Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/i2c.h>
28 #include <linux/kernel.h>
29 #include "drmP.h"
30 #include "intel_drv.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "intel_dp.h"
34
35 #include "drm_crtc_helper.h"
36
37 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
38 static void intel_update_watermarks(struct drm_device *dev);
39
40 typedef struct {
41     /* given values */
42     int n;
43     int m1, m2;
44     int p1, p2;
45     /* derived values */
46     int dot;
47     int vco;
48     int m;
49     int p;
50 } intel_clock_t;
51
52 typedef struct {
53     int min, max;
54 } intel_range_t;
55
56 typedef struct {
57     int dot_limit;
58     int p2_slow, p2_fast;
59 } intel_p2_t;
60
61 #define INTEL_P2_NUM                  2
62 typedef struct intel_limit intel_limit_t;
63 struct intel_limit {
64     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
65     intel_p2_t      p2;
66     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
67                       int, int, intel_clock_t *);
68 };
69
70 #define I8XX_DOT_MIN              25000
71 #define I8XX_DOT_MAX             350000
72 #define I8XX_VCO_MIN             930000
73 #define I8XX_VCO_MAX            1400000
74 #define I8XX_N_MIN                    3
75 #define I8XX_N_MAX                   16
76 #define I8XX_M_MIN                   96
77 #define I8XX_M_MAX                  140
78 #define I8XX_M1_MIN                  18
79 #define I8XX_M1_MAX                  26
80 #define I8XX_M2_MIN                   6
81 #define I8XX_M2_MAX                  16
82 #define I8XX_P_MIN                    4
83 #define I8XX_P_MAX                  128
84 #define I8XX_P1_MIN                   2
85 #define I8XX_P1_MAX                  33
86 #define I8XX_P1_LVDS_MIN              1
87 #define I8XX_P1_LVDS_MAX              6
88 #define I8XX_P2_SLOW                  4
89 #define I8XX_P2_FAST                  2
90 #define I8XX_P2_LVDS_SLOW             14
91 #define I8XX_P2_LVDS_FAST             14 /* No fast option */
92 #define I8XX_P2_SLOW_LIMIT       165000
93
94 #define I9XX_DOT_MIN              20000
95 #define I9XX_DOT_MAX             400000
96 #define I9XX_VCO_MIN            1400000
97 #define I9XX_VCO_MAX            2800000
98 #define IGD_VCO_MIN             1700000
99 #define IGD_VCO_MAX             3500000
100 #define I9XX_N_MIN                    1
101 #define I9XX_N_MAX                    6
102 /* IGD's Ncounter is a ring counter */
103 #define IGD_N_MIN                     3
104 #define IGD_N_MAX                     6
105 #define I9XX_M_MIN                   70
106 #define I9XX_M_MAX                  120
107 #define IGD_M_MIN                     2
108 #define IGD_M_MAX                   256
109 #define I9XX_M1_MIN                  10
110 #define I9XX_M1_MAX                  22
111 #define I9XX_M2_MIN                   5
112 #define I9XX_M2_MAX                   9
113 /* IGD M1 is reserved, and must be 0 */
114 #define IGD_M1_MIN                    0
115 #define IGD_M1_MAX                    0
116 #define IGD_M2_MIN                    0
117 #define IGD_M2_MAX                    254
118 #define I9XX_P_SDVO_DAC_MIN           5
119 #define I9XX_P_SDVO_DAC_MAX          80
120 #define I9XX_P_LVDS_MIN               7
121 #define I9XX_P_LVDS_MAX              98
122 #define IGD_P_LVDS_MIN                7
123 #define IGD_P_LVDS_MAX               112
124 #define I9XX_P1_MIN                   1
125 #define I9XX_P1_MAX                   8
126 #define I9XX_P2_SDVO_DAC_SLOW                10
127 #define I9XX_P2_SDVO_DAC_FAST                 5
128 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
129 #define I9XX_P2_LVDS_SLOW                    14
130 #define I9XX_P2_LVDS_FAST                     7
131 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
132
133 /*The parameter is for SDVO on G4x platform*/
134 #define G4X_DOT_SDVO_MIN           25000
135 #define G4X_DOT_SDVO_MAX           270000
136 #define G4X_VCO_MIN                1750000
137 #define G4X_VCO_MAX                3500000
138 #define G4X_N_SDVO_MIN             1
139 #define G4X_N_SDVO_MAX             4
140 #define G4X_M_SDVO_MIN             104
141 #define G4X_M_SDVO_MAX             138
142 #define G4X_M1_SDVO_MIN            17
143 #define G4X_M1_SDVO_MAX            23
144 #define G4X_M2_SDVO_MIN            5
145 #define G4X_M2_SDVO_MAX            11
146 #define G4X_P_SDVO_MIN             10
147 #define G4X_P_SDVO_MAX             30
148 #define G4X_P1_SDVO_MIN            1
149 #define G4X_P1_SDVO_MAX            3
150 #define G4X_P2_SDVO_SLOW           10
151 #define G4X_P2_SDVO_FAST           10
152 #define G4X_P2_SDVO_LIMIT          270000
153
154 /*The parameter is for HDMI_DAC on G4x platform*/
155 #define G4X_DOT_HDMI_DAC_MIN           22000
156 #define G4X_DOT_HDMI_DAC_MAX           400000
157 #define G4X_N_HDMI_DAC_MIN             1
158 #define G4X_N_HDMI_DAC_MAX             4
159 #define G4X_M_HDMI_DAC_MIN             104
160 #define G4X_M_HDMI_DAC_MAX             138
161 #define G4X_M1_HDMI_DAC_MIN            16
162 #define G4X_M1_HDMI_DAC_MAX            23
163 #define G4X_M2_HDMI_DAC_MIN            5
164 #define G4X_M2_HDMI_DAC_MAX            11
165 #define G4X_P_HDMI_DAC_MIN             5
166 #define G4X_P_HDMI_DAC_MAX             80
167 #define G4X_P1_HDMI_DAC_MIN            1
168 #define G4X_P1_HDMI_DAC_MAX            8
169 #define G4X_P2_HDMI_DAC_SLOW           10
170 #define G4X_P2_HDMI_DAC_FAST           5
171 #define G4X_P2_HDMI_DAC_LIMIT          165000
172
173 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
174 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
175 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
176 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
177 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
178 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
179 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
180 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
181 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
182 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
183 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
184 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
185 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
186 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
187 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
188 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
189 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
190 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
191
192 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
193 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
194 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
195 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
196 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
197 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
198 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
199 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
200 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
201 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
202 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
203 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
204 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
205 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
206 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
207 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
208 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
209 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
210
211 /*The parameter is for DISPLAY PORT on G4x platform*/
212 #define G4X_DOT_DISPLAY_PORT_MIN           161670
213 #define G4X_DOT_DISPLAY_PORT_MAX           227000
214 #define G4X_N_DISPLAY_PORT_MIN             1
215 #define G4X_N_DISPLAY_PORT_MAX             2
216 #define G4X_M_DISPLAY_PORT_MIN             97
217 #define G4X_M_DISPLAY_PORT_MAX             108
218 #define G4X_M1_DISPLAY_PORT_MIN            0x10
219 #define G4X_M1_DISPLAY_PORT_MAX            0x12
220 #define G4X_M2_DISPLAY_PORT_MIN            0x05
221 #define G4X_M2_DISPLAY_PORT_MAX            0x06
222 #define G4X_P_DISPLAY_PORT_MIN             10
223 #define G4X_P_DISPLAY_PORT_MAX             20
224 #define G4X_P1_DISPLAY_PORT_MIN            1
225 #define G4X_P1_DISPLAY_PORT_MAX            2
226 #define G4X_P2_DISPLAY_PORT_SLOW           10
227 #define G4X_P2_DISPLAY_PORT_FAST           10
228 #define G4X_P2_DISPLAY_PORT_LIMIT          0
229
230 /* IGDNG */
231 /* as we calculate clock using (register_value + 2) for
232    N/M1/M2, so here the range value for them is (actual_value-2).
233  */
234 #define IGDNG_DOT_MIN         25000
235 #define IGDNG_DOT_MAX         350000
236 #define IGDNG_VCO_MIN         1760000
237 #define IGDNG_VCO_MAX         3510000
238 #define IGDNG_N_MIN           1
239 #define IGDNG_N_MAX           5
240 #define IGDNG_M_MIN           79
241 #define IGDNG_M_MAX           118
242 #define IGDNG_M1_MIN          12
243 #define IGDNG_M1_MAX          23
244 #define IGDNG_M2_MIN          5
245 #define IGDNG_M2_MAX          9
246 #define IGDNG_P_SDVO_DAC_MIN  5
247 #define IGDNG_P_SDVO_DAC_MAX  80
248 #define IGDNG_P_LVDS_MIN      28
249 #define IGDNG_P_LVDS_MAX      112
250 #define IGDNG_P1_MIN          1
251 #define IGDNG_P1_MAX          8
252 #define IGDNG_P2_SDVO_DAC_SLOW 10
253 #define IGDNG_P2_SDVO_DAC_FAST 5
254 #define IGDNG_P2_LVDS_SLOW    14 /* single channel */
255 #define IGDNG_P2_LVDS_FAST    7  /* double channel */
256 #define IGDNG_P2_DOT_LIMIT    225000 /* 225Mhz */
257
258 static bool
259 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
260                     int target, int refclk, intel_clock_t *best_clock);
261 static bool
262 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
263                         int target, int refclk, intel_clock_t *best_clock);
264 static bool
265 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
266                         int target, int refclk, intel_clock_t *best_clock);
267
268 static bool
269 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
270                       int target, int refclk, intel_clock_t *best_clock);
271
272 static const intel_limit_t intel_limits_i8xx_dvo = {
273         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
274         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
275         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
276         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
277         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
278         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
279         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
280         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
281         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
282                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
283         .find_pll = intel_find_best_PLL,
284 };
285
286 static const intel_limit_t intel_limits_i8xx_lvds = {
287         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
288         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
289         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
290         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
291         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
292         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
293         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
294         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
295         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
296                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
297         .find_pll = intel_find_best_PLL,
298 };
299         
300 static const intel_limit_t intel_limits_i9xx_sdvo = {
301         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
302         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
303         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
304         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
305         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
306         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
307         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
308         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
309         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
310                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
311         .find_pll = intel_find_best_PLL,
312 };
313
314 static const intel_limit_t intel_limits_i9xx_lvds = {
315         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
316         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
317         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
318         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
319         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
320         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
321         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
322         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
323         /* The single-channel range is 25-112Mhz, and dual-channel
324          * is 80-224Mhz.  Prefer single channel as much as possible.
325          */
326         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
327                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
328         .find_pll = intel_find_best_PLL,
329 };
330
331     /* below parameter and function is for G4X Chipset Family*/
332 static const intel_limit_t intel_limits_g4x_sdvo = {
333         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
334         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
335         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
336         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
337         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
338         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
339         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
340         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
341         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
342                  .p2_slow = G4X_P2_SDVO_SLOW,
343                  .p2_fast = G4X_P2_SDVO_FAST
344         },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 static const intel_limit_t intel_limits_g4x_hdmi = {
349         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
350         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
351         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
352         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
353         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
354         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
355         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
356         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
357         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
358                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
359                  .p2_fast = G4X_P2_HDMI_DAC_FAST
360         },
361         .find_pll = intel_g4x_find_best_PLL,
362 };
363
364 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
365         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
366                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
367         .vco = { .min = G4X_VCO_MIN,
368                  .max = G4X_VCO_MAX },
369         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
370                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
371         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
372                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
373         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
374                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
375         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
376                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
377         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
378                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
379         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
380                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
381         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
382                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
383                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
384         },
385         .find_pll = intel_g4x_find_best_PLL,
386 };
387
388 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
389         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
390                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
391         .vco = { .min = G4X_VCO_MIN,
392                  .max = G4X_VCO_MAX },
393         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
394                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
395         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
396                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
397         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
398                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
399         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
400                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
401         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
402                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
403         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
404                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
405         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
406                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
407                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
408         },
409         .find_pll = intel_g4x_find_best_PLL,
410 };
411
412 static const intel_limit_t intel_limits_g4x_display_port = {
413         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
414                  .max = G4X_DOT_DISPLAY_PORT_MAX },
415         .vco = { .min = G4X_VCO_MIN,
416                  .max = G4X_VCO_MAX},
417         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
418                  .max = G4X_N_DISPLAY_PORT_MAX },
419         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
420                  .max = G4X_M_DISPLAY_PORT_MAX },
421         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
422                  .max = G4X_M1_DISPLAY_PORT_MAX },
423         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
424                  .max = G4X_M2_DISPLAY_PORT_MAX },
425         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
426                  .max = G4X_P_DISPLAY_PORT_MAX },
427         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
428                  .max = G4X_P1_DISPLAY_PORT_MAX},
429         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
430                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
431                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
432         .find_pll = intel_find_pll_g4x_dp,
433 };
434
435 static const intel_limit_t intel_limits_igd_sdvo = {
436         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
437         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
438         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
439         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
440         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
441         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
442         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
443         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
444         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
445                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
446         .find_pll = intel_find_best_PLL,
447 };
448
449 static const intel_limit_t intel_limits_igd_lvds = {
450         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
451         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
452         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
453         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
454         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
455         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
456         .p   = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
457         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
458         /* IGD only supports single-channel mode. */
459         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
460                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
461         .find_pll = intel_find_best_PLL,
462 };
463
464 static const intel_limit_t intel_limits_igdng_sdvo = {
465         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
466         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
467         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
468         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
469         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
470         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
471         .p   = { .min = IGDNG_P_SDVO_DAC_MIN,   .max = IGDNG_P_SDVO_DAC_MAX },
472         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
473         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
474                  .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
475                  .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
476         .find_pll = intel_igdng_find_best_PLL,
477 };
478
479 static const intel_limit_t intel_limits_igdng_lvds = {
480         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
481         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
482         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
483         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
484         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
485         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
486         .p   = { .min = IGDNG_P_LVDS_MIN,       .max = IGDNG_P_LVDS_MAX },
487         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
488         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
489                  .p2_slow = IGDNG_P2_LVDS_SLOW,
490                  .p2_fast = IGDNG_P2_LVDS_FAST },
491         .find_pll = intel_igdng_find_best_PLL,
492 };
493
494 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
495 {
496         const intel_limit_t *limit;
497         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
498                 limit = &intel_limits_igdng_lvds;
499         else
500                 limit = &intel_limits_igdng_sdvo;
501
502         return limit;
503 }
504
505 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
506 {
507         struct drm_device *dev = crtc->dev;
508         struct drm_i915_private *dev_priv = dev->dev_private;
509         const intel_limit_t *limit;
510
511         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
512                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
513                     LVDS_CLKB_POWER_UP)
514                         /* LVDS with dual channel */
515                         limit = &intel_limits_g4x_dual_channel_lvds;
516                 else
517                         /* LVDS with dual channel */
518                         limit = &intel_limits_g4x_single_channel_lvds;
519         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521                 limit = &intel_limits_g4x_hdmi;
522         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523                 limit = &intel_limits_g4x_sdvo;
524         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525                 limit = &intel_limits_g4x_display_port;
526         } else /* The option is for other outputs */
527                 limit = &intel_limits_i9xx_sdvo;
528
529         return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
533 {
534         struct drm_device *dev = crtc->dev;
535         const intel_limit_t *limit;
536
537         if (IS_IGDNG(dev))
538                 limit = intel_igdng_limit(crtc);
539         else if (IS_G4X(dev)) {
540                 limit = intel_g4x_limit(crtc);
541         } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
542                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_i9xx_lvds;
544                 else
545                         limit = &intel_limits_i9xx_sdvo;
546         } else if (IS_IGD(dev)) {
547                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
548                         limit = &intel_limits_igd_lvds;
549                 else
550                         limit = &intel_limits_igd_sdvo;
551         } else {
552                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
553                         limit = &intel_limits_i8xx_lvds;
554                 else
555                         limit = &intel_limits_i8xx_dvo;
556         }
557         return limit;
558 }
559
560 /* m1 is reserved as 0 in IGD, n is a ring counter */
561 static void igd_clock(int refclk, intel_clock_t *clock)
562 {
563         clock->m = clock->m2 + 2;
564         clock->p = clock->p1 * clock->p2;
565         clock->vco = refclk * clock->m / clock->n;
566         clock->dot = clock->vco / clock->p;
567 }
568
569 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
570 {
571         if (IS_IGD(dev)) {
572                 igd_clock(refclk, clock);
573                 return;
574         }
575         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
576         clock->p = clock->p1 * clock->p2;
577         clock->vco = refclk * clock->m / (clock->n + 2);
578         clock->dot = clock->vco / clock->p;
579 }
580
581 /**
582  * Returns whether any output on the specified pipe is of the specified type
583  */
584 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
585 {
586     struct drm_device *dev = crtc->dev;
587     struct drm_mode_config *mode_config = &dev->mode_config;
588     struct drm_connector *l_entry;
589
590     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
591             if (l_entry->encoder &&
592                 l_entry->encoder->crtc == crtc) {
593                     struct intel_output *intel_output = to_intel_output(l_entry);
594                     if (intel_output->type == type)
595                             return true;
596             }
597     }
598     return false;
599 }
600
601 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
602 /**
603  * Returns whether the given set of divisors are valid for a given refclk with
604  * the given connectors.
605  */
606
607 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
608 {
609         const intel_limit_t *limit = intel_limit (crtc);
610         struct drm_device *dev = crtc->dev;
611
612         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
613                 INTELPllInvalid ("p1 out of range\n");
614         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
615                 INTELPllInvalid ("p out of range\n");
616         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
617                 INTELPllInvalid ("m2 out of range\n");
618         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
619                 INTELPllInvalid ("m1 out of range\n");
620         if (clock->m1 <= clock->m2 && !IS_IGD(dev))
621                 INTELPllInvalid ("m1 <= m2\n");
622         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
623                 INTELPllInvalid ("m out of range\n");
624         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
625                 INTELPllInvalid ("n out of range\n");
626         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
627                 INTELPllInvalid ("vco out of range\n");
628         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
629          * connector, etc., rather than just a single range.
630          */
631         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
632                 INTELPllInvalid ("dot out of range\n");
633
634         return true;
635 }
636
637 static bool
638 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
639                     int target, int refclk, intel_clock_t *best_clock)
640
641 {
642         struct drm_device *dev = crtc->dev;
643         struct drm_i915_private *dev_priv = dev->dev_private;
644         intel_clock_t clock;
645         int err = target;
646
647         if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
648             (I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
649                 /*
650                  * For LVDS, if the panel is on, just rely on its current
651                  * settings for dual-channel.  We haven't figured out how to
652                  * reliably set up different single/dual channel state, if we
653                  * even can.
654                  */
655                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
656                     LVDS_CLKB_POWER_UP)
657                         clock.p2 = limit->p2.p2_fast;
658                 else
659                         clock.p2 = limit->p2.p2_slow;
660         } else {
661                 if (target < limit->p2.dot_limit)
662                         clock.p2 = limit->p2.p2_slow;
663                 else
664                         clock.p2 = limit->p2.p2_fast;
665         }
666
667         memset (best_clock, 0, sizeof (*best_clock));
668
669         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
670                 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
671                         /* m1 is always 0 in IGD */
672                         if (clock.m2 >= clock.m1 && !IS_IGD(dev))
673                                 break;
674                         for (clock.n = limit->n.min; clock.n <= limit->n.max;
675                              clock.n++) {
676                                 for (clock.p1 = limit->p1.min;
677                                      clock.p1 <= limit->p1.max; clock.p1++) {
678                                         int this_err;
679
680                                         intel_clock(dev, refclk, &clock);
681
682                                         if (!intel_PLL_is_valid(crtc, &clock))
683                                                 continue;
684
685                                         this_err = abs(clock.dot - target);
686                                         if (this_err < err) {
687                                                 *best_clock = clock;
688                                                 err = this_err;
689                                         }
690                                 }
691                         }
692                 }
693         }
694
695         return (err != target);
696 }
697
698 static bool
699 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
700                         int target, int refclk, intel_clock_t *best_clock)
701 {
702         struct drm_device *dev = crtc->dev;
703         struct drm_i915_private *dev_priv = dev->dev_private;
704         intel_clock_t clock;
705         int max_n;
706         bool found;
707         /* approximately equals target * 0.00488 */
708         int err_most = (target >> 8) + (target >> 10);
709         found = false;
710
711         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
712                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
713                     LVDS_CLKB_POWER_UP)
714                         clock.p2 = limit->p2.p2_fast;
715                 else
716                         clock.p2 = limit->p2.p2_slow;
717         } else {
718                 if (target < limit->p2.dot_limit)
719                         clock.p2 = limit->p2.p2_slow;
720                 else
721                         clock.p2 = limit->p2.p2_fast;
722         }
723
724         memset(best_clock, 0, sizeof(*best_clock));
725         max_n = limit->n.max;
726         /* based on hardware requriment prefer smaller n to precision */
727         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
728                 /* based on hardware requirment prefere larger m1,m2, p1 */
729                 for (clock.m1 = limit->m1.max;
730                      clock.m1 >= limit->m1.min; clock.m1--) {
731                         for (clock.m2 = limit->m2.max;
732                              clock.m2 >= limit->m2.min; clock.m2--) {
733                                 for (clock.p1 = limit->p1.max;
734                                      clock.p1 >= limit->p1.min; clock.p1--) {
735                                         int this_err;
736
737                                         intel_clock(dev, refclk, &clock);
738                                         if (!intel_PLL_is_valid(crtc, &clock))
739                                                 continue;
740                                         this_err = abs(clock.dot - target) ;
741                                         if (this_err < err_most) {
742                                                 *best_clock = clock;
743                                                 err_most = this_err;
744                                                 max_n = clock.n;
745                                                 found = true;
746                                         }
747                                 }
748                         }
749                 }
750         }
751         return found;
752 }
753
754 static bool
755 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
756                         int target, int refclk, intel_clock_t *best_clock)
757 {
758         struct drm_device *dev = crtc->dev;
759         struct drm_i915_private *dev_priv = dev->dev_private;
760         intel_clock_t clock;
761         int max_n;
762         bool found;
763         int err_most = 47;
764         found = false;
765
766         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
767                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
768                     LVDS_CLKB_POWER_UP)
769                         clock.p2 = limit->p2.p2_fast;
770                 else
771                         clock.p2 = limit->p2.p2_slow;
772         } else {
773                 if (target < limit->p2.dot_limit)
774                         clock.p2 = limit->p2.p2_slow;
775                 else
776                         clock.p2 = limit->p2.p2_fast;
777         }
778
779         memset(best_clock, 0, sizeof(*best_clock));
780         max_n = limit->n.max;
781         /* based on hardware requriment prefer smaller n to precision */
782         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
783                 /* based on hardware requirment prefere larger m1,m2, p1 */
784                 for (clock.m1 = limit->m1.max;
785                      clock.m1 >= limit->m1.min; clock.m1--) {
786                         for (clock.m2 = limit->m2.max;
787                              clock.m2 >= limit->m2.min; clock.m2--) {
788                                 for (clock.p1 = limit->p1.max;
789                                      clock.p1 >= limit->p1.min; clock.p1--) {
790                                         int this_err;
791
792                                         intel_clock(dev, refclk, &clock);
793                                         if (!intel_PLL_is_valid(crtc, &clock))
794                                                 continue;
795                                         this_err = abs((10000 - (target*10000/clock.dot)));
796                                         if (this_err < err_most) {
797                                                 *best_clock = clock;
798                                                 err_most = this_err;
799                                                 max_n = clock.n;
800                                                 found = true;
801                                                 /* found on first matching */
802                                                 goto out;
803                                         }
804                                 }
805                         }
806                 }
807         }
808 out:
809         return found;
810 }
811
812 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
813 static bool
814 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
815                       int target, int refclk, intel_clock_t *best_clock)
816 {
817     intel_clock_t clock;
818     if (target < 200000) {
819         clock.p1 = 2;
820         clock.p2 = 10;
821         clock.n = 2;
822         clock.m1 = 23;
823         clock.m2 = 8;
824     } else {
825         clock.p1 = 1;
826         clock.p2 = 10;
827         clock.n = 1;
828         clock.m1 = 14;
829         clock.m2 = 2;
830     }
831     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
832     clock.p = (clock.p1 * clock.p2);
833     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
834     memcpy(best_clock, &clock, sizeof(intel_clock_t));
835     return true;
836 }
837
838 void
839 intel_wait_for_vblank(struct drm_device *dev)
840 {
841         /* Wait for 20ms, i.e. one cycle at 50hz. */
842         mdelay(20);
843 }
844
845 static int
846 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
847                     struct drm_framebuffer *old_fb)
848 {
849         struct drm_device *dev = crtc->dev;
850         struct drm_i915_private *dev_priv = dev->dev_private;
851         struct drm_i915_master_private *master_priv;
852         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
853         struct intel_framebuffer *intel_fb;
854         struct drm_i915_gem_object *obj_priv;
855         struct drm_gem_object *obj;
856         int pipe = intel_crtc->pipe;
857         unsigned long Start, Offset;
858         int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
859         int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
860         int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
861         int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
862         int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
863         u32 dspcntr, alignment;
864         int ret;
865
866         /* no fb bound */
867         if (!crtc->fb) {
868                 DRM_DEBUG("No FB bound\n");
869                 return 0;
870         }
871
872         switch (pipe) {
873         case 0:
874         case 1:
875                 break;
876         default:
877                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
878                 return -EINVAL;
879         }
880
881         intel_fb = to_intel_framebuffer(crtc->fb);
882         obj = intel_fb->obj;
883         obj_priv = obj->driver_private;
884
885         switch (obj_priv->tiling_mode) {
886         case I915_TILING_NONE:
887                 alignment = 64 * 1024;
888                 break;
889         case I915_TILING_X:
890                 /* pin() will align the object as required by fence */
891                 alignment = 0;
892                 break;
893         case I915_TILING_Y:
894                 /* FIXME: Is this true? */
895                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
896                 return -EINVAL;
897         default:
898                 BUG();
899         }
900
901         mutex_lock(&dev->struct_mutex);
902         ret = i915_gem_object_pin(obj, alignment);
903         if (ret != 0) {
904                 mutex_unlock(&dev->struct_mutex);
905                 return ret;
906         }
907
908         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
909         if (ret != 0) {
910                 i915_gem_object_unpin(obj);
911                 mutex_unlock(&dev->struct_mutex);
912                 return ret;
913         }
914
915         /* Pre-i965 needs to install a fence for tiled scan-out */
916         if (!IS_I965G(dev) &&
917             obj_priv->fence_reg == I915_FENCE_REG_NONE &&
918             obj_priv->tiling_mode != I915_TILING_NONE) {
919                 ret = i915_gem_object_get_fence_reg(obj);
920                 if (ret != 0) {
921                         i915_gem_object_unpin(obj);
922                         mutex_unlock(&dev->struct_mutex);
923                         return ret;
924                 }
925         }
926
927         dspcntr = I915_READ(dspcntr_reg);
928         /* Mask out pixel format bits in case we change it */
929         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
930         switch (crtc->fb->bits_per_pixel) {
931         case 8:
932                 dspcntr |= DISPPLANE_8BPP;
933                 break;
934         case 16:
935                 if (crtc->fb->depth == 15)
936                         dspcntr |= DISPPLANE_15_16BPP;
937                 else
938                         dspcntr |= DISPPLANE_16BPP;
939                 break;
940         case 24:
941         case 32:
942                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
943                 break;
944         default:
945                 DRM_ERROR("Unknown color depth\n");
946                 i915_gem_object_unpin(obj);
947                 mutex_unlock(&dev->struct_mutex);
948                 return -EINVAL;
949         }
950         if (IS_I965G(dev)) {
951                 if (obj_priv->tiling_mode != I915_TILING_NONE)
952                         dspcntr |= DISPPLANE_TILED;
953                 else
954                         dspcntr &= ~DISPPLANE_TILED;
955         }
956
957         I915_WRITE(dspcntr_reg, dspcntr);
958
959         Start = obj_priv->gtt_offset;
960         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
961
962         DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
963         I915_WRITE(dspstride, crtc->fb->pitch);
964         if (IS_I965G(dev)) {
965                 I915_WRITE(dspbase, Offset);
966                 I915_READ(dspbase);
967                 I915_WRITE(dspsurf, Start);
968                 I915_READ(dspsurf);
969                 I915_WRITE(dsptileoff, (y << 16) | x);
970         } else {
971                 I915_WRITE(dspbase, Start + Offset);
972                 I915_READ(dspbase);
973         }
974
975         intel_wait_for_vblank(dev);
976
977         if (old_fb) {
978                 intel_fb = to_intel_framebuffer(old_fb);
979                 i915_gem_object_unpin(intel_fb->obj);
980         }
981         mutex_unlock(&dev->struct_mutex);
982
983         if (!dev->primary->master)
984                 return 0;
985
986         master_priv = dev->primary->master->driver_priv;
987         if (!master_priv->sarea_priv)
988                 return 0;
989
990         if (pipe) {
991                 master_priv->sarea_priv->pipeB_x = x;
992                 master_priv->sarea_priv->pipeB_y = y;
993         } else {
994                 master_priv->sarea_priv->pipeA_x = x;
995                 master_priv->sarea_priv->pipeA_y = y;
996         }
997
998         return 0;
999 }
1000
1001 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1002 {
1003         struct drm_device *dev = crtc->dev;
1004         struct drm_i915_private *dev_priv = dev->dev_private;
1005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1006         int pipe = intel_crtc->pipe;
1007         int plane = intel_crtc->plane;
1008         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1009         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1010         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1011         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1012         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1013         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1014         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1015         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1016         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1017         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1018         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1019         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1020         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1021         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1022         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1023         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1024         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1025         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1026         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1027         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1028         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1029         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1030         u32 temp;
1031         int tries = 5, j;
1032
1033         /* XXX: When our outputs are all unaware of DPMS modes other than off
1034          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1035          */
1036         switch (mode) {
1037         case DRM_MODE_DPMS_ON:
1038         case DRM_MODE_DPMS_STANDBY:
1039         case DRM_MODE_DPMS_SUSPEND:
1040                 DRM_DEBUG("crtc %d dpms on\n", pipe);
1041                 /* enable PCH DPLL */
1042                 temp = I915_READ(pch_dpll_reg);
1043                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1044                         I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1045                         I915_READ(pch_dpll_reg);
1046                 }
1047
1048                 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1049                 temp = I915_READ(fdi_rx_reg);
1050                 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1051                                 FDI_SEL_PCDCLK |
1052                                 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1053                 I915_READ(fdi_rx_reg);
1054                 udelay(200);
1055
1056                 /* Enable CPU FDI TX PLL, always on for IGDNG */
1057                 temp = I915_READ(fdi_tx_reg);
1058                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1059                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1060                         I915_READ(fdi_tx_reg);
1061                         udelay(100);
1062                 }
1063
1064                 /* Enable CPU pipe */
1065                 temp = I915_READ(pipeconf_reg);
1066                 if ((temp & PIPEACONF_ENABLE) == 0) {
1067                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1068                         I915_READ(pipeconf_reg);
1069                         udelay(100);
1070                 }
1071
1072                 /* configure and enable CPU plane */
1073                 temp = I915_READ(dspcntr_reg);
1074                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1075                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1076                         /* Flush the plane changes */
1077                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1078                 }
1079
1080                 /* enable CPU FDI TX and PCH FDI RX */
1081                 temp = I915_READ(fdi_tx_reg);
1082                 temp |= FDI_TX_ENABLE;
1083                 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1084                 temp &= ~FDI_LINK_TRAIN_NONE;
1085                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1086                 I915_WRITE(fdi_tx_reg, temp);
1087                 I915_READ(fdi_tx_reg);
1088
1089                 temp = I915_READ(fdi_rx_reg);
1090                 temp &= ~FDI_LINK_TRAIN_NONE;
1091                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1092                 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1093                 I915_READ(fdi_rx_reg);
1094
1095                 udelay(150);
1096
1097                 /* Train FDI. */
1098                 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1099                    for train result */
1100                 temp = I915_READ(fdi_rx_imr_reg);
1101                 temp &= ~FDI_RX_SYMBOL_LOCK;
1102                 temp &= ~FDI_RX_BIT_LOCK;
1103                 I915_WRITE(fdi_rx_imr_reg, temp);
1104                 I915_READ(fdi_rx_imr_reg);
1105                 udelay(150);
1106
1107                 temp = I915_READ(fdi_rx_iir_reg);
1108                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1109
1110                 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1111                         for (j = 0; j < tries; j++) {
1112                                 temp = I915_READ(fdi_rx_iir_reg);
1113                                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1114                                 if (temp & FDI_RX_BIT_LOCK)
1115                                         break;
1116                                 udelay(200);
1117                         }
1118                         if (j != tries)
1119                                 I915_WRITE(fdi_rx_iir_reg,
1120                                                 temp | FDI_RX_BIT_LOCK);
1121                         else
1122                                 DRM_DEBUG("train 1 fail\n");
1123                 } else {
1124                         I915_WRITE(fdi_rx_iir_reg,
1125                                         temp | FDI_RX_BIT_LOCK);
1126                         DRM_DEBUG("train 1 ok 2!\n");
1127                 }
1128                 temp = I915_READ(fdi_tx_reg);
1129                 temp &= ~FDI_LINK_TRAIN_NONE;
1130                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1131                 I915_WRITE(fdi_tx_reg, temp);
1132
1133                 temp = I915_READ(fdi_rx_reg);
1134                 temp &= ~FDI_LINK_TRAIN_NONE;
1135                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1136                 I915_WRITE(fdi_rx_reg, temp);
1137
1138                 udelay(150);
1139
1140                 temp = I915_READ(fdi_rx_iir_reg);
1141                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1142
1143                 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1144                         for (j = 0; j < tries; j++) {
1145                                 temp = I915_READ(fdi_rx_iir_reg);
1146                                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1147                                 if (temp & FDI_RX_SYMBOL_LOCK)
1148                                         break;
1149                                 udelay(200);
1150                         }
1151                         if (j != tries) {
1152                                 I915_WRITE(fdi_rx_iir_reg,
1153                                                 temp | FDI_RX_SYMBOL_LOCK);
1154                                 DRM_DEBUG("train 2 ok 1!\n");
1155                         } else
1156                                 DRM_DEBUG("train 2 fail\n");
1157                 } else {
1158                         I915_WRITE(fdi_rx_iir_reg, temp | FDI_RX_SYMBOL_LOCK);
1159                         DRM_DEBUG("train 2 ok 2!\n");
1160                 }
1161                 DRM_DEBUG("train done\n");
1162
1163                 /* set transcoder timing */
1164                 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1165                 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1166                 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1167
1168                 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1169                 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1170                 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1171
1172                 /* enable PCH transcoder */
1173                 temp = I915_READ(transconf_reg);
1174                 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1175                 I915_READ(transconf_reg);
1176
1177                 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1178                         ;
1179
1180                 /* enable normal */
1181
1182                 temp = I915_READ(fdi_tx_reg);
1183                 temp &= ~FDI_LINK_TRAIN_NONE;
1184                 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1185                                 FDI_TX_ENHANCE_FRAME_ENABLE);
1186                 I915_READ(fdi_tx_reg);
1187
1188                 temp = I915_READ(fdi_rx_reg);
1189                 temp &= ~FDI_LINK_TRAIN_NONE;
1190                 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1191                                 FDI_RX_ENHANCE_FRAME_ENABLE);
1192                 I915_READ(fdi_rx_reg);
1193
1194                 /* wait one idle pattern time */
1195                 udelay(100);
1196
1197                 intel_crtc_load_lut(crtc);
1198
1199         break;
1200         case DRM_MODE_DPMS_OFF:
1201                 DRM_DEBUG("crtc %d dpms off\n", pipe);
1202
1203                 /* Disable the VGA plane that we never use */
1204                 I915_WRITE(CPU_VGACNTRL, VGA_DISP_DISABLE);
1205
1206                 /* Disable display plane */
1207                 temp = I915_READ(dspcntr_reg);
1208                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1209                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1210                         /* Flush the plane changes */
1211                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1212                         I915_READ(dspbase_reg);
1213                 }
1214
1215                 /* disable cpu pipe, disable after all planes disabled */
1216                 temp = I915_READ(pipeconf_reg);
1217                 if ((temp & PIPEACONF_ENABLE) != 0) {
1218                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1219                         I915_READ(pipeconf_reg);
1220                         /* wait for cpu pipe off, pipe state */
1221                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0)
1222                                 ;
1223                 } else
1224                         DRM_DEBUG("crtc %d is disabled\n", pipe);
1225
1226                 /* IGDNG-A : disable cpu panel fitter ? */
1227                 temp = I915_READ(pf_ctl_reg);
1228                 if ((temp & PF_ENABLE) != 0) {
1229                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1230                         I915_READ(pf_ctl_reg);
1231                 }
1232
1233                 /* disable CPU FDI tx and PCH FDI rx */
1234                 temp = I915_READ(fdi_tx_reg);
1235                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1236                 I915_READ(fdi_tx_reg);
1237
1238                 temp = I915_READ(fdi_rx_reg);
1239                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1240                 I915_READ(fdi_rx_reg);
1241
1242                 /* still set train pattern 1 */
1243                 temp = I915_READ(fdi_tx_reg);
1244                 temp &= ~FDI_LINK_TRAIN_NONE;
1245                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1246                 I915_WRITE(fdi_tx_reg, temp);
1247
1248                 temp = I915_READ(fdi_rx_reg);
1249                 temp &= ~FDI_LINK_TRAIN_NONE;
1250                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1251                 I915_WRITE(fdi_rx_reg, temp);
1252
1253                 /* disable PCH transcoder */
1254                 temp = I915_READ(transconf_reg);
1255                 if ((temp & TRANS_ENABLE) != 0) {
1256                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1257                         I915_READ(transconf_reg);
1258                         /* wait for PCH transcoder off, transcoder state */
1259                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0)
1260                                 ;
1261                 }
1262
1263                 /* disable PCH DPLL */
1264                 temp = I915_READ(pch_dpll_reg);
1265                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1266                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1267                         I915_READ(pch_dpll_reg);
1268                 }
1269
1270                 temp = I915_READ(fdi_rx_reg);
1271                 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1272                         temp &= ~FDI_SEL_PCDCLK;
1273                         temp &= ~FDI_RX_PLL_ENABLE;
1274                         I915_WRITE(fdi_rx_reg, temp);
1275                         I915_READ(fdi_rx_reg);
1276                 }
1277
1278                 /* Wait for the clocks to turn off. */
1279                 udelay(150);
1280                 break;
1281         }
1282 }
1283
1284 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1285 {
1286         struct drm_device *dev = crtc->dev;
1287         struct drm_i915_private *dev_priv = dev->dev_private;
1288         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1289         int pipe = intel_crtc->pipe;
1290         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1291         int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1292         int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
1293         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1294         u32 temp;
1295
1296         /* XXX: When our outputs are all unaware of DPMS modes other than off
1297          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1298          */
1299         switch (mode) {
1300         case DRM_MODE_DPMS_ON:
1301         case DRM_MODE_DPMS_STANDBY:
1302         case DRM_MODE_DPMS_SUSPEND:
1303                 /* Enable the DPLL */
1304                 temp = I915_READ(dpll_reg);
1305                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1306                         I915_WRITE(dpll_reg, temp);
1307                         I915_READ(dpll_reg);
1308                         /* Wait for the clocks to stabilize. */
1309                         udelay(150);
1310                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1311                         I915_READ(dpll_reg);
1312                         /* Wait for the clocks to stabilize. */
1313                         udelay(150);
1314                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1315                         I915_READ(dpll_reg);
1316                         /* Wait for the clocks to stabilize. */
1317                         udelay(150);
1318                 }
1319
1320                 /* Enable the pipe */
1321                 temp = I915_READ(pipeconf_reg);
1322                 if ((temp & PIPEACONF_ENABLE) == 0)
1323                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1324
1325                 /* Enable the plane */
1326                 temp = I915_READ(dspcntr_reg);
1327                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1328                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1329                         /* Flush the plane changes */
1330                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1331                 }
1332
1333                 intel_crtc_load_lut(crtc);
1334
1335                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1336                 //intel_crtc_dpms_video(crtc, true); TODO
1337                 intel_update_watermarks(dev);
1338         break;
1339         case DRM_MODE_DPMS_OFF:
1340                 intel_update_watermarks(dev);
1341                 /* Give the overlay scaler a chance to disable if it's on this pipe */
1342                 //intel_crtc_dpms_video(crtc, FALSE); TODO
1343
1344                 /* Disable the VGA plane that we never use */
1345                 I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
1346
1347                 /* Disable display plane */
1348                 temp = I915_READ(dspcntr_reg);
1349                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1350                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1351                         /* Flush the plane changes */
1352                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1353                         I915_READ(dspbase_reg);
1354                 }
1355
1356                 if (!IS_I9XX(dev)) {
1357                         /* Wait for vblank for the disable to take effect */
1358                         intel_wait_for_vblank(dev);
1359                 }
1360
1361                 /* Next, disable display pipes */
1362                 temp = I915_READ(pipeconf_reg);
1363                 if ((temp & PIPEACONF_ENABLE) != 0) {
1364                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1365                         I915_READ(pipeconf_reg);
1366                 }
1367
1368                 /* Wait for vblank for the disable to take effect. */
1369                 intel_wait_for_vblank(dev);
1370
1371                 temp = I915_READ(dpll_reg);
1372                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1373                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1374                         I915_READ(dpll_reg);
1375                 }
1376
1377                 /* Wait for the clocks to turn off. */
1378                 udelay(150);
1379                 break;
1380         }
1381 }
1382
1383 /**
1384  * Sets the power management mode of the pipe and plane.
1385  *
1386  * This code should probably grow support for turning the cursor off and back
1387  * on appropriately at the same time as we're turning the pipe off/on.
1388  */
1389 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1390 {
1391         struct drm_device *dev = crtc->dev;
1392         struct drm_i915_master_private *master_priv;
1393         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1394         int pipe = intel_crtc->pipe;
1395         bool enabled;
1396
1397         if (IS_IGDNG(dev))
1398                 igdng_crtc_dpms(crtc, mode);
1399         else
1400                 i9xx_crtc_dpms(crtc, mode);
1401
1402         if (!dev->primary->master)
1403                 return;
1404
1405         master_priv = dev->primary->master->driver_priv;
1406         if (!master_priv->sarea_priv)
1407                 return;
1408
1409         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1410
1411         switch (pipe) {
1412         case 0:
1413                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1414                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1415                 break;
1416         case 1:
1417                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1418                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1419                 break;
1420         default:
1421                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1422                 break;
1423         }
1424
1425         intel_crtc->dpms_mode = mode;
1426 }
1427
1428 static void intel_crtc_prepare (struct drm_crtc *crtc)
1429 {
1430         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1431         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1432 }
1433
1434 static void intel_crtc_commit (struct drm_crtc *crtc)
1435 {
1436         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1437         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1438 }
1439
1440 void intel_encoder_prepare (struct drm_encoder *encoder)
1441 {
1442         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1443         /* lvds has its own version of prepare see intel_lvds_prepare */
1444         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1445 }
1446
1447 void intel_encoder_commit (struct drm_encoder *encoder)
1448 {
1449         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1450         /* lvds has its own version of commit see intel_lvds_commit */
1451         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1452 }
1453
1454 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1455                                   struct drm_display_mode *mode,
1456                                   struct drm_display_mode *adjusted_mode)
1457 {
1458         struct drm_device *dev = crtc->dev;
1459         if (IS_IGDNG(dev)) {
1460                 /* FDI link clock is fixed at 2.7G */
1461                 if (mode->clock * 3 > 27000 * 4)
1462                         return MODE_CLOCK_HIGH;
1463         }
1464         return true;
1465 }
1466
1467
1468 /** Returns the core display clock speed for i830 - i945 */
1469 static int intel_get_core_clock_speed(struct drm_device *dev)
1470 {
1471
1472         /* Core clock values taken from the published datasheets.
1473          * The 830 may go up to 166 Mhz, which we should check.
1474          */
1475         if (IS_I945G(dev))
1476                 return 400000;
1477         else if (IS_I915G(dev))
1478                 return 333000;
1479         else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
1480                 return 200000;
1481         else if (IS_I915GM(dev)) {
1482                 u16 gcfgc = 0;
1483
1484                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1485
1486                 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1487                         return 133000;
1488                 else {
1489                         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1490                         case GC_DISPLAY_CLOCK_333_MHZ:
1491                                 return 333000;
1492                         default:
1493                         case GC_DISPLAY_CLOCK_190_200_MHZ:
1494                                 return 190000;
1495                         }
1496                 }
1497         } else if (IS_I865G(dev))
1498                 return 266000;
1499         else if (IS_I855(dev)) {
1500                 u16 hpllcc = 0;
1501                 /* Assume that the hardware is in the high speed state.  This
1502                  * should be the default.
1503                  */
1504                 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
1505                 case GC_CLOCK_133_200:
1506                 case GC_CLOCK_100_200:
1507                         return 200000;
1508                 case GC_CLOCK_166_250:
1509                         return 250000;
1510                 case GC_CLOCK_100_133:
1511                         return 133000;
1512                 }
1513         } else /* 852, 830 */
1514                 return 133000;
1515
1516         return 0; /* Silence gcc warning */
1517 }
1518
1519 /**
1520  * Return the pipe currently connected to the panel fitter,
1521  * or -1 if the panel fitter is not present or not in use
1522  */
1523 static int intel_panel_fitter_pipe (struct drm_device *dev)
1524 {
1525         struct drm_i915_private *dev_priv = dev->dev_private;
1526         u32  pfit_control;
1527
1528         /* i830 doesn't have a panel fitter */
1529         if (IS_I830(dev))
1530                 return -1;
1531
1532         pfit_control = I915_READ(PFIT_CONTROL);
1533
1534         /* See if the panel fitter is in use */
1535         if ((pfit_control & PFIT_ENABLE) == 0)
1536                 return -1;
1537
1538         /* 965 can place panel fitter on either pipe */
1539         if (IS_I965G(dev))
1540                 return (pfit_control >> 29) & 0x3;
1541
1542         /* older chips can only use pipe 1 */
1543         return 1;
1544 }
1545
1546 struct fdi_m_n {
1547         u32        tu;
1548         u32        gmch_m;
1549         u32        gmch_n;
1550         u32        link_m;
1551         u32        link_n;
1552 };
1553
1554 static void
1555 fdi_reduce_ratio(u32 *num, u32 *den)
1556 {
1557         while (*num > 0xffffff || *den > 0xffffff) {
1558                 *num >>= 1;
1559                 *den >>= 1;
1560         }
1561 }
1562
1563 #define DATA_N 0x800000
1564 #define LINK_N 0x80000
1565
1566 static void
1567 igdng_compute_m_n(int bytes_per_pixel, int nlanes,
1568                 int pixel_clock, int link_clock,
1569                 struct fdi_m_n *m_n)
1570 {
1571         u64 temp;
1572
1573         m_n->tu = 64; /* default size */
1574
1575         temp = (u64) DATA_N * pixel_clock;
1576         temp = div_u64(temp, link_clock);
1577         m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
1578         m_n->gmch_n = DATA_N;
1579         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
1580
1581         temp = (u64) LINK_N * pixel_clock;
1582         m_n->link_m = div_u64(temp, link_clock);
1583         m_n->link_n = LINK_N;
1584         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
1585 }
1586
1587
1588 struct intel_watermark_params {
1589         unsigned long fifo_size;
1590         unsigned long max_wm;
1591         unsigned long default_wm;
1592         unsigned long guard_size;
1593         unsigned long cacheline_size;
1594 };
1595
1596 /* IGD has different values for various configs */
1597 static struct intel_watermark_params igd_display_wm = {
1598         IGD_DISPLAY_FIFO,
1599         IGD_MAX_WM,
1600         IGD_DFT_WM,
1601         IGD_GUARD_WM,
1602         IGD_FIFO_LINE_SIZE
1603 };
1604 static struct intel_watermark_params igd_display_hplloff_wm = {
1605         IGD_DISPLAY_FIFO,
1606         IGD_MAX_WM,
1607         IGD_DFT_HPLLOFF_WM,
1608         IGD_GUARD_WM,
1609         IGD_FIFO_LINE_SIZE
1610 };
1611 static struct intel_watermark_params igd_cursor_wm = {
1612         IGD_CURSOR_FIFO,
1613         IGD_CURSOR_MAX_WM,
1614         IGD_CURSOR_DFT_WM,
1615         IGD_CURSOR_GUARD_WM,
1616         IGD_FIFO_LINE_SIZE,
1617 };
1618 static struct intel_watermark_params igd_cursor_hplloff_wm = {
1619         IGD_CURSOR_FIFO,
1620         IGD_CURSOR_MAX_WM,
1621         IGD_CURSOR_DFT_WM,
1622         IGD_CURSOR_GUARD_WM,
1623         IGD_FIFO_LINE_SIZE
1624 };
1625 static struct intel_watermark_params i945_wm_info = {
1626         I915_FIFO_LINE_SIZE,
1627         I915_MAX_WM,
1628         1,
1629         0,
1630         IGD_FIFO_LINE_SIZE
1631 };
1632 static struct intel_watermark_params i915_wm_info = {
1633         I945_FIFO_SIZE,
1634         I915_MAX_WM,
1635         1,
1636         0,
1637         I915_FIFO_LINE_SIZE
1638 };
1639 static struct intel_watermark_params i855_wm_info = {
1640         I855GM_FIFO_SIZE,
1641         I915_MAX_WM,
1642         1,
1643         0,
1644         I830_FIFO_LINE_SIZE
1645 };
1646 static struct intel_watermark_params i830_wm_info = {
1647         I830_FIFO_SIZE,
1648         I915_MAX_WM,
1649         1,
1650         0,
1651         I830_FIFO_LINE_SIZE
1652 };
1653
1654 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1655                                         struct intel_watermark_params *wm,
1656                                         int pixel_size,
1657                                         unsigned long latency_ns)
1658 {
1659         unsigned long bytes_required, wm_size;
1660
1661         bytes_required = (clock_in_khz * pixel_size * latency_ns) / 1000000;
1662         bytes_required /= wm->cacheline_size;
1663         wm_size = wm->fifo_size - bytes_required - wm->guard_size;
1664
1665         if (wm_size > wm->max_wm)
1666                 wm_size = wm->max_wm;
1667         if (wm_size == 0)
1668                 wm_size = wm->default_wm;
1669         return wm_size;
1670 }
1671
1672 struct cxsr_latency {
1673         int is_desktop;
1674         unsigned long fsb_freq;
1675         unsigned long mem_freq;
1676         unsigned long display_sr;
1677         unsigned long display_hpll_disable;
1678         unsigned long cursor_sr;
1679         unsigned long cursor_hpll_disable;
1680 };
1681
1682 static struct cxsr_latency cxsr_latency_table[] = {
1683         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
1684         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
1685         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
1686
1687         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
1688         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
1689         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
1690
1691         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
1692         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
1693         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
1694
1695         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
1696         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
1697         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
1698
1699         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
1700         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
1701         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
1702
1703         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
1704         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
1705         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
1706 };
1707
1708 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
1709                                                    int mem)
1710 {
1711         int i;
1712         struct cxsr_latency *latency;
1713
1714         if (fsb == 0 || mem == 0)
1715                 return NULL;
1716
1717         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
1718                 latency = &cxsr_latency_table[i];
1719                 if (is_desktop == latency->is_desktop &&
1720                         fsb == latency->fsb_freq && mem == latency->mem_freq)
1721                         break;
1722         }
1723         if (i >= ARRAY_SIZE(cxsr_latency_table)) {
1724                 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1725                 return NULL;
1726         }
1727         return latency;
1728 }
1729
1730 static void igd_disable_cxsr(struct drm_device *dev)
1731 {
1732         struct drm_i915_private *dev_priv = dev->dev_private;
1733         u32 reg;
1734
1735         /* deactivate cxsr */
1736         reg = I915_READ(DSPFW3);
1737         reg &= ~(IGD_SELF_REFRESH_EN);
1738         I915_WRITE(DSPFW3, reg);
1739         DRM_INFO("Big FIFO is disabled\n");
1740 }
1741
1742 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
1743                             int pixel_size)
1744 {
1745         struct drm_i915_private *dev_priv = dev->dev_private;
1746         u32 reg;
1747         unsigned long wm;
1748         struct cxsr_latency *latency;
1749
1750         latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
1751                 dev_priv->mem_freq);
1752         if (!latency) {
1753                 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1754                 igd_disable_cxsr(dev);
1755                 return;
1756         }
1757
1758         /* Display SR */
1759         wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
1760                                 latency->display_sr);
1761         reg = I915_READ(DSPFW1);
1762         reg &= 0x7fffff;
1763         reg |= wm << 23;
1764         I915_WRITE(DSPFW1, reg);
1765         DRM_DEBUG("DSPFW1 register is %x\n", reg);
1766
1767         /* cursor SR */
1768         wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
1769                                 latency->cursor_sr);
1770         reg = I915_READ(DSPFW3);
1771         reg &= ~(0x3f << 24);
1772         reg |= (wm & 0x3f) << 24;
1773         I915_WRITE(DSPFW3, reg);
1774
1775         /* Display HPLL off SR */
1776         wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
1777                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
1778         reg = I915_READ(DSPFW3);
1779         reg &= 0xfffffe00;
1780         reg |= wm & 0x1ff;
1781         I915_WRITE(DSPFW3, reg);
1782
1783         /* cursor HPLL off SR */
1784         wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
1785                                 latency->cursor_hpll_disable);
1786         reg = I915_READ(DSPFW3);
1787         reg &= ~(0x3f << 16);
1788         reg |= (wm & 0x3f) << 16;
1789         I915_WRITE(DSPFW3, reg);
1790         DRM_DEBUG("DSPFW3 register is %x\n", reg);
1791
1792         /* activate cxsr */
1793         reg = I915_READ(DSPFW3);
1794         reg |= IGD_SELF_REFRESH_EN;
1795         I915_WRITE(DSPFW3, reg);
1796
1797         DRM_INFO("Big FIFO is enabled\n");
1798
1799         return;
1800 }
1801
1802 const static int latency_ns = 5000; /* default for non-igd platforms */
1803
1804
1805 static void i965_update_wm(struct drm_device *dev)
1806 {
1807         struct drm_i915_private *dev_priv = dev->dev_private;
1808
1809         DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
1810
1811         /* 965 has limitations... */
1812         I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
1813         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1814 }
1815
1816 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
1817                            int planeb_clock, int sr_hdisplay, int pixel_size)
1818 {
1819         struct drm_i915_private *dev_priv = dev->dev_private;
1820         uint32_t fwater_lo = I915_READ(FW_BLC) & MM_FIFO_WATERMARK;
1821         uint32_t fwater_hi = I915_READ(FW_BLC2) & LM_FIFO_WATERMARK;
1822         int bsize, asize, cwm, bwm = 1, awm = 1, srwm = 1;
1823         uint32_t dsparb = I915_READ(DSPARB);
1824         int planea_entries, planeb_entries;
1825         struct intel_watermark_params *wm_params;
1826         unsigned long line_time_us;
1827         int sr_clock, sr_entries = 0;
1828
1829         if (IS_I965GM(dev) || IS_I945GM(dev))
1830                 wm_params = &i945_wm_info;
1831         else if (IS_I9XX(dev))
1832                 wm_params = &i915_wm_info;
1833         else
1834                 wm_params = &i855_wm_info;
1835
1836         planea_entries = intel_calculate_wm(planea_clock, wm_params,
1837                                             pixel_size, latency_ns);
1838         planeb_entries = intel_calculate_wm(planeb_clock, wm_params,
1839                                             pixel_size, latency_ns);
1840
1841         DRM_DEBUG("FIFO entries - A: %d, B: %d\n", planea_entries,
1842                   planeb_entries);
1843
1844         if (IS_I9XX(dev)) {
1845                 asize = dsparb & 0x7f;
1846                 bsize = (dsparb >> DSPARB_CSTART_SHIFT) & 0x7f;
1847         } else {
1848                 asize = dsparb & 0x1ff;
1849                 bsize = (dsparb >> DSPARB_BEND_SHIFT) & 0x1ff;
1850         }
1851         DRM_DEBUG("FIFO size - A: %d, B: %d\n", asize, bsize);
1852
1853         /* Two extra entries for padding */
1854         awm = asize - (planea_entries + 2);
1855         bwm = bsize - (planeb_entries + 2);
1856
1857         /* Sanity check against potentially bad FIFO allocations */
1858         if (awm <= 0) {
1859                 /* pipe is on but has too few FIFO entries */
1860                 if (planea_entries != 0)
1861                         DRM_DEBUG("plane A needs more FIFO entries\n");
1862                 awm = 1;
1863         }
1864         if (bwm <= 0) {
1865                 if (planeb_entries != 0)
1866                         DRM_DEBUG("plane B needs more FIFO entries\n");
1867                 bwm = 1;
1868         }
1869
1870         /*
1871          * Overlay gets an aggressive default since video jitter is bad.
1872          */
1873         cwm = 2;
1874
1875         /* Calc sr entries for one pipe configs */
1876         if (!planea_clock || !planeb_clock) {
1877                 sr_clock = planea_clock ? planea_clock : planeb_clock;
1878                 line_time_us = (sr_hdisplay * 1000) / sr_clock;
1879                 sr_entries = (((latency_ns / line_time_us) + 1) * pixel_size *
1880                               sr_hdisplay) / 1000;
1881                 sr_entries = roundup(sr_entries / wm_params->cacheline_size, 1);
1882                 if (sr_entries < wm_params->fifo_size)
1883                         srwm = wm_params->fifo_size - sr_entries;
1884         }
1885
1886         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1887                   awm, bwm, cwm, srwm);
1888
1889         fwater_lo = fwater_lo | ((bwm & 0x3f) << 16) | (awm & 0x3f);
1890         fwater_hi = fwater_hi | (cwm & 0x1f);
1891
1892         I915_WRITE(FW_BLC, fwater_lo);
1893         I915_WRITE(FW_BLC2, fwater_hi);
1894         if (IS_I9XX(dev))
1895                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
1896 }
1897
1898 static void i830_update_wm(struct drm_device *dev, int planea_clock,
1899                            int pixel_size)
1900 {
1901         struct drm_i915_private *dev_priv = dev->dev_private;
1902         uint32_t dsparb = I915_READ(DSPARB);
1903         uint32_t fwater_lo = I915_READ(FW_BLC) & MM_FIFO_WATERMARK;
1904         unsigned int asize, awm;
1905         int planea_entries;
1906
1907         planea_entries = intel_calculate_wm(planea_clock, &i830_wm_info,
1908                                             pixel_size, latency_ns);
1909
1910         asize = dsparb & 0x7f;
1911
1912         awm = asize - planea_entries;
1913
1914         fwater_lo = fwater_lo | awm;
1915
1916         I915_WRITE(FW_BLC, fwater_lo);
1917 }
1918
1919 /**
1920  * intel_update_watermarks - update FIFO watermark values based on current modes
1921  *
1922  * Calculate watermark values for the various WM regs based on current mode
1923  * and plane configuration.
1924  *
1925  * There are several cases to deal with here:
1926  *   - normal (i.e. non-self-refresh)
1927  *   - self-refresh (SR) mode
1928  *   - lines are large relative to FIFO size (buffer can hold up to 2)
1929  *   - lines are small relative to FIFO size (buffer can hold more than 2
1930  *     lines), so need to account for TLB latency
1931  *
1932  *   The normal calculation is:
1933  *     watermark = dotclock * bytes per pixel * latency
1934  *   where latency is platform & configuration dependent (we assume pessimal
1935  *   values here).
1936  *
1937  *   The SR calculation is:
1938  *     watermark = (trunc(latency/line time)+1) * surface width *
1939  *       bytes per pixel
1940  *   where
1941  *     line time = htotal / dotclock
1942  *   and latency is assumed to be high, as above.
1943  *
1944  * The final value programmed to the register should always be rounded up,
1945  * and include an extra 2 entries to account for clock crossings.
1946  *
1947  * We don't use the sprite, so we can ignore that.  And on Crestline we have
1948  * to set the non-SR watermarks to 8.
1949   */
1950 static void intel_update_watermarks(struct drm_device *dev)
1951 {
1952         struct drm_crtc *crtc;
1953         struct intel_crtc *intel_crtc;
1954         int sr_hdisplay = 0;
1955         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
1956         int enabled = 0, pixel_size = 0;
1957
1958         if (DSPARB_HWCONTROL(dev))
1959                 return;
1960
1961         /* Get the clock config from both planes */
1962         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1963                 intel_crtc = to_intel_crtc(crtc);
1964                 if (crtc->enabled) {
1965                         enabled++;
1966                         if (intel_crtc->plane == 0) {
1967                                 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
1968                                           intel_crtc->pipe, crtc->mode.clock);
1969                                 planea_clock = crtc->mode.clock;
1970                         } else {
1971                                 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
1972                                           intel_crtc->pipe, crtc->mode.clock);
1973                                 planeb_clock = crtc->mode.clock;
1974                         }
1975                         sr_hdisplay = crtc->mode.hdisplay;
1976                         sr_clock = crtc->mode.clock;
1977                         if (crtc->fb)
1978                                 pixel_size = crtc->fb->bits_per_pixel / 8;
1979                         else
1980                                 pixel_size = 4; /* by default */
1981                 }
1982         }
1983
1984         if (enabled <= 0)
1985                 return;
1986
1987         /* Single pipe configs can enable self refresh */
1988         if (enabled == 1 && IS_IGD(dev))
1989                 igd_enable_cxsr(dev, sr_clock, pixel_size);
1990         else if (IS_IGD(dev))
1991                 igd_disable_cxsr(dev);
1992
1993         if (IS_I965G(dev))
1994                 i965_update_wm(dev);
1995         else if (IS_I9XX(dev) || IS_MOBILE(dev))
1996                 i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
1997                                pixel_size);
1998         else
1999                 i830_update_wm(dev, planea_clock, pixel_size);
2000 }
2001
2002 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2003                                struct drm_display_mode *mode,
2004                                struct drm_display_mode *adjusted_mode,
2005                                int x, int y,
2006                                struct drm_framebuffer *old_fb)
2007 {
2008         struct drm_device *dev = crtc->dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2011         int pipe = intel_crtc->pipe;
2012         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2013         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2014         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2015         int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
2016         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2017         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2018         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2019         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2020         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2021         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2022         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2023         int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
2024         int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
2025         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2026         int refclk, num_outputs = 0;
2027         intel_clock_t clock;
2028         u32 dpll = 0, fp = 0, dspcntr, pipeconf;
2029         bool ok, is_sdvo = false, is_dvo = false;
2030         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2031         struct drm_mode_config *mode_config = &dev->mode_config;
2032         struct drm_connector *connector;
2033         const intel_limit_t *limit;
2034         int ret;
2035         struct fdi_m_n m_n = {0};
2036         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2037         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2038         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2039         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2040         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2041         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2042         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2043         int lvds_reg = LVDS;
2044         u32 temp;
2045         int sdvo_pixel_multiply;
2046
2047         drm_vblank_pre_modeset(dev, pipe);
2048
2049         list_for_each_entry(connector, &mode_config->connector_list, head) {
2050                 struct intel_output *intel_output = to_intel_output(connector);
2051
2052                 if (!connector->encoder || connector->encoder->crtc != crtc)
2053                         continue;
2054
2055                 switch (intel_output->type) {
2056                 case INTEL_OUTPUT_LVDS:
2057                         is_lvds = true;
2058                         break;
2059                 case INTEL_OUTPUT_SDVO:
2060                 case INTEL_OUTPUT_HDMI:
2061                         is_sdvo = true;
2062                         if (intel_output->needs_tv_clock)
2063                                 is_tv = true;
2064                         break;
2065                 case INTEL_OUTPUT_DVO:
2066                         is_dvo = true;
2067                         break;
2068                 case INTEL_OUTPUT_TVOUT:
2069                         is_tv = true;
2070                         break;
2071                 case INTEL_OUTPUT_ANALOG:
2072                         is_crt = true;
2073                         break;
2074                 case INTEL_OUTPUT_DISPLAYPORT:
2075                         is_dp = true;
2076                         break;
2077                 }
2078
2079                 num_outputs++;
2080         }
2081
2082         if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2083                 refclk = dev_priv->lvds_ssc_freq * 1000;
2084                 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2085         } else if (IS_I9XX(dev)) {
2086                 refclk = 96000;
2087                 if (IS_IGDNG(dev))
2088                         refclk = 120000; /* 120Mhz refclk */
2089         } else {
2090                 refclk = 48000;
2091         }
2092         
2093
2094         /*
2095          * Returns a set of divisors for the desired target clock with the given
2096          * refclk, or FALSE.  The returned values represent the clock equation:
2097          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2098          */
2099         limit = intel_limit(crtc);
2100         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2101         if (!ok) {
2102                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2103                 drm_vblank_post_modeset(dev, pipe);
2104                 return -EINVAL;
2105         }
2106
2107         /* SDVO TV has fixed PLL values depend on its clock range,
2108            this mirrors vbios setting. */
2109         if (is_sdvo && is_tv) {
2110                 if (adjusted_mode->clock >= 100000
2111                                 && adjusted_mode->clock < 140500) {
2112                         clock.p1 = 2;
2113                         clock.p2 = 10;
2114                         clock.n = 3;
2115                         clock.m1 = 16;
2116                         clock.m2 = 8;
2117                 } else if (adjusted_mode->clock >= 140500
2118                                 && adjusted_mode->clock <= 200000) {
2119                         clock.p1 = 1;
2120                         clock.p2 = 10;
2121                         clock.n = 6;
2122                         clock.m1 = 12;
2123                         clock.m2 = 8;
2124                 }
2125         }
2126
2127         /* FDI link */
2128         if (IS_IGDNG(dev))
2129                 igdng_compute_m_n(3, 4, /* lane num 4 */
2130                                 adjusted_mode->clock,
2131                                 270000, /* lane clock */
2132                                 &m_n);
2133
2134         if (IS_IGD(dev))
2135                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2136         else
2137                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2138
2139         if (!IS_IGDNG(dev))
2140                 dpll = DPLL_VGA_MODE_DIS;
2141
2142         if (IS_I9XX(dev)) {
2143                 if (is_lvds)
2144                         dpll |= DPLLB_MODE_LVDS;
2145                 else
2146                         dpll |= DPLLB_MODE_DAC_SERIAL;
2147                 if (is_sdvo) {
2148                         dpll |= DPLL_DVO_HIGH_SPEED;
2149                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2150                         if (IS_I945G(dev) || IS_I945GM(dev))
2151                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2152                         else if (IS_IGDNG(dev))
2153                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2154                 }
2155                 if (is_dp)
2156                         dpll |= DPLL_DVO_HIGH_SPEED;
2157
2158                 /* compute bitmask from p1 value */
2159                 if (IS_IGD(dev))
2160                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2161                 else {
2162                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2163                         /* also FPA1 */
2164                         if (IS_IGDNG(dev))
2165                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2166                 }
2167                 switch (clock.p2) {
2168                 case 5:
2169                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2170                         break;
2171                 case 7:
2172                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2173                         break;
2174                 case 10:
2175                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2176                         break;
2177                 case 14:
2178                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2179                         break;
2180                 }
2181                 if (IS_I965G(dev) && !IS_IGDNG(dev))
2182                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2183         } else {
2184                 if (is_lvds) {
2185                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2186                 } else {
2187                         if (clock.p1 == 2)
2188                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
2189                         else
2190                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2191                         if (clock.p2 == 4)
2192                                 dpll |= PLL_P2_DIVIDE_BY_4;
2193                 }
2194         }
2195
2196         if (is_sdvo && is_tv)
2197                 dpll |= PLL_REF_INPUT_TVCLKINBC;
2198         else if (is_tv)
2199                 /* XXX: just matching BIOS for now */
2200                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
2201                 dpll |= 3;
2202         else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2203                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
2204         else
2205                 dpll |= PLL_REF_INPUT_DREFCLK;
2206
2207         /* setup pipeconf */
2208         pipeconf = I915_READ(pipeconf_reg);
2209
2210         /* Set up the display plane register */
2211         dspcntr = DISPPLANE_GAMMA_ENABLE;
2212
2213         /* IGDNG's plane is forced to pipe, bit 24 is to
2214            enable color space conversion */
2215         if (!IS_IGDNG(dev)) {
2216                 if (pipe == 0)
2217                         dspcntr |= DISPPLANE_SEL_PIPE_A;
2218                 else
2219                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2220         }
2221
2222         if (pipe == 0 && !IS_I965G(dev)) {
2223                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
2224                  * core speed.
2225                  *
2226                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
2227                  * pipe == 0 check?
2228                  */
2229                 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
2230                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
2231                 else
2232                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
2233         }
2234
2235         dspcntr |= DISPLAY_PLANE_ENABLE;
2236         pipeconf |= PIPEACONF_ENABLE;
2237         dpll |= DPLL_VCO_ENABLE;
2238
2239
2240         /* Disable the panel fitter if it was on our pipe */
2241         if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
2242                 I915_WRITE(PFIT_CONTROL, 0);
2243
2244         DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
2245         drm_mode_debug_printmodeline(mode);
2246
2247         /* assign to IGDNG registers */
2248         if (IS_IGDNG(dev)) {
2249                 fp_reg = pch_fp_reg;
2250                 dpll_reg = pch_dpll_reg;
2251         }
2252
2253         if (dpll & DPLL_VCO_ENABLE) {
2254                 I915_WRITE(fp_reg, fp);
2255                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
2256                 I915_READ(dpll_reg);
2257                 udelay(150);
2258         }
2259
2260         if (IS_IGDNG(dev)) {
2261                 /* enable PCH clock reference source */
2262                 /* XXX need to change the setting for other outputs */
2263                 u32 temp;
2264                 temp = I915_READ(PCH_DREF_CONTROL);
2265                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2266                 temp |= DREF_NONSPREAD_CK505_ENABLE;
2267                 temp &= ~DREF_SSC_SOURCE_MASK;
2268                 temp |= DREF_SSC_SOURCE_ENABLE;
2269                 temp &= ~DREF_SSC1_ENABLE;
2270                 /* if no eDP, disable source output to CPU */
2271                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2272                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2273                 I915_WRITE(PCH_DREF_CONTROL, temp);
2274         }
2275
2276         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
2277          * This is an exception to the general rule that mode_set doesn't turn
2278          * things on.
2279          */
2280         if (is_lvds) {
2281                 u32 lvds;
2282
2283                 if (IS_IGDNG(dev))
2284                         lvds_reg = PCH_LVDS;
2285
2286                 lvds = I915_READ(lvds_reg);
2287                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
2288                 /* Set the B0-B3 data pairs corresponding to whether we're going to
2289                  * set the DPLLs for dual-channel mode or not.
2290                  */
2291                 if (clock.p2 == 7)
2292                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
2293                 else
2294                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
2295
2296                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2297                  * appropriately here, but we need to look more thoroughly into how
2298                  * panels behave in the two modes.
2299                  */
2300
2301                 I915_WRITE(lvds_reg, lvds);
2302                 I915_READ(lvds_reg);
2303         }
2304         if (is_dp)
2305                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
2306
2307         I915_WRITE(fp_reg, fp);
2308         I915_WRITE(dpll_reg, dpll);
2309         I915_READ(dpll_reg);
2310         /* Wait for the clocks to stabilize. */
2311         udelay(150);
2312
2313         if (IS_I965G(dev) && !IS_IGDNG(dev)) {
2314                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2315                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
2316                            ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
2317         } else {
2318                 /* write it again -- the BIOS does, after all */
2319                 I915_WRITE(dpll_reg, dpll);
2320         }
2321         I915_READ(dpll_reg);
2322         /* Wait for the clocks to stabilize. */
2323         udelay(150);
2324
2325         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
2326                    ((adjusted_mode->crtc_htotal - 1) << 16));
2327         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
2328                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
2329         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
2330                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
2331         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
2332                    ((adjusted_mode->crtc_vtotal - 1) << 16));
2333         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
2334                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
2335         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
2336                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
2337         /* pipesrc and dspsize control the size that is scaled from, which should
2338          * always be the user's requested size.
2339          */
2340         if (!IS_IGDNG(dev)) {
2341                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
2342                                 (mode->hdisplay - 1));
2343                 I915_WRITE(dsppos_reg, 0);
2344         }
2345         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2346
2347         if (IS_IGDNG(dev)) {
2348                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
2349                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
2350                 I915_WRITE(link_m1_reg, m_n.link_m);
2351                 I915_WRITE(link_n1_reg, m_n.link_n);
2352
2353                  /* enable FDI RX PLL too */
2354                 temp = I915_READ(fdi_rx_reg);
2355                 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
2356                 udelay(200);
2357         }
2358
2359         I915_WRITE(pipeconf_reg, pipeconf);
2360         I915_READ(pipeconf_reg);
2361
2362         intel_wait_for_vblank(dev);
2363
2364         I915_WRITE(dspcntr_reg, dspcntr);
2365
2366         /* Flush the plane changes */
2367         ret = intel_pipe_set_base(crtc, x, y, old_fb);
2368
2369         intel_update_watermarks(dev);
2370
2371         drm_vblank_post_modeset(dev, pipe);
2372
2373         return ret;
2374 }
2375
2376 /** Loads the palette/gamma unit for the CRTC with the prepared values */
2377 void intel_crtc_load_lut(struct drm_crtc *crtc)
2378 {
2379         struct drm_device *dev = crtc->dev;
2380         struct drm_i915_private *dev_priv = dev->dev_private;
2381         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2382         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
2383         int i;
2384
2385         /* The clocks have to be on to load the palette. */
2386         if (!crtc->enabled)
2387                 return;
2388
2389         /* use legacy palette for IGDNG */
2390         if (IS_IGDNG(dev))
2391                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
2392                                                    LGC_PALETTE_B;
2393
2394         for (i = 0; i < 256; i++) {
2395                 I915_WRITE(palreg + 4 * i,
2396                            (intel_crtc->lut_r[i] << 16) |
2397                            (intel_crtc->lut_g[i] << 8) |
2398                            intel_crtc->lut_b[i]);
2399         }
2400 }
2401
2402 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
2403                                  struct drm_file *file_priv,
2404                                  uint32_t handle,
2405                                  uint32_t width, uint32_t height)
2406 {
2407         struct drm_device *dev = crtc->dev;
2408         struct drm_i915_private *dev_priv = dev->dev_private;
2409         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2410         struct drm_gem_object *bo;
2411         struct drm_i915_gem_object *obj_priv;
2412         int pipe = intel_crtc->pipe;
2413         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
2414         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
2415         uint32_t temp = I915_READ(control);
2416         size_t addr;
2417         int ret;
2418
2419         DRM_DEBUG("\n");
2420
2421         /* if we want to turn off the cursor ignore width and height */
2422         if (!handle) {
2423                 DRM_DEBUG("cursor off\n");
2424                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2425                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
2426                         temp |= CURSOR_MODE_DISABLE;
2427                 } else {
2428                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
2429                 }
2430                 addr = 0;
2431                 bo = NULL;
2432                 mutex_lock(&dev->struct_mutex);
2433                 goto finish;
2434         }
2435
2436         /* Currently we only support 64x64 cursors */
2437         if (width != 64 || height != 64) {
2438                 DRM_ERROR("we currently only support 64x64 cursors\n");
2439                 return -EINVAL;
2440         }
2441
2442         bo = drm_gem_object_lookup(dev, file_priv, handle);
2443         if (!bo)
2444                 return -ENOENT;
2445
2446         obj_priv = bo->driver_private;
2447
2448         if (bo->size < width * height * 4) {
2449                 DRM_ERROR("buffer is to small\n");
2450                 ret = -ENOMEM;
2451                 goto fail;
2452         }
2453
2454         /* we only need to pin inside GTT if cursor is non-phy */
2455         mutex_lock(&dev->struct_mutex);
2456         if (!dev_priv->cursor_needs_physical) {
2457                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
2458                 if (ret) {
2459                         DRM_ERROR("failed to pin cursor bo\n");
2460                         goto fail_locked;
2461                 }
2462                 addr = obj_priv->gtt_offset;
2463         } else {
2464                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
2465                 if (ret) {
2466                         DRM_ERROR("failed to attach phys object\n");
2467                         goto fail_locked;
2468                 }
2469                 addr = obj_priv->phys_obj->handle->busaddr;
2470         }
2471
2472         if (!IS_I9XX(dev))
2473                 I915_WRITE(CURSIZE, (height << 12) | width);
2474
2475         /* Hooray for CUR*CNTR differences */
2476         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2477                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
2478                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
2479                 temp |= (pipe << 28); /* Connect to correct pipe */
2480         } else {
2481                 temp &= ~(CURSOR_FORMAT_MASK);
2482                 temp |= CURSOR_ENABLE;
2483                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
2484         }
2485
2486  finish:
2487         I915_WRITE(control, temp);
2488         I915_WRITE(base, addr);
2489
2490         if (intel_crtc->cursor_bo) {
2491                 if (dev_priv->cursor_needs_physical) {
2492                         if (intel_crtc->cursor_bo != bo)
2493                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
2494                 } else
2495                         i915_gem_object_unpin(intel_crtc->cursor_bo);
2496                 drm_gem_object_unreference(intel_crtc->cursor_bo);
2497         }
2498         mutex_unlock(&dev->struct_mutex);
2499
2500         intel_crtc->cursor_addr = addr;
2501         intel_crtc->cursor_bo = bo;
2502
2503         return 0;
2504 fail:
2505         mutex_lock(&dev->struct_mutex);
2506 fail_locked:
2507         drm_gem_object_unreference(bo);
2508         mutex_unlock(&dev->struct_mutex);
2509         return ret;
2510 }
2511
2512 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
2513 {
2514         struct drm_device *dev = crtc->dev;
2515         struct drm_i915_private *dev_priv = dev->dev_private;
2516         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2517         int pipe = intel_crtc->pipe;
2518         uint32_t temp = 0;
2519         uint32_t adder;
2520
2521         if (x < 0) {
2522                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
2523                 x = -x;
2524         }
2525         if (y < 0) {
2526                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
2527                 y = -y;
2528         }
2529
2530         temp |= x << CURSOR_X_SHIFT;
2531         temp |= y << CURSOR_Y_SHIFT;
2532
2533         adder = intel_crtc->cursor_addr;
2534         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
2535         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
2536
2537         return 0;
2538 }
2539
2540 /** Sets the color ramps on behalf of RandR */
2541 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
2542                                  u16 blue, int regno)
2543 {
2544         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2545
2546         intel_crtc->lut_r[regno] = red >> 8;
2547         intel_crtc->lut_g[regno] = green >> 8;
2548         intel_crtc->lut_b[regno] = blue >> 8;
2549 }
2550
2551 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
2552                                  u16 *blue, uint32_t size)
2553 {
2554         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2555         int i;
2556
2557         if (size != 256)
2558                 return;
2559
2560         for (i = 0; i < 256; i++) {
2561                 intel_crtc->lut_r[i] = red[i] >> 8;
2562                 intel_crtc->lut_g[i] = green[i] >> 8;
2563                 intel_crtc->lut_b[i] = blue[i] >> 8;
2564         }
2565
2566         intel_crtc_load_lut(crtc);
2567 }
2568
2569 /**
2570  * Get a pipe with a simple mode set on it for doing load-based monitor
2571  * detection.
2572  *
2573  * It will be up to the load-detect code to adjust the pipe as appropriate for
2574  * its requirements.  The pipe will be connected to no other outputs.
2575  *
2576  * Currently this code will only succeed if there is a pipe with no outputs
2577  * configured for it.  In the future, it could choose to temporarily disable
2578  * some outputs to free up a pipe for its use.
2579  *
2580  * \return crtc, or NULL if no pipes are available.
2581  */
2582
2583 /* VESA 640x480x72Hz mode to set on the pipe */
2584 static struct drm_display_mode load_detect_mode = {
2585         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
2586                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
2587 };
2588
2589 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
2590                                             struct drm_display_mode *mode,
2591                                             int *dpms_mode)
2592 {
2593         struct intel_crtc *intel_crtc;
2594         struct drm_crtc *possible_crtc;
2595         struct drm_crtc *supported_crtc =NULL;
2596         struct drm_encoder *encoder = &intel_output->enc;
2597         struct drm_crtc *crtc = NULL;
2598         struct drm_device *dev = encoder->dev;
2599         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2600         struct drm_crtc_helper_funcs *crtc_funcs;
2601         int i = -1;
2602
2603         /*
2604          * Algorithm gets a little messy:
2605          *   - if the connector already has an assigned crtc, use it (but make
2606          *     sure it's on first)
2607          *   - try to find the first unused crtc that can drive this connector,
2608          *     and use that if we find one
2609          *   - if there are no unused crtcs available, try to use the first
2610          *     one we found that supports the connector
2611          */
2612
2613         /* See if we already have a CRTC for this connector */
2614         if (encoder->crtc) {
2615                 crtc = encoder->crtc;
2616                 /* Make sure the crtc and connector are running */
2617                 intel_crtc = to_intel_crtc(crtc);
2618                 *dpms_mode = intel_crtc->dpms_mode;
2619                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2620                         crtc_funcs = crtc->helper_private;
2621                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2622                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2623                 }
2624                 return crtc;
2625         }
2626
2627         /* Find an unused one (if possible) */
2628         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
2629                 i++;
2630                 if (!(encoder->possible_crtcs & (1 << i)))
2631                         continue;
2632                 if (!possible_crtc->enabled) {
2633                         crtc = possible_crtc;
2634                         break;
2635                 }
2636                 if (!supported_crtc)
2637                         supported_crtc = possible_crtc;
2638         }
2639
2640         /*
2641          * If we didn't find an unused CRTC, don't use any.
2642          */
2643         if (!crtc) {
2644                 return NULL;
2645         }
2646
2647         encoder->crtc = crtc;
2648         intel_output->base.encoder = encoder;
2649         intel_output->load_detect_temp = true;
2650
2651         intel_crtc = to_intel_crtc(crtc);
2652         *dpms_mode = intel_crtc->dpms_mode;
2653
2654         if (!crtc->enabled) {
2655                 if (!mode)
2656                         mode = &load_detect_mode;
2657                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
2658         } else {
2659                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2660                         crtc_funcs = crtc->helper_private;
2661                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2662                 }
2663
2664                 /* Add this connector to the crtc */
2665                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
2666                 encoder_funcs->commit(encoder);
2667         }
2668         /* let the connector get through one full cycle before testing */
2669         intel_wait_for_vblank(dev);
2670
2671         return crtc;
2672 }
2673
2674 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
2675 {
2676         struct drm_encoder *encoder = &intel_output->enc;
2677         struct drm_device *dev = encoder->dev;
2678         struct drm_crtc *crtc = encoder->crtc;
2679         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2680         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2681
2682         if (intel_output->load_detect_temp) {
2683                 encoder->crtc = NULL;
2684                 intel_output->base.encoder = NULL;
2685                 intel_output->load_detect_temp = false;
2686                 crtc->enabled = drm_helper_crtc_in_use(crtc);
2687                 drm_helper_disable_unused_functions(dev);
2688         }
2689
2690         /* Switch crtc and output back off if necessary */
2691         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
2692                 if (encoder->crtc == crtc)
2693                         encoder_funcs->dpms(encoder, dpms_mode);
2694                 crtc_funcs->dpms(crtc, dpms_mode);
2695         }
2696 }
2697
2698 /* Returns the clock of the currently programmed mode of the given pipe. */
2699 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
2700 {
2701         struct drm_i915_private *dev_priv = dev->dev_private;
2702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2703         int pipe = intel_crtc->pipe;
2704         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
2705         u32 fp;
2706         intel_clock_t clock;
2707
2708         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
2709                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
2710         else
2711                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
2712
2713         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
2714         if (IS_IGD(dev)) {
2715                 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
2716                 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
2717         } else {
2718                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
2719                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
2720         }
2721
2722         if (IS_I9XX(dev)) {
2723                 if (IS_IGD(dev))
2724                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
2725                                 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
2726                 else
2727                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
2728                                DPLL_FPA01_P1_POST_DIV_SHIFT);
2729
2730                 switch (dpll & DPLL_MODE_MASK) {
2731                 case DPLLB_MODE_DAC_SERIAL:
2732                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
2733                                 5 : 10;
2734                         break;
2735                 case DPLLB_MODE_LVDS:
2736                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
2737                                 7 : 14;
2738                         break;
2739                 default:
2740                         DRM_DEBUG("Unknown DPLL mode %08x in programmed "
2741                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
2742                         return 0;
2743                 }
2744
2745                 /* XXX: Handle the 100Mhz refclk */
2746                 intel_clock(dev, 96000, &clock);
2747         } else {
2748                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
2749
2750                 if (is_lvds) {
2751                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
2752                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
2753                         clock.p2 = 14;
2754
2755                         if ((dpll & PLL_REF_INPUT_MASK) ==
2756                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
2757                                 /* XXX: might not be 66MHz */
2758                                 intel_clock(dev, 66000, &clock);
2759                         } else
2760                                 intel_clock(dev, 48000, &clock);
2761                 } else {
2762                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
2763                                 clock.p1 = 2;
2764                         else {
2765                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
2766                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
2767                         }
2768                         if (dpll & PLL_P2_DIVIDE_BY_4)
2769                                 clock.p2 = 4;
2770                         else
2771                                 clock.p2 = 2;
2772
2773                         intel_clock(dev, 48000, &clock);
2774                 }
2775         }
2776
2777         /* XXX: It would be nice to validate the clocks, but we can't reuse
2778          * i830PllIsValid() because it relies on the xf86_config connector
2779          * configuration being accurate, which it isn't necessarily.
2780          */
2781
2782         return clock.dot;
2783 }
2784
2785 /** Returns the currently programmed mode of the given pipe. */
2786 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
2787                                              struct drm_crtc *crtc)
2788 {
2789         struct drm_i915_private *dev_priv = dev->dev_private;
2790         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2791         int pipe = intel_crtc->pipe;
2792         struct drm_display_mode *mode;
2793         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
2794         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
2795         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
2796         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
2797
2798         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
2799         if (!mode)
2800                 return NULL;
2801
2802         mode->clock = intel_crtc_clock_get(dev, crtc);
2803         mode->hdisplay = (htot & 0xffff) + 1;
2804         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
2805         mode->hsync_start = (hsync & 0xffff) + 1;
2806         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
2807         mode->vdisplay = (vtot & 0xffff) + 1;
2808         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
2809         mode->vsync_start = (vsync & 0xffff) + 1;
2810         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
2811
2812         drm_mode_set_name(mode);
2813         drm_mode_set_crtcinfo(mode, 0);
2814
2815         return mode;
2816 }
2817
2818 static void intel_crtc_destroy(struct drm_crtc *crtc)
2819 {
2820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2821
2822         if (intel_crtc->mode_set.mode)
2823                 drm_mode_destroy(crtc->dev, intel_crtc->mode_set.mode);
2824         drm_crtc_cleanup(crtc);
2825         kfree(intel_crtc);
2826 }
2827
2828 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
2829         .dpms = intel_crtc_dpms,
2830         .mode_fixup = intel_crtc_mode_fixup,
2831         .mode_set = intel_crtc_mode_set,
2832         .mode_set_base = intel_pipe_set_base,
2833         .prepare = intel_crtc_prepare,
2834         .commit = intel_crtc_commit,
2835 };
2836
2837 static const struct drm_crtc_funcs intel_crtc_funcs = {
2838         .cursor_set = intel_crtc_cursor_set,
2839         .cursor_move = intel_crtc_cursor_move,
2840         .gamma_set = intel_crtc_gamma_set,
2841         .set_config = drm_crtc_helper_set_config,
2842         .destroy = intel_crtc_destroy,
2843 };
2844
2845
2846 static void intel_crtc_init(struct drm_device *dev, int pipe)
2847 {
2848         struct intel_crtc *intel_crtc;
2849         int i;
2850
2851         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
2852         if (intel_crtc == NULL)
2853                 return;
2854
2855         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
2856
2857         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
2858         intel_crtc->pipe = pipe;
2859         intel_crtc->plane = pipe;
2860         for (i = 0; i < 256; i++) {
2861                 intel_crtc->lut_r[i] = i;
2862                 intel_crtc->lut_g[i] = i;
2863                 intel_crtc->lut_b[i] = i;
2864         }
2865
2866         intel_crtc->cursor_addr = 0;
2867         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
2868         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
2869
2870         intel_crtc->mode_set.crtc = &intel_crtc->base;
2871         intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
2872         intel_crtc->mode_set.num_connectors = 0;
2873
2874         if (i915_fbpercrtc) {
2875
2876
2877
2878         }
2879 }
2880
2881 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
2882                                 struct drm_file *file_priv)
2883 {
2884         drm_i915_private_t *dev_priv = dev->dev_private;
2885         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
2886         struct drm_crtc *crtc = NULL;
2887         int pipe = -1;
2888
2889         if (!dev_priv) {
2890                 DRM_ERROR("called with no initialization\n");
2891                 return -EINVAL;
2892         }
2893
2894         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2895                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2896                 if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
2897                         pipe = intel_crtc->pipe;
2898                         break;
2899                 }
2900         }
2901
2902         if (pipe == -1) {
2903                 DRM_ERROR("no such CRTC id\n");
2904                 return -EINVAL;
2905         }
2906
2907         pipe_from_crtc_id->pipe = pipe;
2908
2909        return 0;
2910 }
2911
2912 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
2913 {
2914         struct drm_crtc *crtc = NULL;
2915
2916         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2917                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2918                 if (intel_crtc->pipe == pipe)
2919                         break;
2920         }
2921         return crtc;
2922 }
2923
2924 static int intel_connector_clones(struct drm_device *dev, int type_mask)
2925 {
2926         int index_mask = 0;
2927         struct drm_connector *connector;
2928         int entry = 0;
2929
2930         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2931                 struct intel_output *intel_output = to_intel_output(connector);
2932                 if (type_mask & (1 << intel_output->type))
2933                         index_mask |= (1 << entry);
2934                 entry++;
2935         }
2936         return index_mask;
2937 }
2938
2939
2940 static void intel_setup_outputs(struct drm_device *dev)
2941 {
2942         struct drm_i915_private *dev_priv = dev->dev_private;
2943         struct drm_connector *connector;
2944
2945         intel_crt_init(dev);
2946
2947         /* Set up integrated LVDS */
2948         if (IS_MOBILE(dev) && !IS_I830(dev))
2949                 intel_lvds_init(dev);
2950
2951         if (IS_IGDNG(dev)) {
2952                 int found;
2953
2954                 if (I915_READ(HDMIB) & PORT_DETECTED) {
2955                         /* check SDVOB */
2956                         /* found = intel_sdvo_init(dev, HDMIB); */
2957                         found = 0;
2958                         if (!found)
2959                                 intel_hdmi_init(dev, HDMIB);
2960                 }
2961
2962                 if (I915_READ(HDMIC) & PORT_DETECTED)
2963                         intel_hdmi_init(dev, HDMIC);
2964
2965                 if (I915_READ(HDMID) & PORT_DETECTED)
2966                         intel_hdmi_init(dev, HDMID);
2967
2968         } else if (IS_I9XX(dev)) {
2969                 int found;
2970                 u32 reg;
2971
2972                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
2973                         found = intel_sdvo_init(dev, SDVOB);
2974                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
2975                                 intel_hdmi_init(dev, SDVOB);
2976                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
2977                                 intel_dp_init(dev, DP_B);
2978                 }
2979
2980                 /* Before G4X SDVOC doesn't have its own detect register */
2981                 if (IS_G4X(dev))
2982                         reg = SDVOC;
2983                 else
2984                         reg = SDVOB;
2985
2986                 if (I915_READ(reg) & SDVO_DETECTED) {
2987                         found = intel_sdvo_init(dev, SDVOC);
2988                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
2989                                 intel_hdmi_init(dev, SDVOC);
2990                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
2991                                 intel_dp_init(dev, DP_C);
2992                 }
2993                 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
2994                         intel_dp_init(dev, DP_D);
2995         } else
2996                 intel_dvo_init(dev);
2997
2998         if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
2999                 intel_tv_init(dev);
3000
3001         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3002                 struct intel_output *intel_output = to_intel_output(connector);
3003                 struct drm_encoder *encoder = &intel_output->enc;
3004                 int crtc_mask = 0, clone_mask = 0;
3005
3006                 /* valid crtcs */
3007                 switch(intel_output->type) {
3008                 case INTEL_OUTPUT_HDMI:
3009                         crtc_mask = ((1 << 0)|
3010                                      (1 << 1));
3011                         clone_mask = ((1 << INTEL_OUTPUT_HDMI));
3012                         break;
3013                 case INTEL_OUTPUT_DVO:
3014                 case INTEL_OUTPUT_SDVO:
3015                         crtc_mask = ((1 << 0)|
3016                                      (1 << 1));
3017                         clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
3018                                       (1 << INTEL_OUTPUT_DVO) |
3019                                       (1 << INTEL_OUTPUT_SDVO));
3020                         break;
3021                 case INTEL_OUTPUT_ANALOG:
3022                         crtc_mask = ((1 << 0)|
3023                                      (1 << 1));
3024                         clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
3025                                       (1 << INTEL_OUTPUT_DVO) |
3026                                       (1 << INTEL_OUTPUT_SDVO));
3027                         break;
3028                 case INTEL_OUTPUT_LVDS:
3029                         crtc_mask = (1 << 1);
3030                         clone_mask = (1 << INTEL_OUTPUT_LVDS);
3031                         break;
3032                 case INTEL_OUTPUT_TVOUT:
3033                         crtc_mask = ((1 << 0) |
3034                                      (1 << 1));
3035                         clone_mask = (1 << INTEL_OUTPUT_TVOUT);
3036                         break;
3037                 case INTEL_OUTPUT_DISPLAYPORT:
3038                         crtc_mask = ((1 << 0) |
3039                                      (1 << 1));
3040                         clone_mask = (1 << INTEL_OUTPUT_DISPLAYPORT);
3041                         break;
3042                 }
3043                 encoder->possible_crtcs = crtc_mask;
3044                 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
3045         }
3046 }
3047
3048 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
3049 {
3050         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3051         struct drm_device *dev = fb->dev;
3052
3053         if (fb->fbdev)
3054                 intelfb_remove(dev, fb);
3055
3056         drm_framebuffer_cleanup(fb);
3057         mutex_lock(&dev->struct_mutex);
3058         drm_gem_object_unreference(intel_fb->obj);
3059         mutex_unlock(&dev->struct_mutex);
3060
3061         kfree(intel_fb);
3062 }
3063
3064 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
3065                                                 struct drm_file *file_priv,
3066                                                 unsigned int *handle)
3067 {
3068         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3069         struct drm_gem_object *object = intel_fb->obj;
3070
3071         return drm_gem_handle_create(file_priv, object, handle);
3072 }
3073
3074 static const struct drm_framebuffer_funcs intel_fb_funcs = {
3075         .destroy = intel_user_framebuffer_destroy,
3076         .create_handle = intel_user_framebuffer_create_handle,
3077 };
3078
3079 int intel_framebuffer_create(struct drm_device *dev,
3080                              struct drm_mode_fb_cmd *mode_cmd,
3081                              struct drm_framebuffer **fb,
3082                              struct drm_gem_object *obj)
3083 {
3084         struct intel_framebuffer *intel_fb;
3085         int ret;
3086
3087         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
3088         if (!intel_fb)
3089                 return -ENOMEM;
3090
3091         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
3092         if (ret) {
3093                 DRM_ERROR("framebuffer init failed %d\n", ret);
3094                 return ret;
3095         }
3096
3097         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
3098
3099         intel_fb->obj = obj;
3100
3101         *fb = &intel_fb->base;
3102
3103         return 0;
3104 }
3105
3106
3107 static struct drm_framebuffer *
3108 intel_user_framebuffer_create(struct drm_device *dev,
3109                               struct drm_file *filp,
3110                               struct drm_mode_fb_cmd *mode_cmd)
3111 {
3112         struct drm_gem_object *obj;
3113         struct drm_framebuffer *fb;
3114         int ret;
3115
3116         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
3117         if (!obj)
3118                 return NULL;
3119
3120         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
3121         if (ret) {
3122                 mutex_lock(&dev->struct_mutex);
3123                 drm_gem_object_unreference(obj);
3124                 mutex_unlock(&dev->struct_mutex);
3125                 return NULL;
3126         }
3127
3128         return fb;
3129 }
3130
3131 static const struct drm_mode_config_funcs intel_mode_funcs = {
3132         .fb_create = intel_user_framebuffer_create,
3133         .fb_changed = intelfb_probe,
3134 };
3135
3136 void intel_modeset_init(struct drm_device *dev)
3137 {
3138         int num_pipe;
3139         int i;
3140
3141         drm_mode_config_init(dev);
3142
3143         dev->mode_config.min_width = 0;
3144         dev->mode_config.min_height = 0;
3145
3146         dev->mode_config.funcs = (void *)&intel_mode_funcs;
3147
3148         if (IS_I965G(dev)) {
3149                 dev->mode_config.max_width = 8192;
3150                 dev->mode_config.max_height = 8192;
3151         } else {
3152                 dev->mode_config.max_width = 2048;
3153                 dev->mode_config.max_height = 2048;
3154         }
3155
3156         /* set memory base */
3157         if (IS_I9XX(dev))
3158                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
3159         else
3160                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
3161
3162         if (IS_MOBILE(dev) || IS_I9XX(dev))
3163                 num_pipe = 2;
3164         else
3165                 num_pipe = 1;
3166         DRM_DEBUG("%d display pipe%s available.\n",
3167                   num_pipe, num_pipe > 1 ? "s" : "");
3168
3169         for (i = 0; i < num_pipe; i++) {
3170                 intel_crtc_init(dev, i);
3171         }
3172
3173         intel_setup_outputs(dev);
3174 }
3175
3176 void intel_modeset_cleanup(struct drm_device *dev)
3177 {
3178         drm_mode_config_cleanup(dev);
3179 }
3180
3181
3182 /* current intel driver doesn't take advantage of encoders
3183    always give back the encoder for the connector
3184 */
3185 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
3186 {
3187         struct intel_output *intel_output = to_intel_output(connector);
3188
3189         return &intel_output->enc;
3190 }