Merge branch 'drm-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include "drmP.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "i915_trace.h"
39 #include "drm_dp_helper.h"
40
41 #include "drm_crtc_helper.h"
42
43 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44
45 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
46 static void intel_update_watermarks(struct drm_device *dev);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51     /* given values */
52     int n;
53     int m1, m2;
54     int p1, p2;
55     /* derived values */
56     int dot;
57     int vco;
58     int m;
59     int p;
60 } intel_clock_t;
61
62 typedef struct {
63     int min, max;
64 } intel_range_t;
65
66 typedef struct {
67     int dot_limit;
68     int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75     intel_p2_t      p2;
76     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                       int, int, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *best_clock);
86 static bool
87 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
88                         int target, int refclk, intel_clock_t *best_clock);
89
90 static bool
91 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92                       int target, int refclk, intel_clock_t *best_clock);
93 static bool
94 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
95                            int target, int refclk, intel_clock_t *best_clock);
96
97 static inline u32 /* units of 100MHz */
98 intel_fdi_link_freq(struct drm_device *dev)
99 {
100         if (IS_GEN5(dev)) {
101                 struct drm_i915_private *dev_priv = dev->dev_private;
102                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
103         } else
104                 return 27;
105 }
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108         .dot = { .min = 25000, .max = 350000 },
109         .vco = { .min = 930000, .max = 1400000 },
110         .n = { .min = 3, .max = 16 },
111         .m = { .min = 96, .max = 140 },
112         .m1 = { .min = 18, .max = 26 },
113         .m2 = { .min = 6, .max = 16 },
114         .p = { .min = 4, .max = 128 },
115         .p1 = { .min = 2, .max = 33 },
116         .p2 = { .dot_limit = 165000,
117                 .p2_slow = 4, .p2_fast = 2 },
118         .find_pll = intel_find_best_PLL,
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122         .dot = { .min = 25000, .max = 350000 },
123         .vco = { .min = 930000, .max = 1400000 },
124         .n = { .min = 3, .max = 16 },
125         .m = { .min = 96, .max = 140 },
126         .m1 = { .min = 18, .max = 26 },
127         .m2 = { .min = 6, .max = 16 },
128         .p = { .min = 4, .max = 128 },
129         .p1 = { .min = 1, .max = 6 },
130         .p2 = { .dot_limit = 165000,
131                 .p2_slow = 14, .p2_fast = 7 },
132         .find_pll = intel_find_best_PLL,
133 };
134
135 static const intel_limit_t intel_limits_i9xx_sdvo = {
136         .dot = { .min = 20000, .max = 400000 },
137         .vco = { .min = 1400000, .max = 2800000 },
138         .n = { .min = 1, .max = 6 },
139         .m = { .min = 70, .max = 120 },
140         .m1 = { .min = 10, .max = 22 },
141         .m2 = { .min = 5, .max = 9 },
142         .p = { .min = 5, .max = 80 },
143         .p1 = { .min = 1, .max = 8 },
144         .p2 = { .dot_limit = 200000,
145                 .p2_slow = 10, .p2_fast = 5 },
146         .find_pll = intel_find_best_PLL,
147 };
148
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150         .dot = { .min = 20000, .max = 400000 },
151         .vco = { .min = 1400000, .max = 2800000 },
152         .n = { .min = 1, .max = 6 },
153         .m = { .min = 70, .max = 120 },
154         .m1 = { .min = 10, .max = 22 },
155         .m2 = { .min = 5, .max = 9 },
156         .p = { .min = 7, .max = 98 },
157         .p1 = { .min = 1, .max = 8 },
158         .p2 = { .dot_limit = 112000,
159                 .p2_slow = 14, .p2_fast = 7 },
160         .find_pll = intel_find_best_PLL,
161 };
162
163
164 static const intel_limit_t intel_limits_g4x_sdvo = {
165         .dot = { .min = 25000, .max = 270000 },
166         .vco = { .min = 1750000, .max = 3500000},
167         .n = { .min = 1, .max = 4 },
168         .m = { .min = 104, .max = 138 },
169         .m1 = { .min = 17, .max = 23 },
170         .m2 = { .min = 5, .max = 11 },
171         .p = { .min = 10, .max = 30 },
172         .p1 = { .min = 1, .max = 3},
173         .p2 = { .dot_limit = 270000,
174                 .p2_slow = 10,
175                 .p2_fast = 10
176         },
177         .find_pll = intel_g4x_find_best_PLL,
178 };
179
180 static const intel_limit_t intel_limits_g4x_hdmi = {
181         .dot = { .min = 22000, .max = 400000 },
182         .vco = { .min = 1750000, .max = 3500000},
183         .n = { .min = 1, .max = 4 },
184         .m = { .min = 104, .max = 138 },
185         .m1 = { .min = 16, .max = 23 },
186         .m2 = { .min = 5, .max = 11 },
187         .p = { .min = 5, .max = 80 },
188         .p1 = { .min = 1, .max = 8},
189         .p2 = { .dot_limit = 165000,
190                 .p2_slow = 10, .p2_fast = 5 },
191         .find_pll = intel_g4x_find_best_PLL,
192 };
193
194 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
195         .dot = { .min = 20000, .max = 115000 },
196         .vco = { .min = 1750000, .max = 3500000 },
197         .n = { .min = 1, .max = 3 },
198         .m = { .min = 104, .max = 138 },
199         .m1 = { .min = 17, .max = 23 },
200         .m2 = { .min = 5, .max = 11 },
201         .p = { .min = 28, .max = 112 },
202         .p1 = { .min = 2, .max = 8 },
203         .p2 = { .dot_limit = 0,
204                 .p2_slow = 14, .p2_fast = 14
205         },
206         .find_pll = intel_g4x_find_best_PLL,
207 };
208
209 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
210         .dot = { .min = 80000, .max = 224000 },
211         .vco = { .min = 1750000, .max = 3500000 },
212         .n = { .min = 1, .max = 3 },
213         .m = { .min = 104, .max = 138 },
214         .m1 = { .min = 17, .max = 23 },
215         .m2 = { .min = 5, .max = 11 },
216         .p = { .min = 14, .max = 42 },
217         .p1 = { .min = 2, .max = 6 },
218         .p2 = { .dot_limit = 0,
219                 .p2_slow = 7, .p2_fast = 7
220         },
221         .find_pll = intel_g4x_find_best_PLL,
222 };
223
224 static const intel_limit_t intel_limits_g4x_display_port = {
225         .dot = { .min = 161670, .max = 227000 },
226         .vco = { .min = 1750000, .max = 3500000},
227         .n = { .min = 1, .max = 2 },
228         .m = { .min = 97, .max = 108 },
229         .m1 = { .min = 0x10, .max = 0x12 },
230         .m2 = { .min = 0x05, .max = 0x06 },
231         .p = { .min = 10, .max = 20 },
232         .p1 = { .min = 1, .max = 2},
233         .p2 = { .dot_limit = 0,
234                 .p2_slow = 10, .p2_fast = 10 },
235         .find_pll = intel_find_pll_g4x_dp,
236 };
237
238 static const intel_limit_t intel_limits_pineview_sdvo = {
239         .dot = { .min = 20000, .max = 400000},
240         .vco = { .min = 1700000, .max = 3500000 },
241         /* Pineview's Ncounter is a ring counter */
242         .n = { .min = 3, .max = 6 },
243         .m = { .min = 2, .max = 256 },
244         /* Pineview only has one combined m divider, which we treat as m2. */
245         .m1 = { .min = 0, .max = 0 },
246         .m2 = { .min = 0, .max = 254 },
247         .p = { .min = 5, .max = 80 },
248         .p1 = { .min = 1, .max = 8 },
249         .p2 = { .dot_limit = 200000,
250                 .p2_slow = 10, .p2_fast = 5 },
251         .find_pll = intel_find_best_PLL,
252 };
253
254 static const intel_limit_t intel_limits_pineview_lvds = {
255         .dot = { .min = 20000, .max = 400000 },
256         .vco = { .min = 1700000, .max = 3500000 },
257         .n = { .min = 3, .max = 6 },
258         .m = { .min = 2, .max = 256 },
259         .m1 = { .min = 0, .max = 0 },
260         .m2 = { .min = 0, .max = 254 },
261         .p = { .min = 7, .max = 112 },
262         .p1 = { .min = 1, .max = 8 },
263         .p2 = { .dot_limit = 112000,
264                 .p2_slow = 14, .p2_fast = 14 },
265         .find_pll = intel_find_best_PLL,
266 };
267
268 /* Ironlake / Sandybridge
269  *
270  * We calculate clock using (register_value + 2) for N/M1/M2, so here
271  * the range value for them is (actual_value - 2).
272  */
273 static const intel_limit_t intel_limits_ironlake_dac = {
274         .dot = { .min = 25000, .max = 350000 },
275         .vco = { .min = 1760000, .max = 3510000 },
276         .n = { .min = 1, .max = 5 },
277         .m = { .min = 79, .max = 127 },
278         .m1 = { .min = 12, .max = 22 },
279         .m2 = { .min = 5, .max = 9 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 225000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_g4x_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_ironlake_single_lvds = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 1760000, .max = 3510000 },
290         .n = { .min = 1, .max = 3 },
291         .m = { .min = 79, .max = 118 },
292         .m1 = { .min = 12, .max = 22 },
293         .m2 = { .min = 5, .max = 9 },
294         .p = { .min = 28, .max = 112 },
295         .p1 = { .min = 2, .max = 8 },
296         .p2 = { .dot_limit = 225000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_g4x_find_best_PLL,
299 };
300
301 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
302         .dot = { .min = 25000, .max = 350000 },
303         .vco = { .min = 1760000, .max = 3510000 },
304         .n = { .min = 1, .max = 3 },
305         .m = { .min = 79, .max = 127 },
306         .m1 = { .min = 12, .max = 22 },
307         .m2 = { .min = 5, .max = 9 },
308         .p = { .min = 14, .max = 56 },
309         .p1 = { .min = 2, .max = 8 },
310         .p2 = { .dot_limit = 225000,
311                 .p2_slow = 7, .p2_fast = 7 },
312         .find_pll = intel_g4x_find_best_PLL,
313 };
314
315 /* LVDS 100mhz refclk limits. */
316 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 2 },
320         .m = { .min = 79, .max = 126 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2,.max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327         .find_pll = intel_g4x_find_best_PLL,
328 };
329
330 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
331         .dot = { .min = 25000, .max = 350000 },
332         .vco = { .min = 1760000, .max = 3510000 },
333         .n = { .min = 1, .max = 3 },
334         .m = { .min = 79, .max = 126 },
335         .m1 = { .min = 12, .max = 22 },
336         .m2 = { .min = 5, .max = 9 },
337         .p = { .min = 14, .max = 42 },
338         .p1 = { .min = 2,.max = 6 },
339         .p2 = { .dot_limit = 225000,
340                 .p2_slow = 7, .p2_fast = 7 },
341         .find_pll = intel_g4x_find_best_PLL,
342 };
343
344 static const intel_limit_t intel_limits_ironlake_display_port = {
345         .dot = { .min = 25000, .max = 350000 },
346         .vco = { .min = 1760000, .max = 3510000},
347         .n = { .min = 1, .max = 2 },
348         .m = { .min = 81, .max = 90 },
349         .m1 = { .min = 12, .max = 22 },
350         .m2 = { .min = 5, .max = 9 },
351         .p = { .min = 10, .max = 20 },
352         .p1 = { .min = 1, .max = 2},
353         .p2 = { .dot_limit = 0,
354                 .p2_slow = 10, .p2_fast = 10 },
355         .find_pll = intel_find_pll_ironlake_dp,
356 };
357
358 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359                                                 int refclk)
360 {
361         struct drm_device *dev = crtc->dev;
362         struct drm_i915_private *dev_priv = dev->dev_private;
363         const intel_limit_t *limit;
364
365         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
366                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
367                     LVDS_CLKB_POWER_UP) {
368                         /* LVDS dual channel */
369                         if (refclk == 100000)
370                                 limit = &intel_limits_ironlake_dual_lvds_100m;
371                         else
372                                 limit = &intel_limits_ironlake_dual_lvds;
373                 } else {
374                         if (refclk == 100000)
375                                 limit = &intel_limits_ironlake_single_lvds_100m;
376                         else
377                                 limit = &intel_limits_ironlake_single_lvds;
378                 }
379         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
380                         HAS_eDP)
381                 limit = &intel_limits_ironlake_display_port;
382         else
383                 limit = &intel_limits_ironlake_dac;
384
385         return limit;
386 }
387
388 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
389 {
390         struct drm_device *dev = crtc->dev;
391         struct drm_i915_private *dev_priv = dev->dev_private;
392         const intel_limit_t *limit;
393
394         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
395                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
396                     LVDS_CLKB_POWER_UP)
397                         /* LVDS with dual channel */
398                         limit = &intel_limits_g4x_dual_channel_lvds;
399                 else
400                         /* LVDS with dual channel */
401                         limit = &intel_limits_g4x_single_channel_lvds;
402         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
403                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
404                 limit = &intel_limits_g4x_hdmi;
405         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
406                 limit = &intel_limits_g4x_sdvo;
407         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
408                 limit = &intel_limits_g4x_display_port;
409         } else /* The option is for other outputs */
410                 limit = &intel_limits_i9xx_sdvo;
411
412         return limit;
413 }
414
415 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
416 {
417         struct drm_device *dev = crtc->dev;
418         const intel_limit_t *limit;
419
420         if (HAS_PCH_SPLIT(dev))
421                 limit = intel_ironlake_limit(crtc, refclk);
422         else if (IS_G4X(dev)) {
423                 limit = intel_g4x_limit(crtc);
424         } else if (IS_PINEVIEW(dev)) {
425                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
426                         limit = &intel_limits_pineview_lvds;
427                 else
428                         limit = &intel_limits_pineview_sdvo;
429         } else if (!IS_GEN2(dev)) {
430                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431                         limit = &intel_limits_i9xx_lvds;
432                 else
433                         limit = &intel_limits_i9xx_sdvo;
434         } else {
435                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436                         limit = &intel_limits_i8xx_lvds;
437                 else
438                         limit = &intel_limits_i8xx_dvo;
439         }
440         return limit;
441 }
442
443 /* m1 is reserved as 0 in Pineview, n is a ring counter */
444 static void pineview_clock(int refclk, intel_clock_t *clock)
445 {
446         clock->m = clock->m2 + 2;
447         clock->p = clock->p1 * clock->p2;
448         clock->vco = refclk * clock->m / clock->n;
449         clock->dot = clock->vco / clock->p;
450 }
451
452 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
453 {
454         if (IS_PINEVIEW(dev)) {
455                 pineview_clock(refclk, clock);
456                 return;
457         }
458         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
459         clock->p = clock->p1 * clock->p2;
460         clock->vco = refclk * clock->m / (clock->n + 2);
461         clock->dot = clock->vco / clock->p;
462 }
463
464 /**
465  * Returns whether any output on the specified pipe is of the specified type
466  */
467 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
468 {
469         struct drm_device *dev = crtc->dev;
470         struct drm_mode_config *mode_config = &dev->mode_config;
471         struct intel_encoder *encoder;
472
473         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
474                 if (encoder->base.crtc == crtc && encoder->type == type)
475                         return true;
476
477         return false;
478 }
479
480 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
481 /**
482  * Returns whether the given set of divisors are valid for a given refclk with
483  * the given connectors.
484  */
485
486 static bool intel_PLL_is_valid(struct drm_device *dev,
487                                const intel_limit_t *limit,
488                                const intel_clock_t *clock)
489 {
490         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
491                 INTELPllInvalid ("p1 out of range\n");
492         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
493                 INTELPllInvalid ("p out of range\n");
494         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
495                 INTELPllInvalid ("m2 out of range\n");
496         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
497                 INTELPllInvalid ("m1 out of range\n");
498         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
499                 INTELPllInvalid ("m1 <= m2\n");
500         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
501                 INTELPllInvalid ("m out of range\n");
502         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
503                 INTELPllInvalid ("n out of range\n");
504         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
505                 INTELPllInvalid ("vco out of range\n");
506         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507          * connector, etc., rather than just a single range.
508          */
509         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
510                 INTELPllInvalid ("dot out of range\n");
511
512         return true;
513 }
514
515 static bool
516 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
517                     int target, int refclk, intel_clock_t *best_clock)
518
519 {
520         struct drm_device *dev = crtc->dev;
521         struct drm_i915_private *dev_priv = dev->dev_private;
522         intel_clock_t clock;
523         int err = target;
524
525         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
526             (I915_READ(LVDS)) != 0) {
527                 /*
528                  * For LVDS, if the panel is on, just rely on its current
529                  * settings for dual-channel.  We haven't figured out how to
530                  * reliably set up different single/dual channel state, if we
531                  * even can.
532                  */
533                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
534                     LVDS_CLKB_POWER_UP)
535                         clock.p2 = limit->p2.p2_fast;
536                 else
537                         clock.p2 = limit->p2.p2_slow;
538         } else {
539                 if (target < limit->p2.dot_limit)
540                         clock.p2 = limit->p2.p2_slow;
541                 else
542                         clock.p2 = limit->p2.p2_fast;
543         }
544
545         memset (best_clock, 0, sizeof (*best_clock));
546
547         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
548              clock.m1++) {
549                 for (clock.m2 = limit->m2.min;
550                      clock.m2 <= limit->m2.max; clock.m2++) {
551                         /* m1 is always 0 in Pineview */
552                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
553                                 break;
554                         for (clock.n = limit->n.min;
555                              clock.n <= limit->n.max; clock.n++) {
556                                 for (clock.p1 = limit->p1.min;
557                                         clock.p1 <= limit->p1.max; clock.p1++) {
558                                         int this_err;
559
560                                         intel_clock(dev, refclk, &clock);
561                                         if (!intel_PLL_is_valid(dev, limit,
562                                                                 &clock))
563                                                 continue;
564
565                                         this_err = abs(clock.dot - target);
566                                         if (this_err < err) {
567                                                 *best_clock = clock;
568                                                 err = this_err;
569                                         }
570                                 }
571                         }
572                 }
573         }
574
575         return (err != target);
576 }
577
578 static bool
579 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
580                         int target, int refclk, intel_clock_t *best_clock)
581 {
582         struct drm_device *dev = crtc->dev;
583         struct drm_i915_private *dev_priv = dev->dev_private;
584         intel_clock_t clock;
585         int max_n;
586         bool found;
587         /* approximately equals target * 0.00585 */
588         int err_most = (target >> 8) + (target >> 9);
589         found = false;
590
591         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592                 int lvds_reg;
593
594                 if (HAS_PCH_SPLIT(dev))
595                         lvds_reg = PCH_LVDS;
596                 else
597                         lvds_reg = LVDS;
598                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
599                     LVDS_CLKB_POWER_UP)
600                         clock.p2 = limit->p2.p2_fast;
601                 else
602                         clock.p2 = limit->p2.p2_slow;
603         } else {
604                 if (target < limit->p2.dot_limit)
605                         clock.p2 = limit->p2.p2_slow;
606                 else
607                         clock.p2 = limit->p2.p2_fast;
608         }
609
610         memset(best_clock, 0, sizeof(*best_clock));
611         max_n = limit->n.max;
612         /* based on hardware requirement, prefer smaller n to precision */
613         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
614                 /* based on hardware requirement, prefere larger m1,m2 */
615                 for (clock.m1 = limit->m1.max;
616                      clock.m1 >= limit->m1.min; clock.m1--) {
617                         for (clock.m2 = limit->m2.max;
618                              clock.m2 >= limit->m2.min; clock.m2--) {
619                                 for (clock.p1 = limit->p1.max;
620                                      clock.p1 >= limit->p1.min; clock.p1--) {
621                                         int this_err;
622
623                                         intel_clock(dev, refclk, &clock);
624                                         if (!intel_PLL_is_valid(dev, limit,
625                                                                 &clock))
626                                                 continue;
627
628                                         this_err = abs(clock.dot - target);
629                                         if (this_err < err_most) {
630                                                 *best_clock = clock;
631                                                 err_most = this_err;
632                                                 max_n = clock.n;
633                                                 found = true;
634                                         }
635                                 }
636                         }
637                 }
638         }
639         return found;
640 }
641
642 static bool
643 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
644                            int target, int refclk, intel_clock_t *best_clock)
645 {
646         struct drm_device *dev = crtc->dev;
647         intel_clock_t clock;
648
649         if (target < 200000) {
650                 clock.n = 1;
651                 clock.p1 = 2;
652                 clock.p2 = 10;
653                 clock.m1 = 12;
654                 clock.m2 = 9;
655         } else {
656                 clock.n = 2;
657                 clock.p1 = 1;
658                 clock.p2 = 10;
659                 clock.m1 = 14;
660                 clock.m2 = 8;
661         }
662         intel_clock(dev, refclk, &clock);
663         memcpy(best_clock, &clock, sizeof(intel_clock_t));
664         return true;
665 }
666
667 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
668 static bool
669 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
670                       int target, int refclk, intel_clock_t *best_clock)
671 {
672         intel_clock_t clock;
673         if (target < 200000) {
674                 clock.p1 = 2;
675                 clock.p2 = 10;
676                 clock.n = 2;
677                 clock.m1 = 23;
678                 clock.m2 = 8;
679         } else {
680                 clock.p1 = 1;
681                 clock.p2 = 10;
682                 clock.n = 1;
683                 clock.m1 = 14;
684                 clock.m2 = 2;
685         }
686         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
687         clock.p = (clock.p1 * clock.p2);
688         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
689         clock.vco = 0;
690         memcpy(best_clock, &clock, sizeof(intel_clock_t));
691         return true;
692 }
693
694 /**
695  * intel_wait_for_vblank - wait for vblank on a given pipe
696  * @dev: drm device
697  * @pipe: pipe to wait for
698  *
699  * Wait for vblank to occur on a given pipe.  Needed for various bits of
700  * mode setting code.
701  */
702 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
703 {
704         struct drm_i915_private *dev_priv = dev->dev_private;
705         int pipestat_reg = PIPESTAT(pipe);
706
707         /* Clear existing vblank status. Note this will clear any other
708          * sticky status fields as well.
709          *
710          * This races with i915_driver_irq_handler() with the result
711          * that either function could miss a vblank event.  Here it is not
712          * fatal, as we will either wait upon the next vblank interrupt or
713          * timeout.  Generally speaking intel_wait_for_vblank() is only
714          * called during modeset at which time the GPU should be idle and
715          * should *not* be performing page flips and thus not waiting on
716          * vblanks...
717          * Currently, the result of us stealing a vblank from the irq
718          * handler is that a single frame will be skipped during swapbuffers.
719          */
720         I915_WRITE(pipestat_reg,
721                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
722
723         /* Wait for vblank interrupt bit to set */
724         if (wait_for(I915_READ(pipestat_reg) &
725                      PIPE_VBLANK_INTERRUPT_STATUS,
726                      50))
727                 DRM_DEBUG_KMS("vblank wait timed out\n");
728 }
729
730 /*
731  * intel_wait_for_pipe_off - wait for pipe to turn off
732  * @dev: drm device
733  * @pipe: pipe to wait for
734  *
735  * After disabling a pipe, we can't wait for vblank in the usual way,
736  * spinning on the vblank interrupt status bit, since we won't actually
737  * see an interrupt when the pipe is disabled.
738  *
739  * On Gen4 and above:
740  *   wait for the pipe register state bit to turn off
741  *
742  * Otherwise:
743  *   wait for the display line value to settle (it usually
744  *   ends up stopping at the start of the next frame).
745  *
746  */
747 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
748 {
749         struct drm_i915_private *dev_priv = dev->dev_private;
750
751         if (INTEL_INFO(dev)->gen >= 4) {
752                 int reg = PIPECONF(pipe);
753
754                 /* Wait for the Pipe State to go off */
755                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
756                              100))
757                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
758         } else {
759                 u32 last_line;
760                 int reg = PIPEDSL(pipe);
761                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
762
763                 /* Wait for the display line to settle */
764                 do {
765                         last_line = I915_READ(reg) & DSL_LINEMASK;
766                         mdelay(5);
767                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
768                          time_after(timeout, jiffies));
769                 if (time_after(jiffies, timeout))
770                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
771         }
772 }
773
774 static const char *state_string(bool enabled)
775 {
776         return enabled ? "on" : "off";
777 }
778
779 /* Only for pre-ILK configs */
780 static void assert_pll(struct drm_i915_private *dev_priv,
781                        enum pipe pipe, bool state)
782 {
783         int reg;
784         u32 val;
785         bool cur_state;
786
787         reg = DPLL(pipe);
788         val = I915_READ(reg);
789         cur_state = !!(val & DPLL_VCO_ENABLE);
790         WARN(cur_state != state,
791              "PLL state assertion failure (expected %s, current %s)\n",
792              state_string(state), state_string(cur_state));
793 }
794 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
795 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
796
797 /* For ILK+ */
798 static void assert_pch_pll(struct drm_i915_private *dev_priv,
799                            enum pipe pipe, bool state)
800 {
801         int reg;
802         u32 val;
803         bool cur_state;
804
805         reg = PCH_DPLL(pipe);
806         val = I915_READ(reg);
807         cur_state = !!(val & DPLL_VCO_ENABLE);
808         WARN(cur_state != state,
809              "PCH PLL state assertion failure (expected %s, current %s)\n",
810              state_string(state), state_string(cur_state));
811 }
812 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
813 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
814
815 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
816                           enum pipe pipe, bool state)
817 {
818         int reg;
819         u32 val;
820         bool cur_state;
821
822         reg = FDI_TX_CTL(pipe);
823         val = I915_READ(reg);
824         cur_state = !!(val & FDI_TX_ENABLE);
825         WARN(cur_state != state,
826              "FDI TX state assertion failure (expected %s, current %s)\n",
827              state_string(state), state_string(cur_state));
828 }
829 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
830 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
831
832 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
833                           enum pipe pipe, bool state)
834 {
835         int reg;
836         u32 val;
837         bool cur_state;
838
839         reg = FDI_RX_CTL(pipe);
840         val = I915_READ(reg);
841         cur_state = !!(val & FDI_RX_ENABLE);
842         WARN(cur_state != state,
843              "FDI RX state assertion failure (expected %s, current %s)\n",
844              state_string(state), state_string(cur_state));
845 }
846 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
847 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
848
849 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
850                                       enum pipe pipe)
851 {
852         int reg;
853         u32 val;
854
855         /* ILK FDI PLL is always enabled */
856         if (dev_priv->info->gen == 5)
857                 return;
858
859         reg = FDI_TX_CTL(pipe);
860         val = I915_READ(reg);
861         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
862 }
863
864 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
865                                       enum pipe pipe)
866 {
867         int reg;
868         u32 val;
869
870         reg = FDI_RX_CTL(pipe);
871         val = I915_READ(reg);
872         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
873 }
874
875 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
876                                   enum pipe pipe)
877 {
878         int pp_reg, lvds_reg;
879         u32 val;
880         enum pipe panel_pipe = PIPE_A;
881         bool locked = locked;
882
883         if (HAS_PCH_SPLIT(dev_priv->dev)) {
884                 pp_reg = PCH_PP_CONTROL;
885                 lvds_reg = PCH_LVDS;
886         } else {
887                 pp_reg = PP_CONTROL;
888                 lvds_reg = LVDS;
889         }
890
891         val = I915_READ(pp_reg);
892         if (!(val & PANEL_POWER_ON) ||
893             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
894                 locked = false;
895
896         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
897                 panel_pipe = PIPE_B;
898
899         WARN(panel_pipe == pipe && locked,
900              "panel assertion failure, pipe %c regs locked\n",
901              pipe_name(pipe));
902 }
903
904 static void assert_pipe(struct drm_i915_private *dev_priv,
905                         enum pipe pipe, bool state)
906 {
907         int reg;
908         u32 val;
909         bool cur_state;
910
911         reg = PIPECONF(pipe);
912         val = I915_READ(reg);
913         cur_state = !!(val & PIPECONF_ENABLE);
914         WARN(cur_state != state,
915              "pipe %c assertion failure (expected %s, current %s)\n",
916              pipe_name(pipe), state_string(state), state_string(cur_state));
917 }
918 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
919 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
920
921 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
922                                  enum plane plane)
923 {
924         int reg;
925         u32 val;
926
927         reg = DSPCNTR(plane);
928         val = I915_READ(reg);
929         WARN(!(val & DISPLAY_PLANE_ENABLE),
930              "plane %c assertion failure, should be active but is disabled\n",
931              plane_name(plane));
932 }
933
934 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
935                                    enum pipe pipe)
936 {
937         int reg, i;
938         u32 val;
939         int cur_pipe;
940
941         /* Planes are fixed to pipes on ILK+ */
942         if (HAS_PCH_SPLIT(dev_priv->dev))
943                 return;
944
945         /* Need to check both planes against the pipe */
946         for (i = 0; i < 2; i++) {
947                 reg = DSPCNTR(i);
948                 val = I915_READ(reg);
949                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
950                         DISPPLANE_SEL_PIPE_SHIFT;
951                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
952                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
953                      plane_name(i), pipe_name(pipe));
954         }
955 }
956
957 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
958 {
959         u32 val;
960         bool enabled;
961
962         val = I915_READ(PCH_DREF_CONTROL);
963         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
964                             DREF_SUPERSPREAD_SOURCE_MASK));
965         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
966 }
967
968 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
969                                        enum pipe pipe)
970 {
971         int reg;
972         u32 val;
973         bool enabled;
974
975         reg = TRANSCONF(pipe);
976         val = I915_READ(reg);
977         enabled = !!(val & TRANS_ENABLE);
978         WARN(enabled,
979              "transcoder assertion failed, should be off on pipe %c but is still active\n",
980              pipe_name(pipe));
981 }
982
983 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
984                                    enum pipe pipe, int reg)
985 {
986         u32 val = I915_READ(reg);
987         WARN(DP_PIPE_ENABLED(val, pipe),
988              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
989              reg, pipe_name(pipe));
990 }
991
992 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
993                                      enum pipe pipe, int reg)
994 {
995         u32 val = I915_READ(reg);
996         WARN(HDMI_PIPE_ENABLED(val, pipe),
997              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
998              reg, pipe_name(pipe));
999 }
1000
1001 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1002                                       enum pipe pipe)
1003 {
1004         int reg;
1005         u32 val;
1006
1007         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1008         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1009         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1010
1011         reg = PCH_ADPA;
1012         val = I915_READ(reg);
1013         WARN(ADPA_PIPE_ENABLED(val, pipe),
1014              "PCH VGA enabled on transcoder %c, should be disabled\n",
1015              pipe_name(pipe));
1016
1017         reg = PCH_LVDS;
1018         val = I915_READ(reg);
1019         WARN(LVDS_PIPE_ENABLED(val, pipe),
1020              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1021              pipe_name(pipe));
1022
1023         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1024         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1025         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1026 }
1027
1028 /**
1029  * intel_enable_pll - enable a PLL
1030  * @dev_priv: i915 private structure
1031  * @pipe: pipe PLL to enable
1032  *
1033  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1034  * make sure the PLL reg is writable first though, since the panel write
1035  * protect mechanism may be enabled.
1036  *
1037  * Note!  This is for pre-ILK only.
1038  */
1039 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1040 {
1041         int reg;
1042         u32 val;
1043
1044         /* No really, not for ILK+ */
1045         BUG_ON(dev_priv->info->gen >= 5);
1046
1047         /* PLL is protected by panel, make sure we can write it */
1048         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1049                 assert_panel_unlocked(dev_priv, pipe);
1050
1051         reg = DPLL(pipe);
1052         val = I915_READ(reg);
1053         val |= DPLL_VCO_ENABLE;
1054
1055         /* We do this three times for luck */
1056         I915_WRITE(reg, val);
1057         POSTING_READ(reg);
1058         udelay(150); /* wait for warmup */
1059         I915_WRITE(reg, val);
1060         POSTING_READ(reg);
1061         udelay(150); /* wait for warmup */
1062         I915_WRITE(reg, val);
1063         POSTING_READ(reg);
1064         udelay(150); /* wait for warmup */
1065 }
1066
1067 /**
1068  * intel_disable_pll - disable a PLL
1069  * @dev_priv: i915 private structure
1070  * @pipe: pipe PLL to disable
1071  *
1072  * Disable the PLL for @pipe, making sure the pipe is off first.
1073  *
1074  * Note!  This is for pre-ILK only.
1075  */
1076 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1077 {
1078         int reg;
1079         u32 val;
1080
1081         /* Don't disable pipe A or pipe A PLLs if needed */
1082         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1083                 return;
1084
1085         /* Make sure the pipe isn't still relying on us */
1086         assert_pipe_disabled(dev_priv, pipe);
1087
1088         reg = DPLL(pipe);
1089         val = I915_READ(reg);
1090         val &= ~DPLL_VCO_ENABLE;
1091         I915_WRITE(reg, val);
1092         POSTING_READ(reg);
1093 }
1094
1095 /**
1096  * intel_enable_pch_pll - enable PCH PLL
1097  * @dev_priv: i915 private structure
1098  * @pipe: pipe PLL to enable
1099  *
1100  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1101  * drives the transcoder clock.
1102  */
1103 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1104                                  enum pipe pipe)
1105 {
1106         int reg;
1107         u32 val;
1108
1109         /* PCH only available on ILK+ */
1110         BUG_ON(dev_priv->info->gen < 5);
1111
1112         /* PCH refclock must be enabled first */
1113         assert_pch_refclk_enabled(dev_priv);
1114
1115         reg = PCH_DPLL(pipe);
1116         val = I915_READ(reg);
1117         val |= DPLL_VCO_ENABLE;
1118         I915_WRITE(reg, val);
1119         POSTING_READ(reg);
1120         udelay(200);
1121 }
1122
1123 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1124                                   enum pipe pipe)
1125 {
1126         int reg;
1127         u32 val;
1128
1129         /* PCH only available on ILK+ */
1130         BUG_ON(dev_priv->info->gen < 5);
1131
1132         /* Make sure transcoder isn't still depending on us */
1133         assert_transcoder_disabled(dev_priv, pipe);
1134
1135         reg = PCH_DPLL(pipe);
1136         val = I915_READ(reg);
1137         val &= ~DPLL_VCO_ENABLE;
1138         I915_WRITE(reg, val);
1139         POSTING_READ(reg);
1140         udelay(200);
1141 }
1142
1143 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1144                                     enum pipe pipe)
1145 {
1146         int reg;
1147         u32 val;
1148
1149         /* PCH only available on ILK+ */
1150         BUG_ON(dev_priv->info->gen < 5);
1151
1152         /* Make sure PCH DPLL is enabled */
1153         assert_pch_pll_enabled(dev_priv, pipe);
1154
1155         /* FDI must be feeding us bits for PCH ports */
1156         assert_fdi_tx_enabled(dev_priv, pipe);
1157         assert_fdi_rx_enabled(dev_priv, pipe);
1158
1159         reg = TRANSCONF(pipe);
1160         val = I915_READ(reg);
1161
1162         if (HAS_PCH_IBX(dev_priv->dev)) {
1163                 /*
1164                  * make the BPC in transcoder be consistent with
1165                  * that in pipeconf reg.
1166                  */
1167                 val &= ~PIPE_BPC_MASK;
1168                 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1169         }
1170         I915_WRITE(reg, val | TRANS_ENABLE);
1171         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1172                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1173 }
1174
1175 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1176                                      enum pipe pipe)
1177 {
1178         int reg;
1179         u32 val;
1180
1181         /* FDI relies on the transcoder */
1182         assert_fdi_tx_disabled(dev_priv, pipe);
1183         assert_fdi_rx_disabled(dev_priv, pipe);
1184
1185         /* Ports must be off as well */
1186         assert_pch_ports_disabled(dev_priv, pipe);
1187
1188         reg = TRANSCONF(pipe);
1189         val = I915_READ(reg);
1190         val &= ~TRANS_ENABLE;
1191         I915_WRITE(reg, val);
1192         /* wait for PCH transcoder off, transcoder state */
1193         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1194                 DRM_ERROR("failed to disable transcoder\n");
1195 }
1196
1197 /**
1198  * intel_enable_pipe - enable a pipe, asserting requirements
1199  * @dev_priv: i915 private structure
1200  * @pipe: pipe to enable
1201  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1202  *
1203  * Enable @pipe, making sure that various hardware specific requirements
1204  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1205  *
1206  * @pipe should be %PIPE_A or %PIPE_B.
1207  *
1208  * Will wait until the pipe is actually running (i.e. first vblank) before
1209  * returning.
1210  */
1211 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1212                               bool pch_port)
1213 {
1214         int reg;
1215         u32 val;
1216
1217         /*
1218          * A pipe without a PLL won't actually be able to drive bits from
1219          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1220          * need the check.
1221          */
1222         if (!HAS_PCH_SPLIT(dev_priv->dev))
1223                 assert_pll_enabled(dev_priv, pipe);
1224         else {
1225                 if (pch_port) {
1226                         /* if driving the PCH, we need FDI enabled */
1227                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1228                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1229                 }
1230                 /* FIXME: assert CPU port conditions for SNB+ */
1231         }
1232
1233         reg = PIPECONF(pipe);
1234         val = I915_READ(reg);
1235         if (val & PIPECONF_ENABLE)
1236                 return;
1237
1238         I915_WRITE(reg, val | PIPECONF_ENABLE);
1239         intel_wait_for_vblank(dev_priv->dev, pipe);
1240 }
1241
1242 /**
1243  * intel_disable_pipe - disable a pipe, asserting requirements
1244  * @dev_priv: i915 private structure
1245  * @pipe: pipe to disable
1246  *
1247  * Disable @pipe, making sure that various hardware specific requirements
1248  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1249  *
1250  * @pipe should be %PIPE_A or %PIPE_B.
1251  *
1252  * Will wait until the pipe has shut down before returning.
1253  */
1254 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1255                                enum pipe pipe)
1256 {
1257         int reg;
1258         u32 val;
1259
1260         /*
1261          * Make sure planes won't keep trying to pump pixels to us,
1262          * or we might hang the display.
1263          */
1264         assert_planes_disabled(dev_priv, pipe);
1265
1266         /* Don't disable pipe A or pipe A PLLs if needed */
1267         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1268                 return;
1269
1270         reg = PIPECONF(pipe);
1271         val = I915_READ(reg);
1272         if ((val & PIPECONF_ENABLE) == 0)
1273                 return;
1274
1275         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1276         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1277 }
1278
1279 /**
1280  * intel_enable_plane - enable a display plane on a given pipe
1281  * @dev_priv: i915 private structure
1282  * @plane: plane to enable
1283  * @pipe: pipe being fed
1284  *
1285  * Enable @plane on @pipe, making sure that @pipe is running first.
1286  */
1287 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1288                                enum plane plane, enum pipe pipe)
1289 {
1290         int reg;
1291         u32 val;
1292
1293         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1294         assert_pipe_enabled(dev_priv, pipe);
1295
1296         reg = DSPCNTR(plane);
1297         val = I915_READ(reg);
1298         if (val & DISPLAY_PLANE_ENABLE)
1299                 return;
1300
1301         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1302         intel_wait_for_vblank(dev_priv->dev, pipe);
1303 }
1304
1305 /*
1306  * Plane regs are double buffered, going from enabled->disabled needs a
1307  * trigger in order to latch.  The display address reg provides this.
1308  */
1309 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1310                                       enum plane plane)
1311 {
1312         u32 reg = DSPADDR(plane);
1313         I915_WRITE(reg, I915_READ(reg));
1314 }
1315
1316 /**
1317  * intel_disable_plane - disable a display plane
1318  * @dev_priv: i915 private structure
1319  * @plane: plane to disable
1320  * @pipe: pipe consuming the data
1321  *
1322  * Disable @plane; should be an independent operation.
1323  */
1324 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1325                                 enum plane plane, enum pipe pipe)
1326 {
1327         int reg;
1328         u32 val;
1329
1330         reg = DSPCNTR(plane);
1331         val = I915_READ(reg);
1332         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1333                 return;
1334
1335         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1336         intel_flush_display_plane(dev_priv, plane);
1337         intel_wait_for_vblank(dev_priv->dev, pipe);
1338 }
1339
1340 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1341                            enum pipe pipe, int reg)
1342 {
1343         u32 val = I915_READ(reg);
1344         if (DP_PIPE_ENABLED(val, pipe))
1345                 I915_WRITE(reg, val & ~DP_PORT_EN);
1346 }
1347
1348 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1349                              enum pipe pipe, int reg)
1350 {
1351         u32 val = I915_READ(reg);
1352         if (HDMI_PIPE_ENABLED(val, pipe))
1353                 I915_WRITE(reg, val & ~PORT_ENABLE);
1354 }
1355
1356 /* Disable any ports connected to this transcoder */
1357 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1358                                     enum pipe pipe)
1359 {
1360         u32 reg, val;
1361
1362         val = I915_READ(PCH_PP_CONTROL);
1363         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1364
1365         disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1366         disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1367         disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1368
1369         reg = PCH_ADPA;
1370         val = I915_READ(reg);
1371         if (ADPA_PIPE_ENABLED(val, pipe))
1372                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1373
1374         reg = PCH_LVDS;
1375         val = I915_READ(reg);
1376         if (LVDS_PIPE_ENABLED(val, pipe)) {
1377                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1378                 POSTING_READ(reg);
1379                 udelay(100);
1380         }
1381
1382         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1383         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1384         disable_pch_hdmi(dev_priv, pipe, HDMID);
1385 }
1386
1387 static void i8xx_disable_fbc(struct drm_device *dev)
1388 {
1389         struct drm_i915_private *dev_priv = dev->dev_private;
1390         u32 fbc_ctl;
1391
1392         /* Disable compression */
1393         fbc_ctl = I915_READ(FBC_CONTROL);
1394         if ((fbc_ctl & FBC_CTL_EN) == 0)
1395                 return;
1396
1397         fbc_ctl &= ~FBC_CTL_EN;
1398         I915_WRITE(FBC_CONTROL, fbc_ctl);
1399
1400         /* Wait for compressing bit to clear */
1401         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1402                 DRM_DEBUG_KMS("FBC idle timed out\n");
1403                 return;
1404         }
1405
1406         DRM_DEBUG_KMS("disabled FBC\n");
1407 }
1408
1409 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1410 {
1411         struct drm_device *dev = crtc->dev;
1412         struct drm_i915_private *dev_priv = dev->dev_private;
1413         struct drm_framebuffer *fb = crtc->fb;
1414         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1415         struct drm_i915_gem_object *obj = intel_fb->obj;
1416         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1417         int cfb_pitch;
1418         int plane, i;
1419         u32 fbc_ctl, fbc_ctl2;
1420
1421         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1422         if (fb->pitch < cfb_pitch)
1423                 cfb_pitch = fb->pitch;
1424
1425         /* FBC_CTL wants 64B units */
1426         cfb_pitch = (cfb_pitch / 64) - 1;
1427         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1428
1429         /* Clear old tags */
1430         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1431                 I915_WRITE(FBC_TAG + (i * 4), 0);
1432
1433         /* Set it up... */
1434         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1435         fbc_ctl2 |= plane;
1436         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1437         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1438
1439         /* enable it... */
1440         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1441         if (IS_I945GM(dev))
1442                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1443         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1444         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1445         fbc_ctl |= obj->fence_reg;
1446         I915_WRITE(FBC_CONTROL, fbc_ctl);
1447
1448         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1449                       cfb_pitch, crtc->y, intel_crtc->plane);
1450 }
1451
1452 static bool i8xx_fbc_enabled(struct drm_device *dev)
1453 {
1454         struct drm_i915_private *dev_priv = dev->dev_private;
1455
1456         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1457 }
1458
1459 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1460 {
1461         struct drm_device *dev = crtc->dev;
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463         struct drm_framebuffer *fb = crtc->fb;
1464         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1465         struct drm_i915_gem_object *obj = intel_fb->obj;
1466         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1467         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1468         unsigned long stall_watermark = 200;
1469         u32 dpfc_ctl;
1470
1471         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1472         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1473         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1474
1475         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1476                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1477                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1478         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1479
1480         /* enable it... */
1481         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1482
1483         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1484 }
1485
1486 static void g4x_disable_fbc(struct drm_device *dev)
1487 {
1488         struct drm_i915_private *dev_priv = dev->dev_private;
1489         u32 dpfc_ctl;
1490
1491         /* Disable compression */
1492         dpfc_ctl = I915_READ(DPFC_CONTROL);
1493         if (dpfc_ctl & DPFC_CTL_EN) {
1494                 dpfc_ctl &= ~DPFC_CTL_EN;
1495                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1496
1497                 DRM_DEBUG_KMS("disabled FBC\n");
1498         }
1499 }
1500
1501 static bool g4x_fbc_enabled(struct drm_device *dev)
1502 {
1503         struct drm_i915_private *dev_priv = dev->dev_private;
1504
1505         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1506 }
1507
1508 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1509 {
1510         struct drm_i915_private *dev_priv = dev->dev_private;
1511         u32 blt_ecoskpd;
1512
1513         /* Make sure blitter notifies FBC of writes */
1514         gen6_gt_force_wake_get(dev_priv);
1515         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1516         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1517                 GEN6_BLITTER_LOCK_SHIFT;
1518         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1519         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1520         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1521         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1522                          GEN6_BLITTER_LOCK_SHIFT);
1523         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1524         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1525         gen6_gt_force_wake_put(dev_priv);
1526 }
1527
1528 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1529 {
1530         struct drm_device *dev = crtc->dev;
1531         struct drm_i915_private *dev_priv = dev->dev_private;
1532         struct drm_framebuffer *fb = crtc->fb;
1533         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1534         struct drm_i915_gem_object *obj = intel_fb->obj;
1535         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1536         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1537         unsigned long stall_watermark = 200;
1538         u32 dpfc_ctl;
1539
1540         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1541         dpfc_ctl &= DPFC_RESERVED;
1542         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1543         /* Set persistent mode for front-buffer rendering, ala X. */
1544         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1545         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1546         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1547
1548         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1549                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1550                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1551         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1552         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1553         /* enable it... */
1554         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1555
1556         if (IS_GEN6(dev)) {
1557                 I915_WRITE(SNB_DPFC_CTL_SA,
1558                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1559                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1560                 sandybridge_blit_fbc_update(dev);
1561         }
1562
1563         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1564 }
1565
1566 static void ironlake_disable_fbc(struct drm_device *dev)
1567 {
1568         struct drm_i915_private *dev_priv = dev->dev_private;
1569         u32 dpfc_ctl;
1570
1571         /* Disable compression */
1572         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1573         if (dpfc_ctl & DPFC_CTL_EN) {
1574                 dpfc_ctl &= ~DPFC_CTL_EN;
1575                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1576
1577                 DRM_DEBUG_KMS("disabled FBC\n");
1578         }
1579 }
1580
1581 static bool ironlake_fbc_enabled(struct drm_device *dev)
1582 {
1583         struct drm_i915_private *dev_priv = dev->dev_private;
1584
1585         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1586 }
1587
1588 bool intel_fbc_enabled(struct drm_device *dev)
1589 {
1590         struct drm_i915_private *dev_priv = dev->dev_private;
1591
1592         if (!dev_priv->display.fbc_enabled)
1593                 return false;
1594
1595         return dev_priv->display.fbc_enabled(dev);
1596 }
1597
1598 static void intel_fbc_work_fn(struct work_struct *__work)
1599 {
1600         struct intel_fbc_work *work =
1601                 container_of(to_delayed_work(__work),
1602                              struct intel_fbc_work, work);
1603         struct drm_device *dev = work->crtc->dev;
1604         struct drm_i915_private *dev_priv = dev->dev_private;
1605
1606         mutex_lock(&dev->struct_mutex);
1607         if (work == dev_priv->fbc_work) {
1608                 /* Double check that we haven't switched fb without cancelling
1609                  * the prior work.
1610                  */
1611                 if (work->crtc->fb == work->fb) {
1612                         dev_priv->display.enable_fbc(work->crtc,
1613                                                      work->interval);
1614
1615                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1616                         dev_priv->cfb_fb = work->crtc->fb->base.id;
1617                         dev_priv->cfb_y = work->crtc->y;
1618                 }
1619
1620                 dev_priv->fbc_work = NULL;
1621         }
1622         mutex_unlock(&dev->struct_mutex);
1623
1624         kfree(work);
1625 }
1626
1627 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1628 {
1629         if (dev_priv->fbc_work == NULL)
1630                 return;
1631
1632         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1633
1634         /* Synchronisation is provided by struct_mutex and checking of
1635          * dev_priv->fbc_work, so we can perform the cancellation
1636          * entirely asynchronously.
1637          */
1638         if (cancel_delayed_work(&dev_priv->fbc_work->work))
1639                 /* tasklet was killed before being run, clean up */
1640                 kfree(dev_priv->fbc_work);
1641
1642         /* Mark the work as no longer wanted so that if it does
1643          * wake-up (because the work was already running and waiting
1644          * for our mutex), it will discover that is no longer
1645          * necessary to run.
1646          */
1647         dev_priv->fbc_work = NULL;
1648 }
1649
1650 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1651 {
1652         struct intel_fbc_work *work;
1653         struct drm_device *dev = crtc->dev;
1654         struct drm_i915_private *dev_priv = dev->dev_private;
1655
1656         if (!dev_priv->display.enable_fbc)
1657                 return;
1658
1659         intel_cancel_fbc_work(dev_priv);
1660
1661         work = kzalloc(sizeof *work, GFP_KERNEL);
1662         if (work == NULL) {
1663                 dev_priv->display.enable_fbc(crtc, interval);
1664                 return;
1665         }
1666
1667         work->crtc = crtc;
1668         work->fb = crtc->fb;
1669         work->interval = interval;
1670         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1671
1672         dev_priv->fbc_work = work;
1673
1674         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1675
1676         /* Delay the actual enabling to let pageflipping cease and the
1677          * display to settle before starting the compression. Note that
1678          * this delay also serves a second purpose: it allows for a
1679          * vblank to pass after disabling the FBC before we attempt
1680          * to modify the control registers.
1681          *
1682          * A more complicated solution would involve tracking vblanks
1683          * following the termination of the page-flipping sequence
1684          * and indeed performing the enable as a co-routine and not
1685          * waiting synchronously upon the vblank.
1686          */
1687         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1688 }
1689
1690 void intel_disable_fbc(struct drm_device *dev)
1691 {
1692         struct drm_i915_private *dev_priv = dev->dev_private;
1693
1694         intel_cancel_fbc_work(dev_priv);
1695
1696         if (!dev_priv->display.disable_fbc)
1697                 return;
1698
1699         dev_priv->display.disable_fbc(dev);
1700         dev_priv->cfb_plane = -1;
1701 }
1702
1703 /**
1704  * intel_update_fbc - enable/disable FBC as needed
1705  * @dev: the drm_device
1706  *
1707  * Set up the framebuffer compression hardware at mode set time.  We
1708  * enable it if possible:
1709  *   - plane A only (on pre-965)
1710  *   - no pixel mulitply/line duplication
1711  *   - no alpha buffer discard
1712  *   - no dual wide
1713  *   - framebuffer <= 2048 in width, 1536 in height
1714  *
1715  * We can't assume that any compression will take place (worst case),
1716  * so the compressed buffer has to be the same size as the uncompressed
1717  * one.  It also must reside (along with the line length buffer) in
1718  * stolen memory.
1719  *
1720  * We need to enable/disable FBC on a global basis.
1721  */
1722 static void intel_update_fbc(struct drm_device *dev)
1723 {
1724         struct drm_i915_private *dev_priv = dev->dev_private;
1725         struct drm_crtc *crtc = NULL, *tmp_crtc;
1726         struct intel_crtc *intel_crtc;
1727         struct drm_framebuffer *fb;
1728         struct intel_framebuffer *intel_fb;
1729         struct drm_i915_gem_object *obj;
1730
1731         DRM_DEBUG_KMS("\n");
1732
1733         if (!i915_powersave)
1734                 return;
1735
1736         if (!I915_HAS_FBC(dev))
1737                 return;
1738
1739         /*
1740          * If FBC is already on, we just have to verify that we can
1741          * keep it that way...
1742          * Need to disable if:
1743          *   - more than one pipe is active
1744          *   - changing FBC params (stride, fence, mode)
1745          *   - new fb is too large to fit in compressed buffer
1746          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1747          */
1748         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1749                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1750                         if (crtc) {
1751                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1752                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1753                                 goto out_disable;
1754                         }
1755                         crtc = tmp_crtc;
1756                 }
1757         }
1758
1759         if (!crtc || crtc->fb == NULL) {
1760                 DRM_DEBUG_KMS("no output, disabling\n");
1761                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1762                 goto out_disable;
1763         }
1764
1765         intel_crtc = to_intel_crtc(crtc);
1766         fb = crtc->fb;
1767         intel_fb = to_intel_framebuffer(fb);
1768         obj = intel_fb->obj;
1769
1770         if (!i915_enable_fbc) {
1771                 DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1772                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1773                 goto out_disable;
1774         }
1775         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1776                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1777                               "compression\n");
1778                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1779                 goto out_disable;
1780         }
1781         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1782             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1783                 DRM_DEBUG_KMS("mode incompatible with compression, "
1784                               "disabling\n");
1785                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1786                 goto out_disable;
1787         }
1788         if ((crtc->mode.hdisplay > 2048) ||
1789             (crtc->mode.vdisplay > 1536)) {
1790                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1791                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1792                 goto out_disable;
1793         }
1794         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1795                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1796                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1797                 goto out_disable;
1798         }
1799
1800         /* The use of a CPU fence is mandatory in order to detect writes
1801          * by the CPU to the scanout and trigger updates to the FBC.
1802          */
1803         if (obj->tiling_mode != I915_TILING_X ||
1804             obj->fence_reg == I915_FENCE_REG_NONE) {
1805                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1806                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1807                 goto out_disable;
1808         }
1809
1810         /* If the kernel debugger is active, always disable compression */
1811         if (in_dbg_master())
1812                 goto out_disable;
1813
1814         /* If the scanout has not changed, don't modify the FBC settings.
1815          * Note that we make the fundamental assumption that the fb->obj
1816          * cannot be unpinned (and have its GTT offset and fence revoked)
1817          * without first being decoupled from the scanout and FBC disabled.
1818          */
1819         if (dev_priv->cfb_plane == intel_crtc->plane &&
1820             dev_priv->cfb_fb == fb->base.id &&
1821             dev_priv->cfb_y == crtc->y)
1822                 return;
1823
1824         if (intel_fbc_enabled(dev)) {
1825                 /* We update FBC along two paths, after changing fb/crtc
1826                  * configuration (modeswitching) and after page-flipping
1827                  * finishes. For the latter, we know that not only did
1828                  * we disable the FBC at the start of the page-flip
1829                  * sequence, but also more than one vblank has passed.
1830                  *
1831                  * For the former case of modeswitching, it is possible
1832                  * to switch between two FBC valid configurations
1833                  * instantaneously so we do need to disable the FBC
1834                  * before we can modify its control registers. We also
1835                  * have to wait for the next vblank for that to take
1836                  * effect. However, since we delay enabling FBC we can
1837                  * assume that a vblank has passed since disabling and
1838                  * that we can safely alter the registers in the deferred
1839                  * callback.
1840                  *
1841                  * In the scenario that we go from a valid to invalid
1842                  * and then back to valid FBC configuration we have
1843                  * no strict enforcement that a vblank occurred since
1844                  * disabling the FBC. However, along all current pipe
1845                  * disabling paths we do need to wait for a vblank at
1846                  * some point. And we wait before enabling FBC anyway.
1847                  */
1848                 DRM_DEBUG_KMS("disabling active FBC for update\n");
1849                 intel_disable_fbc(dev);
1850         }
1851
1852         intel_enable_fbc(crtc, 500);
1853         return;
1854
1855 out_disable:
1856         /* Multiple disables should be harmless */
1857         if (intel_fbc_enabled(dev)) {
1858                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1859                 intel_disable_fbc(dev);
1860         }
1861 }
1862
1863 int
1864 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1865                            struct drm_i915_gem_object *obj,
1866                            struct intel_ring_buffer *pipelined)
1867 {
1868         struct drm_i915_private *dev_priv = dev->dev_private;
1869         u32 alignment;
1870         int ret;
1871
1872         switch (obj->tiling_mode) {
1873         case I915_TILING_NONE:
1874                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1875                         alignment = 128 * 1024;
1876                 else if (INTEL_INFO(dev)->gen >= 4)
1877                         alignment = 4 * 1024;
1878                 else
1879                         alignment = 64 * 1024;
1880                 break;
1881         case I915_TILING_X:
1882                 /* pin() will align the object as required by fence */
1883                 alignment = 0;
1884                 break;
1885         case I915_TILING_Y:
1886                 /* FIXME: Is this true? */
1887                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1888                 return -EINVAL;
1889         default:
1890                 BUG();
1891         }
1892
1893         dev_priv->mm.interruptible = false;
1894         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1895         if (ret)
1896                 goto err_interruptible;
1897
1898         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1899          * fence, whereas 965+ only requires a fence if using
1900          * framebuffer compression.  For simplicity, we always install
1901          * a fence as the cost is not that onerous.
1902          */
1903         if (obj->tiling_mode != I915_TILING_NONE) {
1904                 ret = i915_gem_object_get_fence(obj, pipelined);
1905                 if (ret)
1906                         goto err_unpin;
1907         }
1908
1909         dev_priv->mm.interruptible = true;
1910         return 0;
1911
1912 err_unpin:
1913         i915_gem_object_unpin(obj);
1914 err_interruptible:
1915         dev_priv->mm.interruptible = true;
1916         return ret;
1917 }
1918
1919 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1920                              int x, int y)
1921 {
1922         struct drm_device *dev = crtc->dev;
1923         struct drm_i915_private *dev_priv = dev->dev_private;
1924         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1925         struct intel_framebuffer *intel_fb;
1926         struct drm_i915_gem_object *obj;
1927         int plane = intel_crtc->plane;
1928         unsigned long Start, Offset;
1929         u32 dspcntr;
1930         u32 reg;
1931
1932         switch (plane) {
1933         case 0:
1934         case 1:
1935                 break;
1936         default:
1937                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1938                 return -EINVAL;
1939         }
1940
1941         intel_fb = to_intel_framebuffer(fb);
1942         obj = intel_fb->obj;
1943
1944         reg = DSPCNTR(plane);
1945         dspcntr = I915_READ(reg);
1946         /* Mask out pixel format bits in case we change it */
1947         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1948         switch (fb->bits_per_pixel) {
1949         case 8:
1950                 dspcntr |= DISPPLANE_8BPP;
1951                 break;
1952         case 16:
1953                 if (fb->depth == 15)
1954                         dspcntr |= DISPPLANE_15_16BPP;
1955                 else
1956                         dspcntr |= DISPPLANE_16BPP;
1957                 break;
1958         case 24:
1959         case 32:
1960                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1961                 break;
1962         default:
1963                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1964                 return -EINVAL;
1965         }
1966         if (INTEL_INFO(dev)->gen >= 4) {
1967                 if (obj->tiling_mode != I915_TILING_NONE)
1968                         dspcntr |= DISPPLANE_TILED;
1969                 else
1970                         dspcntr &= ~DISPPLANE_TILED;
1971         }
1972
1973         I915_WRITE(reg, dspcntr);
1974
1975         Start = obj->gtt_offset;
1976         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1977
1978         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1979                       Start, Offset, x, y, fb->pitch);
1980         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1981         if (INTEL_INFO(dev)->gen >= 4) {
1982                 I915_WRITE(DSPSURF(plane), Start);
1983                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1984                 I915_WRITE(DSPADDR(plane), Offset);
1985         } else
1986                 I915_WRITE(DSPADDR(plane), Start + Offset);
1987         POSTING_READ(reg);
1988
1989         return 0;
1990 }
1991
1992 static int ironlake_update_plane(struct drm_crtc *crtc,
1993                                  struct drm_framebuffer *fb, int x, int y)
1994 {
1995         struct drm_device *dev = crtc->dev;
1996         struct drm_i915_private *dev_priv = dev->dev_private;
1997         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1998         struct intel_framebuffer *intel_fb;
1999         struct drm_i915_gem_object *obj;
2000         int plane = intel_crtc->plane;
2001         unsigned long Start, Offset;
2002         u32 dspcntr;
2003         u32 reg;
2004
2005         switch (plane) {
2006         case 0:
2007         case 1:
2008                 break;
2009         default:
2010                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2011                 return -EINVAL;
2012         }
2013
2014         intel_fb = to_intel_framebuffer(fb);
2015         obj = intel_fb->obj;
2016
2017         reg = DSPCNTR(plane);
2018         dspcntr = I915_READ(reg);
2019         /* Mask out pixel format bits in case we change it */
2020         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2021         switch (fb->bits_per_pixel) {
2022         case 8:
2023                 dspcntr |= DISPPLANE_8BPP;
2024                 break;
2025         case 16:
2026                 if (fb->depth != 16)
2027                         return -EINVAL;
2028
2029                 dspcntr |= DISPPLANE_16BPP;
2030                 break;
2031         case 24:
2032         case 32:
2033                 if (fb->depth == 24)
2034                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2035                 else if (fb->depth == 30)
2036                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2037                 else
2038                         return -EINVAL;
2039                 break;
2040         default:
2041                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2042                 return -EINVAL;
2043         }
2044
2045         if (obj->tiling_mode != I915_TILING_NONE)
2046                 dspcntr |= DISPPLANE_TILED;
2047         else
2048                 dspcntr &= ~DISPPLANE_TILED;
2049
2050         /* must disable */
2051         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2052
2053         I915_WRITE(reg, dspcntr);
2054
2055         Start = obj->gtt_offset;
2056         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2057
2058         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2059                       Start, Offset, x, y, fb->pitch);
2060         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2061         I915_WRITE(DSPSURF(plane), Start);
2062         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2063         I915_WRITE(DSPADDR(plane), Offset);
2064         POSTING_READ(reg);
2065
2066         return 0;
2067 }
2068
2069 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2070 static int
2071 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2072                            int x, int y, enum mode_set_atomic state)
2073 {
2074         struct drm_device *dev = crtc->dev;
2075         struct drm_i915_private *dev_priv = dev->dev_private;
2076         int ret;
2077
2078         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2079         if (ret)
2080                 return ret;
2081
2082         intel_update_fbc(dev);
2083         intel_increase_pllclock(crtc);
2084
2085         return 0;
2086 }
2087
2088 static int
2089 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2090                     struct drm_framebuffer *old_fb)
2091 {
2092         struct drm_device *dev = crtc->dev;
2093         struct drm_i915_master_private *master_priv;
2094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2095         int ret;
2096
2097         /* no fb bound */
2098         if (!crtc->fb) {
2099                 DRM_DEBUG_KMS("No FB bound\n");
2100                 return 0;
2101         }
2102
2103         switch (intel_crtc->plane) {
2104         case 0:
2105         case 1:
2106                 break;
2107         default:
2108                 return -EINVAL;
2109         }
2110
2111         mutex_lock(&dev->struct_mutex);
2112         ret = intel_pin_and_fence_fb_obj(dev,
2113                                          to_intel_framebuffer(crtc->fb)->obj,
2114                                          NULL);
2115         if (ret != 0) {
2116                 mutex_unlock(&dev->struct_mutex);
2117                 return ret;
2118         }
2119
2120         if (old_fb) {
2121                 struct drm_i915_private *dev_priv = dev->dev_private;
2122                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2123
2124                 wait_event(dev_priv->pending_flip_queue,
2125                            atomic_read(&dev_priv->mm.wedged) ||
2126                            atomic_read(&obj->pending_flip) == 0);
2127
2128                 /* Big Hammer, we also need to ensure that any pending
2129                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2130                  * current scanout is retired before unpinning the old
2131                  * framebuffer.
2132                  *
2133                  * This should only fail upon a hung GPU, in which case we
2134                  * can safely continue.
2135                  */
2136                 ret = i915_gem_object_finish_gpu(obj);
2137                 (void) ret;
2138         }
2139
2140         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2141                                          LEAVE_ATOMIC_MODE_SET);
2142         if (ret) {
2143                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2144                 mutex_unlock(&dev->struct_mutex);
2145                 return ret;
2146         }
2147
2148         if (old_fb) {
2149                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2150                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2151         }
2152
2153         mutex_unlock(&dev->struct_mutex);
2154
2155         if (!dev->primary->master)
2156                 return 0;
2157
2158         master_priv = dev->primary->master->driver_priv;
2159         if (!master_priv->sarea_priv)
2160                 return 0;
2161
2162         if (intel_crtc->pipe) {
2163                 master_priv->sarea_priv->pipeB_x = x;
2164                 master_priv->sarea_priv->pipeB_y = y;
2165         } else {
2166                 master_priv->sarea_priv->pipeA_x = x;
2167                 master_priv->sarea_priv->pipeA_y = y;
2168         }
2169
2170         return 0;
2171 }
2172
2173 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2174 {
2175         struct drm_device *dev = crtc->dev;
2176         struct drm_i915_private *dev_priv = dev->dev_private;
2177         u32 dpa_ctl;
2178
2179         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2180         dpa_ctl = I915_READ(DP_A);
2181         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2182
2183         if (clock < 200000) {
2184                 u32 temp;
2185                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2186                 /* workaround for 160Mhz:
2187                    1) program 0x4600c bits 15:0 = 0x8124
2188                    2) program 0x46010 bit 0 = 1
2189                    3) program 0x46034 bit 24 = 1
2190                    4) program 0x64000 bit 14 = 1
2191                    */
2192                 temp = I915_READ(0x4600c);
2193                 temp &= 0xffff0000;
2194                 I915_WRITE(0x4600c, temp | 0x8124);
2195
2196                 temp = I915_READ(0x46010);
2197                 I915_WRITE(0x46010, temp | 1);
2198
2199                 temp = I915_READ(0x46034);
2200                 I915_WRITE(0x46034, temp | (1 << 24));
2201         } else {
2202                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2203         }
2204         I915_WRITE(DP_A, dpa_ctl);
2205
2206         POSTING_READ(DP_A);
2207         udelay(500);
2208 }
2209
2210 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2211 {
2212         struct drm_device *dev = crtc->dev;
2213         struct drm_i915_private *dev_priv = dev->dev_private;
2214         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2215         int pipe = intel_crtc->pipe;
2216         u32 reg, temp;
2217
2218         /* enable normal train */
2219         reg = FDI_TX_CTL(pipe);
2220         temp = I915_READ(reg);
2221         if (IS_IVYBRIDGE(dev)) {
2222                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2223                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2224         } else {
2225                 temp &= ~FDI_LINK_TRAIN_NONE;
2226                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2227         }
2228         I915_WRITE(reg, temp);
2229
2230         reg = FDI_RX_CTL(pipe);
2231         temp = I915_READ(reg);
2232         if (HAS_PCH_CPT(dev)) {
2233                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2234                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2235         } else {
2236                 temp &= ~FDI_LINK_TRAIN_NONE;
2237                 temp |= FDI_LINK_TRAIN_NONE;
2238         }
2239         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2240
2241         /* wait one idle pattern time */
2242         POSTING_READ(reg);
2243         udelay(1000);
2244
2245         /* IVB wants error correction enabled */
2246         if (IS_IVYBRIDGE(dev))
2247                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2248                            FDI_FE_ERRC_ENABLE);
2249 }
2250
2251 /* The FDI link training functions for ILK/Ibexpeak. */
2252 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2253 {
2254         struct drm_device *dev = crtc->dev;
2255         struct drm_i915_private *dev_priv = dev->dev_private;
2256         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2257         int pipe = intel_crtc->pipe;
2258         int plane = intel_crtc->plane;
2259         u32 reg, temp, tries;
2260
2261         /* FDI needs bits from pipe & plane first */
2262         assert_pipe_enabled(dev_priv, pipe);
2263         assert_plane_enabled(dev_priv, plane);
2264
2265         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2266            for train result */
2267         reg = FDI_RX_IMR(pipe);
2268         temp = I915_READ(reg);
2269         temp &= ~FDI_RX_SYMBOL_LOCK;
2270         temp &= ~FDI_RX_BIT_LOCK;
2271         I915_WRITE(reg, temp);
2272         I915_READ(reg);
2273         udelay(150);
2274
2275         /* enable CPU FDI TX and PCH FDI RX */
2276         reg = FDI_TX_CTL(pipe);
2277         temp = I915_READ(reg);
2278         temp &= ~(7 << 19);
2279         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2280         temp &= ~FDI_LINK_TRAIN_NONE;
2281         temp |= FDI_LINK_TRAIN_PATTERN_1;
2282         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2283
2284         reg = FDI_RX_CTL(pipe);
2285         temp = I915_READ(reg);
2286         temp &= ~FDI_LINK_TRAIN_NONE;
2287         temp |= FDI_LINK_TRAIN_PATTERN_1;
2288         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2289
2290         POSTING_READ(reg);
2291         udelay(150);
2292
2293         /* Ironlake workaround, enable clock pointer after FDI enable*/
2294         if (HAS_PCH_IBX(dev)) {
2295                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2296                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2297                            FDI_RX_PHASE_SYNC_POINTER_EN);
2298         }
2299
2300         reg = FDI_RX_IIR(pipe);
2301         for (tries = 0; tries < 5; tries++) {
2302                 temp = I915_READ(reg);
2303                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2304
2305                 if ((temp & FDI_RX_BIT_LOCK)) {
2306                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2307                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2308                         break;
2309                 }
2310         }
2311         if (tries == 5)
2312                 DRM_ERROR("FDI train 1 fail!\n");
2313
2314         /* Train 2 */
2315         reg = FDI_TX_CTL(pipe);
2316         temp = I915_READ(reg);
2317         temp &= ~FDI_LINK_TRAIN_NONE;
2318         temp |= FDI_LINK_TRAIN_PATTERN_2;
2319         I915_WRITE(reg, temp);
2320
2321         reg = FDI_RX_CTL(pipe);
2322         temp = I915_READ(reg);
2323         temp &= ~FDI_LINK_TRAIN_NONE;
2324         temp |= FDI_LINK_TRAIN_PATTERN_2;
2325         I915_WRITE(reg, temp);
2326
2327         POSTING_READ(reg);
2328         udelay(150);
2329
2330         reg = FDI_RX_IIR(pipe);
2331         for (tries = 0; tries < 5; tries++) {
2332                 temp = I915_READ(reg);
2333                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2334
2335                 if (temp & FDI_RX_SYMBOL_LOCK) {
2336                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2337                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2338                         break;
2339                 }
2340         }
2341         if (tries == 5)
2342                 DRM_ERROR("FDI train 2 fail!\n");
2343
2344         DRM_DEBUG_KMS("FDI train done\n");
2345
2346 }
2347
2348 static const int snb_b_fdi_train_param [] = {
2349         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2350         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2351         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2352         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2353 };
2354
2355 /* The FDI link training functions for SNB/Cougarpoint. */
2356 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2357 {
2358         struct drm_device *dev = crtc->dev;
2359         struct drm_i915_private *dev_priv = dev->dev_private;
2360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2361         int pipe = intel_crtc->pipe;
2362         u32 reg, temp, i;
2363
2364         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2365            for train result */
2366         reg = FDI_RX_IMR(pipe);
2367         temp = I915_READ(reg);
2368         temp &= ~FDI_RX_SYMBOL_LOCK;
2369         temp &= ~FDI_RX_BIT_LOCK;
2370         I915_WRITE(reg, temp);
2371
2372         POSTING_READ(reg);
2373         udelay(150);
2374
2375         /* enable CPU FDI TX and PCH FDI RX */
2376         reg = FDI_TX_CTL(pipe);
2377         temp = I915_READ(reg);
2378         temp &= ~(7 << 19);
2379         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2380         temp &= ~FDI_LINK_TRAIN_NONE;
2381         temp |= FDI_LINK_TRAIN_PATTERN_1;
2382         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2383         /* SNB-B */
2384         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2385         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2386
2387         reg = FDI_RX_CTL(pipe);
2388         temp = I915_READ(reg);
2389         if (HAS_PCH_CPT(dev)) {
2390                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2391                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2392         } else {
2393                 temp &= ~FDI_LINK_TRAIN_NONE;
2394                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2395         }
2396         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2397
2398         POSTING_READ(reg);
2399         udelay(150);
2400
2401         for (i = 0; i < 4; i++ ) {
2402                 reg = FDI_TX_CTL(pipe);
2403                 temp = I915_READ(reg);
2404                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2405                 temp |= snb_b_fdi_train_param[i];
2406                 I915_WRITE(reg, temp);
2407
2408                 POSTING_READ(reg);
2409                 udelay(500);
2410
2411                 reg = FDI_RX_IIR(pipe);
2412                 temp = I915_READ(reg);
2413                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2414
2415                 if (temp & FDI_RX_BIT_LOCK) {
2416                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2417                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2418                         break;
2419                 }
2420         }
2421         if (i == 4)
2422                 DRM_ERROR("FDI train 1 fail!\n");
2423
2424         /* Train 2 */
2425         reg = FDI_TX_CTL(pipe);
2426         temp = I915_READ(reg);
2427         temp &= ~FDI_LINK_TRAIN_NONE;
2428         temp |= FDI_LINK_TRAIN_PATTERN_2;
2429         if (IS_GEN6(dev)) {
2430                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2431                 /* SNB-B */
2432                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2433         }
2434         I915_WRITE(reg, temp);
2435
2436         reg = FDI_RX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         if (HAS_PCH_CPT(dev)) {
2439                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2440                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2441         } else {
2442                 temp &= ~FDI_LINK_TRAIN_NONE;
2443                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2444         }
2445         I915_WRITE(reg, temp);
2446
2447         POSTING_READ(reg);
2448         udelay(150);
2449
2450         for (i = 0; i < 4; i++ ) {
2451                 reg = FDI_TX_CTL(pipe);
2452                 temp = I915_READ(reg);
2453                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2454                 temp |= snb_b_fdi_train_param[i];
2455                 I915_WRITE(reg, temp);
2456
2457                 POSTING_READ(reg);
2458                 udelay(500);
2459
2460                 reg = FDI_RX_IIR(pipe);
2461                 temp = I915_READ(reg);
2462                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2463
2464                 if (temp & FDI_RX_SYMBOL_LOCK) {
2465                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2466                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2467                         break;
2468                 }
2469         }
2470         if (i == 4)
2471                 DRM_ERROR("FDI train 2 fail!\n");
2472
2473         DRM_DEBUG_KMS("FDI train done.\n");
2474 }
2475
2476 /* Manual link training for Ivy Bridge A0 parts */
2477 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2478 {
2479         struct drm_device *dev = crtc->dev;
2480         struct drm_i915_private *dev_priv = dev->dev_private;
2481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2482         int pipe = intel_crtc->pipe;
2483         u32 reg, temp, i;
2484
2485         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2486            for train result */
2487         reg = FDI_RX_IMR(pipe);
2488         temp = I915_READ(reg);
2489         temp &= ~FDI_RX_SYMBOL_LOCK;
2490         temp &= ~FDI_RX_BIT_LOCK;
2491         I915_WRITE(reg, temp);
2492
2493         POSTING_READ(reg);
2494         udelay(150);
2495
2496         /* enable CPU FDI TX and PCH FDI RX */
2497         reg = FDI_TX_CTL(pipe);
2498         temp = I915_READ(reg);
2499         temp &= ~(7 << 19);
2500         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2501         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2502         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2503         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2504         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2505         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2506
2507         reg = FDI_RX_CTL(pipe);
2508         temp = I915_READ(reg);
2509         temp &= ~FDI_LINK_TRAIN_AUTO;
2510         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2511         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2512         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2513
2514         POSTING_READ(reg);
2515         udelay(150);
2516
2517         for (i = 0; i < 4; i++ ) {
2518                 reg = FDI_TX_CTL(pipe);
2519                 temp = I915_READ(reg);
2520                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2521                 temp |= snb_b_fdi_train_param[i];
2522                 I915_WRITE(reg, temp);
2523
2524                 POSTING_READ(reg);
2525                 udelay(500);
2526
2527                 reg = FDI_RX_IIR(pipe);
2528                 temp = I915_READ(reg);
2529                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2530
2531                 if (temp & FDI_RX_BIT_LOCK ||
2532                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2533                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2534                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2535                         break;
2536                 }
2537         }
2538         if (i == 4)
2539                 DRM_ERROR("FDI train 1 fail!\n");
2540
2541         /* Train 2 */
2542         reg = FDI_TX_CTL(pipe);
2543         temp = I915_READ(reg);
2544         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2545         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2546         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2547         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2548         I915_WRITE(reg, temp);
2549
2550         reg = FDI_RX_CTL(pipe);
2551         temp = I915_READ(reg);
2552         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2553         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2554         I915_WRITE(reg, temp);
2555
2556         POSTING_READ(reg);
2557         udelay(150);
2558
2559         for (i = 0; i < 4; i++ ) {
2560                 reg = FDI_TX_CTL(pipe);
2561                 temp = I915_READ(reg);
2562                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2563                 temp |= snb_b_fdi_train_param[i];
2564                 I915_WRITE(reg, temp);
2565
2566                 POSTING_READ(reg);
2567                 udelay(500);
2568
2569                 reg = FDI_RX_IIR(pipe);
2570                 temp = I915_READ(reg);
2571                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2572
2573                 if (temp & FDI_RX_SYMBOL_LOCK) {
2574                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2575                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2576                         break;
2577                 }
2578         }
2579         if (i == 4)
2580                 DRM_ERROR("FDI train 2 fail!\n");
2581
2582         DRM_DEBUG_KMS("FDI train done.\n");
2583 }
2584
2585 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2586 {
2587         struct drm_device *dev = crtc->dev;
2588         struct drm_i915_private *dev_priv = dev->dev_private;
2589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2590         int pipe = intel_crtc->pipe;
2591         u32 reg, temp;
2592
2593         /* Write the TU size bits so error detection works */
2594         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2595                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2596
2597         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2598         reg = FDI_RX_CTL(pipe);
2599         temp = I915_READ(reg);
2600         temp &= ~((0x7 << 19) | (0x7 << 16));
2601         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2602         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2603         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2604
2605         POSTING_READ(reg);
2606         udelay(200);
2607
2608         /* Switch from Rawclk to PCDclk */
2609         temp = I915_READ(reg);
2610         I915_WRITE(reg, temp | FDI_PCDCLK);
2611
2612         POSTING_READ(reg);
2613         udelay(200);
2614
2615         /* Enable CPU FDI TX PLL, always on for Ironlake */
2616         reg = FDI_TX_CTL(pipe);
2617         temp = I915_READ(reg);
2618         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2619                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2620
2621                 POSTING_READ(reg);
2622                 udelay(100);
2623         }
2624 }
2625
2626 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2627 {
2628         struct drm_device *dev = crtc->dev;
2629         struct drm_i915_private *dev_priv = dev->dev_private;
2630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2631         int pipe = intel_crtc->pipe;
2632         u32 reg, temp;
2633
2634         /* disable CPU FDI tx and PCH FDI rx */
2635         reg = FDI_TX_CTL(pipe);
2636         temp = I915_READ(reg);
2637         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2638         POSTING_READ(reg);
2639
2640         reg = FDI_RX_CTL(pipe);
2641         temp = I915_READ(reg);
2642         temp &= ~(0x7 << 16);
2643         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2644         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2645
2646         POSTING_READ(reg);
2647         udelay(100);
2648
2649         /* Ironlake workaround, disable clock pointer after downing FDI */
2650         if (HAS_PCH_IBX(dev)) {
2651                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2652                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2653                            I915_READ(FDI_RX_CHICKEN(pipe) &
2654                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2655         }
2656
2657         /* still set train pattern 1 */
2658         reg = FDI_TX_CTL(pipe);
2659         temp = I915_READ(reg);
2660         temp &= ~FDI_LINK_TRAIN_NONE;
2661         temp |= FDI_LINK_TRAIN_PATTERN_1;
2662         I915_WRITE(reg, temp);
2663
2664         reg = FDI_RX_CTL(pipe);
2665         temp = I915_READ(reg);
2666         if (HAS_PCH_CPT(dev)) {
2667                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2668                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2669         } else {
2670                 temp &= ~FDI_LINK_TRAIN_NONE;
2671                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2672         }
2673         /* BPC in FDI rx is consistent with that in PIPECONF */
2674         temp &= ~(0x07 << 16);
2675         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2676         I915_WRITE(reg, temp);
2677
2678         POSTING_READ(reg);
2679         udelay(100);
2680 }
2681
2682 /*
2683  * When we disable a pipe, we need to clear any pending scanline wait events
2684  * to avoid hanging the ring, which we assume we are waiting on.
2685  */
2686 static void intel_clear_scanline_wait(struct drm_device *dev)
2687 {
2688         struct drm_i915_private *dev_priv = dev->dev_private;
2689         struct intel_ring_buffer *ring;
2690         u32 tmp;
2691
2692         if (IS_GEN2(dev))
2693                 /* Can't break the hang on i8xx */
2694                 return;
2695
2696         ring = LP_RING(dev_priv);
2697         tmp = I915_READ_CTL(ring);
2698         if (tmp & RING_WAIT)
2699                 I915_WRITE_CTL(ring, tmp);
2700 }
2701
2702 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2703 {
2704         struct drm_i915_gem_object *obj;
2705         struct drm_i915_private *dev_priv;
2706
2707         if (crtc->fb == NULL)
2708                 return;
2709
2710         obj = to_intel_framebuffer(crtc->fb)->obj;
2711         dev_priv = crtc->dev->dev_private;
2712         wait_event(dev_priv->pending_flip_queue,
2713                    atomic_read(&obj->pending_flip) == 0);
2714 }
2715
2716 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2717 {
2718         struct drm_device *dev = crtc->dev;
2719         struct drm_mode_config *mode_config = &dev->mode_config;
2720         struct intel_encoder *encoder;
2721
2722         /*
2723          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2724          * must be driven by its own crtc; no sharing is possible.
2725          */
2726         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2727                 if (encoder->base.crtc != crtc)
2728                         continue;
2729
2730                 switch (encoder->type) {
2731                 case INTEL_OUTPUT_EDP:
2732                         if (!intel_encoder_is_pch_edp(&encoder->base))
2733                                 return false;
2734                         continue;
2735                 }
2736         }
2737
2738         return true;
2739 }
2740
2741 /*
2742  * Enable PCH resources required for PCH ports:
2743  *   - PCH PLLs
2744  *   - FDI training & RX/TX
2745  *   - update transcoder timings
2746  *   - DP transcoding bits
2747  *   - transcoder
2748  */
2749 static void ironlake_pch_enable(struct drm_crtc *crtc)
2750 {
2751         struct drm_device *dev = crtc->dev;
2752         struct drm_i915_private *dev_priv = dev->dev_private;
2753         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2754         int pipe = intel_crtc->pipe;
2755         u32 reg, temp;
2756
2757         /* For PCH output, training FDI link */
2758         dev_priv->display.fdi_link_train(crtc);
2759
2760         intel_enable_pch_pll(dev_priv, pipe);
2761
2762         if (HAS_PCH_CPT(dev)) {
2763                 /* Be sure PCH DPLL SEL is set */
2764                 temp = I915_READ(PCH_DPLL_SEL);
2765                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2766                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2767                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2768                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2769                 I915_WRITE(PCH_DPLL_SEL, temp);
2770         }
2771
2772         /* set transcoder timing, panel must allow it */
2773         assert_panel_unlocked(dev_priv, pipe);
2774         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2775         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2776         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2777
2778         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2779         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2780         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2781
2782         intel_fdi_normal_train(crtc);
2783
2784         /* For PCH DP, enable TRANS_DP_CTL */
2785         if (HAS_PCH_CPT(dev) &&
2786             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2787                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2788                 reg = TRANS_DP_CTL(pipe);
2789                 temp = I915_READ(reg);
2790                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2791                           TRANS_DP_SYNC_MASK |
2792                           TRANS_DP_BPC_MASK);
2793                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2794                          TRANS_DP_ENH_FRAMING);
2795                 temp |= bpc << 9; /* same format but at 11:9 */
2796
2797                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2798                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2799                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2800                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2801
2802                 switch (intel_trans_dp_port_sel(crtc)) {
2803                 case PCH_DP_B:
2804                         temp |= TRANS_DP_PORT_SEL_B;
2805                         break;
2806                 case PCH_DP_C:
2807                         temp |= TRANS_DP_PORT_SEL_C;
2808                         break;
2809                 case PCH_DP_D:
2810                         temp |= TRANS_DP_PORT_SEL_D;
2811                         break;
2812                 default:
2813                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2814                         temp |= TRANS_DP_PORT_SEL_B;
2815                         break;
2816                 }
2817
2818                 I915_WRITE(reg, temp);
2819         }
2820
2821         intel_enable_transcoder(dev_priv, pipe);
2822 }
2823
2824 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2825 {
2826         struct drm_device *dev = crtc->dev;
2827         struct drm_i915_private *dev_priv = dev->dev_private;
2828         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2829         int pipe = intel_crtc->pipe;
2830         int plane = intel_crtc->plane;
2831         u32 temp;
2832         bool is_pch_port;
2833
2834         if (intel_crtc->active)
2835                 return;
2836
2837         intel_crtc->active = true;
2838         intel_update_watermarks(dev);
2839
2840         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2841                 temp = I915_READ(PCH_LVDS);
2842                 if ((temp & LVDS_PORT_EN) == 0)
2843                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2844         }
2845
2846         is_pch_port = intel_crtc_driving_pch(crtc);
2847
2848         if (is_pch_port)
2849                 ironlake_fdi_pll_enable(crtc);
2850         else
2851                 ironlake_fdi_disable(crtc);
2852
2853         /* Enable panel fitting for LVDS */
2854         if (dev_priv->pch_pf_size &&
2855             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2856                 /* Force use of hard-coded filter coefficients
2857                  * as some pre-programmed values are broken,
2858                  * e.g. x201.
2859                  */
2860                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2861                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2862                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2863         }
2864
2865         intel_enable_pipe(dev_priv, pipe, is_pch_port);
2866         intel_enable_plane(dev_priv, plane, pipe);
2867
2868         if (is_pch_port)
2869                 ironlake_pch_enable(crtc);
2870
2871         intel_crtc_load_lut(crtc);
2872
2873         mutex_lock(&dev->struct_mutex);
2874         intel_update_fbc(dev);
2875         mutex_unlock(&dev->struct_mutex);
2876
2877         intel_crtc_update_cursor(crtc, true);
2878 }
2879
2880 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2881 {
2882         struct drm_device *dev = crtc->dev;
2883         struct drm_i915_private *dev_priv = dev->dev_private;
2884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2885         int pipe = intel_crtc->pipe;
2886         int plane = intel_crtc->plane;
2887         u32 reg, temp;
2888
2889         if (!intel_crtc->active)
2890                 return;
2891
2892         intel_crtc_wait_for_pending_flips(crtc);
2893         drm_vblank_off(dev, pipe);
2894         intel_crtc_update_cursor(crtc, false);
2895
2896         intel_disable_plane(dev_priv, plane, pipe);
2897
2898         if (dev_priv->cfb_plane == plane)
2899                 intel_disable_fbc(dev);
2900
2901         intel_disable_pipe(dev_priv, pipe);
2902
2903         /* Disable PF */
2904         I915_WRITE(PF_CTL(pipe), 0);
2905         I915_WRITE(PF_WIN_SZ(pipe), 0);
2906
2907         ironlake_fdi_disable(crtc);
2908
2909         /* This is a horrible layering violation; we should be doing this in
2910          * the connector/encoder ->prepare instead, but we don't always have
2911          * enough information there about the config to know whether it will
2912          * actually be necessary or just cause undesired flicker.
2913          */
2914         intel_disable_pch_ports(dev_priv, pipe);
2915
2916         intel_disable_transcoder(dev_priv, pipe);
2917
2918         if (HAS_PCH_CPT(dev)) {
2919                 /* disable TRANS_DP_CTL */
2920                 reg = TRANS_DP_CTL(pipe);
2921                 temp = I915_READ(reg);
2922                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2923                 temp |= TRANS_DP_PORT_SEL_NONE;
2924                 I915_WRITE(reg, temp);
2925
2926                 /* disable DPLL_SEL */
2927                 temp = I915_READ(PCH_DPLL_SEL);
2928                 switch (pipe) {
2929                 case 0:
2930                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2931                         break;
2932                 case 1:
2933                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2934                         break;
2935                 case 2:
2936                         /* FIXME: manage transcoder PLLs? */
2937                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2938                         break;
2939                 default:
2940                         BUG(); /* wtf */
2941                 }
2942                 I915_WRITE(PCH_DPLL_SEL, temp);
2943         }
2944
2945         /* disable PCH DPLL */
2946         intel_disable_pch_pll(dev_priv, pipe);
2947
2948         /* Switch from PCDclk to Rawclk */
2949         reg = FDI_RX_CTL(pipe);
2950         temp = I915_READ(reg);
2951         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2952
2953         /* Disable CPU FDI TX PLL */
2954         reg = FDI_TX_CTL(pipe);
2955         temp = I915_READ(reg);
2956         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2957
2958         POSTING_READ(reg);
2959         udelay(100);
2960
2961         reg = FDI_RX_CTL(pipe);
2962         temp = I915_READ(reg);
2963         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2964
2965         /* Wait for the clocks to turn off. */
2966         POSTING_READ(reg);
2967         udelay(100);
2968
2969         intel_crtc->active = false;
2970         intel_update_watermarks(dev);
2971
2972         mutex_lock(&dev->struct_mutex);
2973         intel_update_fbc(dev);
2974         intel_clear_scanline_wait(dev);
2975         mutex_unlock(&dev->struct_mutex);
2976 }
2977
2978 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2979 {
2980         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2981         int pipe = intel_crtc->pipe;
2982         int plane = intel_crtc->plane;
2983
2984         /* XXX: When our outputs are all unaware of DPMS modes other than off
2985          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2986          */
2987         switch (mode) {
2988         case DRM_MODE_DPMS_ON:
2989         case DRM_MODE_DPMS_STANDBY:
2990         case DRM_MODE_DPMS_SUSPEND:
2991                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2992                 ironlake_crtc_enable(crtc);
2993                 break;
2994
2995         case DRM_MODE_DPMS_OFF:
2996                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2997                 ironlake_crtc_disable(crtc);
2998                 break;
2999         }
3000 }
3001
3002 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3003 {
3004         if (!enable && intel_crtc->overlay) {
3005                 struct drm_device *dev = intel_crtc->base.dev;
3006                 struct drm_i915_private *dev_priv = dev->dev_private;
3007
3008                 mutex_lock(&dev->struct_mutex);
3009                 dev_priv->mm.interruptible = false;
3010                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3011                 dev_priv->mm.interruptible = true;
3012                 mutex_unlock(&dev->struct_mutex);
3013         }
3014
3015         /* Let userspace switch the overlay on again. In most cases userspace
3016          * has to recompute where to put it anyway.
3017          */
3018 }
3019
3020 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3021 {
3022         struct drm_device *dev = crtc->dev;
3023         struct drm_i915_private *dev_priv = dev->dev_private;
3024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3025         int pipe = intel_crtc->pipe;
3026         int plane = intel_crtc->plane;
3027
3028         if (intel_crtc->active)
3029                 return;
3030
3031         intel_crtc->active = true;
3032         intel_update_watermarks(dev);
3033
3034         intel_enable_pll(dev_priv, pipe);
3035         intel_enable_pipe(dev_priv, pipe, false);
3036         intel_enable_plane(dev_priv, plane, pipe);
3037
3038         intel_crtc_load_lut(crtc);
3039         intel_update_fbc(dev);
3040
3041         /* Give the overlay scaler a chance to enable if it's on this pipe */
3042         intel_crtc_dpms_overlay(intel_crtc, true);
3043         intel_crtc_update_cursor(crtc, true);
3044 }
3045
3046 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3047 {
3048         struct drm_device *dev = crtc->dev;
3049         struct drm_i915_private *dev_priv = dev->dev_private;
3050         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3051         int pipe = intel_crtc->pipe;
3052         int plane = intel_crtc->plane;
3053
3054         if (!intel_crtc->active)
3055                 return;
3056
3057         /* Give the overlay scaler a chance to disable if it's on this pipe */
3058         intel_crtc_wait_for_pending_flips(crtc);
3059         drm_vblank_off(dev, pipe);
3060         intel_crtc_dpms_overlay(intel_crtc, false);
3061         intel_crtc_update_cursor(crtc, false);
3062
3063         if (dev_priv->cfb_plane == plane)
3064                 intel_disable_fbc(dev);
3065
3066         intel_disable_plane(dev_priv, plane, pipe);
3067         intel_disable_pipe(dev_priv, pipe);
3068         intel_disable_pll(dev_priv, pipe);
3069
3070         intel_crtc->active = false;
3071         intel_update_fbc(dev);
3072         intel_update_watermarks(dev);
3073         intel_clear_scanline_wait(dev);
3074 }
3075
3076 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3077 {
3078         /* XXX: When our outputs are all unaware of DPMS modes other than off
3079          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3080          */
3081         switch (mode) {
3082         case DRM_MODE_DPMS_ON:
3083         case DRM_MODE_DPMS_STANDBY:
3084         case DRM_MODE_DPMS_SUSPEND:
3085                 i9xx_crtc_enable(crtc);
3086                 break;
3087         case DRM_MODE_DPMS_OFF:
3088                 i9xx_crtc_disable(crtc);
3089                 break;
3090         }
3091 }
3092
3093 /**
3094  * Sets the power management mode of the pipe and plane.
3095  */
3096 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3097 {
3098         struct drm_device *dev = crtc->dev;
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100         struct drm_i915_master_private *master_priv;
3101         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3102         int pipe = intel_crtc->pipe;
3103         bool enabled;
3104
3105         if (intel_crtc->dpms_mode == mode)
3106                 return;
3107
3108         intel_crtc->dpms_mode = mode;
3109
3110         dev_priv->display.dpms(crtc, mode);
3111
3112         if (!dev->primary->master)
3113                 return;
3114
3115         master_priv = dev->primary->master->driver_priv;
3116         if (!master_priv->sarea_priv)
3117                 return;
3118
3119         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3120
3121         switch (pipe) {
3122         case 0:
3123                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3124                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3125                 break;
3126         case 1:
3127                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3128                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3129                 break;
3130         default:
3131                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3132                 break;
3133         }
3134 }
3135
3136 static void intel_crtc_disable(struct drm_crtc *crtc)
3137 {
3138         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3139         struct drm_device *dev = crtc->dev;
3140
3141         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3142
3143         if (crtc->fb) {
3144                 mutex_lock(&dev->struct_mutex);
3145                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3146                 mutex_unlock(&dev->struct_mutex);
3147         }
3148 }
3149
3150 /* Prepare for a mode set.
3151  *
3152  * Note we could be a lot smarter here.  We need to figure out which outputs
3153  * will be enabled, which disabled (in short, how the config will changes)
3154  * and perform the minimum necessary steps to accomplish that, e.g. updating
3155  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3156  * panel fitting is in the proper state, etc.
3157  */
3158 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3159 {
3160         i9xx_crtc_disable(crtc);
3161 }
3162
3163 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3164 {
3165         i9xx_crtc_enable(crtc);
3166 }
3167
3168 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3169 {
3170         ironlake_crtc_disable(crtc);
3171 }
3172
3173 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3174 {
3175         ironlake_crtc_enable(crtc);
3176 }
3177
3178 void intel_encoder_prepare (struct drm_encoder *encoder)
3179 {
3180         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3181         /* lvds has its own version of prepare see intel_lvds_prepare */
3182         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3183 }
3184
3185 void intel_encoder_commit (struct drm_encoder *encoder)
3186 {
3187         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3188         /* lvds has its own version of commit see intel_lvds_commit */
3189         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3190 }
3191
3192 void intel_encoder_destroy(struct drm_encoder *encoder)
3193 {
3194         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3195
3196         drm_encoder_cleanup(encoder);
3197         kfree(intel_encoder);
3198 }
3199
3200 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3201                                   struct drm_display_mode *mode,
3202                                   struct drm_display_mode *adjusted_mode)
3203 {
3204         struct drm_device *dev = crtc->dev;
3205
3206         if (HAS_PCH_SPLIT(dev)) {
3207                 /* FDI link clock is fixed at 2.7G */
3208                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3209                         return false;
3210         }
3211
3212         /* XXX some encoders set the crtcinfo, others don't.
3213          * Obviously we need some form of conflict resolution here...
3214          */
3215         if (adjusted_mode->crtc_htotal == 0)
3216                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3217
3218         return true;
3219 }
3220
3221 static int i945_get_display_clock_speed(struct drm_device *dev)
3222 {
3223         return 400000;
3224 }
3225
3226 static int i915_get_display_clock_speed(struct drm_device *dev)
3227 {
3228         return 333000;
3229 }
3230
3231 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3232 {
3233         return 200000;
3234 }
3235
3236 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3237 {
3238         u16 gcfgc = 0;
3239
3240         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3241
3242         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3243                 return 133000;
3244         else {
3245                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3246                 case GC_DISPLAY_CLOCK_333_MHZ:
3247                         return 333000;
3248                 default:
3249                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3250                         return 190000;
3251                 }
3252         }
3253 }
3254
3255 static int i865_get_display_clock_speed(struct drm_device *dev)
3256 {
3257         return 266000;
3258 }
3259
3260 static int i855_get_display_clock_speed(struct drm_device *dev)
3261 {
3262         u16 hpllcc = 0;
3263         /* Assume that the hardware is in the high speed state.  This
3264          * should be the default.
3265          */
3266         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3267         case GC_CLOCK_133_200:
3268         case GC_CLOCK_100_200:
3269                 return 200000;
3270         case GC_CLOCK_166_250:
3271                 return 250000;
3272         case GC_CLOCK_100_133:
3273                 return 133000;
3274         }
3275
3276         /* Shouldn't happen */
3277         return 0;
3278 }
3279
3280 static int i830_get_display_clock_speed(struct drm_device *dev)
3281 {
3282         return 133000;
3283 }
3284
3285 struct fdi_m_n {
3286         u32        tu;
3287         u32        gmch_m;
3288         u32        gmch_n;
3289         u32        link_m;
3290         u32        link_n;
3291 };
3292
3293 static void
3294 fdi_reduce_ratio(u32 *num, u32 *den)
3295 {
3296         while (*num > 0xffffff || *den > 0xffffff) {
3297                 *num >>= 1;
3298                 *den >>= 1;
3299         }
3300 }
3301
3302 static void
3303 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3304                      int link_clock, struct fdi_m_n *m_n)
3305 {
3306         m_n->tu = 64; /* default size */
3307
3308         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3309         m_n->gmch_m = bits_per_pixel * pixel_clock;
3310         m_n->gmch_n = link_clock * nlanes * 8;
3311         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3312
3313         m_n->link_m = pixel_clock;
3314         m_n->link_n = link_clock;
3315         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3316 }
3317
3318
3319 struct intel_watermark_params {
3320         unsigned long fifo_size;
3321         unsigned long max_wm;
3322         unsigned long default_wm;
3323         unsigned long guard_size;
3324         unsigned long cacheline_size;
3325 };
3326
3327 /* Pineview has different values for various configs */
3328 static const struct intel_watermark_params pineview_display_wm = {
3329         PINEVIEW_DISPLAY_FIFO,
3330         PINEVIEW_MAX_WM,
3331         PINEVIEW_DFT_WM,
3332         PINEVIEW_GUARD_WM,
3333         PINEVIEW_FIFO_LINE_SIZE
3334 };
3335 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3336         PINEVIEW_DISPLAY_FIFO,
3337         PINEVIEW_MAX_WM,
3338         PINEVIEW_DFT_HPLLOFF_WM,
3339         PINEVIEW_GUARD_WM,
3340         PINEVIEW_FIFO_LINE_SIZE
3341 };
3342 static const struct intel_watermark_params pineview_cursor_wm = {
3343         PINEVIEW_CURSOR_FIFO,
3344         PINEVIEW_CURSOR_MAX_WM,
3345         PINEVIEW_CURSOR_DFT_WM,
3346         PINEVIEW_CURSOR_GUARD_WM,
3347         PINEVIEW_FIFO_LINE_SIZE,
3348 };
3349 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3350         PINEVIEW_CURSOR_FIFO,
3351         PINEVIEW_CURSOR_MAX_WM,
3352         PINEVIEW_CURSOR_DFT_WM,
3353         PINEVIEW_CURSOR_GUARD_WM,
3354         PINEVIEW_FIFO_LINE_SIZE
3355 };
3356 static const struct intel_watermark_params g4x_wm_info = {
3357         G4X_FIFO_SIZE,
3358         G4X_MAX_WM,
3359         G4X_MAX_WM,
3360         2,
3361         G4X_FIFO_LINE_SIZE,
3362 };
3363 static const struct intel_watermark_params g4x_cursor_wm_info = {
3364         I965_CURSOR_FIFO,
3365         I965_CURSOR_MAX_WM,
3366         I965_CURSOR_DFT_WM,
3367         2,
3368         G4X_FIFO_LINE_SIZE,
3369 };
3370 static const struct intel_watermark_params i965_cursor_wm_info = {
3371         I965_CURSOR_FIFO,
3372         I965_CURSOR_MAX_WM,
3373         I965_CURSOR_DFT_WM,
3374         2,
3375         I915_FIFO_LINE_SIZE,
3376 };
3377 static const struct intel_watermark_params i945_wm_info = {
3378         I945_FIFO_SIZE,
3379         I915_MAX_WM,
3380         1,
3381         2,
3382         I915_FIFO_LINE_SIZE
3383 };
3384 static const struct intel_watermark_params i915_wm_info = {
3385         I915_FIFO_SIZE,
3386         I915_MAX_WM,
3387         1,
3388         2,
3389         I915_FIFO_LINE_SIZE
3390 };
3391 static const struct intel_watermark_params i855_wm_info = {
3392         I855GM_FIFO_SIZE,
3393         I915_MAX_WM,
3394         1,
3395         2,
3396         I830_FIFO_LINE_SIZE
3397 };
3398 static const struct intel_watermark_params i830_wm_info = {
3399         I830_FIFO_SIZE,
3400         I915_MAX_WM,
3401         1,
3402         2,
3403         I830_FIFO_LINE_SIZE
3404 };
3405
3406 static const struct intel_watermark_params ironlake_display_wm_info = {
3407         ILK_DISPLAY_FIFO,
3408         ILK_DISPLAY_MAXWM,
3409         ILK_DISPLAY_DFTWM,
3410         2,
3411         ILK_FIFO_LINE_SIZE
3412 };
3413 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3414         ILK_CURSOR_FIFO,
3415         ILK_CURSOR_MAXWM,
3416         ILK_CURSOR_DFTWM,
3417         2,
3418         ILK_FIFO_LINE_SIZE
3419 };
3420 static const struct intel_watermark_params ironlake_display_srwm_info = {
3421         ILK_DISPLAY_SR_FIFO,
3422         ILK_DISPLAY_MAX_SRWM,
3423         ILK_DISPLAY_DFT_SRWM,
3424         2,
3425         ILK_FIFO_LINE_SIZE
3426 };
3427 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3428         ILK_CURSOR_SR_FIFO,
3429         ILK_CURSOR_MAX_SRWM,
3430         ILK_CURSOR_DFT_SRWM,
3431         2,
3432         ILK_FIFO_LINE_SIZE
3433 };
3434
3435 static const struct intel_watermark_params sandybridge_display_wm_info = {
3436         SNB_DISPLAY_FIFO,
3437         SNB_DISPLAY_MAXWM,
3438         SNB_DISPLAY_DFTWM,
3439         2,
3440         SNB_FIFO_LINE_SIZE
3441 };
3442 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3443         SNB_CURSOR_FIFO,
3444         SNB_CURSOR_MAXWM,
3445         SNB_CURSOR_DFTWM,
3446         2,
3447         SNB_FIFO_LINE_SIZE
3448 };
3449 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3450         SNB_DISPLAY_SR_FIFO,
3451         SNB_DISPLAY_MAX_SRWM,
3452         SNB_DISPLAY_DFT_SRWM,
3453         2,
3454         SNB_FIFO_LINE_SIZE
3455 };
3456 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3457         SNB_CURSOR_SR_FIFO,
3458         SNB_CURSOR_MAX_SRWM,
3459         SNB_CURSOR_DFT_SRWM,
3460         2,
3461         SNB_FIFO_LINE_SIZE
3462 };
3463
3464
3465 /**
3466  * intel_calculate_wm - calculate watermark level
3467  * @clock_in_khz: pixel clock
3468  * @wm: chip FIFO params
3469  * @pixel_size: display pixel size
3470  * @latency_ns: memory latency for the platform
3471  *
3472  * Calculate the watermark level (the level at which the display plane will
3473  * start fetching from memory again).  Each chip has a different display
3474  * FIFO size and allocation, so the caller needs to figure that out and pass
3475  * in the correct intel_watermark_params structure.
3476  *
3477  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3478  * on the pixel size.  When it reaches the watermark level, it'll start
3479  * fetching FIFO line sized based chunks from memory until the FIFO fills
3480  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3481  * will occur, and a display engine hang could result.
3482  */
3483 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3484                                         const struct intel_watermark_params *wm,
3485                                         int fifo_size,
3486                                         int pixel_size,
3487                                         unsigned long latency_ns)
3488 {
3489         long entries_required, wm_size;
3490
3491         /*
3492          * Note: we need to make sure we don't overflow for various clock &
3493          * latency values.
3494          * clocks go from a few thousand to several hundred thousand.
3495          * latency is usually a few thousand
3496          */
3497         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3498                 1000;
3499         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3500
3501         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3502
3503         wm_size = fifo_size - (entries_required + wm->guard_size);
3504
3505         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3506
3507         /* Don't promote wm_size to unsigned... */
3508         if (wm_size > (long)wm->max_wm)
3509                 wm_size = wm->max_wm;
3510         if (wm_size <= 0)
3511                 wm_size = wm->default_wm;
3512         return wm_size;
3513 }
3514
3515 struct cxsr_latency {
3516         int is_desktop;
3517         int is_ddr3;
3518         unsigned long fsb_freq;
3519         unsigned long mem_freq;
3520         unsigned long display_sr;
3521         unsigned long display_hpll_disable;
3522         unsigned long cursor_sr;
3523         unsigned long cursor_hpll_disable;
3524 };
3525
3526 static const struct cxsr_latency cxsr_latency_table[] = {
3527         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3528         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3529         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3530         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3531         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3532
3533         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3534         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3535         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3536         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3537         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3538
3539         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3540         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3541         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3542         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3543         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3544
3545         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3546         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3547         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3548         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3549         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3550
3551         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3552         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3553         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3554         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3555         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3556
3557         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3558         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3559         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3560         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3561         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3562 };
3563
3564 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3565                                                          int is_ddr3,
3566                                                          int fsb,
3567                                                          int mem)
3568 {
3569         const struct cxsr_latency *latency;
3570         int i;
3571
3572         if (fsb == 0 || mem == 0)
3573                 return NULL;
3574
3575         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3576                 latency = &cxsr_latency_table[i];
3577                 if (is_desktop == latency->is_desktop &&
3578                     is_ddr3 == latency->is_ddr3 &&
3579                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3580                         return latency;
3581         }
3582
3583         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3584
3585         return NULL;
3586 }
3587
3588 static void pineview_disable_cxsr(struct drm_device *dev)
3589 {
3590         struct drm_i915_private *dev_priv = dev->dev_private;
3591
3592         /* deactivate cxsr */
3593         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3594 }
3595
3596 /*
3597  * Latency for FIFO fetches is dependent on several factors:
3598  *   - memory configuration (speed, channels)
3599  *   - chipset
3600  *   - current MCH state
3601  * It can be fairly high in some situations, so here we assume a fairly
3602  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3603  * set this value too high, the FIFO will fetch frequently to stay full)
3604  * and power consumption (set it too low to save power and we might see
3605  * FIFO underruns and display "flicker").
3606  *
3607  * A value of 5us seems to be a good balance; safe for very low end
3608  * platforms but not overly aggressive on lower latency configs.
3609  */
3610 static const int latency_ns = 5000;
3611
3612 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3613 {
3614         struct drm_i915_private *dev_priv = dev->dev_private;
3615         uint32_t dsparb = I915_READ(DSPARB);
3616         int size;
3617
3618         size = dsparb & 0x7f;
3619         if (plane)
3620                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3621
3622         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3623                       plane ? "B" : "A", size);
3624
3625         return size;
3626 }
3627
3628 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3629 {
3630         struct drm_i915_private *dev_priv = dev->dev_private;
3631         uint32_t dsparb = I915_READ(DSPARB);
3632         int size;
3633
3634         size = dsparb & 0x1ff;
3635         if (plane)
3636                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3637         size >>= 1; /* Convert to cachelines */
3638
3639         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3640                       plane ? "B" : "A", size);
3641
3642         return size;
3643 }
3644
3645 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3646 {
3647         struct drm_i915_private *dev_priv = dev->dev_private;
3648         uint32_t dsparb = I915_READ(DSPARB);
3649         int size;
3650
3651         size = dsparb & 0x7f;
3652         size >>= 2; /* Convert to cachelines */
3653
3654         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3655                       plane ? "B" : "A",
3656                       size);
3657
3658         return size;
3659 }
3660
3661 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3662 {
3663         struct drm_i915_private *dev_priv = dev->dev_private;
3664         uint32_t dsparb = I915_READ(DSPARB);
3665         int size;
3666
3667         size = dsparb & 0x7f;
3668         size >>= 1; /* Convert to cachelines */
3669
3670         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3671                       plane ? "B" : "A", size);
3672
3673         return size;
3674 }
3675
3676 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3677 {
3678         struct drm_crtc *crtc, *enabled = NULL;
3679
3680         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3681                 if (crtc->enabled && crtc->fb) {
3682                         if (enabled)
3683                                 return NULL;
3684                         enabled = crtc;
3685                 }
3686         }
3687
3688         return enabled;
3689 }
3690
3691 static void pineview_update_wm(struct drm_device *dev)
3692 {
3693         struct drm_i915_private *dev_priv = dev->dev_private;
3694         struct drm_crtc *crtc;
3695         const struct cxsr_latency *latency;
3696         u32 reg;
3697         unsigned long wm;
3698
3699         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3700                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3701         if (!latency) {
3702                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3703                 pineview_disable_cxsr(dev);
3704                 return;
3705         }
3706
3707         crtc = single_enabled_crtc(dev);
3708         if (crtc) {
3709                 int clock = crtc->mode.clock;
3710                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3711
3712                 /* Display SR */
3713                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3714                                         pineview_display_wm.fifo_size,
3715                                         pixel_size, latency->display_sr);
3716                 reg = I915_READ(DSPFW1);
3717                 reg &= ~DSPFW_SR_MASK;
3718                 reg |= wm << DSPFW_SR_SHIFT;
3719                 I915_WRITE(DSPFW1, reg);
3720                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3721
3722                 /* cursor SR */
3723                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3724                                         pineview_display_wm.fifo_size,
3725                                         pixel_size, latency->cursor_sr);
3726                 reg = I915_READ(DSPFW3);
3727                 reg &= ~DSPFW_CURSOR_SR_MASK;
3728                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3729                 I915_WRITE(DSPFW3, reg);
3730
3731                 /* Display HPLL off SR */
3732                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3733                                         pineview_display_hplloff_wm.fifo_size,
3734                                         pixel_size, latency->display_hpll_disable);
3735                 reg = I915_READ(DSPFW3);
3736                 reg &= ~DSPFW_HPLL_SR_MASK;
3737                 reg |= wm & DSPFW_HPLL_SR_MASK;
3738                 I915_WRITE(DSPFW3, reg);
3739
3740                 /* cursor HPLL off SR */
3741                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3742                                         pineview_display_hplloff_wm.fifo_size,
3743                                         pixel_size, latency->cursor_hpll_disable);
3744                 reg = I915_READ(DSPFW3);
3745                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3746                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3747                 I915_WRITE(DSPFW3, reg);
3748                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3749
3750                 /* activate cxsr */
3751                 I915_WRITE(DSPFW3,
3752                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3753                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3754         } else {
3755                 pineview_disable_cxsr(dev);
3756                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3757         }
3758 }
3759
3760 static bool g4x_compute_wm0(struct drm_device *dev,
3761                             int plane,
3762                             const struct intel_watermark_params *display,
3763                             int display_latency_ns,
3764                             const struct intel_watermark_params *cursor,
3765                             int cursor_latency_ns,
3766                             int *plane_wm,
3767                             int *cursor_wm)
3768 {
3769         struct drm_crtc *crtc;
3770         int htotal, hdisplay, clock, pixel_size;
3771         int line_time_us, line_count;
3772         int entries, tlb_miss;
3773
3774         crtc = intel_get_crtc_for_plane(dev, plane);
3775         if (crtc->fb == NULL || !crtc->enabled) {
3776                 *cursor_wm = cursor->guard_size;
3777                 *plane_wm = display->guard_size;
3778                 return false;
3779         }
3780
3781         htotal = crtc->mode.htotal;
3782         hdisplay = crtc->mode.hdisplay;
3783         clock = crtc->mode.clock;
3784         pixel_size = crtc->fb->bits_per_pixel / 8;
3785
3786         /* Use the small buffer method to calculate plane watermark */
3787         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3788         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3789         if (tlb_miss > 0)
3790                 entries += tlb_miss;
3791         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3792         *plane_wm = entries + display->guard_size;
3793         if (*plane_wm > (int)display->max_wm)
3794                 *plane_wm = display->max_wm;
3795
3796         /* Use the large buffer method to calculate cursor watermark */
3797         line_time_us = ((htotal * 1000) / clock);
3798         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3799         entries = line_count * 64 * pixel_size;
3800         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3801         if (tlb_miss > 0)
3802                 entries += tlb_miss;
3803         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3804         *cursor_wm = entries + cursor->guard_size;
3805         if (*cursor_wm > (int)cursor->max_wm)
3806                 *cursor_wm = (int)cursor->max_wm;
3807
3808         return true;
3809 }
3810
3811 /*
3812  * Check the wm result.
3813  *
3814  * If any calculated watermark values is larger than the maximum value that
3815  * can be programmed into the associated watermark register, that watermark
3816  * must be disabled.
3817  */
3818 static bool g4x_check_srwm(struct drm_device *dev,
3819                            int display_wm, int cursor_wm,
3820                            const struct intel_watermark_params *display,
3821                            const struct intel_watermark_params *cursor)
3822 {
3823         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3824                       display_wm, cursor_wm);
3825
3826         if (display_wm > display->max_wm) {
3827                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3828                               display_wm, display->max_wm);
3829                 return false;
3830         }
3831
3832         if (cursor_wm > cursor->max_wm) {
3833                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3834                               cursor_wm, cursor->max_wm);
3835                 return false;
3836         }
3837
3838         if (!(display_wm || cursor_wm)) {
3839                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3840                 return false;
3841         }
3842
3843         return true;
3844 }
3845
3846 static bool g4x_compute_srwm(struct drm_device *dev,
3847                              int plane,
3848                              int latency_ns,
3849                              const struct intel_watermark_params *display,
3850                              const struct intel_watermark_params *cursor,
3851                              int *display_wm, int *cursor_wm)
3852 {
3853         struct drm_crtc *crtc;
3854         int hdisplay, htotal, pixel_size, clock;
3855         unsigned long line_time_us;
3856         int line_count, line_size;
3857         int small, large;
3858         int entries;
3859
3860         if (!latency_ns) {
3861                 *display_wm = *cursor_wm = 0;
3862                 return false;
3863         }
3864
3865         crtc = intel_get_crtc_for_plane(dev, plane);
3866         hdisplay = crtc->mode.hdisplay;
3867         htotal = crtc->mode.htotal;
3868         clock = crtc->mode.clock;
3869         pixel_size = crtc->fb->bits_per_pixel / 8;
3870
3871         line_time_us = (htotal * 1000) / clock;
3872         line_count = (latency_ns / line_time_us + 1000) / 1000;
3873         line_size = hdisplay * pixel_size;
3874
3875         /* Use the minimum of the small and large buffer method for primary */
3876         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3877         large = line_count * line_size;
3878
3879         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3880         *display_wm = entries + display->guard_size;
3881
3882         /* calculate the self-refresh watermark for display cursor */
3883         entries = line_count * pixel_size * 64;
3884         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3885         *cursor_wm = entries + cursor->guard_size;
3886
3887         return g4x_check_srwm(dev,
3888                               *display_wm, *cursor_wm,
3889                               display, cursor);
3890 }
3891
3892 #define single_plane_enabled(mask) is_power_of_2(mask)
3893
3894 static void g4x_update_wm(struct drm_device *dev)
3895 {
3896         static const int sr_latency_ns = 12000;
3897         struct drm_i915_private *dev_priv = dev->dev_private;
3898         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3899         int plane_sr, cursor_sr;
3900         unsigned int enabled = 0;
3901
3902         if (g4x_compute_wm0(dev, 0,
3903                             &g4x_wm_info, latency_ns,
3904                             &g4x_cursor_wm_info, latency_ns,
3905                             &planea_wm, &cursora_wm))
3906                 enabled |= 1;
3907
3908         if (g4x_compute_wm0(dev, 1,
3909                             &g4x_wm_info, latency_ns,
3910                             &g4x_cursor_wm_info, latency_ns,
3911                             &planeb_wm, &cursorb_wm))
3912                 enabled |= 2;
3913
3914         plane_sr = cursor_sr = 0;
3915         if (single_plane_enabled(enabled) &&
3916             g4x_compute_srwm(dev, ffs(enabled) - 1,
3917                              sr_latency_ns,
3918                              &g4x_wm_info,
3919                              &g4x_cursor_wm_info,
3920                              &plane_sr, &cursor_sr))
3921                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3922         else
3923                 I915_WRITE(FW_BLC_SELF,
3924                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3925
3926         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3927                       planea_wm, cursora_wm,
3928                       planeb_wm, cursorb_wm,
3929                       plane_sr, cursor_sr);
3930
3931         I915_WRITE(DSPFW1,
3932                    (plane_sr << DSPFW_SR_SHIFT) |
3933                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3934                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
3935                    planea_wm);
3936         I915_WRITE(DSPFW2,
3937                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3938                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3939         /* HPLL off in SR has some issues on G4x... disable it */
3940         I915_WRITE(DSPFW3,
3941                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3942                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3943 }
3944
3945 static void i965_update_wm(struct drm_device *dev)
3946 {
3947         struct drm_i915_private *dev_priv = dev->dev_private;
3948         struct drm_crtc *crtc;
3949         int srwm = 1;
3950         int cursor_sr = 16;
3951
3952         /* Calc sr entries for one plane configs */
3953         crtc = single_enabled_crtc(dev);
3954         if (crtc) {
3955                 /* self-refresh has much higher latency */
3956                 static const int sr_latency_ns = 12000;
3957                 int clock = crtc->mode.clock;
3958                 int htotal = crtc->mode.htotal;
3959                 int hdisplay = crtc->mode.hdisplay;
3960                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3961                 unsigned long line_time_us;
3962                 int entries;
3963
3964                 line_time_us = ((htotal * 1000) / clock);
3965
3966                 /* Use ns/us then divide to preserve precision */
3967                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3968                         pixel_size * hdisplay;
3969                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3970                 srwm = I965_FIFO_SIZE - entries;
3971                 if (srwm < 0)
3972                         srwm = 1;
3973                 srwm &= 0x1ff;
3974                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3975                               entries, srwm);
3976
3977                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3978                         pixel_size * 64;
3979                 entries = DIV_ROUND_UP(entries,
3980                                           i965_cursor_wm_info.cacheline_size);
3981                 cursor_sr = i965_cursor_wm_info.fifo_size -
3982                         (entries + i965_cursor_wm_info.guard_size);
3983
3984                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3985                         cursor_sr = i965_cursor_wm_info.max_wm;
3986
3987                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3988                               "cursor %d\n", srwm, cursor_sr);
3989
3990                 if (IS_CRESTLINE(dev))
3991                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3992         } else {
3993                 /* Turn off self refresh if both pipes are enabled */
3994                 if (IS_CRESTLINE(dev))
3995                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3996                                    & ~FW_BLC_SELF_EN);
3997         }
3998
3999         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4000                       srwm);
4001
4002         /* 965 has limitations... */
4003         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4004                    (8 << 16) | (8 << 8) | (8 << 0));
4005         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4006         /* update cursor SR watermark */
4007         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4008 }
4009
4010 static void i9xx_update_wm(struct drm_device *dev)
4011 {
4012         struct drm_i915_private *dev_priv = dev->dev_private;
4013         const struct intel_watermark_params *wm_info;
4014         uint32_t fwater_lo;
4015         uint32_t fwater_hi;
4016         int cwm, srwm = 1;
4017         int fifo_size;
4018         int planea_wm, planeb_wm;
4019         struct drm_crtc *crtc, *enabled = NULL;
4020
4021         if (IS_I945GM(dev))
4022                 wm_info = &i945_wm_info;
4023         else if (!IS_GEN2(dev))
4024                 wm_info = &i915_wm_info;
4025         else
4026                 wm_info = &i855_wm_info;
4027
4028         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4029         crtc = intel_get_crtc_for_plane(dev, 0);
4030         if (crtc->enabled && crtc->fb) {
4031                 planea_wm = intel_calculate_wm(crtc->mode.clock,
4032                                                wm_info, fifo_size,
4033                                                crtc->fb->bits_per_pixel / 8,
4034                                                latency_ns);
4035                 enabled = crtc;
4036         } else
4037                 planea_wm = fifo_size - wm_info->guard_size;
4038
4039         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4040         crtc = intel_get_crtc_for_plane(dev, 1);
4041         if (crtc->enabled && crtc->fb) {
4042                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4043                                                wm_info, fifo_size,
4044                                                crtc->fb->bits_per_pixel / 8,
4045                                                latency_ns);
4046                 if (enabled == NULL)
4047                         enabled = crtc;
4048                 else
4049                         enabled = NULL;
4050         } else
4051                 planeb_wm = fifo_size - wm_info->guard_size;
4052
4053         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4054
4055         /*
4056          * Overlay gets an aggressive default since video jitter is bad.
4057          */
4058         cwm = 2;
4059
4060         /* Play safe and disable self-refresh before adjusting watermarks. */
4061         if (IS_I945G(dev) || IS_I945GM(dev))
4062                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4063         else if (IS_I915GM(dev))
4064                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4065
4066         /* Calc sr entries for one plane configs */
4067         if (HAS_FW_BLC(dev) && enabled) {
4068                 /* self-refresh has much higher latency */
4069                 static const int sr_latency_ns = 6000;
4070                 int clock = enabled->mode.clock;
4071                 int htotal = enabled->mode.htotal;
4072                 int hdisplay = enabled->mode.hdisplay;
4073                 int pixel_size = enabled->fb->bits_per_pixel / 8;
4074                 unsigned long line_time_us;
4075                 int entries;
4076
4077                 line_time_us = (htotal * 1000) / clock;
4078
4079                 /* Use ns/us then divide to preserve precision */
4080                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4081                         pixel_size * hdisplay;
4082                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4083                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4084                 srwm = wm_info->fifo_size - entries;
4085                 if (srwm < 0)
4086                         srwm = 1;
4087
4088                 if (IS_I945G(dev) || IS_I945GM(dev))
4089                         I915_WRITE(FW_BLC_SELF,
4090                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4091                 else if (IS_I915GM(dev))
4092                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4093         }
4094
4095         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4096                       planea_wm, planeb_wm, cwm, srwm);
4097
4098         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4099         fwater_hi = (cwm & 0x1f);
4100
4101         /* Set request length to 8 cachelines per fetch */
4102         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4103         fwater_hi = fwater_hi | (1 << 8);
4104
4105         I915_WRITE(FW_BLC, fwater_lo);
4106         I915_WRITE(FW_BLC2, fwater_hi);
4107
4108         if (HAS_FW_BLC(dev)) {
4109                 if (enabled) {
4110                         if (IS_I945G(dev) || IS_I945GM(dev))
4111                                 I915_WRITE(FW_BLC_SELF,
4112                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4113                         else if (IS_I915GM(dev))
4114                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4115                         DRM_DEBUG_KMS("memory self refresh enabled\n");
4116                 } else
4117                         DRM_DEBUG_KMS("memory self refresh disabled\n");
4118         }
4119 }
4120
4121 static void i830_update_wm(struct drm_device *dev)
4122 {
4123         struct drm_i915_private *dev_priv = dev->dev_private;
4124         struct drm_crtc *crtc;
4125         uint32_t fwater_lo;
4126         int planea_wm;
4127
4128         crtc = single_enabled_crtc(dev);
4129         if (crtc == NULL)
4130                 return;
4131
4132         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4133                                        dev_priv->display.get_fifo_size(dev, 0),
4134                                        crtc->fb->bits_per_pixel / 8,
4135                                        latency_ns);
4136         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4137         fwater_lo |= (3<<8) | planea_wm;
4138
4139         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4140
4141         I915_WRITE(FW_BLC, fwater_lo);
4142 }
4143
4144 #define ILK_LP0_PLANE_LATENCY           700
4145 #define ILK_LP0_CURSOR_LATENCY          1300
4146
4147 /*
4148  * Check the wm result.
4149  *
4150  * If any calculated watermark values is larger than the maximum value that
4151  * can be programmed into the associated watermark register, that watermark
4152  * must be disabled.
4153  */
4154 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4155                                 int fbc_wm, int display_wm, int cursor_wm,
4156                                 const struct intel_watermark_params *display,
4157                                 const struct intel_watermark_params *cursor)
4158 {
4159         struct drm_i915_private *dev_priv = dev->dev_private;
4160
4161         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4162                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4163
4164         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4165                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4166                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4167
4168                 /* fbc has it's own way to disable FBC WM */
4169                 I915_WRITE(DISP_ARB_CTL,
4170                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4171                 return false;
4172         }
4173
4174         if (display_wm > display->max_wm) {
4175                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4176                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4177                 return false;
4178         }
4179
4180         if (cursor_wm > cursor->max_wm) {
4181                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4182                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4183                 return false;
4184         }
4185
4186         if (!(fbc_wm || display_wm || cursor_wm)) {
4187                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4188                 return false;
4189         }
4190
4191         return true;
4192 }
4193
4194 /*
4195  * Compute watermark values of WM[1-3],
4196  */
4197 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4198                                   int latency_ns,
4199                                   const struct intel_watermark_params *display,
4200                                   const struct intel_watermark_params *cursor,
4201                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4202 {
4203         struct drm_crtc *crtc;
4204         unsigned long line_time_us;
4205         int hdisplay, htotal, pixel_size, clock;
4206         int line_count, line_size;
4207         int small, large;
4208         int entries;
4209
4210         if (!latency_ns) {
4211                 *fbc_wm = *display_wm = *cursor_wm = 0;
4212                 return false;
4213         }
4214
4215         crtc = intel_get_crtc_for_plane(dev, plane);
4216         hdisplay = crtc->mode.hdisplay;
4217         htotal = crtc->mode.htotal;
4218         clock = crtc->mode.clock;
4219         pixel_size = crtc->fb->bits_per_pixel / 8;
4220
4221         line_time_us = (htotal * 1000) / clock;
4222         line_count = (latency_ns / line_time_us + 1000) / 1000;
4223         line_size = hdisplay * pixel_size;
4224
4225         /* Use the minimum of the small and large buffer method for primary */
4226         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4227         large = line_count * line_size;
4228
4229         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4230         *display_wm = entries + display->guard_size;
4231
4232         /*
4233          * Spec says:
4234          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4235          */
4236         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4237
4238         /* calculate the self-refresh watermark for display cursor */
4239         entries = line_count * pixel_size * 64;
4240         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4241         *cursor_wm = entries + cursor->guard_size;
4242
4243         return ironlake_check_srwm(dev, level,
4244                                    *fbc_wm, *display_wm, *cursor_wm,
4245                                    display, cursor);
4246 }
4247
4248 static void ironlake_update_wm(struct drm_device *dev)
4249 {
4250         struct drm_i915_private *dev_priv = dev->dev_private;
4251         int fbc_wm, plane_wm, cursor_wm;
4252         unsigned int enabled;
4253
4254         enabled = 0;
4255         if (g4x_compute_wm0(dev, 0,
4256                             &ironlake_display_wm_info,
4257                             ILK_LP0_PLANE_LATENCY,
4258                             &ironlake_cursor_wm_info,
4259                             ILK_LP0_CURSOR_LATENCY,
4260                             &plane_wm, &cursor_wm)) {
4261                 I915_WRITE(WM0_PIPEA_ILK,
4262                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4263                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4264                               " plane %d, " "cursor: %d\n",
4265                               plane_wm, cursor_wm);
4266                 enabled |= 1;
4267         }
4268
4269         if (g4x_compute_wm0(dev, 1,
4270                             &ironlake_display_wm_info,
4271                             ILK_LP0_PLANE_LATENCY,
4272                             &ironlake_cursor_wm_info,
4273                             ILK_LP0_CURSOR_LATENCY,
4274                             &plane_wm, &cursor_wm)) {
4275                 I915_WRITE(WM0_PIPEB_ILK,
4276                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4277                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4278                               " plane %d, cursor: %d\n",
4279                               plane_wm, cursor_wm);
4280                 enabled |= 2;
4281         }
4282
4283         /*
4284          * Calculate and update the self-refresh watermark only when one
4285          * display plane is used.
4286          */
4287         I915_WRITE(WM3_LP_ILK, 0);
4288         I915_WRITE(WM2_LP_ILK, 0);
4289         I915_WRITE(WM1_LP_ILK, 0);
4290
4291         if (!single_plane_enabled(enabled))
4292                 return;
4293         enabled = ffs(enabled) - 1;
4294
4295         /* WM1 */
4296         if (!ironlake_compute_srwm(dev, 1, enabled,
4297                                    ILK_READ_WM1_LATENCY() * 500,
4298                                    &ironlake_display_srwm_info,
4299                                    &ironlake_cursor_srwm_info,
4300                                    &fbc_wm, &plane_wm, &cursor_wm))
4301                 return;
4302
4303         I915_WRITE(WM1_LP_ILK,
4304                    WM1_LP_SR_EN |
4305                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4306                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4307                    (plane_wm << WM1_LP_SR_SHIFT) |
4308                    cursor_wm);
4309
4310         /* WM2 */
4311         if (!ironlake_compute_srwm(dev, 2, enabled,
4312                                    ILK_READ_WM2_LATENCY() * 500,
4313                                    &ironlake_display_srwm_info,
4314                                    &ironlake_cursor_srwm_info,
4315                                    &fbc_wm, &plane_wm, &cursor_wm))
4316                 return;
4317
4318         I915_WRITE(WM2_LP_ILK,
4319                    WM2_LP_EN |
4320                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4321                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4322                    (plane_wm << WM1_LP_SR_SHIFT) |
4323                    cursor_wm);
4324
4325         /*
4326          * WM3 is unsupported on ILK, probably because we don't have latency
4327          * data for that power state
4328          */
4329 }
4330
4331 static void sandybridge_update_wm(struct drm_device *dev)
4332 {
4333         struct drm_i915_private *dev_priv = dev->dev_private;
4334         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4335         int fbc_wm, plane_wm, cursor_wm;
4336         unsigned int enabled;
4337
4338         enabled = 0;
4339         if (g4x_compute_wm0(dev, 0,
4340                             &sandybridge_display_wm_info, latency,
4341                             &sandybridge_cursor_wm_info, latency,
4342                             &plane_wm, &cursor_wm)) {
4343                 I915_WRITE(WM0_PIPEA_ILK,
4344                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4345                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4346                               " plane %d, " "cursor: %d\n",
4347                               plane_wm, cursor_wm);
4348                 enabled |= 1;
4349         }
4350
4351         if (g4x_compute_wm0(dev, 1,
4352                             &sandybridge_display_wm_info, latency,
4353                             &sandybridge_cursor_wm_info, latency,
4354                             &plane_wm, &cursor_wm)) {
4355                 I915_WRITE(WM0_PIPEB_ILK,
4356                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4357                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4358                               " plane %d, cursor: %d\n",
4359                               plane_wm, cursor_wm);
4360                 enabled |= 2;
4361         }
4362
4363         /*
4364          * Calculate and update the self-refresh watermark only when one
4365          * display plane is used.
4366          *
4367          * SNB support 3 levels of watermark.
4368          *
4369          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4370          * and disabled in the descending order
4371          *
4372          */
4373         I915_WRITE(WM3_LP_ILK, 0);
4374         I915_WRITE(WM2_LP_ILK, 0);
4375         I915_WRITE(WM1_LP_ILK, 0);
4376
4377         if (!single_plane_enabled(enabled))
4378                 return;
4379         enabled = ffs(enabled) - 1;
4380
4381         /* WM1 */
4382         if (!ironlake_compute_srwm(dev, 1, enabled,
4383                                    SNB_READ_WM1_LATENCY() * 500,
4384                                    &sandybridge_display_srwm_info,
4385                                    &sandybridge_cursor_srwm_info,
4386                                    &fbc_wm, &plane_wm, &cursor_wm))
4387                 return;
4388
4389         I915_WRITE(WM1_LP_ILK,
4390                    WM1_LP_SR_EN |
4391                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4392                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4393                    (plane_wm << WM1_LP_SR_SHIFT) |
4394                    cursor_wm);
4395
4396         /* WM2 */
4397         if (!ironlake_compute_srwm(dev, 2, enabled,
4398                                    SNB_READ_WM2_LATENCY() * 500,
4399                                    &sandybridge_display_srwm_info,
4400                                    &sandybridge_cursor_srwm_info,
4401                                    &fbc_wm, &plane_wm, &cursor_wm))
4402                 return;
4403
4404         I915_WRITE(WM2_LP_ILK,
4405                    WM2_LP_EN |
4406                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4407                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4408                    (plane_wm << WM1_LP_SR_SHIFT) |
4409                    cursor_wm);
4410
4411         /* WM3 */
4412         if (!ironlake_compute_srwm(dev, 3, enabled,
4413                                    SNB_READ_WM3_LATENCY() * 500,
4414                                    &sandybridge_display_srwm_info,
4415                                    &sandybridge_cursor_srwm_info,
4416                                    &fbc_wm, &plane_wm, &cursor_wm))
4417                 return;
4418
4419         I915_WRITE(WM3_LP_ILK,
4420                    WM3_LP_EN |
4421                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4422                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4423                    (plane_wm << WM1_LP_SR_SHIFT) |
4424                    cursor_wm);
4425 }
4426
4427 /**
4428  * intel_update_watermarks - update FIFO watermark values based on current modes
4429  *
4430  * Calculate watermark values for the various WM regs based on current mode
4431  * and plane configuration.
4432  *
4433  * There are several cases to deal with here:
4434  *   - normal (i.e. non-self-refresh)
4435  *   - self-refresh (SR) mode
4436  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4437  *   - lines are small relative to FIFO size (buffer can hold more than 2
4438  *     lines), so need to account for TLB latency
4439  *
4440  *   The normal calculation is:
4441  *     watermark = dotclock * bytes per pixel * latency
4442  *   where latency is platform & configuration dependent (we assume pessimal
4443  *   values here).
4444  *
4445  *   The SR calculation is:
4446  *     watermark = (trunc(latency/line time)+1) * surface width *
4447  *       bytes per pixel
4448  *   where
4449  *     line time = htotal / dotclock
4450  *     surface width = hdisplay for normal plane and 64 for cursor
4451  *   and latency is assumed to be high, as above.
4452  *
4453  * The final value programmed to the register should always be rounded up,
4454  * and include an extra 2 entries to account for clock crossings.
4455  *
4456  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4457  * to set the non-SR watermarks to 8.
4458  */
4459 static void intel_update_watermarks(struct drm_device *dev)
4460 {
4461         struct drm_i915_private *dev_priv = dev->dev_private;
4462
4463         if (dev_priv->display.update_wm)
4464                 dev_priv->display.update_wm(dev);
4465 }
4466
4467 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4468 {
4469         return dev_priv->lvds_use_ssc && i915_panel_use_ssc
4470                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4471 }
4472
4473 /**
4474  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4475  * @crtc: CRTC structure
4476  *
4477  * A pipe may be connected to one or more outputs.  Based on the depth of the
4478  * attached framebuffer, choose a good color depth to use on the pipe.
4479  *
4480  * If possible, match the pipe depth to the fb depth.  In some cases, this
4481  * isn't ideal, because the connected output supports a lesser or restricted
4482  * set of depths.  Resolve that here:
4483  *    LVDS typically supports only 6bpc, so clamp down in that case
4484  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4485  *    Displays may support a restricted set as well, check EDID and clamp as
4486  *      appropriate.
4487  *
4488  * RETURNS:
4489  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4490  * true if they don't match).
4491  */
4492 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4493                                          unsigned int *pipe_bpp)
4494 {
4495         struct drm_device *dev = crtc->dev;
4496         struct drm_i915_private *dev_priv = dev->dev_private;
4497         struct drm_encoder *encoder;
4498         struct drm_connector *connector;
4499         unsigned int display_bpc = UINT_MAX, bpc;
4500
4501         /* Walk the encoders & connectors on this crtc, get min bpc */
4502         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4503                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4504
4505                 if (encoder->crtc != crtc)
4506                         continue;
4507
4508                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4509                         unsigned int lvds_bpc;
4510
4511                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4512                             LVDS_A3_POWER_UP)
4513                                 lvds_bpc = 8;
4514                         else
4515                                 lvds_bpc = 6;
4516
4517                         if (lvds_bpc < display_bpc) {
4518                                 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4519                                 display_bpc = lvds_bpc;
4520                         }
4521                         continue;
4522                 }
4523
4524                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4525                         /* Use VBT settings if we have an eDP panel */
4526                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4527
4528                         if (edp_bpc < display_bpc) {
4529                                 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4530                                 display_bpc = edp_bpc;
4531                         }
4532                         continue;
4533                 }
4534
4535                 /* Not one of the known troublemakers, check the EDID */
4536                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4537                                     head) {
4538                         if (connector->encoder != encoder)
4539                                 continue;
4540
4541                         if (connector->display_info.bpc < display_bpc) {
4542                                 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4543                                 display_bpc = connector->display_info.bpc;
4544                         }
4545                 }
4546
4547                 /*
4548                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4549                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4550                  */
4551                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4552                         if (display_bpc > 8 && display_bpc < 12) {
4553                                 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4554                                 display_bpc = 12;
4555                         } else {
4556                                 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4557                                 display_bpc = 8;
4558                         }
4559                 }
4560         }
4561
4562         /*
4563          * We could just drive the pipe at the highest bpc all the time and
4564          * enable dithering as needed, but that costs bandwidth.  So choose
4565          * the minimum value that expresses the full color range of the fb but
4566          * also stays within the max display bpc discovered above.
4567          */
4568
4569         switch (crtc->fb->depth) {
4570         case 8:
4571                 bpc = 8; /* since we go through a colormap */
4572                 break;
4573         case 15:
4574         case 16:
4575                 bpc = 6; /* min is 18bpp */
4576                 break;
4577         case 24:
4578                 bpc = min((unsigned int)8, display_bpc);
4579                 break;
4580         case 30:
4581                 bpc = min((unsigned int)10, display_bpc);
4582                 break;
4583         case 48:
4584                 bpc = min((unsigned int)12, display_bpc);
4585                 break;
4586         default:
4587                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4588                 bpc = min((unsigned int)8, display_bpc);
4589                 break;
4590         }
4591
4592         DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4593                          bpc, display_bpc);
4594
4595         *pipe_bpp = bpc * 3;
4596
4597         return display_bpc != bpc;
4598 }
4599
4600 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4601                               struct drm_display_mode *mode,
4602                               struct drm_display_mode *adjusted_mode,
4603                               int x, int y,
4604                               struct drm_framebuffer *old_fb)
4605 {
4606         struct drm_device *dev = crtc->dev;
4607         struct drm_i915_private *dev_priv = dev->dev_private;
4608         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4609         int pipe = intel_crtc->pipe;
4610         int plane = intel_crtc->plane;
4611         int refclk, num_connectors = 0;
4612         intel_clock_t clock, reduced_clock;
4613         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4614         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4615         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4616         struct drm_mode_config *mode_config = &dev->mode_config;
4617         struct intel_encoder *encoder;
4618         const intel_limit_t *limit;
4619         int ret;
4620         u32 temp;
4621         u32 lvds_sync = 0;
4622
4623         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4624                 if (encoder->base.crtc != crtc)
4625                         continue;
4626
4627                 switch (encoder->type) {
4628                 case INTEL_OUTPUT_LVDS:
4629                         is_lvds = true;
4630                         break;
4631                 case INTEL_OUTPUT_SDVO:
4632                 case INTEL_OUTPUT_HDMI:
4633                         is_sdvo = true;
4634                         if (encoder->needs_tv_clock)
4635                                 is_tv = true;
4636                         break;
4637                 case INTEL_OUTPUT_DVO:
4638                         is_dvo = true;
4639                         break;
4640                 case INTEL_OUTPUT_TVOUT:
4641                         is_tv = true;
4642                         break;
4643                 case INTEL_OUTPUT_ANALOG:
4644                         is_crt = true;
4645                         break;
4646                 case INTEL_OUTPUT_DISPLAYPORT:
4647                         is_dp = true;
4648                         break;
4649                 }
4650
4651                 num_connectors++;
4652         }
4653
4654         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4655                 refclk = dev_priv->lvds_ssc_freq * 1000;
4656                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4657                               refclk / 1000);
4658         } else if (!IS_GEN2(dev)) {
4659                 refclk = 96000;
4660         } else {
4661                 refclk = 48000;
4662         }
4663
4664         /*
4665          * Returns a set of divisors for the desired target clock with the given
4666          * refclk, or FALSE.  The returned values represent the clock equation:
4667          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4668          */
4669         limit = intel_limit(crtc, refclk);
4670         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4671         if (!ok) {
4672                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4673                 return -EINVAL;
4674         }
4675
4676         /* Ensure that the cursor is valid for the new mode before changing... */
4677         intel_crtc_update_cursor(crtc, true);
4678
4679         if (is_lvds && dev_priv->lvds_downclock_avail) {
4680                 has_reduced_clock = limit->find_pll(limit, crtc,
4681                                                     dev_priv->lvds_downclock,
4682                                                     refclk,
4683                                                     &reduced_clock);
4684                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4685                         /*
4686                          * If the different P is found, it means that we can't
4687                          * switch the display clock by using the FP0/FP1.
4688                          * In such case we will disable the LVDS downclock
4689                          * feature.
4690                          */
4691                         DRM_DEBUG_KMS("Different P is found for "
4692                                       "LVDS clock/downclock\n");
4693                         has_reduced_clock = 0;
4694                 }
4695         }
4696         /* SDVO TV has fixed PLL values depend on its clock range,
4697            this mirrors vbios setting. */
4698         if (is_sdvo && is_tv) {
4699                 if (adjusted_mode->clock >= 100000
4700                     && adjusted_mode->clock < 140500) {
4701                         clock.p1 = 2;
4702                         clock.p2 = 10;
4703                         clock.n = 3;
4704                         clock.m1 = 16;
4705                         clock.m2 = 8;
4706                 } else if (adjusted_mode->clock >= 140500
4707                            && adjusted_mode->clock <= 200000) {
4708                         clock.p1 = 1;
4709                         clock.p2 = 10;
4710                         clock.n = 6;
4711                         clock.m1 = 12;
4712                         clock.m2 = 8;
4713                 }
4714         }
4715
4716         if (IS_PINEVIEW(dev)) {
4717                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4718                 if (has_reduced_clock)
4719                         fp2 = (1 << reduced_clock.n) << 16 |
4720                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4721         } else {
4722                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4723                 if (has_reduced_clock)
4724                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4725                                 reduced_clock.m2;
4726         }
4727
4728         dpll = DPLL_VGA_MODE_DIS;
4729
4730         if (!IS_GEN2(dev)) {
4731                 if (is_lvds)
4732                         dpll |= DPLLB_MODE_LVDS;
4733                 else
4734                         dpll |= DPLLB_MODE_DAC_SERIAL;
4735                 if (is_sdvo) {
4736                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4737                         if (pixel_multiplier > 1) {
4738                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4739                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4740                         }
4741                         dpll |= DPLL_DVO_HIGH_SPEED;
4742                 }
4743                 if (is_dp)
4744                         dpll |= DPLL_DVO_HIGH_SPEED;
4745
4746                 /* compute bitmask from p1 value */
4747                 if (IS_PINEVIEW(dev))
4748                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4749                 else {
4750                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4751                         if (IS_G4X(dev) && has_reduced_clock)
4752                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4753                 }
4754                 switch (clock.p2) {
4755                 case 5:
4756                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4757                         break;
4758                 case 7:
4759                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4760                         break;
4761                 case 10:
4762                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4763                         break;
4764                 case 14:
4765                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4766                         break;
4767                 }
4768                 if (INTEL_INFO(dev)->gen >= 4)
4769                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4770         } else {
4771                 if (is_lvds) {
4772                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4773                 } else {
4774                         if (clock.p1 == 2)
4775                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4776                         else
4777                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4778                         if (clock.p2 == 4)
4779                                 dpll |= PLL_P2_DIVIDE_BY_4;
4780                 }
4781         }
4782
4783         if (is_sdvo && is_tv)
4784                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4785         else if (is_tv)
4786                 /* XXX: just matching BIOS for now */
4787                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4788                 dpll |= 3;
4789         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4790                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4791         else
4792                 dpll |= PLL_REF_INPUT_DREFCLK;
4793
4794         /* setup pipeconf */
4795         pipeconf = I915_READ(PIPECONF(pipe));
4796
4797         /* Set up the display plane register */
4798         dspcntr = DISPPLANE_GAMMA_ENABLE;
4799
4800         /* Ironlake's plane is forced to pipe, bit 24 is to
4801            enable color space conversion */
4802         if (pipe == 0)
4803                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4804         else
4805                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4806
4807         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4808                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4809                  * core speed.
4810                  *
4811                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4812                  * pipe == 0 check?
4813                  */
4814                 if (mode->clock >
4815                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4816                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4817                 else
4818                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4819         }
4820
4821         dpll |= DPLL_VCO_ENABLE;
4822
4823         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4824         drm_mode_debug_printmodeline(mode);
4825
4826         I915_WRITE(FP0(pipe), fp);
4827         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4828
4829         POSTING_READ(DPLL(pipe));
4830         udelay(150);
4831
4832         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4833          * This is an exception to the general rule that mode_set doesn't turn
4834          * things on.
4835          */
4836         if (is_lvds) {
4837                 temp = I915_READ(LVDS);
4838                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4839                 if (pipe == 1) {
4840                         temp |= LVDS_PIPEB_SELECT;
4841                 } else {
4842                         temp &= ~LVDS_PIPEB_SELECT;
4843                 }
4844                 /* set the corresponsding LVDS_BORDER bit */
4845                 temp |= dev_priv->lvds_border_bits;
4846                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4847                  * set the DPLLs for dual-channel mode or not.
4848                  */
4849                 if (clock.p2 == 7)
4850                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4851                 else
4852                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4853
4854                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4855                  * appropriately here, but we need to look more thoroughly into how
4856                  * panels behave in the two modes.
4857                  */
4858                 /* set the dithering flag on LVDS as needed */
4859                 if (INTEL_INFO(dev)->gen >= 4) {
4860                         if (dev_priv->lvds_dither)
4861                                 temp |= LVDS_ENABLE_DITHER;
4862                         else
4863                                 temp &= ~LVDS_ENABLE_DITHER;
4864                 }
4865                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4866                         lvds_sync |= LVDS_HSYNC_POLARITY;
4867                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4868                         lvds_sync |= LVDS_VSYNC_POLARITY;
4869                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4870                     != lvds_sync) {
4871                         char flags[2] = "-+";
4872                         DRM_INFO("Changing LVDS panel from "
4873                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4874                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
4875                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
4876                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4877                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4878                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4879                         temp |= lvds_sync;
4880                 }
4881                 I915_WRITE(LVDS, temp);
4882         }
4883
4884         if (is_dp) {
4885                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4886         }
4887
4888         I915_WRITE(DPLL(pipe), dpll);
4889
4890         /* Wait for the clocks to stabilize. */
4891         POSTING_READ(DPLL(pipe));
4892         udelay(150);
4893
4894         if (INTEL_INFO(dev)->gen >= 4) {
4895                 temp = 0;
4896                 if (is_sdvo) {
4897                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4898                         if (temp > 1)
4899                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4900                         else
4901                                 temp = 0;
4902                 }
4903                 I915_WRITE(DPLL_MD(pipe), temp);
4904         } else {
4905                 /* The pixel multiplier can only be updated once the
4906                  * DPLL is enabled and the clocks are stable.
4907                  *
4908                  * So write it again.
4909                  */
4910                 I915_WRITE(DPLL(pipe), dpll);
4911         }
4912
4913         intel_crtc->lowfreq_avail = false;
4914         if (is_lvds && has_reduced_clock && i915_powersave) {
4915                 I915_WRITE(FP1(pipe), fp2);
4916                 intel_crtc->lowfreq_avail = true;
4917                 if (HAS_PIPE_CXSR(dev)) {
4918                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4919                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4920                 }
4921         } else {
4922                 I915_WRITE(FP1(pipe), fp);
4923                 if (HAS_PIPE_CXSR(dev)) {
4924                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4925                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4926                 }
4927         }
4928
4929         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4930                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4931                 /* the chip adds 2 halflines automatically */
4932                 adjusted_mode->crtc_vdisplay -= 1;
4933                 adjusted_mode->crtc_vtotal -= 1;
4934                 adjusted_mode->crtc_vblank_start -= 1;
4935                 adjusted_mode->crtc_vblank_end -= 1;
4936                 adjusted_mode->crtc_vsync_end -= 1;
4937                 adjusted_mode->crtc_vsync_start -= 1;
4938         } else
4939                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4940
4941         I915_WRITE(HTOTAL(pipe),
4942                    (adjusted_mode->crtc_hdisplay - 1) |
4943                    ((adjusted_mode->crtc_htotal - 1) << 16));
4944         I915_WRITE(HBLANK(pipe),
4945                    (adjusted_mode->crtc_hblank_start - 1) |
4946                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4947         I915_WRITE(HSYNC(pipe),
4948                    (adjusted_mode->crtc_hsync_start - 1) |
4949                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4950
4951         I915_WRITE(VTOTAL(pipe),
4952                    (adjusted_mode->crtc_vdisplay - 1) |
4953                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4954         I915_WRITE(VBLANK(pipe),
4955                    (adjusted_mode->crtc_vblank_start - 1) |
4956                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4957         I915_WRITE(VSYNC(pipe),
4958                    (adjusted_mode->crtc_vsync_start - 1) |
4959                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4960
4961         /* pipesrc and dspsize control the size that is scaled from,
4962          * which should always be the user's requested size.
4963          */
4964         I915_WRITE(DSPSIZE(plane),
4965                    ((mode->vdisplay - 1) << 16) |
4966                    (mode->hdisplay - 1));
4967         I915_WRITE(DSPPOS(plane), 0);
4968         I915_WRITE(PIPESRC(pipe),
4969                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4970
4971         I915_WRITE(PIPECONF(pipe), pipeconf);
4972         POSTING_READ(PIPECONF(pipe));
4973         intel_enable_pipe(dev_priv, pipe, false);
4974
4975         intel_wait_for_vblank(dev, pipe);
4976
4977         I915_WRITE(DSPCNTR(plane), dspcntr);
4978         POSTING_READ(DSPCNTR(plane));
4979         intel_enable_plane(dev_priv, plane, pipe);
4980
4981         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4982
4983         intel_update_watermarks(dev);
4984
4985         return ret;
4986 }
4987
4988 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4989                                   struct drm_display_mode *mode,
4990                                   struct drm_display_mode *adjusted_mode,
4991                                   int x, int y,
4992                                   struct drm_framebuffer *old_fb)
4993 {
4994         struct drm_device *dev = crtc->dev;
4995         struct drm_i915_private *dev_priv = dev->dev_private;
4996         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4997         int pipe = intel_crtc->pipe;
4998         int plane = intel_crtc->plane;
4999         int refclk, num_connectors = 0;
5000         intel_clock_t clock, reduced_clock;
5001         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5002         bool ok, has_reduced_clock = false, is_sdvo = false;
5003         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5004         struct intel_encoder *has_edp_encoder = NULL;
5005         struct drm_mode_config *mode_config = &dev->mode_config;
5006         struct intel_encoder *encoder;
5007         const intel_limit_t *limit;
5008         int ret;
5009         struct fdi_m_n m_n = {0};
5010         u32 temp;
5011         u32 lvds_sync = 0;
5012         int target_clock, pixel_multiplier, lane, link_bw, factor;
5013         unsigned int pipe_bpp;
5014         bool dither;
5015
5016         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5017                 if (encoder->base.crtc != crtc)
5018                         continue;
5019
5020                 switch (encoder->type) {
5021                 case INTEL_OUTPUT_LVDS:
5022                         is_lvds = true;
5023                         break;
5024                 case INTEL_OUTPUT_SDVO:
5025                 case INTEL_OUTPUT_HDMI:
5026                         is_sdvo = true;
5027                         if (encoder->needs_tv_clock)
5028                                 is_tv = true;
5029                         break;
5030                 case INTEL_OUTPUT_TVOUT:
5031                         is_tv = true;
5032                         break;
5033                 case INTEL_OUTPUT_ANALOG:
5034                         is_crt = true;
5035                         break;
5036                 case INTEL_OUTPUT_DISPLAYPORT:
5037                         is_dp = true;
5038                         break;
5039                 case INTEL_OUTPUT_EDP:
5040                         has_edp_encoder = encoder;
5041                         break;
5042                 }
5043
5044                 num_connectors++;
5045         }
5046
5047         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5048                 refclk = dev_priv->lvds_ssc_freq * 1000;
5049                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5050                               refclk / 1000);
5051         } else {
5052                 refclk = 96000;
5053                 if (!has_edp_encoder ||
5054                     intel_encoder_is_pch_edp(&has_edp_encoder->base))
5055                         refclk = 120000; /* 120Mhz refclk */
5056         }
5057
5058         /*
5059          * Returns a set of divisors for the desired target clock with the given
5060          * refclk, or FALSE.  The returned values represent the clock equation:
5061          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5062          */
5063         limit = intel_limit(crtc, refclk);
5064         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5065         if (!ok) {
5066                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5067                 return -EINVAL;
5068         }
5069
5070         /* Ensure that the cursor is valid for the new mode before changing... */
5071         intel_crtc_update_cursor(crtc, true);
5072
5073         if (is_lvds && dev_priv->lvds_downclock_avail) {
5074                 has_reduced_clock = limit->find_pll(limit, crtc,
5075                                                     dev_priv->lvds_downclock,
5076                                                     refclk,
5077                                                     &reduced_clock);
5078                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5079                         /*
5080                          * If the different P is found, it means that we can't
5081                          * switch the display clock by using the FP0/FP1.
5082                          * In such case we will disable the LVDS downclock
5083                          * feature.
5084                          */
5085                         DRM_DEBUG_KMS("Different P is found for "
5086                                       "LVDS clock/downclock\n");
5087                         has_reduced_clock = 0;
5088                 }
5089         }
5090         /* SDVO TV has fixed PLL values depend on its clock range,
5091            this mirrors vbios setting. */
5092         if (is_sdvo && is_tv) {
5093                 if (adjusted_mode->clock >= 100000
5094                     && adjusted_mode->clock < 140500) {
5095                         clock.p1 = 2;
5096                         clock.p2 = 10;
5097                         clock.n = 3;
5098                         clock.m1 = 16;
5099                         clock.m2 = 8;
5100                 } else if (adjusted_mode->clock >= 140500
5101                            && adjusted_mode->clock <= 200000) {
5102                         clock.p1 = 1;
5103                         clock.p2 = 10;
5104                         clock.n = 6;
5105                         clock.m1 = 12;
5106                         clock.m2 = 8;
5107                 }
5108         }
5109
5110         /* FDI link */
5111         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5112         lane = 0;
5113         /* CPU eDP doesn't require FDI link, so just set DP M/N
5114            according to current link config */
5115         if (has_edp_encoder &&
5116             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5117                 target_clock = mode->clock;
5118                 intel_edp_link_config(has_edp_encoder,
5119                                       &lane, &link_bw);
5120         } else {
5121                 /* [e]DP over FDI requires target mode clock
5122                    instead of link clock */
5123                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5124                         target_clock = mode->clock;
5125                 else
5126                         target_clock = adjusted_mode->clock;
5127
5128                 /* FDI is a binary signal running at ~2.7GHz, encoding
5129                  * each output octet as 10 bits. The actual frequency
5130                  * is stored as a divider into a 100MHz clock, and the
5131                  * mode pixel clock is stored in units of 1KHz.
5132                  * Hence the bw of each lane in terms of the mode signal
5133                  * is:
5134                  */
5135                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5136         }
5137
5138         /* determine panel color depth */
5139         temp = I915_READ(PIPECONF(pipe));
5140         temp &= ~PIPE_BPC_MASK;
5141         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5142         switch (pipe_bpp) {
5143         case 18:
5144                 temp |= PIPE_6BPC;
5145                 break;
5146         case 24:
5147                 temp |= PIPE_8BPC;
5148                 break;
5149         case 30:
5150                 temp |= PIPE_10BPC;
5151                 break;
5152         case 36:
5153                 temp |= PIPE_12BPC;
5154                 break;
5155         default:
5156                 WARN(1, "intel_choose_pipe_bpp returned invalid value\n");
5157                 temp |= PIPE_8BPC;
5158                 pipe_bpp = 24;
5159                 break;
5160         }
5161
5162         intel_crtc->bpp = pipe_bpp;
5163         I915_WRITE(PIPECONF(pipe), temp);
5164
5165         if (!lane) {
5166                 /*
5167                  * Account for spread spectrum to avoid
5168                  * oversubscribing the link. Max center spread
5169                  * is 2.5%; use 5% for safety's sake.
5170                  */
5171                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5172                 lane = bps / (link_bw * 8) + 1;
5173         }
5174
5175         intel_crtc->fdi_lanes = lane;
5176
5177         if (pixel_multiplier > 1)
5178                 link_bw *= pixel_multiplier;
5179         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5180                              &m_n);
5181
5182         /* Ironlake: try to setup display ref clock before DPLL
5183          * enabling. This is only under driver's control after
5184          * PCH B stepping, previous chipset stepping should be
5185          * ignoring this setting.
5186          */
5187         temp = I915_READ(PCH_DREF_CONTROL);
5188         /* Always enable nonspread source */
5189         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5190         temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5191         temp &= ~DREF_SSC_SOURCE_MASK;
5192         temp |= DREF_SSC_SOURCE_ENABLE;
5193         I915_WRITE(PCH_DREF_CONTROL, temp);
5194
5195         POSTING_READ(PCH_DREF_CONTROL);
5196         udelay(200);
5197
5198         if (has_edp_encoder) {
5199                 if (intel_panel_use_ssc(dev_priv)) {
5200                         temp |= DREF_SSC1_ENABLE;
5201                         I915_WRITE(PCH_DREF_CONTROL, temp);
5202
5203                         POSTING_READ(PCH_DREF_CONTROL);
5204                         udelay(200);
5205                 }
5206                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5207
5208                 /* Enable CPU source on CPU attached eDP */
5209                 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5210                         if (intel_panel_use_ssc(dev_priv))
5211                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5212                         else
5213                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5214                 } else {
5215                         /* Enable SSC on PCH eDP if needed */
5216                         if (intel_panel_use_ssc(dev_priv)) {
5217                                 DRM_ERROR("enabling SSC on PCH\n");
5218                                 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
5219                         }
5220                 }
5221                 I915_WRITE(PCH_DREF_CONTROL, temp);
5222                 POSTING_READ(PCH_DREF_CONTROL);
5223                 udelay(200);
5224         }
5225
5226         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5227         if (has_reduced_clock)
5228                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5229                         reduced_clock.m2;
5230
5231         /* Enable autotuning of the PLL clock (if permissible) */
5232         factor = 21;
5233         if (is_lvds) {
5234                 if ((intel_panel_use_ssc(dev_priv) &&
5235                      dev_priv->lvds_ssc_freq == 100) ||
5236                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5237                         factor = 25;
5238         } else if (is_sdvo && is_tv)
5239                 factor = 20;
5240
5241         if (clock.m1 < factor * clock.n)
5242                 fp |= FP_CB_TUNE;
5243
5244         dpll = 0;
5245
5246         if (is_lvds)
5247                 dpll |= DPLLB_MODE_LVDS;
5248         else
5249                 dpll |= DPLLB_MODE_DAC_SERIAL;
5250         if (is_sdvo) {
5251                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5252                 if (pixel_multiplier > 1) {
5253                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5254                 }
5255                 dpll |= DPLL_DVO_HIGH_SPEED;
5256         }
5257         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5258                 dpll |= DPLL_DVO_HIGH_SPEED;
5259
5260         /* compute bitmask from p1 value */
5261         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5262         /* also FPA1 */
5263         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5264
5265         switch (clock.p2) {
5266         case 5:
5267                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5268                 break;
5269         case 7:
5270                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5271                 break;
5272         case 10:
5273                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5274                 break;
5275         case 14:
5276                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5277                 break;
5278         }
5279
5280         if (is_sdvo && is_tv)
5281                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5282         else if (is_tv)
5283                 /* XXX: just matching BIOS for now */
5284                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5285                 dpll |= 3;
5286         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5287                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5288         else
5289                 dpll |= PLL_REF_INPUT_DREFCLK;
5290
5291         /* setup pipeconf */
5292         pipeconf = I915_READ(PIPECONF(pipe));
5293
5294         /* Set up the display plane register */
5295         dspcntr = DISPPLANE_GAMMA_ENABLE;
5296
5297         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5298         drm_mode_debug_printmodeline(mode);
5299
5300         /* PCH eDP needs FDI, but CPU eDP does not */
5301         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5302                 I915_WRITE(PCH_FP0(pipe), fp);
5303                 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5304
5305                 POSTING_READ(PCH_DPLL(pipe));
5306                 udelay(150);
5307         }
5308
5309         /* enable transcoder DPLL */
5310         if (HAS_PCH_CPT(dev)) {
5311                 temp = I915_READ(PCH_DPLL_SEL);
5312                 switch (pipe) {
5313                 case 0:
5314                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5315                         break;
5316                 case 1:
5317                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5318                         break;
5319                 case 2:
5320                         /* FIXME: manage transcoder PLLs? */
5321                         temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5322                         break;
5323                 default:
5324                         BUG();
5325                 }
5326                 I915_WRITE(PCH_DPLL_SEL, temp);
5327
5328                 POSTING_READ(PCH_DPLL_SEL);
5329                 udelay(150);
5330         }
5331
5332         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5333          * This is an exception to the general rule that mode_set doesn't turn
5334          * things on.
5335          */
5336         if (is_lvds) {
5337                 temp = I915_READ(PCH_LVDS);
5338                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5339                 if (pipe == 1) {
5340                         if (HAS_PCH_CPT(dev))
5341                                 temp |= PORT_TRANS_B_SEL_CPT;
5342                         else
5343                                 temp |= LVDS_PIPEB_SELECT;
5344                 } else {
5345                         if (HAS_PCH_CPT(dev))
5346                                 temp &= ~PORT_TRANS_SEL_MASK;
5347                         else
5348                                 temp &= ~LVDS_PIPEB_SELECT;
5349                 }
5350                 /* set the corresponsding LVDS_BORDER bit */
5351                 temp |= dev_priv->lvds_border_bits;
5352                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5353                  * set the DPLLs for dual-channel mode or not.
5354                  */
5355                 if (clock.p2 == 7)
5356                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5357                 else
5358                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5359
5360                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5361                  * appropriately here, but we need to look more thoroughly into how
5362                  * panels behave in the two modes.
5363                  */
5364                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5365                         lvds_sync |= LVDS_HSYNC_POLARITY;
5366                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5367                         lvds_sync |= LVDS_VSYNC_POLARITY;
5368                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5369                     != lvds_sync) {
5370                         char flags[2] = "-+";
5371                         DRM_INFO("Changing LVDS panel from "
5372                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5373                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5374                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5375                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5376                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5377                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5378                         temp |= lvds_sync;
5379                 }
5380                 I915_WRITE(PCH_LVDS, temp);
5381         }
5382
5383         pipeconf &= ~PIPECONF_DITHER_EN;
5384         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5385         if ((is_lvds && dev_priv->lvds_dither) || dither) {
5386                 pipeconf |= PIPECONF_DITHER_EN;
5387                 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5388         }
5389         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5390                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5391         } else {
5392                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5393                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5394                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5395                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5396                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5397         }
5398
5399         if (!has_edp_encoder ||
5400             intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5401                 I915_WRITE(PCH_DPLL(pipe), dpll);
5402
5403                 /* Wait for the clocks to stabilize. */
5404                 POSTING_READ(PCH_DPLL(pipe));
5405                 udelay(150);
5406
5407                 /* The pixel multiplier can only be updated once the
5408                  * DPLL is enabled and the clocks are stable.
5409                  *
5410                  * So write it again.
5411                  */
5412                 I915_WRITE(PCH_DPLL(pipe), dpll);
5413         }
5414
5415         intel_crtc->lowfreq_avail = false;
5416         if (is_lvds && has_reduced_clock && i915_powersave) {
5417                 I915_WRITE(PCH_FP1(pipe), fp2);
5418                 intel_crtc->lowfreq_avail = true;
5419                 if (HAS_PIPE_CXSR(dev)) {
5420                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5421                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5422                 }
5423         } else {
5424                 I915_WRITE(PCH_FP1(pipe), fp);
5425                 if (HAS_PIPE_CXSR(dev)) {
5426                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5427                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5428                 }
5429         }
5430
5431         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5432                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5433                 /* the chip adds 2 halflines automatically */
5434                 adjusted_mode->crtc_vdisplay -= 1;
5435                 adjusted_mode->crtc_vtotal -= 1;
5436                 adjusted_mode->crtc_vblank_start -= 1;
5437                 adjusted_mode->crtc_vblank_end -= 1;
5438                 adjusted_mode->crtc_vsync_end -= 1;
5439                 adjusted_mode->crtc_vsync_start -= 1;
5440         } else
5441                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5442
5443         I915_WRITE(HTOTAL(pipe),
5444                    (adjusted_mode->crtc_hdisplay - 1) |
5445                    ((adjusted_mode->crtc_htotal - 1) << 16));
5446         I915_WRITE(HBLANK(pipe),
5447                    (adjusted_mode->crtc_hblank_start - 1) |
5448                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5449         I915_WRITE(HSYNC(pipe),
5450                    (adjusted_mode->crtc_hsync_start - 1) |
5451                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5452
5453         I915_WRITE(VTOTAL(pipe),
5454                    (adjusted_mode->crtc_vdisplay - 1) |
5455                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5456         I915_WRITE(VBLANK(pipe),
5457                    (adjusted_mode->crtc_vblank_start - 1) |
5458                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5459         I915_WRITE(VSYNC(pipe),
5460                    (adjusted_mode->crtc_vsync_start - 1) |
5461                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5462
5463         /* pipesrc controls the size that is scaled from, which should
5464          * always be the user's requested size.
5465          */
5466         I915_WRITE(PIPESRC(pipe),
5467                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5468
5469         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5470         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5471         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5472         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5473
5474         if (has_edp_encoder &&
5475             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5476                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5477         }
5478
5479         I915_WRITE(PIPECONF(pipe), pipeconf);
5480         POSTING_READ(PIPECONF(pipe));
5481
5482         intel_wait_for_vblank(dev, pipe);
5483
5484         if (IS_GEN5(dev)) {
5485                 /* enable address swizzle for tiling buffer */
5486                 temp = I915_READ(DISP_ARB_CTL);
5487                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5488         }
5489
5490         I915_WRITE(DSPCNTR(plane), dspcntr);
5491         POSTING_READ(DSPCNTR(plane));
5492
5493         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5494
5495         intel_update_watermarks(dev);
5496
5497         return ret;
5498 }
5499
5500 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5501                                struct drm_display_mode *mode,
5502                                struct drm_display_mode *adjusted_mode,
5503                                int x, int y,
5504                                struct drm_framebuffer *old_fb)
5505 {
5506         struct drm_device *dev = crtc->dev;
5507         struct drm_i915_private *dev_priv = dev->dev_private;
5508         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5509         int pipe = intel_crtc->pipe;
5510         int ret;
5511
5512         drm_vblank_pre_modeset(dev, pipe);
5513
5514         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5515                                               x, y, old_fb);
5516
5517         drm_vblank_post_modeset(dev, pipe);
5518
5519         return ret;
5520 }
5521
5522 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5523 void intel_crtc_load_lut(struct drm_crtc *crtc)
5524 {
5525         struct drm_device *dev = crtc->dev;
5526         struct drm_i915_private *dev_priv = dev->dev_private;
5527         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5528         int palreg = PALETTE(intel_crtc->pipe);
5529         int i;
5530
5531         /* The clocks have to be on to load the palette. */
5532         if (!crtc->enabled)
5533                 return;
5534
5535         /* use legacy palette for Ironlake */
5536         if (HAS_PCH_SPLIT(dev))
5537                 palreg = LGC_PALETTE(intel_crtc->pipe);
5538
5539         for (i = 0; i < 256; i++) {
5540                 I915_WRITE(palreg + 4 * i,
5541                            (intel_crtc->lut_r[i] << 16) |
5542                            (intel_crtc->lut_g[i] << 8) |
5543                            intel_crtc->lut_b[i]);
5544         }
5545 }
5546
5547 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5548 {
5549         struct drm_device *dev = crtc->dev;
5550         struct drm_i915_private *dev_priv = dev->dev_private;
5551         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5552         bool visible = base != 0;
5553         u32 cntl;
5554
5555         if (intel_crtc->cursor_visible == visible)
5556                 return;
5557
5558         cntl = I915_READ(_CURACNTR);
5559         if (visible) {
5560                 /* On these chipsets we can only modify the base whilst
5561                  * the cursor is disabled.
5562                  */
5563                 I915_WRITE(_CURABASE, base);
5564
5565                 cntl &= ~(CURSOR_FORMAT_MASK);
5566                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5567                 cntl |= CURSOR_ENABLE |
5568                         CURSOR_GAMMA_ENABLE |
5569                         CURSOR_FORMAT_ARGB;
5570         } else
5571                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5572         I915_WRITE(_CURACNTR, cntl);
5573
5574         intel_crtc->cursor_visible = visible;
5575 }
5576
5577 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5578 {
5579         struct drm_device *dev = crtc->dev;
5580         struct drm_i915_private *dev_priv = dev->dev_private;
5581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5582         int pipe = intel_crtc->pipe;
5583         bool visible = base != 0;
5584
5585         if (intel_crtc->cursor_visible != visible) {
5586                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5587                 if (base) {
5588                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5589                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5590                         cntl |= pipe << 28; /* Connect to correct pipe */
5591                 } else {
5592                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5593                         cntl |= CURSOR_MODE_DISABLE;
5594                 }
5595                 I915_WRITE(CURCNTR(pipe), cntl);
5596
5597                 intel_crtc->cursor_visible = visible;
5598         }
5599         /* and commit changes on next vblank */
5600         I915_WRITE(CURBASE(pipe), base);
5601 }
5602
5603 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5604 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5605                                      bool on)
5606 {
5607         struct drm_device *dev = crtc->dev;
5608         struct drm_i915_private *dev_priv = dev->dev_private;
5609         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5610         int pipe = intel_crtc->pipe;
5611         int x = intel_crtc->cursor_x;
5612         int y = intel_crtc->cursor_y;
5613         u32 base, pos;
5614         bool visible;
5615
5616         pos = 0;
5617
5618         if (on && crtc->enabled && crtc->fb) {
5619                 base = intel_crtc->cursor_addr;
5620                 if (x > (int) crtc->fb->width)
5621                         base = 0;
5622
5623                 if (y > (int) crtc->fb->height)
5624                         base = 0;
5625         } else
5626                 base = 0;
5627
5628         if (x < 0) {
5629                 if (x + intel_crtc->cursor_width < 0)
5630                         base = 0;
5631
5632                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5633                 x = -x;
5634         }
5635         pos |= x << CURSOR_X_SHIFT;
5636
5637         if (y < 0) {
5638                 if (y + intel_crtc->cursor_height < 0)
5639                         base = 0;
5640
5641                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5642                 y = -y;
5643         }
5644         pos |= y << CURSOR_Y_SHIFT;
5645
5646         visible = base != 0;
5647         if (!visible && !intel_crtc->cursor_visible)
5648                 return;
5649
5650         I915_WRITE(CURPOS(pipe), pos);
5651         if (IS_845G(dev) || IS_I865G(dev))
5652                 i845_update_cursor(crtc, base);
5653         else
5654                 i9xx_update_cursor(crtc, base);
5655
5656         if (visible)
5657                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5658 }
5659
5660 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5661                                  struct drm_file *file,
5662                                  uint32_t handle,
5663                                  uint32_t width, uint32_t height)
5664 {
5665         struct drm_device *dev = crtc->dev;
5666         struct drm_i915_private *dev_priv = dev->dev_private;
5667         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5668         struct drm_i915_gem_object *obj;
5669         uint32_t addr;
5670         int ret;
5671
5672         DRM_DEBUG_KMS("\n");
5673
5674         /* if we want to turn off the cursor ignore width and height */
5675         if (!handle) {
5676                 DRM_DEBUG_KMS("cursor off\n");
5677                 addr = 0;
5678                 obj = NULL;
5679                 mutex_lock(&dev->struct_mutex);
5680                 goto finish;
5681         }
5682
5683         /* Currently we only support 64x64 cursors */
5684         if (width != 64 || height != 64) {
5685                 DRM_ERROR("we currently only support 64x64 cursors\n");
5686                 return -EINVAL;
5687         }
5688
5689         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5690         if (&obj->base == NULL)
5691                 return -ENOENT;
5692
5693         if (obj->base.size < width * height * 4) {
5694                 DRM_ERROR("buffer is to small\n");
5695                 ret = -ENOMEM;
5696                 goto fail;
5697         }
5698
5699         /* we only need to pin inside GTT if cursor is non-phy */
5700         mutex_lock(&dev->struct_mutex);
5701         if (!dev_priv->info->cursor_needs_physical) {
5702                 if (obj->tiling_mode) {
5703                         DRM_ERROR("cursor cannot be tiled\n");
5704                         ret = -EINVAL;
5705                         goto fail_locked;
5706                 }
5707
5708                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5709                 if (ret) {
5710                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5711                         goto fail_locked;
5712                 }
5713
5714                 ret = i915_gem_object_put_fence(obj);
5715                 if (ret) {
5716                         DRM_ERROR("failed to release fence for cursor");
5717                         goto fail_unpin;
5718                 }
5719
5720                 addr = obj->gtt_offset;
5721         } else {
5722                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5723                 ret = i915_gem_attach_phys_object(dev, obj,
5724                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5725                                                   align);
5726                 if (ret) {
5727                         DRM_ERROR("failed to attach phys object\n");
5728                         goto fail_locked;
5729                 }
5730                 addr = obj->phys_obj->handle->busaddr;
5731         }
5732
5733         if (IS_GEN2(dev))
5734                 I915_WRITE(CURSIZE, (height << 12) | width);
5735
5736  finish:
5737         if (intel_crtc->cursor_bo) {
5738                 if (dev_priv->info->cursor_needs_physical) {
5739                         if (intel_crtc->cursor_bo != obj)
5740                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5741                 } else
5742                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5743                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5744         }
5745
5746         mutex_unlock(&dev->struct_mutex);
5747
5748         intel_crtc->cursor_addr = addr;
5749         intel_crtc->cursor_bo = obj;
5750         intel_crtc->cursor_width = width;
5751         intel_crtc->cursor_height = height;
5752
5753         intel_crtc_update_cursor(crtc, true);
5754
5755         return 0;
5756 fail_unpin:
5757         i915_gem_object_unpin(obj);
5758 fail_locked:
5759         mutex_unlock(&dev->struct_mutex);
5760 fail:
5761         drm_gem_object_unreference_unlocked(&obj->base);
5762         return ret;
5763 }
5764
5765 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5766 {
5767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5768
5769         intel_crtc->cursor_x = x;
5770         intel_crtc->cursor_y = y;
5771
5772         intel_crtc_update_cursor(crtc, true);
5773
5774         return 0;
5775 }
5776
5777 /** Sets the color ramps on behalf of RandR */
5778 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5779                                  u16 blue, int regno)
5780 {
5781         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5782
5783         intel_crtc->lut_r[regno] = red >> 8;
5784         intel_crtc->lut_g[regno] = green >> 8;
5785         intel_crtc->lut_b[regno] = blue >> 8;
5786 }
5787
5788 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5789                              u16 *blue, int regno)
5790 {
5791         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5792
5793         *red = intel_crtc->lut_r[regno] << 8;
5794         *green = intel_crtc->lut_g[regno] << 8;
5795         *blue = intel_crtc->lut_b[regno] << 8;
5796 }
5797
5798 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5799                                  u16 *blue, uint32_t start, uint32_t size)
5800 {
5801         int end = (start + size > 256) ? 256 : start + size, i;
5802         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5803
5804         for (i = start; i < end; i++) {
5805                 intel_crtc->lut_r[i] = red[i] >> 8;
5806                 intel_crtc->lut_g[i] = green[i] >> 8;
5807                 intel_crtc->lut_b[i] = blue[i] >> 8;
5808         }
5809
5810         intel_crtc_load_lut(crtc);
5811 }
5812
5813 /**
5814  * Get a pipe with a simple mode set on it for doing load-based monitor
5815  * detection.
5816  *
5817  * It will be up to the load-detect code to adjust the pipe as appropriate for
5818  * its requirements.  The pipe will be connected to no other encoders.
5819  *
5820  * Currently this code will only succeed if there is a pipe with no encoders
5821  * configured for it.  In the future, it could choose to temporarily disable
5822  * some outputs to free up a pipe for its use.
5823  *
5824  * \return crtc, or NULL if no pipes are available.
5825  */
5826
5827 /* VESA 640x480x72Hz mode to set on the pipe */
5828 static struct drm_display_mode load_detect_mode = {
5829         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5830                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5831 };
5832
5833 static struct drm_framebuffer *
5834 intel_framebuffer_create(struct drm_device *dev,
5835                          struct drm_mode_fb_cmd *mode_cmd,
5836                          struct drm_i915_gem_object *obj)
5837 {
5838         struct intel_framebuffer *intel_fb;
5839         int ret;
5840
5841         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5842         if (!intel_fb) {
5843                 drm_gem_object_unreference_unlocked(&obj->base);
5844                 return ERR_PTR(-ENOMEM);
5845         }
5846
5847         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5848         if (ret) {
5849                 drm_gem_object_unreference_unlocked(&obj->base);
5850                 kfree(intel_fb);
5851                 return ERR_PTR(ret);
5852         }
5853
5854         return &intel_fb->base;
5855 }
5856
5857 static u32
5858 intel_framebuffer_pitch_for_width(int width, int bpp)
5859 {
5860         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5861         return ALIGN(pitch, 64);
5862 }
5863
5864 static u32
5865 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5866 {
5867         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5868         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5869 }
5870
5871 static struct drm_framebuffer *
5872 intel_framebuffer_create_for_mode(struct drm_device *dev,
5873                                   struct drm_display_mode *mode,
5874                                   int depth, int bpp)
5875 {
5876         struct drm_i915_gem_object *obj;
5877         struct drm_mode_fb_cmd mode_cmd;
5878
5879         obj = i915_gem_alloc_object(dev,
5880                                     intel_framebuffer_size_for_mode(mode, bpp));
5881         if (obj == NULL)
5882                 return ERR_PTR(-ENOMEM);
5883
5884         mode_cmd.width = mode->hdisplay;
5885         mode_cmd.height = mode->vdisplay;
5886         mode_cmd.depth = depth;
5887         mode_cmd.bpp = bpp;
5888         mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5889
5890         return intel_framebuffer_create(dev, &mode_cmd, obj);
5891 }
5892
5893 static struct drm_framebuffer *
5894 mode_fits_in_fbdev(struct drm_device *dev,
5895                    struct drm_display_mode *mode)
5896 {
5897         struct drm_i915_private *dev_priv = dev->dev_private;
5898         struct drm_i915_gem_object *obj;
5899         struct drm_framebuffer *fb;
5900
5901         if (dev_priv->fbdev == NULL)
5902                 return NULL;
5903
5904         obj = dev_priv->fbdev->ifb.obj;
5905         if (obj == NULL)
5906                 return NULL;
5907
5908         fb = &dev_priv->fbdev->ifb.base;
5909         if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5910                                                           fb->bits_per_pixel))
5911                 return NULL;
5912
5913         if (obj->base.size < mode->vdisplay * fb->pitch)
5914                 return NULL;
5915
5916         return fb;
5917 }
5918
5919 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5920                                 struct drm_connector *connector,
5921                                 struct drm_display_mode *mode,
5922                                 struct intel_load_detect_pipe *old)
5923 {
5924         struct intel_crtc *intel_crtc;
5925         struct drm_crtc *possible_crtc;
5926         struct drm_encoder *encoder = &intel_encoder->base;
5927         struct drm_crtc *crtc = NULL;
5928         struct drm_device *dev = encoder->dev;
5929         struct drm_framebuffer *old_fb;
5930         int i = -1;
5931
5932         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5933                       connector->base.id, drm_get_connector_name(connector),
5934                       encoder->base.id, drm_get_encoder_name(encoder));
5935
5936         /*
5937          * Algorithm gets a little messy:
5938          *
5939          *   - if the connector already has an assigned crtc, use it (but make
5940          *     sure it's on first)
5941          *
5942          *   - try to find the first unused crtc that can drive this connector,
5943          *     and use that if we find one
5944          */
5945
5946         /* See if we already have a CRTC for this connector */
5947         if (encoder->crtc) {
5948                 crtc = encoder->crtc;
5949
5950                 intel_crtc = to_intel_crtc(crtc);
5951                 old->dpms_mode = intel_crtc->dpms_mode;
5952                 old->load_detect_temp = false;
5953
5954                 /* Make sure the crtc and connector are running */
5955                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5956                         struct drm_encoder_helper_funcs *encoder_funcs;
5957                         struct drm_crtc_helper_funcs *crtc_funcs;
5958
5959                         crtc_funcs = crtc->helper_private;
5960                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5961
5962                         encoder_funcs = encoder->helper_private;
5963                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5964                 }
5965
5966                 return true;
5967         }
5968
5969         /* Find an unused one (if possible) */
5970         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5971                 i++;
5972                 if (!(encoder->possible_crtcs & (1 << i)))
5973                         continue;
5974                 if (!possible_crtc->enabled) {
5975                         crtc = possible_crtc;
5976                         break;
5977                 }
5978         }
5979
5980         /*
5981          * If we didn't find an unused CRTC, don't use any.
5982          */
5983         if (!crtc) {
5984                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5985                 return false;
5986         }
5987
5988         encoder->crtc = crtc;
5989         connector->encoder = encoder;
5990
5991         intel_crtc = to_intel_crtc(crtc);
5992         old->dpms_mode = intel_crtc->dpms_mode;
5993         old->load_detect_temp = true;
5994         old->release_fb = NULL;
5995
5996         if (!mode)
5997                 mode = &load_detect_mode;
5998
5999         old_fb = crtc->fb;
6000
6001         /* We need a framebuffer large enough to accommodate all accesses
6002          * that the plane may generate whilst we perform load detection.
6003          * We can not rely on the fbcon either being present (we get called
6004          * during its initialisation to detect all boot displays, or it may
6005          * not even exist) or that it is large enough to satisfy the
6006          * requested mode.
6007          */
6008         crtc->fb = mode_fits_in_fbdev(dev, mode);
6009         if (crtc->fb == NULL) {
6010                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6011                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6012                 old->release_fb = crtc->fb;
6013         } else
6014                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6015         if (IS_ERR(crtc->fb)) {
6016                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6017                 crtc->fb = old_fb;
6018                 return false;
6019         }
6020
6021         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6022                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6023                 if (old->release_fb)
6024                         old->release_fb->funcs->destroy(old->release_fb);
6025                 crtc->fb = old_fb;
6026                 return false;
6027         }
6028
6029         /* let the connector get through one full cycle before testing */
6030         intel_wait_for_vblank(dev, intel_crtc->pipe);
6031
6032         return true;
6033 }
6034
6035 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6036                                     struct drm_connector *connector,
6037                                     struct intel_load_detect_pipe *old)
6038 {
6039         struct drm_encoder *encoder = &intel_encoder->base;
6040         struct drm_device *dev = encoder->dev;
6041         struct drm_crtc *crtc = encoder->crtc;
6042         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6043         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6044
6045         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6046                       connector->base.id, drm_get_connector_name(connector),
6047                       encoder->base.id, drm_get_encoder_name(encoder));
6048
6049         if (old->load_detect_temp) {
6050                 connector->encoder = NULL;
6051                 drm_helper_disable_unused_functions(dev);
6052
6053                 if (old->release_fb)
6054                         old->release_fb->funcs->destroy(old->release_fb);
6055
6056                 return;
6057         }
6058
6059         /* Switch crtc and encoder back off if necessary */
6060         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6061                 encoder_funcs->dpms(encoder, old->dpms_mode);
6062                 crtc_funcs->dpms(crtc, old->dpms_mode);
6063         }
6064 }
6065
6066 /* Returns the clock of the currently programmed mode of the given pipe. */
6067 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6068 {
6069         struct drm_i915_private *dev_priv = dev->dev_private;
6070         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6071         int pipe = intel_crtc->pipe;
6072         u32 dpll = I915_READ(DPLL(pipe));
6073         u32 fp;
6074         intel_clock_t clock;
6075
6076         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6077                 fp = I915_READ(FP0(pipe));
6078         else
6079                 fp = I915_READ(FP1(pipe));
6080
6081         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6082         if (IS_PINEVIEW(dev)) {
6083                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6084                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6085         } else {
6086                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6087                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6088         }
6089
6090         if (!IS_GEN2(dev)) {
6091                 if (IS_PINEVIEW(dev))
6092                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6093                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6094                 else
6095                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6096                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6097
6098                 switch (dpll & DPLL_MODE_MASK) {
6099                 case DPLLB_MODE_DAC_SERIAL:
6100                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6101                                 5 : 10;
6102                         break;
6103                 case DPLLB_MODE_LVDS:
6104                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6105                                 7 : 14;
6106                         break;
6107                 default:
6108                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6109                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6110                         return 0;
6111                 }
6112
6113                 /* XXX: Handle the 100Mhz refclk */
6114                 intel_clock(dev, 96000, &clock);
6115         } else {
6116                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6117
6118                 if (is_lvds) {
6119                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6120                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6121                         clock.p2 = 14;
6122
6123                         if ((dpll & PLL_REF_INPUT_MASK) ==
6124                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6125                                 /* XXX: might not be 66MHz */
6126                                 intel_clock(dev, 66000, &clock);
6127                         } else
6128                                 intel_clock(dev, 48000, &clock);
6129                 } else {
6130                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6131                                 clock.p1 = 2;
6132                         else {
6133                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6134                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6135                         }
6136                         if (dpll & PLL_P2_DIVIDE_BY_4)
6137                                 clock.p2 = 4;
6138                         else
6139                                 clock.p2 = 2;
6140
6141                         intel_clock(dev, 48000, &clock);
6142                 }
6143         }
6144
6145         /* XXX: It would be nice to validate the clocks, but we can't reuse
6146          * i830PllIsValid() because it relies on the xf86_config connector
6147          * configuration being accurate, which it isn't necessarily.
6148          */
6149
6150         return clock.dot;
6151 }
6152
6153 /** Returns the currently programmed mode of the given pipe. */
6154 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6155                                              struct drm_crtc *crtc)
6156 {
6157         struct drm_i915_private *dev_priv = dev->dev_private;
6158         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6159         int pipe = intel_crtc->pipe;
6160         struct drm_display_mode *mode;
6161         int htot = I915_READ(HTOTAL(pipe));
6162         int hsync = I915_READ(HSYNC(pipe));
6163         int vtot = I915_READ(VTOTAL(pipe));
6164         int vsync = I915_READ(VSYNC(pipe));
6165
6166         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6167         if (!mode)
6168                 return NULL;
6169
6170         mode->clock = intel_crtc_clock_get(dev, crtc);
6171         mode->hdisplay = (htot & 0xffff) + 1;
6172         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6173         mode->hsync_start = (hsync & 0xffff) + 1;
6174         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6175         mode->vdisplay = (vtot & 0xffff) + 1;
6176         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6177         mode->vsync_start = (vsync & 0xffff) + 1;
6178         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6179
6180         drm_mode_set_name(mode);
6181         drm_mode_set_crtcinfo(mode, 0);
6182
6183         return mode;
6184 }
6185
6186 #define GPU_IDLE_TIMEOUT 500 /* ms */
6187
6188 /* When this timer fires, we've been idle for awhile */
6189 static void intel_gpu_idle_timer(unsigned long arg)
6190 {
6191         struct drm_device *dev = (struct drm_device *)arg;
6192         drm_i915_private_t *dev_priv = dev->dev_private;
6193
6194         if (!list_empty(&dev_priv->mm.active_list)) {
6195                 /* Still processing requests, so just re-arm the timer. */
6196                 mod_timer(&dev_priv->idle_timer, jiffies +
6197                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6198                 return;
6199         }
6200
6201         dev_priv->busy = false;
6202         queue_work(dev_priv->wq, &dev_priv->idle_work);
6203 }
6204
6205 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6206
6207 static void intel_crtc_idle_timer(unsigned long arg)
6208 {
6209         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6210         struct drm_crtc *crtc = &intel_crtc->base;
6211         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6212         struct intel_framebuffer *intel_fb;
6213
6214         intel_fb = to_intel_framebuffer(crtc->fb);
6215         if (intel_fb && intel_fb->obj->active) {
6216                 /* The framebuffer is still being accessed by the GPU. */
6217                 mod_timer(&intel_crtc->idle_timer, jiffies +
6218                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6219                 return;
6220         }
6221
6222         intel_crtc->busy = false;
6223         queue_work(dev_priv->wq, &dev_priv->idle_work);
6224 }
6225
6226 static void intel_increase_pllclock(struct drm_crtc *crtc)
6227 {
6228         struct drm_device *dev = crtc->dev;
6229         drm_i915_private_t *dev_priv = dev->dev_private;
6230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6231         int pipe = intel_crtc->pipe;
6232         int dpll_reg = DPLL(pipe);
6233         int dpll;
6234
6235         if (HAS_PCH_SPLIT(dev))
6236                 return;
6237
6238         if (!dev_priv->lvds_downclock_avail)
6239                 return;
6240
6241         dpll = I915_READ(dpll_reg);
6242         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6243                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6244
6245                 /* Unlock panel regs */
6246                 I915_WRITE(PP_CONTROL,
6247                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6248
6249                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6250                 I915_WRITE(dpll_reg, dpll);
6251                 intel_wait_for_vblank(dev, pipe);
6252
6253                 dpll = I915_READ(dpll_reg);
6254                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6255                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6256
6257                 /* ...and lock them again */
6258                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6259         }
6260
6261         /* Schedule downclock */
6262         mod_timer(&intel_crtc->idle_timer, jiffies +
6263                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6264 }
6265
6266 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6267 {
6268         struct drm_device *dev = crtc->dev;
6269         drm_i915_private_t *dev_priv = dev->dev_private;
6270         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6271         int pipe = intel_crtc->pipe;
6272         int dpll_reg = DPLL(pipe);
6273         int dpll = I915_READ(dpll_reg);
6274
6275         if (HAS_PCH_SPLIT(dev))
6276                 return;
6277
6278         if (!dev_priv->lvds_downclock_avail)
6279                 return;
6280
6281         /*
6282          * Since this is called by a timer, we should never get here in
6283          * the manual case.
6284          */
6285         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6286                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6287
6288                 /* Unlock panel regs */
6289                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6290                            PANEL_UNLOCK_REGS);
6291
6292                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6293                 I915_WRITE(dpll_reg, dpll);
6294                 intel_wait_for_vblank(dev, pipe);
6295                 dpll = I915_READ(dpll_reg);
6296                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6297                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6298
6299                 /* ...and lock them again */
6300                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6301         }
6302
6303 }
6304
6305 /**
6306  * intel_idle_update - adjust clocks for idleness
6307  * @work: work struct
6308  *
6309  * Either the GPU or display (or both) went idle.  Check the busy status
6310  * here and adjust the CRTC and GPU clocks as necessary.
6311  */
6312 static void intel_idle_update(struct work_struct *work)
6313 {
6314         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6315                                                     idle_work);
6316         struct drm_device *dev = dev_priv->dev;
6317         struct drm_crtc *crtc;
6318         struct intel_crtc *intel_crtc;
6319
6320         if (!i915_powersave)
6321                 return;
6322
6323         mutex_lock(&dev->struct_mutex);
6324
6325         i915_update_gfx_val(dev_priv);
6326
6327         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6328                 /* Skip inactive CRTCs */
6329                 if (!crtc->fb)
6330                         continue;
6331
6332                 intel_crtc = to_intel_crtc(crtc);
6333                 if (!intel_crtc->busy)
6334                         intel_decrease_pllclock(crtc);
6335         }
6336
6337
6338         mutex_unlock(&dev->struct_mutex);
6339 }
6340
6341 /**
6342  * intel_mark_busy - mark the GPU and possibly the display busy
6343  * @dev: drm device
6344  * @obj: object we're operating on
6345  *
6346  * Callers can use this function to indicate that the GPU is busy processing
6347  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6348  * buffer), we'll also mark the display as busy, so we know to increase its
6349  * clock frequency.
6350  */
6351 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6352 {
6353         drm_i915_private_t *dev_priv = dev->dev_private;
6354         struct drm_crtc *crtc = NULL;
6355         struct intel_framebuffer *intel_fb;
6356         struct intel_crtc *intel_crtc;
6357
6358         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6359                 return;
6360
6361         if (!dev_priv->busy)
6362                 dev_priv->busy = true;
6363         else
6364                 mod_timer(&dev_priv->idle_timer, jiffies +
6365                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6366
6367         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6368                 if (!crtc->fb)
6369                         continue;
6370
6371                 intel_crtc = to_intel_crtc(crtc);
6372                 intel_fb = to_intel_framebuffer(crtc->fb);
6373                 if (intel_fb->obj == obj) {
6374                         if (!intel_crtc->busy) {
6375                                 /* Non-busy -> busy, upclock */
6376                                 intel_increase_pllclock(crtc);
6377                                 intel_crtc->busy = true;
6378                         } else {
6379                                 /* Busy -> busy, put off timer */
6380                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6381                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6382                         }
6383                 }
6384         }
6385 }
6386
6387 static void intel_crtc_destroy(struct drm_crtc *crtc)
6388 {
6389         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6390         struct drm_device *dev = crtc->dev;
6391         struct intel_unpin_work *work;
6392         unsigned long flags;
6393
6394         spin_lock_irqsave(&dev->event_lock, flags);
6395         work = intel_crtc->unpin_work;
6396         intel_crtc->unpin_work = NULL;
6397         spin_unlock_irqrestore(&dev->event_lock, flags);
6398
6399         if (work) {
6400                 cancel_work_sync(&work->work);
6401                 kfree(work);
6402         }
6403
6404         drm_crtc_cleanup(crtc);
6405
6406         kfree(intel_crtc);
6407 }
6408
6409 static void intel_unpin_work_fn(struct work_struct *__work)
6410 {
6411         struct intel_unpin_work *work =
6412                 container_of(__work, struct intel_unpin_work, work);
6413
6414         mutex_lock(&work->dev->struct_mutex);
6415         i915_gem_object_unpin(work->old_fb_obj);
6416         drm_gem_object_unreference(&work->pending_flip_obj->base);
6417         drm_gem_object_unreference(&work->old_fb_obj->base);
6418
6419         intel_update_fbc(work->dev);
6420         mutex_unlock(&work->dev->struct_mutex);
6421         kfree(work);
6422 }
6423
6424 static void do_intel_finish_page_flip(struct drm_device *dev,
6425                                       struct drm_crtc *crtc)
6426 {
6427         drm_i915_private_t *dev_priv = dev->dev_private;
6428         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6429         struct intel_unpin_work *work;
6430         struct drm_i915_gem_object *obj;
6431         struct drm_pending_vblank_event *e;
6432         struct timeval tnow, tvbl;
6433         unsigned long flags;
6434
6435         /* Ignore early vblank irqs */
6436         if (intel_crtc == NULL)
6437                 return;
6438
6439         do_gettimeofday(&tnow);
6440
6441         spin_lock_irqsave(&dev->event_lock, flags);
6442         work = intel_crtc->unpin_work;
6443         if (work == NULL || !work->pending) {
6444                 spin_unlock_irqrestore(&dev->event_lock, flags);
6445                 return;
6446         }
6447
6448         intel_crtc->unpin_work = NULL;
6449
6450         if (work->event) {
6451                 e = work->event;
6452                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6453
6454                 /* Called before vblank count and timestamps have
6455                  * been updated for the vblank interval of flip
6456                  * completion? Need to increment vblank count and
6457                  * add one videorefresh duration to returned timestamp
6458                  * to account for this. We assume this happened if we
6459                  * get called over 0.9 frame durations after the last
6460                  * timestamped vblank.
6461                  *
6462                  * This calculation can not be used with vrefresh rates
6463                  * below 5Hz (10Hz to be on the safe side) without
6464                  * promoting to 64 integers.
6465                  */
6466                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6467                     9 * crtc->framedur_ns) {
6468                         e->event.sequence++;
6469                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6470                                              crtc->framedur_ns);
6471                 }
6472
6473                 e->event.tv_sec = tvbl.tv_sec;
6474                 e->event.tv_usec = tvbl.tv_usec;
6475
6476                 list_add_tail(&e->base.link,
6477                               &e->base.file_priv->event_list);
6478                 wake_up_interruptible(&e->base.file_priv->event_wait);
6479         }
6480
6481         drm_vblank_put(dev, intel_crtc->pipe);
6482
6483         spin_unlock_irqrestore(&dev->event_lock, flags);
6484
6485         obj = work->old_fb_obj;
6486
6487         atomic_clear_mask(1 << intel_crtc->plane,
6488                           &obj->pending_flip.counter);
6489         if (atomic_read(&obj->pending_flip) == 0)
6490                 wake_up(&dev_priv->pending_flip_queue);
6491
6492         schedule_work(&work->work);
6493
6494         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6495 }
6496
6497 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6498 {
6499         drm_i915_private_t *dev_priv = dev->dev_private;
6500         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6501
6502         do_intel_finish_page_flip(dev, crtc);
6503 }
6504
6505 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6506 {
6507         drm_i915_private_t *dev_priv = dev->dev_private;
6508         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6509
6510         do_intel_finish_page_flip(dev, crtc);
6511 }
6512
6513 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6514 {
6515         drm_i915_private_t *dev_priv = dev->dev_private;
6516         struct intel_crtc *intel_crtc =
6517                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6518         unsigned long flags;
6519
6520         spin_lock_irqsave(&dev->event_lock, flags);
6521         if (intel_crtc->unpin_work) {
6522                 if ((++intel_crtc->unpin_work->pending) > 1)
6523                         DRM_ERROR("Prepared flip multiple times\n");
6524         } else {
6525                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6526         }
6527         spin_unlock_irqrestore(&dev->event_lock, flags);
6528 }
6529
6530 static int intel_gen2_queue_flip(struct drm_device *dev,
6531                                  struct drm_crtc *crtc,
6532                                  struct drm_framebuffer *fb,
6533                                  struct drm_i915_gem_object *obj)
6534 {
6535         struct drm_i915_private *dev_priv = dev->dev_private;
6536         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6537         unsigned long offset;
6538         u32 flip_mask;
6539         int ret;
6540
6541         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6542         if (ret)
6543                 goto out;
6544
6545         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6546         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6547
6548         ret = BEGIN_LP_RING(6);
6549         if (ret)
6550                 goto out;
6551
6552         /* Can't queue multiple flips, so wait for the previous
6553          * one to finish before executing the next.
6554          */
6555         if (intel_crtc->plane)
6556                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6557         else
6558                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6559         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6560         OUT_RING(MI_NOOP);
6561         OUT_RING(MI_DISPLAY_FLIP |
6562                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6563         OUT_RING(fb->pitch);
6564         OUT_RING(obj->gtt_offset + offset);
6565         OUT_RING(MI_NOOP);
6566         ADVANCE_LP_RING();
6567 out:
6568         return ret;
6569 }
6570
6571 static int intel_gen3_queue_flip(struct drm_device *dev,
6572                                  struct drm_crtc *crtc,
6573                                  struct drm_framebuffer *fb,
6574                                  struct drm_i915_gem_object *obj)
6575 {
6576         struct drm_i915_private *dev_priv = dev->dev_private;
6577         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6578         unsigned long offset;
6579         u32 flip_mask;
6580         int ret;
6581
6582         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6583         if (ret)
6584                 goto out;
6585
6586         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6587         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6588
6589         ret = BEGIN_LP_RING(6);
6590         if (ret)
6591                 goto out;
6592
6593         if (intel_crtc->plane)
6594                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6595         else
6596                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6597         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6598         OUT_RING(MI_NOOP);
6599         OUT_RING(MI_DISPLAY_FLIP_I915 |
6600                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6601         OUT_RING(fb->pitch);
6602         OUT_RING(obj->gtt_offset + offset);
6603         OUT_RING(MI_NOOP);
6604
6605         ADVANCE_LP_RING();
6606 out:
6607         return ret;
6608 }
6609
6610 static int intel_gen4_queue_flip(struct drm_device *dev,
6611                                  struct drm_crtc *crtc,
6612                                  struct drm_framebuffer *fb,
6613                                  struct drm_i915_gem_object *obj)
6614 {
6615         struct drm_i915_private *dev_priv = dev->dev_private;
6616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6617         uint32_t pf, pipesrc;
6618         int ret;
6619
6620         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6621         if (ret)
6622                 goto out;
6623
6624         ret = BEGIN_LP_RING(4);
6625         if (ret)
6626                 goto out;
6627
6628         /* i965+ uses the linear or tiled offsets from the
6629          * Display Registers (which do not change across a page-flip)
6630          * so we need only reprogram the base address.
6631          */
6632         OUT_RING(MI_DISPLAY_FLIP |
6633                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6634         OUT_RING(fb->pitch);
6635         OUT_RING(obj->gtt_offset | obj->tiling_mode);
6636
6637         /* XXX Enabling the panel-fitter across page-flip is so far
6638          * untested on non-native modes, so ignore it for now.
6639          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6640          */
6641         pf = 0;
6642         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6643         OUT_RING(pf | pipesrc);
6644         ADVANCE_LP_RING();
6645 out:
6646         return ret;
6647 }
6648
6649 static int intel_gen6_queue_flip(struct drm_device *dev,
6650                                  struct drm_crtc *crtc,
6651                                  struct drm_framebuffer *fb,
6652                                  struct drm_i915_gem_object *obj)
6653 {
6654         struct drm_i915_private *dev_priv = dev->dev_private;
6655         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6656         uint32_t pf, pipesrc;
6657         int ret;
6658
6659         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6660         if (ret)
6661                 goto out;
6662
6663         ret = BEGIN_LP_RING(4);
6664         if (ret)
6665                 goto out;
6666
6667         OUT_RING(MI_DISPLAY_FLIP |
6668                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6669         OUT_RING(fb->pitch | obj->tiling_mode);
6670         OUT_RING(obj->gtt_offset);
6671
6672         pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6673         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6674         OUT_RING(pf | pipesrc);
6675         ADVANCE_LP_RING();
6676 out:
6677         return ret;
6678 }
6679
6680 /*
6681  * On gen7 we currently use the blit ring because (in early silicon at least)
6682  * the render ring doesn't give us interrpts for page flip completion, which
6683  * means clients will hang after the first flip is queued.  Fortunately the
6684  * blit ring generates interrupts properly, so use it instead.
6685  */
6686 static int intel_gen7_queue_flip(struct drm_device *dev,
6687                                  struct drm_crtc *crtc,
6688                                  struct drm_framebuffer *fb,
6689                                  struct drm_i915_gem_object *obj)
6690 {
6691         struct drm_i915_private *dev_priv = dev->dev_private;
6692         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6693         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6694         int ret;
6695
6696         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6697         if (ret)
6698                 goto out;
6699
6700         ret = intel_ring_begin(ring, 4);
6701         if (ret)
6702                 goto out;
6703
6704         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6705         intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
6706         intel_ring_emit(ring, (obj->gtt_offset));
6707         intel_ring_emit(ring, (MI_NOOP));
6708         intel_ring_advance(ring);
6709 out:
6710         return ret;
6711 }
6712
6713 static int intel_default_queue_flip(struct drm_device *dev,
6714                                     struct drm_crtc *crtc,
6715                                     struct drm_framebuffer *fb,
6716                                     struct drm_i915_gem_object *obj)
6717 {
6718         return -ENODEV;
6719 }
6720
6721 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6722                                 struct drm_framebuffer *fb,
6723                                 struct drm_pending_vblank_event *event)
6724 {
6725         struct drm_device *dev = crtc->dev;
6726         struct drm_i915_private *dev_priv = dev->dev_private;
6727         struct intel_framebuffer *intel_fb;
6728         struct drm_i915_gem_object *obj;
6729         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6730         struct intel_unpin_work *work;
6731         unsigned long flags;
6732         int ret;
6733
6734         work = kzalloc(sizeof *work, GFP_KERNEL);
6735         if (work == NULL)
6736                 return -ENOMEM;
6737
6738         work->event = event;
6739         work->dev = crtc->dev;
6740         intel_fb = to_intel_framebuffer(crtc->fb);
6741         work->old_fb_obj = intel_fb->obj;
6742         INIT_WORK(&work->work, intel_unpin_work_fn);
6743
6744         /* We borrow the event spin lock for protecting unpin_work */
6745         spin_lock_irqsave(&dev->event_lock, flags);
6746         if (intel_crtc->unpin_work) {
6747                 spin_unlock_irqrestore(&dev->event_lock, flags);
6748                 kfree(work);
6749
6750                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6751                 return -EBUSY;
6752         }
6753         intel_crtc->unpin_work = work;
6754         spin_unlock_irqrestore(&dev->event_lock, flags);
6755
6756         intel_fb = to_intel_framebuffer(fb);
6757         obj = intel_fb->obj;
6758
6759         mutex_lock(&dev->struct_mutex);
6760
6761         /* Reference the objects for the scheduled work. */
6762         drm_gem_object_reference(&work->old_fb_obj->base);
6763         drm_gem_object_reference(&obj->base);
6764
6765         crtc->fb = fb;
6766
6767         ret = drm_vblank_get(dev, intel_crtc->pipe);
6768         if (ret)
6769                 goto cleanup_objs;
6770
6771         work->pending_flip_obj = obj;
6772
6773         work->enable_stall_check = true;
6774
6775         /* Block clients from rendering to the new back buffer until
6776          * the flip occurs and the object is no longer visible.
6777          */
6778         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6779
6780         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6781         if (ret)
6782                 goto cleanup_pending;
6783
6784         intel_disable_fbc(dev);
6785         mutex_unlock(&dev->struct_mutex);
6786
6787         trace_i915_flip_request(intel_crtc->plane, obj);
6788
6789         return 0;
6790
6791 cleanup_pending:
6792         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6793 cleanup_objs:
6794         drm_gem_object_unreference(&work->old_fb_obj->base);
6795         drm_gem_object_unreference(&obj->base);
6796         mutex_unlock(&dev->struct_mutex);
6797
6798         spin_lock_irqsave(&dev->event_lock, flags);
6799         intel_crtc->unpin_work = NULL;
6800         spin_unlock_irqrestore(&dev->event_lock, flags);
6801
6802         kfree(work);
6803
6804         return ret;
6805 }
6806
6807 static void intel_sanitize_modesetting(struct drm_device *dev,
6808                                        int pipe, int plane)
6809 {
6810         struct drm_i915_private *dev_priv = dev->dev_private;
6811         u32 reg, val;
6812
6813         if (HAS_PCH_SPLIT(dev))
6814                 return;
6815
6816         /* Who knows what state these registers were left in by the BIOS or
6817          * grub?
6818          *
6819          * If we leave the registers in a conflicting state (e.g. with the
6820          * display plane reading from the other pipe than the one we intend
6821          * to use) then when we attempt to teardown the active mode, we will
6822          * not disable the pipes and planes in the correct order -- leaving
6823          * a plane reading from a disabled pipe and possibly leading to
6824          * undefined behaviour.
6825          */
6826
6827         reg = DSPCNTR(plane);
6828         val = I915_READ(reg);
6829
6830         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6831                 return;
6832         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6833                 return;
6834
6835         /* This display plane is active and attached to the other CPU pipe. */
6836         pipe = !pipe;
6837
6838         /* Disable the plane and wait for it to stop reading from the pipe. */
6839         intel_disable_plane(dev_priv, plane, pipe);
6840         intel_disable_pipe(dev_priv, pipe);
6841 }
6842
6843 static void intel_crtc_reset(struct drm_crtc *crtc)
6844 {
6845         struct drm_device *dev = crtc->dev;
6846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6847
6848         /* Reset flags back to the 'unknown' status so that they
6849          * will be correctly set on the initial modeset.
6850          */
6851         intel_crtc->dpms_mode = -1;
6852
6853         /* We need to fix up any BIOS configuration that conflicts with
6854          * our expectations.
6855          */
6856         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6857 }
6858
6859 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6860         .dpms = intel_crtc_dpms,
6861         .mode_fixup = intel_crtc_mode_fixup,
6862         .mode_set = intel_crtc_mode_set,
6863         .mode_set_base = intel_pipe_set_base,
6864         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6865         .load_lut = intel_crtc_load_lut,
6866         .disable = intel_crtc_disable,
6867 };
6868
6869 static const struct drm_crtc_funcs intel_crtc_funcs = {
6870         .reset = intel_crtc_reset,
6871         .cursor_set = intel_crtc_cursor_set,
6872         .cursor_move = intel_crtc_cursor_move,
6873         .gamma_set = intel_crtc_gamma_set,
6874         .set_config = drm_crtc_helper_set_config,
6875         .destroy = intel_crtc_destroy,
6876         .page_flip = intel_crtc_page_flip,
6877 };
6878
6879 static void intel_crtc_init(struct drm_device *dev, int pipe)
6880 {
6881         drm_i915_private_t *dev_priv = dev->dev_private;
6882         struct intel_crtc *intel_crtc;
6883         int i;
6884
6885         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6886         if (intel_crtc == NULL)
6887                 return;
6888
6889         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6890
6891         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6892         for (i = 0; i < 256; i++) {
6893                 intel_crtc->lut_r[i] = i;
6894                 intel_crtc->lut_g[i] = i;
6895                 intel_crtc->lut_b[i] = i;
6896         }
6897
6898         /* Swap pipes & planes for FBC on pre-965 */
6899         intel_crtc->pipe = pipe;
6900         intel_crtc->plane = pipe;
6901         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6902                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6903                 intel_crtc->plane = !pipe;
6904         }
6905
6906         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6907                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6908         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6909         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6910
6911         intel_crtc_reset(&intel_crtc->base);
6912         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6913         intel_crtc->bpp = 24; /* default for pre-Ironlake */
6914
6915         if (HAS_PCH_SPLIT(dev)) {
6916                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6917                 intel_helper_funcs.commit = ironlake_crtc_commit;
6918         } else {
6919                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6920                 intel_helper_funcs.commit = i9xx_crtc_commit;
6921         }
6922
6923         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6924
6925         intel_crtc->busy = false;
6926
6927         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6928                     (unsigned long)intel_crtc);
6929 }
6930
6931 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6932                                 struct drm_file *file)
6933 {
6934         drm_i915_private_t *dev_priv = dev->dev_private;
6935         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6936         struct drm_mode_object *drmmode_obj;
6937         struct intel_crtc *crtc;
6938
6939         if (!dev_priv) {
6940                 DRM_ERROR("called with no initialization\n");
6941                 return -EINVAL;
6942         }
6943
6944         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6945                         DRM_MODE_OBJECT_CRTC);
6946
6947         if (!drmmode_obj) {
6948                 DRM_ERROR("no such CRTC id\n");
6949                 return -EINVAL;
6950         }
6951
6952         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6953         pipe_from_crtc_id->pipe = crtc->pipe;
6954
6955         return 0;
6956 }
6957
6958 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6959 {
6960         struct intel_encoder *encoder;
6961         int index_mask = 0;
6962         int entry = 0;
6963
6964         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6965                 if (type_mask & encoder->clone_mask)
6966                         index_mask |= (1 << entry);
6967                 entry++;
6968         }
6969
6970         return index_mask;
6971 }
6972
6973 static bool has_edp_a(struct drm_device *dev)
6974 {
6975         struct drm_i915_private *dev_priv = dev->dev_private;
6976
6977         if (!IS_MOBILE(dev))
6978                 return false;
6979
6980         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6981                 return false;
6982
6983         if (IS_GEN5(dev) &&
6984             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6985                 return false;
6986
6987         return true;
6988 }
6989
6990 static void intel_setup_outputs(struct drm_device *dev)
6991 {
6992         struct drm_i915_private *dev_priv = dev->dev_private;
6993         struct intel_encoder *encoder;
6994         bool dpd_is_edp = false;
6995         bool has_lvds = false;
6996
6997         if (IS_MOBILE(dev) && !IS_I830(dev))
6998                 has_lvds = intel_lvds_init(dev);
6999         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7000                 /* disable the panel fitter on everything but LVDS */
7001                 I915_WRITE(PFIT_CONTROL, 0);
7002         }
7003
7004         if (HAS_PCH_SPLIT(dev)) {
7005                 dpd_is_edp = intel_dpd_is_edp(dev);
7006
7007                 if (has_edp_a(dev))
7008                         intel_dp_init(dev, DP_A);
7009
7010                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7011                         intel_dp_init(dev, PCH_DP_D);
7012         }
7013
7014         intel_crt_init(dev);
7015
7016         if (HAS_PCH_SPLIT(dev)) {
7017                 int found;
7018
7019                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7020                         /* PCH SDVOB multiplex with HDMIB */
7021                         found = intel_sdvo_init(dev, PCH_SDVOB);
7022                         if (!found)
7023                                 intel_hdmi_init(dev, HDMIB);
7024                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7025                                 intel_dp_init(dev, PCH_DP_B);
7026                 }
7027
7028                 if (I915_READ(HDMIC) & PORT_DETECTED)
7029                         intel_hdmi_init(dev, HDMIC);
7030
7031                 if (I915_READ(HDMID) & PORT_DETECTED)
7032                         intel_hdmi_init(dev, HDMID);
7033
7034                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7035                         intel_dp_init(dev, PCH_DP_C);
7036
7037                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7038                         intel_dp_init(dev, PCH_DP_D);
7039
7040         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7041                 bool found = false;
7042
7043                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7044                         DRM_DEBUG_KMS("probing SDVOB\n");
7045                         found = intel_sdvo_init(dev, SDVOB);
7046                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7047                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7048                                 intel_hdmi_init(dev, SDVOB);
7049                         }
7050
7051                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7052                                 DRM_DEBUG_KMS("probing DP_B\n");
7053                                 intel_dp_init(dev, DP_B);
7054                         }
7055                 }
7056
7057                 /* Before G4X SDVOC doesn't have its own detect register */
7058
7059                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7060                         DRM_DEBUG_KMS("probing SDVOC\n");
7061                         found = intel_sdvo_init(dev, SDVOC);
7062                 }
7063
7064                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7065
7066                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7067                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7068                                 intel_hdmi_init(dev, SDVOC);
7069                         }
7070                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7071                                 DRM_DEBUG_KMS("probing DP_C\n");
7072                                 intel_dp_init(dev, DP_C);
7073                         }
7074                 }
7075
7076                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7077                     (I915_READ(DP_D) & DP_DETECTED)) {
7078                         DRM_DEBUG_KMS("probing DP_D\n");
7079                         intel_dp_init(dev, DP_D);
7080                 }
7081         } else if (IS_GEN2(dev))
7082                 intel_dvo_init(dev);
7083
7084         if (SUPPORTS_TV(dev))
7085                 intel_tv_init(dev);
7086
7087         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7088                 encoder->base.possible_crtcs = encoder->crtc_mask;
7089                 encoder->base.possible_clones =
7090                         intel_encoder_clones(dev, encoder->clone_mask);
7091         }
7092
7093         intel_panel_setup_backlight(dev);
7094
7095         /* disable all the possible outputs/crtcs before entering KMS mode */
7096         drm_helper_disable_unused_functions(dev);
7097 }
7098
7099 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7100 {
7101         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7102
7103         drm_framebuffer_cleanup(fb);
7104         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7105
7106         kfree(intel_fb);
7107 }
7108
7109 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7110                                                 struct drm_file *file,
7111                                                 unsigned int *handle)
7112 {
7113         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7114         struct drm_i915_gem_object *obj = intel_fb->obj;
7115
7116         return drm_gem_handle_create(file, &obj->base, handle);
7117 }
7118
7119 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7120         .destroy = intel_user_framebuffer_destroy,
7121         .create_handle = intel_user_framebuffer_create_handle,
7122 };
7123
7124 int intel_framebuffer_init(struct drm_device *dev,
7125                            struct intel_framebuffer *intel_fb,
7126                            struct drm_mode_fb_cmd *mode_cmd,
7127                            struct drm_i915_gem_object *obj)
7128 {
7129         int ret;
7130
7131         if (obj->tiling_mode == I915_TILING_Y)
7132                 return -EINVAL;
7133
7134         if (mode_cmd->pitch & 63)
7135                 return -EINVAL;
7136
7137         switch (mode_cmd->bpp) {
7138         case 8:
7139         case 16:
7140                 /* Only pre-ILK can handle 5:5:5 */
7141                 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7142                         return -EINVAL;
7143                 break;
7144
7145         case 24:
7146         case 32:
7147                 break;
7148         default:
7149                 return -EINVAL;
7150         }
7151
7152         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7153         if (ret) {
7154                 DRM_ERROR("framebuffer init failed %d\n", ret);
7155                 return ret;
7156         }
7157
7158         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7159         intel_fb->obj = obj;
7160         return 0;
7161 }
7162
7163 static struct drm_framebuffer *
7164 intel_user_framebuffer_create(struct drm_device *dev,
7165                               struct drm_file *filp,
7166                               struct drm_mode_fb_cmd *mode_cmd)
7167 {
7168         struct drm_i915_gem_object *obj;
7169
7170         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7171         if (&obj->base == NULL)
7172                 return ERR_PTR(-ENOENT);
7173
7174         return intel_framebuffer_create(dev, mode_cmd, obj);
7175 }
7176
7177 static const struct drm_mode_config_funcs intel_mode_funcs = {
7178         .fb_create = intel_user_framebuffer_create,
7179         .output_poll_changed = intel_fb_output_poll_changed,
7180 };
7181
7182 static struct drm_i915_gem_object *
7183 intel_alloc_context_page(struct drm_device *dev)
7184 {
7185         struct drm_i915_gem_object *ctx;
7186         int ret;
7187
7188         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7189
7190         ctx = i915_gem_alloc_object(dev, 4096);
7191         if (!ctx) {
7192                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7193                 return NULL;
7194         }
7195
7196         ret = i915_gem_object_pin(ctx, 4096, true);
7197         if (ret) {
7198                 DRM_ERROR("failed to pin power context: %d\n", ret);
7199                 goto err_unref;
7200         }
7201
7202         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7203         if (ret) {
7204                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7205                 goto err_unpin;
7206         }
7207
7208         return ctx;
7209
7210 err_unpin:
7211         i915_gem_object_unpin(ctx);
7212 err_unref:
7213         drm_gem_object_unreference(&ctx->base);
7214         mutex_unlock(&dev->struct_mutex);
7215         return NULL;
7216 }
7217
7218 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7219 {
7220         struct drm_i915_private *dev_priv = dev->dev_private;
7221         u16 rgvswctl;
7222
7223         rgvswctl = I915_READ16(MEMSWCTL);
7224         if (rgvswctl & MEMCTL_CMD_STS) {
7225                 DRM_DEBUG("gpu busy, RCS change rejected\n");
7226                 return false; /* still busy with another command */
7227         }
7228
7229         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7230                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7231         I915_WRITE16(MEMSWCTL, rgvswctl);
7232         POSTING_READ16(MEMSWCTL);
7233
7234         rgvswctl |= MEMCTL_CMD_STS;
7235         I915_WRITE16(MEMSWCTL, rgvswctl);
7236
7237         return true;
7238 }
7239
7240 void ironlake_enable_drps(struct drm_device *dev)
7241 {
7242         struct drm_i915_private *dev_priv = dev->dev_private;
7243         u32 rgvmodectl = I915_READ(MEMMODECTL);
7244         u8 fmax, fmin, fstart, vstart;
7245
7246         /* Enable temp reporting */
7247         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7248         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7249
7250         /* 100ms RC evaluation intervals */
7251         I915_WRITE(RCUPEI, 100000);
7252         I915_WRITE(RCDNEI, 100000);
7253
7254         /* Set max/min thresholds to 90ms and 80ms respectively */
7255         I915_WRITE(RCBMAXAVG, 90000);
7256         I915_WRITE(RCBMINAVG, 80000);
7257
7258         I915_WRITE(MEMIHYST, 1);
7259
7260         /* Set up min, max, and cur for interrupt handling */
7261         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7262         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7263         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7264                 MEMMODE_FSTART_SHIFT;
7265
7266         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7267                 PXVFREQ_PX_SHIFT;
7268
7269         dev_priv->fmax = fmax; /* IPS callback will increase this */
7270         dev_priv->fstart = fstart;
7271
7272         dev_priv->max_delay = fstart;
7273         dev_priv->min_delay = fmin;
7274         dev_priv->cur_delay = fstart;
7275
7276         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7277                          fmax, fmin, fstart);
7278
7279         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7280
7281         /*
7282          * Interrupts will be enabled in ironlake_irq_postinstall
7283          */
7284
7285         I915_WRITE(VIDSTART, vstart);
7286         POSTING_READ(VIDSTART);
7287
7288         rgvmodectl |= MEMMODE_SWMODE_EN;
7289         I915_WRITE(MEMMODECTL, rgvmodectl);
7290
7291         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7292                 DRM_ERROR("stuck trying to change perf mode\n");
7293         msleep(1);
7294
7295         ironlake_set_drps(dev, fstart);
7296
7297         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7298                 I915_READ(0x112e0);
7299         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7300         dev_priv->last_count2 = I915_READ(0x112f4);
7301         getrawmonotonic(&dev_priv->last_time2);
7302 }
7303
7304 void ironlake_disable_drps(struct drm_device *dev)
7305 {
7306         struct drm_i915_private *dev_priv = dev->dev_private;
7307         u16 rgvswctl = I915_READ16(MEMSWCTL);
7308
7309         /* Ack interrupts, disable EFC interrupt */
7310         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7311         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7312         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7313         I915_WRITE(DEIIR, DE_PCU_EVENT);
7314         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7315
7316         /* Go back to the starting frequency */
7317         ironlake_set_drps(dev, dev_priv->fstart);
7318         msleep(1);
7319         rgvswctl |= MEMCTL_CMD_STS;
7320         I915_WRITE(MEMSWCTL, rgvswctl);
7321         msleep(1);
7322
7323 }
7324
7325 void gen6_set_rps(struct drm_device *dev, u8 val)
7326 {
7327         struct drm_i915_private *dev_priv = dev->dev_private;
7328         u32 swreq;
7329
7330         swreq = (val & 0x3ff) << 25;
7331         I915_WRITE(GEN6_RPNSWREQ, swreq);
7332 }
7333
7334 void gen6_disable_rps(struct drm_device *dev)
7335 {
7336         struct drm_i915_private *dev_priv = dev->dev_private;
7337
7338         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7339         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7340         I915_WRITE(GEN6_PMIER, 0);
7341
7342         spin_lock_irq(&dev_priv->rps_lock);
7343         dev_priv->pm_iir = 0;
7344         spin_unlock_irq(&dev_priv->rps_lock);
7345
7346         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7347 }
7348
7349 static unsigned long intel_pxfreq(u32 vidfreq)
7350 {
7351         unsigned long freq;
7352         int div = (vidfreq & 0x3f0000) >> 16;
7353         int post = (vidfreq & 0x3000) >> 12;
7354         int pre = (vidfreq & 0x7);
7355
7356         if (!pre)
7357                 return 0;
7358
7359         freq = ((div * 133333) / ((1<<post) * pre));
7360
7361         return freq;
7362 }
7363
7364 void intel_init_emon(struct drm_device *dev)
7365 {
7366         struct drm_i915_private *dev_priv = dev->dev_private;
7367         u32 lcfuse;
7368         u8 pxw[16];
7369         int i;
7370
7371         /* Disable to program */
7372         I915_WRITE(ECR, 0);
7373         POSTING_READ(ECR);
7374
7375         /* Program energy weights for various events */
7376         I915_WRITE(SDEW, 0x15040d00);
7377         I915_WRITE(CSIEW0, 0x007f0000);
7378         I915_WRITE(CSIEW1, 0x1e220004);
7379         I915_WRITE(CSIEW2, 0x04000004);
7380
7381         for (i = 0; i < 5; i++)
7382                 I915_WRITE(PEW + (i * 4), 0);
7383         for (i = 0; i < 3; i++)
7384                 I915_WRITE(DEW + (i * 4), 0);
7385
7386         /* Program P-state weights to account for frequency power adjustment */
7387         for (i = 0; i < 16; i++) {
7388                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7389                 unsigned long freq = intel_pxfreq(pxvidfreq);
7390                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7391                         PXVFREQ_PX_SHIFT;
7392                 unsigned long val;
7393
7394                 val = vid * vid;
7395                 val *= (freq / 1000);
7396                 val *= 255;
7397                 val /= (127*127*900);
7398                 if (val > 0xff)
7399                         DRM_ERROR("bad pxval: %ld\n", val);
7400                 pxw[i] = val;
7401         }
7402         /* Render standby states get 0 weight */
7403         pxw[14] = 0;
7404         pxw[15] = 0;
7405
7406         for (i = 0; i < 4; i++) {
7407                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7408                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7409                 I915_WRITE(PXW + (i * 4), val);
7410         }
7411
7412         /* Adjust magic regs to magic values (more experimental results) */
7413         I915_WRITE(OGW0, 0);
7414         I915_WRITE(OGW1, 0);
7415         I915_WRITE(EG0, 0x00007f00);
7416         I915_WRITE(EG1, 0x0000000e);
7417         I915_WRITE(EG2, 0x000e0000);
7418         I915_WRITE(EG3, 0x68000300);
7419         I915_WRITE(EG4, 0x42000000);
7420         I915_WRITE(EG5, 0x00140031);
7421         I915_WRITE(EG6, 0);
7422         I915_WRITE(EG7, 0);
7423
7424         for (i = 0; i < 8; i++)
7425                 I915_WRITE(PXWL + (i * 4), 0);
7426
7427         /* Enable PMON + select events */
7428         I915_WRITE(ECR, 0x80000019);
7429
7430         lcfuse = I915_READ(LCFUSE02);
7431
7432         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7433 }
7434
7435 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7436 {
7437         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7438         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7439         u32 pcu_mbox, rc6_mask = 0;
7440         int cur_freq, min_freq, max_freq;
7441         int i;
7442
7443         /* Here begins a magic sequence of register writes to enable
7444          * auto-downclocking.
7445          *
7446          * Perhaps there might be some value in exposing these to
7447          * userspace...
7448          */
7449         I915_WRITE(GEN6_RC_STATE, 0);
7450         mutex_lock(&dev_priv->dev->struct_mutex);
7451         gen6_gt_force_wake_get(dev_priv);
7452
7453         /* disable the counters and set deterministic thresholds */
7454         I915_WRITE(GEN6_RC_CONTROL, 0);
7455
7456         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7457         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7458         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7459         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7460         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7461
7462         for (i = 0; i < I915_NUM_RINGS; i++)
7463                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7464
7465         I915_WRITE(GEN6_RC_SLEEP, 0);
7466         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7467         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7468         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7469         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7470
7471         if (i915_enable_rc6)
7472                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7473                         GEN6_RC_CTL_RC6_ENABLE;
7474
7475         I915_WRITE(GEN6_RC_CONTROL,
7476                    rc6_mask |
7477                    GEN6_RC_CTL_EI_MODE(1) |
7478                    GEN6_RC_CTL_HW_ENABLE);
7479
7480         I915_WRITE(GEN6_RPNSWREQ,
7481                    GEN6_FREQUENCY(10) |
7482                    GEN6_OFFSET(0) |
7483                    GEN6_AGGRESSIVE_TURBO);
7484         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7485                    GEN6_FREQUENCY(12));
7486
7487         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7488         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7489                    18 << 24 |
7490                    6 << 16);
7491         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7492         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7493         I915_WRITE(GEN6_RP_UP_EI, 100000);
7494         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7495         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7496         I915_WRITE(GEN6_RP_CONTROL,
7497                    GEN6_RP_MEDIA_TURBO |
7498                    GEN6_RP_USE_NORMAL_FREQ |
7499                    GEN6_RP_MEDIA_IS_GFX |
7500                    GEN6_RP_ENABLE |
7501                    GEN6_RP_UP_BUSY_AVG |
7502                    GEN6_RP_DOWN_IDLE_CONT);
7503
7504         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7505                      500))
7506                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7507
7508         I915_WRITE(GEN6_PCODE_DATA, 0);
7509         I915_WRITE(GEN6_PCODE_MAILBOX,
7510                    GEN6_PCODE_READY |
7511                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7512         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7513                      500))
7514                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7515
7516         min_freq = (rp_state_cap & 0xff0000) >> 16;
7517         max_freq = rp_state_cap & 0xff;
7518         cur_freq = (gt_perf_status & 0xff00) >> 8;
7519
7520         /* Check for overclock support */
7521         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7522                      500))
7523                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7524         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7525         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7526         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7527                      500))
7528                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7529         if (pcu_mbox & (1<<31)) { /* OC supported */
7530                 max_freq = pcu_mbox & 0xff;
7531                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7532         }
7533
7534         /* In units of 100MHz */
7535         dev_priv->max_delay = max_freq;
7536         dev_priv->min_delay = min_freq;
7537         dev_priv->cur_delay = cur_freq;
7538
7539         /* requires MSI enabled */
7540         I915_WRITE(GEN6_PMIER,
7541                    GEN6_PM_MBOX_EVENT |
7542                    GEN6_PM_THERMAL_EVENT |
7543                    GEN6_PM_RP_DOWN_TIMEOUT |
7544                    GEN6_PM_RP_UP_THRESHOLD |
7545                    GEN6_PM_RP_DOWN_THRESHOLD |
7546                    GEN6_PM_RP_UP_EI_EXPIRED |
7547                    GEN6_PM_RP_DOWN_EI_EXPIRED);
7548         spin_lock_irq(&dev_priv->rps_lock);
7549         WARN_ON(dev_priv->pm_iir != 0);
7550         I915_WRITE(GEN6_PMIMR, 0);
7551         spin_unlock_irq(&dev_priv->rps_lock);
7552         /* enable all PM interrupts */
7553         I915_WRITE(GEN6_PMINTRMSK, 0);
7554
7555         gen6_gt_force_wake_put(dev_priv);
7556         mutex_unlock(&dev_priv->dev->struct_mutex);
7557 }
7558
7559 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7560 {
7561         int min_freq = 15;
7562         int gpu_freq, ia_freq, max_ia_freq;
7563         int scaling_factor = 180;
7564
7565         max_ia_freq = cpufreq_quick_get_max(0);
7566         /*
7567          * Default to measured freq if none found, PCU will ensure we don't go
7568          * over
7569          */
7570         if (!max_ia_freq)
7571                 max_ia_freq = tsc_khz;
7572
7573         /* Convert from kHz to MHz */
7574         max_ia_freq /= 1000;
7575
7576         mutex_lock(&dev_priv->dev->struct_mutex);
7577
7578         /*
7579          * For each potential GPU frequency, load a ring frequency we'd like
7580          * to use for memory access.  We do this by specifying the IA frequency
7581          * the PCU should use as a reference to determine the ring frequency.
7582          */
7583         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
7584              gpu_freq--) {
7585                 int diff = dev_priv->max_delay - gpu_freq;
7586
7587                 /*
7588                  * For GPU frequencies less than 750MHz, just use the lowest
7589                  * ring freq.
7590                  */
7591                 if (gpu_freq < min_freq)
7592                         ia_freq = 800;
7593                 else
7594                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7595                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7596
7597                 I915_WRITE(GEN6_PCODE_DATA,
7598                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
7599                            gpu_freq);
7600                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
7601                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7602                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
7603                               GEN6_PCODE_READY) == 0, 10)) {
7604                         DRM_ERROR("pcode write of freq table timed out\n");
7605                         continue;
7606                 }
7607         }
7608
7609         mutex_unlock(&dev_priv->dev->struct_mutex);
7610 }
7611
7612 static void ironlake_init_clock_gating(struct drm_device *dev)
7613 {
7614         struct drm_i915_private *dev_priv = dev->dev_private;
7615         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7616
7617         /* Required for FBC */
7618         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7619                 DPFCRUNIT_CLOCK_GATE_DISABLE |
7620                 DPFDUNIT_CLOCK_GATE_DISABLE;
7621         /* Required for CxSR */
7622         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7623
7624         I915_WRITE(PCH_3DCGDIS0,
7625                    MARIUNIT_CLOCK_GATE_DISABLE |
7626                    SVSMUNIT_CLOCK_GATE_DISABLE);
7627         I915_WRITE(PCH_3DCGDIS1,
7628                    VFMUNIT_CLOCK_GATE_DISABLE);
7629
7630         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7631
7632         /*
7633          * According to the spec the following bits should be set in
7634          * order to enable memory self-refresh
7635          * The bit 22/21 of 0x42004
7636          * The bit 5 of 0x42020
7637          * The bit 15 of 0x45000
7638          */
7639         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7640                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
7641                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7642         I915_WRITE(ILK_DSPCLK_GATE,
7643                    (I915_READ(ILK_DSPCLK_GATE) |
7644                     ILK_DPARB_CLK_GATE));
7645         I915_WRITE(DISP_ARB_CTL,
7646                    (I915_READ(DISP_ARB_CTL) |
7647                     DISP_FBC_WM_DIS));
7648         I915_WRITE(WM3_LP_ILK, 0);
7649         I915_WRITE(WM2_LP_ILK, 0);
7650         I915_WRITE(WM1_LP_ILK, 0);
7651
7652         /*
7653          * Based on the document from hardware guys the following bits
7654          * should be set unconditionally in order to enable FBC.
7655          * The bit 22 of 0x42000
7656          * The bit 22 of 0x42004
7657          * The bit 7,8,9 of 0x42020.
7658          */
7659         if (IS_IRONLAKE_M(dev)) {
7660                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7661                            I915_READ(ILK_DISPLAY_CHICKEN1) |
7662                            ILK_FBCQ_DIS);
7663                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7664                            I915_READ(ILK_DISPLAY_CHICKEN2) |
7665                            ILK_DPARB_GATE);
7666                 I915_WRITE(ILK_DSPCLK_GATE,
7667                            I915_READ(ILK_DSPCLK_GATE) |
7668                            ILK_DPFC_DIS1 |
7669                            ILK_DPFC_DIS2 |
7670                            ILK_CLK_FBC);
7671         }
7672
7673         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7674                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7675                    ILK_ELPIN_409_SELECT);
7676         I915_WRITE(_3D_CHICKEN2,
7677                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7678                    _3D_CHICKEN2_WM_READ_PIPELINED);
7679 }
7680
7681 static void gen6_init_clock_gating(struct drm_device *dev)
7682 {
7683         struct drm_i915_private *dev_priv = dev->dev_private;
7684         int pipe;
7685         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7686
7687         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7688
7689         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7690                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7691                    ILK_ELPIN_409_SELECT);
7692
7693         I915_WRITE(WM3_LP_ILK, 0);
7694         I915_WRITE(WM2_LP_ILK, 0);
7695         I915_WRITE(WM1_LP_ILK, 0);
7696
7697         /*
7698          * According to the spec the following bits should be
7699          * set in order to enable memory self-refresh and fbc:
7700          * The bit21 and bit22 of 0x42000
7701          * The bit21 and bit22 of 0x42004
7702          * The bit5 and bit7 of 0x42020
7703          * The bit14 of 0x70180
7704          * The bit14 of 0x71180
7705          */
7706         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7707                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7708                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7709         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7710                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7711                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7712         I915_WRITE(ILK_DSPCLK_GATE,
7713                    I915_READ(ILK_DSPCLK_GATE) |
7714                    ILK_DPARB_CLK_GATE  |
7715                    ILK_DPFD_CLK_GATE);
7716
7717         for_each_pipe(pipe)
7718                 I915_WRITE(DSPCNTR(pipe),
7719                            I915_READ(DSPCNTR(pipe)) |
7720                            DISPPLANE_TRICKLE_FEED_DISABLE);
7721 }
7722
7723 static void ivybridge_init_clock_gating(struct drm_device *dev)
7724 {
7725         struct drm_i915_private *dev_priv = dev->dev_private;
7726         int pipe;
7727         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7728
7729         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7730
7731         I915_WRITE(WM3_LP_ILK, 0);
7732         I915_WRITE(WM2_LP_ILK, 0);
7733         I915_WRITE(WM1_LP_ILK, 0);
7734
7735         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
7736
7737         for_each_pipe(pipe)
7738                 I915_WRITE(DSPCNTR(pipe),
7739                            I915_READ(DSPCNTR(pipe)) |
7740                            DISPPLANE_TRICKLE_FEED_DISABLE);
7741 }
7742
7743 static void g4x_init_clock_gating(struct drm_device *dev)
7744 {
7745         struct drm_i915_private *dev_priv = dev->dev_private;
7746         uint32_t dspclk_gate;
7747
7748         I915_WRITE(RENCLK_GATE_D1, 0);
7749         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7750                    GS_UNIT_CLOCK_GATE_DISABLE |
7751                    CL_UNIT_CLOCK_GATE_DISABLE);
7752         I915_WRITE(RAMCLK_GATE_D, 0);
7753         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7754                 OVRUNIT_CLOCK_GATE_DISABLE |
7755                 OVCUNIT_CLOCK_GATE_DISABLE;
7756         if (IS_GM45(dev))
7757                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7758         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7759 }
7760
7761 static void crestline_init_clock_gating(struct drm_device *dev)
7762 {
7763         struct drm_i915_private *dev_priv = dev->dev_private;
7764
7765         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7766         I915_WRITE(RENCLK_GATE_D2, 0);
7767         I915_WRITE(DSPCLK_GATE_D, 0);
7768         I915_WRITE(RAMCLK_GATE_D, 0);
7769         I915_WRITE16(DEUC, 0);
7770 }
7771
7772 static void broadwater_init_clock_gating(struct drm_device *dev)
7773 {
7774         struct drm_i915_private *dev_priv = dev->dev_private;
7775
7776         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7777                    I965_RCC_CLOCK_GATE_DISABLE |
7778                    I965_RCPB_CLOCK_GATE_DISABLE |
7779                    I965_ISC_CLOCK_GATE_DISABLE |
7780                    I965_FBC_CLOCK_GATE_DISABLE);
7781         I915_WRITE(RENCLK_GATE_D2, 0);
7782 }
7783
7784 static void gen3_init_clock_gating(struct drm_device *dev)
7785 {
7786         struct drm_i915_private *dev_priv = dev->dev_private;
7787         u32 dstate = I915_READ(D_STATE);
7788
7789         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7790                 DSTATE_DOT_CLOCK_GATING;
7791         I915_WRITE(D_STATE, dstate);
7792 }
7793
7794 static void i85x_init_clock_gating(struct drm_device *dev)
7795 {
7796         struct drm_i915_private *dev_priv = dev->dev_private;
7797
7798         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7799 }
7800
7801 static void i830_init_clock_gating(struct drm_device *dev)
7802 {
7803         struct drm_i915_private *dev_priv = dev->dev_private;
7804
7805         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7806 }
7807
7808 static void ibx_init_clock_gating(struct drm_device *dev)
7809 {
7810         struct drm_i915_private *dev_priv = dev->dev_private;
7811
7812         /*
7813          * On Ibex Peak and Cougar Point, we need to disable clock
7814          * gating for the panel power sequencer or it will fail to
7815          * start up when no ports are active.
7816          */
7817         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7818 }
7819
7820 static void cpt_init_clock_gating(struct drm_device *dev)
7821 {
7822         struct drm_i915_private *dev_priv = dev->dev_private;
7823
7824         /*
7825          * On Ibex Peak and Cougar Point, we need to disable clock
7826          * gating for the panel power sequencer or it will fail to
7827          * start up when no ports are active.
7828          */
7829         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7830         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7831                    DPLS_EDP_PPS_FIX_DIS);
7832 }
7833
7834 static void ironlake_teardown_rc6(struct drm_device *dev)
7835 {
7836         struct drm_i915_private *dev_priv = dev->dev_private;
7837
7838         if (dev_priv->renderctx) {
7839                 i915_gem_object_unpin(dev_priv->renderctx);
7840                 drm_gem_object_unreference(&dev_priv->renderctx->base);
7841                 dev_priv->renderctx = NULL;
7842         }
7843
7844         if (dev_priv->pwrctx) {
7845                 i915_gem_object_unpin(dev_priv->pwrctx);
7846                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7847                 dev_priv->pwrctx = NULL;
7848         }
7849 }
7850
7851 static void ironlake_disable_rc6(struct drm_device *dev)
7852 {
7853         struct drm_i915_private *dev_priv = dev->dev_private;
7854
7855         if (I915_READ(PWRCTXA)) {
7856                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7857                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7858                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7859                          50);
7860
7861                 I915_WRITE(PWRCTXA, 0);
7862                 POSTING_READ(PWRCTXA);
7863
7864                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7865                 POSTING_READ(RSTDBYCTL);
7866         }
7867
7868         ironlake_teardown_rc6(dev);
7869 }
7870
7871 static int ironlake_setup_rc6(struct drm_device *dev)
7872 {
7873         struct drm_i915_private *dev_priv = dev->dev_private;
7874
7875         if (dev_priv->renderctx == NULL)
7876                 dev_priv->renderctx = intel_alloc_context_page(dev);
7877         if (!dev_priv->renderctx)
7878                 return -ENOMEM;
7879
7880         if (dev_priv->pwrctx == NULL)
7881                 dev_priv->pwrctx = intel_alloc_context_page(dev);
7882         if (!dev_priv->pwrctx) {
7883                 ironlake_teardown_rc6(dev);
7884                 return -ENOMEM;
7885         }
7886
7887         return 0;
7888 }
7889
7890 void ironlake_enable_rc6(struct drm_device *dev)
7891 {
7892         struct drm_i915_private *dev_priv = dev->dev_private;
7893         int ret;
7894
7895         /* rc6 disabled by default due to repeated reports of hanging during
7896          * boot and resume.
7897          */
7898         if (!i915_enable_rc6)
7899                 return;
7900
7901         mutex_lock(&dev->struct_mutex);
7902         ret = ironlake_setup_rc6(dev);
7903         if (ret) {
7904                 mutex_unlock(&dev->struct_mutex);
7905                 return;
7906         }
7907
7908         /*
7909          * GPU can automatically power down the render unit if given a page
7910          * to save state.
7911          */
7912         ret = BEGIN_LP_RING(6);
7913         if (ret) {
7914                 ironlake_teardown_rc6(dev);
7915                 mutex_unlock(&dev->struct_mutex);
7916                 return;
7917         }
7918
7919         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7920         OUT_RING(MI_SET_CONTEXT);
7921         OUT_RING(dev_priv->renderctx->gtt_offset |
7922                  MI_MM_SPACE_GTT |
7923                  MI_SAVE_EXT_STATE_EN |
7924                  MI_RESTORE_EXT_STATE_EN |
7925                  MI_RESTORE_INHIBIT);
7926         OUT_RING(MI_SUSPEND_FLUSH);
7927         OUT_RING(MI_NOOP);
7928         OUT_RING(MI_FLUSH);
7929         ADVANCE_LP_RING();
7930
7931         /*
7932          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
7933          * does an implicit flush, combined with MI_FLUSH above, it should be
7934          * safe to assume that renderctx is valid
7935          */
7936         ret = intel_wait_ring_idle(LP_RING(dev_priv));
7937         if (ret) {
7938                 DRM_ERROR("failed to enable ironlake power power savings\n");
7939                 ironlake_teardown_rc6(dev);
7940                 mutex_unlock(&dev->struct_mutex);
7941                 return;
7942         }
7943
7944         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7945         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7946         mutex_unlock(&dev->struct_mutex);
7947 }
7948
7949 void intel_init_clock_gating(struct drm_device *dev)
7950 {
7951         struct drm_i915_private *dev_priv = dev->dev_private;
7952
7953         dev_priv->display.init_clock_gating(dev);
7954
7955         if (dev_priv->display.init_pch_clock_gating)
7956                 dev_priv->display.init_pch_clock_gating(dev);
7957 }
7958
7959 /* Set up chip specific display functions */
7960 static void intel_init_display(struct drm_device *dev)
7961 {
7962         struct drm_i915_private *dev_priv = dev->dev_private;
7963
7964         /* We always want a DPMS function */
7965         if (HAS_PCH_SPLIT(dev)) {
7966                 dev_priv->display.dpms = ironlake_crtc_dpms;
7967                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7968                 dev_priv->display.update_plane = ironlake_update_plane;
7969         } else {
7970                 dev_priv->display.dpms = i9xx_crtc_dpms;
7971                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7972                 dev_priv->display.update_plane = i9xx_update_plane;
7973         }
7974
7975         if (I915_HAS_FBC(dev)) {
7976                 if (HAS_PCH_SPLIT(dev)) {
7977                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7978                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7979                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7980                 } else if (IS_GM45(dev)) {
7981                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7982                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7983                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7984                 } else if (IS_CRESTLINE(dev)) {
7985                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7986                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7987                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7988                 }
7989                 /* 855GM needs testing */
7990         }
7991
7992         /* Returns the core display clock speed */
7993         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7994                 dev_priv->display.get_display_clock_speed =
7995                         i945_get_display_clock_speed;
7996         else if (IS_I915G(dev))
7997                 dev_priv->display.get_display_clock_speed =
7998                         i915_get_display_clock_speed;
7999         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8000                 dev_priv->display.get_display_clock_speed =
8001                         i9xx_misc_get_display_clock_speed;
8002         else if (IS_I915GM(dev))
8003                 dev_priv->display.get_display_clock_speed =
8004                         i915gm_get_display_clock_speed;
8005         else if (IS_I865G(dev))
8006                 dev_priv->display.get_display_clock_speed =
8007                         i865_get_display_clock_speed;
8008         else if (IS_I85X(dev))
8009                 dev_priv->display.get_display_clock_speed =
8010                         i855_get_display_clock_speed;
8011         else /* 852, 830 */
8012                 dev_priv->display.get_display_clock_speed =
8013                         i830_get_display_clock_speed;
8014
8015         /* For FIFO watermark updates */
8016         if (HAS_PCH_SPLIT(dev)) {
8017                 if (HAS_PCH_IBX(dev))
8018                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8019                 else if (HAS_PCH_CPT(dev))
8020                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8021
8022                 if (IS_GEN5(dev)) {
8023                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8024                                 dev_priv->display.update_wm = ironlake_update_wm;
8025                         else {
8026                                 DRM_DEBUG_KMS("Failed to get proper latency. "
8027                                               "Disable CxSR\n");
8028                                 dev_priv->display.update_wm = NULL;
8029                         }
8030                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8031                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8032                 } else if (IS_GEN6(dev)) {
8033                         if (SNB_READ_WM0_LATENCY()) {
8034                                 dev_priv->display.update_wm = sandybridge_update_wm;
8035                         } else {
8036                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8037                                               "Disable CxSR\n");
8038                                 dev_priv->display.update_wm = NULL;
8039                         }
8040                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8041                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8042                 } else if (IS_IVYBRIDGE(dev)) {
8043                         /* FIXME: detect B0+ stepping and use auto training */
8044                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8045                         if (SNB_READ_WM0_LATENCY()) {
8046                                 dev_priv->display.update_wm = sandybridge_update_wm;
8047                         } else {
8048                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8049                                               "Disable CxSR\n");
8050                                 dev_priv->display.update_wm = NULL;
8051                         }
8052                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8053
8054                 } else
8055                         dev_priv->display.update_wm = NULL;
8056         } else if (IS_PINEVIEW(dev)) {
8057                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8058                                             dev_priv->is_ddr3,
8059                                             dev_priv->fsb_freq,
8060                                             dev_priv->mem_freq)) {
8061                         DRM_INFO("failed to find known CxSR latency "
8062                                  "(found ddr%s fsb freq %d, mem freq %d), "
8063                                  "disabling CxSR\n",
8064                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
8065                                  dev_priv->fsb_freq, dev_priv->mem_freq);
8066                         /* Disable CxSR and never update its watermark again */
8067                         pineview_disable_cxsr(dev);
8068                         dev_priv->display.update_wm = NULL;
8069                 } else
8070                         dev_priv->display.update_wm = pineview_update_wm;
8071                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8072         } else if (IS_G4X(dev)) {
8073                 dev_priv->display.update_wm = g4x_update_wm;
8074                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8075         } else if (IS_GEN4(dev)) {
8076                 dev_priv->display.update_wm = i965_update_wm;
8077                 if (IS_CRESTLINE(dev))
8078                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8079                 else if (IS_BROADWATER(dev))
8080                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8081         } else if (IS_GEN3(dev)) {
8082                 dev_priv->display.update_wm = i9xx_update_wm;
8083                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8084                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8085         } else if (IS_I865G(dev)) {
8086                 dev_priv->display.update_wm = i830_update_wm;
8087                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8088                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8089         } else if (IS_I85X(dev)) {
8090                 dev_priv->display.update_wm = i9xx_update_wm;
8091                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8092                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8093         } else {
8094                 dev_priv->display.update_wm = i830_update_wm;
8095                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8096                 if (IS_845G(dev))
8097                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
8098                 else
8099                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
8100         }
8101
8102         /* Default just returns -ENODEV to indicate unsupported */
8103         dev_priv->display.queue_flip = intel_default_queue_flip;
8104
8105         switch (INTEL_INFO(dev)->gen) {
8106         case 2:
8107                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8108                 break;
8109
8110         case 3:
8111                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8112                 break;
8113
8114         case 4:
8115         case 5:
8116                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8117                 break;
8118
8119         case 6:
8120                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8121                 break;
8122         case 7:
8123                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8124                 break;
8125         }
8126 }
8127
8128 /*
8129  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8130  * resume, or other times.  This quirk makes sure that's the case for
8131  * affected systems.
8132  */
8133 static void quirk_pipea_force (struct drm_device *dev)
8134 {
8135         struct drm_i915_private *dev_priv = dev->dev_private;
8136
8137         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8138         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8139 }
8140
8141 /*
8142  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8143  */
8144 static void quirk_ssc_force_disable(struct drm_device *dev)
8145 {
8146         struct drm_i915_private *dev_priv = dev->dev_private;
8147         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8148 }
8149
8150 struct intel_quirk {
8151         int device;
8152         int subsystem_vendor;
8153         int subsystem_device;
8154         void (*hook)(struct drm_device *dev);
8155 };
8156
8157 struct intel_quirk intel_quirks[] = {
8158         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8159         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8160         /* HP Mini needs pipe A force quirk (LP: #322104) */
8161         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
8162
8163         /* Thinkpad R31 needs pipe A force quirk */
8164         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8165         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8166         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8167
8168         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8169         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
8170         /* ThinkPad X40 needs pipe A force quirk */
8171
8172         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8173         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8174
8175         /* 855 & before need to leave pipe A & dpll A up */
8176         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8177         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8178
8179         /* Lenovo U160 cannot use SSC on LVDS */
8180         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8181 };
8182
8183 static void intel_init_quirks(struct drm_device *dev)
8184 {
8185         struct pci_dev *d = dev->pdev;
8186         int i;
8187
8188         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8189                 struct intel_quirk *q = &intel_quirks[i];
8190
8191                 if (d->device == q->device &&
8192                     (d->subsystem_vendor == q->subsystem_vendor ||
8193                      q->subsystem_vendor == PCI_ANY_ID) &&
8194                     (d->subsystem_device == q->subsystem_device ||
8195                      q->subsystem_device == PCI_ANY_ID))
8196                         q->hook(dev);
8197         }
8198 }
8199
8200 /* Disable the VGA plane that we never use */
8201 static void i915_disable_vga(struct drm_device *dev)
8202 {
8203         struct drm_i915_private *dev_priv = dev->dev_private;
8204         u8 sr1;
8205         u32 vga_reg;
8206
8207         if (HAS_PCH_SPLIT(dev))
8208                 vga_reg = CPU_VGACNTRL;
8209         else
8210                 vga_reg = VGACNTRL;
8211
8212         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8213         outb(1, VGA_SR_INDEX);
8214         sr1 = inb(VGA_SR_DATA);
8215         outb(sr1 | 1<<5, VGA_SR_DATA);
8216         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8217         udelay(300);
8218
8219         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8220         POSTING_READ(vga_reg);
8221 }
8222
8223 void intel_modeset_init(struct drm_device *dev)
8224 {
8225         struct drm_i915_private *dev_priv = dev->dev_private;
8226         int i;
8227
8228         drm_mode_config_init(dev);
8229
8230         dev->mode_config.min_width = 0;
8231         dev->mode_config.min_height = 0;
8232
8233         dev->mode_config.funcs = (void *)&intel_mode_funcs;
8234
8235         intel_init_quirks(dev);
8236
8237         intel_init_display(dev);
8238
8239         if (IS_GEN2(dev)) {
8240                 dev->mode_config.max_width = 2048;
8241                 dev->mode_config.max_height = 2048;
8242         } else if (IS_GEN3(dev)) {
8243                 dev->mode_config.max_width = 4096;
8244                 dev->mode_config.max_height = 4096;
8245         } else {
8246                 dev->mode_config.max_width = 8192;
8247                 dev->mode_config.max_height = 8192;
8248         }
8249         dev->mode_config.fb_base = dev->agp->base;
8250
8251         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8252                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8253
8254         for (i = 0; i < dev_priv->num_pipe; i++) {
8255                 intel_crtc_init(dev, i);
8256         }
8257
8258         /* Just disable it once at startup */
8259         i915_disable_vga(dev);
8260         intel_setup_outputs(dev);
8261
8262         intel_init_clock_gating(dev);
8263
8264         if (IS_IRONLAKE_M(dev)) {
8265                 ironlake_enable_drps(dev);
8266                 intel_init_emon(dev);
8267         }
8268
8269         if (IS_GEN6(dev) || IS_GEN7(dev)) {
8270                 gen6_enable_rps(dev_priv);
8271                 gen6_update_ring_freq(dev_priv);
8272         }
8273
8274         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8275         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8276                     (unsigned long)dev);
8277 }
8278
8279 void intel_modeset_gem_init(struct drm_device *dev)
8280 {
8281         if (IS_IRONLAKE_M(dev))
8282                 ironlake_enable_rc6(dev);
8283
8284         intel_setup_overlay(dev);
8285 }
8286
8287 void intel_modeset_cleanup(struct drm_device *dev)
8288 {
8289         struct drm_i915_private *dev_priv = dev->dev_private;
8290         struct drm_crtc *crtc;
8291         struct intel_crtc *intel_crtc;
8292
8293         drm_kms_helper_poll_fini(dev);
8294         mutex_lock(&dev->struct_mutex);
8295
8296         intel_unregister_dsm_handler();
8297
8298
8299         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8300                 /* Skip inactive CRTCs */
8301                 if (!crtc->fb)
8302                         continue;
8303
8304                 intel_crtc = to_intel_crtc(crtc);
8305                 intel_increase_pllclock(crtc);
8306         }
8307
8308         intel_disable_fbc(dev);
8309
8310         if (IS_IRONLAKE_M(dev))
8311                 ironlake_disable_drps(dev);
8312         if (IS_GEN6(dev) || IS_GEN7(dev))
8313                 gen6_disable_rps(dev);
8314
8315         if (IS_IRONLAKE_M(dev))
8316                 ironlake_disable_rc6(dev);
8317
8318         mutex_unlock(&dev->struct_mutex);
8319
8320         /* Disable the irq before mode object teardown, for the irq might
8321          * enqueue unpin/hotplug work. */
8322         drm_irq_uninstall(dev);
8323         cancel_work_sync(&dev_priv->hotplug_work);
8324
8325         /* flush any delayed tasks or pending work */
8326         flush_scheduled_work();
8327
8328         /* Shut off idle work before the crtcs get freed. */
8329         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8330                 intel_crtc = to_intel_crtc(crtc);
8331                 del_timer_sync(&intel_crtc->idle_timer);
8332         }
8333         del_timer_sync(&dev_priv->idle_timer);
8334         cancel_work_sync(&dev_priv->idle_work);
8335
8336         drm_mode_config_cleanup(dev);
8337 }
8338
8339 /*
8340  * Return which encoder is currently attached for connector.
8341  */
8342 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8343 {
8344         return &intel_attached_encoder(connector)->base;
8345 }
8346
8347 void intel_connector_attach_encoder(struct intel_connector *connector,
8348                                     struct intel_encoder *encoder)
8349 {
8350         connector->encoder = encoder;
8351         drm_mode_connector_attach_encoder(&connector->base,
8352                                           &encoder->base);
8353 }
8354
8355 /*
8356  * set vga decode state - true == enable VGA decode
8357  */
8358 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8359 {
8360         struct drm_i915_private *dev_priv = dev->dev_private;
8361         u16 gmch_ctrl;
8362
8363         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8364         if (state)
8365                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8366         else
8367                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8368         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8369         return 0;
8370 }
8371
8372 #ifdef CONFIG_DEBUG_FS
8373 #include <linux/seq_file.h>
8374
8375 struct intel_display_error_state {
8376         struct intel_cursor_error_state {
8377                 u32 control;
8378                 u32 position;
8379                 u32 base;
8380                 u32 size;
8381         } cursor[2];
8382
8383         struct intel_pipe_error_state {
8384                 u32 conf;
8385                 u32 source;
8386
8387                 u32 htotal;
8388                 u32 hblank;
8389                 u32 hsync;
8390                 u32 vtotal;
8391                 u32 vblank;
8392                 u32 vsync;
8393         } pipe[2];
8394
8395         struct intel_plane_error_state {
8396                 u32 control;
8397                 u32 stride;
8398                 u32 size;
8399                 u32 pos;
8400                 u32 addr;
8401                 u32 surface;
8402                 u32 tile_offset;
8403         } plane[2];
8404 };
8405
8406 struct intel_display_error_state *
8407 intel_display_capture_error_state(struct drm_device *dev)
8408 {
8409         drm_i915_private_t *dev_priv = dev->dev_private;
8410         struct intel_display_error_state *error;
8411         int i;
8412
8413         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8414         if (error == NULL)
8415                 return NULL;
8416
8417         for (i = 0; i < 2; i++) {
8418                 error->cursor[i].control = I915_READ(CURCNTR(i));
8419                 error->cursor[i].position = I915_READ(CURPOS(i));
8420                 error->cursor[i].base = I915_READ(CURBASE(i));
8421
8422                 error->plane[i].control = I915_READ(DSPCNTR(i));
8423                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8424                 error->plane[i].size = I915_READ(DSPSIZE(i));
8425                 error->plane[i].pos= I915_READ(DSPPOS(i));
8426                 error->plane[i].addr = I915_READ(DSPADDR(i));
8427                 if (INTEL_INFO(dev)->gen >= 4) {
8428                         error->plane[i].surface = I915_READ(DSPSURF(i));
8429                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8430                 }
8431
8432                 error->pipe[i].conf = I915_READ(PIPECONF(i));
8433                 error->pipe[i].source = I915_READ(PIPESRC(i));
8434                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8435                 error->pipe[i].hblank = I915_READ(HBLANK(i));
8436                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8437                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8438                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8439                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8440         }
8441
8442         return error;
8443 }
8444
8445 void
8446 intel_display_print_error_state(struct seq_file *m,
8447                                 struct drm_device *dev,
8448                                 struct intel_display_error_state *error)
8449 {
8450         int i;
8451
8452         for (i = 0; i < 2; i++) {
8453                 seq_printf(m, "Pipe [%d]:\n", i);
8454                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8455                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8456                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8457                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8458                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8459                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8460                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8461                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8462
8463                 seq_printf(m, "Plane [%d]:\n", i);
8464                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8465                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8466                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8467                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8468                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8469                 if (INTEL_INFO(dev)->gen >= 4) {
8470                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8471                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8472                 }
8473
8474                 seq_printf(m, "Cursor [%d]:\n", i);
8475                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
8476                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
8477                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
8478         }
8479 }
8480 #endif