Merge remote branch 'keithp/drm-intel-next' of ../drm-next into drm-core-next
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 /* FDI */
80 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
81
82 static bool
83 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
84                     int target, int refclk, intel_clock_t *best_clock);
85 static bool
86 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87                         int target, int refclk, intel_clock_t *best_clock);
88
89 static bool
90 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
91                       int target, int refclk, intel_clock_t *best_clock);
92 static bool
93 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                            int target, int refclk, intel_clock_t *best_clock);
95
96 static inline u32 /* units of 100MHz */
97 intel_fdi_link_freq(struct drm_device *dev)
98 {
99         if (IS_GEN5(dev)) {
100                 struct drm_i915_private *dev_priv = dev->dev_private;
101                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
102         } else
103                 return 27;
104 }
105
106 static const intel_limit_t intel_limits_i8xx_dvo = {
107         .dot = { .min = 25000, .max = 350000 },
108         .vco = { .min = 930000, .max = 1400000 },
109         .n = { .min = 3, .max = 16 },
110         .m = { .min = 96, .max = 140 },
111         .m1 = { .min = 18, .max = 26 },
112         .m2 = { .min = 6, .max = 16 },
113         .p = { .min = 4, .max = 128 },
114         .p1 = { .min = 2, .max = 33 },
115         .p2 = { .dot_limit = 165000,
116                 .p2_slow = 4, .p2_fast = 2 },
117         .find_pll = intel_find_best_PLL,
118 };
119
120 static const intel_limit_t intel_limits_i8xx_lvds = {
121         .dot = { .min = 25000, .max = 350000 },
122         .vco = { .min = 930000, .max = 1400000 },
123         .n = { .min = 3, .max = 16 },
124         .m = { .min = 96, .max = 140 },
125         .m1 = { .min = 18, .max = 26 },
126         .m2 = { .min = 6, .max = 16 },
127         .p = { .min = 4, .max = 128 },
128         .p1 = { .min = 1, .max = 6 },
129         .p2 = { .dot_limit = 165000,
130                 .p2_slow = 14, .p2_fast = 7 },
131         .find_pll = intel_find_best_PLL,
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135         .dot = { .min = 20000, .max = 400000 },
136         .vco = { .min = 1400000, .max = 2800000 },
137         .n = { .min = 1, .max = 6 },
138         .m = { .min = 70, .max = 120 },
139         .m1 = { .min = 10, .max = 22 },
140         .m2 = { .min = 5, .max = 9 },
141         .p = { .min = 5, .max = 80 },
142         .p1 = { .min = 1, .max = 8 },
143         .p2 = { .dot_limit = 200000,
144                 .p2_slow = 10, .p2_fast = 5 },
145         .find_pll = intel_find_best_PLL,
146 };
147
148 static const intel_limit_t intel_limits_i9xx_lvds = {
149         .dot = { .min = 20000, .max = 400000 },
150         .vco = { .min = 1400000, .max = 2800000 },
151         .n = { .min = 1, .max = 6 },
152         .m = { .min = 70, .max = 120 },
153         .m1 = { .min = 10, .max = 22 },
154         .m2 = { .min = 5, .max = 9 },
155         .p = { .min = 7, .max = 98 },
156         .p1 = { .min = 1, .max = 8 },
157         .p2 = { .dot_limit = 112000,
158                 .p2_slow = 14, .p2_fast = 7 },
159         .find_pll = intel_find_best_PLL,
160 };
161
162
163 static const intel_limit_t intel_limits_g4x_sdvo = {
164         .dot = { .min = 25000, .max = 270000 },
165         .vco = { .min = 1750000, .max = 3500000},
166         .n = { .min = 1, .max = 4 },
167         .m = { .min = 104, .max = 138 },
168         .m1 = { .min = 17, .max = 23 },
169         .m2 = { .min = 5, .max = 11 },
170         .p = { .min = 10, .max = 30 },
171         .p1 = { .min = 1, .max = 3},
172         .p2 = { .dot_limit = 270000,
173                 .p2_slow = 10,
174                 .p2_fast = 10
175         },
176         .find_pll = intel_g4x_find_best_PLL,
177 };
178
179 static const intel_limit_t intel_limits_g4x_hdmi = {
180         .dot = { .min = 22000, .max = 400000 },
181         .vco = { .min = 1750000, .max = 3500000},
182         .n = { .min = 1, .max = 4 },
183         .m = { .min = 104, .max = 138 },
184         .m1 = { .min = 16, .max = 23 },
185         .m2 = { .min = 5, .max = 11 },
186         .p = { .min = 5, .max = 80 },
187         .p1 = { .min = 1, .max = 8},
188         .p2 = { .dot_limit = 165000,
189                 .p2_slow = 10, .p2_fast = 5 },
190         .find_pll = intel_g4x_find_best_PLL,
191 };
192
193 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
194         .dot = { .min = 20000, .max = 115000 },
195         .vco = { .min = 1750000, .max = 3500000 },
196         .n = { .min = 1, .max = 3 },
197         .m = { .min = 104, .max = 138 },
198         .m1 = { .min = 17, .max = 23 },
199         .m2 = { .min = 5, .max = 11 },
200         .p = { .min = 28, .max = 112 },
201         .p1 = { .min = 2, .max = 8 },
202         .p2 = { .dot_limit = 0,
203                 .p2_slow = 14, .p2_fast = 14
204         },
205         .find_pll = intel_g4x_find_best_PLL,
206 };
207
208 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
209         .dot = { .min = 80000, .max = 224000 },
210         .vco = { .min = 1750000, .max = 3500000 },
211         .n = { .min = 1, .max = 3 },
212         .m = { .min = 104, .max = 138 },
213         .m1 = { .min = 17, .max = 23 },
214         .m2 = { .min = 5, .max = 11 },
215         .p = { .min = 14, .max = 42 },
216         .p1 = { .min = 2, .max = 6 },
217         .p2 = { .dot_limit = 0,
218                 .p2_slow = 7, .p2_fast = 7
219         },
220         .find_pll = intel_g4x_find_best_PLL,
221 };
222
223 static const intel_limit_t intel_limits_g4x_display_port = {
224         .dot = { .min = 161670, .max = 227000 },
225         .vco = { .min = 1750000, .max = 3500000},
226         .n = { .min = 1, .max = 2 },
227         .m = { .min = 97, .max = 108 },
228         .m1 = { .min = 0x10, .max = 0x12 },
229         .m2 = { .min = 0x05, .max = 0x06 },
230         .p = { .min = 10, .max = 20 },
231         .p1 = { .min = 1, .max = 2},
232         .p2 = { .dot_limit = 0,
233                 .p2_slow = 10, .p2_fast = 10 },
234         .find_pll = intel_find_pll_g4x_dp,
235 };
236
237 static const intel_limit_t intel_limits_pineview_sdvo = {
238         .dot = { .min = 20000, .max = 400000},
239         .vco = { .min = 1700000, .max = 3500000 },
240         /* Pineview's Ncounter is a ring counter */
241         .n = { .min = 3, .max = 6 },
242         .m = { .min = 2, .max = 256 },
243         /* Pineview only has one combined m divider, which we treat as m2. */
244         .m1 = { .min = 0, .max = 0 },
245         .m2 = { .min = 0, .max = 254 },
246         .p = { .min = 5, .max = 80 },
247         .p1 = { .min = 1, .max = 8 },
248         .p2 = { .dot_limit = 200000,
249                 .p2_slow = 10, .p2_fast = 5 },
250         .find_pll = intel_find_best_PLL,
251 };
252
253 static const intel_limit_t intel_limits_pineview_lvds = {
254         .dot = { .min = 20000, .max = 400000 },
255         .vco = { .min = 1700000, .max = 3500000 },
256         .n = { .min = 3, .max = 6 },
257         .m = { .min = 2, .max = 256 },
258         .m1 = { .min = 0, .max = 0 },
259         .m2 = { .min = 0, .max = 254 },
260         .p = { .min = 7, .max = 112 },
261         .p1 = { .min = 1, .max = 8 },
262         .p2 = { .dot_limit = 112000,
263                 .p2_slow = 14, .p2_fast = 14 },
264         .find_pll = intel_find_best_PLL,
265 };
266
267 /* Ironlake / Sandybridge
268  *
269  * We calculate clock using (register_value + 2) for N/M1/M2, so here
270  * the range value for them is (actual_value - 2).
271  */
272 static const intel_limit_t intel_limits_ironlake_dac = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 5 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 10, .p2_fast = 5 },
283         .find_pll = intel_g4x_find_best_PLL,
284 };
285
286 static const intel_limit_t intel_limits_ironlake_single_lvds = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 3 },
290         .m = { .min = 79, .max = 118 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297         .find_pll = intel_g4x_find_best_PLL,
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 3 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 14, .max = 56 },
308         .p1 = { .min = 2, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 7, .p2_fast = 7 },
311         .find_pll = intel_g4x_find_best_PLL,
312 };
313
314 /* LVDS 100mhz refclk limits. */
315 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
316         .dot = { .min = 25000, .max = 350000 },
317         .vco = { .min = 1760000, .max = 3510000 },
318         .n = { .min = 1, .max = 2 },
319         .m = { .min = 79, .max = 126 },
320         .m1 = { .min = 12, .max = 22 },
321         .m2 = { .min = 5, .max = 9 },
322         .p = { .min = 28, .max = 112 },
323         .p1 = { .min = 2,.max = 8 },
324         .p2 = { .dot_limit = 225000,
325                 .p2_slow = 14, .p2_fast = 14 },
326         .find_pll = intel_g4x_find_best_PLL,
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 126 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 42 },
337         .p1 = { .min = 2,.max = 6 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340         .find_pll = intel_g4x_find_best_PLL,
341 };
342
343 static const intel_limit_t intel_limits_ironlake_display_port = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000},
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 81, .max = 90 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 10, .max = 20 },
351         .p1 = { .min = 1, .max = 2},
352         .p2 = { .dot_limit = 0,
353                 .p2_slow = 10, .p2_fast = 10 },
354         .find_pll = intel_find_pll_ironlake_dp,
355 };
356
357 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
358                                                 int refclk)
359 {
360         struct drm_device *dev = crtc->dev;
361         struct drm_i915_private *dev_priv = dev->dev_private;
362         const intel_limit_t *limit;
363
364         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
365                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
366                     LVDS_CLKB_POWER_UP) {
367                         /* LVDS dual channel */
368                         if (refclk == 100000)
369                                 limit = &intel_limits_ironlake_dual_lvds_100m;
370                         else
371                                 limit = &intel_limits_ironlake_dual_lvds;
372                 } else {
373                         if (refclk == 100000)
374                                 limit = &intel_limits_ironlake_single_lvds_100m;
375                         else
376                                 limit = &intel_limits_ironlake_single_lvds;
377                 }
378         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
379                         HAS_eDP)
380                 limit = &intel_limits_ironlake_display_port;
381         else
382                 limit = &intel_limits_ironlake_dac;
383
384         return limit;
385 }
386
387 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
388 {
389         struct drm_device *dev = crtc->dev;
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         const intel_limit_t *limit;
392
393         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
394                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
395                     LVDS_CLKB_POWER_UP)
396                         /* LVDS with dual channel */
397                         limit = &intel_limits_g4x_dual_channel_lvds;
398                 else
399                         /* LVDS with dual channel */
400                         limit = &intel_limits_g4x_single_channel_lvds;
401         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
402                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
403                 limit = &intel_limits_g4x_hdmi;
404         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
405                 limit = &intel_limits_g4x_sdvo;
406         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
407                 limit = &intel_limits_g4x_display_port;
408         } else /* The option is for other outputs */
409                 limit = &intel_limits_i9xx_sdvo;
410
411         return limit;
412 }
413
414 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
415 {
416         struct drm_device *dev = crtc->dev;
417         const intel_limit_t *limit;
418
419         if (HAS_PCH_SPLIT(dev))
420                 limit = intel_ironlake_limit(crtc, refclk);
421         else if (IS_G4X(dev)) {
422                 limit = intel_g4x_limit(crtc);
423         } else if (IS_PINEVIEW(dev)) {
424                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
425                         limit = &intel_limits_pineview_lvds;
426                 else
427                         limit = &intel_limits_pineview_sdvo;
428         } else if (!IS_GEN2(dev)) {
429                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
430                         limit = &intel_limits_i9xx_lvds;
431                 else
432                         limit = &intel_limits_i9xx_sdvo;
433         } else {
434                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
435                         limit = &intel_limits_i8xx_lvds;
436                 else
437                         limit = &intel_limits_i8xx_dvo;
438         }
439         return limit;
440 }
441
442 /* m1 is reserved as 0 in Pineview, n is a ring counter */
443 static void pineview_clock(int refclk, intel_clock_t *clock)
444 {
445         clock->m = clock->m2 + 2;
446         clock->p = clock->p1 * clock->p2;
447         clock->vco = refclk * clock->m / clock->n;
448         clock->dot = clock->vco / clock->p;
449 }
450
451 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
452 {
453         if (IS_PINEVIEW(dev)) {
454                 pineview_clock(refclk, clock);
455                 return;
456         }
457         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
458         clock->p = clock->p1 * clock->p2;
459         clock->vco = refclk * clock->m / (clock->n + 2);
460         clock->dot = clock->vco / clock->p;
461 }
462
463 /**
464  * Returns whether any output on the specified pipe is of the specified type
465  */
466 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
467 {
468         struct drm_device *dev = crtc->dev;
469         struct drm_mode_config *mode_config = &dev->mode_config;
470         struct intel_encoder *encoder;
471
472         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
473                 if (encoder->base.crtc == crtc && encoder->type == type)
474                         return true;
475
476         return false;
477 }
478
479 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
480 /**
481  * Returns whether the given set of divisors are valid for a given refclk with
482  * the given connectors.
483  */
484
485 static bool intel_PLL_is_valid(struct drm_device *dev,
486                                const intel_limit_t *limit,
487                                const intel_clock_t *clock)
488 {
489         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
490                 INTELPllInvalid ("p1 out of range\n");
491         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
492                 INTELPllInvalid ("p out of range\n");
493         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
494                 INTELPllInvalid ("m2 out of range\n");
495         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
496                 INTELPllInvalid ("m1 out of range\n");
497         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
498                 INTELPllInvalid ("m1 <= m2\n");
499         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
500                 INTELPllInvalid ("m out of range\n");
501         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
502                 INTELPllInvalid ("n out of range\n");
503         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
504                 INTELPllInvalid ("vco out of range\n");
505         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
506          * connector, etc., rather than just a single range.
507          */
508         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
509                 INTELPllInvalid ("dot out of range\n");
510
511         return true;
512 }
513
514 static bool
515 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
516                     int target, int refclk, intel_clock_t *best_clock)
517
518 {
519         struct drm_device *dev = crtc->dev;
520         struct drm_i915_private *dev_priv = dev->dev_private;
521         intel_clock_t clock;
522         int err = target;
523
524         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
525             (I915_READ(LVDS)) != 0) {
526                 /*
527                  * For LVDS, if the panel is on, just rely on its current
528                  * settings for dual-channel.  We haven't figured out how to
529                  * reliably set up different single/dual channel state, if we
530                  * even can.
531                  */
532                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
533                     LVDS_CLKB_POWER_UP)
534                         clock.p2 = limit->p2.p2_fast;
535                 else
536                         clock.p2 = limit->p2.p2_slow;
537         } else {
538                 if (target < limit->p2.dot_limit)
539                         clock.p2 = limit->p2.p2_slow;
540                 else
541                         clock.p2 = limit->p2.p2_fast;
542         }
543
544         memset (best_clock, 0, sizeof (*best_clock));
545
546         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
547              clock.m1++) {
548                 for (clock.m2 = limit->m2.min;
549                      clock.m2 <= limit->m2.max; clock.m2++) {
550                         /* m1 is always 0 in Pineview */
551                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
552                                 break;
553                         for (clock.n = limit->n.min;
554                              clock.n <= limit->n.max; clock.n++) {
555                                 for (clock.p1 = limit->p1.min;
556                                         clock.p1 <= limit->p1.max; clock.p1++) {
557                                         int this_err;
558
559                                         intel_clock(dev, refclk, &clock);
560                                         if (!intel_PLL_is_valid(dev, limit,
561                                                                 &clock))
562                                                 continue;
563
564                                         this_err = abs(clock.dot - target);
565                                         if (this_err < err) {
566                                                 *best_clock = clock;
567                                                 err = this_err;
568                                         }
569                                 }
570                         }
571                 }
572         }
573
574         return (err != target);
575 }
576
577 static bool
578 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
579                         int target, int refclk, intel_clock_t *best_clock)
580 {
581         struct drm_device *dev = crtc->dev;
582         struct drm_i915_private *dev_priv = dev->dev_private;
583         intel_clock_t clock;
584         int max_n;
585         bool found;
586         /* approximately equals target * 0.00585 */
587         int err_most = (target >> 8) + (target >> 9);
588         found = false;
589
590         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
591                 int lvds_reg;
592
593                 if (HAS_PCH_SPLIT(dev))
594                         lvds_reg = PCH_LVDS;
595                 else
596                         lvds_reg = LVDS;
597                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
598                     LVDS_CLKB_POWER_UP)
599                         clock.p2 = limit->p2.p2_fast;
600                 else
601                         clock.p2 = limit->p2.p2_slow;
602         } else {
603                 if (target < limit->p2.dot_limit)
604                         clock.p2 = limit->p2.p2_slow;
605                 else
606                         clock.p2 = limit->p2.p2_fast;
607         }
608
609         memset(best_clock, 0, sizeof(*best_clock));
610         max_n = limit->n.max;
611         /* based on hardware requirement, prefer smaller n to precision */
612         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
613                 /* based on hardware requirement, prefere larger m1,m2 */
614                 for (clock.m1 = limit->m1.max;
615                      clock.m1 >= limit->m1.min; clock.m1--) {
616                         for (clock.m2 = limit->m2.max;
617                              clock.m2 >= limit->m2.min; clock.m2--) {
618                                 for (clock.p1 = limit->p1.max;
619                                      clock.p1 >= limit->p1.min; clock.p1--) {
620                                         int this_err;
621
622                                         intel_clock(dev, refclk, &clock);
623                                         if (!intel_PLL_is_valid(dev, limit,
624                                                                 &clock))
625                                                 continue;
626
627                                         this_err = abs(clock.dot - target);
628                                         if (this_err < err_most) {
629                                                 *best_clock = clock;
630                                                 err_most = this_err;
631                                                 max_n = clock.n;
632                                                 found = true;
633                                         }
634                                 }
635                         }
636                 }
637         }
638         return found;
639 }
640
641 static bool
642 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
643                            int target, int refclk, intel_clock_t *best_clock)
644 {
645         struct drm_device *dev = crtc->dev;
646         intel_clock_t clock;
647
648         if (target < 200000) {
649                 clock.n = 1;
650                 clock.p1 = 2;
651                 clock.p2 = 10;
652                 clock.m1 = 12;
653                 clock.m2 = 9;
654         } else {
655                 clock.n = 2;
656                 clock.p1 = 1;
657                 clock.p2 = 10;
658                 clock.m1 = 14;
659                 clock.m2 = 8;
660         }
661         intel_clock(dev, refclk, &clock);
662         memcpy(best_clock, &clock, sizeof(intel_clock_t));
663         return true;
664 }
665
666 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
667 static bool
668 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
669                       int target, int refclk, intel_clock_t *best_clock)
670 {
671         intel_clock_t clock;
672         if (target < 200000) {
673                 clock.p1 = 2;
674                 clock.p2 = 10;
675                 clock.n = 2;
676                 clock.m1 = 23;
677                 clock.m2 = 8;
678         } else {
679                 clock.p1 = 1;
680                 clock.p2 = 10;
681                 clock.n = 1;
682                 clock.m1 = 14;
683                 clock.m2 = 2;
684         }
685         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
686         clock.p = (clock.p1 * clock.p2);
687         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
688         clock.vco = 0;
689         memcpy(best_clock, &clock, sizeof(intel_clock_t));
690         return true;
691 }
692
693 /**
694  * intel_wait_for_vblank - wait for vblank on a given pipe
695  * @dev: drm device
696  * @pipe: pipe to wait for
697  *
698  * Wait for vblank to occur on a given pipe.  Needed for various bits of
699  * mode setting code.
700  */
701 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
702 {
703         struct drm_i915_private *dev_priv = dev->dev_private;
704         int pipestat_reg = PIPESTAT(pipe);
705
706         /* Clear existing vblank status. Note this will clear any other
707          * sticky status fields as well.
708          *
709          * This races with i915_driver_irq_handler() with the result
710          * that either function could miss a vblank event.  Here it is not
711          * fatal, as we will either wait upon the next vblank interrupt or
712          * timeout.  Generally speaking intel_wait_for_vblank() is only
713          * called during modeset at which time the GPU should be idle and
714          * should *not* be performing page flips and thus not waiting on
715          * vblanks...
716          * Currently, the result of us stealing a vblank from the irq
717          * handler is that a single frame will be skipped during swapbuffers.
718          */
719         I915_WRITE(pipestat_reg,
720                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
721
722         /* Wait for vblank interrupt bit to set */
723         if (wait_for(I915_READ(pipestat_reg) &
724                      PIPE_VBLANK_INTERRUPT_STATUS,
725                      50))
726                 DRM_DEBUG_KMS("vblank wait timed out\n");
727 }
728
729 /*
730  * intel_wait_for_pipe_off - wait for pipe to turn off
731  * @dev: drm device
732  * @pipe: pipe to wait for
733  *
734  * After disabling a pipe, we can't wait for vblank in the usual way,
735  * spinning on the vblank interrupt status bit, since we won't actually
736  * see an interrupt when the pipe is disabled.
737  *
738  * On Gen4 and above:
739  *   wait for the pipe register state bit to turn off
740  *
741  * Otherwise:
742  *   wait for the display line value to settle (it usually
743  *   ends up stopping at the start of the next frame).
744  *
745  */
746 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
747 {
748         struct drm_i915_private *dev_priv = dev->dev_private;
749
750         if (INTEL_INFO(dev)->gen >= 4) {
751                 int reg = PIPECONF(pipe);
752
753                 /* Wait for the Pipe State to go off */
754                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
755                              100))
756                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
757         } else {
758                 u32 last_line;
759                 int reg = PIPEDSL(pipe);
760                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
761
762                 /* Wait for the display line to settle */
763                 do {
764                         last_line = I915_READ(reg) & DSL_LINEMASK;
765                         mdelay(5);
766                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
767                          time_after(timeout, jiffies));
768                 if (time_after(jiffies, timeout))
769                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
770         }
771 }
772
773 static const char *state_string(bool enabled)
774 {
775         return enabled ? "on" : "off";
776 }
777
778 /* Only for pre-ILK configs */
779 static void assert_pll(struct drm_i915_private *dev_priv,
780                        enum pipe pipe, bool state)
781 {
782         int reg;
783         u32 val;
784         bool cur_state;
785
786         reg = DPLL(pipe);
787         val = I915_READ(reg);
788         cur_state = !!(val & DPLL_VCO_ENABLE);
789         WARN(cur_state != state,
790              "PLL state assertion failure (expected %s, current %s)\n",
791              state_string(state), state_string(cur_state));
792 }
793 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
794 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
795
796 /* For ILK+ */
797 static void assert_pch_pll(struct drm_i915_private *dev_priv,
798                            enum pipe pipe, bool state)
799 {
800         int reg;
801         u32 val;
802         bool cur_state;
803
804         reg = PCH_DPLL(pipe);
805         val = I915_READ(reg);
806         cur_state = !!(val & DPLL_VCO_ENABLE);
807         WARN(cur_state != state,
808              "PCH PLL state assertion failure (expected %s, current %s)\n",
809              state_string(state), state_string(cur_state));
810 }
811 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
812 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
813
814 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
815                           enum pipe pipe, bool state)
816 {
817         int reg;
818         u32 val;
819         bool cur_state;
820
821         reg = FDI_TX_CTL(pipe);
822         val = I915_READ(reg);
823         cur_state = !!(val & FDI_TX_ENABLE);
824         WARN(cur_state != state,
825              "FDI TX state assertion failure (expected %s, current %s)\n",
826              state_string(state), state_string(cur_state));
827 }
828 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
829 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
830
831 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
832                           enum pipe pipe, bool state)
833 {
834         int reg;
835         u32 val;
836         bool cur_state;
837
838         reg = FDI_RX_CTL(pipe);
839         val = I915_READ(reg);
840         cur_state = !!(val & FDI_RX_ENABLE);
841         WARN(cur_state != state,
842              "FDI RX state assertion failure (expected %s, current %s)\n",
843              state_string(state), state_string(cur_state));
844 }
845 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
846 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
847
848 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
849                                       enum pipe pipe)
850 {
851         int reg;
852         u32 val;
853
854         /* ILK FDI PLL is always enabled */
855         if (dev_priv->info->gen == 5)
856                 return;
857
858         reg = FDI_TX_CTL(pipe);
859         val = I915_READ(reg);
860         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
861 }
862
863 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
864                                       enum pipe pipe)
865 {
866         int reg;
867         u32 val;
868
869         reg = FDI_RX_CTL(pipe);
870         val = I915_READ(reg);
871         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
872 }
873
874 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
875                                   enum pipe pipe)
876 {
877         int pp_reg, lvds_reg;
878         u32 val;
879         enum pipe panel_pipe = PIPE_A;
880         bool locked = locked;
881
882         if (HAS_PCH_SPLIT(dev_priv->dev)) {
883                 pp_reg = PCH_PP_CONTROL;
884                 lvds_reg = PCH_LVDS;
885         } else {
886                 pp_reg = PP_CONTROL;
887                 lvds_reg = LVDS;
888         }
889
890         val = I915_READ(pp_reg);
891         if (!(val & PANEL_POWER_ON) ||
892             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
893                 locked = false;
894
895         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
896                 panel_pipe = PIPE_B;
897
898         WARN(panel_pipe == pipe && locked,
899              "panel assertion failure, pipe %c regs locked\n",
900              pipe_name(pipe));
901 }
902
903 static void assert_pipe(struct drm_i915_private *dev_priv,
904                         enum pipe pipe, bool state)
905 {
906         int reg;
907         u32 val;
908         bool cur_state;
909
910         reg = PIPECONF(pipe);
911         val = I915_READ(reg);
912         cur_state = !!(val & PIPECONF_ENABLE);
913         WARN(cur_state != state,
914              "pipe %c assertion failure (expected %s, current %s)\n",
915              pipe_name(pipe), state_string(state), state_string(cur_state));
916 }
917 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
918 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
919
920 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
921                                  enum plane plane)
922 {
923         int reg;
924         u32 val;
925
926         reg = DSPCNTR(plane);
927         val = I915_READ(reg);
928         WARN(!(val & DISPLAY_PLANE_ENABLE),
929              "plane %c assertion failure, should be active but is disabled\n",
930              plane_name(plane));
931 }
932
933 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
934                                    enum pipe pipe)
935 {
936         int reg, i;
937         u32 val;
938         int cur_pipe;
939
940         /* Planes are fixed to pipes on ILK+ */
941         if (HAS_PCH_SPLIT(dev_priv->dev))
942                 return;
943
944         /* Need to check both planes against the pipe */
945         for (i = 0; i < 2; i++) {
946                 reg = DSPCNTR(i);
947                 val = I915_READ(reg);
948                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
949                         DISPPLANE_SEL_PIPE_SHIFT;
950                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
951                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
952                      plane_name(i), pipe_name(pipe));
953         }
954 }
955
956 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
957 {
958         u32 val;
959         bool enabled;
960
961         val = I915_READ(PCH_DREF_CONTROL);
962         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
963                             DREF_SUPERSPREAD_SOURCE_MASK));
964         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
965 }
966
967 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
968                                        enum pipe pipe)
969 {
970         int reg;
971         u32 val;
972         bool enabled;
973
974         reg = TRANSCONF(pipe);
975         val = I915_READ(reg);
976         enabled = !!(val & TRANS_ENABLE);
977         WARN(enabled,
978              "transcoder assertion failed, should be off on pipe %c but is still active\n",
979              pipe_name(pipe));
980 }
981
982 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
983                                    enum pipe pipe, int reg)
984 {
985         u32 val = I915_READ(reg);
986         WARN(DP_PIPE_ENABLED(val, pipe),
987              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
988              reg, pipe_name(pipe));
989 }
990
991 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
992                                      enum pipe pipe, int reg)
993 {
994         u32 val = I915_READ(reg);
995         WARN(HDMI_PIPE_ENABLED(val, pipe),
996              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
997              reg, pipe_name(pipe));
998 }
999
1000 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1001                                       enum pipe pipe)
1002 {
1003         int reg;
1004         u32 val;
1005
1006         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1007         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1008         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1009
1010         reg = PCH_ADPA;
1011         val = I915_READ(reg);
1012         WARN(ADPA_PIPE_ENABLED(val, pipe),
1013              "PCH VGA enabled on transcoder %c, should be disabled\n",
1014              pipe_name(pipe));
1015
1016         reg = PCH_LVDS;
1017         val = I915_READ(reg);
1018         WARN(LVDS_PIPE_ENABLED(val, pipe),
1019              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1020              pipe_name(pipe));
1021
1022         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1023         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1024         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1025 }
1026
1027 /**
1028  * intel_enable_pll - enable a PLL
1029  * @dev_priv: i915 private structure
1030  * @pipe: pipe PLL to enable
1031  *
1032  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1033  * make sure the PLL reg is writable first though, since the panel write
1034  * protect mechanism may be enabled.
1035  *
1036  * Note!  This is for pre-ILK only.
1037  */
1038 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1039 {
1040         int reg;
1041         u32 val;
1042
1043         /* No really, not for ILK+ */
1044         BUG_ON(dev_priv->info->gen >= 5);
1045
1046         /* PLL is protected by panel, make sure we can write it */
1047         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1048                 assert_panel_unlocked(dev_priv, pipe);
1049
1050         reg = DPLL(pipe);
1051         val = I915_READ(reg);
1052         val |= DPLL_VCO_ENABLE;
1053
1054         /* We do this three times for luck */
1055         I915_WRITE(reg, val);
1056         POSTING_READ(reg);
1057         udelay(150); /* wait for warmup */
1058         I915_WRITE(reg, val);
1059         POSTING_READ(reg);
1060         udelay(150); /* wait for warmup */
1061         I915_WRITE(reg, val);
1062         POSTING_READ(reg);
1063         udelay(150); /* wait for warmup */
1064 }
1065
1066 /**
1067  * intel_disable_pll - disable a PLL
1068  * @dev_priv: i915 private structure
1069  * @pipe: pipe PLL to disable
1070  *
1071  * Disable the PLL for @pipe, making sure the pipe is off first.
1072  *
1073  * Note!  This is for pre-ILK only.
1074  */
1075 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1076 {
1077         int reg;
1078         u32 val;
1079
1080         /* Don't disable pipe A or pipe A PLLs if needed */
1081         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1082                 return;
1083
1084         /* Make sure the pipe isn't still relying on us */
1085         assert_pipe_disabled(dev_priv, pipe);
1086
1087         reg = DPLL(pipe);
1088         val = I915_READ(reg);
1089         val &= ~DPLL_VCO_ENABLE;
1090         I915_WRITE(reg, val);
1091         POSTING_READ(reg);
1092 }
1093
1094 /**
1095  * intel_enable_pch_pll - enable PCH PLL
1096  * @dev_priv: i915 private structure
1097  * @pipe: pipe PLL to enable
1098  *
1099  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1100  * drives the transcoder clock.
1101  */
1102 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1103                                  enum pipe pipe)
1104 {
1105         int reg;
1106         u32 val;
1107
1108         /* PCH only available on ILK+ */
1109         BUG_ON(dev_priv->info->gen < 5);
1110
1111         /* PCH refclock must be enabled first */
1112         assert_pch_refclk_enabled(dev_priv);
1113
1114         reg = PCH_DPLL(pipe);
1115         val = I915_READ(reg);
1116         val |= DPLL_VCO_ENABLE;
1117         I915_WRITE(reg, val);
1118         POSTING_READ(reg);
1119         udelay(200);
1120 }
1121
1122 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1123                                   enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* PCH only available on ILK+ */
1129         BUG_ON(dev_priv->info->gen < 5);
1130
1131         /* Make sure transcoder isn't still depending on us */
1132         assert_transcoder_disabled(dev_priv, pipe);
1133
1134         reg = PCH_DPLL(pipe);
1135         val = I915_READ(reg);
1136         val &= ~DPLL_VCO_ENABLE;
1137         I915_WRITE(reg, val);
1138         POSTING_READ(reg);
1139         udelay(200);
1140 }
1141
1142 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1143                                     enum pipe pipe)
1144 {
1145         int reg;
1146         u32 val;
1147
1148         /* PCH only available on ILK+ */
1149         BUG_ON(dev_priv->info->gen < 5);
1150
1151         /* Make sure PCH DPLL is enabled */
1152         assert_pch_pll_enabled(dev_priv, pipe);
1153
1154         /* FDI must be feeding us bits for PCH ports */
1155         assert_fdi_tx_enabled(dev_priv, pipe);
1156         assert_fdi_rx_enabled(dev_priv, pipe);
1157
1158         reg = TRANSCONF(pipe);
1159         val = I915_READ(reg);
1160         /*
1161          * make the BPC in transcoder be consistent with
1162          * that in pipeconf reg.
1163          */
1164         val &= ~PIPE_BPC_MASK;
1165         val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1166         I915_WRITE(reg, val | TRANS_ENABLE);
1167         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1168                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1169 }
1170
1171 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1172                                      enum pipe pipe)
1173 {
1174         int reg;
1175         u32 val;
1176
1177         /* FDI relies on the transcoder */
1178         assert_fdi_tx_disabled(dev_priv, pipe);
1179         assert_fdi_rx_disabled(dev_priv, pipe);
1180
1181         /* Ports must be off as well */
1182         assert_pch_ports_disabled(dev_priv, pipe);
1183
1184         reg = TRANSCONF(pipe);
1185         val = I915_READ(reg);
1186         val &= ~TRANS_ENABLE;
1187         I915_WRITE(reg, val);
1188         /* wait for PCH transcoder off, transcoder state */
1189         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1190                 DRM_ERROR("failed to disable transcoder\n");
1191 }
1192
1193 /**
1194  * intel_enable_pipe - enable a pipe, asserting requirements
1195  * @dev_priv: i915 private structure
1196  * @pipe: pipe to enable
1197  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1198  *
1199  * Enable @pipe, making sure that various hardware specific requirements
1200  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1201  *
1202  * @pipe should be %PIPE_A or %PIPE_B.
1203  *
1204  * Will wait until the pipe is actually running (i.e. first vblank) before
1205  * returning.
1206  */
1207 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1208                               bool pch_port)
1209 {
1210         int reg;
1211         u32 val;
1212
1213         /*
1214          * A pipe without a PLL won't actually be able to drive bits from
1215          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1216          * need the check.
1217          */
1218         if (!HAS_PCH_SPLIT(dev_priv->dev))
1219                 assert_pll_enabled(dev_priv, pipe);
1220         else {
1221                 if (pch_port) {
1222                         /* if driving the PCH, we need FDI enabled */
1223                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1224                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1225                 }
1226                 /* FIXME: assert CPU port conditions for SNB+ */
1227         }
1228
1229         reg = PIPECONF(pipe);
1230         val = I915_READ(reg);
1231         if (val & PIPECONF_ENABLE)
1232                 return;
1233
1234         I915_WRITE(reg, val | PIPECONF_ENABLE);
1235         intel_wait_for_vblank(dev_priv->dev, pipe);
1236 }
1237
1238 /**
1239  * intel_disable_pipe - disable a pipe, asserting requirements
1240  * @dev_priv: i915 private structure
1241  * @pipe: pipe to disable
1242  *
1243  * Disable @pipe, making sure that various hardware specific requirements
1244  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1245  *
1246  * @pipe should be %PIPE_A or %PIPE_B.
1247  *
1248  * Will wait until the pipe has shut down before returning.
1249  */
1250 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1251                                enum pipe pipe)
1252 {
1253         int reg;
1254         u32 val;
1255
1256         /*
1257          * Make sure planes won't keep trying to pump pixels to us,
1258          * or we might hang the display.
1259          */
1260         assert_planes_disabled(dev_priv, pipe);
1261
1262         /* Don't disable pipe A or pipe A PLLs if needed */
1263         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1264                 return;
1265
1266         reg = PIPECONF(pipe);
1267         val = I915_READ(reg);
1268         if ((val & PIPECONF_ENABLE) == 0)
1269                 return;
1270
1271         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1272         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1273 }
1274
1275 /**
1276  * intel_enable_plane - enable a display plane on a given pipe
1277  * @dev_priv: i915 private structure
1278  * @plane: plane to enable
1279  * @pipe: pipe being fed
1280  *
1281  * Enable @plane on @pipe, making sure that @pipe is running first.
1282  */
1283 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1284                                enum plane plane, enum pipe pipe)
1285 {
1286         int reg;
1287         u32 val;
1288
1289         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1290         assert_pipe_enabled(dev_priv, pipe);
1291
1292         reg = DSPCNTR(plane);
1293         val = I915_READ(reg);
1294         if (val & DISPLAY_PLANE_ENABLE)
1295                 return;
1296
1297         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1298         intel_wait_for_vblank(dev_priv->dev, pipe);
1299 }
1300
1301 /*
1302  * Plane regs are double buffered, going from enabled->disabled needs a
1303  * trigger in order to latch.  The display address reg provides this.
1304  */
1305 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1306                                       enum plane plane)
1307 {
1308         u32 reg = DSPADDR(plane);
1309         I915_WRITE(reg, I915_READ(reg));
1310 }
1311
1312 /**
1313  * intel_disable_plane - disable a display plane
1314  * @dev_priv: i915 private structure
1315  * @plane: plane to disable
1316  * @pipe: pipe consuming the data
1317  *
1318  * Disable @plane; should be an independent operation.
1319  */
1320 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1321                                 enum plane plane, enum pipe pipe)
1322 {
1323         int reg;
1324         u32 val;
1325
1326         reg = DSPCNTR(plane);
1327         val = I915_READ(reg);
1328         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1329                 return;
1330
1331         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1332         intel_flush_display_plane(dev_priv, plane);
1333         intel_wait_for_vblank(dev_priv->dev, pipe);
1334 }
1335
1336 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1337                            enum pipe pipe, int reg)
1338 {
1339         u32 val = I915_READ(reg);
1340         if (DP_PIPE_ENABLED(val, pipe))
1341                 I915_WRITE(reg, val & ~DP_PORT_EN);
1342 }
1343
1344 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1345                              enum pipe pipe, int reg)
1346 {
1347         u32 val = I915_READ(reg);
1348         if (HDMI_PIPE_ENABLED(val, pipe))
1349                 I915_WRITE(reg, val & ~PORT_ENABLE);
1350 }
1351
1352 /* Disable any ports connected to this transcoder */
1353 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1354                                     enum pipe pipe)
1355 {
1356         u32 reg, val;
1357
1358         val = I915_READ(PCH_PP_CONTROL);
1359         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1360
1361         disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1362         disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1363         disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1364
1365         reg = PCH_ADPA;
1366         val = I915_READ(reg);
1367         if (ADPA_PIPE_ENABLED(val, pipe))
1368                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1369
1370         reg = PCH_LVDS;
1371         val = I915_READ(reg);
1372         if (LVDS_PIPE_ENABLED(val, pipe)) {
1373                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1374                 POSTING_READ(reg);
1375                 udelay(100);
1376         }
1377
1378         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1379         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1380         disable_pch_hdmi(dev_priv, pipe, HDMID);
1381 }
1382
1383 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1384 {
1385         struct drm_device *dev = crtc->dev;
1386         struct drm_i915_private *dev_priv = dev->dev_private;
1387         struct drm_framebuffer *fb = crtc->fb;
1388         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1389         struct drm_i915_gem_object *obj = intel_fb->obj;
1390         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1391         int plane, i;
1392         u32 fbc_ctl, fbc_ctl2;
1393
1394         if (fb->pitch == dev_priv->cfb_pitch &&
1395             obj->fence_reg == dev_priv->cfb_fence &&
1396             intel_crtc->plane == dev_priv->cfb_plane &&
1397             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1398                 return;
1399
1400         i8xx_disable_fbc(dev);
1401
1402         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1403
1404         if (fb->pitch < dev_priv->cfb_pitch)
1405                 dev_priv->cfb_pitch = fb->pitch;
1406
1407         /* FBC_CTL wants 64B units */
1408         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1409         dev_priv->cfb_fence = obj->fence_reg;
1410         dev_priv->cfb_plane = intel_crtc->plane;
1411         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1412
1413         /* Clear old tags */
1414         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1415                 I915_WRITE(FBC_TAG + (i * 4), 0);
1416
1417         /* Set it up... */
1418         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1419         if (obj->tiling_mode != I915_TILING_NONE)
1420                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1421         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1422         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1423
1424         /* enable it... */
1425         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1426         if (IS_I945GM(dev))
1427                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1428         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1429         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1430         if (obj->tiling_mode != I915_TILING_NONE)
1431                 fbc_ctl |= dev_priv->cfb_fence;
1432         I915_WRITE(FBC_CONTROL, fbc_ctl);
1433
1434         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1435                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1436 }
1437
1438 void i8xx_disable_fbc(struct drm_device *dev)
1439 {
1440         struct drm_i915_private *dev_priv = dev->dev_private;
1441         u32 fbc_ctl;
1442
1443         /* Disable compression */
1444         fbc_ctl = I915_READ(FBC_CONTROL);
1445         if ((fbc_ctl & FBC_CTL_EN) == 0)
1446                 return;
1447
1448         fbc_ctl &= ~FBC_CTL_EN;
1449         I915_WRITE(FBC_CONTROL, fbc_ctl);
1450
1451         /* Wait for compressing bit to clear */
1452         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1453                 DRM_DEBUG_KMS("FBC idle timed out\n");
1454                 return;
1455         }
1456
1457         DRM_DEBUG_KMS("disabled FBC\n");
1458 }
1459
1460 static bool i8xx_fbc_enabled(struct drm_device *dev)
1461 {
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463
1464         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1465 }
1466
1467 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1468 {
1469         struct drm_device *dev = crtc->dev;
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471         struct drm_framebuffer *fb = crtc->fb;
1472         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1473         struct drm_i915_gem_object *obj = intel_fb->obj;
1474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1475         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1476         unsigned long stall_watermark = 200;
1477         u32 dpfc_ctl;
1478
1479         dpfc_ctl = I915_READ(DPFC_CONTROL);
1480         if (dpfc_ctl & DPFC_CTL_EN) {
1481                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1482                     dev_priv->cfb_fence == obj->fence_reg &&
1483                     dev_priv->cfb_plane == intel_crtc->plane &&
1484                     dev_priv->cfb_y == crtc->y)
1485                         return;
1486
1487                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1488                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1489         }
1490
1491         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1492         dev_priv->cfb_fence = obj->fence_reg;
1493         dev_priv->cfb_plane = intel_crtc->plane;
1494         dev_priv->cfb_y = crtc->y;
1495
1496         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1497         if (obj->tiling_mode != I915_TILING_NONE) {
1498                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1499                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1500         } else {
1501                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1502         }
1503
1504         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1505                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1506                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1507         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1508
1509         /* enable it... */
1510         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1511
1512         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1513 }
1514
1515 void g4x_disable_fbc(struct drm_device *dev)
1516 {
1517         struct drm_i915_private *dev_priv = dev->dev_private;
1518         u32 dpfc_ctl;
1519
1520         /* Disable compression */
1521         dpfc_ctl = I915_READ(DPFC_CONTROL);
1522         if (dpfc_ctl & DPFC_CTL_EN) {
1523                 dpfc_ctl &= ~DPFC_CTL_EN;
1524                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1525
1526                 DRM_DEBUG_KMS("disabled FBC\n");
1527         }
1528 }
1529
1530 static bool g4x_fbc_enabled(struct drm_device *dev)
1531 {
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533
1534         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1535 }
1536
1537 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1538 {
1539         struct drm_i915_private *dev_priv = dev->dev_private;
1540         u32 blt_ecoskpd;
1541
1542         /* Make sure blitter notifies FBC of writes */
1543         gen6_gt_force_wake_get(dev_priv);
1544         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1545         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1546                 GEN6_BLITTER_LOCK_SHIFT;
1547         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1548         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1549         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1550         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1551                          GEN6_BLITTER_LOCK_SHIFT);
1552         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1553         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1554         gen6_gt_force_wake_put(dev_priv);
1555 }
1556
1557 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1558 {
1559         struct drm_device *dev = crtc->dev;
1560         struct drm_i915_private *dev_priv = dev->dev_private;
1561         struct drm_framebuffer *fb = crtc->fb;
1562         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1563         struct drm_i915_gem_object *obj = intel_fb->obj;
1564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1565         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1566         unsigned long stall_watermark = 200;
1567         u32 dpfc_ctl;
1568
1569         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1570         if (dpfc_ctl & DPFC_CTL_EN) {
1571                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1572                     dev_priv->cfb_fence == obj->fence_reg &&
1573                     dev_priv->cfb_plane == intel_crtc->plane &&
1574                     dev_priv->cfb_offset == obj->gtt_offset &&
1575                     dev_priv->cfb_y == crtc->y)
1576                         return;
1577
1578                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1579                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1580         }
1581
1582         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1583         dev_priv->cfb_fence = obj->fence_reg;
1584         dev_priv->cfb_plane = intel_crtc->plane;
1585         dev_priv->cfb_offset = obj->gtt_offset;
1586         dev_priv->cfb_y = crtc->y;
1587
1588         dpfc_ctl &= DPFC_RESERVED;
1589         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1590         if (obj->tiling_mode != I915_TILING_NONE) {
1591                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1592                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1593         } else {
1594                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1595         }
1596
1597         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1598                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1599                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1600         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1601         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1602         /* enable it... */
1603         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1604
1605         if (IS_GEN6(dev)) {
1606                 I915_WRITE(SNB_DPFC_CTL_SA,
1607                            SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1608                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1609                 sandybridge_blit_fbc_update(dev);
1610         }
1611
1612         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1613 }
1614
1615 void ironlake_disable_fbc(struct drm_device *dev)
1616 {
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         u32 dpfc_ctl;
1619
1620         /* Disable compression */
1621         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1622         if (dpfc_ctl & DPFC_CTL_EN) {
1623                 dpfc_ctl &= ~DPFC_CTL_EN;
1624                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1625
1626                 DRM_DEBUG_KMS("disabled FBC\n");
1627         }
1628 }
1629
1630 static bool ironlake_fbc_enabled(struct drm_device *dev)
1631 {
1632         struct drm_i915_private *dev_priv = dev->dev_private;
1633
1634         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1635 }
1636
1637 bool intel_fbc_enabled(struct drm_device *dev)
1638 {
1639         struct drm_i915_private *dev_priv = dev->dev_private;
1640
1641         if (!dev_priv->display.fbc_enabled)
1642                 return false;
1643
1644         return dev_priv->display.fbc_enabled(dev);
1645 }
1646
1647 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1648 {
1649         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1650
1651         if (!dev_priv->display.enable_fbc)
1652                 return;
1653
1654         dev_priv->display.enable_fbc(crtc, interval);
1655 }
1656
1657 void intel_disable_fbc(struct drm_device *dev)
1658 {
1659         struct drm_i915_private *dev_priv = dev->dev_private;
1660
1661         if (!dev_priv->display.disable_fbc)
1662                 return;
1663
1664         dev_priv->display.disable_fbc(dev);
1665 }
1666
1667 /**
1668  * intel_update_fbc - enable/disable FBC as needed
1669  * @dev: the drm_device
1670  *
1671  * Set up the framebuffer compression hardware at mode set time.  We
1672  * enable it if possible:
1673  *   - plane A only (on pre-965)
1674  *   - no pixel mulitply/line duplication
1675  *   - no alpha buffer discard
1676  *   - no dual wide
1677  *   - framebuffer <= 2048 in width, 1536 in height
1678  *
1679  * We can't assume that any compression will take place (worst case),
1680  * so the compressed buffer has to be the same size as the uncompressed
1681  * one.  It also must reside (along with the line length buffer) in
1682  * stolen memory.
1683  *
1684  * We need to enable/disable FBC on a global basis.
1685  */
1686 static void intel_update_fbc(struct drm_device *dev)
1687 {
1688         struct drm_i915_private *dev_priv = dev->dev_private;
1689         struct drm_crtc *crtc = NULL, *tmp_crtc;
1690         struct intel_crtc *intel_crtc;
1691         struct drm_framebuffer *fb;
1692         struct intel_framebuffer *intel_fb;
1693         struct drm_i915_gem_object *obj;
1694
1695         DRM_DEBUG_KMS("\n");
1696
1697         if (!i915_powersave)
1698                 return;
1699
1700         if (!I915_HAS_FBC(dev))
1701                 return;
1702
1703         /*
1704          * If FBC is already on, we just have to verify that we can
1705          * keep it that way...
1706          * Need to disable if:
1707          *   - more than one pipe is active
1708          *   - changing FBC params (stride, fence, mode)
1709          *   - new fb is too large to fit in compressed buffer
1710          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1711          */
1712         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1713                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1714                         if (crtc) {
1715                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1716                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1717                                 goto out_disable;
1718                         }
1719                         crtc = tmp_crtc;
1720                 }
1721         }
1722
1723         if (!crtc || crtc->fb == NULL) {
1724                 DRM_DEBUG_KMS("no output, disabling\n");
1725                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1726                 goto out_disable;
1727         }
1728
1729         intel_crtc = to_intel_crtc(crtc);
1730         fb = crtc->fb;
1731         intel_fb = to_intel_framebuffer(fb);
1732         obj = intel_fb->obj;
1733
1734         if (!i915_enable_fbc) {
1735                 DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1736                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1737                 goto out_disable;
1738         }
1739         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1740                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1741                               "compression\n");
1742                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1743                 goto out_disable;
1744         }
1745         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1746             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1747                 DRM_DEBUG_KMS("mode incompatible with compression, "
1748                               "disabling\n");
1749                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1750                 goto out_disable;
1751         }
1752         if ((crtc->mode.hdisplay > 2048) ||
1753             (crtc->mode.vdisplay > 1536)) {
1754                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1755                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1756                 goto out_disable;
1757         }
1758         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1759                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1760                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1761                 goto out_disable;
1762         }
1763         if (obj->tiling_mode != I915_TILING_X) {
1764                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1765                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1766                 goto out_disable;
1767         }
1768
1769         /* If the kernel debugger is active, always disable compression */
1770         if (in_dbg_master())
1771                 goto out_disable;
1772
1773         intel_enable_fbc(crtc, 500);
1774         return;
1775
1776 out_disable:
1777         /* Multiple disables should be harmless */
1778         if (intel_fbc_enabled(dev)) {
1779                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1780                 intel_disable_fbc(dev);
1781         }
1782 }
1783
1784 int
1785 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1786                            struct drm_i915_gem_object *obj,
1787                            struct intel_ring_buffer *pipelined)
1788 {
1789         struct drm_i915_private *dev_priv = dev->dev_private;
1790         u32 alignment;
1791         int ret;
1792
1793         switch (obj->tiling_mode) {
1794         case I915_TILING_NONE:
1795                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1796                         alignment = 128 * 1024;
1797                 else if (INTEL_INFO(dev)->gen >= 4)
1798                         alignment = 4 * 1024;
1799                 else
1800                         alignment = 64 * 1024;
1801                 break;
1802         case I915_TILING_X:
1803                 /* pin() will align the object as required by fence */
1804                 alignment = 0;
1805                 break;
1806         case I915_TILING_Y:
1807                 /* FIXME: Is this true? */
1808                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1809                 return -EINVAL;
1810         default:
1811                 BUG();
1812         }
1813
1814         dev_priv->mm.interruptible = false;
1815         ret = i915_gem_object_pin(obj, alignment, true);
1816         if (ret)
1817                 goto err_interruptible;
1818
1819         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1820         if (ret)
1821                 goto err_unpin;
1822
1823         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1824          * fence, whereas 965+ only requires a fence if using
1825          * framebuffer compression.  For simplicity, we always install
1826          * a fence as the cost is not that onerous.
1827          */
1828         if (obj->tiling_mode != I915_TILING_NONE) {
1829                 ret = i915_gem_object_get_fence(obj, pipelined);
1830                 if (ret)
1831                         goto err_unpin;
1832         }
1833
1834         dev_priv->mm.interruptible = true;
1835         return 0;
1836
1837 err_unpin:
1838         i915_gem_object_unpin(obj);
1839 err_interruptible:
1840         dev_priv->mm.interruptible = true;
1841         return ret;
1842 }
1843
1844 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1845 static int
1846 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1847                            int x, int y, enum mode_set_atomic state)
1848 {
1849         struct drm_device *dev = crtc->dev;
1850         struct drm_i915_private *dev_priv = dev->dev_private;
1851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1852         struct intel_framebuffer *intel_fb;
1853         struct drm_i915_gem_object *obj;
1854         int plane = intel_crtc->plane;
1855         unsigned long Start, Offset;
1856         u32 dspcntr;
1857         u32 reg;
1858
1859         switch (plane) {
1860         case 0:
1861         case 1:
1862                 break;
1863         default:
1864                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1865                 return -EINVAL;
1866         }
1867
1868         intel_fb = to_intel_framebuffer(fb);
1869         obj = intel_fb->obj;
1870
1871         reg = DSPCNTR(plane);
1872         dspcntr = I915_READ(reg);
1873         /* Mask out pixel format bits in case we change it */
1874         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1875         switch (fb->bits_per_pixel) {
1876         case 8:
1877                 dspcntr |= DISPPLANE_8BPP;
1878                 break;
1879         case 16:
1880                 if (fb->depth == 15)
1881                         dspcntr |= DISPPLANE_15_16BPP;
1882                 else
1883                         dspcntr |= DISPPLANE_16BPP;
1884                 break;
1885         case 24:
1886         case 32:
1887                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1888                 break;
1889         default:
1890                 DRM_ERROR("Unknown color depth\n");
1891                 return -EINVAL;
1892         }
1893         if (INTEL_INFO(dev)->gen >= 4) {
1894                 if (obj->tiling_mode != I915_TILING_NONE)
1895                         dspcntr |= DISPPLANE_TILED;
1896                 else
1897                         dspcntr &= ~DISPPLANE_TILED;
1898         }
1899
1900         if (HAS_PCH_SPLIT(dev))
1901                 /* must disable */
1902                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1903
1904         I915_WRITE(reg, dspcntr);
1905
1906         Start = obj->gtt_offset;
1907         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1908
1909         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1910                       Start, Offset, x, y, fb->pitch);
1911         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1912         if (INTEL_INFO(dev)->gen >= 4) {
1913                 I915_WRITE(DSPSURF(plane), Start);
1914                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1915                 I915_WRITE(DSPADDR(plane), Offset);
1916         } else
1917                 I915_WRITE(DSPADDR(plane), Start + Offset);
1918         POSTING_READ(reg);
1919
1920         intel_update_fbc(dev);
1921         intel_increase_pllclock(crtc);
1922
1923         return 0;
1924 }
1925
1926 static int
1927 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1928                     struct drm_framebuffer *old_fb)
1929 {
1930         struct drm_device *dev = crtc->dev;
1931         struct drm_i915_master_private *master_priv;
1932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1933         int ret;
1934
1935         /* no fb bound */
1936         if (!crtc->fb) {
1937                 DRM_DEBUG_KMS("No FB bound\n");
1938                 return 0;
1939         }
1940
1941         switch (intel_crtc->plane) {
1942         case 0:
1943         case 1:
1944                 break;
1945         default:
1946                 return -EINVAL;
1947         }
1948
1949         mutex_lock(&dev->struct_mutex);
1950         ret = intel_pin_and_fence_fb_obj(dev,
1951                                          to_intel_framebuffer(crtc->fb)->obj,
1952                                          NULL);
1953         if (ret != 0) {
1954                 mutex_unlock(&dev->struct_mutex);
1955                 return ret;
1956         }
1957
1958         if (old_fb) {
1959                 struct drm_i915_private *dev_priv = dev->dev_private;
1960                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1961
1962                 wait_event(dev_priv->pending_flip_queue,
1963                            atomic_read(&dev_priv->mm.wedged) ||
1964                            atomic_read(&obj->pending_flip) == 0);
1965
1966                 /* Big Hammer, we also need to ensure that any pending
1967                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1968                  * current scanout is retired before unpinning the old
1969                  * framebuffer.
1970                  *
1971                  * This should only fail upon a hung GPU, in which case we
1972                  * can safely continue.
1973                  */
1974                 ret = i915_gem_object_flush_gpu(obj);
1975                 (void) ret;
1976         }
1977
1978         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1979                                          LEAVE_ATOMIC_MODE_SET);
1980         if (ret) {
1981                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1982                 mutex_unlock(&dev->struct_mutex);
1983                 return ret;
1984         }
1985
1986         if (old_fb) {
1987                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1988                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1989         }
1990
1991         mutex_unlock(&dev->struct_mutex);
1992
1993         if (!dev->primary->master)
1994                 return 0;
1995
1996         master_priv = dev->primary->master->driver_priv;
1997         if (!master_priv->sarea_priv)
1998                 return 0;
1999
2000         if (intel_crtc->pipe) {
2001                 master_priv->sarea_priv->pipeB_x = x;
2002                 master_priv->sarea_priv->pipeB_y = y;
2003         } else {
2004                 master_priv->sarea_priv->pipeA_x = x;
2005                 master_priv->sarea_priv->pipeA_y = y;
2006         }
2007
2008         return 0;
2009 }
2010
2011 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2012 {
2013         struct drm_device *dev = crtc->dev;
2014         struct drm_i915_private *dev_priv = dev->dev_private;
2015         u32 dpa_ctl;
2016
2017         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2018         dpa_ctl = I915_READ(DP_A);
2019         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2020
2021         if (clock < 200000) {
2022                 u32 temp;
2023                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2024                 /* workaround for 160Mhz:
2025                    1) program 0x4600c bits 15:0 = 0x8124
2026                    2) program 0x46010 bit 0 = 1
2027                    3) program 0x46034 bit 24 = 1
2028                    4) program 0x64000 bit 14 = 1
2029                    */
2030                 temp = I915_READ(0x4600c);
2031                 temp &= 0xffff0000;
2032                 I915_WRITE(0x4600c, temp | 0x8124);
2033
2034                 temp = I915_READ(0x46010);
2035                 I915_WRITE(0x46010, temp | 1);
2036
2037                 temp = I915_READ(0x46034);
2038                 I915_WRITE(0x46034, temp | (1 << 24));
2039         } else {
2040                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2041         }
2042         I915_WRITE(DP_A, dpa_ctl);
2043
2044         POSTING_READ(DP_A);
2045         udelay(500);
2046 }
2047
2048 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2049 {
2050         struct drm_device *dev = crtc->dev;
2051         struct drm_i915_private *dev_priv = dev->dev_private;
2052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2053         int pipe = intel_crtc->pipe;
2054         u32 reg, temp;
2055
2056         /* enable normal train */
2057         reg = FDI_TX_CTL(pipe);
2058         temp = I915_READ(reg);
2059         if (IS_IVYBRIDGE(dev)) {
2060                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2061                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2062         } else {
2063                 temp &= ~FDI_LINK_TRAIN_NONE;
2064                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2065         }
2066         I915_WRITE(reg, temp);
2067
2068         reg = FDI_RX_CTL(pipe);
2069         temp = I915_READ(reg);
2070         if (HAS_PCH_CPT(dev)) {
2071                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2072                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2073         } else {
2074                 temp &= ~FDI_LINK_TRAIN_NONE;
2075                 temp |= FDI_LINK_TRAIN_NONE;
2076         }
2077         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2078
2079         /* wait one idle pattern time */
2080         POSTING_READ(reg);
2081         udelay(1000);
2082
2083         /* IVB wants error correction enabled */
2084         if (IS_IVYBRIDGE(dev))
2085                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2086                            FDI_FE_ERRC_ENABLE);
2087 }
2088
2089 /* The FDI link training functions for ILK/Ibexpeak. */
2090 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2091 {
2092         struct drm_device *dev = crtc->dev;
2093         struct drm_i915_private *dev_priv = dev->dev_private;
2094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2095         int pipe = intel_crtc->pipe;
2096         int plane = intel_crtc->plane;
2097         u32 reg, temp, tries;
2098
2099         /* FDI needs bits from pipe & plane first */
2100         assert_pipe_enabled(dev_priv, pipe);
2101         assert_plane_enabled(dev_priv, plane);
2102
2103         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2104            for train result */
2105         reg = FDI_RX_IMR(pipe);
2106         temp = I915_READ(reg);
2107         temp &= ~FDI_RX_SYMBOL_LOCK;
2108         temp &= ~FDI_RX_BIT_LOCK;
2109         I915_WRITE(reg, temp);
2110         I915_READ(reg);
2111         udelay(150);
2112
2113         /* enable CPU FDI TX and PCH FDI RX */
2114         reg = FDI_TX_CTL(pipe);
2115         temp = I915_READ(reg);
2116         temp &= ~(7 << 19);
2117         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2118         temp &= ~FDI_LINK_TRAIN_NONE;
2119         temp |= FDI_LINK_TRAIN_PATTERN_1;
2120         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2121
2122         reg = FDI_RX_CTL(pipe);
2123         temp = I915_READ(reg);
2124         temp &= ~FDI_LINK_TRAIN_NONE;
2125         temp |= FDI_LINK_TRAIN_PATTERN_1;
2126         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2127
2128         POSTING_READ(reg);
2129         udelay(150);
2130
2131         /* Ironlake workaround, enable clock pointer after FDI enable*/
2132         if (HAS_PCH_IBX(dev)) {
2133                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2134                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2135                            FDI_RX_PHASE_SYNC_POINTER_EN);
2136         }
2137
2138         reg = FDI_RX_IIR(pipe);
2139         for (tries = 0; tries < 5; tries++) {
2140                 temp = I915_READ(reg);
2141                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2142
2143                 if ((temp & FDI_RX_BIT_LOCK)) {
2144                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2145                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2146                         break;
2147                 }
2148         }
2149         if (tries == 5)
2150                 DRM_ERROR("FDI train 1 fail!\n");
2151
2152         /* Train 2 */
2153         reg = FDI_TX_CTL(pipe);
2154         temp = I915_READ(reg);
2155         temp &= ~FDI_LINK_TRAIN_NONE;
2156         temp |= FDI_LINK_TRAIN_PATTERN_2;
2157         I915_WRITE(reg, temp);
2158
2159         reg = FDI_RX_CTL(pipe);
2160         temp = I915_READ(reg);
2161         temp &= ~FDI_LINK_TRAIN_NONE;
2162         temp |= FDI_LINK_TRAIN_PATTERN_2;
2163         I915_WRITE(reg, temp);
2164
2165         POSTING_READ(reg);
2166         udelay(150);
2167
2168         reg = FDI_RX_IIR(pipe);
2169         for (tries = 0; tries < 5; tries++) {
2170                 temp = I915_READ(reg);
2171                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2172
2173                 if (temp & FDI_RX_SYMBOL_LOCK) {
2174                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2175                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2176                         break;
2177                 }
2178         }
2179         if (tries == 5)
2180                 DRM_ERROR("FDI train 2 fail!\n");
2181
2182         DRM_DEBUG_KMS("FDI train done\n");
2183
2184 }
2185
2186 static const int snb_b_fdi_train_param [] = {
2187         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2188         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2189         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2190         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2191 };
2192
2193 /* The FDI link training functions for SNB/Cougarpoint. */
2194 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2195 {
2196         struct drm_device *dev = crtc->dev;
2197         struct drm_i915_private *dev_priv = dev->dev_private;
2198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2199         int pipe = intel_crtc->pipe;
2200         u32 reg, temp, i;
2201
2202         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2203            for train result */
2204         reg = FDI_RX_IMR(pipe);
2205         temp = I915_READ(reg);
2206         temp &= ~FDI_RX_SYMBOL_LOCK;
2207         temp &= ~FDI_RX_BIT_LOCK;
2208         I915_WRITE(reg, temp);
2209
2210         POSTING_READ(reg);
2211         udelay(150);
2212
2213         /* enable CPU FDI TX and PCH FDI RX */
2214         reg = FDI_TX_CTL(pipe);
2215         temp = I915_READ(reg);
2216         temp &= ~(7 << 19);
2217         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2218         temp &= ~FDI_LINK_TRAIN_NONE;
2219         temp |= FDI_LINK_TRAIN_PATTERN_1;
2220         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2221         /* SNB-B */
2222         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2223         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2224
2225         reg = FDI_RX_CTL(pipe);
2226         temp = I915_READ(reg);
2227         if (HAS_PCH_CPT(dev)) {
2228                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2229                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2230         } else {
2231                 temp &= ~FDI_LINK_TRAIN_NONE;
2232                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2233         }
2234         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2235
2236         POSTING_READ(reg);
2237         udelay(150);
2238
2239         for (i = 0; i < 4; i++ ) {
2240                 reg = FDI_TX_CTL(pipe);
2241                 temp = I915_READ(reg);
2242                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2243                 temp |= snb_b_fdi_train_param[i];
2244                 I915_WRITE(reg, temp);
2245
2246                 POSTING_READ(reg);
2247                 udelay(500);
2248
2249                 reg = FDI_RX_IIR(pipe);
2250                 temp = I915_READ(reg);
2251                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2252
2253                 if (temp & FDI_RX_BIT_LOCK) {
2254                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2255                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2256                         break;
2257                 }
2258         }
2259         if (i == 4)
2260                 DRM_ERROR("FDI train 1 fail!\n");
2261
2262         /* Train 2 */
2263         reg = FDI_TX_CTL(pipe);
2264         temp = I915_READ(reg);
2265         temp &= ~FDI_LINK_TRAIN_NONE;
2266         temp |= FDI_LINK_TRAIN_PATTERN_2;
2267         if (IS_GEN6(dev)) {
2268                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2269                 /* SNB-B */
2270                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2271         }
2272         I915_WRITE(reg, temp);
2273
2274         reg = FDI_RX_CTL(pipe);
2275         temp = I915_READ(reg);
2276         if (HAS_PCH_CPT(dev)) {
2277                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2278                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2279         } else {
2280                 temp &= ~FDI_LINK_TRAIN_NONE;
2281                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2282         }
2283         I915_WRITE(reg, temp);
2284
2285         POSTING_READ(reg);
2286         udelay(150);
2287
2288         for (i = 0; i < 4; i++ ) {
2289                 reg = FDI_TX_CTL(pipe);
2290                 temp = I915_READ(reg);
2291                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2292                 temp |= snb_b_fdi_train_param[i];
2293                 I915_WRITE(reg, temp);
2294
2295                 POSTING_READ(reg);
2296                 udelay(500);
2297
2298                 reg = FDI_RX_IIR(pipe);
2299                 temp = I915_READ(reg);
2300                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2301
2302                 if (temp & FDI_RX_SYMBOL_LOCK) {
2303                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2304                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2305                         break;
2306                 }
2307         }
2308         if (i == 4)
2309                 DRM_ERROR("FDI train 2 fail!\n");
2310
2311         DRM_DEBUG_KMS("FDI train done.\n");
2312 }
2313
2314 /* Manual link training for Ivy Bridge A0 parts */
2315 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2316 {
2317         struct drm_device *dev = crtc->dev;
2318         struct drm_i915_private *dev_priv = dev->dev_private;
2319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2320         int pipe = intel_crtc->pipe;
2321         u32 reg, temp, i;
2322
2323         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2324            for train result */
2325         reg = FDI_RX_IMR(pipe);
2326         temp = I915_READ(reg);
2327         temp &= ~FDI_RX_SYMBOL_LOCK;
2328         temp &= ~FDI_RX_BIT_LOCK;
2329         I915_WRITE(reg, temp);
2330
2331         POSTING_READ(reg);
2332         udelay(150);
2333
2334         /* enable CPU FDI TX and PCH FDI RX */
2335         reg = FDI_TX_CTL(pipe);
2336         temp = I915_READ(reg);
2337         temp &= ~(7 << 19);
2338         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2339         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2340         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2341         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2342         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2343         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2344
2345         reg = FDI_RX_CTL(pipe);
2346         temp = I915_READ(reg);
2347         temp &= ~FDI_LINK_TRAIN_AUTO;
2348         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2349         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2350         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2351
2352         POSTING_READ(reg);
2353         udelay(150);
2354
2355         for (i = 0; i < 4; i++ ) {
2356                 reg = FDI_TX_CTL(pipe);
2357                 temp = I915_READ(reg);
2358                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2359                 temp |= snb_b_fdi_train_param[i];
2360                 I915_WRITE(reg, temp);
2361
2362                 POSTING_READ(reg);
2363                 udelay(500);
2364
2365                 reg = FDI_RX_IIR(pipe);
2366                 temp = I915_READ(reg);
2367                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2368
2369                 if (temp & FDI_RX_BIT_LOCK ||
2370                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2371                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2372                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2373                         break;
2374                 }
2375         }
2376         if (i == 4)
2377                 DRM_ERROR("FDI train 1 fail!\n");
2378
2379         /* Train 2 */
2380         reg = FDI_TX_CTL(pipe);
2381         temp = I915_READ(reg);
2382         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2383         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2384         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2385         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2386         I915_WRITE(reg, temp);
2387
2388         reg = FDI_RX_CTL(pipe);
2389         temp = I915_READ(reg);
2390         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2391         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2392         I915_WRITE(reg, temp);
2393
2394         POSTING_READ(reg);
2395         udelay(150);
2396
2397         for (i = 0; i < 4; i++ ) {
2398                 reg = FDI_TX_CTL(pipe);
2399                 temp = I915_READ(reg);
2400                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2401                 temp |= snb_b_fdi_train_param[i];
2402                 I915_WRITE(reg, temp);
2403
2404                 POSTING_READ(reg);
2405                 udelay(500);
2406
2407                 reg = FDI_RX_IIR(pipe);
2408                 temp = I915_READ(reg);
2409                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2410
2411                 if (temp & FDI_RX_SYMBOL_LOCK) {
2412                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2413                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2414                         break;
2415                 }
2416         }
2417         if (i == 4)
2418                 DRM_ERROR("FDI train 2 fail!\n");
2419
2420         DRM_DEBUG_KMS("FDI train done.\n");
2421 }
2422
2423 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2424 {
2425         struct drm_device *dev = crtc->dev;
2426         struct drm_i915_private *dev_priv = dev->dev_private;
2427         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2428         int pipe = intel_crtc->pipe;
2429         u32 reg, temp;
2430
2431         /* Write the TU size bits so error detection works */
2432         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2433                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2434
2435         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2436         reg = FDI_RX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         temp &= ~((0x7 << 19) | (0x7 << 16));
2439         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2440         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2441         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2442
2443         POSTING_READ(reg);
2444         udelay(200);
2445
2446         /* Switch from Rawclk to PCDclk */
2447         temp = I915_READ(reg);
2448         I915_WRITE(reg, temp | FDI_PCDCLK);
2449
2450         POSTING_READ(reg);
2451         udelay(200);
2452
2453         /* Enable CPU FDI TX PLL, always on for Ironlake */
2454         reg = FDI_TX_CTL(pipe);
2455         temp = I915_READ(reg);
2456         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2457                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2458
2459                 POSTING_READ(reg);
2460                 udelay(100);
2461         }
2462 }
2463
2464 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2465 {
2466         struct drm_device *dev = crtc->dev;
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2469         int pipe = intel_crtc->pipe;
2470         u32 reg, temp;
2471
2472         /* disable CPU FDI tx and PCH FDI rx */
2473         reg = FDI_TX_CTL(pipe);
2474         temp = I915_READ(reg);
2475         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2476         POSTING_READ(reg);
2477
2478         reg = FDI_RX_CTL(pipe);
2479         temp = I915_READ(reg);
2480         temp &= ~(0x7 << 16);
2481         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2482         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2483
2484         POSTING_READ(reg);
2485         udelay(100);
2486
2487         /* Ironlake workaround, disable clock pointer after downing FDI */
2488         if (HAS_PCH_IBX(dev)) {
2489                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2490                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2491                            I915_READ(FDI_RX_CHICKEN(pipe) &
2492                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2493         }
2494
2495         /* still set train pattern 1 */
2496         reg = FDI_TX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         temp &= ~FDI_LINK_TRAIN_NONE;
2499         temp |= FDI_LINK_TRAIN_PATTERN_1;
2500         I915_WRITE(reg, temp);
2501
2502         reg = FDI_RX_CTL(pipe);
2503         temp = I915_READ(reg);
2504         if (HAS_PCH_CPT(dev)) {
2505                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2506                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2507         } else {
2508                 temp &= ~FDI_LINK_TRAIN_NONE;
2509                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2510         }
2511         /* BPC in FDI rx is consistent with that in PIPECONF */
2512         temp &= ~(0x07 << 16);
2513         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2514         I915_WRITE(reg, temp);
2515
2516         POSTING_READ(reg);
2517         udelay(100);
2518 }
2519
2520 /*
2521  * When we disable a pipe, we need to clear any pending scanline wait events
2522  * to avoid hanging the ring, which we assume we are waiting on.
2523  */
2524 static void intel_clear_scanline_wait(struct drm_device *dev)
2525 {
2526         struct drm_i915_private *dev_priv = dev->dev_private;
2527         struct intel_ring_buffer *ring;
2528         u32 tmp;
2529
2530         if (IS_GEN2(dev))
2531                 /* Can't break the hang on i8xx */
2532                 return;
2533
2534         ring = LP_RING(dev_priv);
2535         tmp = I915_READ_CTL(ring);
2536         if (tmp & RING_WAIT)
2537                 I915_WRITE_CTL(ring, tmp);
2538 }
2539
2540 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2541 {
2542         struct drm_i915_gem_object *obj;
2543         struct drm_i915_private *dev_priv;
2544
2545         if (crtc->fb == NULL)
2546                 return;
2547
2548         obj = to_intel_framebuffer(crtc->fb)->obj;
2549         dev_priv = crtc->dev->dev_private;
2550         wait_event(dev_priv->pending_flip_queue,
2551                    atomic_read(&obj->pending_flip) == 0);
2552 }
2553
2554 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2555 {
2556         struct drm_device *dev = crtc->dev;
2557         struct drm_mode_config *mode_config = &dev->mode_config;
2558         struct intel_encoder *encoder;
2559
2560         /*
2561          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2562          * must be driven by its own crtc; no sharing is possible.
2563          */
2564         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2565                 if (encoder->base.crtc != crtc)
2566                         continue;
2567
2568                 switch (encoder->type) {
2569                 case INTEL_OUTPUT_EDP:
2570                         if (!intel_encoder_is_pch_edp(&encoder->base))
2571                                 return false;
2572                         continue;
2573                 }
2574         }
2575
2576         return true;
2577 }
2578
2579 /*
2580  * Enable PCH resources required for PCH ports:
2581  *   - PCH PLLs
2582  *   - FDI training & RX/TX
2583  *   - update transcoder timings
2584  *   - DP transcoding bits
2585  *   - transcoder
2586  */
2587 static void ironlake_pch_enable(struct drm_crtc *crtc)
2588 {
2589         struct drm_device *dev = crtc->dev;
2590         struct drm_i915_private *dev_priv = dev->dev_private;
2591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2592         int pipe = intel_crtc->pipe;
2593         u32 reg, temp;
2594
2595         /* For PCH output, training FDI link */
2596         dev_priv->display.fdi_link_train(crtc);
2597
2598         intel_enable_pch_pll(dev_priv, pipe);
2599
2600         if (HAS_PCH_CPT(dev)) {
2601                 /* Be sure PCH DPLL SEL is set */
2602                 temp = I915_READ(PCH_DPLL_SEL);
2603                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2604                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2605                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2606                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2607                 I915_WRITE(PCH_DPLL_SEL, temp);
2608         }
2609
2610         /* set transcoder timing, panel must allow it */
2611         assert_panel_unlocked(dev_priv, pipe);
2612         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2613         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2614         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2615
2616         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2617         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2618         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2619
2620         intel_fdi_normal_train(crtc);
2621
2622         /* For PCH DP, enable TRANS_DP_CTL */
2623         if (HAS_PCH_CPT(dev) &&
2624             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2625                 reg = TRANS_DP_CTL(pipe);
2626                 temp = I915_READ(reg);
2627                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2628                           TRANS_DP_SYNC_MASK |
2629                           TRANS_DP_BPC_MASK);
2630                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2631                          TRANS_DP_ENH_FRAMING);
2632                 temp |= TRANS_DP_8BPC;
2633
2634                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2635                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2636                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2637                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2638
2639                 switch (intel_trans_dp_port_sel(crtc)) {
2640                 case PCH_DP_B:
2641                         temp |= TRANS_DP_PORT_SEL_B;
2642                         break;
2643                 case PCH_DP_C:
2644                         temp |= TRANS_DP_PORT_SEL_C;
2645                         break;
2646                 case PCH_DP_D:
2647                         temp |= TRANS_DP_PORT_SEL_D;
2648                         break;
2649                 default:
2650                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2651                         temp |= TRANS_DP_PORT_SEL_B;
2652                         break;
2653                 }
2654
2655                 I915_WRITE(reg, temp);
2656         }
2657
2658         intel_enable_transcoder(dev_priv, pipe);
2659 }
2660
2661 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2662 {
2663         struct drm_device *dev = crtc->dev;
2664         struct drm_i915_private *dev_priv = dev->dev_private;
2665         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2666         int pipe = intel_crtc->pipe;
2667         int plane = intel_crtc->plane;
2668         u32 temp;
2669         bool is_pch_port;
2670
2671         if (intel_crtc->active)
2672                 return;
2673
2674         intel_crtc->active = true;
2675         intel_update_watermarks(dev);
2676
2677         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2678                 temp = I915_READ(PCH_LVDS);
2679                 if ((temp & LVDS_PORT_EN) == 0)
2680                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2681         }
2682
2683         is_pch_port = intel_crtc_driving_pch(crtc);
2684
2685         if (is_pch_port)
2686                 ironlake_fdi_pll_enable(crtc);
2687         else
2688                 ironlake_fdi_disable(crtc);
2689
2690         /* Enable panel fitting for LVDS */
2691         if (dev_priv->pch_pf_size &&
2692             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2693                 /* Force use of hard-coded filter coefficients
2694                  * as some pre-programmed values are broken,
2695                  * e.g. x201.
2696                  */
2697                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2698                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2699                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2700         }
2701
2702         intel_enable_pipe(dev_priv, pipe, is_pch_port);
2703         intel_enable_plane(dev_priv, plane, pipe);
2704
2705         if (is_pch_port)
2706                 ironlake_pch_enable(crtc);
2707
2708         intel_crtc_load_lut(crtc);
2709
2710         mutex_lock(&dev->struct_mutex);
2711         intel_update_fbc(dev);
2712         mutex_unlock(&dev->struct_mutex);
2713
2714         intel_crtc_update_cursor(crtc, true);
2715 }
2716
2717 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2718 {
2719         struct drm_device *dev = crtc->dev;
2720         struct drm_i915_private *dev_priv = dev->dev_private;
2721         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2722         int pipe = intel_crtc->pipe;
2723         int plane = intel_crtc->plane;
2724         u32 reg, temp;
2725
2726         if (!intel_crtc->active)
2727                 return;
2728
2729         intel_crtc_wait_for_pending_flips(crtc);
2730         drm_vblank_off(dev, pipe);
2731         intel_crtc_update_cursor(crtc, false);
2732
2733         intel_disable_plane(dev_priv, plane, pipe);
2734
2735         if (dev_priv->cfb_plane == plane &&
2736             dev_priv->display.disable_fbc)
2737                 dev_priv->display.disable_fbc(dev);
2738
2739         intel_disable_pipe(dev_priv, pipe);
2740
2741         /* Disable PF */
2742         I915_WRITE(PF_CTL(pipe), 0);
2743         I915_WRITE(PF_WIN_SZ(pipe), 0);
2744
2745         ironlake_fdi_disable(crtc);
2746
2747         /* This is a horrible layering violation; we should be doing this in
2748          * the connector/encoder ->prepare instead, but we don't always have
2749          * enough information there about the config to know whether it will
2750          * actually be necessary or just cause undesired flicker.
2751          */
2752         intel_disable_pch_ports(dev_priv, pipe);
2753
2754         intel_disable_transcoder(dev_priv, pipe);
2755
2756         if (HAS_PCH_CPT(dev)) {
2757                 /* disable TRANS_DP_CTL */
2758                 reg = TRANS_DP_CTL(pipe);
2759                 temp = I915_READ(reg);
2760                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2761                 temp |= TRANS_DP_PORT_SEL_NONE;
2762                 I915_WRITE(reg, temp);
2763
2764                 /* disable DPLL_SEL */
2765                 temp = I915_READ(PCH_DPLL_SEL);
2766                 switch (pipe) {
2767                 case 0:
2768                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2769                         break;
2770                 case 1:
2771                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2772                         break;
2773                 case 2:
2774                         /* FIXME: manage transcoder PLLs? */
2775                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2776                         break;
2777                 default:
2778                         BUG(); /* wtf */
2779                 }
2780                 I915_WRITE(PCH_DPLL_SEL, temp);
2781         }
2782
2783         /* disable PCH DPLL */
2784         intel_disable_pch_pll(dev_priv, pipe);
2785
2786         /* Switch from PCDclk to Rawclk */
2787         reg = FDI_RX_CTL(pipe);
2788         temp = I915_READ(reg);
2789         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2790
2791         /* Disable CPU FDI TX PLL */
2792         reg = FDI_TX_CTL(pipe);
2793         temp = I915_READ(reg);
2794         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2795
2796         POSTING_READ(reg);
2797         udelay(100);
2798
2799         reg = FDI_RX_CTL(pipe);
2800         temp = I915_READ(reg);
2801         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2802
2803         /* Wait for the clocks to turn off. */
2804         POSTING_READ(reg);
2805         udelay(100);
2806
2807         intel_crtc->active = false;
2808         intel_update_watermarks(dev);
2809
2810         mutex_lock(&dev->struct_mutex);
2811         intel_update_fbc(dev);
2812         intel_clear_scanline_wait(dev);
2813         mutex_unlock(&dev->struct_mutex);
2814 }
2815
2816 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2817 {
2818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819         int pipe = intel_crtc->pipe;
2820         int plane = intel_crtc->plane;
2821
2822         /* XXX: When our outputs are all unaware of DPMS modes other than off
2823          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2824          */
2825         switch (mode) {
2826         case DRM_MODE_DPMS_ON:
2827         case DRM_MODE_DPMS_STANDBY:
2828         case DRM_MODE_DPMS_SUSPEND:
2829                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2830                 ironlake_crtc_enable(crtc);
2831                 break;
2832
2833         case DRM_MODE_DPMS_OFF:
2834                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2835                 ironlake_crtc_disable(crtc);
2836                 break;
2837         }
2838 }
2839
2840 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2841 {
2842         if (!enable && intel_crtc->overlay) {
2843                 struct drm_device *dev = intel_crtc->base.dev;
2844                 struct drm_i915_private *dev_priv = dev->dev_private;
2845
2846                 mutex_lock(&dev->struct_mutex);
2847                 dev_priv->mm.interruptible = false;
2848                 (void) intel_overlay_switch_off(intel_crtc->overlay);
2849                 dev_priv->mm.interruptible = true;
2850                 mutex_unlock(&dev->struct_mutex);
2851         }
2852
2853         /* Let userspace switch the overlay on again. In most cases userspace
2854          * has to recompute where to put it anyway.
2855          */
2856 }
2857
2858 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2859 {
2860         struct drm_device *dev = crtc->dev;
2861         struct drm_i915_private *dev_priv = dev->dev_private;
2862         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2863         int pipe = intel_crtc->pipe;
2864         int plane = intel_crtc->plane;
2865
2866         if (intel_crtc->active)
2867                 return;
2868
2869         intel_crtc->active = true;
2870         intel_update_watermarks(dev);
2871
2872         intel_enable_pll(dev_priv, pipe);
2873         intel_enable_pipe(dev_priv, pipe, false);
2874         intel_enable_plane(dev_priv, plane, pipe);
2875
2876         intel_crtc_load_lut(crtc);
2877         intel_update_fbc(dev);
2878
2879         /* Give the overlay scaler a chance to enable if it's on this pipe */
2880         intel_crtc_dpms_overlay(intel_crtc, true);
2881         intel_crtc_update_cursor(crtc, true);
2882 }
2883
2884 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2885 {
2886         struct drm_device *dev = crtc->dev;
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2889         int pipe = intel_crtc->pipe;
2890         int plane = intel_crtc->plane;
2891
2892         if (!intel_crtc->active)
2893                 return;
2894
2895         /* Give the overlay scaler a chance to disable if it's on this pipe */
2896         intel_crtc_wait_for_pending_flips(crtc);
2897         drm_vblank_off(dev, pipe);
2898         intel_crtc_dpms_overlay(intel_crtc, false);
2899         intel_crtc_update_cursor(crtc, false);
2900
2901         if (dev_priv->cfb_plane == plane &&
2902             dev_priv->display.disable_fbc)
2903                 dev_priv->display.disable_fbc(dev);
2904
2905         intel_disable_plane(dev_priv, plane, pipe);
2906         intel_disable_pipe(dev_priv, pipe);
2907         intel_disable_pll(dev_priv, pipe);
2908
2909         intel_crtc->active = false;
2910         intel_update_fbc(dev);
2911         intel_update_watermarks(dev);
2912         intel_clear_scanline_wait(dev);
2913 }
2914
2915 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2916 {
2917         /* XXX: When our outputs are all unaware of DPMS modes other than off
2918          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2919          */
2920         switch (mode) {
2921         case DRM_MODE_DPMS_ON:
2922         case DRM_MODE_DPMS_STANDBY:
2923         case DRM_MODE_DPMS_SUSPEND:
2924                 i9xx_crtc_enable(crtc);
2925                 break;
2926         case DRM_MODE_DPMS_OFF:
2927                 i9xx_crtc_disable(crtc);
2928                 break;
2929         }
2930 }
2931
2932 /**
2933  * Sets the power management mode of the pipe and plane.
2934  */
2935 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2936 {
2937         struct drm_device *dev = crtc->dev;
2938         struct drm_i915_private *dev_priv = dev->dev_private;
2939         struct drm_i915_master_private *master_priv;
2940         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2941         int pipe = intel_crtc->pipe;
2942         bool enabled;
2943
2944         if (intel_crtc->dpms_mode == mode)
2945                 return;
2946
2947         intel_crtc->dpms_mode = mode;
2948
2949         dev_priv->display.dpms(crtc, mode);
2950
2951         if (!dev->primary->master)
2952                 return;
2953
2954         master_priv = dev->primary->master->driver_priv;
2955         if (!master_priv->sarea_priv)
2956                 return;
2957
2958         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2959
2960         switch (pipe) {
2961         case 0:
2962                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2963                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2964                 break;
2965         case 1:
2966                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2967                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2968                 break;
2969         default:
2970                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
2971                 break;
2972         }
2973 }
2974
2975 static void intel_crtc_disable(struct drm_crtc *crtc)
2976 {
2977         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2978         struct drm_device *dev = crtc->dev;
2979
2980         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2981
2982         if (crtc->fb) {
2983                 mutex_lock(&dev->struct_mutex);
2984                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2985                 mutex_unlock(&dev->struct_mutex);
2986         }
2987 }
2988
2989 /* Prepare for a mode set.
2990  *
2991  * Note we could be a lot smarter here.  We need to figure out which outputs
2992  * will be enabled, which disabled (in short, how the config will changes)
2993  * and perform the minimum necessary steps to accomplish that, e.g. updating
2994  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2995  * panel fitting is in the proper state, etc.
2996  */
2997 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2998 {
2999         i9xx_crtc_disable(crtc);
3000 }
3001
3002 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3003 {
3004         i9xx_crtc_enable(crtc);
3005 }
3006
3007 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3008 {
3009         ironlake_crtc_disable(crtc);
3010 }
3011
3012 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3013 {
3014         ironlake_crtc_enable(crtc);
3015 }
3016
3017 void intel_encoder_prepare (struct drm_encoder *encoder)
3018 {
3019         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3020         /* lvds has its own version of prepare see intel_lvds_prepare */
3021         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3022 }
3023
3024 void intel_encoder_commit (struct drm_encoder *encoder)
3025 {
3026         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3027         /* lvds has its own version of commit see intel_lvds_commit */
3028         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3029 }
3030
3031 void intel_encoder_destroy(struct drm_encoder *encoder)
3032 {
3033         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3034
3035         drm_encoder_cleanup(encoder);
3036         kfree(intel_encoder);
3037 }
3038
3039 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3040                                   struct drm_display_mode *mode,
3041                                   struct drm_display_mode *adjusted_mode)
3042 {
3043         struct drm_device *dev = crtc->dev;
3044
3045         if (HAS_PCH_SPLIT(dev)) {
3046                 /* FDI link clock is fixed at 2.7G */
3047                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3048                         return false;
3049         }
3050
3051         /* XXX some encoders set the crtcinfo, others don't.
3052          * Obviously we need some form of conflict resolution here...
3053          */
3054         if (adjusted_mode->crtc_htotal == 0)
3055                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3056
3057         return true;
3058 }
3059
3060 static int i945_get_display_clock_speed(struct drm_device *dev)
3061 {
3062         return 400000;
3063 }
3064
3065 static int i915_get_display_clock_speed(struct drm_device *dev)
3066 {
3067         return 333000;
3068 }
3069
3070 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3071 {
3072         return 200000;
3073 }
3074
3075 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3076 {
3077         u16 gcfgc = 0;
3078
3079         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3080
3081         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3082                 return 133000;
3083         else {
3084                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3085                 case GC_DISPLAY_CLOCK_333_MHZ:
3086                         return 333000;
3087                 default:
3088                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3089                         return 190000;
3090                 }
3091         }
3092 }
3093
3094 static int i865_get_display_clock_speed(struct drm_device *dev)
3095 {
3096         return 266000;
3097 }
3098
3099 static int i855_get_display_clock_speed(struct drm_device *dev)
3100 {
3101         u16 hpllcc = 0;
3102         /* Assume that the hardware is in the high speed state.  This
3103          * should be the default.
3104          */
3105         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3106         case GC_CLOCK_133_200:
3107         case GC_CLOCK_100_200:
3108                 return 200000;
3109         case GC_CLOCK_166_250:
3110                 return 250000;
3111         case GC_CLOCK_100_133:
3112                 return 133000;
3113         }
3114
3115         /* Shouldn't happen */
3116         return 0;
3117 }
3118
3119 static int i830_get_display_clock_speed(struct drm_device *dev)
3120 {
3121         return 133000;
3122 }
3123
3124 struct fdi_m_n {
3125         u32        tu;
3126         u32        gmch_m;
3127         u32        gmch_n;
3128         u32        link_m;
3129         u32        link_n;
3130 };
3131
3132 static void
3133 fdi_reduce_ratio(u32 *num, u32 *den)
3134 {
3135         while (*num > 0xffffff || *den > 0xffffff) {
3136                 *num >>= 1;
3137                 *den >>= 1;
3138         }
3139 }
3140
3141 static void
3142 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3143                      int link_clock, struct fdi_m_n *m_n)
3144 {
3145         m_n->tu = 64; /* default size */
3146
3147         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3148         m_n->gmch_m = bits_per_pixel * pixel_clock;
3149         m_n->gmch_n = link_clock * nlanes * 8;
3150         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3151
3152         m_n->link_m = pixel_clock;
3153         m_n->link_n = link_clock;
3154         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3155 }
3156
3157
3158 struct intel_watermark_params {
3159         unsigned long fifo_size;
3160         unsigned long max_wm;
3161         unsigned long default_wm;
3162         unsigned long guard_size;
3163         unsigned long cacheline_size;
3164 };
3165
3166 /* Pineview has different values for various configs */
3167 static const struct intel_watermark_params pineview_display_wm = {
3168         PINEVIEW_DISPLAY_FIFO,
3169         PINEVIEW_MAX_WM,
3170         PINEVIEW_DFT_WM,
3171         PINEVIEW_GUARD_WM,
3172         PINEVIEW_FIFO_LINE_SIZE
3173 };
3174 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3175         PINEVIEW_DISPLAY_FIFO,
3176         PINEVIEW_MAX_WM,
3177         PINEVIEW_DFT_HPLLOFF_WM,
3178         PINEVIEW_GUARD_WM,
3179         PINEVIEW_FIFO_LINE_SIZE
3180 };
3181 static const struct intel_watermark_params pineview_cursor_wm = {
3182         PINEVIEW_CURSOR_FIFO,
3183         PINEVIEW_CURSOR_MAX_WM,
3184         PINEVIEW_CURSOR_DFT_WM,
3185         PINEVIEW_CURSOR_GUARD_WM,
3186         PINEVIEW_FIFO_LINE_SIZE,
3187 };
3188 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3189         PINEVIEW_CURSOR_FIFO,
3190         PINEVIEW_CURSOR_MAX_WM,
3191         PINEVIEW_CURSOR_DFT_WM,
3192         PINEVIEW_CURSOR_GUARD_WM,
3193         PINEVIEW_FIFO_LINE_SIZE
3194 };
3195 static const struct intel_watermark_params g4x_wm_info = {
3196         G4X_FIFO_SIZE,
3197         G4X_MAX_WM,
3198         G4X_MAX_WM,
3199         2,
3200         G4X_FIFO_LINE_SIZE,
3201 };
3202 static const struct intel_watermark_params g4x_cursor_wm_info = {
3203         I965_CURSOR_FIFO,
3204         I965_CURSOR_MAX_WM,
3205         I965_CURSOR_DFT_WM,
3206         2,
3207         G4X_FIFO_LINE_SIZE,
3208 };
3209 static const struct intel_watermark_params i965_cursor_wm_info = {
3210         I965_CURSOR_FIFO,
3211         I965_CURSOR_MAX_WM,
3212         I965_CURSOR_DFT_WM,
3213         2,
3214         I915_FIFO_LINE_SIZE,
3215 };
3216 static const struct intel_watermark_params i945_wm_info = {
3217         I945_FIFO_SIZE,
3218         I915_MAX_WM,
3219         1,
3220         2,
3221         I915_FIFO_LINE_SIZE
3222 };
3223 static const struct intel_watermark_params i915_wm_info = {
3224         I915_FIFO_SIZE,
3225         I915_MAX_WM,
3226         1,
3227         2,
3228         I915_FIFO_LINE_SIZE
3229 };
3230 static const struct intel_watermark_params i855_wm_info = {
3231         I855GM_FIFO_SIZE,
3232         I915_MAX_WM,
3233         1,
3234         2,
3235         I830_FIFO_LINE_SIZE
3236 };
3237 static const struct intel_watermark_params i830_wm_info = {
3238         I830_FIFO_SIZE,
3239         I915_MAX_WM,
3240         1,
3241         2,
3242         I830_FIFO_LINE_SIZE
3243 };
3244
3245 static const struct intel_watermark_params ironlake_display_wm_info = {
3246         ILK_DISPLAY_FIFO,
3247         ILK_DISPLAY_MAXWM,
3248         ILK_DISPLAY_DFTWM,
3249         2,
3250         ILK_FIFO_LINE_SIZE
3251 };
3252 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3253         ILK_CURSOR_FIFO,
3254         ILK_CURSOR_MAXWM,
3255         ILK_CURSOR_DFTWM,
3256         2,
3257         ILK_FIFO_LINE_SIZE
3258 };
3259 static const struct intel_watermark_params ironlake_display_srwm_info = {
3260         ILK_DISPLAY_SR_FIFO,
3261         ILK_DISPLAY_MAX_SRWM,
3262         ILK_DISPLAY_DFT_SRWM,
3263         2,
3264         ILK_FIFO_LINE_SIZE
3265 };
3266 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3267         ILK_CURSOR_SR_FIFO,
3268         ILK_CURSOR_MAX_SRWM,
3269         ILK_CURSOR_DFT_SRWM,
3270         2,
3271         ILK_FIFO_LINE_SIZE
3272 };
3273
3274 static const struct intel_watermark_params sandybridge_display_wm_info = {
3275         SNB_DISPLAY_FIFO,
3276         SNB_DISPLAY_MAXWM,
3277         SNB_DISPLAY_DFTWM,
3278         2,
3279         SNB_FIFO_LINE_SIZE
3280 };
3281 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3282         SNB_CURSOR_FIFO,
3283         SNB_CURSOR_MAXWM,
3284         SNB_CURSOR_DFTWM,
3285         2,
3286         SNB_FIFO_LINE_SIZE
3287 };
3288 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3289         SNB_DISPLAY_SR_FIFO,
3290         SNB_DISPLAY_MAX_SRWM,
3291         SNB_DISPLAY_DFT_SRWM,
3292         2,
3293         SNB_FIFO_LINE_SIZE
3294 };
3295 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3296         SNB_CURSOR_SR_FIFO,
3297         SNB_CURSOR_MAX_SRWM,
3298         SNB_CURSOR_DFT_SRWM,
3299         2,
3300         SNB_FIFO_LINE_SIZE
3301 };
3302
3303
3304 /**
3305  * intel_calculate_wm - calculate watermark level
3306  * @clock_in_khz: pixel clock
3307  * @wm: chip FIFO params
3308  * @pixel_size: display pixel size
3309  * @latency_ns: memory latency for the platform
3310  *
3311  * Calculate the watermark level (the level at which the display plane will
3312  * start fetching from memory again).  Each chip has a different display
3313  * FIFO size and allocation, so the caller needs to figure that out and pass
3314  * in the correct intel_watermark_params structure.
3315  *
3316  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3317  * on the pixel size.  When it reaches the watermark level, it'll start
3318  * fetching FIFO line sized based chunks from memory until the FIFO fills
3319  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3320  * will occur, and a display engine hang could result.
3321  */
3322 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3323                                         const struct intel_watermark_params *wm,
3324                                         int fifo_size,
3325                                         int pixel_size,
3326                                         unsigned long latency_ns)
3327 {
3328         long entries_required, wm_size;
3329
3330         /*
3331          * Note: we need to make sure we don't overflow for various clock &
3332          * latency values.
3333          * clocks go from a few thousand to several hundred thousand.
3334          * latency is usually a few thousand
3335          */
3336         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3337                 1000;
3338         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3339
3340         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3341
3342         wm_size = fifo_size - (entries_required + wm->guard_size);
3343
3344         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3345
3346         /* Don't promote wm_size to unsigned... */
3347         if (wm_size > (long)wm->max_wm)
3348                 wm_size = wm->max_wm;
3349         if (wm_size <= 0)
3350                 wm_size = wm->default_wm;
3351         return wm_size;
3352 }
3353
3354 struct cxsr_latency {
3355         int is_desktop;
3356         int is_ddr3;
3357         unsigned long fsb_freq;
3358         unsigned long mem_freq;
3359         unsigned long display_sr;
3360         unsigned long display_hpll_disable;
3361         unsigned long cursor_sr;
3362         unsigned long cursor_hpll_disable;
3363 };
3364
3365 static const struct cxsr_latency cxsr_latency_table[] = {
3366         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3367         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3368         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3369         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3370         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3371
3372         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3373         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3374         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3375         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3376         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3377
3378         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3379         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3380         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3381         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3382         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3383
3384         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3385         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3386         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3387         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3388         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3389
3390         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3391         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3392         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3393         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3394         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3395
3396         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3397         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3398         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3399         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3400         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3401 };
3402
3403 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3404                                                          int is_ddr3,
3405                                                          int fsb,
3406                                                          int mem)
3407 {
3408         const struct cxsr_latency *latency;
3409         int i;
3410
3411         if (fsb == 0 || mem == 0)
3412                 return NULL;
3413
3414         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3415                 latency = &cxsr_latency_table[i];
3416                 if (is_desktop == latency->is_desktop &&
3417                     is_ddr3 == latency->is_ddr3 &&
3418                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3419                         return latency;
3420         }
3421
3422         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3423
3424         return NULL;
3425 }
3426
3427 static void pineview_disable_cxsr(struct drm_device *dev)
3428 {
3429         struct drm_i915_private *dev_priv = dev->dev_private;
3430
3431         /* deactivate cxsr */
3432         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3433 }
3434
3435 /*
3436  * Latency for FIFO fetches is dependent on several factors:
3437  *   - memory configuration (speed, channels)
3438  *   - chipset
3439  *   - current MCH state
3440  * It can be fairly high in some situations, so here we assume a fairly
3441  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3442  * set this value too high, the FIFO will fetch frequently to stay full)
3443  * and power consumption (set it too low to save power and we might see
3444  * FIFO underruns and display "flicker").
3445  *
3446  * A value of 5us seems to be a good balance; safe for very low end
3447  * platforms but not overly aggressive on lower latency configs.
3448  */
3449 static const int latency_ns = 5000;
3450
3451 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3452 {
3453         struct drm_i915_private *dev_priv = dev->dev_private;
3454         uint32_t dsparb = I915_READ(DSPARB);
3455         int size;
3456
3457         size = dsparb & 0x7f;
3458         if (plane)
3459                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3460
3461         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3462                       plane ? "B" : "A", size);
3463
3464         return size;
3465 }
3466
3467 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3468 {
3469         struct drm_i915_private *dev_priv = dev->dev_private;
3470         uint32_t dsparb = I915_READ(DSPARB);
3471         int size;
3472
3473         size = dsparb & 0x1ff;
3474         if (plane)
3475                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3476         size >>= 1; /* Convert to cachelines */
3477
3478         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3479                       plane ? "B" : "A", size);
3480
3481         return size;
3482 }
3483
3484 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3485 {
3486         struct drm_i915_private *dev_priv = dev->dev_private;
3487         uint32_t dsparb = I915_READ(DSPARB);
3488         int size;
3489
3490         size = dsparb & 0x7f;
3491         size >>= 2; /* Convert to cachelines */
3492
3493         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3494                       plane ? "B" : "A",
3495                       size);
3496
3497         return size;
3498 }
3499
3500 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3501 {
3502         struct drm_i915_private *dev_priv = dev->dev_private;
3503         uint32_t dsparb = I915_READ(DSPARB);
3504         int size;
3505
3506         size = dsparb & 0x7f;
3507         size >>= 1; /* Convert to cachelines */
3508
3509         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3510                       plane ? "B" : "A", size);
3511
3512         return size;
3513 }
3514
3515 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3516 {
3517         struct drm_crtc *crtc, *enabled = NULL;
3518
3519         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3520                 if (crtc->enabled && crtc->fb) {
3521                         if (enabled)
3522                                 return NULL;
3523                         enabled = crtc;
3524                 }
3525         }
3526
3527         return enabled;
3528 }
3529
3530 static void pineview_update_wm(struct drm_device *dev)
3531 {
3532         struct drm_i915_private *dev_priv = dev->dev_private;
3533         struct drm_crtc *crtc;
3534         const struct cxsr_latency *latency;
3535         u32 reg;
3536         unsigned long wm;
3537
3538         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3539                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3540         if (!latency) {
3541                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3542                 pineview_disable_cxsr(dev);
3543                 return;
3544         }
3545
3546         crtc = single_enabled_crtc(dev);
3547         if (crtc) {
3548                 int clock = crtc->mode.clock;
3549                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3550
3551                 /* Display SR */
3552                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3553                                         pineview_display_wm.fifo_size,
3554                                         pixel_size, latency->display_sr);
3555                 reg = I915_READ(DSPFW1);
3556                 reg &= ~DSPFW_SR_MASK;
3557                 reg |= wm << DSPFW_SR_SHIFT;
3558                 I915_WRITE(DSPFW1, reg);
3559                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3560
3561                 /* cursor SR */
3562                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3563                                         pineview_display_wm.fifo_size,
3564                                         pixel_size, latency->cursor_sr);
3565                 reg = I915_READ(DSPFW3);
3566                 reg &= ~DSPFW_CURSOR_SR_MASK;
3567                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3568                 I915_WRITE(DSPFW3, reg);
3569
3570                 /* Display HPLL off SR */
3571                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3572                                         pineview_display_hplloff_wm.fifo_size,
3573                                         pixel_size, latency->display_hpll_disable);
3574                 reg = I915_READ(DSPFW3);
3575                 reg &= ~DSPFW_HPLL_SR_MASK;
3576                 reg |= wm & DSPFW_HPLL_SR_MASK;
3577                 I915_WRITE(DSPFW3, reg);
3578
3579                 /* cursor HPLL off SR */
3580                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3581                                         pineview_display_hplloff_wm.fifo_size,
3582                                         pixel_size, latency->cursor_hpll_disable);
3583                 reg = I915_READ(DSPFW3);
3584                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3585                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3586                 I915_WRITE(DSPFW3, reg);
3587                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3588
3589                 /* activate cxsr */
3590                 I915_WRITE(DSPFW3,
3591                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3592                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3593         } else {
3594                 pineview_disable_cxsr(dev);
3595                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3596         }
3597 }
3598
3599 static bool g4x_compute_wm0(struct drm_device *dev,
3600                             int plane,
3601                             const struct intel_watermark_params *display,
3602                             int display_latency_ns,
3603                             const struct intel_watermark_params *cursor,
3604                             int cursor_latency_ns,
3605                             int *plane_wm,
3606                             int *cursor_wm)
3607 {
3608         struct drm_crtc *crtc;
3609         int htotal, hdisplay, clock, pixel_size;
3610         int line_time_us, line_count;
3611         int entries, tlb_miss;
3612
3613         crtc = intel_get_crtc_for_plane(dev, plane);
3614         if (crtc->fb == NULL || !crtc->enabled) {
3615                 *cursor_wm = cursor->guard_size;
3616                 *plane_wm = display->guard_size;
3617                 return false;
3618         }
3619
3620         htotal = crtc->mode.htotal;
3621         hdisplay = crtc->mode.hdisplay;
3622         clock = crtc->mode.clock;
3623         pixel_size = crtc->fb->bits_per_pixel / 8;
3624
3625         /* Use the small buffer method to calculate plane watermark */
3626         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3627         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3628         if (tlb_miss > 0)
3629                 entries += tlb_miss;
3630         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3631         *plane_wm = entries + display->guard_size;
3632         if (*plane_wm > (int)display->max_wm)
3633                 *plane_wm = display->max_wm;
3634
3635         /* Use the large buffer method to calculate cursor watermark */
3636         line_time_us = ((htotal * 1000) / clock);
3637         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3638         entries = line_count * 64 * pixel_size;
3639         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3640         if (tlb_miss > 0)
3641                 entries += tlb_miss;
3642         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3643         *cursor_wm = entries + cursor->guard_size;
3644         if (*cursor_wm > (int)cursor->max_wm)
3645                 *cursor_wm = (int)cursor->max_wm;
3646
3647         return true;
3648 }
3649
3650 /*
3651  * Check the wm result.
3652  *
3653  * If any calculated watermark values is larger than the maximum value that
3654  * can be programmed into the associated watermark register, that watermark
3655  * must be disabled.
3656  */
3657 static bool g4x_check_srwm(struct drm_device *dev,
3658                            int display_wm, int cursor_wm,
3659                            const struct intel_watermark_params *display,
3660                            const struct intel_watermark_params *cursor)
3661 {
3662         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3663                       display_wm, cursor_wm);
3664
3665         if (display_wm > display->max_wm) {
3666                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3667                               display_wm, display->max_wm);
3668                 return false;
3669         }
3670
3671         if (cursor_wm > cursor->max_wm) {
3672                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3673                               cursor_wm, cursor->max_wm);
3674                 return false;
3675         }
3676
3677         if (!(display_wm || cursor_wm)) {
3678                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3679                 return false;
3680         }
3681
3682         return true;
3683 }
3684
3685 static bool g4x_compute_srwm(struct drm_device *dev,
3686                              int plane,
3687                              int latency_ns,
3688                              const struct intel_watermark_params *display,
3689                              const struct intel_watermark_params *cursor,
3690                              int *display_wm, int *cursor_wm)
3691 {
3692         struct drm_crtc *crtc;
3693         int hdisplay, htotal, pixel_size, clock;
3694         unsigned long line_time_us;
3695         int line_count, line_size;
3696         int small, large;
3697         int entries;
3698
3699         if (!latency_ns) {
3700                 *display_wm = *cursor_wm = 0;
3701                 return false;
3702         }
3703
3704         crtc = intel_get_crtc_for_plane(dev, plane);
3705         hdisplay = crtc->mode.hdisplay;
3706         htotal = crtc->mode.htotal;
3707         clock = crtc->mode.clock;
3708         pixel_size = crtc->fb->bits_per_pixel / 8;
3709
3710         line_time_us = (htotal * 1000) / clock;
3711         line_count = (latency_ns / line_time_us + 1000) / 1000;
3712         line_size = hdisplay * pixel_size;
3713
3714         /* Use the minimum of the small and large buffer method for primary */
3715         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3716         large = line_count * line_size;
3717
3718         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3719         *display_wm = entries + display->guard_size;
3720
3721         /* calculate the self-refresh watermark for display cursor */
3722         entries = line_count * pixel_size * 64;
3723         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3724         *cursor_wm = entries + cursor->guard_size;
3725
3726         return g4x_check_srwm(dev,
3727                               *display_wm, *cursor_wm,
3728                               display, cursor);
3729 }
3730
3731 #define single_plane_enabled(mask) is_power_of_2(mask)
3732
3733 static void g4x_update_wm(struct drm_device *dev)
3734 {
3735         static const int sr_latency_ns = 12000;
3736         struct drm_i915_private *dev_priv = dev->dev_private;
3737         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3738         int plane_sr, cursor_sr;
3739         unsigned int enabled = 0;
3740
3741         if (g4x_compute_wm0(dev, 0,
3742                             &g4x_wm_info, latency_ns,
3743                             &g4x_cursor_wm_info, latency_ns,
3744                             &planea_wm, &cursora_wm))
3745                 enabled |= 1;
3746
3747         if (g4x_compute_wm0(dev, 1,
3748                             &g4x_wm_info, latency_ns,
3749                             &g4x_cursor_wm_info, latency_ns,
3750                             &planeb_wm, &cursorb_wm))
3751                 enabled |= 2;
3752
3753         plane_sr = cursor_sr = 0;
3754         if (single_plane_enabled(enabled) &&
3755             g4x_compute_srwm(dev, ffs(enabled) - 1,
3756                              sr_latency_ns,
3757                              &g4x_wm_info,
3758                              &g4x_cursor_wm_info,
3759                              &plane_sr, &cursor_sr))
3760                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3761         else
3762                 I915_WRITE(FW_BLC_SELF,
3763                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3764
3765         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3766                       planea_wm, cursora_wm,
3767                       planeb_wm, cursorb_wm,
3768                       plane_sr, cursor_sr);
3769
3770         I915_WRITE(DSPFW1,
3771                    (plane_sr << DSPFW_SR_SHIFT) |
3772                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3773                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
3774                    planea_wm);
3775         I915_WRITE(DSPFW2,
3776                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3777                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3778         /* HPLL off in SR has some issues on G4x... disable it */
3779         I915_WRITE(DSPFW3,
3780                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3781                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3782 }
3783
3784 static void i965_update_wm(struct drm_device *dev)
3785 {
3786         struct drm_i915_private *dev_priv = dev->dev_private;
3787         struct drm_crtc *crtc;
3788         int srwm = 1;
3789         int cursor_sr = 16;
3790
3791         /* Calc sr entries for one plane configs */
3792         crtc = single_enabled_crtc(dev);
3793         if (crtc) {
3794                 /* self-refresh has much higher latency */
3795                 static const int sr_latency_ns = 12000;
3796                 int clock = crtc->mode.clock;
3797                 int htotal = crtc->mode.htotal;
3798                 int hdisplay = crtc->mode.hdisplay;
3799                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3800                 unsigned long line_time_us;
3801                 int entries;
3802
3803                 line_time_us = ((htotal * 1000) / clock);
3804
3805                 /* Use ns/us then divide to preserve precision */
3806                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3807                         pixel_size * hdisplay;
3808                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3809                 srwm = I965_FIFO_SIZE - entries;
3810                 if (srwm < 0)
3811                         srwm = 1;
3812                 srwm &= 0x1ff;
3813                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3814                               entries, srwm);
3815
3816                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3817                         pixel_size * 64;
3818                 entries = DIV_ROUND_UP(entries,
3819                                           i965_cursor_wm_info.cacheline_size);
3820                 cursor_sr = i965_cursor_wm_info.fifo_size -
3821                         (entries + i965_cursor_wm_info.guard_size);
3822
3823                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3824                         cursor_sr = i965_cursor_wm_info.max_wm;
3825
3826                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3827                               "cursor %d\n", srwm, cursor_sr);
3828
3829                 if (IS_CRESTLINE(dev))
3830                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3831         } else {
3832                 /* Turn off self refresh if both pipes are enabled */
3833                 if (IS_CRESTLINE(dev))
3834                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3835                                    & ~FW_BLC_SELF_EN);
3836         }
3837
3838         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3839                       srwm);
3840
3841         /* 965 has limitations... */
3842         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
3843                    (8 << 16) | (8 << 8) | (8 << 0));
3844         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3845         /* update cursor SR watermark */
3846         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3847 }
3848
3849 static void i9xx_update_wm(struct drm_device *dev)
3850 {
3851         struct drm_i915_private *dev_priv = dev->dev_private;
3852         const struct intel_watermark_params *wm_info;
3853         uint32_t fwater_lo;
3854         uint32_t fwater_hi;
3855         int cwm, srwm = 1;
3856         int fifo_size;
3857         int planea_wm, planeb_wm;
3858         struct drm_crtc *crtc, *enabled = NULL;
3859
3860         if (IS_I945GM(dev))
3861                 wm_info = &i945_wm_info;
3862         else if (!IS_GEN2(dev))
3863                 wm_info = &i915_wm_info;
3864         else
3865                 wm_info = &i855_wm_info;
3866
3867         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3868         crtc = intel_get_crtc_for_plane(dev, 0);
3869         if (crtc->enabled && crtc->fb) {
3870                 planea_wm = intel_calculate_wm(crtc->mode.clock,
3871                                                wm_info, fifo_size,
3872                                                crtc->fb->bits_per_pixel / 8,
3873                                                latency_ns);
3874                 enabled = crtc;
3875         } else
3876                 planea_wm = fifo_size - wm_info->guard_size;
3877
3878         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3879         crtc = intel_get_crtc_for_plane(dev, 1);
3880         if (crtc->enabled && crtc->fb) {
3881                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
3882                                                wm_info, fifo_size,
3883                                                crtc->fb->bits_per_pixel / 8,
3884                                                latency_ns);
3885                 if (enabled == NULL)
3886                         enabled = crtc;
3887                 else
3888                         enabled = NULL;
3889         } else
3890                 planeb_wm = fifo_size - wm_info->guard_size;
3891
3892         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3893
3894         /*
3895          * Overlay gets an aggressive default since video jitter is bad.
3896          */
3897         cwm = 2;
3898
3899         /* Play safe and disable self-refresh before adjusting watermarks. */
3900         if (IS_I945G(dev) || IS_I945GM(dev))
3901                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
3902         else if (IS_I915GM(dev))
3903                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3904
3905         /* Calc sr entries for one plane configs */
3906         if (HAS_FW_BLC(dev) && enabled) {
3907                 /* self-refresh has much higher latency */
3908                 static const int sr_latency_ns = 6000;
3909                 int clock = enabled->mode.clock;
3910                 int htotal = enabled->mode.htotal;
3911                 int hdisplay = enabled->mode.hdisplay;
3912                 int pixel_size = enabled->fb->bits_per_pixel / 8;
3913                 unsigned long line_time_us;
3914                 int entries;
3915
3916                 line_time_us = (htotal * 1000) / clock;
3917
3918                 /* Use ns/us then divide to preserve precision */
3919                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3920                         pixel_size * hdisplay;
3921                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
3922                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
3923                 srwm = wm_info->fifo_size - entries;
3924                 if (srwm < 0)
3925                         srwm = 1;
3926
3927                 if (IS_I945G(dev) || IS_I945GM(dev))
3928                         I915_WRITE(FW_BLC_SELF,
3929                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3930                 else if (IS_I915GM(dev))
3931                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3932         }
3933
3934         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3935                       planea_wm, planeb_wm, cwm, srwm);
3936
3937         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3938         fwater_hi = (cwm & 0x1f);
3939
3940         /* Set request length to 8 cachelines per fetch */
3941         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3942         fwater_hi = fwater_hi | (1 << 8);
3943
3944         I915_WRITE(FW_BLC, fwater_lo);
3945         I915_WRITE(FW_BLC2, fwater_hi);
3946
3947         if (HAS_FW_BLC(dev)) {
3948                 if (enabled) {
3949                         if (IS_I945G(dev) || IS_I945GM(dev))
3950                                 I915_WRITE(FW_BLC_SELF,
3951                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
3952                         else if (IS_I915GM(dev))
3953                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3954                         DRM_DEBUG_KMS("memory self refresh enabled\n");
3955                 } else
3956                         DRM_DEBUG_KMS("memory self refresh disabled\n");
3957         }
3958 }
3959
3960 static void i830_update_wm(struct drm_device *dev)
3961 {
3962         struct drm_i915_private *dev_priv = dev->dev_private;
3963         struct drm_crtc *crtc;
3964         uint32_t fwater_lo;
3965         int planea_wm;
3966
3967         crtc = single_enabled_crtc(dev);
3968         if (crtc == NULL)
3969                 return;
3970
3971         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
3972                                        dev_priv->display.get_fifo_size(dev, 0),
3973                                        crtc->fb->bits_per_pixel / 8,
3974                                        latency_ns);
3975         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3976         fwater_lo |= (3<<8) | planea_wm;
3977
3978         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3979
3980         I915_WRITE(FW_BLC, fwater_lo);
3981 }
3982
3983 #define ILK_LP0_PLANE_LATENCY           700
3984 #define ILK_LP0_CURSOR_LATENCY          1300
3985
3986 static bool ironlake_compute_wm0(struct drm_device *dev,
3987                                  int pipe,
3988                                  const struct intel_watermark_params *display,
3989                                  int display_latency_ns,
3990                                  const struct intel_watermark_params *cursor,
3991                                  int cursor_latency_ns,
3992                                  int *plane_wm,
3993                                  int *cursor_wm)
3994 {
3995         struct drm_crtc *crtc;
3996         int htotal, hdisplay, clock, pixel_size;
3997         int line_time_us, line_count;
3998         int entries, tlb_miss;
3999
4000         crtc = intel_get_crtc_for_pipe(dev, pipe);
4001         if (crtc->fb == NULL || !crtc->enabled)
4002                 return false;
4003
4004         htotal = crtc->mode.htotal;
4005         hdisplay = crtc->mode.hdisplay;
4006         clock = crtc->mode.clock;
4007         pixel_size = crtc->fb->bits_per_pixel / 8;
4008
4009         /* Use the small buffer method to calculate plane watermark */
4010         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4011         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4012         if (tlb_miss > 0)
4013                 entries += tlb_miss;
4014         entries = DIV_ROUND_UP(entries, display->cacheline_size);
4015         *plane_wm = entries + display->guard_size;
4016         if (*plane_wm > (int)display->max_wm)
4017                 *plane_wm = display->max_wm;
4018
4019         /* Use the large buffer method to calculate cursor watermark */
4020         line_time_us = ((htotal * 1000) / clock);
4021         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4022         entries = line_count * 64 * pixel_size;
4023         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4024         if (tlb_miss > 0)
4025                 entries += tlb_miss;
4026         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4027         *cursor_wm = entries + cursor->guard_size;
4028         if (*cursor_wm > (int)cursor->max_wm)
4029                 *cursor_wm = (int)cursor->max_wm;
4030
4031         return true;
4032 }
4033
4034 /*
4035  * Check the wm result.
4036  *
4037  * If any calculated watermark values is larger than the maximum value that
4038  * can be programmed into the associated watermark register, that watermark
4039  * must be disabled.
4040  */
4041 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4042                                 int fbc_wm, int display_wm, int cursor_wm,
4043                                 const struct intel_watermark_params *display,
4044                                 const struct intel_watermark_params *cursor)
4045 {
4046         struct drm_i915_private *dev_priv = dev->dev_private;
4047
4048         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4049                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4050
4051         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4052                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4053                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4054
4055                 /* fbc has it's own way to disable FBC WM */
4056                 I915_WRITE(DISP_ARB_CTL,
4057                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4058                 return false;
4059         }
4060
4061         if (display_wm > display->max_wm) {
4062                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4063                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4064                 return false;
4065         }
4066
4067         if (cursor_wm > cursor->max_wm) {
4068                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4069                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4070                 return false;
4071         }
4072
4073         if (!(fbc_wm || display_wm || cursor_wm)) {
4074                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4075                 return false;
4076         }
4077
4078         return true;
4079 }
4080
4081 /*
4082  * Compute watermark values of WM[1-3],
4083  */
4084 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4085                                   int latency_ns,
4086                                   const struct intel_watermark_params *display,
4087                                   const struct intel_watermark_params *cursor,
4088                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4089 {
4090         struct drm_crtc *crtc;
4091         unsigned long line_time_us;
4092         int hdisplay, htotal, pixel_size, clock;
4093         int line_count, line_size;
4094         int small, large;
4095         int entries;
4096
4097         if (!latency_ns) {
4098                 *fbc_wm = *display_wm = *cursor_wm = 0;
4099                 return false;
4100         }
4101
4102         crtc = intel_get_crtc_for_plane(dev, plane);
4103         hdisplay = crtc->mode.hdisplay;
4104         htotal = crtc->mode.htotal;
4105         clock = crtc->mode.clock;
4106         pixel_size = crtc->fb->bits_per_pixel / 8;
4107
4108         line_time_us = (htotal * 1000) / clock;
4109         line_count = (latency_ns / line_time_us + 1000) / 1000;
4110         line_size = hdisplay * pixel_size;
4111
4112         /* Use the minimum of the small and large buffer method for primary */
4113         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4114         large = line_count * line_size;
4115
4116         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4117         *display_wm = entries + display->guard_size;
4118
4119         /*
4120          * Spec says:
4121          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4122          */
4123         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4124
4125         /* calculate the self-refresh watermark for display cursor */
4126         entries = line_count * pixel_size * 64;
4127         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4128         *cursor_wm = entries + cursor->guard_size;
4129
4130         return ironlake_check_srwm(dev, level,
4131                                    *fbc_wm, *display_wm, *cursor_wm,
4132                                    display, cursor);
4133 }
4134
4135 static void ironlake_update_wm(struct drm_device *dev)
4136 {
4137         struct drm_i915_private *dev_priv = dev->dev_private;
4138         int fbc_wm, plane_wm, cursor_wm;
4139         unsigned int enabled;
4140
4141         enabled = 0;
4142         if (ironlake_compute_wm0(dev, 0,
4143                                  &ironlake_display_wm_info,
4144                                  ILK_LP0_PLANE_LATENCY,
4145                                  &ironlake_cursor_wm_info,
4146                                  ILK_LP0_CURSOR_LATENCY,
4147                                  &plane_wm, &cursor_wm)) {
4148                 I915_WRITE(WM0_PIPEA_ILK,
4149                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4150                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4151                               " plane %d, " "cursor: %d\n",
4152                               plane_wm, cursor_wm);
4153                 enabled |= 1;
4154         }
4155
4156         if (ironlake_compute_wm0(dev, 1,
4157                                  &ironlake_display_wm_info,
4158                                  ILK_LP0_PLANE_LATENCY,
4159                                  &ironlake_cursor_wm_info,
4160                                  ILK_LP0_CURSOR_LATENCY,
4161                                  &plane_wm, &cursor_wm)) {
4162                 I915_WRITE(WM0_PIPEB_ILK,
4163                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4164                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4165                               " plane %d, cursor: %d\n",
4166                               plane_wm, cursor_wm);
4167                 enabled |= 2;
4168         }
4169
4170         /*
4171          * Calculate and update the self-refresh watermark only when one
4172          * display plane is used.
4173          */
4174         I915_WRITE(WM3_LP_ILK, 0);
4175         I915_WRITE(WM2_LP_ILK, 0);
4176         I915_WRITE(WM1_LP_ILK, 0);
4177
4178         if (!single_plane_enabled(enabled))
4179                 return;
4180         enabled = ffs(enabled) - 1;
4181
4182         /* WM1 */
4183         if (!ironlake_compute_srwm(dev, 1, enabled,
4184                                    ILK_READ_WM1_LATENCY() * 500,
4185                                    &ironlake_display_srwm_info,
4186                                    &ironlake_cursor_srwm_info,
4187                                    &fbc_wm, &plane_wm, &cursor_wm))
4188                 return;
4189
4190         I915_WRITE(WM1_LP_ILK,
4191                    WM1_LP_SR_EN |
4192                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4193                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4194                    (plane_wm << WM1_LP_SR_SHIFT) |
4195                    cursor_wm);
4196
4197         /* WM2 */
4198         if (!ironlake_compute_srwm(dev, 2, enabled,
4199                                    ILK_READ_WM2_LATENCY() * 500,
4200                                    &ironlake_display_srwm_info,
4201                                    &ironlake_cursor_srwm_info,
4202                                    &fbc_wm, &plane_wm, &cursor_wm))
4203                 return;
4204
4205         I915_WRITE(WM2_LP_ILK,
4206                    WM2_LP_EN |
4207                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4208                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4209                    (plane_wm << WM1_LP_SR_SHIFT) |
4210                    cursor_wm);
4211
4212         /*
4213          * WM3 is unsupported on ILK, probably because we don't have latency
4214          * data for that power state
4215          */
4216 }
4217
4218 static void sandybridge_update_wm(struct drm_device *dev)
4219 {
4220         struct drm_i915_private *dev_priv = dev->dev_private;
4221         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4222         int fbc_wm, plane_wm, cursor_wm;
4223         unsigned int enabled;
4224
4225         enabled = 0;
4226         if (ironlake_compute_wm0(dev, 0,
4227                                  &sandybridge_display_wm_info, latency,
4228                                  &sandybridge_cursor_wm_info, latency,
4229                                  &plane_wm, &cursor_wm)) {
4230                 I915_WRITE(WM0_PIPEA_ILK,
4231                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4232                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4233                               " plane %d, " "cursor: %d\n",
4234                               plane_wm, cursor_wm);
4235                 enabled |= 1;
4236         }
4237
4238         if (ironlake_compute_wm0(dev, 1,
4239                                  &sandybridge_display_wm_info, latency,
4240                                  &sandybridge_cursor_wm_info, latency,
4241                                  &plane_wm, &cursor_wm)) {
4242                 I915_WRITE(WM0_PIPEB_ILK,
4243                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4244                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4245                               " plane %d, cursor: %d\n",
4246                               plane_wm, cursor_wm);
4247                 enabled |= 2;
4248         }
4249
4250         /*
4251          * Calculate and update the self-refresh watermark only when one
4252          * display plane is used.
4253          *
4254          * SNB support 3 levels of watermark.
4255          *
4256          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4257          * and disabled in the descending order
4258          *
4259          */
4260         I915_WRITE(WM3_LP_ILK, 0);
4261         I915_WRITE(WM2_LP_ILK, 0);
4262         I915_WRITE(WM1_LP_ILK, 0);
4263
4264         if (!single_plane_enabled(enabled))
4265                 return;
4266         enabled = ffs(enabled) - 1;
4267
4268         /* WM1 */
4269         if (!ironlake_compute_srwm(dev, 1, enabled,
4270                                    SNB_READ_WM1_LATENCY() * 500,
4271                                    &sandybridge_display_srwm_info,
4272                                    &sandybridge_cursor_srwm_info,
4273                                    &fbc_wm, &plane_wm, &cursor_wm))
4274                 return;
4275
4276         I915_WRITE(WM1_LP_ILK,
4277                    WM1_LP_SR_EN |
4278                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4279                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4280                    (plane_wm << WM1_LP_SR_SHIFT) |
4281                    cursor_wm);
4282
4283         /* WM2 */
4284         if (!ironlake_compute_srwm(dev, 2, enabled,
4285                                    SNB_READ_WM2_LATENCY() * 500,
4286                                    &sandybridge_display_srwm_info,
4287                                    &sandybridge_cursor_srwm_info,
4288                                    &fbc_wm, &plane_wm, &cursor_wm))
4289                 return;
4290
4291         I915_WRITE(WM2_LP_ILK,
4292                    WM2_LP_EN |
4293                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4294                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4295                    (plane_wm << WM1_LP_SR_SHIFT) |
4296                    cursor_wm);
4297
4298         /* WM3 */
4299         if (!ironlake_compute_srwm(dev, 3, enabled,
4300                                    SNB_READ_WM3_LATENCY() * 500,
4301                                    &sandybridge_display_srwm_info,
4302                                    &sandybridge_cursor_srwm_info,
4303                                    &fbc_wm, &plane_wm, &cursor_wm))
4304                 return;
4305
4306         I915_WRITE(WM3_LP_ILK,
4307                    WM3_LP_EN |
4308                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4309                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4310                    (plane_wm << WM1_LP_SR_SHIFT) |
4311                    cursor_wm);
4312 }
4313
4314 /**
4315  * intel_update_watermarks - update FIFO watermark values based on current modes
4316  *
4317  * Calculate watermark values for the various WM regs based on current mode
4318  * and plane configuration.
4319  *
4320  * There are several cases to deal with here:
4321  *   - normal (i.e. non-self-refresh)
4322  *   - self-refresh (SR) mode
4323  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4324  *   - lines are small relative to FIFO size (buffer can hold more than 2
4325  *     lines), so need to account for TLB latency
4326  *
4327  *   The normal calculation is:
4328  *     watermark = dotclock * bytes per pixel * latency
4329  *   where latency is platform & configuration dependent (we assume pessimal
4330  *   values here).
4331  *
4332  *   The SR calculation is:
4333  *     watermark = (trunc(latency/line time)+1) * surface width *
4334  *       bytes per pixel
4335  *   where
4336  *     line time = htotal / dotclock
4337  *     surface width = hdisplay for normal plane and 64 for cursor
4338  *   and latency is assumed to be high, as above.
4339  *
4340  * The final value programmed to the register should always be rounded up,
4341  * and include an extra 2 entries to account for clock crossings.
4342  *
4343  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4344  * to set the non-SR watermarks to 8.
4345  */
4346 static void intel_update_watermarks(struct drm_device *dev)
4347 {
4348         struct drm_i915_private *dev_priv = dev->dev_private;
4349
4350         if (dev_priv->display.update_wm)
4351                 dev_priv->display.update_wm(dev);
4352 }
4353
4354 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4355 {
4356         return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
4357 }
4358
4359 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4360                               struct drm_display_mode *mode,
4361                               struct drm_display_mode *adjusted_mode,
4362                               int x, int y,
4363                               struct drm_framebuffer *old_fb)
4364 {
4365         struct drm_device *dev = crtc->dev;
4366         struct drm_i915_private *dev_priv = dev->dev_private;
4367         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4368         int pipe = intel_crtc->pipe;
4369         int plane = intel_crtc->plane;
4370         int refclk, num_connectors = 0;
4371         intel_clock_t clock, reduced_clock;
4372         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4373         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4374         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4375         struct drm_mode_config *mode_config = &dev->mode_config;
4376         struct intel_encoder *encoder;
4377         const intel_limit_t *limit;
4378         int ret;
4379         u32 temp;
4380         u32 lvds_sync = 0;
4381
4382         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4383                 if (encoder->base.crtc != crtc)
4384                         continue;
4385
4386                 switch (encoder->type) {
4387                 case INTEL_OUTPUT_LVDS:
4388                         is_lvds = true;
4389                         break;
4390                 case INTEL_OUTPUT_SDVO:
4391                 case INTEL_OUTPUT_HDMI:
4392                         is_sdvo = true;
4393                         if (encoder->needs_tv_clock)
4394                                 is_tv = true;
4395                         break;
4396                 case INTEL_OUTPUT_DVO:
4397                         is_dvo = true;
4398                         break;
4399                 case INTEL_OUTPUT_TVOUT:
4400                         is_tv = true;
4401                         break;
4402                 case INTEL_OUTPUT_ANALOG:
4403                         is_crt = true;
4404                         break;
4405                 case INTEL_OUTPUT_DISPLAYPORT:
4406                         is_dp = true;
4407                         break;
4408                 }
4409
4410                 num_connectors++;
4411         }
4412
4413         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4414                 refclk = dev_priv->lvds_ssc_freq * 1000;
4415                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4416                               refclk / 1000);
4417         } else if (!IS_GEN2(dev)) {
4418                 refclk = 96000;
4419         } else {
4420                 refclk = 48000;
4421         }
4422
4423         /*
4424          * Returns a set of divisors for the desired target clock with the given
4425          * refclk, or FALSE.  The returned values represent the clock equation:
4426          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4427          */
4428         limit = intel_limit(crtc, refclk);
4429         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4430         if (!ok) {
4431                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4432                 return -EINVAL;
4433         }
4434
4435         /* Ensure that the cursor is valid for the new mode before changing... */
4436         intel_crtc_update_cursor(crtc, true);
4437
4438         if (is_lvds && dev_priv->lvds_downclock_avail) {
4439                 has_reduced_clock = limit->find_pll(limit, crtc,
4440                                                     dev_priv->lvds_downclock,
4441                                                     refclk,
4442                                                     &reduced_clock);
4443                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4444                         /*
4445                          * If the different P is found, it means that we can't
4446                          * switch the display clock by using the FP0/FP1.
4447                          * In such case we will disable the LVDS downclock
4448                          * feature.
4449                          */
4450                         DRM_DEBUG_KMS("Different P is found for "
4451                                       "LVDS clock/downclock\n");
4452                         has_reduced_clock = 0;
4453                 }
4454         }
4455         /* SDVO TV has fixed PLL values depend on its clock range,
4456            this mirrors vbios setting. */
4457         if (is_sdvo && is_tv) {
4458                 if (adjusted_mode->clock >= 100000
4459                     && adjusted_mode->clock < 140500) {
4460                         clock.p1 = 2;
4461                         clock.p2 = 10;
4462                         clock.n = 3;
4463                         clock.m1 = 16;
4464                         clock.m2 = 8;
4465                 } else if (adjusted_mode->clock >= 140500
4466                            && adjusted_mode->clock <= 200000) {
4467                         clock.p1 = 1;
4468                         clock.p2 = 10;
4469                         clock.n = 6;
4470                         clock.m1 = 12;
4471                         clock.m2 = 8;
4472                 }
4473         }
4474
4475         if (IS_PINEVIEW(dev)) {
4476                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4477                 if (has_reduced_clock)
4478                         fp2 = (1 << reduced_clock.n) << 16 |
4479                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4480         } else {
4481                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4482                 if (has_reduced_clock)
4483                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4484                                 reduced_clock.m2;
4485         }
4486
4487         dpll = DPLL_VGA_MODE_DIS;
4488
4489         if (!IS_GEN2(dev)) {
4490                 if (is_lvds)
4491                         dpll |= DPLLB_MODE_LVDS;
4492                 else
4493                         dpll |= DPLLB_MODE_DAC_SERIAL;
4494                 if (is_sdvo) {
4495                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4496                         if (pixel_multiplier > 1) {
4497                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4498                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4499                         }
4500                         dpll |= DPLL_DVO_HIGH_SPEED;
4501                 }
4502                 if (is_dp)
4503                         dpll |= DPLL_DVO_HIGH_SPEED;
4504
4505                 /* compute bitmask from p1 value */
4506                 if (IS_PINEVIEW(dev))
4507                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4508                 else {
4509                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4510                         if (IS_G4X(dev) && has_reduced_clock)
4511                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4512                 }
4513                 switch (clock.p2) {
4514                 case 5:
4515                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4516                         break;
4517                 case 7:
4518                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4519                         break;
4520                 case 10:
4521                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4522                         break;
4523                 case 14:
4524                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4525                         break;
4526                 }
4527                 if (INTEL_INFO(dev)->gen >= 4)
4528                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4529         } else {
4530                 if (is_lvds) {
4531                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4532                 } else {
4533                         if (clock.p1 == 2)
4534                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4535                         else
4536                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4537                         if (clock.p2 == 4)
4538                                 dpll |= PLL_P2_DIVIDE_BY_4;
4539                 }
4540         }
4541
4542         if (is_sdvo && is_tv)
4543                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4544         else if (is_tv)
4545                 /* XXX: just matching BIOS for now */
4546                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4547                 dpll |= 3;
4548         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4549                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4550         else
4551                 dpll |= PLL_REF_INPUT_DREFCLK;
4552
4553         /* setup pipeconf */
4554         pipeconf = I915_READ(PIPECONF(pipe));
4555
4556         /* Set up the display plane register */
4557         dspcntr = DISPPLANE_GAMMA_ENABLE;
4558
4559         /* Ironlake's plane is forced to pipe, bit 24 is to
4560            enable color space conversion */
4561         if (pipe == 0)
4562                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4563         else
4564                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4565
4566         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4567                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4568                  * core speed.
4569                  *
4570                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4571                  * pipe == 0 check?
4572                  */
4573                 if (mode->clock >
4574                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4575                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4576                 else
4577                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4578         }
4579
4580         dpll |= DPLL_VCO_ENABLE;
4581
4582         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4583         drm_mode_debug_printmodeline(mode);
4584
4585         I915_WRITE(FP0(pipe), fp);
4586         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4587
4588         POSTING_READ(DPLL(pipe));
4589         udelay(150);
4590
4591         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4592          * This is an exception to the general rule that mode_set doesn't turn
4593          * things on.
4594          */
4595         if (is_lvds) {
4596                 temp = I915_READ(LVDS);
4597                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4598                 if (pipe == 1) {
4599                         temp |= LVDS_PIPEB_SELECT;
4600                 } else {
4601                         temp &= ~LVDS_PIPEB_SELECT;
4602                 }
4603                 /* set the corresponsding LVDS_BORDER bit */
4604                 temp |= dev_priv->lvds_border_bits;
4605                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4606                  * set the DPLLs for dual-channel mode or not.
4607                  */
4608                 if (clock.p2 == 7)
4609                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4610                 else
4611                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4612
4613                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4614                  * appropriately here, but we need to look more thoroughly into how
4615                  * panels behave in the two modes.
4616                  */
4617                 /* set the dithering flag on LVDS as needed */
4618                 if (INTEL_INFO(dev)->gen >= 4) {
4619                         if (dev_priv->lvds_dither)
4620                                 temp |= LVDS_ENABLE_DITHER;
4621                         else
4622                                 temp &= ~LVDS_ENABLE_DITHER;
4623                 }
4624                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4625                         lvds_sync |= LVDS_HSYNC_POLARITY;
4626                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4627                         lvds_sync |= LVDS_VSYNC_POLARITY;
4628                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4629                     != lvds_sync) {
4630                         char flags[2] = "-+";
4631                         DRM_INFO("Changing LVDS panel from "
4632                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4633                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
4634                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
4635                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4636                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4637                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4638                         temp |= lvds_sync;
4639                 }
4640                 I915_WRITE(LVDS, temp);
4641         }
4642
4643         if (is_dp) {
4644                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4645         }
4646
4647         I915_WRITE(DPLL(pipe), dpll);
4648
4649         /* Wait for the clocks to stabilize. */
4650         POSTING_READ(DPLL(pipe));
4651         udelay(150);
4652
4653         if (INTEL_INFO(dev)->gen >= 4) {
4654                 temp = 0;
4655                 if (is_sdvo) {
4656                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4657                         if (temp > 1)
4658                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4659                         else
4660                                 temp = 0;
4661                 }
4662                 I915_WRITE(DPLL_MD(pipe), temp);
4663         } else {
4664                 /* The pixel multiplier can only be updated once the
4665                  * DPLL is enabled and the clocks are stable.
4666                  *
4667                  * So write it again.
4668                  */
4669                 I915_WRITE(DPLL(pipe), dpll);
4670         }
4671
4672         intel_crtc->lowfreq_avail = false;
4673         if (is_lvds && has_reduced_clock && i915_powersave) {
4674                 I915_WRITE(FP1(pipe), fp2);
4675                 intel_crtc->lowfreq_avail = true;
4676                 if (HAS_PIPE_CXSR(dev)) {
4677                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4678                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4679                 }
4680         } else {
4681                 I915_WRITE(FP1(pipe), fp);
4682                 if (HAS_PIPE_CXSR(dev)) {
4683                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4684                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4685                 }
4686         }
4687
4688         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4689                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4690                 /* the chip adds 2 halflines automatically */
4691                 adjusted_mode->crtc_vdisplay -= 1;
4692                 adjusted_mode->crtc_vtotal -= 1;
4693                 adjusted_mode->crtc_vblank_start -= 1;
4694                 adjusted_mode->crtc_vblank_end -= 1;
4695                 adjusted_mode->crtc_vsync_end -= 1;
4696                 adjusted_mode->crtc_vsync_start -= 1;
4697         } else
4698                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4699
4700         I915_WRITE(HTOTAL(pipe),
4701                    (adjusted_mode->crtc_hdisplay - 1) |
4702                    ((adjusted_mode->crtc_htotal - 1) << 16));
4703         I915_WRITE(HBLANK(pipe),
4704                    (adjusted_mode->crtc_hblank_start - 1) |
4705                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4706         I915_WRITE(HSYNC(pipe),
4707                    (adjusted_mode->crtc_hsync_start - 1) |
4708                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4709
4710         I915_WRITE(VTOTAL(pipe),
4711                    (adjusted_mode->crtc_vdisplay - 1) |
4712                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4713         I915_WRITE(VBLANK(pipe),
4714                    (adjusted_mode->crtc_vblank_start - 1) |
4715                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4716         I915_WRITE(VSYNC(pipe),
4717                    (adjusted_mode->crtc_vsync_start - 1) |
4718                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4719
4720         /* pipesrc and dspsize control the size that is scaled from,
4721          * which should always be the user's requested size.
4722          */
4723         I915_WRITE(DSPSIZE(plane),
4724                    ((mode->vdisplay - 1) << 16) |
4725                    (mode->hdisplay - 1));
4726         I915_WRITE(DSPPOS(plane), 0);
4727         I915_WRITE(PIPESRC(pipe),
4728                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4729
4730         I915_WRITE(PIPECONF(pipe), pipeconf);
4731         POSTING_READ(PIPECONF(pipe));
4732         intel_enable_pipe(dev_priv, pipe, false);
4733
4734         intel_wait_for_vblank(dev, pipe);
4735
4736         I915_WRITE(DSPCNTR(plane), dspcntr);
4737         POSTING_READ(DSPCNTR(plane));
4738
4739         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4740
4741         intel_update_watermarks(dev);
4742
4743         return ret;
4744 }
4745
4746 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4747                                   struct drm_display_mode *mode,
4748                                   struct drm_display_mode *adjusted_mode,
4749                                   int x, int y,
4750                                   struct drm_framebuffer *old_fb)
4751 {
4752         struct drm_device *dev = crtc->dev;
4753         struct drm_i915_private *dev_priv = dev->dev_private;
4754         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4755         int pipe = intel_crtc->pipe;
4756         int plane = intel_crtc->plane;
4757         int refclk, num_connectors = 0;
4758         intel_clock_t clock, reduced_clock;
4759         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4760         bool ok, has_reduced_clock = false, is_sdvo = false;
4761         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4762         struct intel_encoder *has_edp_encoder = NULL;
4763         struct drm_mode_config *mode_config = &dev->mode_config;
4764         struct intel_encoder *encoder;
4765         const intel_limit_t *limit;
4766         int ret;
4767         struct fdi_m_n m_n = {0};
4768         u32 temp;
4769         u32 lvds_sync = 0;
4770         int target_clock, pixel_multiplier, lane, link_bw, bpp, factor;
4771
4772         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4773                 if (encoder->base.crtc != crtc)
4774                         continue;
4775
4776                 switch (encoder->type) {
4777                 case INTEL_OUTPUT_LVDS:
4778                         is_lvds = true;
4779                         break;
4780                 case INTEL_OUTPUT_SDVO:
4781                 case INTEL_OUTPUT_HDMI:
4782                         is_sdvo = true;
4783                         if (encoder->needs_tv_clock)
4784                                 is_tv = true;
4785                         break;
4786                 case INTEL_OUTPUT_TVOUT:
4787                         is_tv = true;
4788                         break;
4789                 case INTEL_OUTPUT_ANALOG:
4790                         is_crt = true;
4791                         break;
4792                 case INTEL_OUTPUT_DISPLAYPORT:
4793                         is_dp = true;
4794                         break;
4795                 case INTEL_OUTPUT_EDP:
4796                         has_edp_encoder = encoder;
4797                         break;
4798                 }
4799
4800                 num_connectors++;
4801         }
4802
4803         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4804                 refclk = dev_priv->lvds_ssc_freq * 1000;
4805                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4806                               refclk / 1000);
4807         } else {
4808                 refclk = 96000;
4809                 if (!has_edp_encoder ||
4810                     intel_encoder_is_pch_edp(&has_edp_encoder->base))
4811                         refclk = 120000; /* 120Mhz refclk */
4812         }
4813
4814         /*
4815          * Returns a set of divisors for the desired target clock with the given
4816          * refclk, or FALSE.  The returned values represent the clock equation:
4817          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4818          */
4819         limit = intel_limit(crtc, refclk);
4820         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4821         if (!ok) {
4822                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4823                 return -EINVAL;
4824         }
4825
4826         /* Ensure that the cursor is valid for the new mode before changing... */
4827         intel_crtc_update_cursor(crtc, true);
4828
4829         if (is_lvds && dev_priv->lvds_downclock_avail) {
4830                 has_reduced_clock = limit->find_pll(limit, crtc,
4831                                                     dev_priv->lvds_downclock,
4832                                                     refclk,
4833                                                     &reduced_clock);
4834                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4835                         /*
4836                          * If the different P is found, it means that we can't
4837                          * switch the display clock by using the FP0/FP1.
4838                          * In such case we will disable the LVDS downclock
4839                          * feature.
4840                          */
4841                         DRM_DEBUG_KMS("Different P is found for "
4842                                       "LVDS clock/downclock\n");
4843                         has_reduced_clock = 0;
4844                 }
4845         }
4846         /* SDVO TV has fixed PLL values depend on its clock range,
4847            this mirrors vbios setting. */
4848         if (is_sdvo && is_tv) {
4849                 if (adjusted_mode->clock >= 100000
4850                     && adjusted_mode->clock < 140500) {
4851                         clock.p1 = 2;
4852                         clock.p2 = 10;
4853                         clock.n = 3;
4854                         clock.m1 = 16;
4855                         clock.m2 = 8;
4856                 } else if (adjusted_mode->clock >= 140500
4857                            && adjusted_mode->clock <= 200000) {
4858                         clock.p1 = 1;
4859                         clock.p2 = 10;
4860                         clock.n = 6;
4861                         clock.m1 = 12;
4862                         clock.m2 = 8;
4863                 }
4864         }
4865
4866         /* FDI link */
4867         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4868         lane = 0;
4869         /* CPU eDP doesn't require FDI link, so just set DP M/N
4870            according to current link config */
4871         if (has_edp_encoder &&
4872             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4873                 target_clock = mode->clock;
4874                 intel_edp_link_config(has_edp_encoder,
4875                                       &lane, &link_bw);
4876         } else {
4877                 /* [e]DP over FDI requires target mode clock
4878                    instead of link clock */
4879                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4880                         target_clock = mode->clock;
4881                 else
4882                         target_clock = adjusted_mode->clock;
4883
4884                 /* FDI is a binary signal running at ~2.7GHz, encoding
4885                  * each output octet as 10 bits. The actual frequency
4886                  * is stored as a divider into a 100MHz clock, and the
4887                  * mode pixel clock is stored in units of 1KHz.
4888                  * Hence the bw of each lane in terms of the mode signal
4889                  * is:
4890                  */
4891                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4892         }
4893
4894         /* determine panel color depth */
4895         temp = I915_READ(PIPECONF(pipe));
4896         temp &= ~PIPE_BPC_MASK;
4897         if (is_lvds) {
4898                 /* the BPC will be 6 if it is 18-bit LVDS panel */
4899                 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
4900                         temp |= PIPE_8BPC;
4901                 else
4902                         temp |= PIPE_6BPC;
4903         } else if (has_edp_encoder) {
4904                 switch (dev_priv->edp.bpp/3) {
4905                 case 8:
4906                         temp |= PIPE_8BPC;
4907                         break;
4908                 case 10:
4909                         temp |= PIPE_10BPC;
4910                         break;
4911                 case 6:
4912                         temp |= PIPE_6BPC;
4913                         break;
4914                 case 12:
4915                         temp |= PIPE_12BPC;
4916                         break;
4917                 }
4918         } else
4919                 temp |= PIPE_8BPC;
4920         I915_WRITE(PIPECONF(pipe), temp);
4921
4922         switch (temp & PIPE_BPC_MASK) {
4923         case PIPE_8BPC:
4924                 bpp = 24;
4925                 break;
4926         case PIPE_10BPC:
4927                 bpp = 30;
4928                 break;
4929         case PIPE_6BPC:
4930                 bpp = 18;
4931                 break;
4932         case PIPE_12BPC:
4933                 bpp = 36;
4934                 break;
4935         default:
4936                 DRM_ERROR("unknown pipe bpc value\n");
4937                 bpp = 24;
4938         }
4939
4940         if (!lane) {
4941                 /*
4942                  * Account for spread spectrum to avoid
4943                  * oversubscribing the link. Max center spread
4944                  * is 2.5%; use 5% for safety's sake.
4945                  */
4946                 u32 bps = target_clock * bpp * 21 / 20;
4947                 lane = bps / (link_bw * 8) + 1;
4948         }
4949
4950         intel_crtc->fdi_lanes = lane;
4951
4952         if (pixel_multiplier > 1)
4953                 link_bw *= pixel_multiplier;
4954         ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
4955
4956         /* Ironlake: try to setup display ref clock before DPLL
4957          * enabling. This is only under driver's control after
4958          * PCH B stepping, previous chipset stepping should be
4959          * ignoring this setting.
4960          */
4961         temp = I915_READ(PCH_DREF_CONTROL);
4962         /* Always enable nonspread source */
4963         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4964         temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4965         temp &= ~DREF_SSC_SOURCE_MASK;
4966         temp |= DREF_SSC_SOURCE_ENABLE;
4967         I915_WRITE(PCH_DREF_CONTROL, temp);
4968
4969         POSTING_READ(PCH_DREF_CONTROL);
4970         udelay(200);
4971
4972         if (has_edp_encoder) {
4973                 if (intel_panel_use_ssc(dev_priv)) {
4974                         temp |= DREF_SSC1_ENABLE;
4975                         I915_WRITE(PCH_DREF_CONTROL, temp);
4976
4977                         POSTING_READ(PCH_DREF_CONTROL);
4978                         udelay(200);
4979                 }
4980                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4981
4982                 /* Enable CPU source on CPU attached eDP */
4983                 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4984                         if (intel_panel_use_ssc(dev_priv))
4985                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4986                         else
4987                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4988                 } else {
4989                         /* Enable SSC on PCH eDP if needed */
4990                         if (intel_panel_use_ssc(dev_priv)) {
4991                                 DRM_ERROR("enabling SSC on PCH\n");
4992                                 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
4993                         }
4994                 }
4995                 I915_WRITE(PCH_DREF_CONTROL, temp);
4996                 POSTING_READ(PCH_DREF_CONTROL);
4997                 udelay(200);
4998         }
4999
5000         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5001         if (has_reduced_clock)
5002                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5003                         reduced_clock.m2;
5004
5005         /* Enable autotuning of the PLL clock (if permissible) */
5006         factor = 21;
5007         if (is_lvds) {
5008                 if ((intel_panel_use_ssc(dev_priv) &&
5009                      dev_priv->lvds_ssc_freq == 100) ||
5010                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5011                         factor = 25;
5012         } else if (is_sdvo && is_tv)
5013                 factor = 20;
5014
5015         if (clock.m1 < factor * clock.n)
5016                 fp |= FP_CB_TUNE;
5017
5018         dpll = 0;
5019
5020         if (is_lvds)
5021                 dpll |= DPLLB_MODE_LVDS;
5022         else
5023                 dpll |= DPLLB_MODE_DAC_SERIAL;
5024         if (is_sdvo) {
5025                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5026                 if (pixel_multiplier > 1) {
5027                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5028                 }
5029                 dpll |= DPLL_DVO_HIGH_SPEED;
5030         }
5031         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5032                 dpll |= DPLL_DVO_HIGH_SPEED;
5033
5034         /* compute bitmask from p1 value */
5035         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5036         /* also FPA1 */
5037         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5038
5039         switch (clock.p2) {
5040         case 5:
5041                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5042                 break;
5043         case 7:
5044                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5045                 break;
5046         case 10:
5047                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5048                 break;
5049         case 14:
5050                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5051                 break;
5052         }
5053
5054         if (is_sdvo && is_tv)
5055                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5056         else if (is_tv)
5057                 /* XXX: just matching BIOS for now */
5058                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5059                 dpll |= 3;
5060         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5061                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5062         else
5063                 dpll |= PLL_REF_INPUT_DREFCLK;
5064
5065         /* setup pipeconf */
5066         pipeconf = I915_READ(PIPECONF(pipe));
5067
5068         /* Set up the display plane register */
5069         dspcntr = DISPPLANE_GAMMA_ENABLE;
5070
5071         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5072         drm_mode_debug_printmodeline(mode);
5073
5074         /* PCH eDP needs FDI, but CPU eDP does not */
5075         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5076                 I915_WRITE(PCH_FP0(pipe), fp);
5077                 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5078
5079                 POSTING_READ(PCH_DPLL(pipe));
5080                 udelay(150);
5081         }
5082
5083         /* enable transcoder DPLL */
5084         if (HAS_PCH_CPT(dev)) {
5085                 temp = I915_READ(PCH_DPLL_SEL);
5086                 switch (pipe) {
5087                 case 0:
5088                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5089                         break;
5090                 case 1:
5091                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5092                         break;
5093                 case 2:
5094                         /* FIXME: manage transcoder PLLs? */
5095                         temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5096                         break;
5097                 default:
5098                         BUG();
5099                 }
5100                 I915_WRITE(PCH_DPLL_SEL, temp);
5101
5102                 POSTING_READ(PCH_DPLL_SEL);
5103                 udelay(150);
5104         }
5105
5106         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5107          * This is an exception to the general rule that mode_set doesn't turn
5108          * things on.
5109          */
5110         if (is_lvds) {
5111                 temp = I915_READ(PCH_LVDS);
5112                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5113                 if (pipe == 1) {
5114                         if (HAS_PCH_CPT(dev))
5115                                 temp |= PORT_TRANS_B_SEL_CPT;
5116                         else
5117                                 temp |= LVDS_PIPEB_SELECT;
5118                 } else {
5119                         if (HAS_PCH_CPT(dev))
5120                                 temp &= ~PORT_TRANS_SEL_MASK;
5121                         else
5122                                 temp &= ~LVDS_PIPEB_SELECT;
5123                 }
5124                 /* set the corresponsding LVDS_BORDER bit */
5125                 temp |= dev_priv->lvds_border_bits;
5126                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5127                  * set the DPLLs for dual-channel mode or not.
5128                  */
5129                 if (clock.p2 == 7)
5130                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5131                 else
5132                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5133
5134                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5135                  * appropriately here, but we need to look more thoroughly into how
5136                  * panels behave in the two modes.
5137                  */
5138                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5139                         lvds_sync |= LVDS_HSYNC_POLARITY;
5140                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5141                         lvds_sync |= LVDS_VSYNC_POLARITY;
5142                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5143                     != lvds_sync) {
5144                         char flags[2] = "-+";
5145                         DRM_INFO("Changing LVDS panel from "
5146                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5147                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5148                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5149                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5150                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5151                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5152                         temp |= lvds_sync;
5153                 }
5154                 I915_WRITE(PCH_LVDS, temp);
5155         }
5156
5157         /* set the dithering flag and clear for anything other than a panel. */
5158         pipeconf &= ~PIPECONF_DITHER_EN;
5159         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5160         if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
5161                 pipeconf |= PIPECONF_DITHER_EN;
5162                 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5163         }
5164
5165         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5166                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5167         } else {
5168                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5169                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5170                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5171                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5172                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5173         }
5174
5175         if (!has_edp_encoder ||
5176             intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5177                 I915_WRITE(PCH_DPLL(pipe), dpll);
5178
5179                 /* Wait for the clocks to stabilize. */
5180                 POSTING_READ(PCH_DPLL(pipe));
5181                 udelay(150);
5182
5183                 /* The pixel multiplier can only be updated once the
5184                  * DPLL is enabled and the clocks are stable.
5185                  *
5186                  * So write it again.
5187                  */
5188                 I915_WRITE(PCH_DPLL(pipe), dpll);
5189         }
5190
5191         intel_crtc->lowfreq_avail = false;
5192         if (is_lvds && has_reduced_clock && i915_powersave) {
5193                 I915_WRITE(PCH_FP1(pipe), fp2);
5194                 intel_crtc->lowfreq_avail = true;
5195                 if (HAS_PIPE_CXSR(dev)) {
5196                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5197                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5198                 }
5199         } else {
5200                 I915_WRITE(PCH_FP1(pipe), fp);
5201                 if (HAS_PIPE_CXSR(dev)) {
5202                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5203                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5204                 }
5205         }
5206
5207         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5208                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5209                 /* the chip adds 2 halflines automatically */
5210                 adjusted_mode->crtc_vdisplay -= 1;
5211                 adjusted_mode->crtc_vtotal -= 1;
5212                 adjusted_mode->crtc_vblank_start -= 1;
5213                 adjusted_mode->crtc_vblank_end -= 1;
5214                 adjusted_mode->crtc_vsync_end -= 1;
5215                 adjusted_mode->crtc_vsync_start -= 1;
5216         } else
5217                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5218
5219         I915_WRITE(HTOTAL(pipe),
5220                    (adjusted_mode->crtc_hdisplay - 1) |
5221                    ((adjusted_mode->crtc_htotal - 1) << 16));
5222         I915_WRITE(HBLANK(pipe),
5223                    (adjusted_mode->crtc_hblank_start - 1) |
5224                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5225         I915_WRITE(HSYNC(pipe),
5226                    (adjusted_mode->crtc_hsync_start - 1) |
5227                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5228
5229         I915_WRITE(VTOTAL(pipe),
5230                    (adjusted_mode->crtc_vdisplay - 1) |
5231                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5232         I915_WRITE(VBLANK(pipe),
5233                    (adjusted_mode->crtc_vblank_start - 1) |
5234                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5235         I915_WRITE(VSYNC(pipe),
5236                    (adjusted_mode->crtc_vsync_start - 1) |
5237                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5238
5239         /* pipesrc controls the size that is scaled from, which should
5240          * always be the user's requested size.
5241          */
5242         I915_WRITE(PIPESRC(pipe),
5243                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5244
5245         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5246         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5247         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5248         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5249
5250         if (has_edp_encoder &&
5251             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5252                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5253         }
5254
5255         I915_WRITE(PIPECONF(pipe), pipeconf);
5256         POSTING_READ(PIPECONF(pipe));
5257
5258         intel_wait_for_vblank(dev, pipe);
5259
5260         if (IS_GEN5(dev)) {
5261                 /* enable address swizzle for tiling buffer */
5262                 temp = I915_READ(DISP_ARB_CTL);
5263                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5264         }
5265
5266         I915_WRITE(DSPCNTR(plane), dspcntr);
5267         POSTING_READ(DSPCNTR(plane));
5268
5269         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5270
5271         intel_update_watermarks(dev);
5272
5273         return ret;
5274 }
5275
5276 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5277                                struct drm_display_mode *mode,
5278                                struct drm_display_mode *adjusted_mode,
5279                                int x, int y,
5280                                struct drm_framebuffer *old_fb)
5281 {
5282         struct drm_device *dev = crtc->dev;
5283         struct drm_i915_private *dev_priv = dev->dev_private;
5284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5285         int pipe = intel_crtc->pipe;
5286         int ret;
5287
5288         drm_vblank_pre_modeset(dev, pipe);
5289
5290         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5291                                               x, y, old_fb);
5292
5293         drm_vblank_post_modeset(dev, pipe);
5294
5295         return ret;
5296 }
5297
5298 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5299 void intel_crtc_load_lut(struct drm_crtc *crtc)
5300 {
5301         struct drm_device *dev = crtc->dev;
5302         struct drm_i915_private *dev_priv = dev->dev_private;
5303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5304         int palreg = PALETTE(intel_crtc->pipe);
5305         int i;
5306
5307         /* The clocks have to be on to load the palette. */
5308         if (!crtc->enabled)
5309                 return;
5310
5311         /* use legacy palette for Ironlake */
5312         if (HAS_PCH_SPLIT(dev))
5313                 palreg = LGC_PALETTE(intel_crtc->pipe);
5314
5315         for (i = 0; i < 256; i++) {
5316                 I915_WRITE(palreg + 4 * i,
5317                            (intel_crtc->lut_r[i] << 16) |
5318                            (intel_crtc->lut_g[i] << 8) |
5319                            intel_crtc->lut_b[i]);
5320         }
5321 }
5322
5323 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5324 {
5325         struct drm_device *dev = crtc->dev;
5326         struct drm_i915_private *dev_priv = dev->dev_private;
5327         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5328         bool visible = base != 0;
5329         u32 cntl;
5330
5331         if (intel_crtc->cursor_visible == visible)
5332                 return;
5333
5334         cntl = I915_READ(_CURACNTR);
5335         if (visible) {
5336                 /* On these chipsets we can only modify the base whilst
5337                  * the cursor is disabled.
5338                  */
5339                 I915_WRITE(_CURABASE, base);
5340
5341                 cntl &= ~(CURSOR_FORMAT_MASK);
5342                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5343                 cntl |= CURSOR_ENABLE |
5344                         CURSOR_GAMMA_ENABLE |
5345                         CURSOR_FORMAT_ARGB;
5346         } else
5347                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5348         I915_WRITE(_CURACNTR, cntl);
5349
5350         intel_crtc->cursor_visible = visible;
5351 }
5352
5353 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5354 {
5355         struct drm_device *dev = crtc->dev;
5356         struct drm_i915_private *dev_priv = dev->dev_private;
5357         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5358         int pipe = intel_crtc->pipe;
5359         bool visible = base != 0;
5360
5361         if (intel_crtc->cursor_visible != visible) {
5362                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5363                 if (base) {
5364                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5365                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5366                         cntl |= pipe << 28; /* Connect to correct pipe */
5367                 } else {
5368                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5369                         cntl |= CURSOR_MODE_DISABLE;
5370                 }
5371                 I915_WRITE(CURCNTR(pipe), cntl);
5372
5373                 intel_crtc->cursor_visible = visible;
5374         }
5375         /* and commit changes on next vblank */
5376         I915_WRITE(CURBASE(pipe), base);
5377 }
5378
5379 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5380 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5381                                      bool on)
5382 {
5383         struct drm_device *dev = crtc->dev;
5384         struct drm_i915_private *dev_priv = dev->dev_private;
5385         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5386         int pipe = intel_crtc->pipe;
5387         int x = intel_crtc->cursor_x;
5388         int y = intel_crtc->cursor_y;
5389         u32 base, pos;
5390         bool visible;
5391
5392         pos = 0;
5393
5394         if (on && crtc->enabled && crtc->fb) {
5395                 base = intel_crtc->cursor_addr;
5396                 if (x > (int) crtc->fb->width)
5397                         base = 0;
5398
5399                 if (y > (int) crtc->fb->height)
5400                         base = 0;
5401         } else
5402                 base = 0;
5403
5404         if (x < 0) {
5405                 if (x + intel_crtc->cursor_width < 0)
5406                         base = 0;
5407
5408                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5409                 x = -x;
5410         }
5411         pos |= x << CURSOR_X_SHIFT;
5412
5413         if (y < 0) {
5414                 if (y + intel_crtc->cursor_height < 0)
5415                         base = 0;
5416
5417                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5418                 y = -y;
5419         }
5420         pos |= y << CURSOR_Y_SHIFT;
5421
5422         visible = base != 0;
5423         if (!visible && !intel_crtc->cursor_visible)
5424                 return;
5425
5426         I915_WRITE(CURPOS(pipe), pos);
5427         if (IS_845G(dev) || IS_I865G(dev))
5428                 i845_update_cursor(crtc, base);
5429         else
5430                 i9xx_update_cursor(crtc, base);
5431
5432         if (visible)
5433                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5434 }
5435
5436 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5437                                  struct drm_file *file,
5438                                  uint32_t handle,
5439                                  uint32_t width, uint32_t height)
5440 {
5441         struct drm_device *dev = crtc->dev;
5442         struct drm_i915_private *dev_priv = dev->dev_private;
5443         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5444         struct drm_i915_gem_object *obj;
5445         uint32_t addr;
5446         int ret;
5447
5448         DRM_DEBUG_KMS("\n");
5449
5450         /* if we want to turn off the cursor ignore width and height */
5451         if (!handle) {
5452                 DRM_DEBUG_KMS("cursor off\n");
5453                 addr = 0;
5454                 obj = NULL;
5455                 mutex_lock(&dev->struct_mutex);
5456                 goto finish;
5457         }
5458
5459         /* Currently we only support 64x64 cursors */
5460         if (width != 64 || height != 64) {
5461                 DRM_ERROR("we currently only support 64x64 cursors\n");
5462                 return -EINVAL;
5463         }
5464
5465         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5466         if (&obj->base == NULL)
5467                 return -ENOENT;
5468
5469         if (obj->base.size < width * height * 4) {
5470                 DRM_ERROR("buffer is to small\n");
5471                 ret = -ENOMEM;
5472                 goto fail;
5473         }
5474
5475         /* we only need to pin inside GTT if cursor is non-phy */
5476         mutex_lock(&dev->struct_mutex);
5477         if (!dev_priv->info->cursor_needs_physical) {
5478                 if (obj->tiling_mode) {
5479                         DRM_ERROR("cursor cannot be tiled\n");
5480                         ret = -EINVAL;
5481                         goto fail_locked;
5482                 }
5483
5484                 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
5485                 if (ret) {
5486                         DRM_ERROR("failed to pin cursor bo\n");
5487                         goto fail_locked;
5488                 }
5489
5490                 ret = i915_gem_object_set_to_gtt_domain(obj, 0);
5491                 if (ret) {
5492                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5493                         goto fail_unpin;
5494                 }
5495
5496                 ret = i915_gem_object_put_fence(obj);
5497                 if (ret) {
5498                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5499                         goto fail_unpin;
5500                 }
5501
5502                 addr = obj->gtt_offset;
5503         } else {
5504                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5505                 ret = i915_gem_attach_phys_object(dev, obj,
5506                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5507                                                   align);
5508                 if (ret) {
5509                         DRM_ERROR("failed to attach phys object\n");
5510                         goto fail_locked;
5511                 }
5512                 addr = obj->phys_obj->handle->busaddr;
5513         }
5514
5515         if (IS_GEN2(dev))
5516                 I915_WRITE(CURSIZE, (height << 12) | width);
5517
5518  finish:
5519         if (intel_crtc->cursor_bo) {
5520                 if (dev_priv->info->cursor_needs_physical) {
5521                         if (intel_crtc->cursor_bo != obj)
5522                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5523                 } else
5524                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5525                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5526         }
5527
5528         mutex_unlock(&dev->struct_mutex);
5529
5530         intel_crtc->cursor_addr = addr;
5531         intel_crtc->cursor_bo = obj;
5532         intel_crtc->cursor_width = width;
5533         intel_crtc->cursor_height = height;
5534
5535         intel_crtc_update_cursor(crtc, true);
5536
5537         return 0;
5538 fail_unpin:
5539         i915_gem_object_unpin(obj);
5540 fail_locked:
5541         mutex_unlock(&dev->struct_mutex);
5542 fail:
5543         drm_gem_object_unreference_unlocked(&obj->base);
5544         return ret;
5545 }
5546
5547 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5548 {
5549         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5550
5551         intel_crtc->cursor_x = x;
5552         intel_crtc->cursor_y = y;
5553
5554         intel_crtc_update_cursor(crtc, true);
5555
5556         return 0;
5557 }
5558
5559 /** Sets the color ramps on behalf of RandR */
5560 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5561                                  u16 blue, int regno)
5562 {
5563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5564
5565         intel_crtc->lut_r[regno] = red >> 8;
5566         intel_crtc->lut_g[regno] = green >> 8;
5567         intel_crtc->lut_b[regno] = blue >> 8;
5568 }
5569
5570 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5571                              u16 *blue, int regno)
5572 {
5573         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5574
5575         *red = intel_crtc->lut_r[regno] << 8;
5576         *green = intel_crtc->lut_g[regno] << 8;
5577         *blue = intel_crtc->lut_b[regno] << 8;
5578 }
5579
5580 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5581                                  u16 *blue, uint32_t start, uint32_t size)
5582 {
5583         int end = (start + size > 256) ? 256 : start + size, i;
5584         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5585
5586         for (i = start; i < end; i++) {
5587                 intel_crtc->lut_r[i] = red[i] >> 8;
5588                 intel_crtc->lut_g[i] = green[i] >> 8;
5589                 intel_crtc->lut_b[i] = blue[i] >> 8;
5590         }
5591
5592         intel_crtc_load_lut(crtc);
5593 }
5594
5595 /**
5596  * Get a pipe with a simple mode set on it for doing load-based monitor
5597  * detection.
5598  *
5599  * It will be up to the load-detect code to adjust the pipe as appropriate for
5600  * its requirements.  The pipe will be connected to no other encoders.
5601  *
5602  * Currently this code will only succeed if there is a pipe with no encoders
5603  * configured for it.  In the future, it could choose to temporarily disable
5604  * some outputs to free up a pipe for its use.
5605  *
5606  * \return crtc, or NULL if no pipes are available.
5607  */
5608
5609 /* VESA 640x480x72Hz mode to set on the pipe */
5610 static struct drm_display_mode load_detect_mode = {
5611         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5612                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5613 };
5614
5615 static struct drm_framebuffer *
5616 intel_framebuffer_create(struct drm_device *dev,
5617                          struct drm_mode_fb_cmd *mode_cmd,
5618                          struct drm_i915_gem_object *obj)
5619 {
5620         struct intel_framebuffer *intel_fb;
5621         int ret;
5622
5623         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5624         if (!intel_fb) {
5625                 drm_gem_object_unreference_unlocked(&obj->base);
5626                 return ERR_PTR(-ENOMEM);
5627         }
5628
5629         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5630         if (ret) {
5631                 drm_gem_object_unreference_unlocked(&obj->base);
5632                 kfree(intel_fb);
5633                 return ERR_PTR(ret);
5634         }
5635
5636         return &intel_fb->base;
5637 }
5638
5639 static u32
5640 intel_framebuffer_pitch_for_width(int width, int bpp)
5641 {
5642         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5643         return ALIGN(pitch, 64);
5644 }
5645
5646 static u32
5647 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5648 {
5649         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5650         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5651 }
5652
5653 static struct drm_framebuffer *
5654 intel_framebuffer_create_for_mode(struct drm_device *dev,
5655                                   struct drm_display_mode *mode,
5656                                   int depth, int bpp)
5657 {
5658         struct drm_i915_gem_object *obj;
5659         struct drm_mode_fb_cmd mode_cmd;
5660
5661         obj = i915_gem_alloc_object(dev,
5662                                     intel_framebuffer_size_for_mode(mode, bpp));
5663         if (obj == NULL)
5664                 return ERR_PTR(-ENOMEM);
5665
5666         mode_cmd.width = mode->hdisplay;
5667         mode_cmd.height = mode->vdisplay;
5668         mode_cmd.depth = depth;
5669         mode_cmd.bpp = bpp;
5670         mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5671
5672         return intel_framebuffer_create(dev, &mode_cmd, obj);
5673 }
5674
5675 static struct drm_framebuffer *
5676 mode_fits_in_fbdev(struct drm_device *dev,
5677                    struct drm_display_mode *mode)
5678 {
5679         struct drm_i915_private *dev_priv = dev->dev_private;
5680         struct drm_i915_gem_object *obj;
5681         struct drm_framebuffer *fb;
5682
5683         if (dev_priv->fbdev == NULL)
5684                 return NULL;
5685
5686         obj = dev_priv->fbdev->ifb.obj;
5687         if (obj == NULL)
5688                 return NULL;
5689
5690         fb = &dev_priv->fbdev->ifb.base;
5691         if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5692                                                           fb->bits_per_pixel))
5693                 return NULL;
5694
5695         if (obj->base.size < mode->vdisplay * fb->pitch)
5696                 return NULL;
5697
5698         return fb;
5699 }
5700
5701 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5702                                 struct drm_connector *connector,
5703                                 struct drm_display_mode *mode,
5704                                 struct intel_load_detect_pipe *old)
5705 {
5706         struct intel_crtc *intel_crtc;
5707         struct drm_crtc *possible_crtc;
5708         struct drm_encoder *encoder = &intel_encoder->base;
5709         struct drm_crtc *crtc = NULL;
5710         struct drm_device *dev = encoder->dev;
5711         struct drm_framebuffer *old_fb;
5712         int i = -1;
5713
5714         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5715                       connector->base.id, drm_get_connector_name(connector),
5716                       encoder->base.id, drm_get_encoder_name(encoder));
5717
5718         /*
5719          * Algorithm gets a little messy:
5720          *
5721          *   - if the connector already has an assigned crtc, use it (but make
5722          *     sure it's on first)
5723          *
5724          *   - try to find the first unused crtc that can drive this connector,
5725          *     and use that if we find one
5726          */
5727
5728         /* See if we already have a CRTC for this connector */
5729         if (encoder->crtc) {
5730                 crtc = encoder->crtc;
5731
5732                 intel_crtc = to_intel_crtc(crtc);
5733                 old->dpms_mode = intel_crtc->dpms_mode;
5734                 old->load_detect_temp = false;
5735
5736                 /* Make sure the crtc and connector are running */
5737                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5738                         struct drm_encoder_helper_funcs *encoder_funcs;
5739                         struct drm_crtc_helper_funcs *crtc_funcs;
5740
5741                         crtc_funcs = crtc->helper_private;
5742                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5743
5744                         encoder_funcs = encoder->helper_private;
5745                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5746                 }
5747
5748                 return true;
5749         }
5750
5751         /* Find an unused one (if possible) */
5752         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5753                 i++;
5754                 if (!(encoder->possible_crtcs & (1 << i)))
5755                         continue;
5756                 if (!possible_crtc->enabled) {
5757                         crtc = possible_crtc;
5758                         break;
5759                 }
5760         }
5761
5762         /*
5763          * If we didn't find an unused CRTC, don't use any.
5764          */
5765         if (!crtc) {
5766                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5767                 return false;
5768         }
5769
5770         encoder->crtc = crtc;
5771         connector->encoder = encoder;
5772
5773         intel_crtc = to_intel_crtc(crtc);
5774         old->dpms_mode = intel_crtc->dpms_mode;
5775         old->load_detect_temp = true;
5776         old->release_fb = NULL;
5777
5778         if (!mode)
5779                 mode = &load_detect_mode;
5780
5781         old_fb = crtc->fb;
5782
5783         /* We need a framebuffer large enough to accommodate all accesses
5784          * that the plane may generate whilst we perform load detection.
5785          * We can not rely on the fbcon either being present (we get called
5786          * during its initialisation to detect all boot displays, or it may
5787          * not even exist) or that it is large enough to satisfy the
5788          * requested mode.
5789          */
5790         crtc->fb = mode_fits_in_fbdev(dev, mode);
5791         if (crtc->fb == NULL) {
5792                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5793                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5794                 old->release_fb = crtc->fb;
5795         } else
5796                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5797         if (IS_ERR(crtc->fb)) {
5798                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5799                 crtc->fb = old_fb;
5800                 return false;
5801         }
5802
5803         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5804                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5805                 if (old->release_fb)
5806                         old->release_fb->funcs->destroy(old->release_fb);
5807                 crtc->fb = old_fb;
5808                 return false;
5809         }
5810
5811         /* let the connector get through one full cycle before testing */
5812         intel_wait_for_vblank(dev, intel_crtc->pipe);
5813
5814         return true;
5815 }
5816
5817 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5818                                     struct drm_connector *connector,
5819                                     struct intel_load_detect_pipe *old)
5820 {
5821         struct drm_encoder *encoder = &intel_encoder->base;
5822         struct drm_device *dev = encoder->dev;
5823         struct drm_crtc *crtc = encoder->crtc;
5824         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5825         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5826
5827         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5828                       connector->base.id, drm_get_connector_name(connector),
5829                       encoder->base.id, drm_get_encoder_name(encoder));
5830
5831         if (old->load_detect_temp) {
5832                 connector->encoder = NULL;
5833                 drm_helper_disable_unused_functions(dev);
5834
5835                 if (old->release_fb)
5836                         old->release_fb->funcs->destroy(old->release_fb);
5837
5838                 return;
5839         }
5840
5841         /* Switch crtc and encoder back off if necessary */
5842         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5843                 encoder_funcs->dpms(encoder, old->dpms_mode);
5844                 crtc_funcs->dpms(crtc, old->dpms_mode);
5845         }
5846 }
5847
5848 /* Returns the clock of the currently programmed mode of the given pipe. */
5849 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5850 {
5851         struct drm_i915_private *dev_priv = dev->dev_private;
5852         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5853         int pipe = intel_crtc->pipe;
5854         u32 dpll = I915_READ(DPLL(pipe));
5855         u32 fp;
5856         intel_clock_t clock;
5857
5858         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5859                 fp = I915_READ(FP0(pipe));
5860         else
5861                 fp = I915_READ(FP1(pipe));
5862
5863         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5864         if (IS_PINEVIEW(dev)) {
5865                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5866                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5867         } else {
5868                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5869                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5870         }
5871
5872         if (!IS_GEN2(dev)) {
5873                 if (IS_PINEVIEW(dev))
5874                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5875                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5876                 else
5877                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5878                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5879
5880                 switch (dpll & DPLL_MODE_MASK) {
5881                 case DPLLB_MODE_DAC_SERIAL:
5882                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5883                                 5 : 10;
5884                         break;
5885                 case DPLLB_MODE_LVDS:
5886                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5887                                 7 : 14;
5888                         break;
5889                 default:
5890                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5891                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5892                         return 0;
5893                 }
5894
5895                 /* XXX: Handle the 100Mhz refclk */
5896                 intel_clock(dev, 96000, &clock);
5897         } else {
5898                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5899
5900                 if (is_lvds) {
5901                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5902                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5903                         clock.p2 = 14;
5904
5905                         if ((dpll & PLL_REF_INPUT_MASK) ==
5906                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5907                                 /* XXX: might not be 66MHz */
5908                                 intel_clock(dev, 66000, &clock);
5909                         } else
5910                                 intel_clock(dev, 48000, &clock);
5911                 } else {
5912                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5913                                 clock.p1 = 2;
5914                         else {
5915                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5916                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5917                         }
5918                         if (dpll & PLL_P2_DIVIDE_BY_4)
5919                                 clock.p2 = 4;
5920                         else
5921                                 clock.p2 = 2;
5922
5923                         intel_clock(dev, 48000, &clock);
5924                 }
5925         }
5926
5927         /* XXX: It would be nice to validate the clocks, but we can't reuse
5928          * i830PllIsValid() because it relies on the xf86_config connector
5929          * configuration being accurate, which it isn't necessarily.
5930          */
5931
5932         return clock.dot;
5933 }
5934
5935 /** Returns the currently programmed mode of the given pipe. */
5936 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5937                                              struct drm_crtc *crtc)
5938 {
5939         struct drm_i915_private *dev_priv = dev->dev_private;
5940         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5941         int pipe = intel_crtc->pipe;
5942         struct drm_display_mode *mode;
5943         int htot = I915_READ(HTOTAL(pipe));
5944         int hsync = I915_READ(HSYNC(pipe));
5945         int vtot = I915_READ(VTOTAL(pipe));
5946         int vsync = I915_READ(VSYNC(pipe));
5947
5948         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5949         if (!mode)
5950                 return NULL;
5951
5952         mode->clock = intel_crtc_clock_get(dev, crtc);
5953         mode->hdisplay = (htot & 0xffff) + 1;
5954         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5955         mode->hsync_start = (hsync & 0xffff) + 1;
5956         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5957         mode->vdisplay = (vtot & 0xffff) + 1;
5958         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5959         mode->vsync_start = (vsync & 0xffff) + 1;
5960         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5961
5962         drm_mode_set_name(mode);
5963         drm_mode_set_crtcinfo(mode, 0);
5964
5965         return mode;
5966 }
5967
5968 #define GPU_IDLE_TIMEOUT 500 /* ms */
5969
5970 /* When this timer fires, we've been idle for awhile */
5971 static void intel_gpu_idle_timer(unsigned long arg)
5972 {
5973         struct drm_device *dev = (struct drm_device *)arg;
5974         drm_i915_private_t *dev_priv = dev->dev_private;
5975
5976         if (!list_empty(&dev_priv->mm.active_list)) {
5977                 /* Still processing requests, so just re-arm the timer. */
5978                 mod_timer(&dev_priv->idle_timer, jiffies +
5979                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5980                 return;
5981         }
5982
5983         dev_priv->busy = false;
5984         queue_work(dev_priv->wq, &dev_priv->idle_work);
5985 }
5986
5987 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5988
5989 static void intel_crtc_idle_timer(unsigned long arg)
5990 {
5991         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5992         struct drm_crtc *crtc = &intel_crtc->base;
5993         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5994         struct intel_framebuffer *intel_fb;
5995
5996         intel_fb = to_intel_framebuffer(crtc->fb);
5997         if (intel_fb && intel_fb->obj->active) {
5998                 /* The framebuffer is still being accessed by the GPU. */
5999                 mod_timer(&intel_crtc->idle_timer, jiffies +
6000                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6001                 return;
6002         }
6003
6004         intel_crtc->busy = false;
6005         queue_work(dev_priv->wq, &dev_priv->idle_work);
6006 }
6007
6008 static void intel_increase_pllclock(struct drm_crtc *crtc)
6009 {
6010         struct drm_device *dev = crtc->dev;
6011         drm_i915_private_t *dev_priv = dev->dev_private;
6012         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6013         int pipe = intel_crtc->pipe;
6014         int dpll_reg = DPLL(pipe);
6015         int dpll;
6016
6017         if (HAS_PCH_SPLIT(dev))
6018                 return;
6019
6020         if (!dev_priv->lvds_downclock_avail)
6021                 return;
6022
6023         dpll = I915_READ(dpll_reg);
6024         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6025                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6026
6027                 /* Unlock panel regs */
6028                 I915_WRITE(PP_CONTROL,
6029                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6030
6031                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6032                 I915_WRITE(dpll_reg, dpll);
6033                 intel_wait_for_vblank(dev, pipe);
6034
6035                 dpll = I915_READ(dpll_reg);
6036                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6037                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6038
6039                 /* ...and lock them again */
6040                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6041         }
6042
6043         /* Schedule downclock */
6044         mod_timer(&intel_crtc->idle_timer, jiffies +
6045                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6046 }
6047
6048 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6049 {
6050         struct drm_device *dev = crtc->dev;
6051         drm_i915_private_t *dev_priv = dev->dev_private;
6052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6053         int pipe = intel_crtc->pipe;
6054         int dpll_reg = DPLL(pipe);
6055         int dpll = I915_READ(dpll_reg);
6056
6057         if (HAS_PCH_SPLIT(dev))
6058                 return;
6059
6060         if (!dev_priv->lvds_downclock_avail)
6061                 return;
6062
6063         /*
6064          * Since this is called by a timer, we should never get here in
6065          * the manual case.
6066          */
6067         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6068                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6069
6070                 /* Unlock panel regs */
6071                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6072                            PANEL_UNLOCK_REGS);
6073
6074                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6075                 I915_WRITE(dpll_reg, dpll);
6076                 intel_wait_for_vblank(dev, pipe);
6077                 dpll = I915_READ(dpll_reg);
6078                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6079                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6080
6081                 /* ...and lock them again */
6082                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6083         }
6084
6085 }
6086
6087 /**
6088  * intel_idle_update - adjust clocks for idleness
6089  * @work: work struct
6090  *
6091  * Either the GPU or display (or both) went idle.  Check the busy status
6092  * here and adjust the CRTC and GPU clocks as necessary.
6093  */
6094 static void intel_idle_update(struct work_struct *work)
6095 {
6096         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6097                                                     idle_work);
6098         struct drm_device *dev = dev_priv->dev;
6099         struct drm_crtc *crtc;
6100         struct intel_crtc *intel_crtc;
6101
6102         if (!i915_powersave)
6103                 return;
6104
6105         mutex_lock(&dev->struct_mutex);
6106
6107         i915_update_gfx_val(dev_priv);
6108
6109         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6110                 /* Skip inactive CRTCs */
6111                 if (!crtc->fb)
6112                         continue;
6113
6114                 intel_crtc = to_intel_crtc(crtc);
6115                 if (!intel_crtc->busy)
6116                         intel_decrease_pllclock(crtc);
6117         }
6118
6119
6120         mutex_unlock(&dev->struct_mutex);
6121 }
6122
6123 /**
6124  * intel_mark_busy - mark the GPU and possibly the display busy
6125  * @dev: drm device
6126  * @obj: object we're operating on
6127  *
6128  * Callers can use this function to indicate that the GPU is busy processing
6129  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6130  * buffer), we'll also mark the display as busy, so we know to increase its
6131  * clock frequency.
6132  */
6133 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6134 {
6135         drm_i915_private_t *dev_priv = dev->dev_private;
6136         struct drm_crtc *crtc = NULL;
6137         struct intel_framebuffer *intel_fb;
6138         struct intel_crtc *intel_crtc;
6139
6140         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6141                 return;
6142
6143         if (!dev_priv->busy)
6144                 dev_priv->busy = true;
6145         else
6146                 mod_timer(&dev_priv->idle_timer, jiffies +
6147                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6148
6149         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6150                 if (!crtc->fb)
6151                         continue;
6152
6153                 intel_crtc = to_intel_crtc(crtc);
6154                 intel_fb = to_intel_framebuffer(crtc->fb);
6155                 if (intel_fb->obj == obj) {
6156                         if (!intel_crtc->busy) {
6157                                 /* Non-busy -> busy, upclock */
6158                                 intel_increase_pllclock(crtc);
6159                                 intel_crtc->busy = true;
6160                         } else {
6161                                 /* Busy -> busy, put off timer */
6162                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6163                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6164                         }
6165                 }
6166         }
6167 }
6168
6169 static void intel_crtc_destroy(struct drm_crtc *crtc)
6170 {
6171         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6172         struct drm_device *dev = crtc->dev;
6173         struct intel_unpin_work *work;
6174         unsigned long flags;
6175
6176         spin_lock_irqsave(&dev->event_lock, flags);
6177         work = intel_crtc->unpin_work;
6178         intel_crtc->unpin_work = NULL;
6179         spin_unlock_irqrestore(&dev->event_lock, flags);
6180
6181         if (work) {
6182                 cancel_work_sync(&work->work);
6183                 kfree(work);
6184         }
6185
6186         drm_crtc_cleanup(crtc);
6187
6188         kfree(intel_crtc);
6189 }
6190
6191 static void intel_unpin_work_fn(struct work_struct *__work)
6192 {
6193         struct intel_unpin_work *work =
6194                 container_of(__work, struct intel_unpin_work, work);
6195
6196         mutex_lock(&work->dev->struct_mutex);
6197         i915_gem_object_unpin(work->old_fb_obj);
6198         drm_gem_object_unreference(&work->pending_flip_obj->base);
6199         drm_gem_object_unreference(&work->old_fb_obj->base);
6200
6201         mutex_unlock(&work->dev->struct_mutex);
6202         kfree(work);
6203 }
6204
6205 static void do_intel_finish_page_flip(struct drm_device *dev,
6206                                       struct drm_crtc *crtc)
6207 {
6208         drm_i915_private_t *dev_priv = dev->dev_private;
6209         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6210         struct intel_unpin_work *work;
6211         struct drm_i915_gem_object *obj;
6212         struct drm_pending_vblank_event *e;
6213         struct timeval tnow, tvbl;
6214         unsigned long flags;
6215
6216         /* Ignore early vblank irqs */
6217         if (intel_crtc == NULL)
6218                 return;
6219
6220         do_gettimeofday(&tnow);
6221
6222         spin_lock_irqsave(&dev->event_lock, flags);
6223         work = intel_crtc->unpin_work;
6224         if (work == NULL || !work->pending) {
6225                 spin_unlock_irqrestore(&dev->event_lock, flags);
6226                 return;
6227         }
6228
6229         intel_crtc->unpin_work = NULL;
6230
6231         if (work->event) {
6232                 e = work->event;
6233                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6234
6235                 /* Called before vblank count and timestamps have
6236                  * been updated for the vblank interval of flip
6237                  * completion? Need to increment vblank count and
6238                  * add one videorefresh duration to returned timestamp
6239                  * to account for this. We assume this happened if we
6240                  * get called over 0.9 frame durations after the last
6241                  * timestamped vblank.
6242                  *
6243                  * This calculation can not be used with vrefresh rates
6244                  * below 5Hz (10Hz to be on the safe side) without
6245                  * promoting to 64 integers.
6246                  */
6247                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6248                     9 * crtc->framedur_ns) {
6249                         e->event.sequence++;
6250                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6251                                              crtc->framedur_ns);
6252                 }
6253
6254                 e->event.tv_sec = tvbl.tv_sec;
6255                 e->event.tv_usec = tvbl.tv_usec;
6256
6257                 list_add_tail(&e->base.link,
6258                               &e->base.file_priv->event_list);
6259                 wake_up_interruptible(&e->base.file_priv->event_wait);
6260         }
6261
6262         drm_vblank_put(dev, intel_crtc->pipe);
6263
6264         spin_unlock_irqrestore(&dev->event_lock, flags);
6265
6266         obj = work->old_fb_obj;
6267
6268         atomic_clear_mask(1 << intel_crtc->plane,
6269                           &obj->pending_flip.counter);
6270         if (atomic_read(&obj->pending_flip) == 0)
6271                 wake_up(&dev_priv->pending_flip_queue);
6272
6273         schedule_work(&work->work);
6274
6275         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6276 }
6277
6278 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6279 {
6280         drm_i915_private_t *dev_priv = dev->dev_private;
6281         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6282
6283         do_intel_finish_page_flip(dev, crtc);
6284 }
6285
6286 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6287 {
6288         drm_i915_private_t *dev_priv = dev->dev_private;
6289         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6290
6291         do_intel_finish_page_flip(dev, crtc);
6292 }
6293
6294 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6295 {
6296         drm_i915_private_t *dev_priv = dev->dev_private;
6297         struct intel_crtc *intel_crtc =
6298                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6299         unsigned long flags;
6300
6301         spin_lock_irqsave(&dev->event_lock, flags);
6302         if (intel_crtc->unpin_work) {
6303                 if ((++intel_crtc->unpin_work->pending) > 1)
6304                         DRM_ERROR("Prepared flip multiple times\n");
6305         } else {
6306                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6307         }
6308         spin_unlock_irqrestore(&dev->event_lock, flags);
6309 }
6310
6311 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6312                                 struct drm_framebuffer *fb,
6313                                 struct drm_pending_vblank_event *event)
6314 {
6315         struct drm_device *dev = crtc->dev;
6316         struct drm_i915_private *dev_priv = dev->dev_private;
6317         struct intel_framebuffer *intel_fb;
6318         struct drm_i915_gem_object *obj;
6319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6320         struct intel_unpin_work *work;
6321         unsigned long flags, offset;
6322         int pipe = intel_crtc->pipe;
6323         u32 pf, pipesrc;
6324         int ret;
6325
6326         work = kzalloc(sizeof *work, GFP_KERNEL);
6327         if (work == NULL)
6328                 return -ENOMEM;
6329
6330         work->event = event;
6331         work->dev = crtc->dev;
6332         intel_fb = to_intel_framebuffer(crtc->fb);
6333         work->old_fb_obj = intel_fb->obj;
6334         INIT_WORK(&work->work, intel_unpin_work_fn);
6335
6336         /* We borrow the event spin lock for protecting unpin_work */
6337         spin_lock_irqsave(&dev->event_lock, flags);
6338         if (intel_crtc->unpin_work) {
6339                 spin_unlock_irqrestore(&dev->event_lock, flags);
6340                 kfree(work);
6341
6342                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6343                 return -EBUSY;
6344         }
6345         intel_crtc->unpin_work = work;
6346         spin_unlock_irqrestore(&dev->event_lock, flags);
6347
6348         intel_fb = to_intel_framebuffer(fb);
6349         obj = intel_fb->obj;
6350
6351         mutex_lock(&dev->struct_mutex);
6352         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6353         if (ret)
6354                 goto cleanup_work;
6355
6356         /* Reference the objects for the scheduled work. */
6357         drm_gem_object_reference(&work->old_fb_obj->base);
6358         drm_gem_object_reference(&obj->base);
6359
6360         crtc->fb = fb;
6361
6362         ret = drm_vblank_get(dev, intel_crtc->pipe);
6363         if (ret)
6364                 goto cleanup_objs;
6365
6366         if (IS_GEN3(dev) || IS_GEN2(dev)) {
6367                 u32 flip_mask;
6368
6369                 /* Can't queue multiple flips, so wait for the previous
6370                  * one to finish before executing the next.
6371                  */
6372                 ret = BEGIN_LP_RING(2);
6373                 if (ret)
6374                         goto cleanup_objs;
6375
6376                 if (intel_crtc->plane)
6377                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6378                 else
6379                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6380                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6381                 OUT_RING(MI_NOOP);
6382                 ADVANCE_LP_RING();
6383         }
6384
6385         work->pending_flip_obj = obj;
6386
6387         work->enable_stall_check = true;
6388
6389         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6390         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6391
6392         ret = BEGIN_LP_RING(4);
6393         if (ret)
6394                 goto cleanup_objs;
6395
6396         /* Block clients from rendering to the new back buffer until
6397          * the flip occurs and the object is no longer visible.
6398          */
6399         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6400
6401         switch (INTEL_INFO(dev)->gen) {
6402         case 2:
6403                 OUT_RING(MI_DISPLAY_FLIP |
6404                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6405                 OUT_RING(fb->pitch);
6406                 OUT_RING(obj->gtt_offset + offset);
6407                 OUT_RING(MI_NOOP);
6408                 break;
6409
6410         case 3:
6411                 OUT_RING(MI_DISPLAY_FLIP_I915 |
6412                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6413                 OUT_RING(fb->pitch);
6414                 OUT_RING(obj->gtt_offset + offset);
6415                 OUT_RING(MI_NOOP);
6416                 break;
6417
6418         case 4:
6419         case 5:
6420                 /* i965+ uses the linear or tiled offsets from the
6421                  * Display Registers (which do not change across a page-flip)
6422                  * so we need only reprogram the base address.
6423                  */
6424                 OUT_RING(MI_DISPLAY_FLIP |
6425                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6426                 OUT_RING(fb->pitch);
6427                 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6428
6429                 /* XXX Enabling the panel-fitter across page-flip is so far
6430                  * untested on non-native modes, so ignore it for now.
6431                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6432                  */
6433                 pf = 0;
6434                 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6435                 OUT_RING(pf | pipesrc);
6436                 break;
6437
6438         case 6:
6439         case 7:
6440                 OUT_RING(MI_DISPLAY_FLIP |
6441                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6442                 OUT_RING(fb->pitch | obj->tiling_mode);
6443                 OUT_RING(obj->gtt_offset);
6444
6445                 pf = I915_READ(PF_CTL(pipe)) & PF_ENABLE;
6446                 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6447                 OUT_RING(pf | pipesrc);
6448                 break;
6449         }
6450         ADVANCE_LP_RING();
6451
6452         mutex_unlock(&dev->struct_mutex);
6453
6454         trace_i915_flip_request(intel_crtc->plane, obj);
6455
6456         return 0;
6457
6458 cleanup_objs:
6459         drm_gem_object_unreference(&work->old_fb_obj->base);
6460         drm_gem_object_unreference(&obj->base);
6461 cleanup_work:
6462         mutex_unlock(&dev->struct_mutex);
6463
6464         spin_lock_irqsave(&dev->event_lock, flags);
6465         intel_crtc->unpin_work = NULL;
6466         spin_unlock_irqrestore(&dev->event_lock, flags);
6467
6468         kfree(work);
6469
6470         return ret;
6471 }
6472
6473 static void intel_sanitize_modesetting(struct drm_device *dev,
6474                                        int pipe, int plane)
6475 {
6476         struct drm_i915_private *dev_priv = dev->dev_private;
6477         u32 reg, val;
6478
6479         if (HAS_PCH_SPLIT(dev))
6480                 return;
6481
6482         /* Who knows what state these registers were left in by the BIOS or
6483          * grub?
6484          *
6485          * If we leave the registers in a conflicting state (e.g. with the
6486          * display plane reading from the other pipe than the one we intend
6487          * to use) then when we attempt to teardown the active mode, we will
6488          * not disable the pipes and planes in the correct order -- leaving
6489          * a plane reading from a disabled pipe and possibly leading to
6490          * undefined behaviour.
6491          */
6492
6493         reg = DSPCNTR(plane);
6494         val = I915_READ(reg);
6495
6496         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6497                 return;
6498         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6499                 return;
6500
6501         /* This display plane is active and attached to the other CPU pipe. */
6502         pipe = !pipe;
6503
6504         /* Disable the plane and wait for it to stop reading from the pipe. */
6505         intel_disable_plane(dev_priv, plane, pipe);
6506         intel_disable_pipe(dev_priv, pipe);
6507 }
6508
6509 static void intel_crtc_reset(struct drm_crtc *crtc)
6510 {
6511         struct drm_device *dev = crtc->dev;
6512         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6513
6514         /* Reset flags back to the 'unknown' status so that they
6515          * will be correctly set on the initial modeset.
6516          */
6517         intel_crtc->dpms_mode = -1;
6518
6519         /* We need to fix up any BIOS configuration that conflicts with
6520          * our expectations.
6521          */
6522         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6523 }
6524
6525 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6526         .dpms = intel_crtc_dpms,
6527         .mode_fixup = intel_crtc_mode_fixup,
6528         .mode_set = intel_crtc_mode_set,
6529         .mode_set_base = intel_pipe_set_base,
6530         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6531         .load_lut = intel_crtc_load_lut,
6532         .disable = intel_crtc_disable,
6533 };
6534
6535 static const struct drm_crtc_funcs intel_crtc_funcs = {
6536         .reset = intel_crtc_reset,
6537         .cursor_set = intel_crtc_cursor_set,
6538         .cursor_move = intel_crtc_cursor_move,
6539         .gamma_set = intel_crtc_gamma_set,
6540         .set_config = drm_crtc_helper_set_config,
6541         .destroy = intel_crtc_destroy,
6542         .page_flip = intel_crtc_page_flip,
6543 };
6544
6545 static void intel_crtc_init(struct drm_device *dev, int pipe)
6546 {
6547         drm_i915_private_t *dev_priv = dev->dev_private;
6548         struct intel_crtc *intel_crtc;
6549         int i;
6550
6551         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6552         if (intel_crtc == NULL)
6553                 return;
6554
6555         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6556
6557         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6558         for (i = 0; i < 256; i++) {
6559                 intel_crtc->lut_r[i] = i;
6560                 intel_crtc->lut_g[i] = i;
6561                 intel_crtc->lut_b[i] = i;
6562         }
6563
6564         /* Swap pipes & planes for FBC on pre-965 */
6565         intel_crtc->pipe = pipe;
6566         intel_crtc->plane = pipe;
6567         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6568                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6569                 intel_crtc->plane = !pipe;
6570         }
6571
6572         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6573                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6574         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6575         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6576
6577         intel_crtc_reset(&intel_crtc->base);
6578         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6579
6580         if (HAS_PCH_SPLIT(dev)) {
6581                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6582                 intel_helper_funcs.commit = ironlake_crtc_commit;
6583         } else {
6584                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6585                 intel_helper_funcs.commit = i9xx_crtc_commit;
6586         }
6587
6588         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6589
6590         intel_crtc->busy = false;
6591
6592         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6593                     (unsigned long)intel_crtc);
6594 }
6595
6596 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6597                                 struct drm_file *file)
6598 {
6599         drm_i915_private_t *dev_priv = dev->dev_private;
6600         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6601         struct drm_mode_object *drmmode_obj;
6602         struct intel_crtc *crtc;
6603
6604         if (!dev_priv) {
6605                 DRM_ERROR("called with no initialization\n");
6606                 return -EINVAL;
6607         }
6608
6609         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6610                         DRM_MODE_OBJECT_CRTC);
6611
6612         if (!drmmode_obj) {
6613                 DRM_ERROR("no such CRTC id\n");
6614                 return -EINVAL;
6615         }
6616
6617         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6618         pipe_from_crtc_id->pipe = crtc->pipe;
6619
6620         return 0;
6621 }
6622
6623 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6624 {
6625         struct intel_encoder *encoder;
6626         int index_mask = 0;
6627         int entry = 0;
6628
6629         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6630                 if (type_mask & encoder->clone_mask)
6631                         index_mask |= (1 << entry);
6632                 entry++;
6633         }
6634
6635         return index_mask;
6636 }
6637
6638 static bool has_edp_a(struct drm_device *dev)
6639 {
6640         struct drm_i915_private *dev_priv = dev->dev_private;
6641
6642         if (!IS_MOBILE(dev))
6643                 return false;
6644
6645         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6646                 return false;
6647
6648         if (IS_GEN5(dev) &&
6649             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6650                 return false;
6651
6652         return true;
6653 }
6654
6655 static void intel_setup_outputs(struct drm_device *dev)
6656 {
6657         struct drm_i915_private *dev_priv = dev->dev_private;
6658         struct intel_encoder *encoder;
6659         bool dpd_is_edp = false;
6660         bool has_lvds = false;
6661
6662         if (IS_MOBILE(dev) && !IS_I830(dev))
6663                 has_lvds = intel_lvds_init(dev);
6664         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6665                 /* disable the panel fitter on everything but LVDS */
6666                 I915_WRITE(PFIT_CONTROL, 0);
6667         }
6668
6669         if (HAS_PCH_SPLIT(dev)) {
6670                 dpd_is_edp = intel_dpd_is_edp(dev);
6671
6672                 if (has_edp_a(dev))
6673                         intel_dp_init(dev, DP_A);
6674
6675                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6676                         intel_dp_init(dev, PCH_DP_D);
6677         }
6678
6679         intel_crt_init(dev);
6680
6681         if (HAS_PCH_SPLIT(dev)) {
6682                 int found;
6683
6684                 if (I915_READ(HDMIB) & PORT_DETECTED) {
6685                         /* PCH SDVOB multiplex with HDMIB */
6686                         found = intel_sdvo_init(dev, PCH_SDVOB);
6687                         if (!found)
6688                                 intel_hdmi_init(dev, HDMIB);
6689                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6690                                 intel_dp_init(dev, PCH_DP_B);
6691                 }
6692
6693                 if (I915_READ(HDMIC) & PORT_DETECTED)
6694                         intel_hdmi_init(dev, HDMIC);
6695
6696                 if (I915_READ(HDMID) & PORT_DETECTED)
6697                         intel_hdmi_init(dev, HDMID);
6698
6699                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6700                         intel_dp_init(dev, PCH_DP_C);
6701
6702                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6703                         intel_dp_init(dev, PCH_DP_D);
6704
6705         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6706                 bool found = false;
6707
6708                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6709                         DRM_DEBUG_KMS("probing SDVOB\n");
6710                         found = intel_sdvo_init(dev, SDVOB);
6711                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6712                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6713                                 intel_hdmi_init(dev, SDVOB);
6714                         }
6715
6716                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6717                                 DRM_DEBUG_KMS("probing DP_B\n");
6718                                 intel_dp_init(dev, DP_B);
6719                         }
6720                 }
6721
6722                 /* Before G4X SDVOC doesn't have its own detect register */
6723
6724                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6725                         DRM_DEBUG_KMS("probing SDVOC\n");
6726                         found = intel_sdvo_init(dev, SDVOC);
6727                 }
6728
6729                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6730
6731                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6732                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6733                                 intel_hdmi_init(dev, SDVOC);
6734                         }
6735                         if (SUPPORTS_INTEGRATED_DP(dev)) {
6736                                 DRM_DEBUG_KMS("probing DP_C\n");
6737                                 intel_dp_init(dev, DP_C);
6738                         }
6739                 }
6740
6741                 if (SUPPORTS_INTEGRATED_DP(dev) &&
6742                     (I915_READ(DP_D) & DP_DETECTED)) {
6743                         DRM_DEBUG_KMS("probing DP_D\n");
6744                         intel_dp_init(dev, DP_D);
6745                 }
6746         } else if (IS_GEN2(dev))
6747                 intel_dvo_init(dev);
6748
6749         if (SUPPORTS_TV(dev))
6750                 intel_tv_init(dev);
6751
6752         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6753                 encoder->base.possible_crtcs = encoder->crtc_mask;
6754                 encoder->base.possible_clones =
6755                         intel_encoder_clones(dev, encoder->clone_mask);
6756         }
6757
6758         intel_panel_setup_backlight(dev);
6759
6760         /* disable all the possible outputs/crtcs before entering KMS mode */
6761         drm_helper_disable_unused_functions(dev);
6762 }
6763
6764 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6765 {
6766         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6767
6768         drm_framebuffer_cleanup(fb);
6769         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6770
6771         kfree(intel_fb);
6772 }
6773
6774 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6775                                                 struct drm_file *file,
6776                                                 unsigned int *handle)
6777 {
6778         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6779         struct drm_i915_gem_object *obj = intel_fb->obj;
6780
6781         return drm_gem_handle_create(file, &obj->base, handle);
6782 }
6783
6784 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6785         .destroy = intel_user_framebuffer_destroy,
6786         .create_handle = intel_user_framebuffer_create_handle,
6787 };
6788
6789 int intel_framebuffer_init(struct drm_device *dev,
6790                            struct intel_framebuffer *intel_fb,
6791                            struct drm_mode_fb_cmd *mode_cmd,
6792                            struct drm_i915_gem_object *obj)
6793 {
6794         int ret;
6795
6796         if (obj->tiling_mode == I915_TILING_Y)
6797                 return -EINVAL;
6798
6799         if (mode_cmd->pitch & 63)
6800                 return -EINVAL;
6801
6802         switch (mode_cmd->bpp) {
6803         case 8:
6804         case 16:
6805         case 24:
6806         case 32:
6807                 break;
6808         default:
6809                 return -EINVAL;
6810         }
6811
6812         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6813         if (ret) {
6814                 DRM_ERROR("framebuffer init failed %d\n", ret);
6815                 return ret;
6816         }
6817
6818         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6819         intel_fb->obj = obj;
6820         return 0;
6821 }
6822
6823 static struct drm_framebuffer *
6824 intel_user_framebuffer_create(struct drm_device *dev,
6825                               struct drm_file *filp,
6826                               struct drm_mode_fb_cmd *mode_cmd)
6827 {
6828         struct drm_i915_gem_object *obj;
6829
6830         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
6831         if (&obj->base == NULL)
6832                 return ERR_PTR(-ENOENT);
6833
6834         return intel_framebuffer_create(dev, mode_cmd, obj);
6835 }
6836
6837 static const struct drm_mode_config_funcs intel_mode_funcs = {
6838         .fb_create = intel_user_framebuffer_create,
6839         .output_poll_changed = intel_fb_output_poll_changed,
6840 };
6841
6842 static struct drm_i915_gem_object *
6843 intel_alloc_context_page(struct drm_device *dev)
6844 {
6845         struct drm_i915_gem_object *ctx;
6846         int ret;
6847
6848         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
6849
6850         ctx = i915_gem_alloc_object(dev, 4096);
6851         if (!ctx) {
6852                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
6853                 return NULL;
6854         }
6855
6856         ret = i915_gem_object_pin(ctx, 4096, true);
6857         if (ret) {
6858                 DRM_ERROR("failed to pin power context: %d\n", ret);
6859                 goto err_unref;
6860         }
6861
6862         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
6863         if (ret) {
6864                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
6865                 goto err_unpin;
6866         }
6867
6868         return ctx;
6869
6870 err_unpin:
6871         i915_gem_object_unpin(ctx);
6872 err_unref:
6873         drm_gem_object_unreference(&ctx->base);
6874         mutex_unlock(&dev->struct_mutex);
6875         return NULL;
6876 }
6877
6878 bool ironlake_set_drps(struct drm_device *dev, u8 val)
6879 {
6880         struct drm_i915_private *dev_priv = dev->dev_private;
6881         u16 rgvswctl;
6882
6883         rgvswctl = I915_READ16(MEMSWCTL);
6884         if (rgvswctl & MEMCTL_CMD_STS) {
6885                 DRM_DEBUG("gpu busy, RCS change rejected\n");
6886                 return false; /* still busy with another command */
6887         }
6888
6889         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6890                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6891         I915_WRITE16(MEMSWCTL, rgvswctl);
6892         POSTING_READ16(MEMSWCTL);
6893
6894         rgvswctl |= MEMCTL_CMD_STS;
6895         I915_WRITE16(MEMSWCTL, rgvswctl);
6896
6897         return true;
6898 }
6899
6900 void ironlake_enable_drps(struct drm_device *dev)
6901 {
6902         struct drm_i915_private *dev_priv = dev->dev_private;
6903         u32 rgvmodectl = I915_READ(MEMMODECTL);
6904         u8 fmax, fmin, fstart, vstart;
6905
6906         /* Enable temp reporting */
6907         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6908         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6909
6910         /* 100ms RC evaluation intervals */
6911         I915_WRITE(RCUPEI, 100000);
6912         I915_WRITE(RCDNEI, 100000);
6913
6914         /* Set max/min thresholds to 90ms and 80ms respectively */
6915         I915_WRITE(RCBMAXAVG, 90000);
6916         I915_WRITE(RCBMINAVG, 80000);
6917
6918         I915_WRITE(MEMIHYST, 1);
6919
6920         /* Set up min, max, and cur for interrupt handling */
6921         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6922         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6923         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6924                 MEMMODE_FSTART_SHIFT;
6925
6926         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
6927                 PXVFREQ_PX_SHIFT;
6928
6929         dev_priv->fmax = fmax; /* IPS callback will increase this */
6930         dev_priv->fstart = fstart;
6931
6932         dev_priv->max_delay = fstart;
6933         dev_priv->min_delay = fmin;
6934         dev_priv->cur_delay = fstart;
6935
6936         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6937                          fmax, fmin, fstart);
6938
6939         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6940
6941         /*
6942          * Interrupts will be enabled in ironlake_irq_postinstall
6943          */
6944
6945         I915_WRITE(VIDSTART, vstart);
6946         POSTING_READ(VIDSTART);
6947
6948         rgvmodectl |= MEMMODE_SWMODE_EN;
6949         I915_WRITE(MEMMODECTL, rgvmodectl);
6950
6951         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6952                 DRM_ERROR("stuck trying to change perf mode\n");
6953         msleep(1);
6954
6955         ironlake_set_drps(dev, fstart);
6956
6957         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
6958                 I915_READ(0x112e0);
6959         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
6960         dev_priv->last_count2 = I915_READ(0x112f4);
6961         getrawmonotonic(&dev_priv->last_time2);
6962 }
6963
6964 void ironlake_disable_drps(struct drm_device *dev)
6965 {
6966         struct drm_i915_private *dev_priv = dev->dev_private;
6967         u16 rgvswctl = I915_READ16(MEMSWCTL);
6968
6969         /* Ack interrupts, disable EFC interrupt */
6970         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6971         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6972         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6973         I915_WRITE(DEIIR, DE_PCU_EVENT);
6974         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6975
6976         /* Go back to the starting frequency */
6977         ironlake_set_drps(dev, dev_priv->fstart);
6978         msleep(1);
6979         rgvswctl |= MEMCTL_CMD_STS;
6980         I915_WRITE(MEMSWCTL, rgvswctl);
6981         msleep(1);
6982
6983 }
6984
6985 void gen6_set_rps(struct drm_device *dev, u8 val)
6986 {
6987         struct drm_i915_private *dev_priv = dev->dev_private;
6988         u32 swreq;
6989
6990         swreq = (val & 0x3ff) << 25;
6991         I915_WRITE(GEN6_RPNSWREQ, swreq);
6992 }
6993
6994 void gen6_disable_rps(struct drm_device *dev)
6995 {
6996         struct drm_i915_private *dev_priv = dev->dev_private;
6997
6998         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6999         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7000         I915_WRITE(GEN6_PMIER, 0);
7001
7002         spin_lock_irq(&dev_priv->rps_lock);
7003         dev_priv->pm_iir = 0;
7004         spin_unlock_irq(&dev_priv->rps_lock);
7005
7006         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7007 }
7008
7009 static unsigned long intel_pxfreq(u32 vidfreq)
7010 {
7011         unsigned long freq;
7012         int div = (vidfreq & 0x3f0000) >> 16;
7013         int post = (vidfreq & 0x3000) >> 12;
7014         int pre = (vidfreq & 0x7);
7015
7016         if (!pre)
7017                 return 0;
7018
7019         freq = ((div * 133333) / ((1<<post) * pre));
7020
7021         return freq;
7022 }
7023
7024 void intel_init_emon(struct drm_device *dev)
7025 {
7026         struct drm_i915_private *dev_priv = dev->dev_private;
7027         u32 lcfuse;
7028         u8 pxw[16];
7029         int i;
7030
7031         /* Disable to program */
7032         I915_WRITE(ECR, 0);
7033         POSTING_READ(ECR);
7034
7035         /* Program energy weights for various events */
7036         I915_WRITE(SDEW, 0x15040d00);
7037         I915_WRITE(CSIEW0, 0x007f0000);
7038         I915_WRITE(CSIEW1, 0x1e220004);
7039         I915_WRITE(CSIEW2, 0x04000004);
7040
7041         for (i = 0; i < 5; i++)
7042                 I915_WRITE(PEW + (i * 4), 0);
7043         for (i = 0; i < 3; i++)
7044                 I915_WRITE(DEW + (i * 4), 0);
7045
7046         /* Program P-state weights to account for frequency power adjustment */
7047         for (i = 0; i < 16; i++) {
7048                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7049                 unsigned long freq = intel_pxfreq(pxvidfreq);
7050                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7051                         PXVFREQ_PX_SHIFT;
7052                 unsigned long val;
7053
7054                 val = vid * vid;
7055                 val *= (freq / 1000);
7056                 val *= 255;
7057                 val /= (127*127*900);
7058                 if (val > 0xff)
7059                         DRM_ERROR("bad pxval: %ld\n", val);
7060                 pxw[i] = val;
7061         }
7062         /* Render standby states get 0 weight */
7063         pxw[14] = 0;
7064         pxw[15] = 0;
7065
7066         for (i = 0; i < 4; i++) {
7067                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7068                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7069                 I915_WRITE(PXW + (i * 4), val);
7070         }
7071
7072         /* Adjust magic regs to magic values (more experimental results) */
7073         I915_WRITE(OGW0, 0);
7074         I915_WRITE(OGW1, 0);
7075         I915_WRITE(EG0, 0x00007f00);
7076         I915_WRITE(EG1, 0x0000000e);
7077         I915_WRITE(EG2, 0x000e0000);
7078         I915_WRITE(EG3, 0x68000300);
7079         I915_WRITE(EG4, 0x42000000);
7080         I915_WRITE(EG5, 0x00140031);
7081         I915_WRITE(EG6, 0);
7082         I915_WRITE(EG7, 0);
7083
7084         for (i = 0; i < 8; i++)
7085                 I915_WRITE(PXWL + (i * 4), 0);
7086
7087         /* Enable PMON + select events */
7088         I915_WRITE(ECR, 0x80000019);
7089
7090         lcfuse = I915_READ(LCFUSE02);
7091
7092         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7093 }
7094
7095 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7096 {
7097         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7098         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7099         u32 pcu_mbox, rc6_mask = 0;
7100         int cur_freq, min_freq, max_freq;
7101         int i;
7102
7103         /* Here begins a magic sequence of register writes to enable
7104          * auto-downclocking.
7105          *
7106          * Perhaps there might be some value in exposing these to
7107          * userspace...
7108          */
7109         I915_WRITE(GEN6_RC_STATE, 0);
7110         mutex_lock(&dev_priv->dev->struct_mutex);
7111         gen6_gt_force_wake_get(dev_priv);
7112
7113         /* disable the counters and set deterministic thresholds */
7114         I915_WRITE(GEN6_RC_CONTROL, 0);
7115
7116         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7117         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7118         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7119         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7120         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7121
7122         for (i = 0; i < I915_NUM_RINGS; i++)
7123                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7124
7125         I915_WRITE(GEN6_RC_SLEEP, 0);
7126         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7127         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7128         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7129         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7130
7131         if (i915_enable_rc6)
7132                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7133                         GEN6_RC_CTL_RC6_ENABLE;
7134
7135         I915_WRITE(GEN6_RC_CONTROL,
7136                    rc6_mask |
7137                    GEN6_RC_CTL_EI_MODE(1) |
7138                    GEN6_RC_CTL_HW_ENABLE);
7139
7140         I915_WRITE(GEN6_RPNSWREQ,
7141                    GEN6_FREQUENCY(10) |
7142                    GEN6_OFFSET(0) |
7143                    GEN6_AGGRESSIVE_TURBO);
7144         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7145                    GEN6_FREQUENCY(12));
7146
7147         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7148         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7149                    18 << 24 |
7150                    6 << 16);
7151         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7152         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7153         I915_WRITE(GEN6_RP_UP_EI, 100000);
7154         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7155         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7156         I915_WRITE(GEN6_RP_CONTROL,
7157                    GEN6_RP_MEDIA_TURBO |
7158                    GEN6_RP_USE_NORMAL_FREQ |
7159                    GEN6_RP_MEDIA_IS_GFX |
7160                    GEN6_RP_ENABLE |
7161                    GEN6_RP_UP_BUSY_AVG |
7162                    GEN6_RP_DOWN_IDLE_CONT);
7163
7164         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7165                      500))
7166                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7167
7168         I915_WRITE(GEN6_PCODE_DATA, 0);
7169         I915_WRITE(GEN6_PCODE_MAILBOX,
7170                    GEN6_PCODE_READY |
7171                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7172         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7173                      500))
7174                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7175
7176         min_freq = (rp_state_cap & 0xff0000) >> 16;
7177         max_freq = rp_state_cap & 0xff;
7178         cur_freq = (gt_perf_status & 0xff00) >> 8;
7179
7180         /* Check for overclock support */
7181         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7182                      500))
7183                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7184         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7185         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7186         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7187                      500))
7188                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7189         if (pcu_mbox & (1<<31)) { /* OC supported */
7190                 max_freq = pcu_mbox & 0xff;
7191                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7192         }
7193
7194         /* In units of 100MHz */
7195         dev_priv->max_delay = max_freq;
7196         dev_priv->min_delay = min_freq;
7197         dev_priv->cur_delay = cur_freq;
7198
7199         /* requires MSI enabled */
7200         I915_WRITE(GEN6_PMIER,
7201                    GEN6_PM_MBOX_EVENT |
7202                    GEN6_PM_THERMAL_EVENT |
7203                    GEN6_PM_RP_DOWN_TIMEOUT |
7204                    GEN6_PM_RP_UP_THRESHOLD |
7205                    GEN6_PM_RP_DOWN_THRESHOLD |
7206                    GEN6_PM_RP_UP_EI_EXPIRED |
7207                    GEN6_PM_RP_DOWN_EI_EXPIRED);
7208         spin_lock_irq(&dev_priv->rps_lock);
7209         WARN_ON(dev_priv->pm_iir != 0);
7210         I915_WRITE(GEN6_PMIMR, 0);
7211         spin_unlock_irq(&dev_priv->rps_lock);
7212         /* enable all PM interrupts */
7213         I915_WRITE(GEN6_PMINTRMSK, 0);
7214
7215         gen6_gt_force_wake_put(dev_priv);
7216         mutex_unlock(&dev_priv->dev->struct_mutex);
7217 }
7218
7219 static void ironlake_init_clock_gating(struct drm_device *dev)
7220 {
7221         struct drm_i915_private *dev_priv = dev->dev_private;
7222         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7223
7224         /* Required for FBC */
7225         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7226                 DPFCRUNIT_CLOCK_GATE_DISABLE |
7227                 DPFDUNIT_CLOCK_GATE_DISABLE;
7228         /* Required for CxSR */
7229         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7230
7231         I915_WRITE(PCH_3DCGDIS0,
7232                    MARIUNIT_CLOCK_GATE_DISABLE |
7233                    SVSMUNIT_CLOCK_GATE_DISABLE);
7234         I915_WRITE(PCH_3DCGDIS1,
7235                    VFMUNIT_CLOCK_GATE_DISABLE);
7236
7237         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7238
7239         /*
7240          * According to the spec the following bits should be set in
7241          * order to enable memory self-refresh
7242          * The bit 22/21 of 0x42004
7243          * The bit 5 of 0x42020
7244          * The bit 15 of 0x45000
7245          */
7246         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7247                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
7248                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7249         I915_WRITE(ILK_DSPCLK_GATE,
7250                    (I915_READ(ILK_DSPCLK_GATE) |
7251                     ILK_DPARB_CLK_GATE));
7252         I915_WRITE(DISP_ARB_CTL,
7253                    (I915_READ(DISP_ARB_CTL) |
7254                     DISP_FBC_WM_DIS));
7255         I915_WRITE(WM3_LP_ILK, 0);
7256         I915_WRITE(WM2_LP_ILK, 0);
7257         I915_WRITE(WM1_LP_ILK, 0);
7258
7259         /*
7260          * Based on the document from hardware guys the following bits
7261          * should be set unconditionally in order to enable FBC.
7262          * The bit 22 of 0x42000
7263          * The bit 22 of 0x42004
7264          * The bit 7,8,9 of 0x42020.
7265          */
7266         if (IS_IRONLAKE_M(dev)) {
7267                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7268                            I915_READ(ILK_DISPLAY_CHICKEN1) |
7269                            ILK_FBCQ_DIS);
7270                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7271                            I915_READ(ILK_DISPLAY_CHICKEN2) |
7272                            ILK_DPARB_GATE);
7273                 I915_WRITE(ILK_DSPCLK_GATE,
7274                            I915_READ(ILK_DSPCLK_GATE) |
7275                            ILK_DPFC_DIS1 |
7276                            ILK_DPFC_DIS2 |
7277                            ILK_CLK_FBC);
7278         }
7279
7280         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7281                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7282                    ILK_ELPIN_409_SELECT);
7283         I915_WRITE(_3D_CHICKEN2,
7284                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7285                    _3D_CHICKEN2_WM_READ_PIPELINED);
7286 }
7287
7288 static void gen6_init_clock_gating(struct drm_device *dev)
7289 {
7290         struct drm_i915_private *dev_priv = dev->dev_private;
7291         int pipe;
7292         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7293
7294         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7295
7296         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7297                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7298                    ILK_ELPIN_409_SELECT);
7299
7300         I915_WRITE(WM3_LP_ILK, 0);
7301         I915_WRITE(WM2_LP_ILK, 0);
7302         I915_WRITE(WM1_LP_ILK, 0);
7303
7304         /*
7305          * According to the spec the following bits should be
7306          * set in order to enable memory self-refresh and fbc:
7307          * The bit21 and bit22 of 0x42000
7308          * The bit21 and bit22 of 0x42004
7309          * The bit5 and bit7 of 0x42020
7310          * The bit14 of 0x70180
7311          * The bit14 of 0x71180
7312          */
7313         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7314                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7315                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7316         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7317                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7318                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7319         I915_WRITE(ILK_DSPCLK_GATE,
7320                    I915_READ(ILK_DSPCLK_GATE) |
7321                    ILK_DPARB_CLK_GATE  |
7322                    ILK_DPFD_CLK_GATE);
7323
7324         for_each_pipe(pipe)
7325                 I915_WRITE(DSPCNTR(pipe),
7326                            I915_READ(DSPCNTR(pipe)) |
7327                            DISPPLANE_TRICKLE_FEED_DISABLE);
7328 }
7329
7330 static void ivybridge_init_clock_gating(struct drm_device *dev)
7331 {
7332         struct drm_i915_private *dev_priv = dev->dev_private;
7333         int pipe;
7334         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7335
7336         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7337
7338         I915_WRITE(WM3_LP_ILK, 0);
7339         I915_WRITE(WM2_LP_ILK, 0);
7340         I915_WRITE(WM1_LP_ILK, 0);
7341
7342         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
7343
7344         for_each_pipe(pipe)
7345                 I915_WRITE(DSPCNTR(pipe),
7346                            I915_READ(DSPCNTR(pipe)) |
7347                            DISPPLANE_TRICKLE_FEED_DISABLE);
7348 }
7349
7350 static void g4x_init_clock_gating(struct drm_device *dev)
7351 {
7352         struct drm_i915_private *dev_priv = dev->dev_private;
7353         uint32_t dspclk_gate;
7354
7355         I915_WRITE(RENCLK_GATE_D1, 0);
7356         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7357                    GS_UNIT_CLOCK_GATE_DISABLE |
7358                    CL_UNIT_CLOCK_GATE_DISABLE);
7359         I915_WRITE(RAMCLK_GATE_D, 0);
7360         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7361                 OVRUNIT_CLOCK_GATE_DISABLE |
7362                 OVCUNIT_CLOCK_GATE_DISABLE;
7363         if (IS_GM45(dev))
7364                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7365         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7366 }
7367
7368 static void crestline_init_clock_gating(struct drm_device *dev)
7369 {
7370         struct drm_i915_private *dev_priv = dev->dev_private;
7371
7372         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7373         I915_WRITE(RENCLK_GATE_D2, 0);
7374         I915_WRITE(DSPCLK_GATE_D, 0);
7375         I915_WRITE(RAMCLK_GATE_D, 0);
7376         I915_WRITE16(DEUC, 0);
7377 }
7378
7379 static void broadwater_init_clock_gating(struct drm_device *dev)
7380 {
7381         struct drm_i915_private *dev_priv = dev->dev_private;
7382
7383         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7384                    I965_RCC_CLOCK_GATE_DISABLE |
7385                    I965_RCPB_CLOCK_GATE_DISABLE |
7386                    I965_ISC_CLOCK_GATE_DISABLE |
7387                    I965_FBC_CLOCK_GATE_DISABLE);
7388         I915_WRITE(RENCLK_GATE_D2, 0);
7389 }
7390
7391 static void gen3_init_clock_gating(struct drm_device *dev)
7392 {
7393         struct drm_i915_private *dev_priv = dev->dev_private;
7394         u32 dstate = I915_READ(D_STATE);
7395
7396         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7397                 DSTATE_DOT_CLOCK_GATING;
7398         I915_WRITE(D_STATE, dstate);
7399 }
7400
7401 static void i85x_init_clock_gating(struct drm_device *dev)
7402 {
7403         struct drm_i915_private *dev_priv = dev->dev_private;
7404
7405         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7406 }
7407
7408 static void i830_init_clock_gating(struct drm_device *dev)
7409 {
7410         struct drm_i915_private *dev_priv = dev->dev_private;
7411
7412         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7413 }
7414
7415 static void ibx_init_clock_gating(struct drm_device *dev)
7416 {
7417         struct drm_i915_private *dev_priv = dev->dev_private;
7418
7419         /*
7420          * On Ibex Peak and Cougar Point, we need to disable clock
7421          * gating for the panel power sequencer or it will fail to
7422          * start up when no ports are active.
7423          */
7424         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7425 }
7426
7427 static void cpt_init_clock_gating(struct drm_device *dev)
7428 {
7429         struct drm_i915_private *dev_priv = dev->dev_private;
7430
7431         /*
7432          * On Ibex Peak and Cougar Point, we need to disable clock
7433          * gating for the panel power sequencer or it will fail to
7434          * start up when no ports are active.
7435          */
7436         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7437         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7438                    DPLS_EDP_PPS_FIX_DIS);
7439 }
7440
7441 static void ironlake_teardown_rc6(struct drm_device *dev)
7442 {
7443         struct drm_i915_private *dev_priv = dev->dev_private;
7444
7445         if (dev_priv->renderctx) {
7446                 i915_gem_object_unpin(dev_priv->renderctx);
7447                 drm_gem_object_unreference(&dev_priv->renderctx->base);
7448                 dev_priv->renderctx = NULL;
7449         }
7450
7451         if (dev_priv->pwrctx) {
7452                 i915_gem_object_unpin(dev_priv->pwrctx);
7453                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7454                 dev_priv->pwrctx = NULL;
7455         }
7456 }
7457
7458 static void ironlake_disable_rc6(struct drm_device *dev)
7459 {
7460         struct drm_i915_private *dev_priv = dev->dev_private;
7461
7462         if (I915_READ(PWRCTXA)) {
7463                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7464                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7465                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7466                          50);
7467
7468                 I915_WRITE(PWRCTXA, 0);
7469                 POSTING_READ(PWRCTXA);
7470
7471                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7472                 POSTING_READ(RSTDBYCTL);
7473         }
7474
7475         ironlake_teardown_rc6(dev);
7476 }
7477
7478 static int ironlake_setup_rc6(struct drm_device *dev)
7479 {
7480         struct drm_i915_private *dev_priv = dev->dev_private;
7481
7482         if (dev_priv->renderctx == NULL)
7483                 dev_priv->renderctx = intel_alloc_context_page(dev);
7484         if (!dev_priv->renderctx)
7485                 return -ENOMEM;
7486
7487         if (dev_priv->pwrctx == NULL)
7488                 dev_priv->pwrctx = intel_alloc_context_page(dev);
7489         if (!dev_priv->pwrctx) {
7490                 ironlake_teardown_rc6(dev);
7491                 return -ENOMEM;
7492         }
7493
7494         return 0;
7495 }
7496
7497 void ironlake_enable_rc6(struct drm_device *dev)
7498 {
7499         struct drm_i915_private *dev_priv = dev->dev_private;
7500         int ret;
7501
7502         /* rc6 disabled by default due to repeated reports of hanging during
7503          * boot and resume.
7504          */
7505         if (!i915_enable_rc6)
7506                 return;
7507
7508         mutex_lock(&dev->struct_mutex);
7509         ret = ironlake_setup_rc6(dev);
7510         if (ret) {
7511                 mutex_unlock(&dev->struct_mutex);
7512                 return;
7513         }
7514
7515         /*
7516          * GPU can automatically power down the render unit if given a page
7517          * to save state.
7518          */
7519         ret = BEGIN_LP_RING(6);
7520         if (ret) {
7521                 ironlake_teardown_rc6(dev);
7522                 mutex_unlock(&dev->struct_mutex);
7523                 return;
7524         }
7525
7526         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7527         OUT_RING(MI_SET_CONTEXT);
7528         OUT_RING(dev_priv->renderctx->gtt_offset |
7529                  MI_MM_SPACE_GTT |
7530                  MI_SAVE_EXT_STATE_EN |
7531                  MI_RESTORE_EXT_STATE_EN |
7532                  MI_RESTORE_INHIBIT);
7533         OUT_RING(MI_SUSPEND_FLUSH);
7534         OUT_RING(MI_NOOP);
7535         OUT_RING(MI_FLUSH);
7536         ADVANCE_LP_RING();
7537
7538         /*
7539          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
7540          * does an implicit flush, combined with MI_FLUSH above, it should be
7541          * safe to assume that renderctx is valid
7542          */
7543         ret = intel_wait_ring_idle(LP_RING(dev_priv));
7544         if (ret) {
7545                 DRM_ERROR("failed to enable ironlake power power savings\n");
7546                 ironlake_teardown_rc6(dev);
7547                 mutex_unlock(&dev->struct_mutex);
7548                 return;
7549         }
7550
7551         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7552         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7553         mutex_unlock(&dev->struct_mutex);
7554 }
7555
7556 void intel_init_clock_gating(struct drm_device *dev)
7557 {
7558         struct drm_i915_private *dev_priv = dev->dev_private;
7559
7560         dev_priv->display.init_clock_gating(dev);
7561
7562         if (dev_priv->display.init_pch_clock_gating)
7563                 dev_priv->display.init_pch_clock_gating(dev);
7564 }
7565
7566 /* Set up chip specific display functions */
7567 static void intel_init_display(struct drm_device *dev)
7568 {
7569         struct drm_i915_private *dev_priv = dev->dev_private;
7570
7571         /* We always want a DPMS function */
7572         if (HAS_PCH_SPLIT(dev)) {
7573                 dev_priv->display.dpms = ironlake_crtc_dpms;
7574                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7575         } else {
7576                 dev_priv->display.dpms = i9xx_crtc_dpms;
7577                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7578         }
7579
7580         if (I915_HAS_FBC(dev)) {
7581                 if (HAS_PCH_SPLIT(dev)) {
7582                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7583                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7584                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7585                 } else if (IS_GM45(dev)) {
7586                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7587                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7588                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7589                 } else if (IS_CRESTLINE(dev)) {
7590                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7591                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7592                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7593                 }
7594                 /* 855GM needs testing */
7595         }
7596
7597         /* Returns the core display clock speed */
7598         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7599                 dev_priv->display.get_display_clock_speed =
7600                         i945_get_display_clock_speed;
7601         else if (IS_I915G(dev))
7602                 dev_priv->display.get_display_clock_speed =
7603                         i915_get_display_clock_speed;
7604         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7605                 dev_priv->display.get_display_clock_speed =
7606                         i9xx_misc_get_display_clock_speed;
7607         else if (IS_I915GM(dev))
7608                 dev_priv->display.get_display_clock_speed =
7609                         i915gm_get_display_clock_speed;
7610         else if (IS_I865G(dev))
7611                 dev_priv->display.get_display_clock_speed =
7612                         i865_get_display_clock_speed;
7613         else if (IS_I85X(dev))
7614                 dev_priv->display.get_display_clock_speed =
7615                         i855_get_display_clock_speed;
7616         else /* 852, 830 */
7617                 dev_priv->display.get_display_clock_speed =
7618                         i830_get_display_clock_speed;
7619
7620         /* For FIFO watermark updates */
7621         if (HAS_PCH_SPLIT(dev)) {
7622                 if (HAS_PCH_IBX(dev))
7623                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
7624                 else if (HAS_PCH_CPT(dev))
7625                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
7626
7627                 if (IS_GEN5(dev)) {
7628                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
7629                                 dev_priv->display.update_wm = ironlake_update_wm;
7630                         else {
7631                                 DRM_DEBUG_KMS("Failed to get proper latency. "
7632                                               "Disable CxSR\n");
7633                                 dev_priv->display.update_wm = NULL;
7634                         }
7635                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7636                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7637                 } else if (IS_GEN6(dev)) {
7638                         if (SNB_READ_WM0_LATENCY()) {
7639                                 dev_priv->display.update_wm = sandybridge_update_wm;
7640                         } else {
7641                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
7642                                               "Disable CxSR\n");
7643                                 dev_priv->display.update_wm = NULL;
7644                         }
7645                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7646                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7647                 } else if (IS_IVYBRIDGE(dev)) {
7648                         /* FIXME: detect B0+ stepping and use auto training */
7649                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7650                         if (SNB_READ_WM0_LATENCY()) {
7651                                 dev_priv->display.update_wm = sandybridge_update_wm;
7652                         } else {
7653                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
7654                                               "Disable CxSR\n");
7655                                 dev_priv->display.update_wm = NULL;
7656                         }
7657                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7658
7659                 } else
7660                         dev_priv->display.update_wm = NULL;
7661         } else if (IS_PINEVIEW(dev)) {
7662                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7663                                             dev_priv->is_ddr3,
7664                                             dev_priv->fsb_freq,
7665                                             dev_priv->mem_freq)) {
7666                         DRM_INFO("failed to find known CxSR latency "
7667                                  "(found ddr%s fsb freq %d, mem freq %d), "
7668                                  "disabling CxSR\n",
7669                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
7670                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7671                         /* Disable CxSR and never update its watermark again */
7672                         pineview_disable_cxsr(dev);
7673                         dev_priv->display.update_wm = NULL;
7674                 } else
7675                         dev_priv->display.update_wm = pineview_update_wm;
7676         } else if (IS_G4X(dev)) {
7677                 dev_priv->display.update_wm = g4x_update_wm;
7678                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7679         } else if (IS_GEN4(dev)) {
7680                 dev_priv->display.update_wm = i965_update_wm;
7681                 if (IS_CRESTLINE(dev))
7682                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7683                 else if (IS_BROADWATER(dev))
7684                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7685         } else if (IS_GEN3(dev)) {
7686                 dev_priv->display.update_wm = i9xx_update_wm;
7687                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7688                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7689         } else if (IS_I865G(dev)) {
7690                 dev_priv->display.update_wm = i830_update_wm;
7691                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7692                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7693         } else if (IS_I85X(dev)) {
7694                 dev_priv->display.update_wm = i9xx_update_wm;
7695                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
7696                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7697         } else {
7698                 dev_priv->display.update_wm = i830_update_wm;
7699                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7700                 if (IS_845G(dev))
7701                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7702                 else
7703                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7704         }
7705 }
7706
7707 /*
7708  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7709  * resume, or other times.  This quirk makes sure that's the case for
7710  * affected systems.
7711  */
7712 static void quirk_pipea_force (struct drm_device *dev)
7713 {
7714         struct drm_i915_private *dev_priv = dev->dev_private;
7715
7716         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7717         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
7718 }
7719
7720 struct intel_quirk {
7721         int device;
7722         int subsystem_vendor;
7723         int subsystem_device;
7724         void (*hook)(struct drm_device *dev);
7725 };
7726
7727 struct intel_quirk intel_quirks[] = {
7728         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
7729         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
7730         /* HP Mini needs pipe A force quirk (LP: #322104) */
7731         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
7732
7733         /* Thinkpad R31 needs pipe A force quirk */
7734         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7735         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7736         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7737
7738         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7739         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
7740         /* ThinkPad X40 needs pipe A force quirk */
7741
7742         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7743         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7744
7745         /* 855 & before need to leave pipe A & dpll A up */
7746         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7747         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7748 };
7749
7750 static void intel_init_quirks(struct drm_device *dev)
7751 {
7752         struct pci_dev *d = dev->pdev;
7753         int i;
7754
7755         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7756                 struct intel_quirk *q = &intel_quirks[i];
7757
7758                 if (d->device == q->device &&
7759                     (d->subsystem_vendor == q->subsystem_vendor ||
7760                      q->subsystem_vendor == PCI_ANY_ID) &&
7761                     (d->subsystem_device == q->subsystem_device ||
7762                      q->subsystem_device == PCI_ANY_ID))
7763                         q->hook(dev);
7764         }
7765 }
7766
7767 /* Disable the VGA plane that we never use */
7768 static void i915_disable_vga(struct drm_device *dev)
7769 {
7770         struct drm_i915_private *dev_priv = dev->dev_private;
7771         u8 sr1;
7772         u32 vga_reg;
7773
7774         if (HAS_PCH_SPLIT(dev))
7775                 vga_reg = CPU_VGACNTRL;
7776         else
7777                 vga_reg = VGACNTRL;
7778
7779         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7780         outb(1, VGA_SR_INDEX);
7781         sr1 = inb(VGA_SR_DATA);
7782         outb(sr1 | 1<<5, VGA_SR_DATA);
7783         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7784         udelay(300);
7785
7786         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7787         POSTING_READ(vga_reg);
7788 }
7789
7790 void intel_modeset_init(struct drm_device *dev)
7791 {
7792         struct drm_i915_private *dev_priv = dev->dev_private;
7793         int i;
7794
7795         drm_mode_config_init(dev);
7796
7797         dev->mode_config.min_width = 0;
7798         dev->mode_config.min_height = 0;
7799
7800         dev->mode_config.funcs = (void *)&intel_mode_funcs;
7801
7802         intel_init_quirks(dev);
7803
7804         intel_init_display(dev);
7805
7806         if (IS_GEN2(dev)) {
7807                 dev->mode_config.max_width = 2048;
7808                 dev->mode_config.max_height = 2048;
7809         } else if (IS_GEN3(dev)) {
7810                 dev->mode_config.max_width = 4096;
7811                 dev->mode_config.max_height = 4096;
7812         } else {
7813                 dev->mode_config.max_width = 8192;
7814                 dev->mode_config.max_height = 8192;
7815         }
7816         dev->mode_config.fb_base = dev->agp->base;
7817
7818         DRM_DEBUG_KMS("%d display pipe%s available.\n",
7819                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7820
7821         for (i = 0; i < dev_priv->num_pipe; i++) {
7822                 intel_crtc_init(dev, i);
7823         }
7824
7825         /* Just disable it once at startup */
7826         i915_disable_vga(dev);
7827         intel_setup_outputs(dev);
7828
7829         intel_init_clock_gating(dev);
7830
7831         if (IS_IRONLAKE_M(dev)) {
7832                 ironlake_enable_drps(dev);
7833                 intel_init_emon(dev);
7834         }
7835
7836         if (IS_GEN6(dev))
7837                 gen6_enable_rps(dev_priv);
7838
7839         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7840         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7841                     (unsigned long)dev);
7842 }
7843
7844 void intel_modeset_gem_init(struct drm_device *dev)
7845 {
7846         if (IS_IRONLAKE_M(dev))
7847                 ironlake_enable_rc6(dev);
7848
7849         intel_setup_overlay(dev);
7850 }
7851
7852 void intel_modeset_cleanup(struct drm_device *dev)
7853 {
7854         struct drm_i915_private *dev_priv = dev->dev_private;
7855         struct drm_crtc *crtc;
7856         struct intel_crtc *intel_crtc;
7857
7858         drm_kms_helper_poll_fini(dev);
7859         mutex_lock(&dev->struct_mutex);
7860
7861         intel_unregister_dsm_handler();
7862
7863
7864         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7865                 /* Skip inactive CRTCs */
7866                 if (!crtc->fb)
7867                         continue;
7868
7869                 intel_crtc = to_intel_crtc(crtc);
7870                 intel_increase_pllclock(crtc);
7871         }
7872
7873         if (dev_priv->display.disable_fbc)
7874                 dev_priv->display.disable_fbc(dev);
7875
7876         if (IS_IRONLAKE_M(dev))
7877                 ironlake_disable_drps(dev);
7878         if (IS_GEN6(dev))
7879                 gen6_disable_rps(dev);
7880
7881         if (IS_IRONLAKE_M(dev))
7882                 ironlake_disable_rc6(dev);
7883
7884         mutex_unlock(&dev->struct_mutex);
7885
7886         /* Disable the irq before mode object teardown, for the irq might
7887          * enqueue unpin/hotplug work. */
7888         drm_irq_uninstall(dev);
7889         cancel_work_sync(&dev_priv->hotplug_work);
7890
7891         /* Shut off idle work before the crtcs get freed. */
7892         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7893                 intel_crtc = to_intel_crtc(crtc);
7894                 del_timer_sync(&intel_crtc->idle_timer);
7895         }
7896         del_timer_sync(&dev_priv->idle_timer);
7897         cancel_work_sync(&dev_priv->idle_work);
7898
7899         drm_mode_config_cleanup(dev);
7900 }
7901
7902 /*
7903  * Return which encoder is currently attached for connector.
7904  */
7905 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7906 {
7907         return &intel_attached_encoder(connector)->base;
7908 }
7909
7910 void intel_connector_attach_encoder(struct intel_connector *connector,
7911                                     struct intel_encoder *encoder)
7912 {
7913         connector->encoder = encoder;
7914         drm_mode_connector_attach_encoder(&connector->base,
7915                                           &encoder->base);
7916 }
7917
7918 /*
7919  * set vga decode state - true == enable VGA decode
7920  */
7921 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7922 {
7923         struct drm_i915_private *dev_priv = dev->dev_private;
7924         u16 gmch_ctrl;
7925
7926         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7927         if (state)
7928                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7929         else
7930                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7931         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7932         return 0;
7933 }
7934
7935 #ifdef CONFIG_DEBUG_FS
7936 #include <linux/seq_file.h>
7937
7938 struct intel_display_error_state {
7939         struct intel_cursor_error_state {
7940                 u32 control;
7941                 u32 position;
7942                 u32 base;
7943                 u32 size;
7944         } cursor[2];
7945
7946         struct intel_pipe_error_state {
7947                 u32 conf;
7948                 u32 source;
7949
7950                 u32 htotal;
7951                 u32 hblank;
7952                 u32 hsync;
7953                 u32 vtotal;
7954                 u32 vblank;
7955                 u32 vsync;
7956         } pipe[2];
7957
7958         struct intel_plane_error_state {
7959                 u32 control;
7960                 u32 stride;
7961                 u32 size;
7962                 u32 pos;
7963                 u32 addr;
7964                 u32 surface;
7965                 u32 tile_offset;
7966         } plane[2];
7967 };
7968
7969 struct intel_display_error_state *
7970 intel_display_capture_error_state(struct drm_device *dev)
7971 {
7972         drm_i915_private_t *dev_priv = dev->dev_private;
7973         struct intel_display_error_state *error;
7974         int i;
7975
7976         error = kmalloc(sizeof(*error), GFP_ATOMIC);
7977         if (error == NULL)
7978                 return NULL;
7979
7980         for (i = 0; i < 2; i++) {
7981                 error->cursor[i].control = I915_READ(CURCNTR(i));
7982                 error->cursor[i].position = I915_READ(CURPOS(i));
7983                 error->cursor[i].base = I915_READ(CURBASE(i));
7984
7985                 error->plane[i].control = I915_READ(DSPCNTR(i));
7986                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7987                 error->plane[i].size = I915_READ(DSPSIZE(i));
7988                 error->plane[i].pos= I915_READ(DSPPOS(i));
7989                 error->plane[i].addr = I915_READ(DSPADDR(i));
7990                 if (INTEL_INFO(dev)->gen >= 4) {
7991                         error->plane[i].surface = I915_READ(DSPSURF(i));
7992                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7993                 }
7994
7995                 error->pipe[i].conf = I915_READ(PIPECONF(i));
7996                 error->pipe[i].source = I915_READ(PIPESRC(i));
7997                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7998                 error->pipe[i].hblank = I915_READ(HBLANK(i));
7999                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8000                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8001                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8002                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8003         }
8004
8005         return error;
8006 }
8007
8008 void
8009 intel_display_print_error_state(struct seq_file *m,
8010                                 struct drm_device *dev,
8011                                 struct intel_display_error_state *error)
8012 {
8013         int i;
8014
8015         for (i = 0; i < 2; i++) {
8016                 seq_printf(m, "Pipe [%d]:\n", i);
8017                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8018                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8019                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8020                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8021                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8022                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8023                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8024                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8025
8026                 seq_printf(m, "Plane [%d]:\n", i);
8027                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8028                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8029                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8030                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8031                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8032                 if (INTEL_INFO(dev)->gen >= 4) {
8033                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8034                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8035                 }
8036
8037                 seq_printf(m, "Cursor [%d]:\n", i);
8038                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
8039                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
8040                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
8041         }
8042 }
8043 #endif