Merge branch 'kvm-updates/2.6.39' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN              25000
80 #define I8XX_DOT_MAX             350000
81 #define I8XX_VCO_MIN             930000
82 #define I8XX_VCO_MAX            1400000
83 #define I8XX_N_MIN                    3
84 #define I8XX_N_MAX                   16
85 #define I8XX_M_MIN                   96
86 #define I8XX_M_MAX                  140
87 #define I8XX_M1_MIN                  18
88 #define I8XX_M1_MAX                  26
89 #define I8XX_M2_MIN                   6
90 #define I8XX_M2_MAX                  16
91 #define I8XX_P_MIN                    4
92 #define I8XX_P_MAX                  128
93 #define I8XX_P1_MIN                   2
94 #define I8XX_P1_MAX                  33
95 #define I8XX_P1_LVDS_MIN              1
96 #define I8XX_P1_LVDS_MAX              6
97 #define I8XX_P2_SLOW                  4
98 #define I8XX_P2_FAST                  2
99 #define I8XX_P2_LVDS_SLOW             14
100 #define I8XX_P2_LVDS_FAST             7
101 #define I8XX_P2_SLOW_LIMIT       165000
102
103 #define I9XX_DOT_MIN              20000
104 #define I9XX_DOT_MAX             400000
105 #define I9XX_VCO_MIN            1400000
106 #define I9XX_VCO_MAX            2800000
107 #define PINEVIEW_VCO_MIN                1700000
108 #define PINEVIEW_VCO_MAX                3500000
109 #define I9XX_N_MIN                    1
110 #define I9XX_N_MAX                    6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN                3
113 #define PINEVIEW_N_MAX                6
114 #define I9XX_M_MIN                   70
115 #define I9XX_M_MAX                  120
116 #define PINEVIEW_M_MIN                2
117 #define PINEVIEW_M_MAX              256
118 #define I9XX_M1_MIN                  10
119 #define I9XX_M1_MAX                  22
120 #define I9XX_M2_MIN                   5
121 #define I9XX_M2_MAX                   9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN               0
124 #define PINEVIEW_M1_MAX               0
125 #define PINEVIEW_M2_MIN               0
126 #define PINEVIEW_M2_MAX               254
127 #define I9XX_P_SDVO_DAC_MIN           5
128 #define I9XX_P_SDVO_DAC_MAX          80
129 #define I9XX_P_LVDS_MIN               7
130 #define I9XX_P_LVDS_MAX              98
131 #define PINEVIEW_P_LVDS_MIN                   7
132 #define PINEVIEW_P_LVDS_MAX                  112
133 #define I9XX_P1_MIN                   1
134 #define I9XX_P1_MAX                   8
135 #define I9XX_P2_SDVO_DAC_SLOW                10
136 #define I9XX_P2_SDVO_DAC_FAST                 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
138 #define I9XX_P2_LVDS_SLOW                    14
139 #define I9XX_P2_LVDS_FAST                     7
140 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN           25000
144 #define G4X_DOT_SDVO_MAX           270000
145 #define G4X_VCO_MIN                1750000
146 #define G4X_VCO_MAX                3500000
147 #define G4X_N_SDVO_MIN             1
148 #define G4X_N_SDVO_MAX             4
149 #define G4X_M_SDVO_MIN             104
150 #define G4X_M_SDVO_MAX             138
151 #define G4X_M1_SDVO_MIN            17
152 #define G4X_M1_SDVO_MAX            23
153 #define G4X_M2_SDVO_MIN            5
154 #define G4X_M2_SDVO_MAX            11
155 #define G4X_P_SDVO_MIN             10
156 #define G4X_P_SDVO_MAX             30
157 #define G4X_P1_SDVO_MIN            1
158 #define G4X_P1_SDVO_MAX            3
159 #define G4X_P2_SDVO_SLOW           10
160 #define G4X_P2_SDVO_FAST           10
161 #define G4X_P2_SDVO_LIMIT          270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN           22000
165 #define G4X_DOT_HDMI_DAC_MAX           400000
166 #define G4X_N_HDMI_DAC_MIN             1
167 #define G4X_N_HDMI_DAC_MAX             4
168 #define G4X_M_HDMI_DAC_MIN             104
169 #define G4X_M_HDMI_DAC_MAX             138
170 #define G4X_M1_HDMI_DAC_MIN            16
171 #define G4X_M1_HDMI_DAC_MAX            23
172 #define G4X_M2_HDMI_DAC_MIN            5
173 #define G4X_M2_HDMI_DAC_MAX            11
174 #define G4X_P_HDMI_DAC_MIN             5
175 #define G4X_P_HDMI_DAC_MAX             80
176 #define G4X_P1_HDMI_DAC_MIN            1
177 #define G4X_P1_HDMI_DAC_MAX            8
178 #define G4X_P2_HDMI_DAC_SLOW           10
179 #define G4X_P2_HDMI_DAC_FAST           5
180 #define G4X_P2_HDMI_DAC_LIMIT          165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN           161670
222 #define G4X_DOT_DISPLAY_PORT_MAX           227000
223 #define G4X_N_DISPLAY_PORT_MIN             1
224 #define G4X_N_DISPLAY_PORT_MAX             2
225 #define G4X_M_DISPLAY_PORT_MIN             97
226 #define G4X_M_DISPLAY_PORT_MAX             108
227 #define G4X_M1_DISPLAY_PORT_MIN            0x10
228 #define G4X_M1_DISPLAY_PORT_MAX            0x12
229 #define G4X_M2_DISPLAY_PORT_MIN            0x05
230 #define G4X_M2_DISPLAY_PORT_MAX            0x06
231 #define G4X_P_DISPLAY_PORT_MIN             10
232 #define G4X_P_DISPLAY_PORT_MAX             20
233 #define G4X_P1_DISPLAY_PORT_MIN            1
234 #define G4X_P1_DISPLAY_PORT_MAX            2
235 #define G4X_P2_DISPLAY_PORT_SLOW           10
236 #define G4X_P2_DISPLAY_PORT_FAST           10
237 #define G4X_P2_DISPLAY_PORT_LIMIT          0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241    N/M1/M2, so here the range value for them is (actual_value-2).
242  */
243 #define IRONLAKE_DOT_MIN         25000
244 #define IRONLAKE_DOT_MAX         350000
245 #define IRONLAKE_VCO_MIN         1760000
246 #define IRONLAKE_VCO_MAX         3510000
247 #define IRONLAKE_M1_MIN          12
248 #define IRONLAKE_M1_MAX          22
249 #define IRONLAKE_M2_MIN          5
250 #define IRONLAKE_M2_MAX          9
251 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN      1
257 #define IRONLAKE_DAC_N_MAX      5
258 #define IRONLAKE_DAC_M_MIN      79
259 #define IRONLAKE_DAC_M_MAX      127
260 #define IRONLAKE_DAC_P_MIN      5
261 #define IRONLAKE_DAC_P_MAX      80
262 #define IRONLAKE_DAC_P1_MIN     1
263 #define IRONLAKE_DAC_P1_MAX     8
264 #define IRONLAKE_DAC_P2_SLOW    10
265 #define IRONLAKE_DAC_P2_FAST    5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN   1
269 #define IRONLAKE_LVDS_S_N_MAX   3
270 #define IRONLAKE_LVDS_S_M_MIN   79
271 #define IRONLAKE_LVDS_S_M_MAX   118
272 #define IRONLAKE_LVDS_S_P_MIN   28
273 #define IRONLAKE_LVDS_S_P_MAX   112
274 #define IRONLAKE_LVDS_S_P1_MIN  2
275 #define IRONLAKE_LVDS_S_P1_MAX  8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN   1
281 #define IRONLAKE_LVDS_D_N_MAX   3
282 #define IRONLAKE_LVDS_D_M_MIN   79
283 #define IRONLAKE_LVDS_D_M_MAX   127
284 #define IRONLAKE_LVDS_D_P_MIN   14
285 #define IRONLAKE_LVDS_D_P_MAX   56
286 #define IRONLAKE_LVDS_D_P1_MIN  2
287 #define IRONLAKE_LVDS_D_P1_MAX  8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN               1
317 #define IRONLAKE_DP_N_MAX               2
318 #define IRONLAKE_DP_M_MIN               81
319 #define IRONLAKE_DP_M_MAX               90
320 #define IRONLAKE_DP_P_MIN               10
321 #define IRONLAKE_DP_P_MAX               20
322 #define IRONLAKE_DP_P2_FAST             10
323 #define IRONLAKE_DP_P2_SLOW             10
324 #define IRONLAKE_DP_P2_LIMIT            0
325 #define IRONLAKE_DP_P1_MIN              1
326 #define IRONLAKE_DP_P1_MAX              2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333                     int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336                         int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340                       int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343                            int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348         if (IS_GEN5(dev)) {
349                 struct drm_i915_private *dev_priv = dev->dev_private;
350                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351         } else
352                 return 27;
353 }
354
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
357         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
358         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
359         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
360         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
361         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
362         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
363         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
364         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
366         .find_pll = intel_find_best_PLL,
367 };
368
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
371         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
372         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
373         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
374         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
375         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
376         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
377         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
378         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
380         .find_pll = intel_find_best_PLL,
381 };
382         
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
385         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
386         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
387         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
388         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
389         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
390         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
391         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
392         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394         .find_pll = intel_find_best_PLL,
395 };
396
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
399         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
400         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
401         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
402         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
403         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
404         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
405         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
406         /* The single-channel range is 25-112Mhz, and dual-channel
407          * is 80-224Mhz.  Prefer single channel as much as possible.
408          */
409         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
411         .find_pll = intel_find_best_PLL,
412 };
413
414     /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
419         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
420         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
421         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
422         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
423         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
424         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
425                  .p2_slow = G4X_P2_SDVO_SLOW,
426                  .p2_fast = G4X_P2_SDVO_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
433         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
434         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
435         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
436         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
437         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
438         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
439         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
440         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442                  .p2_fast = G4X_P2_HDMI_DAC_FAST
443         },
444         .find_pll = intel_g4x_find_best_PLL,
445 };
446
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450         .vco = { .min = G4X_VCO_MIN,
451                  .max = G4X_VCO_MAX },
452         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
467         },
468         .find_pll = intel_g4x_find_best_PLL,
469 };
470
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474         .vco = { .min = G4X_VCO_MIN,
475                  .max = G4X_VCO_MAX },
476         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
491         },
492         .find_pll = intel_g4x_find_best_PLL,
493 };
494
495 static const intel_limit_t intel_limits_g4x_display_port = {
496         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497                  .max = G4X_DOT_DISPLAY_PORT_MAX },
498         .vco = { .min = G4X_VCO_MIN,
499                  .max = G4X_VCO_MAX},
500         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
501                  .max = G4X_N_DISPLAY_PORT_MAX },
502         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
503                  .max = G4X_M_DISPLAY_PORT_MAX },
504         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
505                  .max = G4X_M1_DISPLAY_PORT_MAX },
506         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
507                  .max = G4X_M2_DISPLAY_PORT_MAX },
508         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
509                  .max = G4X_P_DISPLAY_PORT_MAX },
510         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
511                  .max = G4X_P1_DISPLAY_PORT_MAX},
512         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515         .find_pll = intel_find_pll_g4x_dp,
516 };
517
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
520         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
521         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
522         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
523         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
524         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
525         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
526         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
527         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529         .find_pll = intel_find_best_PLL,
530 };
531
532 static const intel_limit_t intel_limits_pineview_lvds = {
533         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
534         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
535         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
536         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
537         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
538         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
539         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
540         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
541         /* Pineview only supports single-channel mode. */
542         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
544         .find_pll = intel_find_best_PLL,
545 };
546
547 static const intel_limit_t intel_limits_ironlake_dac = {
548         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
549         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
550         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
551         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
552         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
553         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
554         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
555         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
556         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
558                  .p2_fast = IRONLAKE_DAC_P2_FAST },
559         .find_pll = intel_g4x_find_best_PLL,
560 };
561
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
564         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
565         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
566         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
567         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
568         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
569         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
570         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
571         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574         .find_pll = intel_g4x_find_best_PLL,
575 };
576
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
579         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
580         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
581         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
582         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
583         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
584         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
585         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
586         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589         .find_pll = intel_g4x_find_best_PLL,
590 };
591
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
594         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
595         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
598         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
599         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604         .find_pll = intel_g4x_find_best_PLL,
605 };
606
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
610         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
613         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
614         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619         .find_pll = intel_g4x_find_best_PLL,
620 };
621
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623         .dot = { .min = IRONLAKE_DOT_MIN,
624                  .max = IRONLAKE_DOT_MAX },
625         .vco = { .min = IRONLAKE_VCO_MIN,
626                  .max = IRONLAKE_VCO_MAX},
627         .n   = { .min = IRONLAKE_DP_N_MIN,
628                  .max = IRONLAKE_DP_N_MAX },
629         .m   = { .min = IRONLAKE_DP_M_MIN,
630                  .max = IRONLAKE_DP_M_MAX },
631         .m1  = { .min = IRONLAKE_M1_MIN,
632                  .max = IRONLAKE_M1_MAX },
633         .m2  = { .min = IRONLAKE_M2_MIN,
634                  .max = IRONLAKE_M2_MAX },
635         .p   = { .min = IRONLAKE_DP_P_MIN,
636                  .max = IRONLAKE_DP_P_MAX },
637         .p1  = { .min = IRONLAKE_DP_P1_MIN,
638                  .max = IRONLAKE_DP_P1_MAX},
639         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640                  .p2_slow = IRONLAKE_DP_P2_SLOW,
641                  .p2_fast = IRONLAKE_DP_P2_FAST },
642         .find_pll = intel_find_pll_ironlake_dp,
643 };
644
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
646                                                 int refclk)
647 {
648         struct drm_device *dev = crtc->dev;
649         struct drm_i915_private *dev_priv = dev->dev_private;
650         const intel_limit_t *limit;
651
652         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654                     LVDS_CLKB_POWER_UP) {
655                         /* LVDS dual channel */
656                         if (refclk == 100000)
657                                 limit = &intel_limits_ironlake_dual_lvds_100m;
658                         else
659                                 limit = &intel_limits_ironlake_dual_lvds;
660                 } else {
661                         if (refclk == 100000)
662                                 limit = &intel_limits_ironlake_single_lvds_100m;
663                         else
664                                 limit = &intel_limits_ironlake_single_lvds;
665                 }
666         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667                         HAS_eDP)
668                 limit = &intel_limits_ironlake_display_port;
669         else
670                 limit = &intel_limits_ironlake_dac;
671
672         return limit;
673 }
674
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
676 {
677         struct drm_device *dev = crtc->dev;
678         struct drm_i915_private *dev_priv = dev->dev_private;
679         const intel_limit_t *limit;
680
681         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683                     LVDS_CLKB_POWER_UP)
684                         /* LVDS with dual channel */
685                         limit = &intel_limits_g4x_dual_channel_lvds;
686                 else
687                         /* LVDS with dual channel */
688                         limit = &intel_limits_g4x_single_channel_lvds;
689         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691                 limit = &intel_limits_g4x_hdmi;
692         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693                 limit = &intel_limits_g4x_sdvo;
694         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695                 limit = &intel_limits_g4x_display_port;
696         } else /* The option is for other outputs */
697                 limit = &intel_limits_i9xx_sdvo;
698
699         return limit;
700 }
701
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
703 {
704         struct drm_device *dev = crtc->dev;
705         const intel_limit_t *limit;
706
707         if (HAS_PCH_SPLIT(dev))
708                 limit = intel_ironlake_limit(crtc, refclk);
709         else if (IS_G4X(dev)) {
710                 limit = intel_g4x_limit(crtc);
711         } else if (IS_PINEVIEW(dev)) {
712                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713                         limit = &intel_limits_pineview_lvds;
714                 else
715                         limit = &intel_limits_pineview_sdvo;
716         } else if (!IS_GEN2(dev)) {
717                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718                         limit = &intel_limits_i9xx_lvds;
719                 else
720                         limit = &intel_limits_i9xx_sdvo;
721         } else {
722                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723                         limit = &intel_limits_i8xx_lvds;
724                 else
725                         limit = &intel_limits_i8xx_dvo;
726         }
727         return limit;
728 }
729
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
732 {
733         clock->m = clock->m2 + 2;
734         clock->p = clock->p1 * clock->p2;
735         clock->vco = refclk * clock->m / clock->n;
736         clock->dot = clock->vco / clock->p;
737 }
738
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
740 {
741         if (IS_PINEVIEW(dev)) {
742                 pineview_clock(refclk, clock);
743                 return;
744         }
745         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746         clock->p = clock->p1 * clock->p2;
747         clock->vco = refclk * clock->m / (clock->n + 2);
748         clock->dot = clock->vco / clock->p;
749 }
750
751 /**
752  * Returns whether any output on the specified pipe is of the specified type
753  */
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
755 {
756         struct drm_device *dev = crtc->dev;
757         struct drm_mode_config *mode_config = &dev->mode_config;
758         struct intel_encoder *encoder;
759
760         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761                 if (encoder->base.crtc == crtc && encoder->type == type)
762                         return true;
763
764         return false;
765 }
766
767 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
768 /**
769  * Returns whether the given set of divisors are valid for a given refclk with
770  * the given connectors.
771  */
772
773 static bool intel_PLL_is_valid(struct drm_device *dev,
774                                const intel_limit_t *limit,
775                                const intel_clock_t *clock)
776 {
777         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
778                 INTELPllInvalid ("p1 out of range\n");
779         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
780                 INTELPllInvalid ("p out of range\n");
781         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
782                 INTELPllInvalid ("m2 out of range\n");
783         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
784                 INTELPllInvalid ("m1 out of range\n");
785         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
786                 INTELPllInvalid ("m1 <= m2\n");
787         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
788                 INTELPllInvalid ("m out of range\n");
789         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
790                 INTELPllInvalid ("n out of range\n");
791         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
792                 INTELPllInvalid ("vco out of range\n");
793         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
794          * connector, etc., rather than just a single range.
795          */
796         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
797                 INTELPllInvalid ("dot out of range\n");
798
799         return true;
800 }
801
802 static bool
803 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
804                     int target, int refclk, intel_clock_t *best_clock)
805
806 {
807         struct drm_device *dev = crtc->dev;
808         struct drm_i915_private *dev_priv = dev->dev_private;
809         intel_clock_t clock;
810         int err = target;
811
812         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
813             (I915_READ(LVDS)) != 0) {
814                 /*
815                  * For LVDS, if the panel is on, just rely on its current
816                  * settings for dual-channel.  We haven't figured out how to
817                  * reliably set up different single/dual channel state, if we
818                  * even can.
819                  */
820                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
821                     LVDS_CLKB_POWER_UP)
822                         clock.p2 = limit->p2.p2_fast;
823                 else
824                         clock.p2 = limit->p2.p2_slow;
825         } else {
826                 if (target < limit->p2.dot_limit)
827                         clock.p2 = limit->p2.p2_slow;
828                 else
829                         clock.p2 = limit->p2.p2_fast;
830         }
831
832         memset (best_clock, 0, sizeof (*best_clock));
833
834         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
835              clock.m1++) {
836                 for (clock.m2 = limit->m2.min;
837                      clock.m2 <= limit->m2.max; clock.m2++) {
838                         /* m1 is always 0 in Pineview */
839                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
840                                 break;
841                         for (clock.n = limit->n.min;
842                              clock.n <= limit->n.max; clock.n++) {
843                                 for (clock.p1 = limit->p1.min;
844                                         clock.p1 <= limit->p1.max; clock.p1++) {
845                                         int this_err;
846
847                                         intel_clock(dev, refclk, &clock);
848                                         if (!intel_PLL_is_valid(dev, limit,
849                                                                 &clock))
850                                                 continue;
851
852                                         this_err = abs(clock.dot - target);
853                                         if (this_err < err) {
854                                                 *best_clock = clock;
855                                                 err = this_err;
856                                         }
857                                 }
858                         }
859                 }
860         }
861
862         return (err != target);
863 }
864
865 static bool
866 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
867                         int target, int refclk, intel_clock_t *best_clock)
868 {
869         struct drm_device *dev = crtc->dev;
870         struct drm_i915_private *dev_priv = dev->dev_private;
871         intel_clock_t clock;
872         int max_n;
873         bool found;
874         /* approximately equals target * 0.00585 */
875         int err_most = (target >> 8) + (target >> 9);
876         found = false;
877
878         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
879                 int lvds_reg;
880
881                 if (HAS_PCH_SPLIT(dev))
882                         lvds_reg = PCH_LVDS;
883                 else
884                         lvds_reg = LVDS;
885                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
886                     LVDS_CLKB_POWER_UP)
887                         clock.p2 = limit->p2.p2_fast;
888                 else
889                         clock.p2 = limit->p2.p2_slow;
890         } else {
891                 if (target < limit->p2.dot_limit)
892                         clock.p2 = limit->p2.p2_slow;
893                 else
894                         clock.p2 = limit->p2.p2_fast;
895         }
896
897         memset(best_clock, 0, sizeof(*best_clock));
898         max_n = limit->n.max;
899         /* based on hardware requirement, prefer smaller n to precision */
900         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
901                 /* based on hardware requirement, prefere larger m1,m2 */
902                 for (clock.m1 = limit->m1.max;
903                      clock.m1 >= limit->m1.min; clock.m1--) {
904                         for (clock.m2 = limit->m2.max;
905                              clock.m2 >= limit->m2.min; clock.m2--) {
906                                 for (clock.p1 = limit->p1.max;
907                                      clock.p1 >= limit->p1.min; clock.p1--) {
908                                         int this_err;
909
910                                         intel_clock(dev, refclk, &clock);
911                                         if (!intel_PLL_is_valid(dev, limit,
912                                                                 &clock))
913                                                 continue;
914
915                                         this_err = abs(clock.dot - target);
916                                         if (this_err < err_most) {
917                                                 *best_clock = clock;
918                                                 err_most = this_err;
919                                                 max_n = clock.n;
920                                                 found = true;
921                                         }
922                                 }
923                         }
924                 }
925         }
926         return found;
927 }
928
929 static bool
930 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
931                            int target, int refclk, intel_clock_t *best_clock)
932 {
933         struct drm_device *dev = crtc->dev;
934         intel_clock_t clock;
935
936         if (target < 200000) {
937                 clock.n = 1;
938                 clock.p1 = 2;
939                 clock.p2 = 10;
940                 clock.m1 = 12;
941                 clock.m2 = 9;
942         } else {
943                 clock.n = 2;
944                 clock.p1 = 1;
945                 clock.p2 = 10;
946                 clock.m1 = 14;
947                 clock.m2 = 8;
948         }
949         intel_clock(dev, refclk, &clock);
950         memcpy(best_clock, &clock, sizeof(intel_clock_t));
951         return true;
952 }
953
954 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
955 static bool
956 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
957                       int target, int refclk, intel_clock_t *best_clock)
958 {
959         intel_clock_t clock;
960         if (target < 200000) {
961                 clock.p1 = 2;
962                 clock.p2 = 10;
963                 clock.n = 2;
964                 clock.m1 = 23;
965                 clock.m2 = 8;
966         } else {
967                 clock.p1 = 1;
968                 clock.p2 = 10;
969                 clock.n = 1;
970                 clock.m1 = 14;
971                 clock.m2 = 2;
972         }
973         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
974         clock.p = (clock.p1 * clock.p2);
975         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
976         clock.vco = 0;
977         memcpy(best_clock, &clock, sizeof(intel_clock_t));
978         return true;
979 }
980
981 /**
982  * intel_wait_for_vblank - wait for vblank on a given pipe
983  * @dev: drm device
984  * @pipe: pipe to wait for
985  *
986  * Wait for vblank to occur on a given pipe.  Needed for various bits of
987  * mode setting code.
988  */
989 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
990 {
991         struct drm_i915_private *dev_priv = dev->dev_private;
992         int pipestat_reg = PIPESTAT(pipe);
993
994         /* Clear existing vblank status. Note this will clear any other
995          * sticky status fields as well.
996          *
997          * This races with i915_driver_irq_handler() with the result
998          * that either function could miss a vblank event.  Here it is not
999          * fatal, as we will either wait upon the next vblank interrupt or
1000          * timeout.  Generally speaking intel_wait_for_vblank() is only
1001          * called during modeset at which time the GPU should be idle and
1002          * should *not* be performing page flips and thus not waiting on
1003          * vblanks...
1004          * Currently, the result of us stealing a vblank from the irq
1005          * handler is that a single frame will be skipped during swapbuffers.
1006          */
1007         I915_WRITE(pipestat_reg,
1008                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1009
1010         /* Wait for vblank interrupt bit to set */
1011         if (wait_for(I915_READ(pipestat_reg) &
1012                      PIPE_VBLANK_INTERRUPT_STATUS,
1013                      50))
1014                 DRM_DEBUG_KMS("vblank wait timed out\n");
1015 }
1016
1017 /*
1018  * intel_wait_for_pipe_off - wait for pipe to turn off
1019  * @dev: drm device
1020  * @pipe: pipe to wait for
1021  *
1022  * After disabling a pipe, we can't wait for vblank in the usual way,
1023  * spinning on the vblank interrupt status bit, since we won't actually
1024  * see an interrupt when the pipe is disabled.
1025  *
1026  * On Gen4 and above:
1027  *   wait for the pipe register state bit to turn off
1028  *
1029  * Otherwise:
1030  *   wait for the display line value to settle (it usually
1031  *   ends up stopping at the start of the next frame).
1032  *
1033  */
1034 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1035 {
1036         struct drm_i915_private *dev_priv = dev->dev_private;
1037
1038         if (INTEL_INFO(dev)->gen >= 4) {
1039                 int reg = PIPECONF(pipe);
1040
1041                 /* Wait for the Pipe State to go off */
1042                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1043                              100))
1044                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1045         } else {
1046                 u32 last_line;
1047                 int reg = PIPEDSL(pipe);
1048                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1049
1050                 /* Wait for the display line to settle */
1051                 do {
1052                         last_line = I915_READ(reg) & DSL_LINEMASK;
1053                         mdelay(5);
1054                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1055                          time_after(timeout, jiffies));
1056                 if (time_after(jiffies, timeout))
1057                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1058         }
1059 }
1060
1061 static const char *state_string(bool enabled)
1062 {
1063         return enabled ? "on" : "off";
1064 }
1065
1066 /* Only for pre-ILK configs */
1067 static void assert_pll(struct drm_i915_private *dev_priv,
1068                        enum pipe pipe, bool state)
1069 {
1070         int reg;
1071         u32 val;
1072         bool cur_state;
1073
1074         reg = DPLL(pipe);
1075         val = I915_READ(reg);
1076         cur_state = !!(val & DPLL_VCO_ENABLE);
1077         WARN(cur_state != state,
1078              "PLL state assertion failure (expected %s, current %s)\n",
1079              state_string(state), state_string(cur_state));
1080 }
1081 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1082 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1083
1084 /* For ILK+ */
1085 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1086                            enum pipe pipe, bool state)
1087 {
1088         int reg;
1089         u32 val;
1090         bool cur_state;
1091
1092         reg = PCH_DPLL(pipe);
1093         val = I915_READ(reg);
1094         cur_state = !!(val & DPLL_VCO_ENABLE);
1095         WARN(cur_state != state,
1096              "PCH PLL state assertion failure (expected %s, current %s)\n",
1097              state_string(state), state_string(cur_state));
1098 }
1099 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
1100 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
1101
1102 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1103                           enum pipe pipe, bool state)
1104 {
1105         int reg;
1106         u32 val;
1107         bool cur_state;
1108
1109         reg = FDI_TX_CTL(pipe);
1110         val = I915_READ(reg);
1111         cur_state = !!(val & FDI_TX_ENABLE);
1112         WARN(cur_state != state,
1113              "FDI TX state assertion failure (expected %s, current %s)\n",
1114              state_string(state), state_string(cur_state));
1115 }
1116 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1117 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1118
1119 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1120                           enum pipe pipe, bool state)
1121 {
1122         int reg;
1123         u32 val;
1124         bool cur_state;
1125
1126         reg = FDI_RX_CTL(pipe);
1127         val = I915_READ(reg);
1128         cur_state = !!(val & FDI_RX_ENABLE);
1129         WARN(cur_state != state,
1130              "FDI RX state assertion failure (expected %s, current %s)\n",
1131              state_string(state), state_string(cur_state));
1132 }
1133 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1134 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1135
1136 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1137                                       enum pipe pipe)
1138 {
1139         int reg;
1140         u32 val;
1141
1142         /* ILK FDI PLL is always enabled */
1143         if (dev_priv->info->gen == 5)
1144                 return;
1145
1146         reg = FDI_TX_CTL(pipe);
1147         val = I915_READ(reg);
1148         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1149 }
1150
1151 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1152                                       enum pipe pipe)
1153 {
1154         int reg;
1155         u32 val;
1156
1157         reg = FDI_RX_CTL(pipe);
1158         val = I915_READ(reg);
1159         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1160 }
1161
1162 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1163                                   enum pipe pipe)
1164 {
1165         int pp_reg, lvds_reg;
1166         u32 val;
1167         enum pipe panel_pipe = PIPE_A;
1168         bool locked = locked;
1169
1170         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1171                 pp_reg = PCH_PP_CONTROL;
1172                 lvds_reg = PCH_LVDS;
1173         } else {
1174                 pp_reg = PP_CONTROL;
1175                 lvds_reg = LVDS;
1176         }
1177
1178         val = I915_READ(pp_reg);
1179         if (!(val & PANEL_POWER_ON) ||
1180             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1181                 locked = false;
1182
1183         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1184                 panel_pipe = PIPE_B;
1185
1186         WARN(panel_pipe == pipe && locked,
1187              "panel assertion failure, pipe %c regs locked\n",
1188              pipe_name(pipe));
1189 }
1190
1191 static void assert_pipe(struct drm_i915_private *dev_priv,
1192                         enum pipe pipe, bool state)
1193 {
1194         int reg;
1195         u32 val;
1196         bool cur_state;
1197
1198         reg = PIPECONF(pipe);
1199         val = I915_READ(reg);
1200         cur_state = !!(val & PIPECONF_ENABLE);
1201         WARN(cur_state != state,
1202              "pipe %c assertion failure (expected %s, current %s)\n",
1203              pipe_name(pipe), state_string(state), state_string(cur_state));
1204 }
1205 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
1206 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
1207
1208 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
1209                                  enum plane plane)
1210 {
1211         int reg;
1212         u32 val;
1213
1214         reg = DSPCNTR(plane);
1215         val = I915_READ(reg);
1216         WARN(!(val & DISPLAY_PLANE_ENABLE),
1217              "plane %c assertion failure, should be active but is disabled\n",
1218              plane_name(plane));
1219 }
1220
1221 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1222                                    enum pipe pipe)
1223 {
1224         int reg, i;
1225         u32 val;
1226         int cur_pipe;
1227
1228         /* Planes are fixed to pipes on ILK+ */
1229         if (HAS_PCH_SPLIT(dev_priv->dev))
1230                 return;
1231
1232         /* Need to check both planes against the pipe */
1233         for (i = 0; i < 2; i++) {
1234                 reg = DSPCNTR(i);
1235                 val = I915_READ(reg);
1236                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1237                         DISPPLANE_SEL_PIPE_SHIFT;
1238                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1239                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1240                      plane_name(i), pipe_name(pipe));
1241         }
1242 }
1243
1244 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1245 {
1246         u32 val;
1247         bool enabled;
1248
1249         val = I915_READ(PCH_DREF_CONTROL);
1250         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1251                             DREF_SUPERSPREAD_SOURCE_MASK));
1252         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1253 }
1254
1255 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1256                                        enum pipe pipe)
1257 {
1258         int reg;
1259         u32 val;
1260         bool enabled;
1261
1262         reg = TRANSCONF(pipe);
1263         val = I915_READ(reg);
1264         enabled = !!(val & TRANS_ENABLE);
1265         WARN(enabled,
1266              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1267              pipe_name(pipe));
1268 }
1269
1270 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1271                                    enum pipe pipe, int reg)
1272 {
1273         u32 val = I915_READ(reg);
1274         WARN(DP_PIPE_ENABLED(val, pipe),
1275              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1276              reg, pipe_name(pipe));
1277 }
1278
1279 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1280                                      enum pipe pipe, int reg)
1281 {
1282         u32 val = I915_READ(reg);
1283         WARN(HDMI_PIPE_ENABLED(val, pipe),
1284              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1285              reg, pipe_name(pipe));
1286 }
1287
1288 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1289                                       enum pipe pipe)
1290 {
1291         int reg;
1292         u32 val;
1293
1294         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1295         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1296         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1297
1298         reg = PCH_ADPA;
1299         val = I915_READ(reg);
1300         WARN(ADPA_PIPE_ENABLED(val, pipe),
1301              "PCH VGA enabled on transcoder %c, should be disabled\n",
1302              pipe_name(pipe));
1303
1304         reg = PCH_LVDS;
1305         val = I915_READ(reg);
1306         WARN(LVDS_PIPE_ENABLED(val, pipe),
1307              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1308              pipe_name(pipe));
1309
1310         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1311         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1312         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1313 }
1314
1315 /**
1316  * intel_enable_pll - enable a PLL
1317  * @dev_priv: i915 private structure
1318  * @pipe: pipe PLL to enable
1319  *
1320  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1321  * make sure the PLL reg is writable first though, since the panel write
1322  * protect mechanism may be enabled.
1323  *
1324  * Note!  This is for pre-ILK only.
1325  */
1326 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1327 {
1328         int reg;
1329         u32 val;
1330
1331         /* No really, not for ILK+ */
1332         BUG_ON(dev_priv->info->gen >= 5);
1333
1334         /* PLL is protected by panel, make sure we can write it */
1335         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1336                 assert_panel_unlocked(dev_priv, pipe);
1337
1338         reg = DPLL(pipe);
1339         val = I915_READ(reg);
1340         val |= DPLL_VCO_ENABLE;
1341
1342         /* We do this three times for luck */
1343         I915_WRITE(reg, val);
1344         POSTING_READ(reg);
1345         udelay(150); /* wait for warmup */
1346         I915_WRITE(reg, val);
1347         POSTING_READ(reg);
1348         udelay(150); /* wait for warmup */
1349         I915_WRITE(reg, val);
1350         POSTING_READ(reg);
1351         udelay(150); /* wait for warmup */
1352 }
1353
1354 /**
1355  * intel_disable_pll - disable a PLL
1356  * @dev_priv: i915 private structure
1357  * @pipe: pipe PLL to disable
1358  *
1359  * Disable the PLL for @pipe, making sure the pipe is off first.
1360  *
1361  * Note!  This is for pre-ILK only.
1362  */
1363 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1364 {
1365         int reg;
1366         u32 val;
1367
1368         /* Don't disable pipe A or pipe A PLLs if needed */
1369         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1370                 return;
1371
1372         /* Make sure the pipe isn't still relying on us */
1373         assert_pipe_disabled(dev_priv, pipe);
1374
1375         reg = DPLL(pipe);
1376         val = I915_READ(reg);
1377         val &= ~DPLL_VCO_ENABLE;
1378         I915_WRITE(reg, val);
1379         POSTING_READ(reg);
1380 }
1381
1382 /**
1383  * intel_enable_pch_pll - enable PCH PLL
1384  * @dev_priv: i915 private structure
1385  * @pipe: pipe PLL to enable
1386  *
1387  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1388  * drives the transcoder clock.
1389  */
1390 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1391                                  enum pipe pipe)
1392 {
1393         int reg;
1394         u32 val;
1395
1396         /* PCH only available on ILK+ */
1397         BUG_ON(dev_priv->info->gen < 5);
1398
1399         /* PCH refclock must be enabled first */
1400         assert_pch_refclk_enabled(dev_priv);
1401
1402         reg = PCH_DPLL(pipe);
1403         val = I915_READ(reg);
1404         val |= DPLL_VCO_ENABLE;
1405         I915_WRITE(reg, val);
1406         POSTING_READ(reg);
1407         udelay(200);
1408 }
1409
1410 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1411                                   enum pipe pipe)
1412 {
1413         int reg;
1414         u32 val;
1415
1416         /* PCH only available on ILK+ */
1417         BUG_ON(dev_priv->info->gen < 5);
1418
1419         /* Make sure transcoder isn't still depending on us */
1420         assert_transcoder_disabled(dev_priv, pipe);
1421
1422         reg = PCH_DPLL(pipe);
1423         val = I915_READ(reg);
1424         val &= ~DPLL_VCO_ENABLE;
1425         I915_WRITE(reg, val);
1426         POSTING_READ(reg);
1427         udelay(200);
1428 }
1429
1430 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1431                                     enum pipe pipe)
1432 {
1433         int reg;
1434         u32 val;
1435
1436         /* PCH only available on ILK+ */
1437         BUG_ON(dev_priv->info->gen < 5);
1438
1439         /* Make sure PCH DPLL is enabled */
1440         assert_pch_pll_enabled(dev_priv, pipe);
1441
1442         /* FDI must be feeding us bits for PCH ports */
1443         assert_fdi_tx_enabled(dev_priv, pipe);
1444         assert_fdi_rx_enabled(dev_priv, pipe);
1445
1446         reg = TRANSCONF(pipe);
1447         val = I915_READ(reg);
1448         /*
1449          * make the BPC in transcoder be consistent with
1450          * that in pipeconf reg.
1451          */
1452         val &= ~PIPE_BPC_MASK;
1453         val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1454         I915_WRITE(reg, val | TRANS_ENABLE);
1455         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1456                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1457 }
1458
1459 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1460                                      enum pipe pipe)
1461 {
1462         int reg;
1463         u32 val;
1464
1465         /* FDI relies on the transcoder */
1466         assert_fdi_tx_disabled(dev_priv, pipe);
1467         assert_fdi_rx_disabled(dev_priv, pipe);
1468
1469         /* Ports must be off as well */
1470         assert_pch_ports_disabled(dev_priv, pipe);
1471
1472         reg = TRANSCONF(pipe);
1473         val = I915_READ(reg);
1474         val &= ~TRANS_ENABLE;
1475         I915_WRITE(reg, val);
1476         /* wait for PCH transcoder off, transcoder state */
1477         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1478                 DRM_ERROR("failed to disable transcoder\n");
1479 }
1480
1481 /**
1482  * intel_enable_pipe - enable a pipe, asserting requirements
1483  * @dev_priv: i915 private structure
1484  * @pipe: pipe to enable
1485  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1486  *
1487  * Enable @pipe, making sure that various hardware specific requirements
1488  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1489  *
1490  * @pipe should be %PIPE_A or %PIPE_B.
1491  *
1492  * Will wait until the pipe is actually running (i.e. first vblank) before
1493  * returning.
1494  */
1495 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1496                               bool pch_port)
1497 {
1498         int reg;
1499         u32 val;
1500
1501         /*
1502          * A pipe without a PLL won't actually be able to drive bits from
1503          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1504          * need the check.
1505          */
1506         if (!HAS_PCH_SPLIT(dev_priv->dev))
1507                 assert_pll_enabled(dev_priv, pipe);
1508         else {
1509                 if (pch_port) {
1510                         /* if driving the PCH, we need FDI enabled */
1511                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1512                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1513                 }
1514                 /* FIXME: assert CPU port conditions for SNB+ */
1515         }
1516
1517         reg = PIPECONF(pipe);
1518         val = I915_READ(reg);
1519         val |= PIPECONF_ENABLE;
1520         I915_WRITE(reg, val);
1521         POSTING_READ(reg);
1522         intel_wait_for_vblank(dev_priv->dev, pipe);
1523 }
1524
1525 /**
1526  * intel_disable_pipe - disable a pipe, asserting requirements
1527  * @dev_priv: i915 private structure
1528  * @pipe: pipe to disable
1529  *
1530  * Disable @pipe, making sure that various hardware specific requirements
1531  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1532  *
1533  * @pipe should be %PIPE_A or %PIPE_B.
1534  *
1535  * Will wait until the pipe has shut down before returning.
1536  */
1537 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1538                                enum pipe pipe)
1539 {
1540         int reg;
1541         u32 val;
1542
1543         /*
1544          * Make sure planes won't keep trying to pump pixels to us,
1545          * or we might hang the display.
1546          */
1547         assert_planes_disabled(dev_priv, pipe);
1548
1549         /* Don't disable pipe A or pipe A PLLs if needed */
1550         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1551                 return;
1552
1553         reg = PIPECONF(pipe);
1554         val = I915_READ(reg);
1555         val &= ~PIPECONF_ENABLE;
1556         I915_WRITE(reg, val);
1557         POSTING_READ(reg);
1558         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1559 }
1560
1561 /**
1562  * intel_enable_plane - enable a display plane on a given pipe
1563  * @dev_priv: i915 private structure
1564  * @plane: plane to enable
1565  * @pipe: pipe being fed
1566  *
1567  * Enable @plane on @pipe, making sure that @pipe is running first.
1568  */
1569 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1570                                enum plane plane, enum pipe pipe)
1571 {
1572         int reg;
1573         u32 val;
1574
1575         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1576         assert_pipe_enabled(dev_priv, pipe);
1577
1578         reg = DSPCNTR(plane);
1579         val = I915_READ(reg);
1580         val |= DISPLAY_PLANE_ENABLE;
1581         I915_WRITE(reg, val);
1582         POSTING_READ(reg);
1583         intel_wait_for_vblank(dev_priv->dev, pipe);
1584 }
1585
1586 /*
1587  * Plane regs are double buffered, going from enabled->disabled needs a
1588  * trigger in order to latch.  The display address reg provides this.
1589  */
1590 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1591                                       enum plane plane)
1592 {
1593         u32 reg = DSPADDR(plane);
1594         I915_WRITE(reg, I915_READ(reg));
1595 }
1596
1597 /**
1598  * intel_disable_plane - disable a display plane
1599  * @dev_priv: i915 private structure
1600  * @plane: plane to disable
1601  * @pipe: pipe consuming the data
1602  *
1603  * Disable @plane; should be an independent operation.
1604  */
1605 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1606                                 enum plane plane, enum pipe pipe)
1607 {
1608         int reg;
1609         u32 val;
1610
1611         reg = DSPCNTR(plane);
1612         val = I915_READ(reg);
1613         val &= ~DISPLAY_PLANE_ENABLE;
1614         I915_WRITE(reg, val);
1615         POSTING_READ(reg);
1616         intel_flush_display_plane(dev_priv, plane);
1617         intel_wait_for_vblank(dev_priv->dev, pipe);
1618 }
1619
1620 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1621                            enum pipe pipe, int reg)
1622 {
1623         u32 val = I915_READ(reg);
1624         if (DP_PIPE_ENABLED(val, pipe))
1625                 I915_WRITE(reg, val & ~DP_PORT_EN);
1626 }
1627
1628 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1629                              enum pipe pipe, int reg)
1630 {
1631         u32 val = I915_READ(reg);
1632         if (HDMI_PIPE_ENABLED(val, pipe))
1633                 I915_WRITE(reg, val & ~PORT_ENABLE);
1634 }
1635
1636 /* Disable any ports connected to this transcoder */
1637 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1638                                     enum pipe pipe)
1639 {
1640         u32 reg, val;
1641
1642         val = I915_READ(PCH_PP_CONTROL);
1643         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1644
1645         disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1646         disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1647         disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1648
1649         reg = PCH_ADPA;
1650         val = I915_READ(reg);
1651         if (ADPA_PIPE_ENABLED(val, pipe))
1652                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1653
1654         reg = PCH_LVDS;
1655         val = I915_READ(reg);
1656         if (LVDS_PIPE_ENABLED(val, pipe)) {
1657                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1658                 POSTING_READ(reg);
1659                 udelay(100);
1660         }
1661
1662         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1663         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1664         disable_pch_hdmi(dev_priv, pipe, HDMID);
1665 }
1666
1667 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1668 {
1669         struct drm_device *dev = crtc->dev;
1670         struct drm_i915_private *dev_priv = dev->dev_private;
1671         struct drm_framebuffer *fb = crtc->fb;
1672         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1673         struct drm_i915_gem_object *obj = intel_fb->obj;
1674         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1675         int plane, i;
1676         u32 fbc_ctl, fbc_ctl2;
1677
1678         if (fb->pitch == dev_priv->cfb_pitch &&
1679             obj->fence_reg == dev_priv->cfb_fence &&
1680             intel_crtc->plane == dev_priv->cfb_plane &&
1681             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1682                 return;
1683
1684         i8xx_disable_fbc(dev);
1685
1686         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1687
1688         if (fb->pitch < dev_priv->cfb_pitch)
1689                 dev_priv->cfb_pitch = fb->pitch;
1690
1691         /* FBC_CTL wants 64B units */
1692         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1693         dev_priv->cfb_fence = obj->fence_reg;
1694         dev_priv->cfb_plane = intel_crtc->plane;
1695         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1696
1697         /* Clear old tags */
1698         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1699                 I915_WRITE(FBC_TAG + (i * 4), 0);
1700
1701         /* Set it up... */
1702         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1703         if (obj->tiling_mode != I915_TILING_NONE)
1704                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1705         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1706         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1707
1708         /* enable it... */
1709         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1710         if (IS_I945GM(dev))
1711                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1712         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1713         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1714         if (obj->tiling_mode != I915_TILING_NONE)
1715                 fbc_ctl |= dev_priv->cfb_fence;
1716         I915_WRITE(FBC_CONTROL, fbc_ctl);
1717
1718         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1719                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1720 }
1721
1722 void i8xx_disable_fbc(struct drm_device *dev)
1723 {
1724         struct drm_i915_private *dev_priv = dev->dev_private;
1725         u32 fbc_ctl;
1726
1727         /* Disable compression */
1728         fbc_ctl = I915_READ(FBC_CONTROL);
1729         if ((fbc_ctl & FBC_CTL_EN) == 0)
1730                 return;
1731
1732         fbc_ctl &= ~FBC_CTL_EN;
1733         I915_WRITE(FBC_CONTROL, fbc_ctl);
1734
1735         /* Wait for compressing bit to clear */
1736         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1737                 DRM_DEBUG_KMS("FBC idle timed out\n");
1738                 return;
1739         }
1740
1741         DRM_DEBUG_KMS("disabled FBC\n");
1742 }
1743
1744 static bool i8xx_fbc_enabled(struct drm_device *dev)
1745 {
1746         struct drm_i915_private *dev_priv = dev->dev_private;
1747
1748         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1749 }
1750
1751 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1752 {
1753         struct drm_device *dev = crtc->dev;
1754         struct drm_i915_private *dev_priv = dev->dev_private;
1755         struct drm_framebuffer *fb = crtc->fb;
1756         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1757         struct drm_i915_gem_object *obj = intel_fb->obj;
1758         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1759         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1760         unsigned long stall_watermark = 200;
1761         u32 dpfc_ctl;
1762
1763         dpfc_ctl = I915_READ(DPFC_CONTROL);
1764         if (dpfc_ctl & DPFC_CTL_EN) {
1765                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1766                     dev_priv->cfb_fence == obj->fence_reg &&
1767                     dev_priv->cfb_plane == intel_crtc->plane &&
1768                     dev_priv->cfb_y == crtc->y)
1769                         return;
1770
1771                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1772                 POSTING_READ(DPFC_CONTROL);
1773                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1774         }
1775
1776         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1777         dev_priv->cfb_fence = obj->fence_reg;
1778         dev_priv->cfb_plane = intel_crtc->plane;
1779         dev_priv->cfb_y = crtc->y;
1780
1781         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1782         if (obj->tiling_mode != I915_TILING_NONE) {
1783                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1784                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1785         } else {
1786                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1787         }
1788
1789         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1790                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1791                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1792         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1793
1794         /* enable it... */
1795         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1796
1797         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1798 }
1799
1800 void g4x_disable_fbc(struct drm_device *dev)
1801 {
1802         struct drm_i915_private *dev_priv = dev->dev_private;
1803         u32 dpfc_ctl;
1804
1805         /* Disable compression */
1806         dpfc_ctl = I915_READ(DPFC_CONTROL);
1807         if (dpfc_ctl & DPFC_CTL_EN) {
1808                 dpfc_ctl &= ~DPFC_CTL_EN;
1809                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1810
1811                 DRM_DEBUG_KMS("disabled FBC\n");
1812         }
1813 }
1814
1815 static bool g4x_fbc_enabled(struct drm_device *dev)
1816 {
1817         struct drm_i915_private *dev_priv = dev->dev_private;
1818
1819         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1820 }
1821
1822 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1823 {
1824         struct drm_i915_private *dev_priv = dev->dev_private;
1825         u32 blt_ecoskpd;
1826
1827         /* Make sure blitter notifies FBC of writes */
1828         __gen6_gt_force_wake_get(dev_priv);
1829         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1830         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1831                 GEN6_BLITTER_LOCK_SHIFT;
1832         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1833         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1834         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1835         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1836                          GEN6_BLITTER_LOCK_SHIFT);
1837         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1838         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1839         __gen6_gt_force_wake_put(dev_priv);
1840 }
1841
1842 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1843 {
1844         struct drm_device *dev = crtc->dev;
1845         struct drm_i915_private *dev_priv = dev->dev_private;
1846         struct drm_framebuffer *fb = crtc->fb;
1847         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1848         struct drm_i915_gem_object *obj = intel_fb->obj;
1849         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1850         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1851         unsigned long stall_watermark = 200;
1852         u32 dpfc_ctl;
1853
1854         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1855         if (dpfc_ctl & DPFC_CTL_EN) {
1856                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1857                     dev_priv->cfb_fence == obj->fence_reg &&
1858                     dev_priv->cfb_plane == intel_crtc->plane &&
1859                     dev_priv->cfb_offset == obj->gtt_offset &&
1860                     dev_priv->cfb_y == crtc->y)
1861                         return;
1862
1863                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1864                 POSTING_READ(ILK_DPFC_CONTROL);
1865                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1866         }
1867
1868         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1869         dev_priv->cfb_fence = obj->fence_reg;
1870         dev_priv->cfb_plane = intel_crtc->plane;
1871         dev_priv->cfb_offset = obj->gtt_offset;
1872         dev_priv->cfb_y = crtc->y;
1873
1874         dpfc_ctl &= DPFC_RESERVED;
1875         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1876         if (obj->tiling_mode != I915_TILING_NONE) {
1877                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1878                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1879         } else {
1880                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1881         }
1882
1883         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1884                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1885                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1886         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1887         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1888         /* enable it... */
1889         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1890
1891         if (IS_GEN6(dev)) {
1892                 I915_WRITE(SNB_DPFC_CTL_SA,
1893                            SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1894                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1895                 sandybridge_blit_fbc_update(dev);
1896         }
1897
1898         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1899 }
1900
1901 void ironlake_disable_fbc(struct drm_device *dev)
1902 {
1903         struct drm_i915_private *dev_priv = dev->dev_private;
1904         u32 dpfc_ctl;
1905
1906         /* Disable compression */
1907         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1908         if (dpfc_ctl & DPFC_CTL_EN) {
1909                 dpfc_ctl &= ~DPFC_CTL_EN;
1910                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1911
1912                 DRM_DEBUG_KMS("disabled FBC\n");
1913         }
1914 }
1915
1916 static bool ironlake_fbc_enabled(struct drm_device *dev)
1917 {
1918         struct drm_i915_private *dev_priv = dev->dev_private;
1919
1920         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1921 }
1922
1923 bool intel_fbc_enabled(struct drm_device *dev)
1924 {
1925         struct drm_i915_private *dev_priv = dev->dev_private;
1926
1927         if (!dev_priv->display.fbc_enabled)
1928                 return false;
1929
1930         return dev_priv->display.fbc_enabled(dev);
1931 }
1932
1933 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1934 {
1935         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1936
1937         if (!dev_priv->display.enable_fbc)
1938                 return;
1939
1940         dev_priv->display.enable_fbc(crtc, interval);
1941 }
1942
1943 void intel_disable_fbc(struct drm_device *dev)
1944 {
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946
1947         if (!dev_priv->display.disable_fbc)
1948                 return;
1949
1950         dev_priv->display.disable_fbc(dev);
1951 }
1952
1953 /**
1954  * intel_update_fbc - enable/disable FBC as needed
1955  * @dev: the drm_device
1956  *
1957  * Set up the framebuffer compression hardware at mode set time.  We
1958  * enable it if possible:
1959  *   - plane A only (on pre-965)
1960  *   - no pixel mulitply/line duplication
1961  *   - no alpha buffer discard
1962  *   - no dual wide
1963  *   - framebuffer <= 2048 in width, 1536 in height
1964  *
1965  * We can't assume that any compression will take place (worst case),
1966  * so the compressed buffer has to be the same size as the uncompressed
1967  * one.  It also must reside (along with the line length buffer) in
1968  * stolen memory.
1969  *
1970  * We need to enable/disable FBC on a global basis.
1971  */
1972 static void intel_update_fbc(struct drm_device *dev)
1973 {
1974         struct drm_i915_private *dev_priv = dev->dev_private;
1975         struct drm_crtc *crtc = NULL, *tmp_crtc;
1976         struct intel_crtc *intel_crtc;
1977         struct drm_framebuffer *fb;
1978         struct intel_framebuffer *intel_fb;
1979         struct drm_i915_gem_object *obj;
1980
1981         DRM_DEBUG_KMS("\n");
1982
1983         if (!i915_powersave)
1984                 return;
1985
1986         if (!I915_HAS_FBC(dev))
1987                 return;
1988
1989         /*
1990          * If FBC is already on, we just have to verify that we can
1991          * keep it that way...
1992          * Need to disable if:
1993          *   - more than one pipe is active
1994          *   - changing FBC params (stride, fence, mode)
1995          *   - new fb is too large to fit in compressed buffer
1996          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1997          */
1998         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1999                 if (tmp_crtc->enabled && tmp_crtc->fb) {
2000                         if (crtc) {
2001                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
2002                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
2003                                 goto out_disable;
2004                         }
2005                         crtc = tmp_crtc;
2006                 }
2007         }
2008
2009         if (!crtc || crtc->fb == NULL) {
2010                 DRM_DEBUG_KMS("no output, disabling\n");
2011                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
2012                 goto out_disable;
2013         }
2014
2015         intel_crtc = to_intel_crtc(crtc);
2016         fb = crtc->fb;
2017         intel_fb = to_intel_framebuffer(fb);
2018         obj = intel_fb->obj;
2019
2020         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
2021                 DRM_DEBUG_KMS("framebuffer too large, disabling "
2022                               "compression\n");
2023                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
2024                 goto out_disable;
2025         }
2026         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
2027             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
2028                 DRM_DEBUG_KMS("mode incompatible with compression, "
2029                               "disabling\n");
2030                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
2031                 goto out_disable;
2032         }
2033         if ((crtc->mode.hdisplay > 2048) ||
2034             (crtc->mode.vdisplay > 1536)) {
2035                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
2036                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
2037                 goto out_disable;
2038         }
2039         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
2040                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
2041                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
2042                 goto out_disable;
2043         }
2044         if (obj->tiling_mode != I915_TILING_X) {
2045                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
2046                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
2047                 goto out_disable;
2048         }
2049
2050         /* If the kernel debugger is active, always disable compression */
2051         if (in_dbg_master())
2052                 goto out_disable;
2053
2054         intel_enable_fbc(crtc, 500);
2055         return;
2056
2057 out_disable:
2058         /* Multiple disables should be harmless */
2059         if (intel_fbc_enabled(dev)) {
2060                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2061                 intel_disable_fbc(dev);
2062         }
2063 }
2064
2065 int
2066 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2067                            struct drm_i915_gem_object *obj,
2068                            struct intel_ring_buffer *pipelined)
2069 {
2070         struct drm_i915_private *dev_priv = dev->dev_private;
2071         u32 alignment;
2072         int ret;
2073
2074         switch (obj->tiling_mode) {
2075         case I915_TILING_NONE:
2076                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2077                         alignment = 128 * 1024;
2078                 else if (INTEL_INFO(dev)->gen >= 4)
2079                         alignment = 4 * 1024;
2080                 else
2081                         alignment = 64 * 1024;
2082                 break;
2083         case I915_TILING_X:
2084                 /* pin() will align the object as required by fence */
2085                 alignment = 0;
2086                 break;
2087         case I915_TILING_Y:
2088                 /* FIXME: Is this true? */
2089                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2090                 return -EINVAL;
2091         default:
2092                 BUG();
2093         }
2094
2095         dev_priv->mm.interruptible = false;
2096         ret = i915_gem_object_pin(obj, alignment, true);
2097         if (ret)
2098                 goto err_interruptible;
2099
2100         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
2101         if (ret)
2102                 goto err_unpin;
2103
2104         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2105          * fence, whereas 965+ only requires a fence if using
2106          * framebuffer compression.  For simplicity, we always install
2107          * a fence as the cost is not that onerous.
2108          */
2109         if (obj->tiling_mode != I915_TILING_NONE) {
2110                 ret = i915_gem_object_get_fence(obj, pipelined);
2111                 if (ret)
2112                         goto err_unpin;
2113         }
2114
2115         dev_priv->mm.interruptible = true;
2116         return 0;
2117
2118 err_unpin:
2119         i915_gem_object_unpin(obj);
2120 err_interruptible:
2121         dev_priv->mm.interruptible = true;
2122         return ret;
2123 }
2124
2125 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2126 static int
2127 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2128                            int x, int y, enum mode_set_atomic state)
2129 {
2130         struct drm_device *dev = crtc->dev;
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133         struct intel_framebuffer *intel_fb;
2134         struct drm_i915_gem_object *obj;
2135         int plane = intel_crtc->plane;
2136         unsigned long Start, Offset;
2137         u32 dspcntr;
2138         u32 reg;
2139
2140         switch (plane) {
2141         case 0:
2142         case 1:
2143                 break;
2144         default:
2145                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2146                 return -EINVAL;
2147         }
2148
2149         intel_fb = to_intel_framebuffer(fb);
2150         obj = intel_fb->obj;
2151
2152         reg = DSPCNTR(plane);
2153         dspcntr = I915_READ(reg);
2154         /* Mask out pixel format bits in case we change it */
2155         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2156         switch (fb->bits_per_pixel) {
2157         case 8:
2158                 dspcntr |= DISPPLANE_8BPP;
2159                 break;
2160         case 16:
2161                 if (fb->depth == 15)
2162                         dspcntr |= DISPPLANE_15_16BPP;
2163                 else
2164                         dspcntr |= DISPPLANE_16BPP;
2165                 break;
2166         case 24:
2167         case 32:
2168                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2169                 break;
2170         default:
2171                 DRM_ERROR("Unknown color depth\n");
2172                 return -EINVAL;
2173         }
2174         if (INTEL_INFO(dev)->gen >= 4) {
2175                 if (obj->tiling_mode != I915_TILING_NONE)
2176                         dspcntr |= DISPPLANE_TILED;
2177                 else
2178                         dspcntr &= ~DISPPLANE_TILED;
2179         }
2180
2181         if (HAS_PCH_SPLIT(dev))
2182                 /* must disable */
2183                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2184
2185         I915_WRITE(reg, dspcntr);
2186
2187         Start = obj->gtt_offset;
2188         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2189
2190         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2191                       Start, Offset, x, y, fb->pitch);
2192         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2193         if (INTEL_INFO(dev)->gen >= 4) {
2194                 I915_WRITE(DSPSURF(plane), Start);
2195                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2196                 I915_WRITE(DSPADDR(plane), Offset);
2197         } else
2198                 I915_WRITE(DSPADDR(plane), Start + Offset);
2199         POSTING_READ(reg);
2200
2201         intel_update_fbc(dev);
2202         intel_increase_pllclock(crtc);
2203
2204         return 0;
2205 }
2206
2207 static int
2208 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2209                     struct drm_framebuffer *old_fb)
2210 {
2211         struct drm_device *dev = crtc->dev;
2212         struct drm_i915_master_private *master_priv;
2213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2214         int ret;
2215
2216         /* no fb bound */
2217         if (!crtc->fb) {
2218                 DRM_DEBUG_KMS("No FB bound\n");
2219                 return 0;
2220         }
2221
2222         switch (intel_crtc->plane) {
2223         case 0:
2224         case 1:
2225                 break;
2226         default:
2227                 return -EINVAL;
2228         }
2229
2230         mutex_lock(&dev->struct_mutex);
2231         ret = intel_pin_and_fence_fb_obj(dev,
2232                                          to_intel_framebuffer(crtc->fb)->obj,
2233                                          NULL);
2234         if (ret != 0) {
2235                 mutex_unlock(&dev->struct_mutex);
2236                 return ret;
2237         }
2238
2239         if (old_fb) {
2240                 struct drm_i915_private *dev_priv = dev->dev_private;
2241                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2242
2243                 wait_event(dev_priv->pending_flip_queue,
2244                            atomic_read(&dev_priv->mm.wedged) ||
2245                            atomic_read(&obj->pending_flip) == 0);
2246
2247                 /* Big Hammer, we also need to ensure that any pending
2248                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2249                  * current scanout is retired before unpinning the old
2250                  * framebuffer.
2251                  *
2252                  * This should only fail upon a hung GPU, in which case we
2253                  * can safely continue.
2254                  */
2255                 ret = i915_gem_object_flush_gpu(obj);
2256                 (void) ret;
2257         }
2258
2259         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2260                                          LEAVE_ATOMIC_MODE_SET);
2261         if (ret) {
2262                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2263                 mutex_unlock(&dev->struct_mutex);
2264                 return ret;
2265         }
2266
2267         if (old_fb) {
2268                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2269                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2270         }
2271
2272         mutex_unlock(&dev->struct_mutex);
2273
2274         if (!dev->primary->master)
2275                 return 0;
2276
2277         master_priv = dev->primary->master->driver_priv;
2278         if (!master_priv->sarea_priv)
2279                 return 0;
2280
2281         if (intel_crtc->pipe) {
2282                 master_priv->sarea_priv->pipeB_x = x;
2283                 master_priv->sarea_priv->pipeB_y = y;
2284         } else {
2285                 master_priv->sarea_priv->pipeA_x = x;
2286                 master_priv->sarea_priv->pipeA_y = y;
2287         }
2288
2289         return 0;
2290 }
2291
2292 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2293 {
2294         struct drm_device *dev = crtc->dev;
2295         struct drm_i915_private *dev_priv = dev->dev_private;
2296         u32 dpa_ctl;
2297
2298         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2299         dpa_ctl = I915_READ(DP_A);
2300         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2301
2302         if (clock < 200000) {
2303                 u32 temp;
2304                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2305                 /* workaround for 160Mhz:
2306                    1) program 0x4600c bits 15:0 = 0x8124
2307                    2) program 0x46010 bit 0 = 1
2308                    3) program 0x46034 bit 24 = 1
2309                    4) program 0x64000 bit 14 = 1
2310                    */
2311                 temp = I915_READ(0x4600c);
2312                 temp &= 0xffff0000;
2313                 I915_WRITE(0x4600c, temp | 0x8124);
2314
2315                 temp = I915_READ(0x46010);
2316                 I915_WRITE(0x46010, temp | 1);
2317
2318                 temp = I915_READ(0x46034);
2319                 I915_WRITE(0x46034, temp | (1 << 24));
2320         } else {
2321                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2322         }
2323         I915_WRITE(DP_A, dpa_ctl);
2324
2325         POSTING_READ(DP_A);
2326         udelay(500);
2327 }
2328
2329 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2330 {
2331         struct drm_device *dev = crtc->dev;
2332         struct drm_i915_private *dev_priv = dev->dev_private;
2333         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2334         int pipe = intel_crtc->pipe;
2335         u32 reg, temp;
2336
2337         /* enable normal train */
2338         reg = FDI_TX_CTL(pipe);
2339         temp = I915_READ(reg);
2340         temp &= ~FDI_LINK_TRAIN_NONE;
2341         temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2342         I915_WRITE(reg, temp);
2343
2344         reg = FDI_RX_CTL(pipe);
2345         temp = I915_READ(reg);
2346         if (HAS_PCH_CPT(dev)) {
2347                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2348                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2349         } else {
2350                 temp &= ~FDI_LINK_TRAIN_NONE;
2351                 temp |= FDI_LINK_TRAIN_NONE;
2352         }
2353         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2354
2355         /* wait one idle pattern time */
2356         POSTING_READ(reg);
2357         udelay(1000);
2358 }
2359
2360 /* The FDI link training functions for ILK/Ibexpeak. */
2361 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2362 {
2363         struct drm_device *dev = crtc->dev;
2364         struct drm_i915_private *dev_priv = dev->dev_private;
2365         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2366         int pipe = intel_crtc->pipe;
2367         int plane = intel_crtc->plane;
2368         u32 reg, temp, tries;
2369
2370         /* FDI needs bits from pipe & plane first */
2371         assert_pipe_enabled(dev_priv, pipe);
2372         assert_plane_enabled(dev_priv, plane);
2373
2374         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2375            for train result */
2376         reg = FDI_RX_IMR(pipe);
2377         temp = I915_READ(reg);
2378         temp &= ~FDI_RX_SYMBOL_LOCK;
2379         temp &= ~FDI_RX_BIT_LOCK;
2380         I915_WRITE(reg, temp);
2381         I915_READ(reg);
2382         udelay(150);
2383
2384         /* enable CPU FDI TX and PCH FDI RX */
2385         reg = FDI_TX_CTL(pipe);
2386         temp = I915_READ(reg);
2387         temp &= ~(7 << 19);
2388         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2389         temp &= ~FDI_LINK_TRAIN_NONE;
2390         temp |= FDI_LINK_TRAIN_PATTERN_1;
2391         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2392
2393         reg = FDI_RX_CTL(pipe);
2394         temp = I915_READ(reg);
2395         temp &= ~FDI_LINK_TRAIN_NONE;
2396         temp |= FDI_LINK_TRAIN_PATTERN_1;
2397         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2398
2399         POSTING_READ(reg);
2400         udelay(150);
2401
2402         /* Ironlake workaround, enable clock pointer after FDI enable*/
2403         if (HAS_PCH_IBX(dev)) {
2404                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2405                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2406                            FDI_RX_PHASE_SYNC_POINTER_EN);
2407         }
2408
2409         reg = FDI_RX_IIR(pipe);
2410         for (tries = 0; tries < 5; tries++) {
2411                 temp = I915_READ(reg);
2412                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2413
2414                 if ((temp & FDI_RX_BIT_LOCK)) {
2415                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2416                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2417                         break;
2418                 }
2419         }
2420         if (tries == 5)
2421                 DRM_ERROR("FDI train 1 fail!\n");
2422
2423         /* Train 2 */
2424         reg = FDI_TX_CTL(pipe);
2425         temp = I915_READ(reg);
2426         temp &= ~FDI_LINK_TRAIN_NONE;
2427         temp |= FDI_LINK_TRAIN_PATTERN_2;
2428         I915_WRITE(reg, temp);
2429
2430         reg = FDI_RX_CTL(pipe);
2431         temp = I915_READ(reg);
2432         temp &= ~FDI_LINK_TRAIN_NONE;
2433         temp |= FDI_LINK_TRAIN_PATTERN_2;
2434         I915_WRITE(reg, temp);
2435
2436         POSTING_READ(reg);
2437         udelay(150);
2438
2439         reg = FDI_RX_IIR(pipe);
2440         for (tries = 0; tries < 5; tries++) {
2441                 temp = I915_READ(reg);
2442                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2443
2444                 if (temp & FDI_RX_SYMBOL_LOCK) {
2445                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2446                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2447                         break;
2448                 }
2449         }
2450         if (tries == 5)
2451                 DRM_ERROR("FDI train 2 fail!\n");
2452
2453         DRM_DEBUG_KMS("FDI train done\n");
2454
2455 }
2456
2457 static const int snb_b_fdi_train_param [] = {
2458         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2459         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2460         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2461         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2462 };
2463
2464 /* The FDI link training functions for SNB/Cougarpoint. */
2465 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2466 {
2467         struct drm_device *dev = crtc->dev;
2468         struct drm_i915_private *dev_priv = dev->dev_private;
2469         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2470         int pipe = intel_crtc->pipe;
2471         u32 reg, temp, i;
2472
2473         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2474            for train result */
2475         reg = FDI_RX_IMR(pipe);
2476         temp = I915_READ(reg);
2477         temp &= ~FDI_RX_SYMBOL_LOCK;
2478         temp &= ~FDI_RX_BIT_LOCK;
2479         I915_WRITE(reg, temp);
2480
2481         POSTING_READ(reg);
2482         udelay(150);
2483
2484         /* enable CPU FDI TX and PCH FDI RX */
2485         reg = FDI_TX_CTL(pipe);
2486         temp = I915_READ(reg);
2487         temp &= ~(7 << 19);
2488         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2489         temp &= ~FDI_LINK_TRAIN_NONE;
2490         temp |= FDI_LINK_TRAIN_PATTERN_1;
2491         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2492         /* SNB-B */
2493         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2494         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2495
2496         reg = FDI_RX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         if (HAS_PCH_CPT(dev)) {
2499                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2500                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2501         } else {
2502                 temp &= ~FDI_LINK_TRAIN_NONE;
2503                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2504         }
2505         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2506
2507         POSTING_READ(reg);
2508         udelay(150);
2509
2510         for (i = 0; i < 4; i++ ) {
2511                 reg = FDI_TX_CTL(pipe);
2512                 temp = I915_READ(reg);
2513                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2514                 temp |= snb_b_fdi_train_param[i];
2515                 I915_WRITE(reg, temp);
2516
2517                 POSTING_READ(reg);
2518                 udelay(500);
2519
2520                 reg = FDI_RX_IIR(pipe);
2521                 temp = I915_READ(reg);
2522                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2523
2524                 if (temp & FDI_RX_BIT_LOCK) {
2525                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2526                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2527                         break;
2528                 }
2529         }
2530         if (i == 4)
2531                 DRM_ERROR("FDI train 1 fail!\n");
2532
2533         /* Train 2 */
2534         reg = FDI_TX_CTL(pipe);
2535         temp = I915_READ(reg);
2536         temp &= ~FDI_LINK_TRAIN_NONE;
2537         temp |= FDI_LINK_TRAIN_PATTERN_2;
2538         if (IS_GEN6(dev)) {
2539                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2540                 /* SNB-B */
2541                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2542         }
2543         I915_WRITE(reg, temp);
2544
2545         reg = FDI_RX_CTL(pipe);
2546         temp = I915_READ(reg);
2547         if (HAS_PCH_CPT(dev)) {
2548                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2549                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2550         } else {
2551                 temp &= ~FDI_LINK_TRAIN_NONE;
2552                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2553         }
2554         I915_WRITE(reg, temp);
2555
2556         POSTING_READ(reg);
2557         udelay(150);
2558
2559         for (i = 0; i < 4; i++ ) {
2560                 reg = FDI_TX_CTL(pipe);
2561                 temp = I915_READ(reg);
2562                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2563                 temp |= snb_b_fdi_train_param[i];
2564                 I915_WRITE(reg, temp);
2565
2566                 POSTING_READ(reg);
2567                 udelay(500);
2568
2569                 reg = FDI_RX_IIR(pipe);
2570                 temp = I915_READ(reg);
2571                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2572
2573                 if (temp & FDI_RX_SYMBOL_LOCK) {
2574                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2575                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2576                         break;
2577                 }
2578         }
2579         if (i == 4)
2580                 DRM_ERROR("FDI train 2 fail!\n");
2581
2582         DRM_DEBUG_KMS("FDI train done.\n");
2583 }
2584
2585 static void ironlake_fdi_enable(struct drm_crtc *crtc)
2586 {
2587         struct drm_device *dev = crtc->dev;
2588         struct drm_i915_private *dev_priv = dev->dev_private;
2589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2590         int pipe = intel_crtc->pipe;
2591         u32 reg, temp;
2592
2593         /* Write the TU size bits so error detection works */
2594         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2595                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2596
2597         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2598         reg = FDI_RX_CTL(pipe);
2599         temp = I915_READ(reg);
2600         temp &= ~((0x7 << 19) | (0x7 << 16));
2601         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2602         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2603         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2604
2605         POSTING_READ(reg);
2606         udelay(200);
2607
2608         /* Switch from Rawclk to PCDclk */
2609         temp = I915_READ(reg);
2610         I915_WRITE(reg, temp | FDI_PCDCLK);
2611
2612         POSTING_READ(reg);
2613         udelay(200);
2614
2615         /* Enable CPU FDI TX PLL, always on for Ironlake */
2616         reg = FDI_TX_CTL(pipe);
2617         temp = I915_READ(reg);
2618         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2619                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2620
2621                 POSTING_READ(reg);
2622                 udelay(100);
2623         }
2624 }
2625
2626 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2627 {
2628         struct drm_device *dev = crtc->dev;
2629         struct drm_i915_private *dev_priv = dev->dev_private;
2630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2631         int pipe = intel_crtc->pipe;
2632         u32 reg, temp;
2633
2634         /* disable CPU FDI tx and PCH FDI rx */
2635         reg = FDI_TX_CTL(pipe);
2636         temp = I915_READ(reg);
2637         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2638         POSTING_READ(reg);
2639
2640         reg = FDI_RX_CTL(pipe);
2641         temp = I915_READ(reg);
2642         temp &= ~(0x7 << 16);
2643         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2644         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2645
2646         POSTING_READ(reg);
2647         udelay(100);
2648
2649         /* Ironlake workaround, disable clock pointer after downing FDI */
2650         if (HAS_PCH_IBX(dev)) {
2651                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2652                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2653                            I915_READ(FDI_RX_CHICKEN(pipe) &
2654                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2655         }
2656
2657         /* still set train pattern 1 */
2658         reg = FDI_TX_CTL(pipe);
2659         temp = I915_READ(reg);
2660         temp &= ~FDI_LINK_TRAIN_NONE;
2661         temp |= FDI_LINK_TRAIN_PATTERN_1;
2662         I915_WRITE(reg, temp);
2663
2664         reg = FDI_RX_CTL(pipe);
2665         temp = I915_READ(reg);
2666         if (HAS_PCH_CPT(dev)) {
2667                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2668                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2669         } else {
2670                 temp &= ~FDI_LINK_TRAIN_NONE;
2671                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2672         }
2673         /* BPC in FDI rx is consistent with that in PIPECONF */
2674         temp &= ~(0x07 << 16);
2675         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2676         I915_WRITE(reg, temp);
2677
2678         POSTING_READ(reg);
2679         udelay(100);
2680 }
2681
2682 /*
2683  * When we disable a pipe, we need to clear any pending scanline wait events
2684  * to avoid hanging the ring, which we assume we are waiting on.
2685  */
2686 static void intel_clear_scanline_wait(struct drm_device *dev)
2687 {
2688         struct drm_i915_private *dev_priv = dev->dev_private;
2689         struct intel_ring_buffer *ring;
2690         u32 tmp;
2691
2692         if (IS_GEN2(dev))
2693                 /* Can't break the hang on i8xx */
2694                 return;
2695
2696         ring = LP_RING(dev_priv);
2697         tmp = I915_READ_CTL(ring);
2698         if (tmp & RING_WAIT)
2699                 I915_WRITE_CTL(ring, tmp);
2700 }
2701
2702 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2703 {
2704         struct drm_i915_gem_object *obj;
2705         struct drm_i915_private *dev_priv;
2706
2707         if (crtc->fb == NULL)
2708                 return;
2709
2710         obj = to_intel_framebuffer(crtc->fb)->obj;
2711         dev_priv = crtc->dev->dev_private;
2712         wait_event(dev_priv->pending_flip_queue,
2713                    atomic_read(&obj->pending_flip) == 0);
2714 }
2715
2716 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2717 {
2718         struct drm_device *dev = crtc->dev;
2719         struct drm_mode_config *mode_config = &dev->mode_config;
2720         struct intel_encoder *encoder;
2721
2722         /*
2723          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2724          * must be driven by its own crtc; no sharing is possible.
2725          */
2726         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2727                 if (encoder->base.crtc != crtc)
2728                         continue;
2729
2730                 switch (encoder->type) {
2731                 case INTEL_OUTPUT_EDP:
2732                         if (!intel_encoder_is_pch_edp(&encoder->base))
2733                                 return false;
2734                         continue;
2735                 }
2736         }
2737
2738         return true;
2739 }
2740
2741 /*
2742  * Enable PCH resources required for PCH ports:
2743  *   - PCH PLLs
2744  *   - FDI training & RX/TX
2745  *   - update transcoder timings
2746  *   - DP transcoding bits
2747  *   - transcoder
2748  */
2749 static void ironlake_pch_enable(struct drm_crtc *crtc)
2750 {
2751         struct drm_device *dev = crtc->dev;
2752         struct drm_i915_private *dev_priv = dev->dev_private;
2753         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2754         int pipe = intel_crtc->pipe;
2755         u32 reg, temp;
2756
2757         /* For PCH output, training FDI link */
2758         if (IS_GEN6(dev))
2759                 gen6_fdi_link_train(crtc);
2760         else
2761                 ironlake_fdi_link_train(crtc);
2762
2763         intel_enable_pch_pll(dev_priv, pipe);
2764
2765         if (HAS_PCH_CPT(dev)) {
2766                 /* Be sure PCH DPLL SEL is set */
2767                 temp = I915_READ(PCH_DPLL_SEL);
2768                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2769                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2770                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2771                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2772                 I915_WRITE(PCH_DPLL_SEL, temp);
2773         }
2774
2775         /* set transcoder timing, panel must allow it */
2776         assert_panel_unlocked(dev_priv, pipe);
2777         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2778         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2779         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2780
2781         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2782         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2783         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2784
2785         intel_fdi_normal_train(crtc);
2786
2787         /* For PCH DP, enable TRANS_DP_CTL */
2788         if (HAS_PCH_CPT(dev) &&
2789             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2790                 reg = TRANS_DP_CTL(pipe);
2791                 temp = I915_READ(reg);
2792                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2793                           TRANS_DP_SYNC_MASK |
2794                           TRANS_DP_BPC_MASK);
2795                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2796                          TRANS_DP_ENH_FRAMING);
2797                 temp |= TRANS_DP_8BPC;
2798
2799                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2800                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2801                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2802                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2803
2804                 switch (intel_trans_dp_port_sel(crtc)) {
2805                 case PCH_DP_B:
2806                         temp |= TRANS_DP_PORT_SEL_B;
2807                         break;
2808                 case PCH_DP_C:
2809                         temp |= TRANS_DP_PORT_SEL_C;
2810                         break;
2811                 case PCH_DP_D:
2812                         temp |= TRANS_DP_PORT_SEL_D;
2813                         break;
2814                 default:
2815                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2816                         temp |= TRANS_DP_PORT_SEL_B;
2817                         break;
2818                 }
2819
2820                 I915_WRITE(reg, temp);
2821         }
2822
2823         intel_enable_transcoder(dev_priv, pipe);
2824 }
2825
2826 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2827 {
2828         struct drm_device *dev = crtc->dev;
2829         struct drm_i915_private *dev_priv = dev->dev_private;
2830         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2831         int pipe = intel_crtc->pipe;
2832         int plane = intel_crtc->plane;
2833         u32 temp;
2834         bool is_pch_port;
2835
2836         if (intel_crtc->active)
2837                 return;
2838
2839         intel_crtc->active = true;
2840         intel_update_watermarks(dev);
2841
2842         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2843                 temp = I915_READ(PCH_LVDS);
2844                 if ((temp & LVDS_PORT_EN) == 0)
2845                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2846         }
2847
2848         is_pch_port = intel_crtc_driving_pch(crtc);
2849
2850         if (is_pch_port)
2851                 ironlake_fdi_enable(crtc);
2852         else
2853                 ironlake_fdi_disable(crtc);
2854
2855         /* Enable panel fitting for LVDS */
2856         if (dev_priv->pch_pf_size &&
2857             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2858                 /* Force use of hard-coded filter coefficients
2859                  * as some pre-programmed values are broken,
2860                  * e.g. x201.
2861                  */
2862                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2863                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2864                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2865         }
2866
2867         intel_enable_pipe(dev_priv, pipe, is_pch_port);
2868         intel_enable_plane(dev_priv, plane, pipe);
2869
2870         if (is_pch_port)
2871                 ironlake_pch_enable(crtc);
2872
2873         intel_crtc_load_lut(crtc);
2874         intel_update_fbc(dev);
2875         intel_crtc_update_cursor(crtc, true);
2876 }
2877
2878 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2879 {
2880         struct drm_device *dev = crtc->dev;
2881         struct drm_i915_private *dev_priv = dev->dev_private;
2882         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2883         int pipe = intel_crtc->pipe;
2884         int plane = intel_crtc->plane;
2885         u32 reg, temp;
2886
2887         if (!intel_crtc->active)
2888                 return;
2889
2890         intel_crtc_wait_for_pending_flips(crtc);
2891         drm_vblank_off(dev, pipe);
2892         intel_crtc_update_cursor(crtc, false);
2893
2894         intel_disable_plane(dev_priv, plane, pipe);
2895
2896         if (dev_priv->cfb_plane == plane &&
2897             dev_priv->display.disable_fbc)
2898                 dev_priv->display.disable_fbc(dev);
2899
2900         intel_disable_pipe(dev_priv, pipe);
2901
2902         /* Disable PF */
2903         I915_WRITE(PF_CTL(pipe), 0);
2904         I915_WRITE(PF_WIN_SZ(pipe), 0);
2905
2906         ironlake_fdi_disable(crtc);
2907
2908         /* This is a horrible layering violation; we should be doing this in
2909          * the connector/encoder ->prepare instead, but we don't always have
2910          * enough information there about the config to know whether it will
2911          * actually be necessary or just cause undesired flicker.
2912          */
2913         intel_disable_pch_ports(dev_priv, pipe);
2914
2915         intel_disable_transcoder(dev_priv, pipe);
2916
2917         if (HAS_PCH_CPT(dev)) {
2918                 /* disable TRANS_DP_CTL */
2919                 reg = TRANS_DP_CTL(pipe);
2920                 temp = I915_READ(reg);
2921                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2922                 temp |= TRANS_DP_PORT_SEL_NONE;
2923                 I915_WRITE(reg, temp);
2924
2925                 /* disable DPLL_SEL */
2926                 temp = I915_READ(PCH_DPLL_SEL);
2927                 switch (pipe) {
2928                 case 0:
2929                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2930                         break;
2931                 case 1:
2932                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2933                         break;
2934                 case 2:
2935                         /* FIXME: manage transcoder PLLs? */
2936                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2937                         break;
2938                 default:
2939                         BUG(); /* wtf */
2940                 }
2941                 I915_WRITE(PCH_DPLL_SEL, temp);
2942         }
2943
2944         /* disable PCH DPLL */
2945         intel_disable_pch_pll(dev_priv, pipe);
2946
2947         /* Switch from PCDclk to Rawclk */
2948         reg = FDI_RX_CTL(pipe);
2949         temp = I915_READ(reg);
2950         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2951
2952         /* Disable CPU FDI TX PLL */
2953         reg = FDI_TX_CTL(pipe);
2954         temp = I915_READ(reg);
2955         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2956
2957         POSTING_READ(reg);
2958         udelay(100);
2959
2960         reg = FDI_RX_CTL(pipe);
2961         temp = I915_READ(reg);
2962         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2963
2964         /* Wait for the clocks to turn off. */
2965         POSTING_READ(reg);
2966         udelay(100);
2967
2968         intel_crtc->active = false;
2969         intel_update_watermarks(dev);
2970         intel_update_fbc(dev);
2971         intel_clear_scanline_wait(dev);
2972 }
2973
2974 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2975 {
2976         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2977         int pipe = intel_crtc->pipe;
2978         int plane = intel_crtc->plane;
2979
2980         /* XXX: When our outputs are all unaware of DPMS modes other than off
2981          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2982          */
2983         switch (mode) {
2984         case DRM_MODE_DPMS_ON:
2985         case DRM_MODE_DPMS_STANDBY:
2986         case DRM_MODE_DPMS_SUSPEND:
2987                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2988                 ironlake_crtc_enable(crtc);
2989                 break;
2990
2991         case DRM_MODE_DPMS_OFF:
2992                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2993                 ironlake_crtc_disable(crtc);
2994                 break;
2995         }
2996 }
2997
2998 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2999 {
3000         if (!enable && intel_crtc->overlay) {
3001                 struct drm_device *dev = intel_crtc->base.dev;
3002                 struct drm_i915_private *dev_priv = dev->dev_private;
3003
3004                 mutex_lock(&dev->struct_mutex);
3005                 dev_priv->mm.interruptible = false;
3006                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3007                 dev_priv->mm.interruptible = true;
3008                 mutex_unlock(&dev->struct_mutex);
3009         }
3010
3011         /* Let userspace switch the overlay on again. In most cases userspace
3012          * has to recompute where to put it anyway.
3013          */
3014 }
3015
3016 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3017 {
3018         struct drm_device *dev = crtc->dev;
3019         struct drm_i915_private *dev_priv = dev->dev_private;
3020         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3021         int pipe = intel_crtc->pipe;
3022         int plane = intel_crtc->plane;
3023
3024         if (intel_crtc->active)
3025                 return;
3026
3027         intel_crtc->active = true;
3028         intel_update_watermarks(dev);
3029
3030         intel_enable_pll(dev_priv, pipe);
3031         intel_enable_pipe(dev_priv, pipe, false);
3032         intel_enable_plane(dev_priv, plane, pipe);
3033
3034         intel_crtc_load_lut(crtc);
3035         intel_update_fbc(dev);
3036
3037         /* Give the overlay scaler a chance to enable if it's on this pipe */
3038         intel_crtc_dpms_overlay(intel_crtc, true);
3039         intel_crtc_update_cursor(crtc, true);
3040 }
3041
3042 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3043 {
3044         struct drm_device *dev = crtc->dev;
3045         struct drm_i915_private *dev_priv = dev->dev_private;
3046         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3047         int pipe = intel_crtc->pipe;
3048         int plane = intel_crtc->plane;
3049
3050         if (!intel_crtc->active)
3051                 return;
3052
3053         /* Give the overlay scaler a chance to disable if it's on this pipe */
3054         intel_crtc_wait_for_pending_flips(crtc);
3055         drm_vblank_off(dev, pipe);
3056         intel_crtc_dpms_overlay(intel_crtc, false);
3057         intel_crtc_update_cursor(crtc, false);
3058
3059         if (dev_priv->cfb_plane == plane &&
3060             dev_priv->display.disable_fbc)
3061                 dev_priv->display.disable_fbc(dev);
3062
3063         intel_disable_plane(dev_priv, plane, pipe);
3064         intel_disable_pipe(dev_priv, pipe);
3065         intel_disable_pll(dev_priv, pipe);
3066
3067         intel_crtc->active = false;
3068         intel_update_fbc(dev);
3069         intel_update_watermarks(dev);
3070         intel_clear_scanline_wait(dev);
3071 }
3072
3073 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3074 {
3075         /* XXX: When our outputs are all unaware of DPMS modes other than off
3076          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3077          */
3078         switch (mode) {
3079         case DRM_MODE_DPMS_ON:
3080         case DRM_MODE_DPMS_STANDBY:
3081         case DRM_MODE_DPMS_SUSPEND:
3082                 i9xx_crtc_enable(crtc);
3083                 break;
3084         case DRM_MODE_DPMS_OFF:
3085                 i9xx_crtc_disable(crtc);
3086                 break;
3087         }
3088 }
3089
3090 /**
3091  * Sets the power management mode of the pipe and plane.
3092  */
3093 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3094 {
3095         struct drm_device *dev = crtc->dev;
3096         struct drm_i915_private *dev_priv = dev->dev_private;
3097         struct drm_i915_master_private *master_priv;
3098         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3099         int pipe = intel_crtc->pipe;
3100         bool enabled;
3101
3102         if (intel_crtc->dpms_mode == mode)
3103                 return;
3104
3105         intel_crtc->dpms_mode = mode;
3106
3107         dev_priv->display.dpms(crtc, mode);
3108
3109         if (!dev->primary->master)
3110                 return;
3111
3112         master_priv = dev->primary->master->driver_priv;
3113         if (!master_priv->sarea_priv)
3114                 return;
3115
3116         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3117
3118         switch (pipe) {
3119         case 0:
3120                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3121                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3122                 break;
3123         case 1:
3124                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3125                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3126                 break;
3127         default:
3128                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3129                 break;
3130         }
3131 }
3132
3133 static void intel_crtc_disable(struct drm_crtc *crtc)
3134 {
3135         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3136         struct drm_device *dev = crtc->dev;
3137
3138         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3139
3140         if (crtc->fb) {
3141                 mutex_lock(&dev->struct_mutex);
3142                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3143                 mutex_unlock(&dev->struct_mutex);
3144         }
3145 }
3146
3147 /* Prepare for a mode set.
3148  *
3149  * Note we could be a lot smarter here.  We need to figure out which outputs
3150  * will be enabled, which disabled (in short, how the config will changes)
3151  * and perform the minimum necessary steps to accomplish that, e.g. updating
3152  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3153  * panel fitting is in the proper state, etc.
3154  */
3155 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3156 {
3157         i9xx_crtc_disable(crtc);
3158 }
3159
3160 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3161 {
3162         i9xx_crtc_enable(crtc);
3163 }
3164
3165 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3166 {
3167         ironlake_crtc_disable(crtc);
3168 }
3169
3170 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3171 {
3172         ironlake_crtc_enable(crtc);
3173 }
3174
3175 void intel_encoder_prepare (struct drm_encoder *encoder)
3176 {
3177         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3178         /* lvds has its own version of prepare see intel_lvds_prepare */
3179         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3180 }
3181
3182 void intel_encoder_commit (struct drm_encoder *encoder)
3183 {
3184         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3185         /* lvds has its own version of commit see intel_lvds_commit */
3186         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3187 }
3188
3189 void intel_encoder_destroy(struct drm_encoder *encoder)
3190 {
3191         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3192
3193         drm_encoder_cleanup(encoder);
3194         kfree(intel_encoder);
3195 }
3196
3197 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3198                                   struct drm_display_mode *mode,
3199                                   struct drm_display_mode *adjusted_mode)
3200 {
3201         struct drm_device *dev = crtc->dev;
3202
3203         if (HAS_PCH_SPLIT(dev)) {
3204                 /* FDI link clock is fixed at 2.7G */
3205                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3206                         return false;
3207         }
3208
3209         /* XXX some encoders set the crtcinfo, others don't.
3210          * Obviously we need some form of conflict resolution here...
3211          */
3212         if (adjusted_mode->crtc_htotal == 0)
3213                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3214
3215         return true;
3216 }
3217
3218 static int i945_get_display_clock_speed(struct drm_device *dev)
3219 {
3220         return 400000;
3221 }
3222
3223 static int i915_get_display_clock_speed(struct drm_device *dev)
3224 {
3225         return 333000;
3226 }
3227
3228 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3229 {
3230         return 200000;
3231 }
3232
3233 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3234 {
3235         u16 gcfgc = 0;
3236
3237         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3238
3239         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3240                 return 133000;
3241         else {
3242                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3243                 case GC_DISPLAY_CLOCK_333_MHZ:
3244                         return 333000;
3245                 default:
3246                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3247                         return 190000;
3248                 }
3249         }
3250 }
3251
3252 static int i865_get_display_clock_speed(struct drm_device *dev)
3253 {
3254         return 266000;
3255 }
3256
3257 static int i855_get_display_clock_speed(struct drm_device *dev)
3258 {
3259         u16 hpllcc = 0;
3260         /* Assume that the hardware is in the high speed state.  This
3261          * should be the default.
3262          */
3263         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3264         case GC_CLOCK_133_200:
3265         case GC_CLOCK_100_200:
3266                 return 200000;
3267         case GC_CLOCK_166_250:
3268                 return 250000;
3269         case GC_CLOCK_100_133:
3270                 return 133000;
3271         }
3272
3273         /* Shouldn't happen */
3274         return 0;
3275 }
3276
3277 static int i830_get_display_clock_speed(struct drm_device *dev)
3278 {
3279         return 133000;
3280 }
3281
3282 struct fdi_m_n {
3283         u32        tu;
3284         u32        gmch_m;
3285         u32        gmch_n;
3286         u32        link_m;
3287         u32        link_n;
3288 };
3289
3290 static void
3291 fdi_reduce_ratio(u32 *num, u32 *den)
3292 {
3293         while (*num > 0xffffff || *den > 0xffffff) {
3294                 *num >>= 1;
3295                 *den >>= 1;
3296         }
3297 }
3298
3299 static void
3300 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3301                      int link_clock, struct fdi_m_n *m_n)
3302 {
3303         m_n->tu = 64; /* default size */
3304
3305         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3306         m_n->gmch_m = bits_per_pixel * pixel_clock;
3307         m_n->gmch_n = link_clock * nlanes * 8;
3308         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3309
3310         m_n->link_m = pixel_clock;
3311         m_n->link_n = link_clock;
3312         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3313 }
3314
3315
3316 struct intel_watermark_params {
3317         unsigned long fifo_size;
3318         unsigned long max_wm;
3319         unsigned long default_wm;
3320         unsigned long guard_size;
3321         unsigned long cacheline_size;
3322 };
3323
3324 /* Pineview has different values for various configs */
3325 static const struct intel_watermark_params pineview_display_wm = {
3326         PINEVIEW_DISPLAY_FIFO,
3327         PINEVIEW_MAX_WM,
3328         PINEVIEW_DFT_WM,
3329         PINEVIEW_GUARD_WM,
3330         PINEVIEW_FIFO_LINE_SIZE
3331 };
3332 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3333         PINEVIEW_DISPLAY_FIFO,
3334         PINEVIEW_MAX_WM,
3335         PINEVIEW_DFT_HPLLOFF_WM,
3336         PINEVIEW_GUARD_WM,
3337         PINEVIEW_FIFO_LINE_SIZE
3338 };
3339 static const struct intel_watermark_params pineview_cursor_wm = {
3340         PINEVIEW_CURSOR_FIFO,
3341         PINEVIEW_CURSOR_MAX_WM,
3342         PINEVIEW_CURSOR_DFT_WM,
3343         PINEVIEW_CURSOR_GUARD_WM,
3344         PINEVIEW_FIFO_LINE_SIZE,
3345 };
3346 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3347         PINEVIEW_CURSOR_FIFO,
3348         PINEVIEW_CURSOR_MAX_WM,
3349         PINEVIEW_CURSOR_DFT_WM,
3350         PINEVIEW_CURSOR_GUARD_WM,
3351         PINEVIEW_FIFO_LINE_SIZE
3352 };
3353 static const struct intel_watermark_params g4x_wm_info = {
3354         G4X_FIFO_SIZE,
3355         G4X_MAX_WM,
3356         G4X_MAX_WM,
3357         2,
3358         G4X_FIFO_LINE_SIZE,
3359 };
3360 static const struct intel_watermark_params g4x_cursor_wm_info = {
3361         I965_CURSOR_FIFO,
3362         I965_CURSOR_MAX_WM,
3363         I965_CURSOR_DFT_WM,
3364         2,
3365         G4X_FIFO_LINE_SIZE,
3366 };
3367 static const struct intel_watermark_params i965_cursor_wm_info = {
3368         I965_CURSOR_FIFO,
3369         I965_CURSOR_MAX_WM,
3370         I965_CURSOR_DFT_WM,
3371         2,
3372         I915_FIFO_LINE_SIZE,
3373 };
3374 static const struct intel_watermark_params i945_wm_info = {
3375         I945_FIFO_SIZE,
3376         I915_MAX_WM,
3377         1,
3378         2,
3379         I915_FIFO_LINE_SIZE
3380 };
3381 static const struct intel_watermark_params i915_wm_info = {
3382         I915_FIFO_SIZE,
3383         I915_MAX_WM,
3384         1,
3385         2,
3386         I915_FIFO_LINE_SIZE
3387 };
3388 static const struct intel_watermark_params i855_wm_info = {
3389         I855GM_FIFO_SIZE,
3390         I915_MAX_WM,
3391         1,
3392         2,
3393         I830_FIFO_LINE_SIZE
3394 };
3395 static const struct intel_watermark_params i830_wm_info = {
3396         I830_FIFO_SIZE,
3397         I915_MAX_WM,
3398         1,
3399         2,
3400         I830_FIFO_LINE_SIZE
3401 };
3402
3403 static const struct intel_watermark_params ironlake_display_wm_info = {
3404         ILK_DISPLAY_FIFO,
3405         ILK_DISPLAY_MAXWM,
3406         ILK_DISPLAY_DFTWM,
3407         2,
3408         ILK_FIFO_LINE_SIZE
3409 };
3410 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3411         ILK_CURSOR_FIFO,
3412         ILK_CURSOR_MAXWM,
3413         ILK_CURSOR_DFTWM,
3414         2,
3415         ILK_FIFO_LINE_SIZE
3416 };
3417 static const struct intel_watermark_params ironlake_display_srwm_info = {
3418         ILK_DISPLAY_SR_FIFO,
3419         ILK_DISPLAY_MAX_SRWM,
3420         ILK_DISPLAY_DFT_SRWM,
3421         2,
3422         ILK_FIFO_LINE_SIZE
3423 };
3424 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3425         ILK_CURSOR_SR_FIFO,
3426         ILK_CURSOR_MAX_SRWM,
3427         ILK_CURSOR_DFT_SRWM,
3428         2,
3429         ILK_FIFO_LINE_SIZE
3430 };
3431
3432 static const struct intel_watermark_params sandybridge_display_wm_info = {
3433         SNB_DISPLAY_FIFO,
3434         SNB_DISPLAY_MAXWM,
3435         SNB_DISPLAY_DFTWM,
3436         2,
3437         SNB_FIFO_LINE_SIZE
3438 };
3439 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3440         SNB_CURSOR_FIFO,
3441         SNB_CURSOR_MAXWM,
3442         SNB_CURSOR_DFTWM,
3443         2,
3444         SNB_FIFO_LINE_SIZE
3445 };
3446 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3447         SNB_DISPLAY_SR_FIFO,
3448         SNB_DISPLAY_MAX_SRWM,
3449         SNB_DISPLAY_DFT_SRWM,
3450         2,
3451         SNB_FIFO_LINE_SIZE
3452 };
3453 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3454         SNB_CURSOR_SR_FIFO,
3455         SNB_CURSOR_MAX_SRWM,
3456         SNB_CURSOR_DFT_SRWM,
3457         2,
3458         SNB_FIFO_LINE_SIZE
3459 };
3460
3461
3462 /**
3463  * intel_calculate_wm - calculate watermark level
3464  * @clock_in_khz: pixel clock
3465  * @wm: chip FIFO params
3466  * @pixel_size: display pixel size
3467  * @latency_ns: memory latency for the platform
3468  *
3469  * Calculate the watermark level (the level at which the display plane will
3470  * start fetching from memory again).  Each chip has a different display
3471  * FIFO size and allocation, so the caller needs to figure that out and pass
3472  * in the correct intel_watermark_params structure.
3473  *
3474  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3475  * on the pixel size.  When it reaches the watermark level, it'll start
3476  * fetching FIFO line sized based chunks from memory until the FIFO fills
3477  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3478  * will occur, and a display engine hang could result.
3479  */
3480 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3481                                         const struct intel_watermark_params *wm,
3482                                         int fifo_size,
3483                                         int pixel_size,
3484                                         unsigned long latency_ns)
3485 {
3486         long entries_required, wm_size;
3487
3488         /*
3489          * Note: we need to make sure we don't overflow for various clock &
3490          * latency values.
3491          * clocks go from a few thousand to several hundred thousand.
3492          * latency is usually a few thousand
3493          */
3494         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3495                 1000;
3496         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3497
3498         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
3499
3500         wm_size = fifo_size - (entries_required + wm->guard_size);
3501
3502         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
3503
3504         /* Don't promote wm_size to unsigned... */
3505         if (wm_size > (long)wm->max_wm)
3506                 wm_size = wm->max_wm;
3507         if (wm_size <= 0)
3508                 wm_size = wm->default_wm;
3509         return wm_size;
3510 }
3511
3512 struct cxsr_latency {
3513         int is_desktop;
3514         int is_ddr3;
3515         unsigned long fsb_freq;
3516         unsigned long mem_freq;
3517         unsigned long display_sr;
3518         unsigned long display_hpll_disable;
3519         unsigned long cursor_sr;
3520         unsigned long cursor_hpll_disable;
3521 };
3522
3523 static const struct cxsr_latency cxsr_latency_table[] = {
3524         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3525         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3526         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3527         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3528         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3529
3530         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3531         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3532         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3533         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3534         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3535
3536         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3537         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3538         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3539         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3540         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3541
3542         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3543         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3544         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3545         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3546         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3547
3548         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3549         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3550         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3551         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3552         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3553
3554         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3555         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3556         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3557         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3558         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3559 };
3560
3561 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3562                                                          int is_ddr3,
3563                                                          int fsb,
3564                                                          int mem)
3565 {
3566         const struct cxsr_latency *latency;
3567         int i;
3568
3569         if (fsb == 0 || mem == 0)
3570                 return NULL;
3571
3572         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3573                 latency = &cxsr_latency_table[i];
3574                 if (is_desktop == latency->is_desktop &&
3575                     is_ddr3 == latency->is_ddr3 &&
3576                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3577                         return latency;
3578         }
3579
3580         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3581
3582         return NULL;
3583 }
3584
3585 static void pineview_disable_cxsr(struct drm_device *dev)
3586 {
3587         struct drm_i915_private *dev_priv = dev->dev_private;
3588
3589         /* deactivate cxsr */
3590         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3591 }
3592
3593 /*
3594  * Latency for FIFO fetches is dependent on several factors:
3595  *   - memory configuration (speed, channels)
3596  *   - chipset
3597  *   - current MCH state
3598  * It can be fairly high in some situations, so here we assume a fairly
3599  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3600  * set this value too high, the FIFO will fetch frequently to stay full)
3601  * and power consumption (set it too low to save power and we might see
3602  * FIFO underruns and display "flicker").
3603  *
3604  * A value of 5us seems to be a good balance; safe for very low end
3605  * platforms but not overly aggressive on lower latency configs.
3606  */
3607 static const int latency_ns = 5000;
3608
3609 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3610 {
3611         struct drm_i915_private *dev_priv = dev->dev_private;
3612         uint32_t dsparb = I915_READ(DSPARB);
3613         int size;
3614
3615         size = dsparb & 0x7f;
3616         if (plane)
3617                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3618
3619         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3620                       plane ? "B" : "A", size);
3621
3622         return size;
3623 }
3624
3625 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3626 {
3627         struct drm_i915_private *dev_priv = dev->dev_private;
3628         uint32_t dsparb = I915_READ(DSPARB);
3629         int size;
3630
3631         size = dsparb & 0x1ff;
3632         if (plane)
3633                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3634         size >>= 1; /* Convert to cachelines */
3635
3636         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3637                       plane ? "B" : "A", size);
3638
3639         return size;
3640 }
3641
3642 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3643 {
3644         struct drm_i915_private *dev_priv = dev->dev_private;
3645         uint32_t dsparb = I915_READ(DSPARB);
3646         int size;
3647
3648         size = dsparb & 0x7f;
3649         size >>= 2; /* Convert to cachelines */
3650
3651         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3652                       plane ? "B" : "A",
3653                       size);
3654
3655         return size;
3656 }
3657
3658 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3659 {
3660         struct drm_i915_private *dev_priv = dev->dev_private;
3661         uint32_t dsparb = I915_READ(DSPARB);
3662         int size;
3663
3664         size = dsparb & 0x7f;
3665         size >>= 1; /* Convert to cachelines */
3666
3667         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3668                       plane ? "B" : "A", size);
3669
3670         return size;
3671 }
3672
3673 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3674 {
3675         struct drm_crtc *crtc, *enabled = NULL;
3676
3677         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3678                 if (crtc->enabled && crtc->fb) {
3679                         if (enabled)
3680                                 return NULL;
3681                         enabled = crtc;
3682                 }
3683         }
3684
3685         return enabled;
3686 }
3687
3688 static void pineview_update_wm(struct drm_device *dev)
3689 {
3690         struct drm_i915_private *dev_priv = dev->dev_private;
3691         struct drm_crtc *crtc;
3692         const struct cxsr_latency *latency;
3693         u32 reg;
3694         unsigned long wm;
3695
3696         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3697                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3698         if (!latency) {
3699                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3700                 pineview_disable_cxsr(dev);
3701                 return;
3702         }
3703
3704         crtc = single_enabled_crtc(dev);
3705         if (crtc) {
3706                 int clock = crtc->mode.clock;
3707                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3708
3709                 /* Display SR */
3710                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3711                                         pineview_display_wm.fifo_size,
3712                                         pixel_size, latency->display_sr);
3713                 reg = I915_READ(DSPFW1);
3714                 reg &= ~DSPFW_SR_MASK;
3715                 reg |= wm << DSPFW_SR_SHIFT;
3716                 I915_WRITE(DSPFW1, reg);
3717                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3718
3719                 /* cursor SR */
3720                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3721                                         pineview_display_wm.fifo_size,
3722                                         pixel_size, latency->cursor_sr);
3723                 reg = I915_READ(DSPFW3);
3724                 reg &= ~DSPFW_CURSOR_SR_MASK;
3725                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3726                 I915_WRITE(DSPFW3, reg);
3727
3728                 /* Display HPLL off SR */
3729                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3730                                         pineview_display_hplloff_wm.fifo_size,
3731                                         pixel_size, latency->display_hpll_disable);
3732                 reg = I915_READ(DSPFW3);
3733                 reg &= ~DSPFW_HPLL_SR_MASK;
3734                 reg |= wm & DSPFW_HPLL_SR_MASK;
3735                 I915_WRITE(DSPFW3, reg);
3736
3737                 /* cursor HPLL off SR */
3738                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3739                                         pineview_display_hplloff_wm.fifo_size,
3740                                         pixel_size, latency->cursor_hpll_disable);
3741                 reg = I915_READ(DSPFW3);
3742                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3743                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3744                 I915_WRITE(DSPFW3, reg);
3745                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3746
3747                 /* activate cxsr */
3748                 I915_WRITE(DSPFW3,
3749                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3750                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3751         } else {
3752                 pineview_disable_cxsr(dev);
3753                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3754         }
3755 }
3756
3757 static bool g4x_compute_wm0(struct drm_device *dev,
3758                             int plane,
3759                             const struct intel_watermark_params *display,
3760                             int display_latency_ns,
3761                             const struct intel_watermark_params *cursor,
3762                             int cursor_latency_ns,
3763                             int *plane_wm,
3764                             int *cursor_wm)
3765 {
3766         struct drm_crtc *crtc;
3767         int htotal, hdisplay, clock, pixel_size;
3768         int line_time_us, line_count;
3769         int entries, tlb_miss;
3770
3771         crtc = intel_get_crtc_for_plane(dev, plane);
3772         if (crtc->fb == NULL || !crtc->enabled)
3773                 return false;
3774
3775         htotal = crtc->mode.htotal;
3776         hdisplay = crtc->mode.hdisplay;
3777         clock = crtc->mode.clock;
3778         pixel_size = crtc->fb->bits_per_pixel / 8;
3779
3780         /* Use the small buffer method to calculate plane watermark */
3781         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3782         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3783         if (tlb_miss > 0)
3784                 entries += tlb_miss;
3785         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3786         *plane_wm = entries + display->guard_size;
3787         if (*plane_wm > (int)display->max_wm)
3788                 *plane_wm = display->max_wm;
3789
3790         /* Use the large buffer method to calculate cursor watermark */
3791         line_time_us = ((htotal * 1000) / clock);
3792         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3793         entries = line_count * 64 * pixel_size;
3794         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3795         if (tlb_miss > 0)
3796                 entries += tlb_miss;
3797         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3798         *cursor_wm = entries + cursor->guard_size;
3799         if (*cursor_wm > (int)cursor->max_wm)
3800                 *cursor_wm = (int)cursor->max_wm;
3801
3802         return true;
3803 }
3804
3805 /*
3806  * Check the wm result.
3807  *
3808  * If any calculated watermark values is larger than the maximum value that
3809  * can be programmed into the associated watermark register, that watermark
3810  * must be disabled.
3811  */
3812 static bool g4x_check_srwm(struct drm_device *dev,
3813                            int display_wm, int cursor_wm,
3814                            const struct intel_watermark_params *display,
3815                            const struct intel_watermark_params *cursor)
3816 {
3817         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3818                       display_wm, cursor_wm);
3819
3820         if (display_wm > display->max_wm) {
3821                 DRM_DEBUG_KMS("display watermark is too large(%d), disabling\n",
3822                               display_wm, display->max_wm);
3823                 return false;
3824         }
3825
3826         if (cursor_wm > cursor->max_wm) {
3827                 DRM_DEBUG_KMS("cursor watermark is too large(%d), disabling\n",
3828                               cursor_wm, cursor->max_wm);
3829                 return false;
3830         }
3831
3832         if (!(display_wm || cursor_wm)) {
3833                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3834                 return false;
3835         }
3836
3837         return true;
3838 }
3839
3840 static bool g4x_compute_srwm(struct drm_device *dev,
3841                              int plane,
3842                              int latency_ns,
3843                              const struct intel_watermark_params *display,
3844                              const struct intel_watermark_params *cursor,
3845                              int *display_wm, int *cursor_wm)
3846 {
3847         struct drm_crtc *crtc;
3848         int hdisplay, htotal, pixel_size, clock;
3849         unsigned long line_time_us;
3850         int line_count, line_size;
3851         int small, large;
3852         int entries;
3853
3854         if (!latency_ns) {
3855                 *display_wm = *cursor_wm = 0;
3856                 return false;
3857         }
3858
3859         crtc = intel_get_crtc_for_plane(dev, plane);
3860         hdisplay = crtc->mode.hdisplay;
3861         htotal = crtc->mode.htotal;
3862         clock = crtc->mode.clock;
3863         pixel_size = crtc->fb->bits_per_pixel / 8;
3864
3865         line_time_us = (htotal * 1000) / clock;
3866         line_count = (latency_ns / line_time_us + 1000) / 1000;
3867         line_size = hdisplay * pixel_size;
3868
3869         /* Use the minimum of the small and large buffer method for primary */
3870         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3871         large = line_count * line_size;
3872
3873         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3874         *display_wm = entries + display->guard_size;
3875
3876         /* calculate the self-refresh watermark for display cursor */
3877         entries = line_count * pixel_size * 64;
3878         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3879         *cursor_wm = entries + cursor->guard_size;
3880
3881         return g4x_check_srwm(dev,
3882                               *display_wm, *cursor_wm,
3883                               display, cursor);
3884 }
3885
3886 static inline bool single_plane_enabled(unsigned int mask)
3887 {
3888         return mask && (mask & -mask) == 0;
3889 }
3890
3891 static void g4x_update_wm(struct drm_device *dev)
3892 {
3893         static const int sr_latency_ns = 12000;
3894         struct drm_i915_private *dev_priv = dev->dev_private;
3895         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3896         int plane_sr, cursor_sr;
3897         unsigned int enabled = 0;
3898
3899         if (g4x_compute_wm0(dev, 0,
3900                             &g4x_wm_info, latency_ns,
3901                             &g4x_cursor_wm_info, latency_ns,
3902                             &planea_wm, &cursora_wm))
3903                 enabled |= 1;
3904
3905         if (g4x_compute_wm0(dev, 1,
3906                             &g4x_wm_info, latency_ns,
3907                             &g4x_cursor_wm_info, latency_ns,
3908                             &planeb_wm, &cursorb_wm))
3909                 enabled |= 2;
3910
3911         plane_sr = cursor_sr = 0;
3912         if (single_plane_enabled(enabled) &&
3913             g4x_compute_srwm(dev, ffs(enabled) - 1,
3914                              sr_latency_ns,
3915                              &g4x_wm_info,
3916                              &g4x_cursor_wm_info,
3917                              &plane_sr, &cursor_sr))
3918                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3919         else
3920                 I915_WRITE(FW_BLC_SELF,
3921                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3922
3923         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3924                       planea_wm, cursora_wm,
3925                       planeb_wm, cursorb_wm,
3926                       plane_sr, cursor_sr);
3927
3928         I915_WRITE(DSPFW1,
3929                    (plane_sr << DSPFW_SR_SHIFT) |
3930                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3931                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
3932                    planea_wm);
3933         I915_WRITE(DSPFW2,
3934                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3935                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3936         /* HPLL off in SR has some issues on G4x... disable it */
3937         I915_WRITE(DSPFW3,
3938                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3939                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3940 }
3941
3942 static void i965_update_wm(struct drm_device *dev)
3943 {
3944         struct drm_i915_private *dev_priv = dev->dev_private;
3945         struct drm_crtc *crtc;
3946         int srwm = 1;
3947         int cursor_sr = 16;
3948
3949         /* Calc sr entries for one plane configs */
3950         crtc = single_enabled_crtc(dev);
3951         if (crtc) {
3952                 /* self-refresh has much higher latency */
3953                 static const int sr_latency_ns = 12000;
3954                 int clock = crtc->mode.clock;
3955                 int htotal = crtc->mode.htotal;
3956                 int hdisplay = crtc->mode.hdisplay;
3957                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3958                 unsigned long line_time_us;
3959                 int entries;
3960
3961                 line_time_us = ((htotal * 1000) / clock);
3962
3963                 /* Use ns/us then divide to preserve precision */
3964                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3965                         pixel_size * hdisplay;
3966                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3967                 srwm = I965_FIFO_SIZE - entries;
3968                 if (srwm < 0)
3969                         srwm = 1;
3970                 srwm &= 0x1ff;
3971                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3972                               entries, srwm);
3973
3974                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3975                         pixel_size * 64;
3976                 entries = DIV_ROUND_UP(entries,
3977                                           i965_cursor_wm_info.cacheline_size);
3978                 cursor_sr = i965_cursor_wm_info.fifo_size -
3979                         (entries + i965_cursor_wm_info.guard_size);
3980
3981                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3982                         cursor_sr = i965_cursor_wm_info.max_wm;
3983
3984                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3985                               "cursor %d\n", srwm, cursor_sr);
3986
3987                 if (IS_CRESTLINE(dev))
3988                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3989         } else {
3990                 /* Turn off self refresh if both pipes are enabled */
3991                 if (IS_CRESTLINE(dev))
3992                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3993                                    & ~FW_BLC_SELF_EN);
3994         }
3995
3996         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3997                       srwm);
3998
3999         /* 965 has limitations... */
4000         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4001                    (8 << 16) | (8 << 8) | (8 << 0));
4002         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4003         /* update cursor SR watermark */
4004         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4005 }
4006
4007 static void i9xx_update_wm(struct drm_device *dev)
4008 {
4009         struct drm_i915_private *dev_priv = dev->dev_private;
4010         const struct intel_watermark_params *wm_info;
4011         uint32_t fwater_lo;
4012         uint32_t fwater_hi;
4013         int cwm, srwm = 1;
4014         int fifo_size;
4015         int planea_wm, planeb_wm;
4016         struct drm_crtc *crtc, *enabled = NULL;
4017
4018         if (IS_I945GM(dev))
4019                 wm_info = &i945_wm_info;
4020         else if (!IS_GEN2(dev))
4021                 wm_info = &i915_wm_info;
4022         else
4023                 wm_info = &i855_wm_info;
4024
4025         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4026         crtc = intel_get_crtc_for_plane(dev, 0);
4027         if (crtc->enabled && crtc->fb) {
4028                 planea_wm = intel_calculate_wm(crtc->mode.clock,
4029                                                wm_info, fifo_size,
4030                                                crtc->fb->bits_per_pixel / 8,
4031                                                latency_ns);
4032                 enabled = crtc;
4033         } else
4034                 planea_wm = fifo_size - wm_info->guard_size;
4035
4036         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4037         crtc = intel_get_crtc_for_plane(dev, 1);
4038         if (crtc->enabled && crtc->fb) {
4039                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4040                                                wm_info, fifo_size,
4041                                                crtc->fb->bits_per_pixel / 8,
4042                                                latency_ns);
4043                 if (enabled == NULL)
4044                         enabled = crtc;
4045                 else
4046                         enabled = NULL;
4047         } else
4048                 planeb_wm = fifo_size - wm_info->guard_size;
4049
4050         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4051
4052         /*
4053          * Overlay gets an aggressive default since video jitter is bad.
4054          */
4055         cwm = 2;
4056
4057         /* Play safe and disable self-refresh before adjusting watermarks. */
4058         if (IS_I945G(dev) || IS_I945GM(dev))
4059                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4060         else if (IS_I915GM(dev))
4061                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4062
4063         /* Calc sr entries for one plane configs */
4064         if (HAS_FW_BLC(dev) && enabled) {
4065                 /* self-refresh has much higher latency */
4066                 static const int sr_latency_ns = 6000;
4067                 int clock = enabled->mode.clock;
4068                 int htotal = enabled->mode.htotal;
4069                 int hdisplay = enabled->mode.hdisplay;
4070                 int pixel_size = enabled->fb->bits_per_pixel / 8;
4071                 unsigned long line_time_us;
4072                 int entries;
4073
4074                 line_time_us = (htotal * 1000) / clock;
4075
4076                 /* Use ns/us then divide to preserve precision */
4077                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4078                         pixel_size * hdisplay;
4079                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4080                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4081                 srwm = wm_info->fifo_size - entries;
4082                 if (srwm < 0)
4083                         srwm = 1;
4084
4085                 if (IS_I945G(dev) || IS_I945GM(dev))
4086                         I915_WRITE(FW_BLC_SELF,
4087                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4088                 else if (IS_I915GM(dev))
4089                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4090         }
4091
4092         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4093                       planea_wm, planeb_wm, cwm, srwm);
4094
4095         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4096         fwater_hi = (cwm & 0x1f);
4097
4098         /* Set request length to 8 cachelines per fetch */
4099         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4100         fwater_hi = fwater_hi | (1 << 8);
4101
4102         I915_WRITE(FW_BLC, fwater_lo);
4103         I915_WRITE(FW_BLC2, fwater_hi);
4104
4105         if (HAS_FW_BLC(dev)) {
4106                 if (enabled) {
4107                         if (IS_I945G(dev) || IS_I945GM(dev))
4108                                 I915_WRITE(FW_BLC_SELF,
4109                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4110                         else if (IS_I915GM(dev))
4111                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4112                         DRM_DEBUG_KMS("memory self refresh enabled\n");
4113                 } else
4114                         DRM_DEBUG_KMS("memory self refresh disabled\n");
4115         }
4116 }
4117
4118 static void i830_update_wm(struct drm_device *dev)
4119 {
4120         struct drm_i915_private *dev_priv = dev->dev_private;
4121         struct drm_crtc *crtc;
4122         uint32_t fwater_lo;
4123         int planea_wm;
4124
4125         crtc = single_enabled_crtc(dev);
4126         if (crtc == NULL)
4127                 return;
4128
4129         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4130                                        dev_priv->display.get_fifo_size(dev, 0),
4131                                        crtc->fb->bits_per_pixel / 8,
4132                                        latency_ns);
4133         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4134         fwater_lo |= (3<<8) | planea_wm;
4135
4136         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4137
4138         I915_WRITE(FW_BLC, fwater_lo);
4139 }
4140
4141 #define ILK_LP0_PLANE_LATENCY           700
4142 #define ILK_LP0_CURSOR_LATENCY          1300
4143
4144 static bool ironlake_compute_wm0(struct drm_device *dev,
4145                                  int pipe,
4146                                  const struct intel_watermark_params *display,
4147                                  int display_latency_ns,
4148                                  const struct intel_watermark_params *cursor,
4149                                  int cursor_latency_ns,
4150                                  int *plane_wm,
4151                                  int *cursor_wm)
4152 {
4153         struct drm_crtc *crtc;
4154         int htotal, hdisplay, clock, pixel_size;
4155         int line_time_us, line_count;
4156         int entries, tlb_miss;
4157
4158         crtc = intel_get_crtc_for_pipe(dev, pipe);
4159         if (crtc->fb == NULL || !crtc->enabled)
4160                 return false;
4161
4162         htotal = crtc->mode.htotal;
4163         hdisplay = crtc->mode.hdisplay;
4164         clock = crtc->mode.clock;
4165         pixel_size = crtc->fb->bits_per_pixel / 8;
4166
4167         /* Use the small buffer method to calculate plane watermark */
4168         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4169         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4170         if (tlb_miss > 0)
4171                 entries += tlb_miss;
4172         entries = DIV_ROUND_UP(entries, display->cacheline_size);
4173         *plane_wm = entries + display->guard_size;
4174         if (*plane_wm > (int)display->max_wm)
4175                 *plane_wm = display->max_wm;
4176
4177         /* Use the large buffer method to calculate cursor watermark */
4178         line_time_us = ((htotal * 1000) / clock);
4179         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4180         entries = line_count * 64 * pixel_size;
4181         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4182         if (tlb_miss > 0)
4183                 entries += tlb_miss;
4184         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4185         *cursor_wm = entries + cursor->guard_size;
4186         if (*cursor_wm > (int)cursor->max_wm)
4187                 *cursor_wm = (int)cursor->max_wm;
4188
4189         return true;
4190 }
4191
4192 /*
4193  * Check the wm result.
4194  *
4195  * If any calculated watermark values is larger than the maximum value that
4196  * can be programmed into the associated watermark register, that watermark
4197  * must be disabled.
4198  */
4199 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4200                                 int fbc_wm, int display_wm, int cursor_wm,
4201                                 const struct intel_watermark_params *display,
4202                                 const struct intel_watermark_params *cursor)
4203 {
4204         struct drm_i915_private *dev_priv = dev->dev_private;
4205
4206         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4207                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4208
4209         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4210                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4211                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4212
4213                 /* fbc has it's own way to disable FBC WM */
4214                 I915_WRITE(DISP_ARB_CTL,
4215                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4216                 return false;
4217         }
4218
4219         if (display_wm > display->max_wm) {
4220                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4221                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4222                 return false;
4223         }
4224
4225         if (cursor_wm > cursor->max_wm) {
4226                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4227                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4228                 return false;
4229         }
4230
4231         if (!(fbc_wm || display_wm || cursor_wm)) {
4232                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4233                 return false;
4234         }
4235
4236         return true;
4237 }
4238
4239 /*
4240  * Compute watermark values of WM[1-3],
4241  */
4242 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4243                                   int latency_ns,
4244                                   const struct intel_watermark_params *display,
4245                                   const struct intel_watermark_params *cursor,
4246                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4247 {
4248         struct drm_crtc *crtc;
4249         unsigned long line_time_us;
4250         int hdisplay, htotal, pixel_size, clock;
4251         int line_count, line_size;
4252         int small, large;
4253         int entries;
4254
4255         if (!latency_ns) {
4256                 *fbc_wm = *display_wm = *cursor_wm = 0;
4257                 return false;
4258         }
4259
4260         crtc = intel_get_crtc_for_plane(dev, plane);
4261         hdisplay = crtc->mode.hdisplay;
4262         htotal = crtc->mode.htotal;
4263         clock = crtc->mode.clock;
4264         pixel_size = crtc->fb->bits_per_pixel / 8;
4265
4266         line_time_us = (htotal * 1000) / clock;
4267         line_count = (latency_ns / line_time_us + 1000) / 1000;
4268         line_size = hdisplay * pixel_size;
4269
4270         /* Use the minimum of the small and large buffer method for primary */
4271         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4272         large = line_count * line_size;
4273
4274         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4275         *display_wm = entries + display->guard_size;
4276
4277         /*
4278          * Spec says:
4279          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4280          */
4281         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4282
4283         /* calculate the self-refresh watermark for display cursor */
4284         entries = line_count * pixel_size * 64;
4285         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4286         *cursor_wm = entries + cursor->guard_size;
4287
4288         return ironlake_check_srwm(dev, level,
4289                                    *fbc_wm, *display_wm, *cursor_wm,
4290                                    display, cursor);
4291 }
4292
4293 static void ironlake_update_wm(struct drm_device *dev)
4294 {
4295         struct drm_i915_private *dev_priv = dev->dev_private;
4296         int fbc_wm, plane_wm, cursor_wm;
4297         unsigned int enabled;
4298
4299         enabled = 0;
4300         if (ironlake_compute_wm0(dev, 0,
4301                                  &ironlake_display_wm_info,
4302                                  ILK_LP0_PLANE_LATENCY,
4303                                  &ironlake_cursor_wm_info,
4304                                  ILK_LP0_CURSOR_LATENCY,
4305                                  &plane_wm, &cursor_wm)) {
4306                 I915_WRITE(WM0_PIPEA_ILK,
4307                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4308                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4309                               " plane %d, " "cursor: %d\n",
4310                               plane_wm, cursor_wm);
4311                 enabled |= 1;
4312         }
4313
4314         if (ironlake_compute_wm0(dev, 1,
4315                                  &ironlake_display_wm_info,
4316                                  ILK_LP0_PLANE_LATENCY,
4317                                  &ironlake_cursor_wm_info,
4318                                  ILK_LP0_CURSOR_LATENCY,
4319                                  &plane_wm, &cursor_wm)) {
4320                 I915_WRITE(WM0_PIPEB_ILK,
4321                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4322                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4323                               " plane %d, cursor: %d\n",
4324                               plane_wm, cursor_wm);
4325                 enabled |= 2;
4326         }
4327
4328         /*
4329          * Calculate and update the self-refresh watermark only when one
4330          * display plane is used.
4331          */
4332         I915_WRITE(WM3_LP_ILK, 0);
4333         I915_WRITE(WM2_LP_ILK, 0);
4334         I915_WRITE(WM1_LP_ILK, 0);
4335
4336         if (!single_plane_enabled(enabled))
4337                 return;
4338         enabled = ffs(enabled) - 1;
4339
4340         /* WM1 */
4341         if (!ironlake_compute_srwm(dev, 1, enabled,
4342                                    ILK_READ_WM1_LATENCY() * 500,
4343                                    &ironlake_display_srwm_info,
4344                                    &ironlake_cursor_srwm_info,
4345                                    &fbc_wm, &plane_wm, &cursor_wm))
4346                 return;
4347
4348         I915_WRITE(WM1_LP_ILK,
4349                    WM1_LP_SR_EN |
4350                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4351                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4352                    (plane_wm << WM1_LP_SR_SHIFT) |
4353                    cursor_wm);
4354
4355         /* WM2 */
4356         if (!ironlake_compute_srwm(dev, 2, enabled,
4357                                    ILK_READ_WM2_LATENCY() * 500,
4358                                    &ironlake_display_srwm_info,
4359                                    &ironlake_cursor_srwm_info,
4360                                    &fbc_wm, &plane_wm, &cursor_wm))
4361                 return;
4362
4363         I915_WRITE(WM2_LP_ILK,
4364                    WM2_LP_EN |
4365                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4366                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4367                    (plane_wm << WM1_LP_SR_SHIFT) |
4368                    cursor_wm);
4369
4370         /*
4371          * WM3 is unsupported on ILK, probably because we don't have latency
4372          * data for that power state
4373          */
4374 }
4375
4376 static void sandybridge_update_wm(struct drm_device *dev)
4377 {
4378         struct drm_i915_private *dev_priv = dev->dev_private;
4379         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4380         int fbc_wm, plane_wm, cursor_wm;
4381         unsigned int enabled;
4382
4383         enabled = 0;
4384         if (ironlake_compute_wm0(dev, 0,
4385                                  &sandybridge_display_wm_info, latency,
4386                                  &sandybridge_cursor_wm_info, latency,
4387                                  &plane_wm, &cursor_wm)) {
4388                 I915_WRITE(WM0_PIPEA_ILK,
4389                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4390                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4391                               " plane %d, " "cursor: %d\n",
4392                               plane_wm, cursor_wm);
4393                 enabled |= 1;
4394         }
4395
4396         if (ironlake_compute_wm0(dev, 1,
4397                                  &sandybridge_display_wm_info, latency,
4398                                  &sandybridge_cursor_wm_info, latency,
4399                                  &plane_wm, &cursor_wm)) {
4400                 I915_WRITE(WM0_PIPEB_ILK,
4401                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4402                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4403                               " plane %d, cursor: %d\n",
4404                               plane_wm, cursor_wm);
4405                 enabled |= 2;
4406         }
4407
4408         /*
4409          * Calculate and update the self-refresh watermark only when one
4410          * display plane is used.
4411          *
4412          * SNB support 3 levels of watermark.
4413          *
4414          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4415          * and disabled in the descending order
4416          *
4417          */
4418         I915_WRITE(WM3_LP_ILK, 0);
4419         I915_WRITE(WM2_LP_ILK, 0);
4420         I915_WRITE(WM1_LP_ILK, 0);
4421
4422         if (!single_plane_enabled(enabled))
4423                 return;
4424         enabled = ffs(enabled) - 1;
4425
4426         /* WM1 */
4427         if (!ironlake_compute_srwm(dev, 1, enabled,
4428                                    SNB_READ_WM1_LATENCY() * 500,
4429                                    &sandybridge_display_srwm_info,
4430                                    &sandybridge_cursor_srwm_info,
4431                                    &fbc_wm, &plane_wm, &cursor_wm))
4432                 return;
4433
4434         I915_WRITE(WM1_LP_ILK,
4435                    WM1_LP_SR_EN |
4436                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4437                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4438                    (plane_wm << WM1_LP_SR_SHIFT) |
4439                    cursor_wm);
4440
4441         /* WM2 */
4442         if (!ironlake_compute_srwm(dev, 2, enabled,
4443                                    SNB_READ_WM2_LATENCY() * 500,
4444                                    &sandybridge_display_srwm_info,
4445                                    &sandybridge_cursor_srwm_info,
4446                                    &fbc_wm, &plane_wm, &cursor_wm))
4447                 return;
4448
4449         I915_WRITE(WM2_LP_ILK,
4450                    WM2_LP_EN |
4451                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4452                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4453                    (plane_wm << WM1_LP_SR_SHIFT) |
4454                    cursor_wm);
4455
4456         /* WM3 */
4457         if (!ironlake_compute_srwm(dev, 3, enabled,
4458                                    SNB_READ_WM3_LATENCY() * 500,
4459                                    &sandybridge_display_srwm_info,
4460                                    &sandybridge_cursor_srwm_info,
4461                                    &fbc_wm, &plane_wm, &cursor_wm))
4462                 return;
4463
4464         I915_WRITE(WM3_LP_ILK,
4465                    WM3_LP_EN |
4466                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4467                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4468                    (plane_wm << WM1_LP_SR_SHIFT) |
4469                    cursor_wm);
4470 }
4471
4472 /**
4473  * intel_update_watermarks - update FIFO watermark values based on current modes
4474  *
4475  * Calculate watermark values for the various WM regs based on current mode
4476  * and plane configuration.
4477  *
4478  * There are several cases to deal with here:
4479  *   - normal (i.e. non-self-refresh)
4480  *   - self-refresh (SR) mode
4481  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4482  *   - lines are small relative to FIFO size (buffer can hold more than 2
4483  *     lines), so need to account for TLB latency
4484  *
4485  *   The normal calculation is:
4486  *     watermark = dotclock * bytes per pixel * latency
4487  *   where latency is platform & configuration dependent (we assume pessimal
4488  *   values here).
4489  *
4490  *   The SR calculation is:
4491  *     watermark = (trunc(latency/line time)+1) * surface width *
4492  *       bytes per pixel
4493  *   where
4494  *     line time = htotal / dotclock
4495  *     surface width = hdisplay for normal plane and 64 for cursor
4496  *   and latency is assumed to be high, as above.
4497  *
4498  * The final value programmed to the register should always be rounded up,
4499  * and include an extra 2 entries to account for clock crossings.
4500  *
4501  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4502  * to set the non-SR watermarks to 8.
4503  */
4504 static void intel_update_watermarks(struct drm_device *dev)
4505 {
4506         struct drm_i915_private *dev_priv = dev->dev_private;
4507
4508         if (dev_priv->display.update_wm)
4509                 dev_priv->display.update_wm(dev);
4510 }
4511
4512 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4513 {
4514         return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
4515 }
4516
4517 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4518                                struct drm_display_mode *mode,
4519                                struct drm_display_mode *adjusted_mode,
4520                                int x, int y,
4521                                struct drm_framebuffer *old_fb)
4522 {
4523         struct drm_device *dev = crtc->dev;
4524         struct drm_i915_private *dev_priv = dev->dev_private;
4525         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4526         int pipe = intel_crtc->pipe;
4527         int plane = intel_crtc->plane;
4528         u32 fp_reg, dpll_reg;
4529         int refclk, num_connectors = 0;
4530         intel_clock_t clock, reduced_clock;
4531         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4532         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4533         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4534         struct intel_encoder *has_edp_encoder = NULL;
4535         struct drm_mode_config *mode_config = &dev->mode_config;
4536         struct intel_encoder *encoder;
4537         const intel_limit_t *limit;
4538         int ret;
4539         struct fdi_m_n m_n = {0};
4540         u32 reg, temp;
4541         u32 lvds_sync = 0;
4542         int target_clock;
4543
4544         drm_vblank_pre_modeset(dev, pipe);
4545
4546         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4547                 if (encoder->base.crtc != crtc)
4548                         continue;
4549
4550                 switch (encoder->type) {
4551                 case INTEL_OUTPUT_LVDS:
4552                         is_lvds = true;
4553                         break;
4554                 case INTEL_OUTPUT_SDVO:
4555                 case INTEL_OUTPUT_HDMI:
4556                         is_sdvo = true;
4557                         if (encoder->needs_tv_clock)
4558                                 is_tv = true;
4559                         break;
4560                 case INTEL_OUTPUT_DVO:
4561                         is_dvo = true;
4562                         break;
4563                 case INTEL_OUTPUT_TVOUT:
4564                         is_tv = true;
4565                         break;
4566                 case INTEL_OUTPUT_ANALOG:
4567                         is_crt = true;
4568                         break;
4569                 case INTEL_OUTPUT_DISPLAYPORT:
4570                         is_dp = true;
4571                         break;
4572                 case INTEL_OUTPUT_EDP:
4573                         has_edp_encoder = encoder;
4574                         break;
4575                 }
4576
4577                 num_connectors++;
4578         }
4579
4580         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4581                 refclk = dev_priv->lvds_ssc_freq * 1000;
4582                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4583                               refclk / 1000);
4584         } else if (!IS_GEN2(dev)) {
4585                 refclk = 96000;
4586                 if (HAS_PCH_SPLIT(dev) &&
4587                     (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
4588                         refclk = 120000; /* 120Mhz refclk */
4589         } else {
4590                 refclk = 48000;
4591         }
4592
4593         /*
4594          * Returns a set of divisors for the desired target clock with the given
4595          * refclk, or FALSE.  The returned values represent the clock equation:
4596          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4597          */
4598         limit = intel_limit(crtc, refclk);
4599         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4600         if (!ok) {
4601                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4602                 drm_vblank_post_modeset(dev, pipe);
4603                 return -EINVAL;
4604         }
4605
4606         /* Ensure that the cursor is valid for the new mode before changing... */
4607         intel_crtc_update_cursor(crtc, true);
4608
4609         if (is_lvds && dev_priv->lvds_downclock_avail) {
4610                 has_reduced_clock = limit->find_pll(limit, crtc,
4611                                                     dev_priv->lvds_downclock,
4612                                                     refclk,
4613                                                     &reduced_clock);
4614                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4615                         /*
4616                          * If the different P is found, it means that we can't
4617                          * switch the display clock by using the FP0/FP1.
4618                          * In such case we will disable the LVDS downclock
4619                          * feature.
4620                          */
4621                         DRM_DEBUG_KMS("Different P is found for "
4622                                       "LVDS clock/downclock\n");
4623                         has_reduced_clock = 0;
4624                 }
4625         }
4626         /* SDVO TV has fixed PLL values depend on its clock range,
4627            this mirrors vbios setting. */
4628         if (is_sdvo && is_tv) {
4629                 if (adjusted_mode->clock >= 100000
4630                     && adjusted_mode->clock < 140500) {
4631                         clock.p1 = 2;
4632                         clock.p2 = 10;
4633                         clock.n = 3;
4634                         clock.m1 = 16;
4635                         clock.m2 = 8;
4636                 } else if (adjusted_mode->clock >= 140500
4637                            && adjusted_mode->clock <= 200000) {
4638                         clock.p1 = 1;
4639                         clock.p2 = 10;
4640                         clock.n = 6;
4641                         clock.m1 = 12;
4642                         clock.m2 = 8;
4643                 }
4644         }
4645
4646         /* FDI link */
4647         if (HAS_PCH_SPLIT(dev)) {
4648                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4649                 int lane = 0, link_bw, bpp;
4650                 /* CPU eDP doesn't require FDI link, so just set DP M/N
4651                    according to current link config */
4652                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4653                         target_clock = mode->clock;
4654                         intel_edp_link_config(has_edp_encoder,
4655                                               &lane, &link_bw);
4656                 } else {
4657                         /* [e]DP over FDI requires target mode clock
4658                            instead of link clock */
4659                         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4660                                 target_clock = mode->clock;
4661                         else
4662                                 target_clock = adjusted_mode->clock;
4663
4664                         /* FDI is a binary signal running at ~2.7GHz, encoding
4665                          * each output octet as 10 bits. The actual frequency
4666                          * is stored as a divider into a 100MHz clock, and the
4667                          * mode pixel clock is stored in units of 1KHz.
4668                          * Hence the bw of each lane in terms of the mode signal
4669                          * is:
4670                          */
4671                         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4672                 }
4673
4674                 /* determine panel color depth */
4675                 temp = I915_READ(PIPECONF(pipe));
4676                 temp &= ~PIPE_BPC_MASK;
4677                 if (is_lvds) {
4678                         /* the BPC will be 6 if it is 18-bit LVDS panel */
4679                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
4680                                 temp |= PIPE_8BPC;
4681                         else
4682                                 temp |= PIPE_6BPC;
4683                 } else if (has_edp_encoder) {
4684                         switch (dev_priv->edp.bpp/3) {
4685                         case 8:
4686                                 temp |= PIPE_8BPC;
4687                                 break;
4688                         case 10:
4689                                 temp |= PIPE_10BPC;
4690                                 break;
4691                         case 6:
4692                                 temp |= PIPE_6BPC;
4693                                 break;
4694                         case 12:
4695                                 temp |= PIPE_12BPC;
4696                                 break;
4697                         }
4698                 } else
4699                         temp |= PIPE_8BPC;
4700                 I915_WRITE(PIPECONF(pipe), temp);
4701
4702                 switch (temp & PIPE_BPC_MASK) {
4703                 case PIPE_8BPC:
4704                         bpp = 24;
4705                         break;
4706                 case PIPE_10BPC:
4707                         bpp = 30;
4708                         break;
4709                 case PIPE_6BPC:
4710                         bpp = 18;
4711                         break;
4712                 case PIPE_12BPC:
4713                         bpp = 36;
4714                         break;
4715                 default:
4716                         DRM_ERROR("unknown pipe bpc value\n");
4717                         bpp = 24;
4718                 }
4719
4720                 if (!lane) {
4721                         /* 
4722                          * Account for spread spectrum to avoid
4723                          * oversubscribing the link. Max center spread
4724                          * is 2.5%; use 5% for safety's sake.
4725                          */
4726                         u32 bps = target_clock * bpp * 21 / 20;
4727                         lane = bps / (link_bw * 8) + 1;
4728                 }
4729
4730                 intel_crtc->fdi_lanes = lane;
4731
4732                 if (pixel_multiplier > 1)
4733                         link_bw *= pixel_multiplier;
4734                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
4735         }
4736
4737         /* Ironlake: try to setup display ref clock before DPLL
4738          * enabling. This is only under driver's control after
4739          * PCH B stepping, previous chipset stepping should be
4740          * ignoring this setting.
4741          */
4742         if (HAS_PCH_SPLIT(dev)) {
4743                 temp = I915_READ(PCH_DREF_CONTROL);
4744                 /* Always enable nonspread source */
4745                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4746                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4747                 temp &= ~DREF_SSC_SOURCE_MASK;
4748                 temp |= DREF_SSC_SOURCE_ENABLE;
4749                 I915_WRITE(PCH_DREF_CONTROL, temp);
4750
4751                 POSTING_READ(PCH_DREF_CONTROL);
4752                 udelay(200);
4753
4754                 if (has_edp_encoder) {
4755                         if (intel_panel_use_ssc(dev_priv)) {
4756                                 temp |= DREF_SSC1_ENABLE;
4757                                 I915_WRITE(PCH_DREF_CONTROL, temp);
4758
4759                                 POSTING_READ(PCH_DREF_CONTROL);
4760                                 udelay(200);
4761                         }
4762                         temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4763
4764                         /* Enable CPU source on CPU attached eDP */
4765                         if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4766                                 if (intel_panel_use_ssc(dev_priv))
4767                                         temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4768                                 else
4769                                         temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4770                         } else {
4771                                 /* Enable SSC on PCH eDP if needed */
4772                                 if (intel_panel_use_ssc(dev_priv)) {
4773                                         DRM_ERROR("enabling SSC on PCH\n");
4774                                         temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
4775                                 }
4776                         }
4777                         I915_WRITE(PCH_DREF_CONTROL, temp);
4778                         POSTING_READ(PCH_DREF_CONTROL);
4779                         udelay(200);
4780                 }
4781         }
4782
4783         if (IS_PINEVIEW(dev)) {
4784                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4785                 if (has_reduced_clock)
4786                         fp2 = (1 << reduced_clock.n) << 16 |
4787                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4788         } else {
4789                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4790                 if (has_reduced_clock)
4791                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4792                                 reduced_clock.m2;
4793         }
4794
4795         /* Enable autotuning of the PLL clock (if permissible) */
4796         if (HAS_PCH_SPLIT(dev)) {
4797                 int factor = 21;
4798
4799                 if (is_lvds) {
4800                         if ((intel_panel_use_ssc(dev_priv) &&
4801                              dev_priv->lvds_ssc_freq == 100) ||
4802                             (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4803                                 factor = 25;
4804                 } else if (is_sdvo && is_tv)
4805                         factor = 20;
4806
4807                 if (clock.m1 < factor * clock.n)
4808                         fp |= FP_CB_TUNE;
4809         }
4810
4811         dpll = 0;
4812         if (!HAS_PCH_SPLIT(dev))
4813                 dpll = DPLL_VGA_MODE_DIS;
4814
4815         if (!IS_GEN2(dev)) {
4816                 if (is_lvds)
4817                         dpll |= DPLLB_MODE_LVDS;
4818                 else
4819                         dpll |= DPLLB_MODE_DAC_SERIAL;
4820                 if (is_sdvo) {
4821                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4822                         if (pixel_multiplier > 1) {
4823                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4824                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4825                                 else if (HAS_PCH_SPLIT(dev))
4826                                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4827                         }
4828                         dpll |= DPLL_DVO_HIGH_SPEED;
4829                 }
4830                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4831                         dpll |= DPLL_DVO_HIGH_SPEED;
4832
4833                 /* compute bitmask from p1 value */
4834                 if (IS_PINEVIEW(dev))
4835                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4836                 else {
4837                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4838                         /* also FPA1 */
4839                         if (HAS_PCH_SPLIT(dev))
4840                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4841                         if (IS_G4X(dev) && has_reduced_clock)
4842                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4843                 }
4844                 switch (clock.p2) {
4845                 case 5:
4846                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4847                         break;
4848                 case 7:
4849                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4850                         break;
4851                 case 10:
4852                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4853                         break;
4854                 case 14:
4855                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4856                         break;
4857                 }
4858                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
4859                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4860         } else {
4861                 if (is_lvds) {
4862                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4863                 } else {
4864                         if (clock.p1 == 2)
4865                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4866                         else
4867                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4868                         if (clock.p2 == 4)
4869                                 dpll |= PLL_P2_DIVIDE_BY_4;
4870                 }
4871         }
4872
4873         if (is_sdvo && is_tv)
4874                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4875         else if (is_tv)
4876                 /* XXX: just matching BIOS for now */
4877                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4878                 dpll |= 3;
4879         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4880                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4881         else
4882                 dpll |= PLL_REF_INPUT_DREFCLK;
4883
4884         /* setup pipeconf */
4885         pipeconf = I915_READ(PIPECONF(pipe));
4886
4887         /* Set up the display plane register */
4888         dspcntr = DISPPLANE_GAMMA_ENABLE;
4889
4890         /* Ironlake's plane is forced to pipe, bit 24 is to
4891            enable color space conversion */
4892         if (!HAS_PCH_SPLIT(dev)) {
4893                 if (pipe == 0)
4894                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4895                 else
4896                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4897         }
4898
4899         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4900                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4901                  * core speed.
4902                  *
4903                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4904                  * pipe == 0 check?
4905                  */
4906                 if (mode->clock >
4907                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4908                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4909                 else
4910                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4911         }
4912
4913         if (!HAS_PCH_SPLIT(dev))
4914                 dpll |= DPLL_VCO_ENABLE;
4915
4916         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4917         drm_mode_debug_printmodeline(mode);
4918
4919         /* assign to Ironlake registers */
4920         if (HAS_PCH_SPLIT(dev)) {
4921                 fp_reg = PCH_FP0(pipe);
4922                 dpll_reg = PCH_DPLL(pipe);
4923         } else {
4924                 fp_reg = FP0(pipe);
4925                 dpll_reg = DPLL(pipe);
4926         }
4927
4928         /* PCH eDP needs FDI, but CPU eDP does not */
4929         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4930                 I915_WRITE(fp_reg, fp);
4931                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
4932
4933                 POSTING_READ(dpll_reg);
4934                 udelay(150);
4935         }
4936
4937         /* enable transcoder DPLL */
4938         if (HAS_PCH_CPT(dev)) {
4939                 temp = I915_READ(PCH_DPLL_SEL);
4940                 switch (pipe) {
4941                 case 0:
4942                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
4943                         break;
4944                 case 1:
4945                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
4946                         break;
4947                 case 2:
4948                         /* FIXME: manage transcoder PLLs? */
4949                         temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
4950                         break;
4951                 default:
4952                         BUG();
4953                 }
4954                 I915_WRITE(PCH_DPLL_SEL, temp);
4955
4956                 POSTING_READ(PCH_DPLL_SEL);
4957                 udelay(150);
4958         }
4959
4960         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4961          * This is an exception to the general rule that mode_set doesn't turn
4962          * things on.
4963          */
4964         if (is_lvds) {
4965                 reg = LVDS;
4966                 if (HAS_PCH_SPLIT(dev))
4967                         reg = PCH_LVDS;
4968
4969                 temp = I915_READ(reg);
4970                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4971                 if (pipe == 1) {
4972                         if (HAS_PCH_CPT(dev))
4973                                 temp |= PORT_TRANS_B_SEL_CPT;
4974                         else
4975                                 temp |= LVDS_PIPEB_SELECT;
4976                 } else {
4977                         if (HAS_PCH_CPT(dev))
4978                                 temp &= ~PORT_TRANS_SEL_MASK;
4979                         else
4980                                 temp &= ~LVDS_PIPEB_SELECT;
4981                 }
4982                 /* set the corresponsding LVDS_BORDER bit */
4983                 temp |= dev_priv->lvds_border_bits;
4984                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4985                  * set the DPLLs for dual-channel mode or not.
4986                  */
4987                 if (clock.p2 == 7)
4988                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4989                 else
4990                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4991
4992                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4993                  * appropriately here, but we need to look more thoroughly into how
4994                  * panels behave in the two modes.
4995                  */
4996                 /* set the dithering flag on non-PCH LVDS as needed */
4997                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4998                         if (dev_priv->lvds_dither)
4999                                 temp |= LVDS_ENABLE_DITHER;
5000                         else
5001                                 temp &= ~LVDS_ENABLE_DITHER;
5002                 }
5003                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5004                         lvds_sync |= LVDS_HSYNC_POLARITY;
5005                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5006                         lvds_sync |= LVDS_VSYNC_POLARITY;
5007                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5008                     != lvds_sync) {
5009                         char flags[2] = "-+";
5010                         DRM_INFO("Changing LVDS panel from "
5011                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5012                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5013                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5014                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5015                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5016                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5017                         temp |= lvds_sync;
5018                 }
5019                 I915_WRITE(reg, temp);
5020         }
5021
5022         /* set the dithering flag and clear for anything other than a panel. */
5023         if (HAS_PCH_SPLIT(dev)) {
5024                 pipeconf &= ~PIPECONF_DITHER_EN;
5025                 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5026                 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
5027                         pipeconf |= PIPECONF_DITHER_EN;
5028                         pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5029                 }
5030         }
5031
5032         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5033                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5034         } else if (HAS_PCH_SPLIT(dev)) {
5035                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5036                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5037                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5038                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5039                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5040         }
5041
5042         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5043                 I915_WRITE(dpll_reg, dpll);
5044
5045                 /* Wait for the clocks to stabilize. */
5046                 POSTING_READ(dpll_reg);
5047                 udelay(150);
5048
5049                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
5050                         temp = 0;
5051                         if (is_sdvo) {
5052                                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5053                                 if (temp > 1)
5054                                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5055                                 else
5056                                         temp = 0;
5057                         }
5058                         I915_WRITE(DPLL_MD(pipe), temp);
5059                 } else {
5060                         /* The pixel multiplier can only be updated once the
5061                          * DPLL is enabled and the clocks are stable.
5062                          *
5063                          * So write it again.
5064                          */
5065                         I915_WRITE(dpll_reg, dpll);
5066                 }
5067         }
5068
5069         intel_crtc->lowfreq_avail = false;
5070         if (is_lvds && has_reduced_clock && i915_powersave) {
5071                 I915_WRITE(fp_reg + 4, fp2);
5072                 intel_crtc->lowfreq_avail = true;
5073                 if (HAS_PIPE_CXSR(dev)) {
5074                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5075                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5076                 }
5077         } else {
5078                 I915_WRITE(fp_reg + 4, fp);
5079                 if (HAS_PIPE_CXSR(dev)) {
5080                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5081                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5082                 }
5083         }
5084
5085         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5086                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5087                 /* the chip adds 2 halflines automatically */
5088                 adjusted_mode->crtc_vdisplay -= 1;
5089                 adjusted_mode->crtc_vtotal -= 1;
5090                 adjusted_mode->crtc_vblank_start -= 1;
5091                 adjusted_mode->crtc_vblank_end -= 1;
5092                 adjusted_mode->crtc_vsync_end -= 1;
5093                 adjusted_mode->crtc_vsync_start -= 1;
5094         } else
5095                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5096
5097         I915_WRITE(HTOTAL(pipe),
5098                    (adjusted_mode->crtc_hdisplay - 1) |
5099                    ((adjusted_mode->crtc_htotal - 1) << 16));
5100         I915_WRITE(HBLANK(pipe),
5101                    (adjusted_mode->crtc_hblank_start - 1) |
5102                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5103         I915_WRITE(HSYNC(pipe),
5104                    (adjusted_mode->crtc_hsync_start - 1) |
5105                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5106
5107         I915_WRITE(VTOTAL(pipe),
5108                    (adjusted_mode->crtc_vdisplay - 1) |
5109                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5110         I915_WRITE(VBLANK(pipe),
5111                    (adjusted_mode->crtc_vblank_start - 1) |
5112                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5113         I915_WRITE(VSYNC(pipe),
5114                    (adjusted_mode->crtc_vsync_start - 1) |
5115                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5116
5117         /* pipesrc and dspsize control the size that is scaled from,
5118          * which should always be the user's requested size.
5119          */
5120         if (!HAS_PCH_SPLIT(dev)) {
5121                 I915_WRITE(DSPSIZE(plane),
5122                            ((mode->vdisplay - 1) << 16) |
5123                            (mode->hdisplay - 1));
5124                 I915_WRITE(DSPPOS(plane), 0);
5125         }
5126         I915_WRITE(PIPESRC(pipe),
5127                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5128
5129         if (HAS_PCH_SPLIT(dev)) {
5130                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5131                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5132                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5133                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5134
5135                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5136                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5137                 }
5138         }
5139
5140         I915_WRITE(PIPECONF(pipe), pipeconf);
5141         POSTING_READ(PIPECONF(pipe));
5142         if (!HAS_PCH_SPLIT(dev))
5143                 intel_enable_pipe(dev_priv, pipe, false);
5144
5145         intel_wait_for_vblank(dev, pipe);
5146
5147         if (IS_GEN5(dev)) {
5148                 /* enable address swizzle for tiling buffer */
5149                 temp = I915_READ(DISP_ARB_CTL);
5150                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5151         }
5152
5153         I915_WRITE(DSPCNTR(plane), dspcntr);
5154         POSTING_READ(DSPCNTR(plane));
5155         if (!HAS_PCH_SPLIT(dev))
5156                 intel_enable_plane(dev_priv, plane, pipe);
5157
5158         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5159
5160         intel_update_watermarks(dev);
5161
5162         drm_vblank_post_modeset(dev, pipe);
5163
5164         return ret;
5165 }
5166
5167 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5168 void intel_crtc_load_lut(struct drm_crtc *crtc)
5169 {
5170         struct drm_device *dev = crtc->dev;
5171         struct drm_i915_private *dev_priv = dev->dev_private;
5172         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5173         int palreg = PALETTE(intel_crtc->pipe);
5174         int i;
5175
5176         /* The clocks have to be on to load the palette. */
5177         if (!crtc->enabled)
5178                 return;
5179
5180         /* use legacy palette for Ironlake */
5181         if (HAS_PCH_SPLIT(dev))
5182                 palreg = LGC_PALETTE(intel_crtc->pipe);
5183
5184         for (i = 0; i < 256; i++) {
5185                 I915_WRITE(palreg + 4 * i,
5186                            (intel_crtc->lut_r[i] << 16) |
5187                            (intel_crtc->lut_g[i] << 8) |
5188                            intel_crtc->lut_b[i]);
5189         }
5190 }
5191
5192 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5193 {
5194         struct drm_device *dev = crtc->dev;
5195         struct drm_i915_private *dev_priv = dev->dev_private;
5196         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5197         bool visible = base != 0;
5198         u32 cntl;
5199
5200         if (intel_crtc->cursor_visible == visible)
5201                 return;
5202
5203         cntl = I915_READ(_CURACNTR);
5204         if (visible) {
5205                 /* On these chipsets we can only modify the base whilst
5206                  * the cursor is disabled.
5207                  */
5208                 I915_WRITE(_CURABASE, base);
5209
5210                 cntl &= ~(CURSOR_FORMAT_MASK);
5211                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5212                 cntl |= CURSOR_ENABLE |
5213                         CURSOR_GAMMA_ENABLE |
5214                         CURSOR_FORMAT_ARGB;
5215         } else
5216                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5217         I915_WRITE(_CURACNTR, cntl);
5218
5219         intel_crtc->cursor_visible = visible;
5220 }
5221
5222 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5223 {
5224         struct drm_device *dev = crtc->dev;
5225         struct drm_i915_private *dev_priv = dev->dev_private;
5226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5227         int pipe = intel_crtc->pipe;
5228         bool visible = base != 0;
5229
5230         if (intel_crtc->cursor_visible != visible) {
5231                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5232                 if (base) {
5233                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5234                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5235                         cntl |= pipe << 28; /* Connect to correct pipe */
5236                 } else {
5237                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5238                         cntl |= CURSOR_MODE_DISABLE;
5239                 }
5240                 I915_WRITE(CURCNTR(pipe), cntl);
5241
5242                 intel_crtc->cursor_visible = visible;
5243         }
5244         /* and commit changes on next vblank */
5245         I915_WRITE(CURBASE(pipe), base);
5246 }
5247
5248 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5249 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5250                                      bool on)
5251 {
5252         struct drm_device *dev = crtc->dev;
5253         struct drm_i915_private *dev_priv = dev->dev_private;
5254         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5255         int pipe = intel_crtc->pipe;
5256         int x = intel_crtc->cursor_x;
5257         int y = intel_crtc->cursor_y;
5258         u32 base, pos;
5259         bool visible;
5260
5261         pos = 0;
5262
5263         if (on && crtc->enabled && crtc->fb) {
5264                 base = intel_crtc->cursor_addr;
5265                 if (x > (int) crtc->fb->width)
5266                         base = 0;
5267
5268                 if (y > (int) crtc->fb->height)
5269                         base = 0;
5270         } else
5271                 base = 0;
5272
5273         if (x < 0) {
5274                 if (x + intel_crtc->cursor_width < 0)
5275                         base = 0;
5276
5277                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5278                 x = -x;
5279         }
5280         pos |= x << CURSOR_X_SHIFT;
5281
5282         if (y < 0) {
5283                 if (y + intel_crtc->cursor_height < 0)
5284                         base = 0;
5285
5286                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5287                 y = -y;
5288         }
5289         pos |= y << CURSOR_Y_SHIFT;
5290
5291         visible = base != 0;
5292         if (!visible && !intel_crtc->cursor_visible)
5293                 return;
5294
5295         I915_WRITE(CURPOS(pipe), pos);
5296         if (IS_845G(dev) || IS_I865G(dev))
5297                 i845_update_cursor(crtc, base);
5298         else
5299                 i9xx_update_cursor(crtc, base);
5300
5301         if (visible)
5302                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5303 }
5304
5305 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5306                                  struct drm_file *file,
5307                                  uint32_t handle,
5308                                  uint32_t width, uint32_t height)
5309 {
5310         struct drm_device *dev = crtc->dev;
5311         struct drm_i915_private *dev_priv = dev->dev_private;
5312         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5313         struct drm_i915_gem_object *obj;
5314         uint32_t addr;
5315         int ret;
5316
5317         DRM_DEBUG_KMS("\n");
5318
5319         /* if we want to turn off the cursor ignore width and height */
5320         if (!handle) {
5321                 DRM_DEBUG_KMS("cursor off\n");
5322                 addr = 0;
5323                 obj = NULL;
5324                 mutex_lock(&dev->struct_mutex);
5325                 goto finish;
5326         }
5327
5328         /* Currently we only support 64x64 cursors */
5329         if (width != 64 || height != 64) {
5330                 DRM_ERROR("we currently only support 64x64 cursors\n");
5331                 return -EINVAL;
5332         }
5333
5334         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5335         if (&obj->base == NULL)
5336                 return -ENOENT;
5337
5338         if (obj->base.size < width * height * 4) {
5339                 DRM_ERROR("buffer is to small\n");
5340                 ret = -ENOMEM;
5341                 goto fail;
5342         }
5343
5344         /* we only need to pin inside GTT if cursor is non-phy */
5345         mutex_lock(&dev->struct_mutex);
5346         if (!dev_priv->info->cursor_needs_physical) {
5347                 if (obj->tiling_mode) {
5348                         DRM_ERROR("cursor cannot be tiled\n");
5349                         ret = -EINVAL;
5350                         goto fail_locked;
5351                 }
5352
5353                 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
5354                 if (ret) {
5355                         DRM_ERROR("failed to pin cursor bo\n");
5356                         goto fail_locked;
5357                 }
5358
5359                 ret = i915_gem_object_set_to_gtt_domain(obj, 0);
5360                 if (ret) {
5361                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5362                         goto fail_unpin;
5363                 }
5364
5365                 ret = i915_gem_object_put_fence(obj);
5366                 if (ret) {
5367                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5368                         goto fail_unpin;
5369                 }
5370
5371                 addr = obj->gtt_offset;
5372         } else {
5373                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5374                 ret = i915_gem_attach_phys_object(dev, obj,
5375                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5376                                                   align);
5377                 if (ret) {
5378                         DRM_ERROR("failed to attach phys object\n");
5379                         goto fail_locked;
5380                 }
5381                 addr = obj->phys_obj->handle->busaddr;
5382         }
5383
5384         if (IS_GEN2(dev))
5385                 I915_WRITE(CURSIZE, (height << 12) | width);
5386
5387  finish:
5388         if (intel_crtc->cursor_bo) {
5389                 if (dev_priv->info->cursor_needs_physical) {
5390                         if (intel_crtc->cursor_bo != obj)
5391                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5392                 } else
5393                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5394                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5395         }
5396
5397         mutex_unlock(&dev->struct_mutex);
5398
5399         intel_crtc->cursor_addr = addr;
5400         intel_crtc->cursor_bo = obj;
5401         intel_crtc->cursor_width = width;
5402         intel_crtc->cursor_height = height;
5403
5404         intel_crtc_update_cursor(crtc, true);
5405
5406         return 0;
5407 fail_unpin:
5408         i915_gem_object_unpin(obj);
5409 fail_locked:
5410         mutex_unlock(&dev->struct_mutex);
5411 fail:
5412         drm_gem_object_unreference_unlocked(&obj->base);
5413         return ret;
5414 }
5415
5416 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5417 {
5418         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5419
5420         intel_crtc->cursor_x = x;
5421         intel_crtc->cursor_y = y;
5422
5423         intel_crtc_update_cursor(crtc, true);
5424
5425         return 0;
5426 }
5427
5428 /** Sets the color ramps on behalf of RandR */
5429 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5430                                  u16 blue, int regno)
5431 {
5432         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5433
5434         intel_crtc->lut_r[regno] = red >> 8;
5435         intel_crtc->lut_g[regno] = green >> 8;
5436         intel_crtc->lut_b[regno] = blue >> 8;
5437 }
5438
5439 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5440                              u16 *blue, int regno)
5441 {
5442         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5443
5444         *red = intel_crtc->lut_r[regno] << 8;
5445         *green = intel_crtc->lut_g[regno] << 8;
5446         *blue = intel_crtc->lut_b[regno] << 8;
5447 }
5448
5449 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5450                                  u16 *blue, uint32_t start, uint32_t size)
5451 {
5452         int end = (start + size > 256) ? 256 : start + size, i;
5453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5454
5455         for (i = start; i < end; i++) {
5456                 intel_crtc->lut_r[i] = red[i] >> 8;
5457                 intel_crtc->lut_g[i] = green[i] >> 8;
5458                 intel_crtc->lut_b[i] = blue[i] >> 8;
5459         }
5460
5461         intel_crtc_load_lut(crtc);
5462 }
5463
5464 /**
5465  * Get a pipe with a simple mode set on it for doing load-based monitor
5466  * detection.
5467  *
5468  * It will be up to the load-detect code to adjust the pipe as appropriate for
5469  * its requirements.  The pipe will be connected to no other encoders.
5470  *
5471  * Currently this code will only succeed if there is a pipe with no encoders
5472  * configured for it.  In the future, it could choose to temporarily disable
5473  * some outputs to free up a pipe for its use.
5474  *
5475  * \return crtc, or NULL if no pipes are available.
5476  */
5477
5478 /* VESA 640x480x72Hz mode to set on the pipe */
5479 static struct drm_display_mode load_detect_mode = {
5480         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5481                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5482 };
5483
5484 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5485                                             struct drm_connector *connector,
5486                                             struct drm_display_mode *mode,
5487                                             int *dpms_mode)
5488 {
5489         struct intel_crtc *intel_crtc;
5490         struct drm_crtc *possible_crtc;
5491         struct drm_crtc *supported_crtc =NULL;
5492         struct drm_encoder *encoder = &intel_encoder->base;
5493         struct drm_crtc *crtc = NULL;
5494         struct drm_device *dev = encoder->dev;
5495         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5496         struct drm_crtc_helper_funcs *crtc_funcs;
5497         int i = -1;
5498
5499         /*
5500          * Algorithm gets a little messy:
5501          *   - if the connector already has an assigned crtc, use it (but make
5502          *     sure it's on first)
5503          *   - try to find the first unused crtc that can drive this connector,
5504          *     and use that if we find one
5505          *   - if there are no unused crtcs available, try to use the first
5506          *     one we found that supports the connector
5507          */
5508
5509         /* See if we already have a CRTC for this connector */
5510         if (encoder->crtc) {
5511                 crtc = encoder->crtc;
5512                 /* Make sure the crtc and connector are running */
5513                 intel_crtc = to_intel_crtc(crtc);
5514                 *dpms_mode = intel_crtc->dpms_mode;
5515                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5516                         crtc_funcs = crtc->helper_private;
5517                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5518                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5519                 }
5520                 return crtc;
5521         }
5522
5523         /* Find an unused one (if possible) */
5524         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5525                 i++;
5526                 if (!(encoder->possible_crtcs & (1 << i)))
5527                         continue;
5528                 if (!possible_crtc->enabled) {
5529                         crtc = possible_crtc;
5530                         break;
5531                 }
5532                 if (!supported_crtc)
5533                         supported_crtc = possible_crtc;
5534         }
5535
5536         /*
5537          * If we didn't find an unused CRTC, don't use any.
5538          */
5539         if (!crtc) {
5540                 return NULL;
5541         }
5542
5543         encoder->crtc = crtc;
5544         connector->encoder = encoder;
5545         intel_encoder->load_detect_temp = true;
5546
5547         intel_crtc = to_intel_crtc(crtc);
5548         *dpms_mode = intel_crtc->dpms_mode;
5549
5550         if (!crtc->enabled) {
5551                 if (!mode)
5552                         mode = &load_detect_mode;
5553                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
5554         } else {
5555                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5556                         crtc_funcs = crtc->helper_private;
5557                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5558                 }
5559
5560                 /* Add this connector to the crtc */
5561                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
5562                 encoder_funcs->commit(encoder);
5563         }
5564         /* let the connector get through one full cycle before testing */
5565         intel_wait_for_vblank(dev, intel_crtc->pipe);
5566
5567         return crtc;
5568 }
5569
5570 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5571                                     struct drm_connector *connector, int dpms_mode)
5572 {
5573         struct drm_encoder *encoder = &intel_encoder->base;
5574         struct drm_device *dev = encoder->dev;
5575         struct drm_crtc *crtc = encoder->crtc;
5576         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5577         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5578
5579         if (intel_encoder->load_detect_temp) {
5580                 encoder->crtc = NULL;
5581                 connector->encoder = NULL;
5582                 intel_encoder->load_detect_temp = false;
5583                 crtc->enabled = drm_helper_crtc_in_use(crtc);
5584                 drm_helper_disable_unused_functions(dev);
5585         }
5586
5587         /* Switch crtc and encoder back off if necessary */
5588         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
5589                 if (encoder->crtc == crtc)
5590                         encoder_funcs->dpms(encoder, dpms_mode);
5591                 crtc_funcs->dpms(crtc, dpms_mode);
5592         }
5593 }
5594
5595 /* Returns the clock of the currently programmed mode of the given pipe. */
5596 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5597 {
5598         struct drm_i915_private *dev_priv = dev->dev_private;
5599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5600         int pipe = intel_crtc->pipe;
5601         u32 dpll = I915_READ(DPLL(pipe));
5602         u32 fp;
5603         intel_clock_t clock;
5604
5605         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5606                 fp = FP0(pipe);
5607         else
5608                 fp = FP1(pipe);
5609
5610         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5611         if (IS_PINEVIEW(dev)) {
5612                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5613                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5614         } else {
5615                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5616                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5617         }
5618
5619         if (!IS_GEN2(dev)) {
5620                 if (IS_PINEVIEW(dev))
5621                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5622                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5623                 else
5624                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5625                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5626
5627                 switch (dpll & DPLL_MODE_MASK) {
5628                 case DPLLB_MODE_DAC_SERIAL:
5629                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5630                                 5 : 10;
5631                         break;
5632                 case DPLLB_MODE_LVDS:
5633                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5634                                 7 : 14;
5635                         break;
5636                 default:
5637                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5638                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5639                         return 0;
5640                 }
5641
5642                 /* XXX: Handle the 100Mhz refclk */
5643                 intel_clock(dev, 96000, &clock);
5644         } else {
5645                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5646
5647                 if (is_lvds) {
5648                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5649                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5650                         clock.p2 = 14;
5651
5652                         if ((dpll & PLL_REF_INPUT_MASK) ==
5653                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5654                                 /* XXX: might not be 66MHz */
5655                                 intel_clock(dev, 66000, &clock);
5656                         } else
5657                                 intel_clock(dev, 48000, &clock);
5658                 } else {
5659                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5660                                 clock.p1 = 2;
5661                         else {
5662                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5663                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5664                         }
5665                         if (dpll & PLL_P2_DIVIDE_BY_4)
5666                                 clock.p2 = 4;
5667                         else
5668                                 clock.p2 = 2;
5669
5670                         intel_clock(dev, 48000, &clock);
5671                 }
5672         }
5673
5674         /* XXX: It would be nice to validate the clocks, but we can't reuse
5675          * i830PllIsValid() because it relies on the xf86_config connector
5676          * configuration being accurate, which it isn't necessarily.
5677          */
5678
5679         return clock.dot;
5680 }
5681
5682 /** Returns the currently programmed mode of the given pipe. */
5683 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5684                                              struct drm_crtc *crtc)
5685 {
5686         struct drm_i915_private *dev_priv = dev->dev_private;
5687         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5688         int pipe = intel_crtc->pipe;
5689         struct drm_display_mode *mode;
5690         int htot = I915_READ(HTOTAL(pipe));
5691         int hsync = I915_READ(HSYNC(pipe));
5692         int vtot = I915_READ(VTOTAL(pipe));
5693         int vsync = I915_READ(VSYNC(pipe));
5694
5695         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5696         if (!mode)
5697                 return NULL;
5698
5699         mode->clock = intel_crtc_clock_get(dev, crtc);
5700         mode->hdisplay = (htot & 0xffff) + 1;
5701         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5702         mode->hsync_start = (hsync & 0xffff) + 1;
5703         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5704         mode->vdisplay = (vtot & 0xffff) + 1;
5705         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5706         mode->vsync_start = (vsync & 0xffff) + 1;
5707         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5708
5709         drm_mode_set_name(mode);
5710         drm_mode_set_crtcinfo(mode, 0);
5711
5712         return mode;
5713 }
5714
5715 #define GPU_IDLE_TIMEOUT 500 /* ms */
5716
5717 /* When this timer fires, we've been idle for awhile */
5718 static void intel_gpu_idle_timer(unsigned long arg)
5719 {
5720         struct drm_device *dev = (struct drm_device *)arg;
5721         drm_i915_private_t *dev_priv = dev->dev_private;
5722
5723         if (!list_empty(&dev_priv->mm.active_list)) {
5724                 /* Still processing requests, so just re-arm the timer. */
5725                 mod_timer(&dev_priv->idle_timer, jiffies +
5726                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5727                 return;
5728         }
5729
5730         dev_priv->busy = false;
5731         queue_work(dev_priv->wq, &dev_priv->idle_work);
5732 }
5733
5734 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5735
5736 static void intel_crtc_idle_timer(unsigned long arg)
5737 {
5738         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5739         struct drm_crtc *crtc = &intel_crtc->base;
5740         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5741         struct intel_framebuffer *intel_fb;
5742
5743         intel_fb = to_intel_framebuffer(crtc->fb);
5744         if (intel_fb && intel_fb->obj->active) {
5745                 /* The framebuffer is still being accessed by the GPU. */
5746                 mod_timer(&intel_crtc->idle_timer, jiffies +
5747                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5748                 return;
5749         }
5750
5751         intel_crtc->busy = false;
5752         queue_work(dev_priv->wq, &dev_priv->idle_work);
5753 }
5754
5755 static void intel_increase_pllclock(struct drm_crtc *crtc)
5756 {
5757         struct drm_device *dev = crtc->dev;
5758         drm_i915_private_t *dev_priv = dev->dev_private;
5759         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5760         int pipe = intel_crtc->pipe;
5761         int dpll_reg = DPLL(pipe);
5762         int dpll;
5763
5764         if (HAS_PCH_SPLIT(dev))
5765                 return;
5766
5767         if (!dev_priv->lvds_downclock_avail)
5768                 return;
5769
5770         dpll = I915_READ(dpll_reg);
5771         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5772                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5773
5774                 /* Unlock panel regs */
5775                 I915_WRITE(PP_CONTROL,
5776                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
5777
5778                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5779                 I915_WRITE(dpll_reg, dpll);
5780                 POSTING_READ(dpll_reg);
5781                 intel_wait_for_vblank(dev, pipe);
5782
5783                 dpll = I915_READ(dpll_reg);
5784                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5785                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5786
5787                 /* ...and lock them again */
5788                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5789         }
5790
5791         /* Schedule downclock */
5792         mod_timer(&intel_crtc->idle_timer, jiffies +
5793                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5794 }
5795
5796 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5797 {
5798         struct drm_device *dev = crtc->dev;
5799         drm_i915_private_t *dev_priv = dev->dev_private;
5800         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5801         int pipe = intel_crtc->pipe;
5802         int dpll_reg = DPLL(pipe);
5803         int dpll = I915_READ(dpll_reg);
5804
5805         if (HAS_PCH_SPLIT(dev))
5806                 return;
5807
5808         if (!dev_priv->lvds_downclock_avail)
5809                 return;
5810
5811         /*
5812          * Since this is called by a timer, we should never get here in
5813          * the manual case.
5814          */
5815         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5816                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5817
5818                 /* Unlock panel regs */
5819                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
5820                            PANEL_UNLOCK_REGS);
5821
5822                 dpll |= DISPLAY_RATE_SELECT_FPA1;
5823                 I915_WRITE(dpll_reg, dpll);
5824                 dpll = I915_READ(dpll_reg);
5825                 intel_wait_for_vblank(dev, pipe);
5826                 dpll = I915_READ(dpll_reg);
5827                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5828                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5829
5830                 /* ...and lock them again */
5831                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5832         }
5833
5834 }
5835
5836 /**
5837  * intel_idle_update - adjust clocks for idleness
5838  * @work: work struct
5839  *
5840  * Either the GPU or display (or both) went idle.  Check the busy status
5841  * here and adjust the CRTC and GPU clocks as necessary.
5842  */
5843 static void intel_idle_update(struct work_struct *work)
5844 {
5845         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5846                                                     idle_work);
5847         struct drm_device *dev = dev_priv->dev;
5848         struct drm_crtc *crtc;
5849         struct intel_crtc *intel_crtc;
5850
5851         if (!i915_powersave)
5852                 return;
5853
5854         mutex_lock(&dev->struct_mutex);
5855
5856         i915_update_gfx_val(dev_priv);
5857
5858         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5859                 /* Skip inactive CRTCs */
5860                 if (!crtc->fb)
5861                         continue;
5862
5863                 intel_crtc = to_intel_crtc(crtc);
5864                 if (!intel_crtc->busy)
5865                         intel_decrease_pllclock(crtc);
5866         }
5867
5868
5869         mutex_unlock(&dev->struct_mutex);
5870 }
5871
5872 /**
5873  * intel_mark_busy - mark the GPU and possibly the display busy
5874  * @dev: drm device
5875  * @obj: object we're operating on
5876  *
5877  * Callers can use this function to indicate that the GPU is busy processing
5878  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
5879  * buffer), we'll also mark the display as busy, so we know to increase its
5880  * clock frequency.
5881  */
5882 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
5883 {
5884         drm_i915_private_t *dev_priv = dev->dev_private;
5885         struct drm_crtc *crtc = NULL;
5886         struct intel_framebuffer *intel_fb;
5887         struct intel_crtc *intel_crtc;
5888
5889         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5890                 return;
5891
5892         if (!dev_priv->busy)
5893                 dev_priv->busy = true;
5894         else
5895                 mod_timer(&dev_priv->idle_timer, jiffies +
5896                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5897
5898         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5899                 if (!crtc->fb)
5900                         continue;
5901
5902                 intel_crtc = to_intel_crtc(crtc);
5903                 intel_fb = to_intel_framebuffer(crtc->fb);
5904                 if (intel_fb->obj == obj) {
5905                         if (!intel_crtc->busy) {
5906                                 /* Non-busy -> busy, upclock */
5907                                 intel_increase_pllclock(crtc);
5908                                 intel_crtc->busy = true;
5909                         } else {
5910                                 /* Busy -> busy, put off timer */
5911                                 mod_timer(&intel_crtc->idle_timer, jiffies +
5912                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5913                         }
5914                 }
5915         }
5916 }
5917
5918 static void intel_crtc_destroy(struct drm_crtc *crtc)
5919 {
5920         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5921         struct drm_device *dev = crtc->dev;
5922         struct intel_unpin_work *work;
5923         unsigned long flags;
5924
5925         spin_lock_irqsave(&dev->event_lock, flags);
5926         work = intel_crtc->unpin_work;
5927         intel_crtc->unpin_work = NULL;
5928         spin_unlock_irqrestore(&dev->event_lock, flags);
5929
5930         if (work) {
5931                 cancel_work_sync(&work->work);
5932                 kfree(work);
5933         }
5934
5935         drm_crtc_cleanup(crtc);
5936
5937         kfree(intel_crtc);
5938 }
5939
5940 static void intel_unpin_work_fn(struct work_struct *__work)
5941 {
5942         struct intel_unpin_work *work =
5943                 container_of(__work, struct intel_unpin_work, work);
5944
5945         mutex_lock(&work->dev->struct_mutex);
5946         i915_gem_object_unpin(work->old_fb_obj);
5947         drm_gem_object_unreference(&work->pending_flip_obj->base);
5948         drm_gem_object_unreference(&work->old_fb_obj->base);
5949
5950         mutex_unlock(&work->dev->struct_mutex);
5951         kfree(work);
5952 }
5953
5954 static void do_intel_finish_page_flip(struct drm_device *dev,
5955                                       struct drm_crtc *crtc)
5956 {
5957         drm_i915_private_t *dev_priv = dev->dev_private;
5958         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5959         struct intel_unpin_work *work;
5960         struct drm_i915_gem_object *obj;
5961         struct drm_pending_vblank_event *e;
5962         struct timeval tnow, tvbl;
5963         unsigned long flags;
5964
5965         /* Ignore early vblank irqs */
5966         if (intel_crtc == NULL)
5967                 return;
5968
5969         do_gettimeofday(&tnow);
5970
5971         spin_lock_irqsave(&dev->event_lock, flags);
5972         work = intel_crtc->unpin_work;
5973         if (work == NULL || !work->pending) {
5974                 spin_unlock_irqrestore(&dev->event_lock, flags);
5975                 return;
5976         }
5977
5978         intel_crtc->unpin_work = NULL;
5979
5980         if (work->event) {
5981                 e = work->event;
5982                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
5983
5984                 /* Called before vblank count and timestamps have
5985                  * been updated for the vblank interval of flip
5986                  * completion? Need to increment vblank count and
5987                  * add one videorefresh duration to returned timestamp
5988                  * to account for this. We assume this happened if we
5989                  * get called over 0.9 frame durations after the last
5990                  * timestamped vblank.
5991                  *
5992                  * This calculation can not be used with vrefresh rates
5993                  * below 5Hz (10Hz to be on the safe side) without
5994                  * promoting to 64 integers.
5995                  */
5996                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
5997                     9 * crtc->framedur_ns) {
5998                         e->event.sequence++;
5999                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6000                                              crtc->framedur_ns);
6001                 }
6002
6003                 e->event.tv_sec = tvbl.tv_sec;
6004                 e->event.tv_usec = tvbl.tv_usec;
6005
6006                 list_add_tail(&e->base.link,
6007                               &e->base.file_priv->event_list);
6008                 wake_up_interruptible(&e->base.file_priv->event_wait);
6009         }
6010
6011         drm_vblank_put(dev, intel_crtc->pipe);
6012
6013         spin_unlock_irqrestore(&dev->event_lock, flags);
6014
6015         obj = work->old_fb_obj;
6016
6017         atomic_clear_mask(1 << intel_crtc->plane,
6018                           &obj->pending_flip.counter);
6019         if (atomic_read(&obj->pending_flip) == 0)
6020                 wake_up(&dev_priv->pending_flip_queue);
6021
6022         schedule_work(&work->work);
6023
6024         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6025 }
6026
6027 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6028 {
6029         drm_i915_private_t *dev_priv = dev->dev_private;
6030         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6031
6032         do_intel_finish_page_flip(dev, crtc);
6033 }
6034
6035 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6036 {
6037         drm_i915_private_t *dev_priv = dev->dev_private;
6038         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6039
6040         do_intel_finish_page_flip(dev, crtc);
6041 }
6042
6043 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6044 {
6045         drm_i915_private_t *dev_priv = dev->dev_private;
6046         struct intel_crtc *intel_crtc =
6047                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6048         unsigned long flags;
6049
6050         spin_lock_irqsave(&dev->event_lock, flags);
6051         if (intel_crtc->unpin_work) {
6052                 if ((++intel_crtc->unpin_work->pending) > 1)
6053                         DRM_ERROR("Prepared flip multiple times\n");
6054         } else {
6055                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6056         }
6057         spin_unlock_irqrestore(&dev->event_lock, flags);
6058 }
6059
6060 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6061                                 struct drm_framebuffer *fb,
6062                                 struct drm_pending_vblank_event *event)
6063 {
6064         struct drm_device *dev = crtc->dev;
6065         struct drm_i915_private *dev_priv = dev->dev_private;
6066         struct intel_framebuffer *intel_fb;
6067         struct drm_i915_gem_object *obj;
6068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6069         struct intel_unpin_work *work;
6070         unsigned long flags, offset;
6071         int pipe = intel_crtc->pipe;
6072         u32 pf, pipesrc;
6073         int ret;
6074
6075         work = kzalloc(sizeof *work, GFP_KERNEL);
6076         if (work == NULL)
6077                 return -ENOMEM;
6078
6079         work->event = event;
6080         work->dev = crtc->dev;
6081         intel_fb = to_intel_framebuffer(crtc->fb);
6082         work->old_fb_obj = intel_fb->obj;
6083         INIT_WORK(&work->work, intel_unpin_work_fn);
6084
6085         /* We borrow the event spin lock for protecting unpin_work */
6086         spin_lock_irqsave(&dev->event_lock, flags);
6087         if (intel_crtc->unpin_work) {
6088                 spin_unlock_irqrestore(&dev->event_lock, flags);
6089                 kfree(work);
6090
6091                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6092                 return -EBUSY;
6093         }
6094         intel_crtc->unpin_work = work;
6095         spin_unlock_irqrestore(&dev->event_lock, flags);
6096
6097         intel_fb = to_intel_framebuffer(fb);
6098         obj = intel_fb->obj;
6099
6100         mutex_lock(&dev->struct_mutex);
6101         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6102         if (ret)
6103                 goto cleanup_work;
6104
6105         /* Reference the objects for the scheduled work. */
6106         drm_gem_object_reference(&work->old_fb_obj->base);
6107         drm_gem_object_reference(&obj->base);
6108
6109         crtc->fb = fb;
6110
6111         ret = drm_vblank_get(dev, intel_crtc->pipe);
6112         if (ret)
6113                 goto cleanup_objs;
6114
6115         if (IS_GEN3(dev) || IS_GEN2(dev)) {
6116                 u32 flip_mask;
6117
6118                 /* Can't queue multiple flips, so wait for the previous
6119                  * one to finish before executing the next.
6120                  */
6121                 ret = BEGIN_LP_RING(2);
6122                 if (ret)
6123                         goto cleanup_objs;
6124
6125                 if (intel_crtc->plane)
6126                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6127                 else
6128                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6129                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6130                 OUT_RING(MI_NOOP);
6131                 ADVANCE_LP_RING();
6132         }
6133
6134         work->pending_flip_obj = obj;
6135
6136         work->enable_stall_check = true;
6137
6138         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6139         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6140
6141         ret = BEGIN_LP_RING(4);
6142         if (ret)
6143                 goto cleanup_objs;
6144
6145         /* Block clients from rendering to the new back buffer until
6146          * the flip occurs and the object is no longer visible.
6147          */
6148         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6149
6150         switch (INTEL_INFO(dev)->gen) {
6151         case 2:
6152                 OUT_RING(MI_DISPLAY_FLIP |
6153                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6154                 OUT_RING(fb->pitch);
6155                 OUT_RING(obj->gtt_offset + offset);
6156                 OUT_RING(MI_NOOP);
6157                 break;
6158
6159         case 3:
6160                 OUT_RING(MI_DISPLAY_FLIP_I915 |
6161                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6162                 OUT_RING(fb->pitch);
6163                 OUT_RING(obj->gtt_offset + offset);
6164                 OUT_RING(MI_NOOP);
6165                 break;
6166
6167         case 4:
6168         case 5:
6169                 /* i965+ uses the linear or tiled offsets from the
6170                  * Display Registers (which do not change across a page-flip)
6171                  * so we need only reprogram the base address.
6172                  */
6173                 OUT_RING(MI_DISPLAY_FLIP |
6174                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6175                 OUT_RING(fb->pitch);
6176                 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6177
6178                 /* XXX Enabling the panel-fitter across page-flip is so far
6179                  * untested on non-native modes, so ignore it for now.
6180                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6181                  */
6182                 pf = 0;
6183                 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6184                 OUT_RING(pf | pipesrc);
6185                 break;
6186
6187         case 6:
6188                 OUT_RING(MI_DISPLAY_FLIP |
6189                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6190                 OUT_RING(fb->pitch | obj->tiling_mode);
6191                 OUT_RING(obj->gtt_offset);
6192
6193                 pf = I915_READ(PF_CTL(pipe)) & PF_ENABLE;
6194                 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6195                 OUT_RING(pf | pipesrc);
6196                 break;
6197         }
6198         ADVANCE_LP_RING();
6199
6200         mutex_unlock(&dev->struct_mutex);
6201
6202         trace_i915_flip_request(intel_crtc->plane, obj);
6203
6204         return 0;
6205
6206 cleanup_objs:
6207         drm_gem_object_unreference(&work->old_fb_obj->base);
6208         drm_gem_object_unreference(&obj->base);
6209 cleanup_work:
6210         mutex_unlock(&dev->struct_mutex);
6211
6212         spin_lock_irqsave(&dev->event_lock, flags);
6213         intel_crtc->unpin_work = NULL;
6214         spin_unlock_irqrestore(&dev->event_lock, flags);
6215
6216         kfree(work);
6217
6218         return ret;
6219 }
6220
6221 static void intel_crtc_reset(struct drm_crtc *crtc)
6222 {
6223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6224
6225         /* Reset flags back to the 'unknown' status so that they
6226          * will be correctly set on the initial modeset.
6227          */
6228         intel_crtc->dpms_mode = -1;
6229 }
6230
6231 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6232         .dpms = intel_crtc_dpms,
6233         .mode_fixup = intel_crtc_mode_fixup,
6234         .mode_set = intel_crtc_mode_set,
6235         .mode_set_base = intel_pipe_set_base,
6236         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6237         .load_lut = intel_crtc_load_lut,
6238         .disable = intel_crtc_disable,
6239 };
6240
6241 static const struct drm_crtc_funcs intel_crtc_funcs = {
6242         .reset = intel_crtc_reset,
6243         .cursor_set = intel_crtc_cursor_set,
6244         .cursor_move = intel_crtc_cursor_move,
6245         .gamma_set = intel_crtc_gamma_set,
6246         .set_config = drm_crtc_helper_set_config,
6247         .destroy = intel_crtc_destroy,
6248         .page_flip = intel_crtc_page_flip,
6249 };
6250
6251 static void intel_sanitize_modesetting(struct drm_device *dev,
6252                                        int pipe, int plane)
6253 {
6254         struct drm_i915_private *dev_priv = dev->dev_private;
6255         u32 reg, val;
6256
6257         if (HAS_PCH_SPLIT(dev))
6258                 return;
6259
6260         /* Who knows what state these registers were left in by the BIOS or
6261          * grub?
6262          *
6263          * If we leave the registers in a conflicting state (e.g. with the
6264          * display plane reading from the other pipe than the one we intend
6265          * to use) then when we attempt to teardown the active mode, we will
6266          * not disable the pipes and planes in the correct order -- leaving
6267          * a plane reading from a disabled pipe and possibly leading to
6268          * undefined behaviour.
6269          */
6270
6271         reg = DSPCNTR(plane);
6272         val = I915_READ(reg);
6273
6274         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6275                 return;
6276         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6277                 return;
6278
6279         /* This display plane is active and attached to the other CPU pipe. */
6280         pipe = !pipe;
6281
6282         /* Disable the plane and wait for it to stop reading from the pipe. */
6283         intel_disable_plane(dev_priv, plane, pipe);
6284         intel_disable_pipe(dev_priv, pipe);
6285 }
6286
6287 static void intel_crtc_init(struct drm_device *dev, int pipe)
6288 {
6289         drm_i915_private_t *dev_priv = dev->dev_private;
6290         struct intel_crtc *intel_crtc;
6291         int i;
6292
6293         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6294         if (intel_crtc == NULL)
6295                 return;
6296
6297         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6298
6299         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6300         for (i = 0; i < 256; i++) {
6301                 intel_crtc->lut_r[i] = i;
6302                 intel_crtc->lut_g[i] = i;
6303                 intel_crtc->lut_b[i] = i;
6304         }
6305
6306         /* Swap pipes & planes for FBC on pre-965 */
6307         intel_crtc->pipe = pipe;
6308         intel_crtc->plane = pipe;
6309         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6310                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6311                 intel_crtc->plane = !pipe;
6312         }
6313
6314         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6315                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6316         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6317         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6318
6319         intel_crtc_reset(&intel_crtc->base);
6320         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6321
6322         if (HAS_PCH_SPLIT(dev)) {
6323                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6324                 intel_helper_funcs.commit = ironlake_crtc_commit;
6325         } else {
6326                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6327                 intel_helper_funcs.commit = i9xx_crtc_commit;
6328         }
6329
6330         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6331
6332         intel_crtc->busy = false;
6333
6334         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6335                     (unsigned long)intel_crtc);
6336
6337         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6338 }
6339
6340 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6341                                 struct drm_file *file)
6342 {
6343         drm_i915_private_t *dev_priv = dev->dev_private;
6344         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6345         struct drm_mode_object *drmmode_obj;
6346         struct intel_crtc *crtc;
6347
6348         if (!dev_priv) {
6349                 DRM_ERROR("called with no initialization\n");
6350                 return -EINVAL;
6351         }
6352
6353         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6354                         DRM_MODE_OBJECT_CRTC);
6355
6356         if (!drmmode_obj) {
6357                 DRM_ERROR("no such CRTC id\n");
6358                 return -EINVAL;
6359         }
6360
6361         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6362         pipe_from_crtc_id->pipe = crtc->pipe;
6363
6364         return 0;
6365 }
6366
6367 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6368 {
6369         struct intel_encoder *encoder;
6370         int index_mask = 0;
6371         int entry = 0;
6372
6373         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6374                 if (type_mask & encoder->clone_mask)
6375                         index_mask |= (1 << entry);
6376                 entry++;
6377         }
6378
6379         return index_mask;
6380 }
6381
6382 static bool has_edp_a(struct drm_device *dev)
6383 {
6384         struct drm_i915_private *dev_priv = dev->dev_private;
6385
6386         if (!IS_MOBILE(dev))
6387                 return false;
6388
6389         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6390                 return false;
6391
6392         if (IS_GEN5(dev) &&
6393             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6394                 return false;
6395
6396         return true;
6397 }
6398
6399 static void intel_setup_outputs(struct drm_device *dev)
6400 {
6401         struct drm_i915_private *dev_priv = dev->dev_private;
6402         struct intel_encoder *encoder;
6403         bool dpd_is_edp = false;
6404         bool has_lvds = false;
6405
6406         if (IS_MOBILE(dev) && !IS_I830(dev))
6407                 has_lvds = intel_lvds_init(dev);
6408         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6409                 /* disable the panel fitter on everything but LVDS */
6410                 I915_WRITE(PFIT_CONTROL, 0);
6411         }
6412
6413         if (HAS_PCH_SPLIT(dev)) {
6414                 dpd_is_edp = intel_dpd_is_edp(dev);
6415
6416                 if (has_edp_a(dev))
6417                         intel_dp_init(dev, DP_A);
6418
6419                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6420                         intel_dp_init(dev, PCH_DP_D);
6421         }
6422
6423         intel_crt_init(dev);
6424
6425         if (HAS_PCH_SPLIT(dev)) {
6426                 int found;
6427
6428                 if (I915_READ(HDMIB) & PORT_DETECTED) {
6429                         /* PCH SDVOB multiplex with HDMIB */
6430                         found = intel_sdvo_init(dev, PCH_SDVOB);
6431                         if (!found)
6432                                 intel_hdmi_init(dev, HDMIB);
6433                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6434                                 intel_dp_init(dev, PCH_DP_B);
6435                 }
6436
6437                 if (I915_READ(HDMIC) & PORT_DETECTED)
6438                         intel_hdmi_init(dev, HDMIC);
6439
6440                 if (I915_READ(HDMID) & PORT_DETECTED)
6441                         intel_hdmi_init(dev, HDMID);
6442
6443                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6444                         intel_dp_init(dev, PCH_DP_C);
6445
6446                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6447                         intel_dp_init(dev, PCH_DP_D);
6448
6449         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6450                 bool found = false;
6451
6452                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6453                         DRM_DEBUG_KMS("probing SDVOB\n");
6454                         found = intel_sdvo_init(dev, SDVOB);
6455                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6456                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6457                                 intel_hdmi_init(dev, SDVOB);
6458                         }
6459
6460                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6461                                 DRM_DEBUG_KMS("probing DP_B\n");
6462                                 intel_dp_init(dev, DP_B);
6463                         }
6464                 }
6465
6466                 /* Before G4X SDVOC doesn't have its own detect register */
6467
6468                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6469                         DRM_DEBUG_KMS("probing SDVOC\n");
6470                         found = intel_sdvo_init(dev, SDVOC);
6471                 }
6472
6473                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6474
6475                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6476                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6477                                 intel_hdmi_init(dev, SDVOC);
6478                         }
6479                         if (SUPPORTS_INTEGRATED_DP(dev)) {
6480                                 DRM_DEBUG_KMS("probing DP_C\n");
6481                                 intel_dp_init(dev, DP_C);
6482                         }
6483                 }
6484
6485                 if (SUPPORTS_INTEGRATED_DP(dev) &&
6486                     (I915_READ(DP_D) & DP_DETECTED)) {
6487                         DRM_DEBUG_KMS("probing DP_D\n");
6488                         intel_dp_init(dev, DP_D);
6489                 }
6490         } else if (IS_GEN2(dev))
6491                 intel_dvo_init(dev);
6492
6493         if (SUPPORTS_TV(dev))
6494                 intel_tv_init(dev);
6495
6496         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6497                 encoder->base.possible_crtcs = encoder->crtc_mask;
6498                 encoder->base.possible_clones =
6499                         intel_encoder_clones(dev, encoder->clone_mask);
6500         }
6501
6502         intel_panel_setup_backlight(dev);
6503 }
6504
6505 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6506 {
6507         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6508
6509         drm_framebuffer_cleanup(fb);
6510         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6511
6512         kfree(intel_fb);
6513 }
6514
6515 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6516                                                 struct drm_file *file,
6517                                                 unsigned int *handle)
6518 {
6519         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6520         struct drm_i915_gem_object *obj = intel_fb->obj;
6521
6522         return drm_gem_handle_create(file, &obj->base, handle);
6523 }
6524
6525 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6526         .destroy = intel_user_framebuffer_destroy,
6527         .create_handle = intel_user_framebuffer_create_handle,
6528 };
6529
6530 int intel_framebuffer_init(struct drm_device *dev,
6531                            struct intel_framebuffer *intel_fb,
6532                            struct drm_mode_fb_cmd *mode_cmd,
6533                            struct drm_i915_gem_object *obj)
6534 {
6535         int ret;
6536
6537         if (obj->tiling_mode == I915_TILING_Y)
6538                 return -EINVAL;
6539
6540         if (mode_cmd->pitch & 63)
6541                 return -EINVAL;
6542
6543         switch (mode_cmd->bpp) {
6544         case 8:
6545         case 16:
6546         case 24:
6547         case 32:
6548                 break;
6549         default:
6550                 return -EINVAL;
6551         }
6552
6553         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6554         if (ret) {
6555                 DRM_ERROR("framebuffer init failed %d\n", ret);
6556                 return ret;
6557         }
6558
6559         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6560         intel_fb->obj = obj;
6561         return 0;
6562 }
6563
6564 static struct drm_framebuffer *
6565 intel_user_framebuffer_create(struct drm_device *dev,
6566                               struct drm_file *filp,
6567                               struct drm_mode_fb_cmd *mode_cmd)
6568 {
6569         struct drm_i915_gem_object *obj;
6570         struct intel_framebuffer *intel_fb;
6571         int ret;
6572
6573         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
6574         if (&obj->base == NULL)
6575                 return ERR_PTR(-ENOENT);
6576
6577         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6578         if (!intel_fb)
6579                 return ERR_PTR(-ENOMEM);
6580
6581         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6582         if (ret) {
6583                 drm_gem_object_unreference_unlocked(&obj->base);
6584                 kfree(intel_fb);
6585                 return ERR_PTR(ret);
6586         }
6587
6588         return &intel_fb->base;
6589 }
6590
6591 static const struct drm_mode_config_funcs intel_mode_funcs = {
6592         .fb_create = intel_user_framebuffer_create,
6593         .output_poll_changed = intel_fb_output_poll_changed,
6594 };
6595
6596 static struct drm_i915_gem_object *
6597 intel_alloc_context_page(struct drm_device *dev)
6598 {
6599         struct drm_i915_gem_object *ctx;
6600         int ret;
6601
6602         ctx = i915_gem_alloc_object(dev, 4096);
6603         if (!ctx) {
6604                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
6605                 return NULL;
6606         }
6607
6608         mutex_lock(&dev->struct_mutex);
6609         ret = i915_gem_object_pin(ctx, 4096, true);
6610         if (ret) {
6611                 DRM_ERROR("failed to pin power context: %d\n", ret);
6612                 goto err_unref;
6613         }
6614
6615         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
6616         if (ret) {
6617                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
6618                 goto err_unpin;
6619         }
6620         mutex_unlock(&dev->struct_mutex);
6621
6622         return ctx;
6623
6624 err_unpin:
6625         i915_gem_object_unpin(ctx);
6626 err_unref:
6627         drm_gem_object_unreference(&ctx->base);
6628         mutex_unlock(&dev->struct_mutex);
6629         return NULL;
6630 }
6631
6632 bool ironlake_set_drps(struct drm_device *dev, u8 val)
6633 {
6634         struct drm_i915_private *dev_priv = dev->dev_private;
6635         u16 rgvswctl;
6636
6637         rgvswctl = I915_READ16(MEMSWCTL);
6638         if (rgvswctl & MEMCTL_CMD_STS) {
6639                 DRM_DEBUG("gpu busy, RCS change rejected\n");
6640                 return false; /* still busy with another command */
6641         }
6642
6643         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6644                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6645         I915_WRITE16(MEMSWCTL, rgvswctl);
6646         POSTING_READ16(MEMSWCTL);
6647
6648         rgvswctl |= MEMCTL_CMD_STS;
6649         I915_WRITE16(MEMSWCTL, rgvswctl);
6650
6651         return true;
6652 }
6653
6654 void ironlake_enable_drps(struct drm_device *dev)
6655 {
6656         struct drm_i915_private *dev_priv = dev->dev_private;
6657         u32 rgvmodectl = I915_READ(MEMMODECTL);
6658         u8 fmax, fmin, fstart, vstart;
6659
6660         /* Enable temp reporting */
6661         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6662         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6663
6664         /* 100ms RC evaluation intervals */
6665         I915_WRITE(RCUPEI, 100000);
6666         I915_WRITE(RCDNEI, 100000);
6667
6668         /* Set max/min thresholds to 90ms and 80ms respectively */
6669         I915_WRITE(RCBMAXAVG, 90000);
6670         I915_WRITE(RCBMINAVG, 80000);
6671
6672         I915_WRITE(MEMIHYST, 1);
6673
6674         /* Set up min, max, and cur for interrupt handling */
6675         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6676         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6677         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6678                 MEMMODE_FSTART_SHIFT;
6679
6680         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
6681                 PXVFREQ_PX_SHIFT;
6682
6683         dev_priv->fmax = fmax; /* IPS callback will increase this */
6684         dev_priv->fstart = fstart;
6685
6686         dev_priv->max_delay = fstart;
6687         dev_priv->min_delay = fmin;
6688         dev_priv->cur_delay = fstart;
6689
6690         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6691                          fmax, fmin, fstart);
6692
6693         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6694
6695         /*
6696          * Interrupts will be enabled in ironlake_irq_postinstall
6697          */
6698
6699         I915_WRITE(VIDSTART, vstart);
6700         POSTING_READ(VIDSTART);
6701
6702         rgvmodectl |= MEMMODE_SWMODE_EN;
6703         I915_WRITE(MEMMODECTL, rgvmodectl);
6704
6705         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6706                 DRM_ERROR("stuck trying to change perf mode\n");
6707         msleep(1);
6708
6709         ironlake_set_drps(dev, fstart);
6710
6711         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
6712                 I915_READ(0x112e0);
6713         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
6714         dev_priv->last_count2 = I915_READ(0x112f4);
6715         getrawmonotonic(&dev_priv->last_time2);
6716 }
6717
6718 void ironlake_disable_drps(struct drm_device *dev)
6719 {
6720         struct drm_i915_private *dev_priv = dev->dev_private;
6721         u16 rgvswctl = I915_READ16(MEMSWCTL);
6722
6723         /* Ack interrupts, disable EFC interrupt */
6724         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6725         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6726         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6727         I915_WRITE(DEIIR, DE_PCU_EVENT);
6728         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6729
6730         /* Go back to the starting frequency */
6731         ironlake_set_drps(dev, dev_priv->fstart);
6732         msleep(1);
6733         rgvswctl |= MEMCTL_CMD_STS;
6734         I915_WRITE(MEMSWCTL, rgvswctl);
6735         msleep(1);
6736
6737 }
6738
6739 void gen6_set_rps(struct drm_device *dev, u8 val)
6740 {
6741         struct drm_i915_private *dev_priv = dev->dev_private;
6742         u32 swreq;
6743
6744         swreq = (val & 0x3ff) << 25;
6745         I915_WRITE(GEN6_RPNSWREQ, swreq);
6746 }
6747
6748 void gen6_disable_rps(struct drm_device *dev)
6749 {
6750         struct drm_i915_private *dev_priv = dev->dev_private;
6751
6752         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6753         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
6754         I915_WRITE(GEN6_PMIER, 0);
6755         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
6756 }
6757
6758 static unsigned long intel_pxfreq(u32 vidfreq)
6759 {
6760         unsigned long freq;
6761         int div = (vidfreq & 0x3f0000) >> 16;
6762         int post = (vidfreq & 0x3000) >> 12;
6763         int pre = (vidfreq & 0x7);
6764
6765         if (!pre)
6766                 return 0;
6767
6768         freq = ((div * 133333) / ((1<<post) * pre));
6769
6770         return freq;
6771 }
6772
6773 void intel_init_emon(struct drm_device *dev)
6774 {
6775         struct drm_i915_private *dev_priv = dev->dev_private;
6776         u32 lcfuse;
6777         u8 pxw[16];
6778         int i;
6779
6780         /* Disable to program */
6781         I915_WRITE(ECR, 0);
6782         POSTING_READ(ECR);
6783
6784         /* Program energy weights for various events */
6785         I915_WRITE(SDEW, 0x15040d00);
6786         I915_WRITE(CSIEW0, 0x007f0000);
6787         I915_WRITE(CSIEW1, 0x1e220004);
6788         I915_WRITE(CSIEW2, 0x04000004);
6789
6790         for (i = 0; i < 5; i++)
6791                 I915_WRITE(PEW + (i * 4), 0);
6792         for (i = 0; i < 3; i++)
6793                 I915_WRITE(DEW + (i * 4), 0);
6794
6795         /* Program P-state weights to account for frequency power adjustment */
6796         for (i = 0; i < 16; i++) {
6797                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
6798                 unsigned long freq = intel_pxfreq(pxvidfreq);
6799                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6800                         PXVFREQ_PX_SHIFT;
6801                 unsigned long val;
6802
6803                 val = vid * vid;
6804                 val *= (freq / 1000);
6805                 val *= 255;
6806                 val /= (127*127*900);
6807                 if (val > 0xff)
6808                         DRM_ERROR("bad pxval: %ld\n", val);
6809                 pxw[i] = val;
6810         }
6811         /* Render standby states get 0 weight */
6812         pxw[14] = 0;
6813         pxw[15] = 0;
6814
6815         for (i = 0; i < 4; i++) {
6816                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6817                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6818                 I915_WRITE(PXW + (i * 4), val);
6819         }
6820
6821         /* Adjust magic regs to magic values (more experimental results) */
6822         I915_WRITE(OGW0, 0);
6823         I915_WRITE(OGW1, 0);
6824         I915_WRITE(EG0, 0x00007f00);
6825         I915_WRITE(EG1, 0x0000000e);
6826         I915_WRITE(EG2, 0x000e0000);
6827         I915_WRITE(EG3, 0x68000300);
6828         I915_WRITE(EG4, 0x42000000);
6829         I915_WRITE(EG5, 0x00140031);
6830         I915_WRITE(EG6, 0);
6831         I915_WRITE(EG7, 0);
6832
6833         for (i = 0; i < 8; i++)
6834                 I915_WRITE(PXWL + (i * 4), 0);
6835
6836         /* Enable PMON + select events */
6837         I915_WRITE(ECR, 0x80000019);
6838
6839         lcfuse = I915_READ(LCFUSE02);
6840
6841         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
6842 }
6843
6844 void gen6_enable_rps(struct drm_i915_private *dev_priv)
6845 {
6846         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6847         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
6848         u32 pcu_mbox;
6849         int cur_freq, min_freq, max_freq;
6850         int i;
6851
6852         /* Here begins a magic sequence of register writes to enable
6853          * auto-downclocking.
6854          *
6855          * Perhaps there might be some value in exposing these to
6856          * userspace...
6857          */
6858         I915_WRITE(GEN6_RC_STATE, 0);
6859         __gen6_gt_force_wake_get(dev_priv);
6860
6861         /* disable the counters and set deterministic thresholds */
6862         I915_WRITE(GEN6_RC_CONTROL, 0);
6863
6864         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6865         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6866         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6867         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6868         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6869
6870         for (i = 0; i < I915_NUM_RINGS; i++)
6871                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
6872
6873         I915_WRITE(GEN6_RC_SLEEP, 0);
6874         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6875         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6876         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
6877         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6878
6879         I915_WRITE(GEN6_RC_CONTROL,
6880                    GEN6_RC_CTL_RC6p_ENABLE |
6881                    GEN6_RC_CTL_RC6_ENABLE |
6882                    GEN6_RC_CTL_EI_MODE(1) |
6883                    GEN6_RC_CTL_HW_ENABLE);
6884
6885         I915_WRITE(GEN6_RPNSWREQ,
6886                    GEN6_FREQUENCY(10) |
6887                    GEN6_OFFSET(0) |
6888                    GEN6_AGGRESSIVE_TURBO);
6889         I915_WRITE(GEN6_RC_VIDEO_FREQ,
6890                    GEN6_FREQUENCY(12));
6891
6892         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6893         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6894                    18 << 24 |
6895                    6 << 16);
6896         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
6897         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
6898         I915_WRITE(GEN6_RP_UP_EI, 100000);
6899         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
6900         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6901         I915_WRITE(GEN6_RP_CONTROL,
6902                    GEN6_RP_MEDIA_TURBO |
6903                    GEN6_RP_USE_NORMAL_FREQ |
6904                    GEN6_RP_MEDIA_IS_GFX |
6905                    GEN6_RP_ENABLE |
6906                    GEN6_RP_UP_BUSY_AVG |
6907                    GEN6_RP_DOWN_IDLE_CONT);
6908
6909         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6910                      500))
6911                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
6912
6913         I915_WRITE(GEN6_PCODE_DATA, 0);
6914         I915_WRITE(GEN6_PCODE_MAILBOX,
6915                    GEN6_PCODE_READY |
6916                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
6917         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6918                      500))
6919                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
6920
6921         min_freq = (rp_state_cap & 0xff0000) >> 16;
6922         max_freq = rp_state_cap & 0xff;
6923         cur_freq = (gt_perf_status & 0xff00) >> 8;
6924
6925         /* Check for overclock support */
6926         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6927                      500))
6928                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
6929         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
6930         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
6931         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6932                      500))
6933                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
6934         if (pcu_mbox & (1<<31)) { /* OC supported */
6935                 max_freq = pcu_mbox & 0xff;
6936                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 100);
6937         }
6938
6939         /* In units of 100MHz */
6940         dev_priv->max_delay = max_freq;
6941         dev_priv->min_delay = min_freq;
6942         dev_priv->cur_delay = cur_freq;
6943
6944         /* requires MSI enabled */
6945         I915_WRITE(GEN6_PMIER,
6946                    GEN6_PM_MBOX_EVENT |
6947                    GEN6_PM_THERMAL_EVENT |
6948                    GEN6_PM_RP_DOWN_TIMEOUT |
6949                    GEN6_PM_RP_UP_THRESHOLD |
6950                    GEN6_PM_RP_DOWN_THRESHOLD |
6951                    GEN6_PM_RP_UP_EI_EXPIRED |
6952                    GEN6_PM_RP_DOWN_EI_EXPIRED);
6953         I915_WRITE(GEN6_PMIMR, 0);
6954         /* enable all PM interrupts */
6955         I915_WRITE(GEN6_PMINTRMSK, 0);
6956
6957         __gen6_gt_force_wake_put(dev_priv);
6958 }
6959
6960 void intel_enable_clock_gating(struct drm_device *dev)
6961 {
6962         struct drm_i915_private *dev_priv = dev->dev_private;
6963         int pipe;
6964
6965         /*
6966          * Disable clock gating reported to work incorrectly according to the
6967          * specs, but enable as much else as we can.
6968          */
6969         if (HAS_PCH_SPLIT(dev)) {
6970                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
6971
6972                 if (IS_GEN5(dev)) {
6973                         /* Required for FBC */
6974                         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
6975                                 DPFCRUNIT_CLOCK_GATE_DISABLE |
6976                                 DPFDUNIT_CLOCK_GATE_DISABLE;
6977                         /* Required for CxSR */
6978                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
6979
6980                         I915_WRITE(PCH_3DCGDIS0,
6981                                    MARIUNIT_CLOCK_GATE_DISABLE |
6982                                    SVSMUNIT_CLOCK_GATE_DISABLE);
6983                         I915_WRITE(PCH_3DCGDIS1,
6984                                    VFMUNIT_CLOCK_GATE_DISABLE);
6985                 }
6986
6987                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
6988
6989                 /*
6990                  * On Ibex Peak and Cougar Point, we need to disable clock
6991                  * gating for the panel power sequencer or it will fail to
6992                  * start up when no ports are active.
6993                  */
6994                 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6995
6996                 /*
6997                  * According to the spec the following bits should be set in
6998                  * order to enable memory self-refresh
6999                  * The bit 22/21 of 0x42004
7000                  * The bit 5 of 0x42020
7001                  * The bit 15 of 0x45000
7002                  */
7003                 if (IS_GEN5(dev)) {
7004                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7005                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
7006                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7007                         I915_WRITE(ILK_DSPCLK_GATE,
7008                                         (I915_READ(ILK_DSPCLK_GATE) |
7009                                                 ILK_DPARB_CLK_GATE));
7010                         I915_WRITE(DISP_ARB_CTL,
7011                                         (I915_READ(DISP_ARB_CTL) |
7012                                                 DISP_FBC_WM_DIS));
7013                         I915_WRITE(WM3_LP_ILK, 0);
7014                         I915_WRITE(WM2_LP_ILK, 0);
7015                         I915_WRITE(WM1_LP_ILK, 0);
7016                 }
7017                 /*
7018                  * Based on the document from hardware guys the following bits
7019                  * should be set unconditionally in order to enable FBC.
7020                  * The bit 22 of 0x42000
7021                  * The bit 22 of 0x42004
7022                  * The bit 7,8,9 of 0x42020.
7023                  */
7024                 if (IS_IRONLAKE_M(dev)) {
7025                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7026                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7027                                    ILK_FBCQ_DIS);
7028                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7029                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7030                                    ILK_DPARB_GATE);
7031                         I915_WRITE(ILK_DSPCLK_GATE,
7032                                    I915_READ(ILK_DSPCLK_GATE) |
7033                                    ILK_DPFC_DIS1 |
7034                                    ILK_DPFC_DIS2 |
7035                                    ILK_CLK_FBC);
7036                 }
7037
7038                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7039                            I915_READ(ILK_DISPLAY_CHICKEN2) |
7040                            ILK_ELPIN_409_SELECT);
7041
7042                 if (IS_GEN5(dev)) {
7043                         I915_WRITE(_3D_CHICKEN2,
7044                                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7045                                    _3D_CHICKEN2_WM_READ_PIPELINED);
7046                 }
7047
7048                 if (IS_GEN6(dev)) {
7049                         I915_WRITE(WM3_LP_ILK, 0);
7050                         I915_WRITE(WM2_LP_ILK, 0);
7051                         I915_WRITE(WM1_LP_ILK, 0);
7052
7053                         /*
7054                          * According to the spec the following bits should be
7055                          * set in order to enable memory self-refresh and fbc:
7056                          * The bit21 and bit22 of 0x42000
7057                          * The bit21 and bit22 of 0x42004
7058                          * The bit5 and bit7 of 0x42020
7059                          * The bit14 of 0x70180
7060                          * The bit14 of 0x71180
7061                          */
7062                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7063                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7064                                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7065                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7066                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7067                                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7068                         I915_WRITE(ILK_DSPCLK_GATE,
7069                                    I915_READ(ILK_DSPCLK_GATE) |
7070                                    ILK_DPARB_CLK_GATE  |
7071                                    ILK_DPFD_CLK_GATE);
7072
7073                         for_each_pipe(pipe)
7074                                 I915_WRITE(DSPCNTR(pipe),
7075                                            I915_READ(DSPCNTR(pipe)) |
7076                                            DISPPLANE_TRICKLE_FEED_DISABLE);
7077                 }
7078         } else if (IS_G4X(dev)) {
7079                 uint32_t dspclk_gate;
7080                 I915_WRITE(RENCLK_GATE_D1, 0);
7081                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7082                        GS_UNIT_CLOCK_GATE_DISABLE |
7083                        CL_UNIT_CLOCK_GATE_DISABLE);
7084                 I915_WRITE(RAMCLK_GATE_D, 0);
7085                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7086                         OVRUNIT_CLOCK_GATE_DISABLE |
7087                         OVCUNIT_CLOCK_GATE_DISABLE;
7088                 if (IS_GM45(dev))
7089                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7090                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7091         } else if (IS_CRESTLINE(dev)) {
7092                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7093                 I915_WRITE(RENCLK_GATE_D2, 0);
7094                 I915_WRITE(DSPCLK_GATE_D, 0);
7095                 I915_WRITE(RAMCLK_GATE_D, 0);
7096                 I915_WRITE16(DEUC, 0);
7097         } else if (IS_BROADWATER(dev)) {
7098                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7099                        I965_RCC_CLOCK_GATE_DISABLE |
7100                        I965_RCPB_CLOCK_GATE_DISABLE |
7101                        I965_ISC_CLOCK_GATE_DISABLE |
7102                        I965_FBC_CLOCK_GATE_DISABLE);
7103                 I915_WRITE(RENCLK_GATE_D2, 0);
7104         } else if (IS_GEN3(dev)) {
7105                 u32 dstate = I915_READ(D_STATE);
7106
7107                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7108                         DSTATE_DOT_CLOCK_GATING;
7109                 I915_WRITE(D_STATE, dstate);
7110         } else if (IS_I85X(dev) || IS_I865G(dev)) {
7111                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7112         } else if (IS_I830(dev)) {
7113                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7114         }
7115 }
7116
7117 static void ironlake_teardown_rc6(struct drm_device *dev)
7118 {
7119         struct drm_i915_private *dev_priv = dev->dev_private;
7120
7121         if (dev_priv->renderctx) {
7122                 i915_gem_object_unpin(dev_priv->renderctx);
7123                 drm_gem_object_unreference(&dev_priv->renderctx->base);
7124                 dev_priv->renderctx = NULL;
7125         }
7126
7127         if (dev_priv->pwrctx) {
7128                 i915_gem_object_unpin(dev_priv->pwrctx);
7129                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7130                 dev_priv->pwrctx = NULL;
7131         }
7132 }
7133
7134 static void ironlake_disable_rc6(struct drm_device *dev)
7135 {
7136         struct drm_i915_private *dev_priv = dev->dev_private;
7137
7138         if (I915_READ(PWRCTXA)) {
7139                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7140                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7141                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7142                          50);
7143
7144                 I915_WRITE(PWRCTXA, 0);
7145                 POSTING_READ(PWRCTXA);
7146
7147                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7148                 POSTING_READ(RSTDBYCTL);
7149         }
7150
7151         ironlake_teardown_rc6(dev);
7152 }
7153
7154 static int ironlake_setup_rc6(struct drm_device *dev)
7155 {
7156         struct drm_i915_private *dev_priv = dev->dev_private;
7157
7158         if (dev_priv->renderctx == NULL)
7159                 dev_priv->renderctx = intel_alloc_context_page(dev);
7160         if (!dev_priv->renderctx)
7161                 return -ENOMEM;
7162
7163         if (dev_priv->pwrctx == NULL)
7164                 dev_priv->pwrctx = intel_alloc_context_page(dev);
7165         if (!dev_priv->pwrctx) {
7166                 ironlake_teardown_rc6(dev);
7167                 return -ENOMEM;
7168         }
7169
7170         return 0;
7171 }
7172
7173 void ironlake_enable_rc6(struct drm_device *dev)
7174 {
7175         struct drm_i915_private *dev_priv = dev->dev_private;
7176         int ret;
7177
7178         /* rc6 disabled by default due to repeated reports of hanging during
7179          * boot and resume.
7180          */
7181         if (!i915_enable_rc6)
7182                 return;
7183
7184         ret = ironlake_setup_rc6(dev);
7185         if (ret)
7186                 return;
7187
7188         /*
7189          * GPU can automatically power down the render unit if given a page
7190          * to save state.
7191          */
7192         ret = BEGIN_LP_RING(6);
7193         if (ret) {
7194                 ironlake_teardown_rc6(dev);
7195                 return;
7196         }
7197
7198         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7199         OUT_RING(MI_SET_CONTEXT);
7200         OUT_RING(dev_priv->renderctx->gtt_offset |
7201                  MI_MM_SPACE_GTT |
7202                  MI_SAVE_EXT_STATE_EN |
7203                  MI_RESTORE_EXT_STATE_EN |
7204                  MI_RESTORE_INHIBIT);
7205         OUT_RING(MI_SUSPEND_FLUSH);
7206         OUT_RING(MI_NOOP);
7207         OUT_RING(MI_FLUSH);
7208         ADVANCE_LP_RING();
7209
7210         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7211         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7212 }
7213
7214
7215 /* Set up chip specific display functions */
7216 static void intel_init_display(struct drm_device *dev)
7217 {
7218         struct drm_i915_private *dev_priv = dev->dev_private;
7219
7220         /* We always want a DPMS function */
7221         if (HAS_PCH_SPLIT(dev))
7222                 dev_priv->display.dpms = ironlake_crtc_dpms;
7223         else
7224                 dev_priv->display.dpms = i9xx_crtc_dpms;
7225
7226         if (I915_HAS_FBC(dev)) {
7227                 if (HAS_PCH_SPLIT(dev)) {
7228                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7229                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7230                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7231                 } else if (IS_GM45(dev)) {
7232                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7233                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7234                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7235                 } else if (IS_CRESTLINE(dev)) {
7236                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7237                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7238                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7239                 }
7240                 /* 855GM needs testing */
7241         }
7242
7243         /* Returns the core display clock speed */
7244         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7245                 dev_priv->display.get_display_clock_speed =
7246                         i945_get_display_clock_speed;
7247         else if (IS_I915G(dev))
7248                 dev_priv->display.get_display_clock_speed =
7249                         i915_get_display_clock_speed;
7250         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7251                 dev_priv->display.get_display_clock_speed =
7252                         i9xx_misc_get_display_clock_speed;
7253         else if (IS_I915GM(dev))
7254                 dev_priv->display.get_display_clock_speed =
7255                         i915gm_get_display_clock_speed;
7256         else if (IS_I865G(dev))
7257                 dev_priv->display.get_display_clock_speed =
7258                         i865_get_display_clock_speed;
7259         else if (IS_I85X(dev))
7260                 dev_priv->display.get_display_clock_speed =
7261                         i855_get_display_clock_speed;
7262         else /* 852, 830 */
7263                 dev_priv->display.get_display_clock_speed =
7264                         i830_get_display_clock_speed;
7265
7266         /* For FIFO watermark updates */
7267         if (HAS_PCH_SPLIT(dev)) {
7268                 if (IS_GEN5(dev)) {
7269                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
7270                                 dev_priv->display.update_wm = ironlake_update_wm;
7271                         else {
7272                                 DRM_DEBUG_KMS("Failed to get proper latency. "
7273                                               "Disable CxSR\n");
7274                                 dev_priv->display.update_wm = NULL;
7275                         }
7276                 } else if (IS_GEN6(dev)) {
7277                         if (SNB_READ_WM0_LATENCY()) {
7278                                 dev_priv->display.update_wm = sandybridge_update_wm;
7279                         } else {
7280                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
7281                                               "Disable CxSR\n");
7282                                 dev_priv->display.update_wm = NULL;
7283                         }
7284                 } else
7285                         dev_priv->display.update_wm = NULL;
7286         } else if (IS_PINEVIEW(dev)) {
7287                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7288                                             dev_priv->is_ddr3,
7289                                             dev_priv->fsb_freq,
7290                                             dev_priv->mem_freq)) {
7291                         DRM_INFO("failed to find known CxSR latency "
7292                                  "(found ddr%s fsb freq %d, mem freq %d), "
7293                                  "disabling CxSR\n",
7294                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
7295                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7296                         /* Disable CxSR and never update its watermark again */
7297                         pineview_disable_cxsr(dev);
7298                         dev_priv->display.update_wm = NULL;
7299                 } else
7300                         dev_priv->display.update_wm = pineview_update_wm;
7301         } else if (IS_G4X(dev))
7302                 dev_priv->display.update_wm = g4x_update_wm;
7303         else if (IS_GEN4(dev))
7304                 dev_priv->display.update_wm = i965_update_wm;
7305         else if (IS_GEN3(dev)) {
7306                 dev_priv->display.update_wm = i9xx_update_wm;
7307                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7308         } else if (IS_I85X(dev)) {
7309                 dev_priv->display.update_wm = i9xx_update_wm;
7310                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
7311         } else {
7312                 dev_priv->display.update_wm = i830_update_wm;
7313                 if (IS_845G(dev))
7314                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7315                 else
7316                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7317         }
7318 }
7319
7320 /*
7321  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7322  * resume, or other times.  This quirk makes sure that's the case for
7323  * affected systems.
7324  */
7325 static void quirk_pipea_force (struct drm_device *dev)
7326 {
7327         struct drm_i915_private *dev_priv = dev->dev_private;
7328
7329         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7330         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
7331 }
7332
7333 struct intel_quirk {
7334         int device;
7335         int subsystem_vendor;
7336         int subsystem_device;
7337         void (*hook)(struct drm_device *dev);
7338 };
7339
7340 struct intel_quirk intel_quirks[] = {
7341         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
7342         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
7343         /* HP Mini needs pipe A force quirk (LP: #322104) */
7344         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
7345
7346         /* Thinkpad R31 needs pipe A force quirk */
7347         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7348         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7349         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7350
7351         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7352         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
7353         /* ThinkPad X40 needs pipe A force quirk */
7354
7355         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7356         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7357
7358         /* 855 & before need to leave pipe A & dpll A up */
7359         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7360         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7361 };
7362
7363 static void intel_init_quirks(struct drm_device *dev)
7364 {
7365         struct pci_dev *d = dev->pdev;
7366         int i;
7367
7368         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7369                 struct intel_quirk *q = &intel_quirks[i];
7370
7371                 if (d->device == q->device &&
7372                     (d->subsystem_vendor == q->subsystem_vendor ||
7373                      q->subsystem_vendor == PCI_ANY_ID) &&
7374                     (d->subsystem_device == q->subsystem_device ||
7375                      q->subsystem_device == PCI_ANY_ID))
7376                         q->hook(dev);
7377         }
7378 }
7379
7380 /* Disable the VGA plane that we never use */
7381 static void i915_disable_vga(struct drm_device *dev)
7382 {
7383         struct drm_i915_private *dev_priv = dev->dev_private;
7384         u8 sr1;
7385         u32 vga_reg;
7386
7387         if (HAS_PCH_SPLIT(dev))
7388                 vga_reg = CPU_VGACNTRL;
7389         else
7390                 vga_reg = VGACNTRL;
7391
7392         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7393         outb(1, VGA_SR_INDEX);
7394         sr1 = inb(VGA_SR_DATA);
7395         outb(sr1 | 1<<5, VGA_SR_DATA);
7396         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7397         udelay(300);
7398
7399         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7400         POSTING_READ(vga_reg);
7401 }
7402
7403 void intel_modeset_init(struct drm_device *dev)
7404 {
7405         struct drm_i915_private *dev_priv = dev->dev_private;
7406         int i;
7407
7408         drm_mode_config_init(dev);
7409
7410         dev->mode_config.min_width = 0;
7411         dev->mode_config.min_height = 0;
7412
7413         dev->mode_config.funcs = (void *)&intel_mode_funcs;
7414
7415         intel_init_quirks(dev);
7416
7417         intel_init_display(dev);
7418
7419         if (IS_GEN2(dev)) {
7420                 dev->mode_config.max_width = 2048;
7421                 dev->mode_config.max_height = 2048;
7422         } else if (IS_GEN3(dev)) {
7423                 dev->mode_config.max_width = 4096;
7424                 dev->mode_config.max_height = 4096;
7425         } else {
7426                 dev->mode_config.max_width = 8192;
7427                 dev->mode_config.max_height = 8192;
7428         }
7429         dev->mode_config.fb_base = dev->agp->base;
7430
7431         DRM_DEBUG_KMS("%d display pipe%s available.\n",
7432                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7433
7434         for (i = 0; i < dev_priv->num_pipe; i++) {
7435                 intel_crtc_init(dev, i);
7436         }
7437
7438         intel_setup_outputs(dev);
7439
7440         intel_enable_clock_gating(dev);
7441
7442         /* Just disable it once at startup */
7443         i915_disable_vga(dev);
7444
7445         if (IS_IRONLAKE_M(dev)) {
7446                 ironlake_enable_drps(dev);
7447                 intel_init_emon(dev);
7448         }
7449
7450         if (IS_GEN6(dev))
7451                 gen6_enable_rps(dev_priv);
7452
7453         if (IS_IRONLAKE_M(dev))
7454                 ironlake_enable_rc6(dev);
7455
7456         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7457         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7458                     (unsigned long)dev);
7459
7460         intel_setup_overlay(dev);
7461 }
7462
7463 void intel_modeset_cleanup(struct drm_device *dev)
7464 {
7465         struct drm_i915_private *dev_priv = dev->dev_private;
7466         struct drm_crtc *crtc;
7467         struct intel_crtc *intel_crtc;
7468
7469         drm_kms_helper_poll_fini(dev);
7470         mutex_lock(&dev->struct_mutex);
7471
7472         intel_unregister_dsm_handler();
7473
7474
7475         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7476                 /* Skip inactive CRTCs */
7477                 if (!crtc->fb)
7478                         continue;
7479
7480                 intel_crtc = to_intel_crtc(crtc);
7481                 intel_increase_pllclock(crtc);
7482         }
7483
7484         if (dev_priv->display.disable_fbc)
7485                 dev_priv->display.disable_fbc(dev);
7486
7487         if (IS_IRONLAKE_M(dev))
7488                 ironlake_disable_drps(dev);
7489         if (IS_GEN6(dev))
7490                 gen6_disable_rps(dev);
7491
7492         if (IS_IRONLAKE_M(dev))
7493                 ironlake_disable_rc6(dev);
7494
7495         mutex_unlock(&dev->struct_mutex);
7496
7497         /* Disable the irq before mode object teardown, for the irq might
7498          * enqueue unpin/hotplug work. */
7499         drm_irq_uninstall(dev);
7500         cancel_work_sync(&dev_priv->hotplug_work);
7501
7502         /* Shut off idle work before the crtcs get freed. */
7503         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7504                 intel_crtc = to_intel_crtc(crtc);
7505                 del_timer_sync(&intel_crtc->idle_timer);
7506         }
7507         del_timer_sync(&dev_priv->idle_timer);
7508         cancel_work_sync(&dev_priv->idle_work);
7509
7510         drm_mode_config_cleanup(dev);
7511 }
7512
7513 /*
7514  * Return which encoder is currently attached for connector.
7515  */
7516 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7517 {
7518         return &intel_attached_encoder(connector)->base;
7519 }
7520
7521 void intel_connector_attach_encoder(struct intel_connector *connector,
7522                                     struct intel_encoder *encoder)
7523 {
7524         connector->encoder = encoder;
7525         drm_mode_connector_attach_encoder(&connector->base,
7526                                           &encoder->base);
7527 }
7528
7529 /*
7530  * set vga decode state - true == enable VGA decode
7531  */
7532 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7533 {
7534         struct drm_i915_private *dev_priv = dev->dev_private;
7535         u16 gmch_ctrl;
7536
7537         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7538         if (state)
7539                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7540         else
7541                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7542         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7543         return 0;
7544 }
7545
7546 #ifdef CONFIG_DEBUG_FS
7547 #include <linux/seq_file.h>
7548
7549 struct intel_display_error_state {
7550         struct intel_cursor_error_state {
7551                 u32 control;
7552                 u32 position;
7553                 u32 base;
7554                 u32 size;
7555         } cursor[2];
7556
7557         struct intel_pipe_error_state {
7558                 u32 conf;
7559                 u32 source;
7560
7561                 u32 htotal;
7562                 u32 hblank;
7563                 u32 hsync;
7564                 u32 vtotal;
7565                 u32 vblank;
7566                 u32 vsync;
7567         } pipe[2];
7568
7569         struct intel_plane_error_state {
7570                 u32 control;
7571                 u32 stride;
7572                 u32 size;
7573                 u32 pos;
7574                 u32 addr;
7575                 u32 surface;
7576                 u32 tile_offset;
7577         } plane[2];
7578 };
7579
7580 struct intel_display_error_state *
7581 intel_display_capture_error_state(struct drm_device *dev)
7582 {
7583         drm_i915_private_t *dev_priv = dev->dev_private;
7584         struct intel_display_error_state *error;
7585         int i;
7586
7587         error = kmalloc(sizeof(*error), GFP_ATOMIC);
7588         if (error == NULL)
7589                 return NULL;
7590
7591         for (i = 0; i < 2; i++) {
7592                 error->cursor[i].control = I915_READ(CURCNTR(i));
7593                 error->cursor[i].position = I915_READ(CURPOS(i));
7594                 error->cursor[i].base = I915_READ(CURBASE(i));
7595
7596                 error->plane[i].control = I915_READ(DSPCNTR(i));
7597                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7598                 error->plane[i].size = I915_READ(DSPSIZE(i));
7599                 error->plane[i].pos= I915_READ(DSPPOS(i));
7600                 error->plane[i].addr = I915_READ(DSPADDR(i));
7601                 if (INTEL_INFO(dev)->gen >= 4) {
7602                         error->plane[i].surface = I915_READ(DSPSURF(i));
7603                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7604                 }
7605
7606                 error->pipe[i].conf = I915_READ(PIPECONF(i));
7607                 error->pipe[i].source = I915_READ(PIPESRC(i));
7608                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7609                 error->pipe[i].hblank = I915_READ(HBLANK(i));
7610                 error->pipe[i].hsync = I915_READ(HSYNC(i));
7611                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7612                 error->pipe[i].vblank = I915_READ(VBLANK(i));
7613                 error->pipe[i].vsync = I915_READ(VSYNC(i));
7614         }
7615
7616         return error;
7617 }
7618
7619 void
7620 intel_display_print_error_state(struct seq_file *m,
7621                                 struct drm_device *dev,
7622                                 struct intel_display_error_state *error)
7623 {
7624         int i;
7625
7626         for (i = 0; i < 2; i++) {
7627                 seq_printf(m, "Pipe [%d]:\n", i);
7628                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
7629                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
7630                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
7631                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
7632                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
7633                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
7634                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
7635                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
7636
7637                 seq_printf(m, "Plane [%d]:\n", i);
7638                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
7639                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
7640                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
7641                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
7642                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
7643                 if (INTEL_INFO(dev)->gen >= 4) {
7644                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
7645                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
7646                 }
7647
7648                 seq_printf(m, "Cursor [%d]:\n", i);
7649                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
7650                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
7651                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
7652         }
7653 }
7654 #endif