4476
4477 /*
4478  * Initialize reference clocks when the driver loads
4479  */
4480 void ironlake_init_pch_refclk(struct drm_device *dev)
4481 {
4482         struct drm_i915_private *dev_priv = dev->dev_private;
4483         struct drm_mode_config *mode_config = &dev->mode_config;
4484         struct intel_encoder *encoder;
4485         u32 temp;
4486         bool has_lvds = false;
4487         bool has_cpu_edp = false;
4488         bool has_pch_edp = false;
4489         bool has_panel = false;
4490         bool has_ck505 = false;
4491         bool can_ssc = false;
4492
4493         /* We need to take the global config into account */
4494         list_for_each_entry(encoder, &mode_config->encoder_list,
4495                             base.head) {
4496                 switch (encoder->type) {
4497                 case INTEL_OUTPUT_LVDS:
4498                         has_panel = true;
4499                         has_lvds = true;
4500                         break;
4501                 case INTEL_OUTPUT_EDP:
4502                         has_panel = true;
4503                         if (intel_encoder_is_pch_edp(&encoder->base))
4504                                 has_pch_edp = true;
4505                         else
4506                                 has_cpu_edp = true;
4507                         break;
4508                 }
4509         }
4510
4511         if (HAS_PCH_IBX(dev)) {
4512                 has_ck505 = dev_priv->display_clock_mode;
4513                 can_ssc = has_ck505;
4514         } else {
4515                 has_ck505 = false;
4516                 can_ssc = true;
4517         }
4518
4519         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4520                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4521                       has_ck505);
4522
4523         /* Ironlake: try to setup display ref clock before DPLL
4524          * enabling. This is only under driver's control after
4525          * PCH B stepping, previous chipset stepping should be
4526          * ignoring this setting.
4527          */
4528         temp = I915_READ(PCH_DREF_CONTROL);
4529         /* Always enable nonspread source */
4530         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4531
4532         if (has_ck505)
4533                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4534         else
4535                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4536
4537         if (has_panel) {
4538                 temp &= ~DREF_SSC_SOURCE_MASK;
4539                 temp |= DREF_SSC_SOURCE_ENABLE;
4540
4541                 /* SSC must be turned on before enabling the CPU output  */
4542                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4543                         DRM_DEBUG_KMS("Using SSC on panel\n");
4544                         temp |= DREF_SSC1_ENABLE;
4545                 } else
4546                         temp &= ~DREF_SSC1_ENABLE;
4547
4548                 /* Get SSC going before enabling the outputs */
4549                 I915_WRITE(PCH_DREF_CONTROL, temp);
4550                 POSTING_READ(PCH_DREF_CONTROL);
4551                 udelay(200);
4552
4553                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4554
4555                 /* Enable CPU source on CPU attached eDP */
4556                 if (has_cpu_edp) {
4557                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4558                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4559                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4560                         }
4561                         else
4562                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4563                 } else
4564                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4565
4566                 I915_WRITE(PCH_DREF_CONTROL, temp);
4567                 POSTING_READ(PCH_DREF_CONTROL);
4568                 udelay(200);
4569         } else {
4570                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4571
4572                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4573
4574                 /* Turn off CPU output */
4575                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4576
4577                 I915_WRITE(PCH_DREF_CONTROL, temp);
4578                 POSTING_READ(PCH_DREF_CONTROL);
4579                 udelay(200);
4580
4581                 /* Turn off the SSC source */
4582                 temp &= ~DREF_SSC_SOURCE_MASK;
4583                 temp |= DREF_SSC_SOURCE_DISABLE;
4584
4585                 /* Turn off SSC1 */
4586                 temp &= ~ DREF_SSC1_ENABLE;
4587
4588                 I915_WRITE(PCH_DREF_CONTROL, temp);
4589                 POSTING_READ(PCH_DREF_CONTROL);
4590                 udelay(200);
4591         }
4592 }
4593
4594 static int ironlake_get_refclk(struct drm_crtc *crtc)
4595 {
4596         struct drm_device *dev = crtc->dev;
4597         struct drm_i915_private *dev_priv = dev->dev_private;
4598         struct intel_encoder *encoder;
4599         struct intel_encoder *edp_encoder = NULL;
4600         int num_connectors = 0;
4601         bool is_lvds = false;
4602
4603         for_each_encoder_on_crtc(dev, crtc, encoder) {
4604                 switch (encoder->type) {
4605                 case INTEL_OUTPUT_LVDS:
4606                         is_lvds = true;
4607                         break;
4608                 case INTEL_OUTPUT_EDP:
4609                         edp_encoder = encoder;
4610                         break;
4611                 }
4612                 num_connectors++;
4613         }
4614
4615         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4616                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4617                               dev_priv->lvds_ssc_freq);
4618                 return dev_priv->lvds_ssc_freq * 1000;
4619         }
4620
4621         return 120000;
4622 }
4623
4624 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4625                                   struct drm_display_mode *adjusted_mode,
4626                                   bool dither)
4627 {
4628         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4629         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4630         int pipe = intel_crtc->pipe;
4631         uint32_t val;
4632
4633         val = I915_READ(PIPECONF(pipe));
4634
4635         val &= ~PIPE_BPC_MASK;
4636         switch (intel_crtc->bpp) {
4637         case 18:
4638                 val |= PIPE_6BPC;
4639                 break;
4640         case 24:
4641                 val |= PIPE_8BPC;
4642                 break;
4643         case 30:
4644                 val |= PIPE_10BPC;
4645                 break;
4646         case 36:
4647                 val |= PIPE_12BPC;
4648                 break;
4649         default:
4650                 val |= PIPE_8BPC;
4651                 break;
4652         }
4653
4654         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4655         if (dither)
4656                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4657
4658         val &= ~PIPECONF_INTERLACE_MASK;
4659         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4660                 val |= PIPECONF_INTERLACED_ILK;
4661         else
4662                 val |= PIPECONF_PROGRESSIVE;
4663
4664         I915_WRITE(PIPECONF(pipe), val);
4665         POSTING_READ(PIPECONF(pipe));
4666 }
4667
4668 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4669                                     struct drm_display_mode *adjusted_mode,
4670                                     intel_clock_t *clock,
4671                                     bool *has_reduced_clock,
4672                                     intel_clock_t *reduced_clock)
4673 {
4674         struct drm_device *dev = crtc->dev;
4675         struct drm_i915_private *dev_priv = dev->dev_private;
4676         struct intel_encoder *intel_encoder;
4677         int refclk;
4678         const intel_limit_t *limit;
4679         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4680
4681         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4682                 switch (intel_encoder->type) {
4683                 case INTEL_OUTPUT_LVDS:
4684                         is_lvds = true;
4685                         break;
4686                 case INTEL_OUTPUT_SDVO:
4687                 case INTEL_OUTPUT_HDMI:
4688                         is_sdvo = true;
4689                         if (intel_encoder->needs_tv_clock)
4690                                 is_tv = true;
4691                         break;
4692                 case INTEL_OUTPUT_TVOUT:
4693                         is_tv = true;
4694                         break;
4695                 }
4696         }
4697
4698         refclk = ironlake_get_refclk(crtc);
4699
4700         /*
4701          * Returns a set of divisors for the desired target clock with the given
4702          * refclk, or FALSE.  The returned values represent the clock equation:
4703          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4704          */
4705         limit = intel_limit(crtc, refclk);
4706         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4707                               clock);
4708         if (!ret)
4709                 return false;
4710
4711         if (is_lvds && dev_priv->lvds_downclock_avail) {
4712                 /*
4713                  * Ensure we match the reduced clock's P to the target clock.
4714                  * If the clocks don't match, we can't switch the display clock
4715                  * by using the FP0/FP1. In such case we will disable the LVDS
4716                  * downclock feature.
4717                 */
4718                 *has_reduced_clock = limit->find_pll(limit, crtc,
4719                                                      dev_priv->lvds_downclock,
4720                                                      refclk,
4721                                                      clock,
4722                                                      reduced_clock);
4723         }
4724
4725         if (is_sdvo && is_tv)
4726                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4727
4728         return true;
4729 }
4730
4731 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4732                                   struct drm_display_mode *mode,
4733                                   struct drm_display_mode *adjusted_mode,
4734                                   int x, int y,
4735                                   struct drm_framebuffer *fb)
4736 {
4737         struct drm_device *dev = crtc->dev;
4738         struct drm_i915_private *dev_priv = dev->dev_private;
4739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4740         int pipe = intel_crtc->pipe;
4741         int plane = intel_crtc->plane;
4742         int num_connectors = 0;
4743         intel_clock_t clock, reduced_clock;
4744         u32 dpll, fp = 0, fp2 = 0;
4745         bool ok, has_reduced_clock = false, is_sdvo = false;
4746         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4747         struct intel_encoder *encoder, *edp_encoder = NULL;
4748         int ret;
4749         struct fdi_m_n m_n = {0};
4750         u32 temp;
4751         int target_clock, pixel_multiplier, lane, link_bw, factor;
4752         unsigned int pipe_bpp;
4753         bool dither;
4754         bool is_cpu_edp = false, is_pch_edp = false;
4755
4756         for_each_encoder_on_crtc(dev, crtc, encoder) {
4757                 switch (encoder->type) {
4758                 case INTEL_OUTPUT_LVDS:
4759                         is_lvds = true;
4760                         break;
4761                 case INTEL_OUTPUT_SDVO:
4762                 case INTEL_OUTPUT_HDMI:
4763                         is_sdvo = true;
4764                         if (encoder->needs_tv_clock)
4765                                 is_tv = true;
4766                         break;
4767                 case INTEL_OUTPUT_TVOUT:
4768                         is_tv = true;
4769                         break;
4770                 case INTEL_OUTPUT_ANALOG:
4771                         is_crt = true;
4772                         break;
4773                 case INTEL_OUTPUT_DISPLAYPORT:
4774                         is_dp = true;
4775                         break;
4776                 case INTEL_OUTPUT_EDP:
4777                         is_dp = true;
4778                         if (intel_encoder_is_pch_edp(&encoder->base))
4779                                 is_pch_edp = true;
4780                         else
4781                                 is_cpu_edp = true;
4782                         edp_encoder = encoder;
4783                         break;
4784                 }
4785
4786                 num_connectors++;
4787         }
4788
4789         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
4790                                      &has_reduced_clock, &reduced_clock);
4791         if (!ok) {
4792                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4793                 return -EINVAL;
4794         }
4795
4796         /* Ensure that the cursor is valid for the new mode before changing... */
4797         intel_crtc_update_cursor(crtc, true);
4798
4799         /* FDI link */
4800         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4801         lane = 0;
4802         /* CPU eDP doesn't require FDI link, so just set DP M/N
4803            according to current link config */
4804         if (is_cpu_edp) {
4805                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4806         } else {
4807                 /* FDI is a binary signal running at ~2.7GHz, encoding
4808                  * each output octet as 10 bits. The actual frequency
4809                  * is stored as a divider into a 100MHz clock, and the
4810                  * mode pixel clock is stored in units of 1KHz.
4811                  * Hence the bw of each lane in terms of the mode signal
4812                  * is:
4813                  */
4814                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4815         }
4816
4817         /* [e]DP over FDI requires target mode clock instead of link clock. */
4818         if (edp_encoder)
4819                 target_clock = intel_edp_target_clock(edp_encoder, mode);
4820         else if (is_dp)
4821                 target_clock = mode->clock;
4822         else
4823                 target_clock = adjusted_mode->clock;
4824
4825         /* determine panel color depth */
4826         dither = intel_choose_pipe_bpp_dither(crtc, fb, &pipe_bpp,
4827                                               adjusted_mode);
4828         if (is_lvds && dev_priv->lvds_dither)
4829                 dither = true;
4830
4831         if (pipe_bpp != 18 && pipe_bpp != 24 && pipe_bpp != 30 &&
4832             pipe_bpp != 36) {
4833                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4834                      pipe_bpp);
4835                 pipe_bpp = 24;
4836         }
4837         intel_crtc->bpp = pipe_bpp;
4838
4839         if (!lane) {
4840                 /*
4841                  * Account for spread spectrum to avoid
4842                  * oversubscribing the link. Max center spread
4843                  * is 2.5%; use 5% for safety's sake.
4844                  */
4845                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4846                 lane = bps / (link_bw * 8) + 1;
4847         }
4848
4849         intel_crtc->fdi_lanes = lane;
4850
4851         if (pixel_multiplier > 1)
4852                 link_bw *= pixel_multiplier;
4853         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4854                              &m_n);
4855
4856         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4857         if (has_reduced_clock)
4858                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4859                         reduced_clock.m2;
4860
4861         /* Enable autotuning of the PLL clock (if permissible) */
4862         factor = 21;
4863         if (is_lvds) {
4864                 if ((intel_panel_use_ssc(dev_priv) &&
4865                      dev_priv->lvds_ssc_freq == 100) ||
4866                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4867                         factor = 25;
4868         } else if (is_sdvo && is_tv)
4869                 factor = 20;
4870
4871         if (clock.m < factor * clock.n)
4872                 fp |= FP_CB_TUNE;
4873
4874         dpll = 0;
4875
4876         if (is_lvds)
4877                 dpll |= DPLLB_MODE_LVDS;
4878         else
4879                 dpll |= DPLLB_MODE_DAC_SERIAL;
4880         if (is_sdvo) {
4881                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4882                 if (pixel_multiplier > 1) {
4883                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4884                 }
4885                 dpll |= DPLL_DVO_HIGH_SPEED;
4886         }
4887         if (is_dp && !is_cpu_edp)
4888                 dpll |= DPLL_DVO_HIGH_SPEED;
4889
4890         /* compute bitmask from p1 value */
4891         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4892         /* also FPA1 */
4893         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4894
4895         switch (clock.p2) {
4896         case 5:
4897                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4898                 break;
4899         case 7:
4900                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4901                 break;
4902         case 10:
4903                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4904                 break;
4905         case 14:
4906                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4907                 break;
4908         }
4909
4910         if (is_sdvo && is_tv)
4911                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4912         else if (is_tv)
4913                 /* XXX: just matching BIOS for now */
4914                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4915                 dpll |= 3;
4916         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4917                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4918         else
4919                 dpll |= PLL_REF_INPUT_DREFCLK;
4920
4921         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4922         drm_mode_debug_printmodeline(mode);
4923
4924         /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4925          * pre-Haswell/LPT generation */
4926         if (HAS_PCH_LPT(dev)) {
4927                 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4928                                 pipe);
4929         } else if (!is_cpu_edp) {
4930                 struct intel_pch_pll *pll;
4931
4932                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4933                 if (pll == NULL) {
4934                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4935                                          pipe);
4936                         return -EINVAL;
4937                 }
4938         } else
4939                 intel_put_pch_pll(intel_crtc);
4940
4941         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4942          * This is an exception to the general rule that mode_set doesn't turn
4943          * things on.
4944          */
4945         if (is_lvds) {
4946                 temp = I915_READ(PCH_LVDS);
4947                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4948                 if (HAS_PCH_CPT(dev)) {
4949                         temp &= ~PORT_TRANS_SEL_MASK;
4950                         temp |= PORT_TRANS_SEL_CPT(pipe);
4951                 } else {
4952                         if (pipe == 1)
4953                                 temp |= LVDS_PIPEB_SELECT;
4954                         else
4955                                 temp &= ~LVDS_PIPEB_SELECT;
4956                 }
4957
4958                 /* set the corresponsding LVDS_BORDER bit */
4959                 temp |= dev_priv->lvds_border_bits;
4960                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4961                  * set the DPLLs for dual-channel mode or not.
4962                  */
4963                 if (clock.p2 == 7)
4964                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4965                 else
4966                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4967
4968                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4969                  * appropriately here, but we need to look more thoroughly into how
4970                  * panels behave in the two modes.
4971                  */
4972                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4973                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4974                         temp |= LVDS_HSYNC_POLARITY;
4975                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4976                         temp |= LVDS_VSYNC_POLARITY;
4977                 I915_WRITE(PCH_LVDS, temp);
4978         }
4979
4980         if (is_dp && !is_cpu_edp) {
4981                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4982         } else {
4983                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4984                 I915_WRITE(TRANSDATA_M1(pipe), 0);
4985                 I915_WRITE(TRANSDATA_N1(pipe), 0);
4986                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4987                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4988         }
4989
4990         if (intel_crtc->pch_pll) {
4991                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4992
4993                 /* Wait for the clocks to stabilize. */
4994                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4995                 udelay(150);
4996
4997                 /* The pixel multiplier can only be updated once the
4998                  * DPLL is enabled and the clocks are stable.
4999                  *
5000                  * So write it again.
5001                  */
5002                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5003         }
5004
5005         intel_crtc->lowfreq_avail = false;
5006         if (intel_crtc->pch_pll) {
5007                 if (is_lvds && has_reduced_clock && i915_powersave) {
5008                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5009                         intel_crtc->lowfreq_avail = true;
5010                 } else {
5011                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5012                 }
5013         }
5014
5015         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5016                 /* the chip adds 2 halflines automatically */
5017                 adjusted_mode->crtc_vtotal -= 1;
5018                 adjusted_mode->crtc_vblank_end -= 1;
5019                 I915_WRITE(VSYNCSHIFT(pipe),
5020                            adjusted_mode->crtc_hsync_start
5021                            - adjusted_mode->crtc_htotal/2);
5022         } else {
5023                 I915_WRITE(VSYNCSHIFT(pipe), 0);
5024         }
5025
5026         I915_WRITE(HTOTAL(pipe),
5027                    (adjusted_mode->crtc_hdisplay - 1) |
5028                    ((adjusted_mode->crtc_htotal - 1) << 16));
5029         I915_WRITE(HBLANK(pipe),
5030                    (adjusted_mode->crtc_hblank_start - 1) |
5031                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5032         I915_WRITE(HSYNC(pipe),
5033                    (adjusted_mode->crtc_hsync_start - 1) |
5034                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5035
5036         I915_WRITE(VTOTAL(pipe),
5037                    (adjusted_mode->crtc_vdisplay - 1) |
5038                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5039         I915_WRITE(VBLANK(pipe),
5040                    (adjusted_mode->crtc_vblank_start - 1) |
5041                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5042         I915_WRITE(VSYNC(pipe),
5043                    (adjusted_mode->crtc_vsync_start - 1) |
5044                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5045
5046         /* pipesrc controls the size that is scaled from, which should
5047          * always be the user's requested size.
5048          */
5049         I915_WRITE(PIPESRC(pipe),
5050                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5051
5052         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5053         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5054         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5055         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5056
5057         if (is_cpu_edp)
5058                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5059
5060         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5061
5062         intel_wait_for_vblank(dev, pipe);
5063
5064         /* Set up the display plane register */
5065         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5066         POSTING_READ(DSPCNTR(plane));
5067
5068         ret = intel_pipe_set_base(crtc, x, y, fb);
5069
5070         intel_update_watermarks(dev);
5071
5072         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5073
5074         return ret;
5075 }
5076
5077 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5078                                struct drm_display_mode *mode,
5079                                struct drm_display_mode *adjusted_mode,
5080                                int x, int y,
5081                                struct drm_framebuffer *fb)
5082 {
5083         struct drm_device *dev = crtc->dev;
5084         struct drm_i915_private *dev_priv = dev->dev_private;
5085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5086         int pipe = intel_crtc->pipe;
5087         int ret;
5088
5089         drm_vblank_pre_modeset(dev, pipe);
5090
5091         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5092                                               x, y, fb);
5093         drm_vblank_post_modeset(dev, pipe);
5094
5095         return ret;
5096 }
5097
5098 static bool intel_eld_uptodate(struct drm_connector *connector,
5099                                int reg_eldv, uint32_t bits_eldv,
5100                                int reg_elda, uint32_t bits_elda,
5101                                int reg_edid)
5102 {
5103         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5104         uint8_t *eld = connector->eld;
5105         uint32_t i;
5106
5107         i = I915_READ(reg_eldv);
5108         i &= bits_eldv;
5109
5110         if (!eld[0])
5111                 return !i;
5112
5113         if (!i)
5114                 return false;
5115
5116         i = I915_READ(reg_elda);
5117         i &= ~bits_elda;
5118         I915_WRITE(reg_elda, i);
5119
5120         for (i = 0; i < eld[2]; i++)
5121                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5122                         return false;
5123
5124         return true;
5125 }
5126
5127 static void g4x_write_eld(struct drm_connector *connector,
5128                           struct drm_crtc *crtc)
5129 {
5130         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5131         uint8_t *eld = connector->eld;
5132         uint32_t eldv;
5133         uint32_t len;
5134         uint32_t i;
5135
5136         i = I915_READ(G4X_AUD_VID_DID);
5137
5138         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5139                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5140         else
5141                 eldv = G4X_ELDV_DEVCTG;
5142
5143         if (intel_eld_uptodate(connector,
5144                                G4X_AUD_CNTL_ST, eldv,
5145                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5146                                G4X_HDMIW_HDMIEDID))
5147                 return;
5148
5149         i = I915_READ(G4X_AUD_CNTL_ST);
5150         i &= ~(eldv | G4X_ELD_ADDR);
5151         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5152         I915_WRITE(G4X_AUD_CNTL_ST, i);
5153
5154         if (!eld[0])
5155                 return;
5156
5157         len = min_t(uint8_t, eld[2], len);
5158         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5159         for (i = 0; i < len; i++)
5160                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5161
5162         i = I915_READ(G4X_AUD_CNTL_ST);
5163         i |= eldv;
5164         I915_WRITE(G4X_AUD_CNTL_ST, i);
5165 }
5166
5167 static void haswell_write_eld(struct drm_connector *connector,
5168                                      struct drm_crtc *crtc)
5169 {
5170         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5171         uint8_t *eld = connector->eld;
5172         struct drm_device *dev = crtc->dev;
5173         uint32_t eldv;
5174         uint32_t i;
5175         int len;
5176         int pipe = to_intel_crtc(crtc)->pipe;
5177         int tmp;
5178
5179         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5180         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5181         int aud_config = HSW_AUD_CFG(pipe);
5182         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5183
5184
5185         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5186
5187         /* Audio output enable */
5188         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5189         tmp = I915_READ(aud_cntrl_st2);
5190         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5191         I915_WRITE(aud_cntrl_st2, tmp);
5192
5193         /* Wait for 1 vertical blank */
5194         intel_wait_for_vblank(dev, pipe);
5195
5196         /* Set ELD valid state */
5197         tmp = I915_READ(aud_cntrl_st2);
5198         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5199         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5200         I915_WRITE(aud_cntrl_st2, tmp);
5201         tmp = I915_READ(aud_cntrl_st2);
5202         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5203
5204         /* Enable HDMI mode */
5205         tmp = I915_READ(aud_config);
5206         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5207         /* clear N_programing_enable and N_value_index */
5208         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5209         I915_WRITE(aud_config, tmp);
5210
5211         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5212
5213         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5214
5215         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5216                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5217                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5218                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5219         } else
5220                 I915_WRITE(aud_config, 0);
5221
5222         if (intel_eld_uptodate(connector,
5223                                aud_cntrl_st2, eldv,
5224                                aud_cntl_st, IBX_ELD_ADDRESS,
5225                                hdmiw_hdmiedid))
5226                 return;
5227
5228         i = I915_READ(aud_cntrl_st2);
5229         i &= ~eldv;
5230         I915_WRITE(aud_cntrl_st2, i);
5231
5232         if (!eld[0])
5233                 return;
5234
5235         i = I915_READ(aud_cntl_st);
5236         i &= ~IBX_ELD_ADDRESS;
5237         I915_WRITE(aud_cntl_st, i);
5238         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5239         DRM_DEBUG_DRIVER("port num:%d\n", i);
5240
5241         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5242         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5243         for (i = 0; i < len; i++)
5244                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5245
5246         i = I915_READ(aud_cntrl_st2);
5247         i |= eldv;
5248         I915_WRITE(aud_cntrl_st2, i);
5249
5250 }
5251
5252 static void ironlake_write_eld(struct drm_connector *connector,
5253                                      struct drm_crtc *crtc)
5254 {
5255         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5256         uint8_t *eld = connector->eld;
5257         uint32_t eldv;
5258         uint32_t i;
5259         int len;
5260         int hdmiw_hdmiedid;
5261         int aud_config;
5262         int aud_cntl_st;
5263         int aud_cntrl_st2;
5264         int pipe = to_intel_crtc(crtc)->pipe;
5265
5266         if (HAS_PCH_IBX(connector->dev)) {
5267                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5268                 aud_config = IBX_AUD_CFG(pipe);
5269                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5270                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5271         } else {
5272                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5273                 aud_config = CPT_AUD_CFG(pipe);
5274                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5275                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5276         }
5277
5278         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5279
5280         i = I915_READ(aud_cntl_st);
5281         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5282         if (!i) {
5283                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5284                 /* operate blindly on all ports */
5285                 eldv = IBX_ELD_VALIDB;
5286                 eldv |= IBX_ELD_VALIDB << 4;
5287                 eldv |= IBX_ELD_VALIDB << 8;
5288         } else {
5289                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5290                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5291         }
5292
5293         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5294                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5295                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5296                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5297         } else
5298                 I915_WRITE(aud_config, 0);
5299
5300         if (intel_eld_uptodate(connector,
5301                                aud_cntrl_st2, eldv,
5302                                aud_cntl_st, IBX_ELD_ADDRESS,
5303                                hdmiw_hdmiedid))
5304                 return;
5305
5306         i = I915_READ(aud_cntrl_st2);
5307         i &= ~eldv;
5308         I915_WRITE(aud_cntrl_st2, i);
5309
5310         if (!eld[0])
5311                 return;
5312
5313         i = I915_READ(aud_cntl_st);
5314         i &= ~IBX_ELD_ADDRESS;
5315         I915_WRITE(aud_cntl_st, i);
5316
5317         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5318         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5319         for (i = 0; i < len; i++)
5320                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5321
5322         i = I915_READ(aud_cntrl_st2);
5323         i |= eldv;
5324         I915_WRITE(aud_cntrl_st2, i);
5325 }
5326
5327 void intel_write_eld(struct drm_encoder *encoder,
5328                      struct drm_display_mode *mode)
5329 {
5330         struct drm_crtc *crtc = encoder->crtc;
5331         struct drm_connector *connector;
5332         struct drm_device *dev = encoder->dev;
5333         struct drm_i915_private *dev_priv = dev->dev_private;
5334
5335         connector = drm_select_eld(encoder, mode);
5336         if (!connector)
5337                 return;
5338
5339         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5340                          connector->base.id,
5341                          drm_get_connector_name(connector),
5342                          connector->encoder->base.id,
5343                          drm_get_encoder_name(connector->encoder));
5344
5345         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5346
5347         if (dev_priv->display.write_eld)
5348                 dev_priv->display.write_eld(connector, crtc);
5349 }
5350
5351 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5352 void intel_crtc_load_lut(struct drm_crtc *crtc)
5353 {
5354         struct drm_device *dev = crtc->dev;
5355         struct drm_i915_private *dev_priv = dev->dev_private;
5356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5357         int palreg = PALETTE(intel_crtc->pipe);
5358         int i;
5359
5360         /* The clocks have to be on to load the palette. */
5361         if (!crtc->enabled || !intel_crtc->active)
5362                 return;
5363
5364         /* use legacy palette for Ironlake */
5365         if (HAS_PCH_SPLIT(dev))
5366                 palreg = LGC_PALETTE(intel_crtc->pipe);
5367
5368         for (i = 0; i < 256; i++) {
5369                 I915_WRITE(palreg + 4 * i,
5370                            (intel_crtc->lut_r[i] << 16) |
5371                            (intel_crtc->lut_g[i] << 8) |
5372                            intel_crtc->lut_b[i]);
5373         }
5374 }
5375
5376 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5377 {
5378         struct drm_device *dev = crtc->dev;
5379         struct drm_i915_private *dev_priv = dev->dev_private;
5380         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5381         bool visible = base != 0;
5382         u32 cntl;
5383
5384         if (intel_crtc->cursor_visible == visible)
5385                 return;
5386
5387         cntl = I915_READ(_CURACNTR);
5388         if (visible) {
5389                 /* On these chipsets we can only modify the base whilst
5390                  * the cursor is disabled.
5391                  */
5392                 I915_WRITE(_CURABASE, base);
5393
5394                 cntl &= ~(CURSOR_FORMAT_MASK);
5395                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5396                 cntl |= CURSOR_ENABLE |
5397                         CURSOR_GAMMA_ENABLE |
5398                         CURSOR_FORMAT_ARGB;
5399         } else
5400                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5401         I915_WRITE(_CURACNTR, cntl);
5402
5403         intel_crtc->cursor_visible = visible;
5404 }
5405
5406 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5407 {
5408         struct drm_device *dev = crtc->dev;
5409         struct drm_i915_private *dev_priv = dev->dev_private;
5410         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5411         int pipe = intel_crtc->pipe;
5412         bool visible = base != 0;
5413
5414         if (intel_crtc->cursor_visible != visible) {
5415                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5416                 if (base) {
5417                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5418                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5419                         cntl |= pipe << 28; /* Connect to correct pipe */
5420                 } else {
5421                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5422                         cntl |= CURSOR_MODE_DISABLE;
5423                 }
5424                 I915_WRITE(CURCNTR(pipe), cntl);
5425
5426                 intel_crtc->cursor_visible = visible;
5427         }
5428         /* and commit changes on next vblank */
5429         I915_WRITE(CURBASE(pipe), base);
5430 }
5431
5432 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5433 {
5434         struct drm_device *dev = crtc->dev;
5435         struct drm_i915_private *dev_priv = dev->dev_private;
5436         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5437         int pipe = intel_crtc->pipe;
5438         bool visible = base != 0;
5439
5440         if (intel_crtc->cursor_visible != visible) {
5441                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5442                 if (base) {
5443                         cntl &= ~CURSOR_MODE;
5444                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5445                 } else {
5446                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5447                         cntl |= CURSOR_MODE_DISABLE;
5448                 }
5449                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5450
5451                 intel_crtc->cursor_visible = visible;
5452         }
5453         /* and commit changes on next vblank */
5454         I915_WRITE(CURBASE_IVB(pipe), base);
5455 }
5456
5457 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5458 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5459                                      bool on)
5460 {
5461         struct drm_device *dev = crtc->dev;
5462         struct drm_i915_private *dev_priv = dev->dev_private;
5463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5464         int pipe = intel_crtc->pipe;
5465         int x = intel_crtc->cursor_x;
5466         int y = intel_crtc->cursor_y;
5467         u32 base, pos;
5468         bool visible;
5469
5470         pos = 0;
5471
5472         if (on && crtc->enabled && crtc->fb) {
5473                 base = intel_crtc->cursor_addr;
5474                 if (x > (int) crtc->fb->width)
5475                         base = 0;
5476
5477                 if (y > (int) crtc->fb->height)
5478                         base = 0;
5479         } else
5480                 base = 0;
5481
5482         if (x < 0) {
5483                 if (x + intel_crtc->cursor_width < 0)
5484                         base = 0;
5485
5486                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5487                 x = -x;
5488         }
5489         pos |= x << CURSOR_X_SHIFT;
5490
5491         if (y < 0) {
5492                 if (y + intel_crtc->cursor_height < 0)
5493                         base = 0;
5494
5495                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5496                 y = -y;
5497         }
5498         pos |= y << CURSOR_Y_SHIFT;
5499
5500         visible = base != 0;
5501         if (!visible && !intel_crtc->cursor_visible)
5502                 return;
5503
5504         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5505                 I915_WRITE(CURPOS_IVB(pipe), pos);
5506                 ivb_update_cursor(crtc, base);
5507         } else {
5508                 I915_WRITE(CURPOS(pipe), pos);
5509                 if (IS_845G(dev) || IS_I865G(dev))
5510                         i845_update_cursor(crtc, base);
5511                 else
5512                         i9xx_update_cursor(crtc, base);
5513         }
5514 }
5515
5516 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5517                                  struct drm_file *file,
5518                                  uint32_t handle,
5519                                  uint32_t width, uint32_t height)
5520 {
5521         struct drm_device *dev = crtc->dev;
5522         struct drm_i915_private *dev_priv = dev->dev_private;
5523         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5524         struct drm_i915_gem_object *obj;
5525         uint32_t addr;
5526         int ret;
5527
5528         /* if we want to turn off the cursor ignore width and height */
5529         if (!handle) {
5530                 DRM_DEBUG_KMS("cursor off\n");
5531                 addr = 0;
5532                 obj = NULL;
5533                 mutex_lock(&dev->struct_mutex);
5534                 goto finish;
5535         }
5536
5537         /* Currently we only support 64x64 cursors */
5538         if (width != 64 || height != 64) {
5539                 DRM_ERROR("we currently only support 64x64 cursors\n");
5540                 return -EINVAL;
5541         }
5542
5543         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5544         if (&obj->base == NULL)
5545                 return -ENOENT;
5546
5547         if (obj->base.size < width * height * 4) {
5548                 DRM_ERROR("buffer is to small\n");
5549                 ret = -ENOMEM;
5550                 goto fail;
5551         }
5552
5553         /* we only need to pin inside GTT if cursor is non-phy */
5554         mutex_lock(&dev->struct_mutex);
5555         if (!dev_priv->info->cursor_needs_physical) {
5556                 if (obj->tiling_mode) {
5557                         DRM_ERROR("cursor cannot be tiled\n");
5558                         ret = -EINVAL;
5559                         goto fail_locked;
5560                 }
5561
5562                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5563                 if (ret) {
5564                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5565                         goto fail_locked;
5566                 }
5567
5568                 ret = i915_gem_object_put_fence(obj);
5569                 if (ret) {
5570                         DRM_ERROR("failed to release fence for cursor");
5571                         goto fail_unpin;
5572                 }
5573
5574                 addr = obj->gtt_offset;
5575         } else {
5576                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5577                 ret = i915_gem_attach_phys_object(dev, obj,
5578                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5579                                                   align);
5580                 if (ret) {
5581                         DRM_ERROR("failed to attach phys object\n");
5582                         goto fail_locked;
5583                 }
5584                 addr = obj->phys_obj->handle->busaddr;
5585         }
5586
5587         if (IS_GEN2(dev))
5588                 I915_WRITE(CURSIZE, (height << 12) | width);
5589
5590  finish:
5591         if (intel_crtc->cursor_bo) {
5592                 if (dev_priv->info->cursor_needs_physical) {
5593                         if (intel_crtc->cursor_bo != obj)
5594                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5595                 } else
5596                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5597                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5598         }
5599
5600         mutex_unlock(&dev->struct_mutex);
5601
5602         intel_crtc->cursor_addr = addr;
5603         intel_crtc->cursor_bo = obj;
5604         intel_crtc->cursor_width = width;
5605         intel_crtc->cursor_height = height;
5606
5607         intel_crtc_update_cursor(crtc, true);
5608
5609         return 0;
5610 fail_unpin:
5611         i915_gem_object_unpin(obj);
5612 fail_locked:
5613         mutex_unlock(&dev->struct_mutex);
5614 fail:
5615         drm_gem_object_unreference_unlocked(&obj->base);
5616         return ret;
5617 }
5618
5619 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5620 {
5621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5622
5623         intel_crtc->cursor_x = x;
5624         intel_crtc->cursor_y = y;
5625
5626         intel_crtc_update_cursor(crtc, true);
5627
5628         return 0;
5629 }
5630
5631 /** Sets the color ramps on behalf of RandR */
5632 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5633                                  u16 blue, int regno)
5634 {
5635         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5636
5637         intel_crtc->lut_r[regno] = red >> 8;
5638         intel_crtc->lut_g[regno] = green >> 8;
5639         intel_crtc->lut_b[regno] = blue >> 8;
5640 }
5641
5642 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5643                              u16 *blue, int regno)
5644 {
5645         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5646
5647         *red = intel_crtc->lut_r[regno] << 8;
5648         *green = intel_crtc->lut_g[regno] << 8;
5649         *blue = intel_crtc->lut_b[regno] << 8;
5650 }
5651
5652 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5653                                  u16 *blue, uint32_t start, uint32_t size)
5654 {
5655         int end = (start + size > 256) ? 256 : start + size, i;
5656         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5657
5658         for (i = start; i < end; i++) {
5659                 intel_crtc->lut_r[i] = red[i] >> 8;
5660                 intel_crtc->lut_g[i] = green[i] >> 8;
5661                 intel_crtc->lut_b[i] = blue[i] >> 8;
5662         }
5663
5664         intel_crtc_load_lut(crtc);
5665 }
5666
5667 /**
5668  * Get a pipe with a simple mode set on it for doing load-based monitor
5669  * detection.
5670  *
5671  * It will be up to the load-detect code to adjust the pipe as appropriate for
5672  * its requirements.  The pipe will be connected to no other encoders.
5673  *
5674  * Currently this code will only succeed if there is a pipe with no encoders
5675  * configured for it.  In the future, it could choose to temporarily disable
5676  * some outputs to free up a pipe for its use.
5677  *
5678  * \return crtc, or NULL if no pipes are available.
5679  */
5680
5681 /* VESA 640x480x72Hz mode to set on the pipe */
5682 static struct drm_display_mode load_detect_mode = {
5683         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5684                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5685 };
5686
5687 static struct drm_framebuffer *
5688 intel_framebuffer_create(struct drm_device *dev,
5689                          struct drm_mode_fb_cmd2 *mode_cmd,
5690                          struct drm_i915_gem_object *obj)
5691 {
5692         struct intel_framebuffer *intel_fb;
5693         int ret;
5694
5695         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5696         if (!intel_fb) {
5697                 drm_gem_object_unreference_unlocked(&obj->base);
5698                 return ERR_PTR(-ENOMEM);
5699         }
5700
5701         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5702         if (ret) {
5703                 drm_gem_object_unreference_unlocked(&obj->base);
5704                 kfree(intel_fb);
5705                 return ERR_PTR(ret);
5706         }
5707
5708         return &intel_fb->base;
5709 }
5710
5711 static u32
5712 intel_framebuffer_pitch_for_width(int width, int bpp)
5713 {
5714         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5715         return ALIGN(pitch, 64);
5716 }
5717
5718 static u32
5719 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5720 {
5721         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5722         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5723 }
5724
5725 static struct drm_framebuffer *
5726 intel_framebuffer_create_for_mode(struct drm_device *dev,
5727                                   struct drm_display_mode *mode,
5728                                   int depth, int bpp)
5729 {
5730         struct drm_i915_gem_object *obj;
5731         struct drm_mode_fb_cmd2 mode_cmd;
5732
5733         obj = i915_gem_alloc_object(dev,
5734                                     intel_framebuffer_size_for_mode(mode, bpp));
5735         if (obj == NULL)
5736                 return ERR_PTR(-ENOMEM);
5737
5738         mode_cmd.width = mode->hdisplay;
5739         mode_cmd.height = mode->vdisplay;
5740         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5741                                                                 bpp);
5742         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5743
5744         return intel_framebuffer_create(dev, &mode_cmd, obj);
5745 }
5746
5747 static struct drm_framebuffer *
5748 mode_fits_in_fbdev(struct drm_device *dev,
5749                    struct drm_display_mode *mode)
5750 {
5751         struct drm_i915_private *dev_priv = dev->dev_private;
5752         struct drm_i915_gem_object *obj;
5753         struct drm_framebuffer *fb;
5754
5755         if (dev_priv->fbdev == NULL)
5756                 return NULL;
5757
5758         obj = dev_priv->fbdev->ifb.obj;
5759         if (obj == NULL)
5760                 return NULL;
5761
5762         fb = &dev_priv->fbdev->ifb.base;
5763         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5764                                                                fb->bits_per_pixel))
5765                 return NULL;
5766
5767         if (obj->base.size < mode->vdisplay * fb->pitches[0])
5768                 return NULL;
5769
5770         return fb;
5771 }
5772
5773 bool intel_get_load_detect_pipe(struct drm_connector *connector,
5774                                 struct drm_display_mode *mode,
5775                                 struct intel_load_detect_pipe *old)
5776 {
5777         struct intel_crtc *intel_crtc;
5778         struct intel_encoder *intel_encoder =
5779                 intel_attached_encoder(connector);
5780         struct drm_crtc *possible_crtc;
5781         struct drm_encoder *encoder = &intel_encoder->base;
5782         struct drm_crtc *crtc = NULL;
5783         struct drm_device *dev = encoder->dev;
5784         struct drm_framebuffer *fb;
5785         int i = -1;
5786
5787         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5788                       connector->base.id, drm_get_connector_name(connector),
5789                       encoder->base.id, drm_get_encoder_name(encoder));
5790
5791         /*
5792          * Algorithm gets a little messy:
5793          *
5794          *   - if the connector already has an assigned crtc, use it (but make
5795          *     sure it's on first)
5796          *
5797          *   - try to find the first unused crtc that can drive this connector,
5798          *     and use that if we find one
5799          */
5800
5801         /* See if we already have a CRTC for this connector */
5802         if (encoder->crtc) {
5803                 crtc = encoder->crtc;
5804
5805                 old->dpms_mode = connector->dpms;
5806                 old->load_detect_temp = false;
5807
5808                 /* Make sure the crtc and connector are running */
5809                 if (connector->dpms != DRM_MODE_DPMS_ON)
5810                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
5811
5812                 return true;
5813         }
5814
5815         /* Find an unused one (if possible) */
5816         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5817                 i++;
5818                 if (!(encoder->possible_crtcs & (1 << i)))
5819                         continue;
5820                 if (!possible_crtc->enabled) {
5821                         crtc = possible_crtc;
5822                         break;
5823                 }
5824         }
5825
5826         /*
5827          * If we didn't find an unused CRTC, don't use any.
5828          */
5829         if (!crtc) {
5830                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5831                 return false;
5832         }
5833
5834         intel_encoder->new_crtc = to_intel_crtc(crtc);
5835         to_intel_connector(connector)->new_encoder = intel_encoder;
5836
5837         intel_crtc = to_intel_crtc(crtc);
5838         old->dpms_mode = connector->dpms;
5839         old->load_detect_temp = true;
5840         old->release_fb = NULL;
5841
5842         if (!mode)
5843                 mode = &load_detect_mode;
5844
5845         /* We need a framebuffer large enough to accommodate all accesses
5846          * that the plane may generate whilst we perform load detection.
5847          * We can not rely on the fbcon either being present (we get called
5848          * during its initialisation to detect all boot displays, or it may
5849          * not even exist) or that it is large enough to satisfy the
5850          * requested mode.
5851          */
5852         fb = mode_fits_in_fbdev(dev, mode);
5853         if (fb == NULL) {
5854                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5855                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5856                 old->release_fb = fb;
5857         } else
5858                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5859         if (IS_ERR(fb)) {
5860                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5861                 goto fail;
5862         }
5863
5864         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
5865                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5866                 if (old->release_fb)
5867                         old->release_fb->funcs->destroy(old->release_fb);
5868                 goto fail;
5869         }
5870
5871         /* let the connector get through one full cycle before testing */
5872         intel_wait_for_vblank(dev, intel_crtc->pipe);
5873
5874         return true;
5875 fail:
5876         connector->encoder = NULL;
5877         encoder->crtc = NULL;
5878         return false;
5879 }
5880
5881 void intel_release_load_detect_pipe(struct drm_connector *connector,
5882                                     struct intel_load_detect_pipe *old)
5883 {
5884         struct intel_encoder *intel_encoder =
5885                 intel_attached_encoder(connector);
5886         struct drm_encoder *encoder = &intel_encoder->base;
5887
5888         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5889                       connector->base.id, drm_get_connector_name(connector),
5890                       encoder->base.id, drm_get_encoder_name(encoder));
5891
5892         if (old->load_detect_temp) {
5893                 struct drm_crtc *crtc = encoder->crtc;
5894
5895                 to_intel_connector(connector)->new_encoder = NULL;
5896                 intel_encoder->new_crtc = NULL;
5897                 intel_set_mode(crtc, NULL, 0, 0, NULL);
5898
5899                 if (old->release_fb)
5900                         old->release_fb->funcs->destroy(old->release_fb);
5901
5902                 return;
5903         }
5904
5905         /* Switch crtc and encoder back off if necessary */
5906         if (old->dpms_mode != DRM_MODE_DPMS_ON)
5907                 connector->funcs->dpms(connector, old->dpms_mode);
5908 }
5909
5910 /* Returns the clock of the currently programmed mode of the given pipe. */
5911 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5912 {
5913         struct drm_i915_private *dev_priv = dev->dev_private;
5914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5915         int pipe = intel_crtc->pipe;
5916         u32 dpll = I915_READ(DPLL(pipe));
5917         u32 fp;
5918         intel_clock_t clock;
5919
5920         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5921                 fp = I915_READ(FP0(pipe));
5922         else
5923                 fp = I915_READ(FP1(pipe));
5924
5925         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5926         if (IS_PINEVIEW(dev)) {
5927                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5928                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5929         } else {
5930                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5931                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5932         }
5933
5934         if (!IS_GEN2(dev)) {
5935                 if (IS_PINEVIEW(dev))
5936                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5937                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5938                 else
5939                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5940                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5941
5942                 switch (dpll & DPLL_MODE_MASK) {
5943                 case DPLLB_MODE_DAC_SERIAL:
5944                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5945                                 5 : 10;
5946                         break;
5947                 case DPLLB_MODE_LVDS:
5948                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5949                                 7 : 14;
5950                         break;
5951                 default:
5952                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5953                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5954                         return 0;
5955                 }
5956
5957                 /* XXX: Handle the 100Mhz refclk */
5958                 intel_clock(dev, 96000, &clock);
5959         } else {
5960                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5961
5962                 if (is_lvds) {
5963                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5964                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5965                         clock.p2 = 14;
5966
5967                         if ((dpll & PLL_REF_INPUT_MASK) ==
5968                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5969                                 /* XXX: might not be 66MHz */
5970                                 intel_clock(dev, 66000, &clock);
5971                         } else
5972                                 intel_clock(dev, 48000, &clock);
5973                 } else {
5974                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5975                                 clock.p1 = 2;
5976                         else {
5977                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5978                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5979                         }
5980                         if (dpll & PLL_P2_DIVIDE_BY_4)
5981                                 clock.p2 = 4;
5982                         else
5983                                 clock.p2 = 2;
5984
5985                         intel_clock(dev, 48000, &clock);
5986                 }
5987         }
5988
5989         /* XXX: It would be nice to validate the clocks, but we can't reuse
5990          * i830PllIsValid() because it relies on the xf86_config connector
5991          * configuration being accurate, which it isn't necessarily.
5992          */
5993
5994         return clock.dot;
5995 }
5996
5997 /** Returns the currently programmed mode of the given pipe. */
5998 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5999                                              struct drm_crtc *crtc)
6000 {
6001         struct drm_i915_private *dev_priv = dev->dev_private;
6002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6003         int pipe = intel_crtc->pipe;
6004         struct drm_display_mode *mode;
6005         int htot = I915_READ(HTOTAL(pipe));
6006         int hsync = I915_READ(HSYNC(pipe));
6007         int vtot = I915_READ(VTOTAL(pipe));
6008         int vsync = I915_READ(VSYNC(pipe));
6009
6010         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6011         if (!mode)
6012                 return NULL;
6013
6014         mode->clock = intel_crtc_clock_get(dev, crtc);
6015         mode->hdisplay = (htot & 0xffff) + 1;
6016         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6017         mode->hsync_start = (hsync & 0xffff) + 1;
6018         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6019         mode->vdisplay = (vtot & 0xffff) + 1;
6020         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6021         mode->vsync_start = (vsync & 0xffff) + 1;
6022         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6023
6024         drm_mode_set_name(mode);
6025
6026         return mode;
6027 }
6028
6029 static void intel_increase_pllclock(struct drm_crtc *crtc)
6030 {
6031         struct drm_device *dev = crtc->dev;
6032         drm_i915_private_t *dev_priv = dev->dev_private;
6033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6034         int pipe = intel_crtc->pipe;
6035         int dpll_reg = DPLL(pipe);
6036         int dpll;
6037
6038         if (HAS_PCH_SPLIT(dev))
6039                 return;
6040
6041         if (!dev_priv->lvds_downclock_avail)
6042                 return;
6043
6044         dpll = I915_READ(dpll_reg);
6045         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6046                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6047
6048                 assert_panel_unlocked(dev_priv, pipe);
6049
6050                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6051                 I915_WRITE(dpll_reg, dpll);
6052                 intel_wait_for_vblank(dev, pipe);
6053
6054                 dpll = I915_READ(dpll_reg);
6055                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6056                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6057         }
6058 }
6059
6060 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6061 {
6062         struct drm_device *dev = crtc->dev;
6063         drm_i915_private_t *dev_priv = dev->dev_private;
6064         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6065
6066         if (HAS_PCH_SPLIT(dev))
6067                 return;
6068
6069         if (!dev_priv->lvds_downclock_avail)
6070                 return;
6071
6072         /*
6073          * Since this is called by a timer, we should never get here in
6074          * the manual case.
6075          */
6076         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6077                 int pipe = intel_crtc->pipe;
6078                 int dpll_reg = DPLL(pipe);
6079                 int dpll;
6080
6081                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6082
6083                 assert_panel_unlocked(dev_priv, pipe);
6084
6085                 dpll = I915_READ(dpll_reg);
6086                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6087                 I915_WRITE(dpll_reg, dpll);
6088                 intel_wait_for_vblank(dev, pipe);
6089                 dpll = I915_READ(dpll_reg);
6090                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6091                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6092         }
6093
6094 }
6095
6096 void intel_mark_busy(struct drm_device *dev)
6097 {
6098         i915_update_gfx_val(dev->dev_private);
6099 }
6100
6101 void intel_mark_idle(struct drm_device *dev)
6102 {
6103 }
6104
6105 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6106 {
6107         struct drm_device *dev = obj->base.dev;
6108         struct drm_crtc *crtc;
6109
6110         if (!i915_powersave)
6111                 return;
6112
6113         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6114                 if (!crtc->fb)
6115                         continue;
6116
6117                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6118                         intel_increase_pllclock(crtc);
6119         }
6120 }
6121
6122 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6123 {
6124         struct drm_device *dev = obj->base.dev;
6125         struct drm_crtc *crtc;
6126
6127         if (!i915_powersave)
6128                 return;
6129
6130         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6131                 if (!crtc->fb)
6132                         continue;
6133
6134                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6135                         intel_decrease_pllclock(crtc);
6136         }
6137 }
6138
6139 static void intel_crtc_destroy(struct drm_crtc *crtc)
6140 {
6141         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6142         struct drm_device *dev = crtc->dev;
6143         struct intel_unpin_work *work;
6144         unsigned long flags;
6145
6146         spin_lock_irqsave(&dev->event_lock, flags);
6147         work = intel_crtc->unpin_work;
6148         intel_crtc->unpin_work = NULL;
6149         spin_unlock_irqrestore(&dev->event_lock, flags);
6150
6151         if (work) {
6152                 cancel_work_sync(&work->work);
6153                 kfree(work);
6154         }
6155
6156         drm_crtc_cleanup(crtc);
6157
6158         kfree(intel_crtc);
6159 }
6160
6161 static void intel_unpin_work_fn(struct work_struct *__work)
6162 {
6163         struct intel_unpin_work *work =
6164                 container_of(__work, struct intel_unpin_work, work);
6165
6166         mutex_lock(&work->dev->struct_mutex);
6167         intel_unpin_fb_obj(work->old_fb_obj);
6168         drm_gem_object_unreference(&work->pending_flip_obj->base);
6169         drm_gem_object_unreference(&work->old_fb_obj->base);
6170
6171         intel_update_fbc(work->dev);
6172         mutex_unlock(&work->dev->struct_mutex);
6173         kfree(work);
6174 }
6175
6176 static void do_intel_finish_page_flip(struct drm_device *dev,
6177                                       struct drm_crtc *crtc)
6178 {
6179         drm_i915_private_t *dev_priv = dev->dev_private;
6180         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6181         struct intel_unpin_work *work;
6182         struct drm_i915_gem_object *obj;
6183         struct drm_pending_vblank_event *e;
6184         struct timeval tvbl;
6185         unsigned long flags;
6186
6187         /* Ignore early vblank irqs */
6188         if (intel_crtc == NULL)
6189                 return;
6190
6191         spin_lock_irqsave(&dev->event_lock, flags);
6192         work = intel_crtc->unpin_work;
6193         if (work == NULL || !work->pending) {
6194                 spin_unlock_irqrestore(&dev->event_lock, flags);
6195                 return;
6196         }
6197
6198         intel_crtc->unpin_work = NULL;
6199
6200         if (work->event) {
6201                 e = work->event;
6202                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6203
6204                 e->event.tv_sec = tvbl.tv_sec;
6205                 e->event.tv_usec = tvbl.tv_usec;
6206
6207                 list_add_tail(&e->base.link,
6208                               &e->base.file_priv->event_list);
6209                 wake_up_interruptible(&e->base.file_priv->event_wait);
6210         }
6211
6212         drm_vblank_put(dev, intel_crtc->pipe);
6213
6214         spin_unlock_irqrestore(&dev->event_lock, flags);
6215
6216         obj = work->old_fb_obj;
6217
6218         atomic_clear_mask(1 << intel_crtc->plane,
6219                           &obj->pending_flip.counter);
6220
6221         wake_up(&dev_priv->pending_flip_queue);
6222         schedule_work(&work->work);
6223
6224         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6225 }
6226
6227 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6228 {
6229         drm_i915_private_t *dev_priv = dev->dev_private;
6230         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6231
6232         do_intel_finish_page_flip(dev, crtc);
6233 }
6234
6235 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6236 {
6237         drm_i915_private_t *dev_priv = dev->dev_private;
6238         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6239
6240         do_intel_finish_page_flip(dev, crtc);
6241 }
6242
6243 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6244 {
6245         drm_i915_private_t *dev_priv = dev->dev_private;
6246         struct intel_crtc *intel_crtc =
6247                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6248         unsigned long flags;
6249
6250         spin_lock_irqsave(&dev->event_lock, flags);
6251         if (intel_crtc->unpin_work) {
6252                 if ((++intel_crtc->unpin_work->pending) > 1)
6253                         DRM_ERROR("Prepared flip multiple times\n");
6254         } else {
6255                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6256         }
6257         spin_unlock_irqrestore(&dev->event_lock, flags);
6258 }
6259
6260 static int intel_gen2_queue_flip(struct drm_device *dev,
6261                                  struct drm_crtc *crtc,
6262                                  struct drm_framebuffer *fb,
6263                                  struct drm_i915_gem_object *obj)
6264 {
6265         struct drm_i915_private *dev_priv = dev->dev_private;
6266         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6267         u32 flip_mask;
6268         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6269         int ret;
6270
6271         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6272         if (ret)
6273                 goto err;
6274
6275         ret = intel_ring_begin(ring, 6);
6276         if (ret)
6277                 goto err_unpin;
6278
6279         /* Can't queue multiple flips, so wait for the previous
6280          * one to finish before executing the next.
6281          */
6282         if (intel_crtc->plane)
6283                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6284         else
6285                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6286         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6287         intel_ring_emit(ring, MI_NOOP);
6288         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6289                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6290         intel_ring_emit(ring, fb->pitches[0]);
6291         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6292         intel_ring_emit(ring, 0); /* aux display base address, unused */
6293         intel_ring_advance(ring);
6294         return 0;
6295
6296 err_unpin:
6297         intel_unpin_fb_obj(obj);
6298 err:
6299         return ret;
6300 }
6301
6302 static int intel_gen3_queue_flip(struct drm_device *dev,
6303                                  struct drm_crtc *crtc,
6304                                  struct drm_framebuffer *fb,
6305                                  struct drm_i915_gem_object *obj)
6306 {
6307         struct drm_i915_private *dev_priv = dev->dev_private;
6308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6309         u32 flip_mask;
6310         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6311         int ret;
6312
6313         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6314         if (ret)
6315                 goto err;
6316
6317         ret = intel_ring_begin(ring, 6);
6318         if (ret)
6319                 goto err_unpin;
6320
6321         if (intel_crtc->plane)
6322                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6323         else
6324                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6325         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6326         intel_ring_emit(ring, MI_NOOP);
6327         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6328                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6329         intel_ring_emit(ring, fb->pitches[0]);
6330         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6331         intel_ring_emit(ring, MI_NOOP);
6332
6333         intel_ring_advance(ring);
6334         return 0;
6335
6336 err_unpin:
6337         intel_unpin_fb_obj(obj);
6338 err:
6339         return ret;
6340 }
6341
6342 static int intel_gen4_queue_flip(struct drm_device *dev,
6343                                  struct drm_crtc *crtc,
6344                                  struct drm_framebuffer *fb,
6345                                  struct drm_i915_gem_object *obj)
6346 {
6347         struct drm_i915_private *dev_priv = dev->dev_private;
6348         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6349         uint32_t pf, pipesrc;
6350         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6351         int ret;
6352
6353         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6354         if (ret)
6355                 goto err;
6356
6357         ret = intel_ring_begin(ring, 4);
6358         if (ret)
6359                 goto err_unpin;
6360
6361         /* i965+ uses the linear or tiled offsets from the
6362          * Display Registers (which do not change across a page-flip)
6363          * so we need only reprogram the base address.
6364          */
6365         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6366                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6367         intel_ring_emit(ring, fb->pitches[0]);
6368         intel_ring_emit(ring,
6369                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6370                         obj->tiling_mode);
6371
6372         /* XXX Enabling the panel-fitter across page-flip is so far
6373          * untested on non-native modes, so ignore it for now.
6374          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6375          */
6376         pf = 0;
6377         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6378         intel_ring_emit(ring, pf | pipesrc);
6379         intel_ring_advance(ring);
6380         return 0;
6381
6382 err_unpin:
6383         intel_unpin_fb_obj(obj);
6384 err:
6385         return ret;
6386 }
6387
6388 static int intel_gen6_queue_flip(struct drm_device *dev,
6389                                  struct drm_crtc *crtc,
6390                                  struct drm_framebuffer *fb,
6391                                  struct drm_i915_gem_object *obj)
6392 {
6393         struct drm_i915_private *dev_priv = dev->dev_private;
6394         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6395         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6396         uint32_t pf, pipesrc;
6397         int ret;
6398
6399         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6400         if (ret)
6401                 goto err;
6402
6403         ret = intel_ring_begin(ring, 4);
6404         if (ret)
6405                 goto err_unpin;
6406
6407         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6408                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6409         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6410         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6411
6412         /* Contrary to the suggestions in the documentation,
6413          * "Enable Panel Fitter" does not seem to be required when page
6414          * flipping with a non-native mode, and worse causes a normal
6415          * modeset to fail.
6416          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6417          */
6418         pf = 0;
6419         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6420         intel_ring_emit(ring, pf | pipesrc);
6421         intel_ring_advance(ring);
6422         return 0;
6423
6424 err_unpin:
6425         intel_unpin_fb_obj(obj);
6426 err:
6427         return ret;
6428 }
6429
6430 /*
6431  * On gen7 we currently use the blit ring because (in early silicon at least)
6432  * the render ring doesn't give us interrpts for page flip completion, which
6433  * means clients will hang after the first flip is queued.  Fortunately the
6434  * blit ring generates interrupts properly, so use it instead.
6435  */
6436 static int intel_gen7_queue_flip(struct drm_device *dev,
6437                                  struct drm_crtc *crtc,
6438                                  struct drm_framebuffer *fb,
6439                                  struct drm_i915_gem_object *obj)
6440 {
6441         struct drm_i915_private *dev_priv = dev->dev_private;
6442         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6443         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6444         uint32_t plane_bit = 0;
6445         int ret;
6446
6447         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6448         if (ret)
6449                 goto err;
6450
6451         switch(intel_crtc->plane) {
6452         case PLANE_A:
6453                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6454                 break;
6455         case PLANE_B:
6456                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6457                 break;
6458         case PLANE_C:
6459                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6460                 break;
6461         default:
6462                 WARN_ONCE(1, "unknown plane in flip command\n");
6463                 ret = -ENODEV;
6464                 goto err_unpin;
6465         }
6466
6467         ret = intel_ring_begin(ring, 4);
6468         if (ret)
6469                 goto err_unpin;
6470
6471         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6472         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6473         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6474         intel_ring_emit(ring, (MI_NOOP));
6475         intel_ring_advance(ring);
6476         return 0;
6477
6478 err_unpin:
6479         intel_unpin_fb_obj(obj);
6480 err:
6481         return ret;
6482 }
6483
6484 static int intel_default_queue_flip(struct drm_device *dev,
6485                                     struct drm_crtc *crtc,
6486                                     struct drm_framebuffer *fb,
6487                                     struct drm_i915_gem_object *obj)
6488 {
6489         return -ENODEV;
6490 }
6491
6492 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6493                                 struct drm_framebuffer *fb,
6494                                 struct drm_pending_vblank_event *event)
6495 {
6496         struct drm_device *dev = crtc->dev;
6497         struct drm_i915_private *dev_priv = dev->dev_private;
6498         struct intel_framebuffer *intel_fb;
6499         struct drm_i915_gem_object *obj;
6500         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6501         struct intel_unpin_work *work;
6502         unsigned long flags;
6503         int ret;
6504
6505         /* Can't change pixel format via MI display flips. */
6506         if (fb->pixel_format != crtc->fb->pixel_format)
6507                 return -EINVAL;
6508
6509         /*
6510          * TILEOFF/LINOFF registers can't be changed via MI display flips.
6511          * Note that pitch changes could also affect these register.
6512          */
6513         if (INTEL_INFO(dev)->gen > 3 &&
6514             (fb->offsets[0] != crtc->fb->offsets[0] ||
6515              fb->pitches[0] != crtc->fb->pitches[0]))
6516                 return -EINVAL;
6517
6518         work = kzalloc(sizeof *work, GFP_KERNEL);
6519         if (work == NULL)
6520                 return -ENOMEM;
6521
6522         work->event = event;
6523         work->dev = crtc->dev;
6524         intel_fb = to_intel_framebuffer(crtc->fb);
6525         work->old_fb_obj = intel_fb->obj;
6526         INIT_WORK(&work->work, intel_unpin_work_fn);
6527
6528         ret = drm_vblank_get(dev, intel_crtc->pipe);
6529         if (ret)
6530                 goto free_work;
6531
6532         /* We borrow the event spin lock for protecting unpin_work */
6533         spin_lock_irqsave(&dev->event_lock, flags);
6534         if (intel_crtc->unpin_work) {
6535                 spin_unlock_irqrestore(&dev->event_lock, flags);
6536                 kfree(work);
6537                 drm_vblank_put(dev, intel_crtc->pipe);
6538
6539                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6540                 return -EBUSY;
6541         }
6542         intel_crtc->unpin_work = work;
6543         spin_unlock_irqrestore(&dev->event_lock, flags);
6544
6545         intel_fb = to_intel_framebuffer(fb);
6546         obj = intel_fb->obj;
6547
6548         ret = i915_mutex_lock_interruptible(dev);
6549         if (ret)
6550                 goto cleanup;
6551
6552         /* Reference the objects for the scheduled work. */
6553         drm_gem_object_reference(&work->old_fb_obj->base);
6554         drm_gem_object_reference(&obj->base);
6555
6556         crtc->fb = fb;
6557
6558         work->pending_flip_obj = obj;
6559
6560         work->enable_stall_check = true;
6561
6562         /* Block clients from rendering to the new back buffer until
6563          * the flip occurs and the object is no longer visible.
6564          */
6565         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6566
6567         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6568         if (ret)
6569                 goto cleanup_pending;
6570
6571         intel_disable_fbc(dev);
6572         intel_mark_fb_busy(obj);
6573         mutex_unlock(&dev->struct_mutex);
6574
6575         trace_i915_flip_request(intel_crtc->plane, obj);
6576
6577         return 0;
6578
6579 cleanup_pending:
6580         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6581         drm_gem_object_unreference(&work->old_fb_obj->base);
6582         drm_gem_object_unreference(&obj->base);
6583         mutex_unlock(&dev->struct_mutex);
6584
6585 cleanup:
6586         spin_lock_irqsave(&dev->event_lock, flags);
6587         intel_crtc->unpin_work = NULL;
6588         spin_unlock_irqrestore(&dev->event_lock, flags);
6589
6590         drm_vblank_put(dev, intel_crtc->pipe);
6591 free_work:
6592         kfree(work);
6593
6594         return ret;
6595 }
6596
6597 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6598         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6599         .load_lut = intel_crtc_load_lut,
6600         .disable = intel_crtc_noop,
6601 };
6602
6603 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
6604 {
6605         struct intel_encoder *other_encoder;
6606         struct drm_crtc *crtc = &encoder->new_crtc->base;
6607
6608         if (WARN_ON(!crtc))
6609                 return false;
6610
6611         list_for_each_entry(other_encoder,
6612                             &crtc->dev->mode_config.encoder_list,
6613                             base.head) {
6614
6615                 if (&other_encoder->new_crtc->base != crtc ||
6616                     encoder == other_encoder)
6617                         continue;
6618                 else
6619                         return true;
6620         }
6621
6622         return false;
6623 }
6624
6625 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
6626                                   struct drm_crtc *crtc)
6627 {
6628         struct drm_device *dev;
6629         struct drm_crtc *tmp;
6630         int crtc_mask = 1;
6631
6632         WARN(!crtc, "checking null crtc?\n");
6633
6634         dev = crtc->dev;
6635
6636         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
6637                 if (tmp == crtc)
6638                         break;
6639                 crtc_mask <<= 1;
6640         }
6641
6642         if (encoder->possible_crtcs & crtc_mask)
6643                 return true;
6644         return false;
6645 }
6646
6647 /**
6648  * intel_modeset_update_staged_output_state
6649  *
6650  * Updates the staged output configuration state, e.g. after we've read out the
6651  * current hw state.
6652  */
6653 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
6654 {
6655         struct intel_encoder *encoder;
6656         struct intel_connector *connector;
6657
6658         list_for_each_entry(connector, &dev->mode_config.connector_list,
6659                             base.head) {
6660                 connector->new_encoder =
6661                         to_intel_encoder(connector->base.encoder);
6662         }
6663
6664         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6665                             base.head) {
6666                 encoder->new_crtc =
6667                         to_intel_crtc(encoder->base.crtc);
6668         }
6669 }
6670
6671 /**
6672  * intel_modeset_commit_output_state
6673  *
6674  * This function copies the stage display pipe configuration to the real one.
6675  */
6676 static void intel_modeset_commit_output_state(struct drm_device *dev)
6677 {
6678         struct intel_encoder *encoder;
6679         struct intel_connector *connector;
6680
6681         list_for_each_entry(connector, &dev->mode_config.connector_list,
6682                             base.head) {
6683                 connector->base.encoder = &connector->new_encoder->base;
6684         }
6685
6686         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6687                             base.head) {
6688                 encoder->base.crtc = &encoder->new_crtc->base;
6689         }
6690 }
6691
6692 static struct drm_display_mode *
6693 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
6694                             struct drm_display_mode *mode)
6695 {
6696         struct drm_device *dev = crtc->dev;
6697         struct drm_display_mode *adjusted_mode;
6698         struct drm_encoder_helper_funcs *encoder_funcs;
6699         struct intel_encoder *encoder;
6700
6701         adjusted_mode = drm_mode_duplicate(dev, mode);
6702         if (!adjusted_mode)
6703                 return ERR_PTR(-ENOMEM);
6704
6705         /* Pass our mode to the connectors and the CRTC to give them a chance to
6706          * adjust it according to limitations or connector properties, and also
6707          * a chance to reject the mode entirely.
6708          */
6709         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6710                             base.head) {
6711
6712                 if (&encoder->new_crtc->base != crtc)
6713                         continue;
6714                 encoder_funcs = encoder->base.helper_private;
6715                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
6716                                                 adjusted_mode))) {
6717                         DRM_DEBUG_KMS("Encoder fixup failed\n");
6718                         goto fail;
6719                 }
6720         }
6721
6722         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
6723                 DRM_DEBUG_KMS("CRTC fixup failed\n");
6724                 goto fail;
6725         }
6726         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
6727
6728         return adjusted_mode;
6729 fail:
6730         drm_mode_destroy(dev, adjusted_mode);
6731         return ERR_PTR(-EINVAL);
6732 }
6733
6734 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
6735  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
6736 static void
6737 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
6738                              unsigned *prepare_pipes, unsigned *disable_pipes)
6739 {
6740         struct intel_crtc *intel_crtc;
6741         struct drm_device *dev = crtc->dev;
6742         struct intel_encoder *encoder;
6743         struct intel_connector *connector;
6744         struct drm_crtc *tmp_crtc;
6745
6746         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
6747
6748         /* Check which crtcs have changed outputs connected to them, these need
6749          * to be part of the prepare_pipes mask. We don't (yet) support global
6750          * modeset across multiple crtcs, so modeset_pipes will only have one
6751          * bit set at most. */
6752         list_for_each_entry(connector, &dev->mode_config.connector_list,
6753                             base.head) {
6754                 if (connector->base.encoder == &connector->new_encoder->base)
6755                         continue;
6756
6757                 if (connector->base.encoder) {
6758                         tmp_crtc = connector->base.encoder->crtc;
6759
6760                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6761                 }
6762
6763                 if (connector->new_encoder)
6764                         *prepare_pipes |=
6765                                 1 << connector->new_encoder->new_crtc->pipe;
6766         }
6767
6768         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6769                             base.head) {
6770                 if (encoder->base.crtc == &encoder->new_crtc->base)
6771                         continue;
6772
6773                 if (encoder->base.crtc) {
6774                         tmp_crtc = encoder->base.crtc;
6775
6776                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6777                 }
6778
6779                 if (encoder->new_crtc)
6780                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
6781         }
6782
6783         /* Check for any pipes that will be fully disabled ... */
6784         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6785                             base.head) {
6786                 bool used = false;
6787
6788                 /* Don't try to disable disabled crtcs. */
6789                 if (!intel_crtc->base.enabled)
6790                         continue;
6791
6792                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6793                                     base.head) {
6794                         if (encoder->new_crtc == intel_crtc)
6795                                 used = true;
6796                 }
6797
6798                 if (!used)
6799                         *disable_pipes |= 1 << intel_crtc->pipe;
6800         }
6801
6802
6803         /* set_mode is also used to update properties on life display pipes. */
6804         intel_crtc = to_intel_crtc(crtc);
6805         if (crtc->enabled)
6806                 *prepare_pipes |= 1 << intel_crtc->pipe;
6807
6808         /* We only support modeset on one single crtc, hence we need to do that
6809          * only for the passed in crtc iff we change anything else than just
6810          * disable crtcs.
6811          *
6812          * This is actually not true, to be fully compatible with the old crtc
6813          * helper we automatically disable _any_ output (i.e. doesn't need to be
6814          * connected to the crtc we're modesetting on) if it's disconnected.
6815          * Which is a rather nutty api (since changed the output configuration
6816          * without userspace's explicit request can lead to confusion), but
6817          * alas. Hence we currently need to modeset on all pipes we prepare. */
6818         if (*prepare_pipes)
6819                 *modeset_pipes = *prepare_pipes;
6820
6821         /* ... and mask these out. */
6822         *modeset_pipes &= ~(*disable_pipes);
6823         *prepare_pipes &= ~(*disable_pipes);
6824 }
6825
6826 static bool intel_crtc_in_use(struct drm_crtc *crtc)
6827 {
6828         struct drm_encoder *encoder;
6829         struct drm_device *dev = crtc->dev;
6830
6831         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
6832                 if (encoder->crtc == crtc)
6833                         return true;
6834
6835         return false;
6836 }
6837
6838 static void
6839 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
6840 {
6841         struct intel_encoder *intel_encoder;
6842         struct intel_crtc *intel_crtc;
6843         struct drm_connector *connector;
6844
6845         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
6846                             base.head) {
6847                 if (!intel_encoder->base.crtc)
6848                         continue;
6849
6850                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
6851
6852                 if (prepare_pipes & (1 << intel_crtc->pipe))
6853                         intel_encoder->connectors_active = false;
6854         }
6855
6856         intel_modeset_commit_output_state(dev);
6857
6858         /* Update computed state. */
6859         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6860                             base.head) {
6861                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
6862         }
6863
6864         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6865                 if (!connector->encoder || !connector->encoder->crtc)
6866                         continue;
6867
6868                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
6869
6870                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
6871                         struct drm_property *dpms_property =
6872                                 dev->mode_config.dpms_property;
6873
6874                         connector->dpms = DRM_MODE_DPMS_ON;
6875                         drm_connector_property_set_value(connector,
6876                                                          dpms_property,
6877                                                          DRM_MODE_DPMS_ON);
6878
6879                         intel_encoder = to_intel_encoder(connector->encoder);
6880                         intel_encoder->connectors_active = true;
6881                 }
6882         }
6883
6884 }
6885
6886 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
6887         list_for_each_entry((intel_crtc), \
6888                             &(dev)->mode_config.crtc_list, \
6889                             base.head) \
6890                 if (mask & (1 <<(intel_crtc)->pipe)) \
6891
6892 void
6893 intel_modeset_check_state(struct drm_device *dev)
6894 {
6895         struct intel_crtc *crtc;
6896         struct intel_encoder *encoder;
6897         struct intel_connector *connector;
6898
6899         list_for_each_entry(connector, &dev->mode_config.connector_list,
6900                             base.head) {
6901                 /* This also checks the encoder/connector hw state with the
6902                  * ->get_hw_state callbacks. */
6903                 intel_connector_check_state(connector);
6904
6905                 WARN(&connector->new_encoder->base != connector->base.encoder,
6906                      "connector's staged encoder doesn't match current encoder\n");
6907         }
6908
6909         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6910                             base.head) {
6911                 bool enabled = false;
6912                 bool active = false;
6913                 enum pipe pipe, tracked_pipe;
6914
6915                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
6916                               encoder->base.base.id,
6917                               drm_get_encoder_name(&encoder->base));
6918
6919                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
6920                      "encoder's stage crtc doesn't match current crtc\n");
6921                 WARN(encoder->connectors_active && !encoder->base.crtc,
6922                      "encoder's active_connectors set, but no crtc\n");
6923
6924                 list_for_each_entry(connector, &dev->mode_config.connector_list,
6925                                     base.head) {
6926                         if (connector->base.encoder != &encoder->base)
6927                                 continue;
6928                         enabled = true;
6929                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
6930                                 active = true;
6931                 }
6932                 WARN(!!encoder->base.crtc != enabled,
6933                      "encoder's enabled state mismatch "
6934                      "(expected %i, found %i)\n",
6935                      !!encoder->base.crtc, enabled);
6936                 WARN(active && !encoder->base.crtc,
6937                      "active encoder with no crtc\n");
6938
6939                 WARN(encoder->connectors_active != active,
6940                      "encoder's computed active state doesn't match tracked active state "
6941                      "(expected %i, found %i)\n", active, encoder->connectors_active);
6942
6943                 active = encoder->get_hw_state(encoder, &pipe);
6944                 WARN(active != encoder->connectors_active,
6945                      "encoder's hw state doesn't match sw tracking "
6946                      "(expected %i, found %i)\n",
6947                      encoder->connectors_active, active);
6948
6949                 if (!encoder->base.crtc)
6950                         continue;
6951
6952                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
6953                 WARN(active && pipe != tracked_pipe,
6954                      "active encoder's pipe doesn't match"
6955                      "(expected %i, found %i)\n",
6956                      tracked_pipe, pipe);
6957
6958         }
6959
6960         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
6961                             base.head) {
6962                 bool enabled = false;
6963                 bool active = false;
6964
6965                 DRM_DEBUG_KMS("[CRTC:%d]\n",
6966                               crtc->base.base.id);
6967
6968                 WARN(crtc->active && !crtc->base.enabled,
6969                      "active crtc, but not enabled in sw tracking\n");
6970
6971                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6972                                     base.head) {
6973                         if (encoder->base.crtc != &crtc->base)
6974                                 continue;
6975                         enabled = true;
6976                         if (encoder->connectors_active)
6977                                 active = true;
6978                 }
6979                 WARN(active != crtc->active,
6980                      "crtc's computed active state doesn't match tracked active state "
6981                      "(expected %i, found %i)\n", active, crtc->active);
6982                 WARN(enabled != crtc->base.enabled,
6983                      "crtc's computed enabled state doesn't match tracked enabled state "
6984                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
6985
6986                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
6987         }
6988 }
6989
6990 bool intel_set_mode(struct drm_crtc *crtc,
6991                     struct drm_display_mode *mode,
6992                     int x, int y, struct drm_framebuffer *fb)
6993 {
6994         struct drm_device *dev = crtc->dev;
6995         drm_i915_private_t *dev_priv = dev->dev_private;
6996         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
6997         struct drm_encoder_helper_funcs *encoder_funcs;
6998         struct drm_encoder *encoder;
6999         struct intel_crtc *intel_crtc;
7000         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7001         bool ret = true;
7002
7003         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7004                                      &prepare_pipes, &disable_pipes);
7005
7006         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7007                       modeset_pipes, prepare_pipes, disable_pipes);
7008
7009         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7010                 intel_crtc_disable(&intel_crtc->base);
7011
7012         saved_hwmode = crtc->hwmode;
7013         saved_mode = crtc->mode;
7014
7015         /* Hack: Because we don't (yet) support global modeset on multiple
7016          * crtcs, we don't keep track of the new mode for more than one crtc.
7017          * Hence simply check whether any bit is set in modeset_pipes in all the
7018          * pieces of code that are not yet converted to deal with mutliple crtcs
7019          * changing their mode at the same time. */
7020         adjusted_mode = NULL;
7021         if (modeset_pipes) {
7022                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7023                 if (IS_ERR(adjusted_mode)) {
7024                         return false;
7025                 }
7026         }
7027
7028         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7029                 if (intel_crtc->base.enabled)
7030                         dev_priv->display.crtc_disable(&intel_crtc->base);
7031         }
7032
7033         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7034          * to set it here already despite that we pass it down the callchain.
7035          */
7036         if (modeset_pipes)
7037                 crtc->mode = *mode;
7038
7039         /* Only after disabling all output pipelines that will be changed can we
7040          * update the the output configuration. */
7041         intel_modeset_update_state(dev, prepare_pipes);
7042
7043         /* Set up the DPLL and any encoders state that needs to adjust or depend
7044          * on the DPLL.
7045          */
7046         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7047                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7048                                            mode, adjusted_mode,
7049                                            x, y, fb);
7050                 if (!ret)
7051                     goto done;
7052
7053                 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7054
7055                         if (encoder->crtc != &intel_crtc->base)
7056                                 continue;
7057
7058                         DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7059                                 encoder->base.id, drm_get_encoder_name(encoder),
7060                                 mode->base.id, mode->name);
7061                         encoder_funcs = encoder->helper_private;
7062                         encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7063                 }
7064         }
7065
7066         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7067         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7068                 dev_priv->display.crtc_enable(&intel_crtc->base);
7069
7070         if (modeset_pipes) {
7071                 /* Store real post-adjustment hardware mode. */
7072                 crtc->hwmode = *adjusted_mode;
7073
7074                 /* Calculate and store various constants which
7075                  * are later needed by vblank and swap-completion
7076                  * timestamping. They are derived from true hwmode.
7077                  */
7078                 drm_calc_timestamping_constants(crtc);
7079         }
7080
7081         /* FIXME: add subpixel order */
7082 done:
7083         drm_mode_destroy(dev, adjusted_mode);
7084         if (!ret && crtc->enabled) {
7085                 crtc->hwmode = saved_hwmode;
7086                 crtc->mode = saved_mode;
7087         } else {
7088                 intel_modeset_check_state(dev);
7089         }
7090
7091         return ret;
7092 }
7093
7094 #undef for_each_intel_crtc_masked
7095
7096 static void intel_set_config_free(struct intel_set_config *config)
7097 {
7098         if (!config)
7099                 return;
7100
7101         kfree(config->save_connector_encoders);
7102         kfree(config->save_encoder_crtcs);
7103         kfree(config);
7104 }
7105
7106 static int intel_set_config_save_state(struct drm_device *dev,
7107                                        struct intel_set_config *config)
7108 {
7109         struct drm_encoder *encoder;
7110         struct drm_connector *connector;
7111         int count;
7112
7113         config->save_encoder_crtcs =
7114                 kcalloc(dev->mode_config.num_encoder,
7115                         sizeof(struct drm_crtc *), GFP_KERNEL);
7116         if (!config->save_encoder_crtcs)
7117                 return -ENOMEM;
7118
7119         config->save_connector_encoders =
7120                 kcalloc(dev->mode_config.num_connector,
7121                         sizeof(struct drm_encoder *), GFP_KERNEL);
7122         if (!config->save_connector_encoders)
7123                 return -ENOMEM;
7124
7125         /* Copy data. Note that driver private data is not affected.
7126          * Should anything bad happen only the expected state is
7127          * restored, not the drivers personal bookkeeping.
7128          */
7129         count = 0;
7130         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7131                 config->save_encoder_crtcs[count++] = encoder->crtc;
7132         }
7133
7134         count = 0;
7135         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7136                 config->save_connector_encoders[count++] = connector->encoder;
7137         }
7138
7139         return 0;
7140 }
7141
7142 static void intel_set_config_restore_state(struct drm_device *dev,
7143                                            struct intel_set_config *config)
7144 {
7145         struct intel_encoder *encoder;
7146         struct intel_connector *connector;
7147         int count;
7148
7149         count = 0;
7150         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7151                 encoder->new_crtc =
7152                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7153         }
7154
7155         count = 0;
7156         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7157                 connector->new_encoder =
7158                         to_intel_encoder(config->save_connector_encoders[count++]);
7159         }
7160 }
7161
7162 static void
7163 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7164                                       struct intel_set_config *config)
7165 {
7166
7167         /* We should be able to check here if the fb has the same properties
7168          * and then just flip_or_move it */
7169         if (set->crtc->fb != set->fb) {
7170                 /* If we have no fb then treat it as a full mode set */
7171                 if (set->crtc->fb == NULL) {
7172                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7173                         config->mode_changed = true;
7174                 } else if (set->fb == NULL) {
7175                         config->mode_changed = true;
7176                 } else if (set->fb->depth != set->crtc->fb->depth) {
7177                         config->mode_changed = true;
7178                 } else if (set->fb->bits_per_pixel !=
7179                            set->crtc->fb->bits_per_pixel) {
7180                         config->mode_changed = true;
7181                 } else
7182                         config->fb_changed = true;
7183         }
7184
7185         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7186                 config->fb_changed = true;
7187
7188         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7189                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7190                 drm_mode_debug_printmodeline(&set->crtc->mode);
7191                 drm_mode_debug_printmodeline(set->mode);
7192                 config->mode_changed = true;
7193         }
7194 }
7195
7196 static int
7197 intel_modeset_stage_output_state(struct drm_device *dev,
7198                                  struct drm_mode_set *set,
7199                                  struct intel_set_config *config)
7200 {
7201         struct drm_crtc *new_crtc;
7202         struct intel_connector *connector;
7203         struct intel_encoder *encoder;
7204         int count, ro;
7205
7206         /* The upper layers ensure that we either disabl a crtc or have a list
7207          * of connectors. For paranoia, double-check this. */
7208         WARN_ON(!set->fb && (set->num_connectors != 0));
7209         WARN_ON(set->fb && (set->num_connectors == 0));
7210
7211         count = 0;
7212         list_for_each_entry(connector, &dev->mode_config.connector_list,
7213                             base.head) {
7214                 /* Otherwise traverse passed in connector list and get encoders
7215                  * for them. */
7216                 for (ro = 0; ro < set->num_connectors; ro++) {
7217                         if (set->connectors[ro] == &connector->base) {
7218                                 connector->new_encoder = connector->encoder;
7219                                 break;
7220                         }
7221                 }
7222
7223                 /* If we disable the crtc, disable all its connectors. Also, if
7224                  * the connector is on the changing crtc but not on the new
7225                  * connector list, disable it. */
7226                 if ((!set->fb || ro == set->num_connectors) &&
7227                     connector->base.encoder &&
7228                     connector->base.encoder->crtc == set->crtc) {
7229                         connector->new_encoder = NULL;
7230
7231                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7232                                 connector->base.base.id,
7233                                 drm_get_connector_name(&connector->base));
7234                 }
7235
7236
7237                 if (&connector->new_encoder->base != connector->base.encoder) {
7238                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7239                         config->mode_changed = true;
7240                 }
7241
7242                 /* Disable all disconnected encoders. */
7243                 if (connector->base.status == connector_status_disconnected)
7244                         connector->new_encoder = NULL;
7245         }
7246         /* connector->new_encoder is now updated for all connectors. */
7247
7248         /* Update crtc of enabled connectors. */
7249         count = 0;
7250         list_for_each_entry(connector, &dev->mode_config.connector_list,
7251                             base.head) {
7252                 if (!connector->new_encoder)
7253                         continue;
7254
7255                 new_crtc = connector->new_encoder->base.crtc;
7256
7257                 for (ro = 0; ro < set->num_connectors; ro++) {
7258                         if (set->connectors[ro] == &connector->base)
7259                                 new_crtc = set->crtc;
7260                 }
7261
7262                 /* Make sure the new CRTC will work with the encoder */
7263                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7264                                            new_crtc)) {
7265                         return -EINVAL;
7266                 }
7267                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7268
7269                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7270                         connector->base.base.id,
7271                         drm_get_connector_name(&connector->base),
7272                         new_crtc->base.id);
7273         }
7274
7275         /* Check for any encoders that needs to be disabled. */
7276         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7277                             base.head) {
7278                 list_for_each_entry(connector,
7279                                     &dev->mode_config.connector_list,
7280                                     base.head) {
7281                         if (connector->new_encoder == encoder) {
7282                                 WARN_ON(!connector->new_encoder->new_crtc);
7283
7284                                 goto next_encoder;
7285                         }
7286                 }
7287                 encoder->new_crtc = NULL;
7288 next_encoder:
7289                 /* Only now check for crtc changes so we don't miss encoders
7290                  * that will be disabled. */
7291                 if (&encoder->new_crtc->base != encoder->base.crtc) {
7292                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7293                         config->mode_changed = true;
7294                 }
7295         }
7296         /* Now we've also updated encoder->new_crtc for all encoders. */
7297
7298         return 0;
7299 }
7300
7301 static int intel_crtc_set_config(struct drm_mode_set *set)
7302 {
7303         struct drm_device *dev;
7304         struct drm_mode_set save_set;
7305         struct intel_set_config *config;
7306         int ret;
7307
7308         BUG_ON(!set);
7309         BUG_ON(!set->crtc);
7310         BUG_ON(!set->crtc->helper_private);
7311
7312         if (!set->mode)
7313                 set->fb = NULL;
7314
7315         /* The fb helper likes to play gross jokes with ->mode_set_config.
7316          * Unfortunately the crtc helper doesn't do much at all for this case,
7317          * so we have to cope with this madness until the fb helper is fixed up. */
7318         if (set->fb && set->num_connectors == 0)
7319                 return 0;
7320
7321         if (set->fb) {
7322                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7323                                 set->crtc->base.id, set->fb->base.id,
7324                                 (int)set->num_connectors, set->x, set->y);
7325         } else {
7326                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7327         }
7328
7329         dev = set->crtc->dev;
7330
7331         ret = -ENOMEM;
7332         config = kzalloc(sizeof(*config), GFP_KERNEL);
7333         if (!config)
7334                 goto out_config;
7335
7336         ret = intel_set_config_save_state(dev, config);
7337         if (ret)
7338                 goto out_config;
7339
7340         save_set.crtc = set->crtc;
7341         save_set.mode = &set->crtc->mode;
7342         save_set.x = set->crtc->x;
7343         save_set.y = set->crtc->y;
7344         save_set.fb = set->crtc->fb;
7345
7346         /* Compute whether we need a full modeset, only an fb base update or no
7347          * change at all. In the future we might also check whether only the
7348          * mode changed, e.g. for LVDS where we only change the panel fitter in
7349          * such cases. */
7350         intel_set_config_compute_mode_changes(set, config);
7351
7352         ret = intel_modeset_stage_output_state(dev, set, config);
7353         if (ret)
7354                 goto fail;
7355
7356         if (config->mode_changed) {
7357                 if (set->mode) {
7358                         DRM_DEBUG_KMS("attempting to set mode from"
7359                                         " userspace\n");
7360                         drm_mode_debug_printmodeline(set->mode);
7361                 }
7362
7363                 if (!intel_set_mode(set->crtc, set->mode,
7364                                     set->x, set->y, set->fb)) {
7365                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7366                                   set->crtc->base.id);
7367                         ret = -EINVAL;
7368                         goto fail;
7369                 }
7370         } else if (config->fb_changed) {
7371                 ret = intel_pipe_set_base(set->crtc,
7372                                           set->x, set->y, set->fb);
7373         }
7374
7375         intel_set_config_free(config);
7376
7377         return 0;
7378
7379 fail:
7380         intel_set_config_restore_state(dev, config);
7381
7382         /* Try to restore the config */
7383         if (config->mode_changed &&
7384             !intel_set_mode(save_set.crtc, save_set.mode,
7385                             save_set.x, save_set.y, save_set.fb))
7386                 DRM_ERROR("failed to restore config after modeset failure\n");
7387
7388 out_config:
7389         intel_set_config_free(config);
7390         return ret;
7391 }
7392
7393 static const struct drm_crtc_funcs intel_crtc_funcs = {
7394         .cursor_set = intel_crtc_cursor_set,
7395         .cursor_move = intel_crtc_cursor_move,
7396         .gamma_set = intel_crtc_gamma_set,
7397         .set_config = intel_crtc_set_config,
7398         .destroy = intel_crtc_destroy,
7399         .page_flip = intel_crtc_page_flip,
7400 };
7401
7402 static void intel_pch_pll_init(struct drm_device *dev)
7403 {
7404         drm_i915_private_t *dev_priv = dev->dev_private;
7405         int i;
7406
7407         if (dev_priv->num_pch_pll == 0) {
7408                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7409                 return;
7410         }
7411
7412         for (i = 0; i < dev_priv->num_pch_pll; i++) {
7413                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7414                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7415                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7416         }
7417 }
7418
7419 static void intel_crtc_init(struct drm_device *dev, int pipe)
7420 {
7421         drm_i915_private_t *dev_priv = dev->dev_private;
7422         struct intel_crtc *intel_crtc;
7423         int i;
7424
7425         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7426         if (intel_crtc == NULL)
7427                 return;
7428
7429         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7430
7431         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7432         for (i = 0; i < 256; i++) {
7433                 intel_crtc->lut_r[i] = i;
7434                 intel_crtc->lut_g[i] = i;
7435                 intel_crtc->lut_b[i] = i;
7436         }
7437
7438         /* Swap pipes & planes for FBC on pre-965 */
7439         intel_crtc->pipe = pipe;
7440         intel_crtc->plane = pipe;
7441         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7442                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7443                 intel_crtc->plane = !pipe;
7444         }
7445
7446         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7447                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7448         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7449         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7450
7451         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7452
7453         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7454 }
7455
7456 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7457                                 struct drm_file *file)
7458 {
7459         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7460         struct drm_mode_object *drmmode_obj;
7461         struct intel_crtc *crtc;
7462
7463         if (!drm_core_check_feature(dev, DRIVER_MODESET))
7464                 return -ENODEV;
7465
7466         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7467                         DRM_MODE_OBJECT_CRTC);
7468
7469         if (!drmmode_obj) {
7470                 DRM_ERROR("no such CRTC id\n");
7471                 return -EINVAL;
7472         }
7473
7474         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7475         pipe_from_crtc_id->pipe = crtc->pipe;
7476
7477         return 0;
7478 }
7479
7480 static int intel_encoder_clones(struct intel_encoder *encoder)
7481 {
7482         struct drm_device *dev = encoder->base.dev;
7483         struct intel_encoder *source_encoder;
7484         int index_mask = 0;
7485         int entry = 0;
7486
7487         list_for_each_entry(source_encoder,
7488                             &dev->mode_config.encoder_list, base.head) {
7489
7490                 if (encoder == source_encoder)
7491                         index_mask |= (1 << entry);
7492
7493                 /* Intel hw has only one MUX where enocoders could be cloned. */
7494                 if (encoder->cloneable && source_encoder->cloneable)
7495                         index_mask |= (1 << entry);
7496
7497                 entry++;
7498         }
7499
7500         return index_mask;
7501 }
7502
7503 static bool has_edp_a(struct drm_device *dev)
7504 {
7505         struct drm_i915_private *dev_priv = dev->dev_private;
7506
7507         if (!IS_MOBILE(dev))
7508                 return false;
7509
7510         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7511                 return false;
7512
7513         if (IS_GEN5(dev) &&
7514             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7515                 return false;
7516
7517         return true;
7518 }
7519
7520 static void intel_setup_outputs(struct drm_device *dev)
7521 {
7522         struct drm_i915_private *dev_priv = dev->dev_private;
7523         struct intel_encoder *encoder;
7524         bool dpd_is_edp = false;
7525         bool has_lvds;
7526
7527         has_lvds = intel_lvds_init(dev);
7528         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7529                 /* disable the panel fitter on everything but LVDS */
7530                 I915_WRITE(PFIT_CONTROL, 0);
7531         }
7532
7533         if (HAS_PCH_SPLIT(dev)) {
7534                 dpd_is_edp = intel_dpd_is_edp(dev);
7535
7536                 if (has_edp_a(dev))
7537                         intel_dp_init(dev, DP_A, PORT_A);
7538
7539                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7540                         intel_dp_init(dev, PCH_DP_D, PORT_D);
7541         }
7542
7543         intel_crt_init(dev);
7544
7545         if (IS_HASWELL(dev)) {
7546                 int found;
7547
7548                 /* Haswell uses DDI functions to detect digital outputs */
7549                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7550                 /* DDI A only supports eDP */
7551                 if (found)
7552                         intel_ddi_init(dev, PORT_A);
7553
7554                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7555                  * register */
7556                 found = I915_READ(SFUSE_STRAP);
7557
7558                 if (found & SFUSE_STRAP_DDIB_DETECTED)
7559                         intel_ddi_init(dev, PORT_B);
7560                 if (found & SFUSE_STRAP_DDIC_DETECTED)
7561                         intel_ddi_init(dev, PORT_C);
7562                 if (found & SFUSE_STRAP_DDID_DETECTED)
7563                         intel_ddi_init(dev, PORT_D);
7564         } else if (HAS_PCH_SPLIT(dev)) {
7565                 int found;
7566
7567                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7568                         /* PCH SDVOB multiplex with HDMIB */
7569                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
7570                         if (!found)
7571                                 intel_hdmi_init(dev, HDMIB, PORT_B);
7572                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7573                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
7574                 }
7575
7576                 if (I915_READ(HDMIC) & PORT_DETECTED)
7577                         intel_hdmi_init(dev, HDMIC, PORT_C);
7578
7579                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
7580                         intel_hdmi_init(dev, HDMID, PORT_D);
7581
7582                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7583                         intel_dp_init(dev, PCH_DP_C, PORT_C);
7584
7585                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7586                         intel_dp_init(dev, PCH_DP_D, PORT_D);
7587         } else if (IS_VALLEYVIEW(dev)) {
7588                 int found;
7589
7590                 if (I915_READ(SDVOB) & PORT_DETECTED) {
7591                         /* SDVOB multiplex with HDMIB */
7592                         found = intel_sdvo_init(dev, SDVOB, true);
7593                         if (!found)
7594                                 intel_hdmi_init(dev, SDVOB, PORT_B);
7595                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
7596                                 intel_dp_init(dev, DP_B, PORT_B);
7597                 }
7598
7599                 if (I915_READ(SDVOC) & PORT_DETECTED)
7600                         intel_hdmi_init(dev, SDVOC, PORT_C);
7601
7602                 /* Shares lanes with HDMI on SDVOC */
7603                 if (I915_READ(DP_C) & DP_DETECTED)
7604                         intel_dp_init(dev, DP_C, PORT_C);
7605         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7606                 bool found = false;
7607
7608                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7609                         DRM_DEBUG_KMS("probing SDVOB\n");
7610                         found = intel_sdvo_init(dev, SDVOB, true);
7611                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7612                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7613                                 intel_hdmi_init(dev, SDVOB, PORT_B);
7614                         }
7615
7616                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7617                                 DRM_DEBUG_KMS("probing DP_B\n");
7618                                 intel_dp_init(dev, DP_B, PORT_B);
7619                         }
7620                 }
7621
7622                 /* Before G4X SDVOC doesn't have its own detect register */
7623
7624                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7625                         DRM_DEBUG_KMS("probing SDVOC\n");
7626                         found = intel_sdvo_init(dev, SDVOC, false);
7627                 }
7628
7629                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7630
7631                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7632                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7633                                 intel_hdmi_init(dev, SDVOC, PORT_C);
7634                         }
7635                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7636                                 DRM_DEBUG_KMS("probing DP_C\n");
7637                                 intel_dp_init(dev, DP_C, PORT_C);
7638                         }
7639                 }
7640
7641                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7642                     (I915_READ(DP_D) & DP_DETECTED)) {
7643                         DRM_DEBUG_KMS("probing DP_D\n");
7644                         intel_dp_init(dev, DP_D, PORT_D);
7645                 }
7646         } else if (IS_GEN2(dev))
7647                 intel_dvo_init(dev);
7648
7649         if (SUPPORTS_TV(dev))
7650                 intel_tv_init(dev);
7651
7652         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7653                 encoder->base.possible_crtcs = encoder->crtc_mask;
7654                 encoder->base.possible_clones =
7655                         intel_encoder_clones(encoder);
7656         }
7657
7658         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7659                 ironlake_init_pch_refclk(dev);
7660 }
7661
7662 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7663 {
7664         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7665
7666         drm_framebuffer_cleanup(fb);
7667         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7668
7669         kfree(intel_fb);
7670 }
7671
7672 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7673                                                 struct drm_file *file,
7674                                                 unsigned int *handle)
7675 {
7676         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7677         struct drm_i915_gem_object *obj = intel_fb->obj;
7678
7679         return drm_gem_handle_create(file, &obj->base, handle);
7680 }
7681
7682 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7683         .destroy = intel_user_framebuffer_destroy,
7684         .create_handle = intel_user_framebuffer_create_handle,
7685 };
7686
7687 int intel_framebuffer_init(struct drm_device *dev,
7688                            struct intel_framebuffer *intel_fb,
7689                            struct drm_mode_fb_cmd2 *mode_cmd,
7690                            struct drm_i915_gem_object *obj)
7691 {
7692         int ret;
7693
7694         if (obj->tiling_mode == I915_TILING_Y)
7695                 return -EINVAL;
7696
7697         if (mode_cmd->pitches[0] & 63)
7698                 return -EINVAL;
7699
7700         switch (mode_cmd->pixel_format) {
7701         case DRM_FORMAT_RGB332:
7702         case DRM_FORMAT_RGB565:
7703         case DRM_FORMAT_XRGB8888:
7704         case DRM_FORMAT_XBGR8888:
7705         case DRM_FORMAT_ARGB8888:
7706         case DRM_FORMAT_XRGB2101010:
7707         case DRM_FORMAT_ARGB2101010:
7708                 /* RGB formats are common across chipsets */
7709                 break;
7710         case DRM_FORMAT_YUYV:
7711         case DRM_FORMAT_UYVY:
7712         case DRM_FORMAT_YVYU:
7713         case DRM_FORMAT_VYUY:
7714                 break;
7715         default:
7716                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7717                                 mode_cmd->pixel_format);
7718                 return -EINVAL;
7719         }
7720
7721         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7722         if (ret) {
7723                 DRM_ERROR("framebuffer init failed %d\n", ret);
7724                 return ret;
7725         }
7726
7727         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7728         intel_fb->obj = obj;
7729         return 0;
7730 }
7731
7732 static struct drm_framebuffer *
7733 intel_user_framebuffer_create(struct drm_device *dev,
7734                               struct drm_file *filp,
7735                               struct drm_mode_fb_cmd2 *mode_cmd)
7736 {
7737         struct drm_i915_gem_object *obj;
7738
7739         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7740                                                 mode_cmd->handles[0]));
7741         if (&obj->base == NULL)
7742                 return ERR_PTR(-ENOENT);
7743
7744         return intel_framebuffer_create(dev, mode_cmd, obj);
7745 }
7746
7747 static const struct drm_mode_config_funcs intel_mode_funcs = {
7748         .fb_create = intel_user_framebuffer_create,
7749         .output_poll_changed = intel_fb_output_poll_changed,
7750 };
7751
7752 /* Set up chip specific display functions */
7753 static void intel_init_display(struct drm_device *dev)
7754 {
7755         struct drm_i915_private *dev_priv = dev->dev_private;
7756
7757         /* We always want a DPMS function */
7758         if (HAS_PCH_SPLIT(dev)) {
7759                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7760                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
7761                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
7762                 dev_priv->display.off = ironlake_crtc_off;
7763                 dev_priv->display.update_plane = ironlake_update_plane;
7764         } else {
7765                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7766                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
7767                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
7768                 dev_priv->display.off = i9xx_crtc_off;
7769                 dev_priv->display.update_plane = i9xx_update_plane;
7770         }
7771
7772         /* Returns the core display clock speed */
7773         if (IS_VALLEYVIEW(dev))
7774                 dev_priv->display.get_display_clock_speed =
7775                         valleyview_get_display_clock_speed;
7776         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
7777                 dev_priv->display.get_display_clock_speed =
7778                         i945_get_display_clock_speed;
7779         else if (IS_I915G(dev))
7780                 dev_priv->display.get_display_clock_speed =
7781                         i915_get_display_clock_speed;
7782         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7783                 dev_priv->display.get_display_clock_speed =
7784                         i9xx_misc_get_display_clock_speed;
7785         else if (IS_I915GM(dev))
7786                 dev_priv->display.get_display_clock_speed =
7787                         i915gm_get_display_clock_speed;
7788         else if (IS_I865G(dev))
7789                 dev_priv->display.get_display_clock_speed =
7790                         i865_get_display_clock_speed;
7791         else if (IS_I85X(dev))
7792                 dev_priv->display.get_display_clock_speed =
7793                         i855_get_display_clock_speed;
7794         else /* 852, 830 */
7795                 dev_priv->display.get_display_clock_speed =
7796                         i830_get_display_clock_speed;
7797
7798         if (HAS_PCH_SPLIT(dev)) {
7799                 if (IS_GEN5(dev)) {
7800                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7801                         dev_priv->display.write_eld = ironlake_write_eld;
7802                 } else if (IS_GEN6(dev)) {
7803                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7804                         dev_priv->display.write_eld = ironlake_write_eld;
7805                 } else if (IS_IVYBRIDGE(dev)) {
7806                         /* FIXME: detect B0+ stepping and use auto training */
7807                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7808                         dev_priv->display.write_eld = ironlake_write_eld;
7809                 } else if (IS_HASWELL(dev)) {
7810                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
7811                         dev_priv->display.write_eld = haswell_write_eld;
7812                 } else
7813                         dev_priv->display.update_wm = NULL;
7814         } else if (IS_G4X(dev)) {
7815                 dev_priv->display.write_eld = g4x_write_eld;
7816         }
7817
7818         /* Default just returns -ENODEV to indicate unsupported */
7819         dev_priv->display.queue_flip = intel_default_queue_flip;
7820
7821         switch (INTEL_INFO(dev)->gen) {
7822         case 2:
7823                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7824                 break;
7825
7826         case 3:
7827                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7828                 break;
7829
7830         case 4:
7831         case 5:
7832                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7833                 break;
7834
7835         case 6:
7836                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7837                 break;
7838         case 7:
7839                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7840                 break;
7841         }
7842 }
7843
7844 /*
7845  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7846  * resume, or other times.  This quirk makes sure that's the case for
7847  * affected systems.
7848  */
7849 static void quirk_pipea_force(struct drm_device *dev)
7850 {
7851         struct drm_i915_private *dev_priv = dev->dev_private;
7852
7853         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7854         DRM_INFO("applying pipe a force quirk\n");
7855 }
7856
7857 /*
7858  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7859  */
7860 static void quirk_ssc_force_disable(struct drm_device *dev)
7861 {
7862         struct drm_i915_private *dev_priv = dev->dev_private;
7863         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7864         DRM_INFO("applying lvds SSC disable quirk\n");
7865 }
7866
7867 /*
7868  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7869  * brightness value
7870  */
7871 static void quirk_invert_brightness(struct drm_device *dev)
7872 {
7873         struct drm_i915_private *dev_priv = dev->dev_private;
7874         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7875         DRM_INFO("applying inverted panel brightness quirk\n");
7876 }
7877
7878 struct intel_quirk {
7879         int device;
7880         int subsystem_vendor;
7881         int subsystem_device;
7882         void (*hook)(struct drm_device *dev);
7883 };
7884
7885 static struct intel_quirk intel_quirks[] = {
7886         /* HP Mini needs pipe A force quirk (LP: #322104) */
7887         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7888
7889         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7890         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7891
7892         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7893         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7894
7895         /* 855 & before need to leave pipe A & dpll A up */
7896         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7897         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7898         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7899
7900         /* Lenovo U160 cannot use SSC on LVDS */
7901         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7902
7903         /* Sony Vaio Y cannot use SSC on LVDS */
7904         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7905
7906         /* Acer Aspire 5734Z must invert backlight brightness */
7907         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7908 };
7909
7910 static void intel_init_quirks(struct drm_device *dev)
7911 {
7912         struct pci_dev *d = dev->pdev;
7913         int i;
7914
7915         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7916                 struct intel_quirk *q = &intel_quirks[i];
7917
7918                 if (d->device == q->device &&
7919                     (d->subsystem_vendor == q->subsystem_vendor ||
7920                      q->subsystem_vendor == PCI_ANY_ID) &&
7921                     (d->subsystem_device == q->subsystem_device ||
7922                      q->subsystem_device == PCI_ANY_ID))
7923                         q->hook(dev);
7924         }
7925 }
7926
7927 /* Disable the VGA plane that we never use */
7928 static void i915_disable_vga(struct drm_device *dev)
7929 {
7930         struct drm_i915_private *dev_priv = dev->dev_private;
7931         u8 sr1;
7932         u32 vga_reg;
7933
7934         if (HAS_PCH_SPLIT(dev))
7935                 vga_reg = CPU_VGACNTRL;
7936         else
7937                 vga_reg = VGACNTRL;
7938
7939         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7940         outb(SR01, VGA_SR_INDEX);
7941         sr1 = inb(VGA_SR_DATA);
7942         outb(sr1 | 1<<5, VGA_SR_DATA);
7943         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7944         udelay(300);
7945
7946         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7947         POSTING_READ(vga_reg);
7948 }
7949
7950 void intel_modeset_init_hw(struct drm_device *dev)
7951 {
7952         /* We attempt to init the necessary power wells early in the initialization
7953          * time, so the subsystems that expect power to be enabled can work.
7954          */
7955         intel_init_power_wells(dev);
7956
7957         intel_prepare_ddi(dev);
7958
7959         intel_init_clock_gating(dev);
7960
7961         mutex_lock(&dev->struct_mutex);
7962         intel_enable_gt_powersave(dev);
7963         mutex_unlock(&dev->struct_mutex);
7964 }
7965
7966 void intel_modeset_init(struct drm_device *dev)
7967 {
7968         struct drm_i915_private *dev_priv = dev->dev_private;
7969         int i, ret;
7970
7971         drm_mode_config_init(dev);
7972
7973         dev->mode_config.min_width = 0;
7974         dev->mode_config.min_height = 0;
7975
7976         dev->mode_config.preferred_depth = 24;
7977         dev->mode_config.prefer_shadow = 1;
7978
7979         dev->mode_config.funcs = &intel_mode_funcs;
7980
7981         intel_init_quirks(dev);
7982
7983         intel_init_pm(dev);
7984
7985         intel_init_display(dev);
7986
7987         if (IS_GEN2(dev)) {
7988                 dev->mode_config.max_width = 2048;
7989                 dev->mode_config.max_height = 2048;
7990         } else if (IS_GEN3(dev)) {
7991                 dev->mode_config.max_width = 4096;
7992                 dev->mode_config.max_height = 4096;
7993         } else {
7994                 dev->mode_config.max_width = 8192;
7995                 dev->mode_config.max_height = 8192;
7996         }
7997         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
7998
7999         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8000                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8001
8002         for (i = 0; i < dev_priv->num_pipe; i++) {
8003                 intel_crtc_init(dev, i);
8004                 ret = intel_plane_init(dev, i);
8005                 if (ret)
8006                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8007         }
8008
8009         intel_pch_pll_init(dev);
8010
8011         /* Just disable it once at startup */
8012         i915_disable_vga(dev);
8013         intel_setup_outputs(dev);
8014 }
8015
8016 static void
8017 intel_connector_break_all_links(struct intel_connector *connector)
8018 {
8019         connector->base.dpms = DRM_MODE_DPMS_OFF;
8020         connector->base.encoder = NULL;
8021         connector->encoder->connectors_active = false;
8022         connector->encoder->base.crtc = NULL;
8023 }
8024
8025 static void intel_enable_pipe_a(struct drm_device *dev)
8026 {
8027         struct intel_connector *connector;
8028         struct drm_connector *crt = NULL;
8029         struct intel_load_detect_pipe load_detect_temp;
8030
8031         /* We can't just switch on the pipe A, we need to set things up with a
8032          * proper mode and output configuration. As a gross hack, enable pipe A
8033          * by enabling the load detect pipe once. */
8034         list_for_each_entry(connector,
8035                             &dev->mode_config.connector_list,
8036                             base.head) {
8037                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8038                         crt = &connector->base;
8039                         break;
8040                 }
8041         }
8042
8043         if (!crt)
8044                 return;
8045
8046         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8047                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8048
8049
8050 }
8051
8052 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8053 {
8054         struct drm_device *dev = crtc->base.dev;
8055         struct drm_i915_private *dev_priv = dev->dev_private;
8056         u32 reg, val;
8057
8058         /* Clear any frame start delays used for debugging left by the BIOS */
8059         reg = PIPECONF(crtc->pipe);
8060         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8061
8062         /* We need to sanitize the plane -> pipe mapping first because this will
8063          * disable the crtc (and hence change the state) if it is wrong. */
8064         if (!HAS_PCH_SPLIT(dev)) {
8065                 struct intel_connector *connector;
8066                 bool plane;
8067
8068                 reg = DSPCNTR(crtc->plane);
8069                 val = I915_READ(reg);
8070
8071                 if ((val & DISPLAY_PLANE_ENABLE) == 0 &&
8072                     (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8073                         goto ok;
8074
8075                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8076                               crtc->base.base.id);
8077
8078                 /* Pipe has the wrong plane attached and the plane is active.
8079                  * Temporarily change the plane mapping and disable everything
8080                  * ...  */
8081                 plane = crtc->plane;
8082                 crtc->plane = !plane;
8083                 dev_priv->display.crtc_disable(&crtc->base);
8084                 crtc->plane = plane;
8085
8086                 /* ... and break all links. */
8087                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8088                                     base.head) {
8089                         if (connector->encoder->base.crtc != &crtc->base)
8090                                 continue;
8091
8092                         intel_connector_break_all_links(connector);
8093                 }
8094
8095                 WARN_ON(crtc->active);
8096                 crtc->base.enabled = false;
8097         }
8098 ok:
8099
8100         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8101             crtc->pipe == PIPE_A && !crtc->active) {
8102                 /* BIOS forgot to enable pipe A, this mostly happens after
8103                  * resume. Force-enable the pipe to fix this, the update_dpms
8104                  * call below we restore the pipe to the right state, but leave
8105                  * the required bits on. */
8106                 intel_enable_pipe_a(dev);
8107         }
8108
8109         /* Adjust the state of the output pipe according to whether we
8110          * have active connectors/encoders. */
8111         intel_crtc_update_dpms(&crtc->base);
8112
8113         if (crtc->active != crtc->base.enabled) {
8114                 struct intel_encoder *encoder;
8115
8116                 /* This can happen either due to bugs in the get_hw_state
8117                  * functions or because the pipe is force-enabled due to the
8118                  * pipe A quirk. */
8119                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8120                               crtc->base.base.id,
8121                               crtc->base.enabled ? "enabled" : "disabled",
8122                               crtc->active ? "enabled" : "disabled");
8123
8124                 crtc->base.enabled = crtc->active;
8125
8126                 /* Because we only establish the connector -> encoder ->
8127                  * crtc links if something is active, this means the
8128                  * crtc is now deactivated. Break the links. connector
8129                  * -> encoder links are only establish when things are
8130                  *  actually up, hence no need to break them. */
8131                 WARN_ON(crtc->active);
8132
8133                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8134                         WARN_ON(encoder->connectors_active);
8135                         encoder->base.crtc = NULL;
8136                 }
8137         }
8138 }
8139
8140 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8141 {
8142         struct intel_connector *connector;
8143         struct drm_device *dev = encoder->base.dev;
8144
8145         /* We need to check both for a crtc link (meaning that the
8146          * encoder is active and trying to read from a pipe) and the
8147          * pipe itself being active. */
8148         bool has_active_crtc = encoder->base.crtc &&
8149                 to_intel_crtc(encoder->base.crtc)->active;
8150
8151         if (encoder->connectors_active && !has_active_crtc) {
8152                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8153                               encoder->base.base.id,
8154                               drm_get_encoder_name(&encoder->base));
8155
8156                 /* Connector is active, but has no active pipe. This is
8157                  * fallout from our resume register restoring. Disable
8158                  * the encoder manually again. */
8159                 if (encoder->base.crtc) {
8160                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8161                                       encoder->base.base.id,
8162                                       drm_get_encoder_name(&encoder->base));
8163                         encoder->disable(encoder);
8164                 }
8165
8166                 /* Inconsistent output/port/pipe state happens presumably due to
8167                  * a bug in one of the get_hw_state functions. Or someplace else
8168                  * in our code, like the register restore mess on resume. Clamp
8169                  * things to off as a safer default. */
8170                 list_for_each_entry(connector,
8171                                     &dev->mode_config.connector_list,
8172                                     base.head) {
8173                         if (connector->encoder != encoder)
8174                                 continue;
8175
8176                         intel_connector_break_all_links(connector);
8177                 }
8178         }
8179         /* Enabled encoders without active connectors will be fixed in
8180          * the crtc fixup. */
8181 }
8182
8183 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8184  * and i915 state tracking structures. */
8185 void intel_modeset_setup_hw_state(struct drm_device *dev)
8186 {
8187         struct drm_i915_private *dev_priv = dev->dev_private;
8188         enum pipe pipe;
8189         u32 tmp;
8190         struct intel_crtc *crtc;
8191         struct intel_encoder *encoder;
8192         struct intel_connector *connector;
8193
8194         for_each_pipe(pipe) {
8195                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8196
8197                 tmp = I915_READ(PIPECONF(pipe));
8198                 if (tmp & PIPECONF_ENABLE)
8199                         crtc->active = true;
8200                 else
8201                         crtc->active = false;
8202
8203                 crtc->base.enabled = crtc->active;
8204
8205                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8206                               crtc->base.base.id,
8207                               crtc->active ? "enabled" : "disabled");
8208         }
8209
8210         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8211                             base.head) {
8212                 pipe = 0;
8213
8214                 if (encoder->get_hw_state(encoder, &pipe)) {
8215                         encoder->base.crtc =
8216                                 dev_priv->pipe_to_crtc_mapping[pipe];
8217                 } else {
8218                         encoder->base.crtc = NULL;
8219                 }
8220
8221                 encoder->connectors_active = false;
8222                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8223                               encoder->base.base.id,
8224                               drm_get_encoder_name(&encoder->base),
8225                               encoder->base.crtc ? "enabled" : "disabled",
8226                               pipe);
8227         }
8228
8229         list_for_each_entry(connector, &dev->mode_config.connector_list,
8230                             base.head) {
8231                 if (connector->get_hw_state(connector)) {
8232                         connector->base.dpms = DRM_MODE_DPMS_ON;
8233                         connector->encoder->connectors_active = true;
8234                         connector->base.encoder = &connector->encoder->base;
8235                 } else {
8236                         connector->base.dpms = DRM_MODE_DPMS_OFF;
8237                         connector->base.encoder = NULL;
8238                 }
8239                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8240                               connector->base.base.id,
8241                               drm_get_connector_name(&connector->base),
8242                               connector->base.encoder ? "enabled" : "disabled");
8243         }
8244
8245         /* HW state is read out, now we need to sanitize this mess. */
8246         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8247                             base.head) {
8248                 intel_sanitize_encoder(encoder);
8249         }
8250
8251         for_each_pipe(pipe) {
8252                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8253                 intel_sanitize_crtc(crtc);
8254         }
8255
8256         intel_modeset_update_staged_output_state(dev);
8257
8258         intel_modeset_check_state(dev);
8259 }
8260
8261 void intel_modeset_gem_init(struct drm_device *dev)
8262 {
8263         intel_modeset_init_hw(dev);
8264
8265         intel_setup_overlay(dev);
8266
8267         intel_modeset_setup_hw_state(dev);
8268 }
8269
8270 void intel_modeset_cleanup(struct drm_device *dev)
8271 {
8272         struct drm_i915_private *dev_priv = dev->dev_private;
8273         struct drm_crtc *crtc;
8274         struct intel_crtc *intel_crtc;
8275
8276         drm_kms_helper_poll_fini(dev);
8277         mutex_lock(&dev->struct_mutex);
8278
8279         intel_unregister_dsm_handler();
8280
8281
8282         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8283                 /* Skip inactive CRTCs */
8284                 if (!crtc->fb)
8285                         continue;
8286
8287                 intel_crtc = to_intel_crtc(crtc);
8288                 intel_increase_pllclock(crtc);
8289         }
8290
8291         intel_disable_fbc(dev);
8292
8293         intel_disable_gt_powersave(dev);
8294
8295         ironlake_teardown_rc6(dev);
8296
8297         if (IS_VALLEYVIEW(dev))
8298                 vlv_init_dpio(dev);
8299
8300         mutex_unlock(&dev->struct_mutex);
8301
8302         /* Disable the irq before mode object teardown, for the irq might
8303          * enqueue unpin/hotplug work. */
8304         drm_irq_uninstall(dev);
8305         cancel_work_sync(&dev_priv->hotplug_work);
8306         cancel_work_sync(&dev_priv->rps.work);
8307
8308         /* flush any delayed tasks or pending work */
8309         flush_scheduled_work();
8310
8311         drm_mode_config_cleanup(dev);
8312 }
8313
8314 /*
8315  * Return which encoder is currently attached for connector.
8316  */
8317 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8318 {
8319         return &intel_attached_encoder(connector)->base;
8320 }
8321
8322 void intel_connector_attach_encoder(struct intel_connector *connector,
8323                                     struct intel_encoder *encoder)
8324 {
8325         connector->encoder = encoder;
8326         drm_mode_connector_attach_encoder(&connector->base,
8327                                           &encoder->base);
8328 }
8329
8330 /*
8331  * set vga decode state - true == enable VGA decode
8332  */
8333 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8334 {
8335         struct drm_i915_private *dev_priv = dev->dev_private;
8336         u16 gmch_ctrl;
8337
8338         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8339         if (state)
8340                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8341         else
8342                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8343         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8344         return 0;
8345 }
8346
8347 #ifdef CONFIG_DEBUG_FS
8348 #include <linux/seq_file.h>
8349
8350 struct intel_display_error_state {
8351         struct intel_cursor_error_state {
8352                 u32 control;
8353                 u32 position;
8354                 u32 base;
8355                 u32 size;
8356         } cursor[I915_MAX_PIPES];
8357
8358         struct intel_pipe_error_state {
8359                 u32 conf;
8360                 u32 source;
8361
8362                 u32 htotal;
8363                 u32 hblank;
8364                 u32 hsync;
8365                 u32 vtotal;
8366                 u32 vblank;
8367                 u32 vsync;
8368         } pipe[I915_MAX_PIPES];
8369
8370         struct intel_plane_error_state {
8371                 u32 control;
8372                 u32 stride;
8373                 u32 size;
8374                 u32 pos;
8375                 u32 addr;
8376                 u32 surface;
8377                 u32 tile_offset;
8378         } plane[I915_MAX_PIPES];
8379 };
8380
8381 struct intel_display_error_state *
8382 intel_display_capture_error_state(struct drm_device *dev)
8383 {
8384         drm_i915_private_t *dev_priv = dev->dev_private;
8385         struct intel_display_error_state *error;
8386         int i;
8387
8388         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8389         if (error == NULL)
8390                 return NULL;
8391
8392         for_each_pipe(i) {
8393                 error->cursor[i].control = I915_READ(CURCNTR(i));
8394                 error->cursor[i].position = I915_READ(CURPOS(i));
8395                 error->cursor[i].base = I915_READ(CURBASE(i));
8396
8397                 error->plane[i].control = I915_READ(DSPCNTR(i));
8398                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8399                 error->plane[i].size = I915_READ(DSPSIZE(i));
8400                 error->plane[i].pos = I915_READ(DSPPOS(i));
8401                 error->plane[i].addr = I915_READ(DSPADDR(i));
8402                 if (INTEL_INFO(dev)->gen >= 4) {
8403                         error->plane[i].surface = I915_READ(DSPSURF(i));
8404                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8405                 }
8406
8407                 error->pipe[i].conf = I915_READ(PIPECONF(i));
8408                 error->pipe[i].source = I915_READ(PIPESRC(i));
8409                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8410                 error->pipe[i].hblank = I915_READ(HBLANK(i));
8411                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8412                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8413                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8414                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8415         }
8416
8417         return error;
8418 }
8419
8420 void
8421 intel_display_print_error_state(struct seq_file *m,
8422                                 struct drm_device *dev,
8423                                 struct intel_display_error_state *error)
8424 {
8425         drm_i915_private_t *dev_priv = dev->dev_private;
8426         int i;
8427
8428         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8429         for_each_pipe(i) {
8430                 seq_printf(m, "Pipe [%d]:\n", i);
8431                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8432                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8433                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8434                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8435                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8436                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8437                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8438                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8439
8440                 seq_printf(m, "Plane [%d]:\n", i);
8441                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8442                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8443                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8444                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8445                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8446                 if (INTEL_INFO(dev)->gen >= 4) {
8447                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8448                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8449                 }
8450
8451                 seq_printf(m, "Cursor [%d]:\n", i);
8452                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
8453                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
8454                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
8455         }
8456 }
8457 #endif