Merge branch 'devel-stable' of master.kernel.org:/home/rmk/linux-2.6-arm
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42                                                           bool write);
43 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44                                                                   uint64_t offset,
45                                                                   uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48                                                     unsigned alignment,
49                                                     bool map_and_fenceable);
50 static void i915_gem_clear_fence_reg(struct drm_device *dev,
51                                      struct drm_i915_fence_reg *reg);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59                                     int nr_to_scan,
60                                     gfp_t gfp_mask);
61
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65                                   size_t size)
66 {
67         dev_priv->mm.object_count++;
68         dev_priv->mm.object_memory += size;
69 }
70
71 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72                                      size_t size)
73 {
74         dev_priv->mm.object_count--;
75         dev_priv->mm.object_memory -= size;
76 }
77
78 static int
79 i915_gem_wait_for_error(struct drm_device *dev)
80 {
81         struct drm_i915_private *dev_priv = dev->dev_private;
82         struct completion *x = &dev_priv->error_completion;
83         unsigned long flags;
84         int ret;
85
86         if (!atomic_read(&dev_priv->mm.wedged))
87                 return 0;
88
89         ret = wait_for_completion_interruptible(x);
90         if (ret)
91                 return ret;
92
93         if (atomic_read(&dev_priv->mm.wedged)) {
94                 /* GPU is hung, bump the completion count to account for
95                  * the token we just consumed so that we never hit zero and
96                  * end up waiting upon a subsequent completion event that
97                  * will never happen.
98                  */
99                 spin_lock_irqsave(&x->wait.lock, flags);
100                 x->done++;
101                 spin_unlock_irqrestore(&x->wait.lock, flags);
102         }
103         return 0;
104 }
105
106 int i915_mutex_lock_interruptible(struct drm_device *dev)
107 {
108         int ret;
109
110         ret = i915_gem_wait_for_error(dev);
111         if (ret)
112                 return ret;
113
114         ret = mutex_lock_interruptible(&dev->struct_mutex);
115         if (ret)
116                 return ret;
117
118         WARN_ON(i915_verify_lists(dev));
119         return 0;
120 }
121
122 static inline bool
123 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124 {
125         return obj->gtt_space && !obj->active && obj->pin_count == 0;
126 }
127
128 void i915_gem_do_init(struct drm_device *dev,
129                       unsigned long start,
130                       unsigned long mappable_end,
131                       unsigned long end)
132 {
133         drm_i915_private_t *dev_priv = dev->dev_private;
134
135         drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136
137         dev_priv->mm.gtt_start = start;
138         dev_priv->mm.gtt_mappable_end = mappable_end;
139         dev_priv->mm.gtt_end = end;
140         dev_priv->mm.gtt_total = end - start;
141         dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142
143         /* Take over this portion of the GTT */
144         intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
145 }
146
147 int
148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149                     struct drm_file *file)
150 {
151         struct drm_i915_gem_init *args = data;
152
153         if (args->gtt_start >= args->gtt_end ||
154             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155                 return -EINVAL;
156
157         mutex_lock(&dev->struct_mutex);
158         i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
159         mutex_unlock(&dev->struct_mutex);
160
161         return 0;
162 }
163
164 int
165 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
166                             struct drm_file *file)
167 {
168         struct drm_i915_private *dev_priv = dev->dev_private;
169         struct drm_i915_gem_get_aperture *args = data;
170         struct drm_i915_gem_object *obj;
171         size_t pinned;
172
173         if (!(dev->driver->driver_features & DRIVER_GEM))
174                 return -ENODEV;
175
176         pinned = 0;
177         mutex_lock(&dev->struct_mutex);
178         list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179                 pinned += obj->gtt_space->size;
180         mutex_unlock(&dev->struct_mutex);
181
182         args->aper_size = dev_priv->mm.gtt_total;
183         args->aper_available_size = args->aper_size -pinned;
184
185         return 0;
186 }
187
188 static int
189 i915_gem_create(struct drm_file *file,
190                 struct drm_device *dev,
191                 uint64_t size,
192                 uint32_t *handle_p)
193 {
194         struct drm_i915_gem_object *obj;
195         int ret;
196         u32 handle;
197
198         size = roundup(size, PAGE_SIZE);
199
200         /* Allocate the new object */
201         obj = i915_gem_alloc_object(dev, size);
202         if (obj == NULL)
203                 return -ENOMEM;
204
205         ret = drm_gem_handle_create(file, &obj->base, &handle);
206         if (ret) {
207                 drm_gem_object_release(&obj->base);
208                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
209                 kfree(obj);
210                 return ret;
211         }
212
213         /* drop reference from allocate - handle holds it now */
214         drm_gem_object_unreference(&obj->base);
215         trace_i915_gem_object_create(obj);
216
217         *handle_p = handle;
218         return 0;
219 }
220
221 int
222 i915_gem_dumb_create(struct drm_file *file,
223                      struct drm_device *dev,
224                      struct drm_mode_create_dumb *args)
225 {
226         /* have to work out size/pitch and return them */
227         args->pitch = ALIGN(args->width & ((args->bpp + 1) / 8), 64);
228         args->size = args->pitch * args->height;
229         return i915_gem_create(file, dev,
230                                args->size, &args->handle);
231 }
232
233 int i915_gem_dumb_destroy(struct drm_file *file,
234                           struct drm_device *dev,
235                           uint32_t handle)
236 {
237         return drm_gem_handle_delete(file, handle);
238 }
239
240 /**
241  * Creates a new mm object and returns a handle to it.
242  */
243 int
244 i915_gem_create_ioctl(struct drm_device *dev, void *data,
245                       struct drm_file *file)
246 {
247         struct drm_i915_gem_create *args = data;
248         return i915_gem_create(file, dev,
249                                args->size, &args->handle);
250 }
251
252 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253 {
254         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255
256         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257                 obj->tiling_mode != I915_TILING_NONE;
258 }
259
260 static inline void
261 slow_shmem_copy(struct page *dst_page,
262                 int dst_offset,
263                 struct page *src_page,
264                 int src_offset,
265                 int length)
266 {
267         char *dst_vaddr, *src_vaddr;
268
269         dst_vaddr = kmap(dst_page);
270         src_vaddr = kmap(src_page);
271
272         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
273
274         kunmap(src_page);
275         kunmap(dst_page);
276 }
277
278 static inline void
279 slow_shmem_bit17_copy(struct page *gpu_page,
280                       int gpu_offset,
281                       struct page *cpu_page,
282                       int cpu_offset,
283                       int length,
284                       int is_read)
285 {
286         char *gpu_vaddr, *cpu_vaddr;
287
288         /* Use the unswizzled path if this page isn't affected. */
289         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
290                 if (is_read)
291                         return slow_shmem_copy(cpu_page, cpu_offset,
292                                                gpu_page, gpu_offset, length);
293                 else
294                         return slow_shmem_copy(gpu_page, gpu_offset,
295                                                cpu_page, cpu_offset, length);
296         }
297
298         gpu_vaddr = kmap(gpu_page);
299         cpu_vaddr = kmap(cpu_page);
300
301         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
302          * XORing with the other bits (A9 for Y, A9 and A10 for X)
303          */
304         while (length > 0) {
305                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306                 int this_length = min(cacheline_end - gpu_offset, length);
307                 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309                 if (is_read) {
310                         memcpy(cpu_vaddr + cpu_offset,
311                                gpu_vaddr + swizzled_gpu_offset,
312                                this_length);
313                 } else {
314                         memcpy(gpu_vaddr + swizzled_gpu_offset,
315                                cpu_vaddr + cpu_offset,
316                                this_length);
317                 }
318                 cpu_offset += this_length;
319                 gpu_offset += this_length;
320                 length -= this_length;
321         }
322
323         kunmap(cpu_page);
324         kunmap(gpu_page);
325 }
326
327 /**
328  * This is the fast shmem pread path, which attempts to copy_from_user directly
329  * from the backing pages of the object to the user's address space.  On a
330  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
331  */
332 static int
333 i915_gem_shmem_pread_fast(struct drm_device *dev,
334                           struct drm_i915_gem_object *obj,
335                           struct drm_i915_gem_pread *args,
336                           struct drm_file *file)
337 {
338         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
339         ssize_t remain;
340         loff_t offset;
341         char __user *user_data;
342         int page_offset, page_length;
343
344         user_data = (char __user *) (uintptr_t) args->data_ptr;
345         remain = args->size;
346
347         offset = args->offset;
348
349         while (remain > 0) {
350                 struct page *page;
351                 char *vaddr;
352                 int ret;
353
354                 /* Operation in this page
355                  *
356                  * page_offset = offset within page
357                  * page_length = bytes to copy for this page
358                  */
359                 page_offset = offset & (PAGE_SIZE-1);
360                 page_length = remain;
361                 if ((page_offset + remain) > PAGE_SIZE)
362                         page_length = PAGE_SIZE - page_offset;
363
364                 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
365                                            GFP_HIGHUSER | __GFP_RECLAIMABLE);
366                 if (IS_ERR(page))
367                         return PTR_ERR(page);
368
369                 vaddr = kmap_atomic(page);
370                 ret = __copy_to_user_inatomic(user_data,
371                                               vaddr + page_offset,
372                                               page_length);
373                 kunmap_atomic(vaddr);
374
375                 mark_page_accessed(page);
376                 page_cache_release(page);
377                 if (ret)
378                         return -EFAULT;
379
380                 remain -= page_length;
381                 user_data += page_length;
382                 offset += page_length;
383         }
384
385         return 0;
386 }
387
388 /**
389  * This is the fallback shmem pread path, which allocates temporary storage
390  * in kernel space to copy_to_user into outside of the struct_mutex, so we
391  * can copy out of the object's backing pages while holding the struct mutex
392  * and not take page faults.
393  */
394 static int
395 i915_gem_shmem_pread_slow(struct drm_device *dev,
396                           struct drm_i915_gem_object *obj,
397                           struct drm_i915_gem_pread *args,
398                           struct drm_file *file)
399 {
400         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
401         struct mm_struct *mm = current->mm;
402         struct page **user_pages;
403         ssize_t remain;
404         loff_t offset, pinned_pages, i;
405         loff_t first_data_page, last_data_page, num_pages;
406         int shmem_page_offset;
407         int data_page_index, data_page_offset;
408         int page_length;
409         int ret;
410         uint64_t data_ptr = args->data_ptr;
411         int do_bit17_swizzling;
412
413         remain = args->size;
414
415         /* Pin the user pages containing the data.  We can't fault while
416          * holding the struct mutex, yet we want to hold it while
417          * dereferencing the user data.
418          */
419         first_data_page = data_ptr / PAGE_SIZE;
420         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
421         num_pages = last_data_page - first_data_page + 1;
422
423         user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
424         if (user_pages == NULL)
425                 return -ENOMEM;
426
427         mutex_unlock(&dev->struct_mutex);
428         down_read(&mm->mmap_sem);
429         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
430                                       num_pages, 1, 0, user_pages, NULL);
431         up_read(&mm->mmap_sem);
432         mutex_lock(&dev->struct_mutex);
433         if (pinned_pages < num_pages) {
434                 ret = -EFAULT;
435                 goto out;
436         }
437
438         ret = i915_gem_object_set_cpu_read_domain_range(obj,
439                                                         args->offset,
440                                                         args->size);
441         if (ret)
442                 goto out;
443
444         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
445
446         offset = args->offset;
447
448         while (remain > 0) {
449                 struct page *page;
450
451                 /* Operation in this page
452                  *
453                  * shmem_page_offset = offset within page in shmem file
454                  * data_page_index = page number in get_user_pages return
455                  * data_page_offset = offset with data_page_index page.
456                  * page_length = bytes to copy for this page
457                  */
458                 shmem_page_offset = offset & ~PAGE_MASK;
459                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460                 data_page_offset = data_ptr & ~PAGE_MASK;
461
462                 page_length = remain;
463                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
464                         page_length = PAGE_SIZE - shmem_page_offset;
465                 if ((data_page_offset + page_length) > PAGE_SIZE)
466                         page_length = PAGE_SIZE - data_page_offset;
467
468                 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
469                                            GFP_HIGHUSER | __GFP_RECLAIMABLE);
470                 if (IS_ERR(page))
471                         return PTR_ERR(page);
472
473                 if (do_bit17_swizzling) {
474                         slow_shmem_bit17_copy(page,
475                                               shmem_page_offset,
476                                               user_pages[data_page_index],
477                                               data_page_offset,
478                                               page_length,
479                                               1);
480                 } else {
481                         slow_shmem_copy(user_pages[data_page_index],
482                                         data_page_offset,
483                                         page,
484                                         shmem_page_offset,
485                                         page_length);
486                 }
487
488                 mark_page_accessed(page);
489                 page_cache_release(page);
490
491                 remain -= page_length;
492                 data_ptr += page_length;
493                 offset += page_length;
494         }
495
496 out:
497         for (i = 0; i < pinned_pages; i++) {
498                 SetPageDirty(user_pages[i]);
499                 mark_page_accessed(user_pages[i]);
500                 page_cache_release(user_pages[i]);
501         }
502         drm_free_large(user_pages);
503
504         return ret;
505 }
506
507 /**
508  * Reads data from the object referenced by handle.
509  *
510  * On error, the contents of *data are undefined.
511  */
512 int
513 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
514                      struct drm_file *file)
515 {
516         struct drm_i915_gem_pread *args = data;
517         struct drm_i915_gem_object *obj;
518         int ret = 0;
519
520         if (args->size == 0)
521                 return 0;
522
523         if (!access_ok(VERIFY_WRITE,
524                        (char __user *)(uintptr_t)args->data_ptr,
525                        args->size))
526                 return -EFAULT;
527
528         ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
529                                        args->size);
530         if (ret)
531                 return -EFAULT;
532
533         ret = i915_mutex_lock_interruptible(dev);
534         if (ret)
535                 return ret;
536
537         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538         if (&obj->base == NULL) {
539                 ret = -ENOENT;
540                 goto unlock;
541         }
542
543         /* Bounds check source.  */
544         if (args->offset > obj->base.size ||
545             args->size > obj->base.size - args->offset) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         trace_i915_gem_object_pread(obj, args->offset, args->size);
551
552         ret = i915_gem_object_set_cpu_read_domain_range(obj,
553                                                         args->offset,
554                                                         args->size);
555         if (ret)
556                 goto out;
557
558         ret = -EFAULT;
559         if (!i915_gem_object_needs_bit17_swizzle(obj))
560                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
561         if (ret == -EFAULT)
562                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
563
564 out:
565         drm_gem_object_unreference(&obj->base);
566 unlock:
567         mutex_unlock(&dev->struct_mutex);
568         return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572  * page faults in the source data
573  */
574
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577                 loff_t page_base, int page_offset,
578                 char __user *user_data,
579                 int length)
580 {
581         char *vaddr_atomic;
582         unsigned long unwritten;
583
584         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
585         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
586                                                       user_data, length);
587         io_mapping_unmap_atomic(vaddr_atomic);
588         return unwritten;
589 }
590
591 /* Here's the write path which can sleep for
592  * page faults
593  */
594
595 static inline void
596 slow_kernel_write(struct io_mapping *mapping,
597                   loff_t gtt_base, int gtt_offset,
598                   struct page *user_page, int user_offset,
599                   int length)
600 {
601         char __iomem *dst_vaddr;
602         char *src_vaddr;
603
604         dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
605         src_vaddr = kmap(user_page);
606
607         memcpy_toio(dst_vaddr + gtt_offset,
608                     src_vaddr + user_offset,
609                     length);
610
611         kunmap(user_page);
612         io_mapping_unmap(dst_vaddr);
613 }
614
615 /**
616  * This is the fast pwrite path, where we copy the data directly from the
617  * user into the GTT, uncached.
618  */
619 static int
620 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
621                          struct drm_i915_gem_object *obj,
622                          struct drm_i915_gem_pwrite *args,
623                          struct drm_file *file)
624 {
625         drm_i915_private_t *dev_priv = dev->dev_private;
626         ssize_t remain;
627         loff_t offset, page_base;
628         char __user *user_data;
629         int page_offset, page_length;
630
631         user_data = (char __user *) (uintptr_t) args->data_ptr;
632         remain = args->size;
633
634         offset = obj->gtt_offset + args->offset;
635
636         while (remain > 0) {
637                 /* Operation in this page
638                  *
639                  * page_base = page offset within aperture
640                  * page_offset = offset within page
641                  * page_length = bytes to copy for this page
642                  */
643                 page_base = (offset & ~(PAGE_SIZE-1));
644                 page_offset = offset & (PAGE_SIZE-1);
645                 page_length = remain;
646                 if ((page_offset + remain) > PAGE_SIZE)
647                         page_length = PAGE_SIZE - page_offset;
648
649                 /* If we get a fault while copying data, then (presumably) our
650                  * source page isn't available.  Return the error and we'll
651                  * retry in the slow path.
652                  */
653                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
654                                     page_offset, user_data, page_length))
655
656                         return -EFAULT;
657
658                 remain -= page_length;
659                 user_data += page_length;
660                 offset += page_length;
661         }
662
663         return 0;
664 }
665
666 /**
667  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
668  * the memory and maps it using kmap_atomic for copying.
669  *
670  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
671  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
672  */
673 static int
674 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
675                          struct drm_i915_gem_object *obj,
676                          struct drm_i915_gem_pwrite *args,
677                          struct drm_file *file)
678 {
679         drm_i915_private_t *dev_priv = dev->dev_private;
680         ssize_t remain;
681         loff_t gtt_page_base, offset;
682         loff_t first_data_page, last_data_page, num_pages;
683         loff_t pinned_pages, i;
684         struct page **user_pages;
685         struct mm_struct *mm = current->mm;
686         int gtt_page_offset, data_page_offset, data_page_index, page_length;
687         int ret;
688         uint64_t data_ptr = args->data_ptr;
689
690         remain = args->size;
691
692         /* Pin the user pages containing the data.  We can't fault while
693          * holding the struct mutex, and all of the pwrite implementations
694          * want to hold it while dereferencing the user data.
695          */
696         first_data_page = data_ptr / PAGE_SIZE;
697         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
698         num_pages = last_data_page - first_data_page + 1;
699
700         user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
701         if (user_pages == NULL)
702                 return -ENOMEM;
703
704         mutex_unlock(&dev->struct_mutex);
705         down_read(&mm->mmap_sem);
706         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
707                                       num_pages, 0, 0, user_pages, NULL);
708         up_read(&mm->mmap_sem);
709         mutex_lock(&dev->struct_mutex);
710         if (pinned_pages < num_pages) {
711                 ret = -EFAULT;
712                 goto out_unpin_pages;
713         }
714
715         ret = i915_gem_object_set_to_gtt_domain(obj, true);
716         if (ret)
717                 goto out_unpin_pages;
718
719         ret = i915_gem_object_put_fence(obj);
720         if (ret)
721                 goto out_unpin_pages;
722
723         offset = obj->gtt_offset + args->offset;
724
725         while (remain > 0) {
726                 /* Operation in this page
727                  *
728                  * gtt_page_base = page offset within aperture
729                  * gtt_page_offset = offset within page in aperture
730                  * data_page_index = page number in get_user_pages return
731                  * data_page_offset = offset with data_page_index page.
732                  * page_length = bytes to copy for this page
733                  */
734                 gtt_page_base = offset & PAGE_MASK;
735                 gtt_page_offset = offset & ~PAGE_MASK;
736                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737                 data_page_offset = data_ptr & ~PAGE_MASK;
738
739                 page_length = remain;
740                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
741                         page_length = PAGE_SIZE - gtt_page_offset;
742                 if ((data_page_offset + page_length) > PAGE_SIZE)
743                         page_length = PAGE_SIZE - data_page_offset;
744
745                 slow_kernel_write(dev_priv->mm.gtt_mapping,
746                                   gtt_page_base, gtt_page_offset,
747                                   user_pages[data_page_index],
748                                   data_page_offset,
749                                   page_length);
750
751                 remain -= page_length;
752                 offset += page_length;
753                 data_ptr += page_length;
754         }
755
756 out_unpin_pages:
757         for (i = 0; i < pinned_pages; i++)
758                 page_cache_release(user_pages[i]);
759         drm_free_large(user_pages);
760
761         return ret;
762 }
763
764 /**
765  * This is the fast shmem pwrite path, which attempts to directly
766  * copy_from_user into the kmapped pages backing the object.
767  */
768 static int
769 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
770                            struct drm_i915_gem_object *obj,
771                            struct drm_i915_gem_pwrite *args,
772                            struct drm_file *file)
773 {
774         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
775         ssize_t remain;
776         loff_t offset;
777         char __user *user_data;
778         int page_offset, page_length;
779
780         user_data = (char __user *) (uintptr_t) args->data_ptr;
781         remain = args->size;
782
783         offset = args->offset;
784         obj->dirty = 1;
785
786         while (remain > 0) {
787                 struct page *page;
788                 char *vaddr;
789                 int ret;
790
791                 /* Operation in this page
792                  *
793                  * page_offset = offset within page
794                  * page_length = bytes to copy for this page
795                  */
796                 page_offset = offset & (PAGE_SIZE-1);
797                 page_length = remain;
798                 if ((page_offset + remain) > PAGE_SIZE)
799                         page_length = PAGE_SIZE - page_offset;
800
801                 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
802                                            GFP_HIGHUSER | __GFP_RECLAIMABLE);
803                 if (IS_ERR(page))
804                         return PTR_ERR(page);
805
806                 vaddr = kmap_atomic(page, KM_USER0);
807                 ret = __copy_from_user_inatomic(vaddr + page_offset,
808                                                 user_data,
809                                                 page_length);
810                 kunmap_atomic(vaddr, KM_USER0);
811
812                 set_page_dirty(page);
813                 mark_page_accessed(page);
814                 page_cache_release(page);
815
816                 /* If we get a fault while copying data, then (presumably) our
817                  * source page isn't available.  Return the error and we'll
818                  * retry in the slow path.
819                  */
820                 if (ret)
821                         return -EFAULT;
822
823                 remain -= page_length;
824                 user_data += page_length;
825                 offset += page_length;
826         }
827
828         return 0;
829 }
830
831 /**
832  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
833  * the memory and maps it using kmap_atomic for copying.
834  *
835  * This avoids taking mmap_sem for faulting on the user's address while the
836  * struct_mutex is held.
837  */
838 static int
839 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
840                            struct drm_i915_gem_object *obj,
841                            struct drm_i915_gem_pwrite *args,
842                            struct drm_file *file)
843 {
844         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
845         struct mm_struct *mm = current->mm;
846         struct page **user_pages;
847         ssize_t remain;
848         loff_t offset, pinned_pages, i;
849         loff_t first_data_page, last_data_page, num_pages;
850         int shmem_page_offset;
851         int data_page_index,  data_page_offset;
852         int page_length;
853         int ret;
854         uint64_t data_ptr = args->data_ptr;
855         int do_bit17_swizzling;
856
857         remain = args->size;
858
859         /* Pin the user pages containing the data.  We can't fault while
860          * holding the struct mutex, and all of the pwrite implementations
861          * want to hold it while dereferencing the user data.
862          */
863         first_data_page = data_ptr / PAGE_SIZE;
864         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
865         num_pages = last_data_page - first_data_page + 1;
866
867         user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
868         if (user_pages == NULL)
869                 return -ENOMEM;
870
871         mutex_unlock(&dev->struct_mutex);
872         down_read(&mm->mmap_sem);
873         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
874                                       num_pages, 0, 0, user_pages, NULL);
875         up_read(&mm->mmap_sem);
876         mutex_lock(&dev->struct_mutex);
877         if (pinned_pages < num_pages) {
878                 ret = -EFAULT;
879                 goto out;
880         }
881
882         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
883         if (ret)
884                 goto out;
885
886         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
887
888         offset = args->offset;
889         obj->dirty = 1;
890
891         while (remain > 0) {
892                 struct page *page;
893
894                 /* Operation in this page
895                  *
896                  * shmem_page_offset = offset within page in shmem file
897                  * data_page_index = page number in get_user_pages return
898                  * data_page_offset = offset with data_page_index page.
899                  * page_length = bytes to copy for this page
900                  */
901                 shmem_page_offset = offset & ~PAGE_MASK;
902                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
903                 data_page_offset = data_ptr & ~PAGE_MASK;
904
905                 page_length = remain;
906                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
907                         page_length = PAGE_SIZE - shmem_page_offset;
908                 if ((data_page_offset + page_length) > PAGE_SIZE)
909                         page_length = PAGE_SIZE - data_page_offset;
910
911                 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
912                                            GFP_HIGHUSER | __GFP_RECLAIMABLE);
913                 if (IS_ERR(page)) {
914                         ret = PTR_ERR(page);
915                         goto out;
916                 }
917
918                 if (do_bit17_swizzling) {
919                         slow_shmem_bit17_copy(page,
920                                               shmem_page_offset,
921                                               user_pages[data_page_index],
922                                               data_page_offset,
923                                               page_length,
924                                               0);
925                 } else {
926                         slow_shmem_copy(page,
927                                         shmem_page_offset,
928                                         user_pages[data_page_index],
929                                         data_page_offset,
930                                         page_length);
931                 }
932
933                 set_page_dirty(page);
934                 mark_page_accessed(page);
935                 page_cache_release(page);
936
937                 remain -= page_length;
938                 data_ptr += page_length;
939                 offset += page_length;
940         }
941
942 out:
943         for (i = 0; i < pinned_pages; i++)
944                 page_cache_release(user_pages[i]);
945         drm_free_large(user_pages);
946
947         return ret;
948 }
949
950 /**
951  * Writes data to the object referenced by handle.
952  *
953  * On error, the contents of the buffer that were to be modified are undefined.
954  */
955 int
956 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
957                       struct drm_file *file)
958 {
959         struct drm_i915_gem_pwrite *args = data;
960         struct drm_i915_gem_object *obj;
961         int ret;
962
963         if (args->size == 0)
964                 return 0;
965
966         if (!access_ok(VERIFY_READ,
967                        (char __user *)(uintptr_t)args->data_ptr,
968                        args->size))
969                 return -EFAULT;
970
971         ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
972                                       args->size);
973         if (ret)
974                 return -EFAULT;
975
976         ret = i915_mutex_lock_interruptible(dev);
977         if (ret)
978                 return ret;
979
980         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
981         if (&obj->base == NULL) {
982                 ret = -ENOENT;
983                 goto unlock;
984         }
985
986         /* Bounds check destination. */
987         if (args->offset > obj->base.size ||
988             args->size > obj->base.size - args->offset) {
989                 ret = -EINVAL;
990                 goto out;
991         }
992
993         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
994
995         /* We can only do the GTT pwrite on untiled buffers, as otherwise
996          * it would end up going through the fenced access, and we'll get
997          * different detiling behavior between reading and writing.
998          * pread/pwrite currently are reading and writing from the CPU
999          * perspective, requiring manual detiling by the client.
1000          */
1001         if (obj->phys_obj)
1002                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1003         else if (obj->gtt_space &&
1004                  obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1005                 ret = i915_gem_object_pin(obj, 0, true);
1006                 if (ret)
1007                         goto out;
1008
1009                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1010                 if (ret)
1011                         goto out_unpin;
1012
1013                 ret = i915_gem_object_put_fence(obj);
1014                 if (ret)
1015                         goto out_unpin;
1016
1017                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1018                 if (ret == -EFAULT)
1019                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1020
1021 out_unpin:
1022                 i915_gem_object_unpin(obj);
1023         } else {
1024                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1025                 if (ret)
1026                         goto out;
1027
1028                 ret = -EFAULT;
1029                 if (!i915_gem_object_needs_bit17_swizzle(obj))
1030                         ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1031                 if (ret == -EFAULT)
1032                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1033         }
1034
1035 out:
1036         drm_gem_object_unreference(&obj->base);
1037 unlock:
1038         mutex_unlock(&dev->struct_mutex);
1039         return ret;
1040 }
1041
1042 /**
1043  * Called when user space prepares to use an object with the CPU, either
1044  * through the mmap ioctl's mapping or a GTT mapping.
1045  */
1046 int
1047 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1048                           struct drm_file *file)
1049 {
1050         struct drm_i915_gem_set_domain *args = data;
1051         struct drm_i915_gem_object *obj;
1052         uint32_t read_domains = args->read_domains;
1053         uint32_t write_domain = args->write_domain;
1054         int ret;
1055
1056         if (!(dev->driver->driver_features & DRIVER_GEM))
1057                 return -ENODEV;
1058
1059         /* Only handle setting domains to types used by the CPU. */
1060         if (write_domain & I915_GEM_GPU_DOMAINS)
1061                 return -EINVAL;
1062
1063         if (read_domains & I915_GEM_GPU_DOMAINS)
1064                 return -EINVAL;
1065
1066         /* Having something in the write domain implies it's in the read
1067          * domain, and only that read domain.  Enforce that in the request.
1068          */
1069         if (write_domain != 0 && read_domains != write_domain)
1070                 return -EINVAL;
1071
1072         ret = i915_mutex_lock_interruptible(dev);
1073         if (ret)
1074                 return ret;
1075
1076         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077         if (&obj->base == NULL) {
1078                 ret = -ENOENT;
1079                 goto unlock;
1080         }
1081
1082         if (read_domains & I915_GEM_DOMAIN_GTT) {
1083                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1084
1085                 /* Silently promote "you're not bound, there was nothing to do"
1086                  * to success, since the client was just asking us to
1087                  * make sure everything was done.
1088                  */
1089                 if (ret == -EINVAL)
1090                         ret = 0;
1091         } else {
1092                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1093         }
1094
1095         drm_gem_object_unreference(&obj->base);
1096 unlock:
1097         mutex_unlock(&dev->struct_mutex);
1098         return ret;
1099 }
1100
1101 /**
1102  * Called when user space has done writes to this buffer
1103  */
1104 int
1105 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1106                          struct drm_file *file)
1107 {
1108         struct drm_i915_gem_sw_finish *args = data;
1109         struct drm_i915_gem_object *obj;
1110         int ret = 0;
1111
1112         if (!(dev->driver->driver_features & DRIVER_GEM))
1113                 return -ENODEV;
1114
1115         ret = i915_mutex_lock_interruptible(dev);
1116         if (ret)
1117                 return ret;
1118
1119         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1120         if (&obj->base == NULL) {
1121                 ret = -ENOENT;
1122                 goto unlock;
1123         }
1124
1125         /* Pinned buffers may be scanout, so flush the cache */
1126         if (obj->pin_count)
1127                 i915_gem_object_flush_cpu_write_domain(obj);
1128
1129         drm_gem_object_unreference(&obj->base);
1130 unlock:
1131         mutex_unlock(&dev->struct_mutex);
1132         return ret;
1133 }
1134
1135 /**
1136  * Maps the contents of an object, returning the address it is mapped
1137  * into.
1138  *
1139  * While the mapping holds a reference on the contents of the object, it doesn't
1140  * imply a ref on the object itself.
1141  */
1142 int
1143 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1144                     struct drm_file *file)
1145 {
1146         struct drm_i915_private *dev_priv = dev->dev_private;
1147         struct drm_i915_gem_mmap *args = data;
1148         struct drm_gem_object *obj;
1149         unsigned long addr;
1150
1151         if (!(dev->driver->driver_features & DRIVER_GEM))
1152                 return -ENODEV;
1153
1154         obj = drm_gem_object_lookup(dev, file, args->handle);
1155         if (obj == NULL)
1156                 return -ENOENT;
1157
1158         if (obj->size > dev_priv->mm.gtt_mappable_end) {
1159                 drm_gem_object_unreference_unlocked(obj);
1160                 return -E2BIG;
1161         }
1162
1163         down_write(&current->mm->mmap_sem);
1164         addr = do_mmap(obj->filp, 0, args->size,
1165                        PROT_READ | PROT_WRITE, MAP_SHARED,
1166                        args->offset);
1167         up_write(&current->mm->mmap_sem);
1168         drm_gem_object_unreference_unlocked(obj);
1169         if (IS_ERR((void *)addr))
1170                 return addr;
1171
1172         args->addr_ptr = (uint64_t) addr;
1173
1174         return 0;
1175 }
1176
1177 /**
1178  * i915_gem_fault - fault a page into the GTT
1179  * vma: VMA in question
1180  * vmf: fault info
1181  *
1182  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1183  * from userspace.  The fault handler takes care of binding the object to
1184  * the GTT (if needed), allocating and programming a fence register (again,
1185  * only if needed based on whether the old reg is still valid or the object
1186  * is tiled) and inserting a new PTE into the faulting process.
1187  *
1188  * Note that the faulting process may involve evicting existing objects
1189  * from the GTT and/or fence registers to make room.  So performance may
1190  * suffer if the GTT working set is large or there are few fence registers
1191  * left.
1192  */
1193 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1194 {
1195         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1196         struct drm_device *dev = obj->base.dev;
1197         drm_i915_private_t *dev_priv = dev->dev_private;
1198         pgoff_t page_offset;
1199         unsigned long pfn;
1200         int ret = 0;
1201         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1202
1203         /* We don't use vmf->pgoff since that has the fake offset */
1204         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1205                 PAGE_SHIFT;
1206
1207         ret = i915_mutex_lock_interruptible(dev);
1208         if (ret)
1209                 goto out;
1210
1211         trace_i915_gem_object_fault(obj, page_offset, true, write);
1212
1213         /* Now bind it into the GTT if needed */
1214         if (!obj->map_and_fenceable) {
1215                 ret = i915_gem_object_unbind(obj);
1216                 if (ret)
1217                         goto unlock;
1218         }
1219         if (!obj->gtt_space) {
1220                 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1221                 if (ret)
1222                         goto unlock;
1223         }
1224
1225         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1226         if (ret)
1227                 goto unlock;
1228
1229         if (obj->tiling_mode == I915_TILING_NONE)
1230                 ret = i915_gem_object_put_fence(obj);
1231         else
1232                 ret = i915_gem_object_get_fence(obj, NULL);
1233         if (ret)
1234                 goto unlock;
1235
1236         if (i915_gem_object_is_inactive(obj))
1237                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1238
1239         obj->fault_mappable = true;
1240
1241         pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1242                 page_offset;
1243
1244         /* Finally, remap it using the new GTT offset */
1245         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1246 unlock:
1247         mutex_unlock(&dev->struct_mutex);
1248 out:
1249         switch (ret) {
1250         case -EIO:
1251         case -EAGAIN:
1252                 /* Give the error handler a chance to run and move the
1253                  * objects off the GPU active list. Next time we service the
1254                  * fault, we should be able to transition the page into the
1255                  * GTT without touching the GPU (and so avoid further
1256                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1257                  * with coherency, just lost writes.
1258                  */
1259                 set_need_resched();
1260         case 0:
1261         case -ERESTARTSYS:
1262         case -EINTR:
1263                 return VM_FAULT_NOPAGE;
1264         case -ENOMEM:
1265                 return VM_FAULT_OOM;
1266         default:
1267                 return VM_FAULT_SIGBUS;
1268         }
1269 }
1270
1271 /**
1272  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1273  * @obj: obj in question
1274  *
1275  * GEM memory mapping works by handing back to userspace a fake mmap offset
1276  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1277  * up the object based on the offset and sets up the various memory mapping
1278  * structures.
1279  *
1280  * This routine allocates and attaches a fake offset for @obj.
1281  */
1282 static int
1283 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1284 {
1285         struct drm_device *dev = obj->base.dev;
1286         struct drm_gem_mm *mm = dev->mm_private;
1287         struct drm_map_list *list;
1288         struct drm_local_map *map;
1289         int ret = 0;
1290
1291         /* Set the object up for mmap'ing */
1292         list = &obj->base.map_list;
1293         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1294         if (!list->map)
1295                 return -ENOMEM;
1296
1297         map = list->map;
1298         map->type = _DRM_GEM;
1299         map->size = obj->base.size;
1300         map->handle = obj;
1301
1302         /* Get a DRM GEM mmap offset allocated... */
1303         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1304                                                     obj->base.size / PAGE_SIZE,
1305                                                     0, 0);
1306         if (!list->file_offset_node) {
1307                 DRM_ERROR("failed to allocate offset for bo %d\n",
1308                           obj->base.name);
1309                 ret = -ENOSPC;
1310                 goto out_free_list;
1311         }
1312
1313         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1314                                                   obj->base.size / PAGE_SIZE,
1315                                                   0);
1316         if (!list->file_offset_node) {
1317                 ret = -ENOMEM;
1318                 goto out_free_list;
1319         }
1320
1321         list->hash.key = list->file_offset_node->start;
1322         ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1323         if (ret) {
1324                 DRM_ERROR("failed to add to map hash\n");
1325                 goto out_free_mm;
1326         }
1327
1328         return 0;
1329
1330 out_free_mm:
1331         drm_mm_put_block(list->file_offset_node);
1332 out_free_list:
1333         kfree(list->map);
1334         list->map = NULL;
1335
1336         return ret;
1337 }
1338
1339 /**
1340  * i915_gem_release_mmap - remove physical page mappings
1341  * @obj: obj in question
1342  *
1343  * Preserve the reservation of the mmapping with the DRM core code, but
1344  * relinquish ownership of the pages back to the system.
1345  *
1346  * It is vital that we remove the page mapping if we have mapped a tiled
1347  * object through the GTT and then lose the fence register due to
1348  * resource pressure. Similarly if the object has been moved out of the
1349  * aperture, than pages mapped into userspace must be revoked. Removing the
1350  * mapping will then trigger a page fault on the next user access, allowing
1351  * fixup by i915_gem_fault().
1352  */
1353 void
1354 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1355 {
1356         if (!obj->fault_mappable)
1357                 return;
1358
1359         unmap_mapping_range(obj->base.dev->dev_mapping,
1360                             (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1361                             obj->base.size, 1);
1362
1363         obj->fault_mappable = false;
1364 }
1365
1366 static void
1367 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1368 {
1369         struct drm_device *dev = obj->base.dev;
1370         struct drm_gem_mm *mm = dev->mm_private;
1371         struct drm_map_list *list = &obj->base.map_list;
1372
1373         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1374         drm_mm_put_block(list->file_offset_node);
1375         kfree(list->map);
1376         list->map = NULL;
1377 }
1378
1379 static uint32_t
1380 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1381 {
1382         struct drm_device *dev = obj->base.dev;
1383         uint32_t size;
1384
1385         if (INTEL_INFO(dev)->gen >= 4 ||
1386             obj->tiling_mode == I915_TILING_NONE)
1387                 return obj->base.size;
1388
1389         /* Previous chips need a power-of-two fence region when tiling */
1390         if (INTEL_INFO(dev)->gen == 3)
1391                 size = 1024*1024;
1392         else
1393                 size = 512*1024;
1394
1395         while (size < obj->base.size)
1396                 size <<= 1;
1397
1398         return size;
1399 }
1400
1401 /**
1402  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1403  * @obj: object to check
1404  *
1405  * Return the required GTT alignment for an object, taking into account
1406  * potential fence register mapping.
1407  */
1408 static uint32_t
1409 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1410 {
1411         struct drm_device *dev = obj->base.dev;
1412
1413         /*
1414          * Minimum alignment is 4k (GTT page size), but might be greater
1415          * if a fence register is needed for the object.
1416          */
1417         if (INTEL_INFO(dev)->gen >= 4 ||
1418             obj->tiling_mode == I915_TILING_NONE)
1419                 return 4096;
1420
1421         /*
1422          * Previous chips need to be aligned to the size of the smallest
1423          * fence register that can contain the object.
1424          */
1425         return i915_gem_get_gtt_size(obj);
1426 }
1427
1428 /**
1429  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1430  *                                       unfenced object
1431  * @obj: object to check
1432  *
1433  * Return the required GTT alignment for an object, only taking into account
1434  * unfenced tiled surface requirements.
1435  */
1436 uint32_t
1437 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1438 {
1439         struct drm_device *dev = obj->base.dev;
1440         int tile_height;
1441
1442         /*
1443          * Minimum alignment is 4k (GTT page size) for sane hw.
1444          */
1445         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1446             obj->tiling_mode == I915_TILING_NONE)
1447                 return 4096;
1448
1449         /*
1450          * Older chips need unfenced tiled buffers to be aligned to the left
1451          * edge of an even tile row (where tile rows are counted as if the bo is
1452          * placed in a fenced gtt region).
1453          */
1454         if (IS_GEN2(dev) ||
1455             (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1456                 tile_height = 32;
1457         else
1458                 tile_height = 8;
1459
1460         return tile_height * obj->stride * 2;
1461 }
1462
1463 int
1464 i915_gem_mmap_gtt(struct drm_file *file,
1465                   struct drm_device *dev,
1466                   uint32_t handle,
1467                   uint64_t *offset)
1468 {
1469         struct drm_i915_private *dev_priv = dev->dev_private;
1470         struct drm_i915_gem_object *obj;
1471         int ret;
1472
1473         if (!(dev->driver->driver_features & DRIVER_GEM))
1474                 return -ENODEV;
1475
1476         ret = i915_mutex_lock_interruptible(dev);
1477         if (ret)
1478                 return ret;
1479
1480         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1481         if (&obj->base == NULL) {
1482                 ret = -ENOENT;
1483                 goto unlock;
1484         }
1485
1486         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1487                 ret = -E2BIG;
1488                 goto unlock;
1489         }
1490
1491         if (obj->madv != I915_MADV_WILLNEED) {
1492                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1493                 ret = -EINVAL;
1494                 goto out;
1495         }
1496
1497         if (!obj->base.map_list.map) {
1498                 ret = i915_gem_create_mmap_offset(obj);
1499                 if (ret)
1500                         goto out;
1501         }
1502
1503         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1504
1505 out:
1506         drm_gem_object_unreference(&obj->base);
1507 unlock:
1508         mutex_unlock(&dev->struct_mutex);
1509         return ret;
1510 }
1511
1512 /**
1513  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1514  * @dev: DRM device
1515  * @data: GTT mapping ioctl data
1516  * @file: GEM object info
1517  *
1518  * Simply returns the fake offset to userspace so it can mmap it.
1519  * The mmap call will end up in drm_gem_mmap(), which will set things
1520  * up so we can get faults in the handler above.
1521  *
1522  * The fault handler will take care of binding the object into the GTT
1523  * (since it may have been evicted to make room for something), allocating
1524  * a fence register, and mapping the appropriate aperture address into
1525  * userspace.
1526  */
1527 int
1528 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1529                         struct drm_file *file)
1530 {
1531         struct drm_i915_gem_mmap_gtt *args = data;
1532
1533         if (!(dev->driver->driver_features & DRIVER_GEM))
1534                 return -ENODEV;
1535
1536         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1537 }
1538
1539
1540 static int
1541 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1542                               gfp_t gfpmask)
1543 {
1544         int page_count, i;
1545         struct address_space *mapping;
1546         struct inode *inode;
1547         struct page *page;
1548
1549         /* Get the list of pages out of our struct file.  They'll be pinned
1550          * at this point until we release them.
1551          */
1552         page_count = obj->base.size / PAGE_SIZE;
1553         BUG_ON(obj->pages != NULL);
1554         obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1555         if (obj->pages == NULL)
1556                 return -ENOMEM;
1557
1558         inode = obj->base.filp->f_path.dentry->d_inode;
1559         mapping = inode->i_mapping;
1560         for (i = 0; i < page_count; i++) {
1561                 page = read_cache_page_gfp(mapping, i,
1562                                            GFP_HIGHUSER |
1563                                            __GFP_COLD |
1564                                            __GFP_RECLAIMABLE |
1565                                            gfpmask);
1566                 if (IS_ERR(page))
1567                         goto err_pages;
1568
1569                 obj->pages[i] = page;
1570         }
1571
1572         if (obj->tiling_mode != I915_TILING_NONE)
1573                 i915_gem_object_do_bit_17_swizzle(obj);
1574
1575         return 0;
1576
1577 err_pages:
1578         while (i--)
1579                 page_cache_release(obj->pages[i]);
1580
1581         drm_free_large(obj->pages);
1582         obj->pages = NULL;
1583         return PTR_ERR(page);
1584 }
1585
1586 static void
1587 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1588 {
1589         int page_count = obj->base.size / PAGE_SIZE;
1590         int i;
1591
1592         BUG_ON(obj->madv == __I915_MADV_PURGED);
1593
1594         if (obj->tiling_mode != I915_TILING_NONE)
1595                 i915_gem_object_save_bit_17_swizzle(obj);
1596
1597         if (obj->madv == I915_MADV_DONTNEED)
1598                 obj->dirty = 0;
1599
1600         for (i = 0; i < page_count; i++) {
1601                 if (obj->dirty)
1602                         set_page_dirty(obj->pages[i]);
1603
1604                 if (obj->madv == I915_MADV_WILLNEED)
1605                         mark_page_accessed(obj->pages[i]);
1606
1607                 page_cache_release(obj->pages[i]);
1608         }
1609         obj->dirty = 0;
1610
1611         drm_free_large(obj->pages);
1612         obj->pages = NULL;
1613 }
1614
1615 void
1616 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1617                                struct intel_ring_buffer *ring,
1618                                u32 seqno)
1619 {
1620         struct drm_device *dev = obj->base.dev;
1621         struct drm_i915_private *dev_priv = dev->dev_private;
1622
1623         BUG_ON(ring == NULL);
1624         obj->ring = ring;
1625
1626         /* Add a reference if we're newly entering the active list. */
1627         if (!obj->active) {
1628                 drm_gem_object_reference(&obj->base);
1629                 obj->active = 1;
1630         }
1631
1632         /* Move from whatever list we were on to the tail of execution. */
1633         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1634         list_move_tail(&obj->ring_list, &ring->active_list);
1635
1636         obj->last_rendering_seqno = seqno;
1637         if (obj->fenced_gpu_access) {
1638                 struct drm_i915_fence_reg *reg;
1639
1640                 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1641
1642                 obj->last_fenced_seqno = seqno;
1643                 obj->last_fenced_ring = ring;
1644
1645                 reg = &dev_priv->fence_regs[obj->fence_reg];
1646                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1647         }
1648 }
1649
1650 static void
1651 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1652 {
1653         list_del_init(&obj->ring_list);
1654         obj->last_rendering_seqno = 0;
1655 }
1656
1657 static void
1658 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1659 {
1660         struct drm_device *dev = obj->base.dev;
1661         drm_i915_private_t *dev_priv = dev->dev_private;
1662
1663         BUG_ON(!obj->active);
1664         list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1665
1666         i915_gem_object_move_off_active(obj);
1667 }
1668
1669 static void
1670 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1671 {
1672         struct drm_device *dev = obj->base.dev;
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674
1675         if (obj->pin_count != 0)
1676                 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1677         else
1678                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1679
1680         BUG_ON(!list_empty(&obj->gpu_write_list));
1681         BUG_ON(!obj->active);
1682         obj->ring = NULL;
1683
1684         i915_gem_object_move_off_active(obj);
1685         obj->fenced_gpu_access = false;
1686
1687         obj->active = 0;
1688         obj->pending_gpu_write = false;
1689         drm_gem_object_unreference(&obj->base);
1690
1691         WARN_ON(i915_verify_lists(dev));
1692 }
1693
1694 /* Immediately discard the backing storage */
1695 static void
1696 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1697 {
1698         struct inode *inode;
1699
1700         /* Our goal here is to return as much of the memory as
1701          * is possible back to the system as we are called from OOM.
1702          * To do this we must instruct the shmfs to drop all of its
1703          * backing pages, *now*. Here we mirror the actions taken
1704          * when by shmem_delete_inode() to release the backing store.
1705          */
1706         inode = obj->base.filp->f_path.dentry->d_inode;
1707         truncate_inode_pages(inode->i_mapping, 0);
1708         if (inode->i_op->truncate_range)
1709                 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1710
1711         obj->madv = __I915_MADV_PURGED;
1712 }
1713
1714 static inline int
1715 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1716 {
1717         return obj->madv == I915_MADV_DONTNEED;
1718 }
1719
1720 static void
1721 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1722                                uint32_t flush_domains)
1723 {
1724         struct drm_i915_gem_object *obj, *next;
1725
1726         list_for_each_entry_safe(obj, next,
1727                                  &ring->gpu_write_list,
1728                                  gpu_write_list) {
1729                 if (obj->base.write_domain & flush_domains) {
1730                         uint32_t old_write_domain = obj->base.write_domain;
1731
1732                         obj->base.write_domain = 0;
1733                         list_del_init(&obj->gpu_write_list);
1734                         i915_gem_object_move_to_active(obj, ring,
1735                                                        i915_gem_next_request_seqno(ring));
1736
1737                         trace_i915_gem_object_change_domain(obj,
1738                                                             obj->base.read_domains,
1739                                                             old_write_domain);
1740                 }
1741         }
1742 }
1743
1744 int
1745 i915_add_request(struct intel_ring_buffer *ring,
1746                  struct drm_file *file,
1747                  struct drm_i915_gem_request *request)
1748 {
1749         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1750         uint32_t seqno;
1751         int was_empty;
1752         int ret;
1753
1754         BUG_ON(request == NULL);
1755
1756         ret = ring->add_request(ring, &seqno);
1757         if (ret)
1758             return ret;
1759
1760         trace_i915_gem_request_add(ring, seqno);
1761
1762         request->seqno = seqno;
1763         request->ring = ring;
1764         request->emitted_jiffies = jiffies;
1765         was_empty = list_empty(&ring->request_list);
1766         list_add_tail(&request->list, &ring->request_list);
1767
1768         if (file) {
1769                 struct drm_i915_file_private *file_priv = file->driver_priv;
1770
1771                 spin_lock(&file_priv->mm.lock);
1772                 request->file_priv = file_priv;
1773                 list_add_tail(&request->client_list,
1774                               &file_priv->mm.request_list);
1775                 spin_unlock(&file_priv->mm.lock);
1776         }
1777
1778         ring->outstanding_lazy_request = false;
1779
1780         if (!dev_priv->mm.suspended) {
1781                 mod_timer(&dev_priv->hangcheck_timer,
1782                           jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1783                 if (was_empty)
1784                         queue_delayed_work(dev_priv->wq,
1785                                            &dev_priv->mm.retire_work, HZ);
1786         }
1787         return 0;
1788 }
1789
1790 static inline void
1791 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1792 {
1793         struct drm_i915_file_private *file_priv = request->file_priv;
1794
1795         if (!file_priv)
1796                 return;
1797
1798         spin_lock(&file_priv->mm.lock);
1799         list_del(&request->client_list);
1800         request->file_priv = NULL;
1801         spin_unlock(&file_priv->mm.lock);
1802 }
1803
1804 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1805                                       struct intel_ring_buffer *ring)
1806 {
1807         while (!list_empty(&ring->request_list)) {
1808                 struct drm_i915_gem_request *request;
1809
1810                 request = list_first_entry(&ring->request_list,
1811                                            struct drm_i915_gem_request,
1812                                            list);
1813
1814                 list_del(&request->list);
1815                 i915_gem_request_remove_from_client(request);
1816                 kfree(request);
1817         }
1818
1819         while (!list_empty(&ring->active_list)) {
1820                 struct drm_i915_gem_object *obj;
1821
1822                 obj = list_first_entry(&ring->active_list,
1823                                        struct drm_i915_gem_object,
1824                                        ring_list);
1825
1826                 obj->base.write_domain = 0;
1827                 list_del_init(&obj->gpu_write_list);
1828                 i915_gem_object_move_to_inactive(obj);
1829         }
1830 }
1831
1832 static void i915_gem_reset_fences(struct drm_device *dev)
1833 {
1834         struct drm_i915_private *dev_priv = dev->dev_private;
1835         int i;
1836
1837         for (i = 0; i < 16; i++) {
1838                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1839                 struct drm_i915_gem_object *obj = reg->obj;
1840
1841                 if (!obj)
1842                         continue;
1843
1844                 if (obj->tiling_mode)
1845                         i915_gem_release_mmap(obj);
1846
1847                 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1848                 reg->obj->fenced_gpu_access = false;
1849                 reg->obj->last_fenced_seqno = 0;
1850                 reg->obj->last_fenced_ring = NULL;
1851                 i915_gem_clear_fence_reg(dev, reg);
1852         }
1853 }
1854
1855 void i915_gem_reset(struct drm_device *dev)
1856 {
1857         struct drm_i915_private *dev_priv = dev->dev_private;
1858         struct drm_i915_gem_object *obj;
1859         int i;
1860
1861         for (i = 0; i < I915_NUM_RINGS; i++)
1862                 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1863
1864         /* Remove anything from the flushing lists. The GPU cache is likely
1865          * to be lost on reset along with the data, so simply move the
1866          * lost bo to the inactive list.
1867          */
1868         while (!list_empty(&dev_priv->mm.flushing_list)) {
1869                 obj= list_first_entry(&dev_priv->mm.flushing_list,
1870                                       struct drm_i915_gem_object,
1871                                       mm_list);
1872
1873                 obj->base.write_domain = 0;
1874                 list_del_init(&obj->gpu_write_list);
1875                 i915_gem_object_move_to_inactive(obj);
1876         }
1877
1878         /* Move everything out of the GPU domains to ensure we do any
1879          * necessary invalidation upon reuse.
1880          */
1881         list_for_each_entry(obj,
1882                             &dev_priv->mm.inactive_list,
1883                             mm_list)
1884         {
1885                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1886         }
1887
1888         /* The fence registers are invalidated so clear them out */
1889         i915_gem_reset_fences(dev);
1890 }
1891
1892 /**
1893  * This function clears the request list as sequence numbers are passed.
1894  */
1895 static void
1896 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1897 {
1898         uint32_t seqno;
1899         int i;
1900
1901         if (list_empty(&ring->request_list))
1902                 return;
1903
1904         WARN_ON(i915_verify_lists(ring->dev));
1905
1906         seqno = ring->get_seqno(ring);
1907
1908         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1909                 if (seqno >= ring->sync_seqno[i])
1910                         ring->sync_seqno[i] = 0;
1911
1912         while (!list_empty(&ring->request_list)) {
1913                 struct drm_i915_gem_request *request;
1914
1915                 request = list_first_entry(&ring->request_list,
1916                                            struct drm_i915_gem_request,
1917                                            list);
1918
1919                 if (!i915_seqno_passed(seqno, request->seqno))
1920                         break;
1921
1922                 trace_i915_gem_request_retire(ring, request->seqno);
1923
1924                 list_del(&request->list);
1925                 i915_gem_request_remove_from_client(request);
1926                 kfree(request);
1927         }
1928
1929         /* Move any buffers on the active list that are no longer referenced
1930          * by the ringbuffer to the flushing/inactive lists as appropriate.
1931          */
1932         while (!list_empty(&ring->active_list)) {
1933                 struct drm_i915_gem_object *obj;
1934
1935                 obj= list_first_entry(&ring->active_list,
1936                                       struct drm_i915_gem_object,
1937                                       ring_list);
1938
1939                 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1940                         break;
1941
1942                 if (obj->base.write_domain != 0)
1943                         i915_gem_object_move_to_flushing(obj);
1944                 else
1945                         i915_gem_object_move_to_inactive(obj);
1946         }
1947
1948         if (unlikely(ring->trace_irq_seqno &&
1949                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1950                 ring->irq_put(ring);
1951                 ring->trace_irq_seqno = 0;
1952         }
1953
1954         WARN_ON(i915_verify_lists(ring->dev));
1955 }
1956
1957 void
1958 i915_gem_retire_requests(struct drm_device *dev)
1959 {
1960         drm_i915_private_t *dev_priv = dev->dev_private;
1961         int i;
1962
1963         if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1964             struct drm_i915_gem_object *obj, *next;
1965
1966             /* We must be careful that during unbind() we do not
1967              * accidentally infinitely recurse into retire requests.
1968              * Currently:
1969              *   retire -> free -> unbind -> wait -> retire_ring
1970              */
1971             list_for_each_entry_safe(obj, next,
1972                                      &dev_priv->mm.deferred_free_list,
1973                                      mm_list)
1974                     i915_gem_free_object_tail(obj);
1975         }
1976
1977         for (i = 0; i < I915_NUM_RINGS; i++)
1978                 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1979 }
1980
1981 static void
1982 i915_gem_retire_work_handler(struct work_struct *work)
1983 {
1984         drm_i915_private_t *dev_priv;
1985         struct drm_device *dev;
1986         bool idle;
1987         int i;
1988
1989         dev_priv = container_of(work, drm_i915_private_t,
1990                                 mm.retire_work.work);
1991         dev = dev_priv->dev;
1992
1993         /* Come back later if the device is busy... */
1994         if (!mutex_trylock(&dev->struct_mutex)) {
1995                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1996                 return;
1997         }
1998
1999         i915_gem_retire_requests(dev);
2000
2001         /* Send a periodic flush down the ring so we don't hold onto GEM
2002          * objects indefinitely.
2003          */
2004         idle = true;
2005         for (i = 0; i < I915_NUM_RINGS; i++) {
2006                 struct intel_ring_buffer *ring = &dev_priv->ring[i];
2007
2008                 if (!list_empty(&ring->gpu_write_list)) {
2009                         struct drm_i915_gem_request *request;
2010                         int ret;
2011
2012                         ret = i915_gem_flush_ring(ring,
2013                                                   0, I915_GEM_GPU_DOMAINS);
2014                         request = kzalloc(sizeof(*request), GFP_KERNEL);
2015                         if (ret || request == NULL ||
2016                             i915_add_request(ring, NULL, request))
2017                             kfree(request);
2018                 }
2019
2020                 idle &= list_empty(&ring->request_list);
2021         }
2022
2023         if (!dev_priv->mm.suspended && !idle)
2024                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2025
2026         mutex_unlock(&dev->struct_mutex);
2027 }
2028
2029 /**
2030  * Waits for a sequence number to be signaled, and cleans up the
2031  * request and object lists appropriately for that event.
2032  */
2033 int
2034 i915_wait_request(struct intel_ring_buffer *ring,
2035                   uint32_t seqno)
2036 {
2037         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2038         u32 ier;
2039         int ret = 0;
2040
2041         BUG_ON(seqno == 0);
2042
2043         if (atomic_read(&dev_priv->mm.wedged)) {
2044                 struct completion *x = &dev_priv->error_completion;
2045                 bool recovery_complete;
2046                 unsigned long flags;
2047
2048                 /* Give the error handler a chance to run. */
2049                 spin_lock_irqsave(&x->wait.lock, flags);
2050                 recovery_complete = x->done > 0;
2051                 spin_unlock_irqrestore(&x->wait.lock, flags);
2052
2053                 return recovery_complete ? -EIO : -EAGAIN;
2054         }
2055
2056         if (seqno == ring->outstanding_lazy_request) {
2057                 struct drm_i915_gem_request *request;
2058
2059                 request = kzalloc(sizeof(*request), GFP_KERNEL);
2060                 if (request == NULL)
2061                         return -ENOMEM;
2062
2063                 ret = i915_add_request(ring, NULL, request);
2064                 if (ret) {
2065                         kfree(request);
2066                         return ret;
2067                 }
2068
2069                 seqno = request->seqno;
2070         }
2071
2072         if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2073                 if (HAS_PCH_SPLIT(ring->dev))
2074                         ier = I915_READ(DEIER) | I915_READ(GTIER);
2075                 else
2076                         ier = I915_READ(IER);
2077                 if (!ier) {
2078                         DRM_ERROR("something (likely vbetool) disabled "
2079                                   "interrupts, re-enabling\n");
2080                         i915_driver_irq_preinstall(ring->dev);
2081                         i915_driver_irq_postinstall(ring->dev);
2082                 }
2083
2084                 trace_i915_gem_request_wait_begin(ring, seqno);
2085
2086                 ring->waiting_seqno = seqno;
2087                 if (ring->irq_get(ring)) {
2088                         if (dev_priv->mm.interruptible)
2089                                 ret = wait_event_interruptible(ring->irq_queue,
2090                                                                i915_seqno_passed(ring->get_seqno(ring), seqno)
2091                                                                || atomic_read(&dev_priv->mm.wedged));
2092                         else
2093                                 wait_event(ring->irq_queue,
2094                                            i915_seqno_passed(ring->get_seqno(ring), seqno)
2095                                            || atomic_read(&dev_priv->mm.wedged));
2096
2097                         ring->irq_put(ring);
2098                 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2099                                                       seqno) ||
2100                                     atomic_read(&dev_priv->mm.wedged), 3000))
2101                         ret = -EBUSY;
2102                 ring->waiting_seqno = 0;
2103
2104                 trace_i915_gem_request_wait_end(ring, seqno);
2105         }
2106         if (atomic_read(&dev_priv->mm.wedged))
2107                 ret = -EAGAIN;
2108
2109         if (ret && ret != -ERESTARTSYS)
2110                 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2111                           __func__, ret, seqno, ring->get_seqno(ring),
2112                           dev_priv->next_seqno);
2113
2114         /* Directly dispatch request retiring.  While we have the work queue
2115          * to handle this, the waiter on a request often wants an associated
2116          * buffer to have made it to the inactive list, and we would need
2117          * a separate wait queue to handle that.
2118          */
2119         if (ret == 0)
2120                 i915_gem_retire_requests_ring(ring);
2121
2122         return ret;
2123 }
2124
2125 /**
2126  * Ensures that all rendering to the object has completed and the object is
2127  * safe to unbind from the GTT or access from the CPU.
2128  */
2129 int
2130 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2131 {
2132         int ret;
2133
2134         /* This function only exists to support waiting for existing rendering,
2135          * not for emitting required flushes.
2136          */
2137         BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2138
2139         /* If there is rendering queued on the buffer being evicted, wait for
2140          * it.
2141          */
2142         if (obj->active) {
2143                 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2144                 if (ret)
2145                         return ret;
2146         }
2147
2148         return 0;
2149 }
2150
2151 /**
2152  * Unbinds an object from the GTT aperture.
2153  */
2154 int
2155 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2156 {
2157         int ret = 0;
2158
2159         if (obj->gtt_space == NULL)
2160                 return 0;
2161
2162         if (obj->pin_count != 0) {
2163                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2164                 return -EINVAL;
2165         }
2166
2167         /* blow away mappings if mapped through GTT */
2168         i915_gem_release_mmap(obj);
2169
2170         /* Move the object to the CPU domain to ensure that
2171          * any possible CPU writes while it's not in the GTT
2172          * are flushed when we go to remap it. This will
2173          * also ensure that all pending GPU writes are finished
2174          * before we unbind.
2175          */
2176         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2177         if (ret == -ERESTARTSYS)
2178                 return ret;
2179         /* Continue on if we fail due to EIO, the GPU is hung so we
2180          * should be safe and we need to cleanup or else we might
2181          * cause memory corruption through use-after-free.
2182          */
2183         if (ret) {
2184                 i915_gem_clflush_object(obj);
2185                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2186         }
2187
2188         /* release the fence reg _after_ flushing */
2189         ret = i915_gem_object_put_fence(obj);
2190         if (ret == -ERESTARTSYS)
2191                 return ret;
2192
2193         trace_i915_gem_object_unbind(obj);
2194
2195         i915_gem_gtt_unbind_object(obj);
2196         i915_gem_object_put_pages_gtt(obj);
2197
2198         list_del_init(&obj->gtt_list);
2199         list_del_init(&obj->mm_list);
2200         /* Avoid an unnecessary call to unbind on rebind. */
2201         obj->map_and_fenceable = true;
2202
2203         drm_mm_put_block(obj->gtt_space);
2204         obj->gtt_space = NULL;
2205         obj->gtt_offset = 0;
2206
2207         if (i915_gem_object_is_purgeable(obj))
2208                 i915_gem_object_truncate(obj);
2209
2210         return ret;
2211 }
2212
2213 int
2214 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2215                     uint32_t invalidate_domains,
2216                     uint32_t flush_domains)
2217 {
2218         int ret;
2219
2220         trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2221
2222         ret = ring->flush(ring, invalidate_domains, flush_domains);
2223         if (ret)
2224                 return ret;
2225
2226         i915_gem_process_flushing_list(ring, flush_domains);
2227         return 0;
2228 }
2229
2230 static int i915_ring_idle(struct intel_ring_buffer *ring)
2231 {
2232         int ret;
2233
2234         if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2235                 return 0;
2236
2237         if (!list_empty(&ring->gpu_write_list)) {
2238                 ret = i915_gem_flush_ring(ring,
2239                                     I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2240                 if (ret)
2241                         return ret;
2242         }
2243
2244         return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2245 }
2246
2247 int
2248 i915_gpu_idle(struct drm_device *dev)
2249 {
2250         drm_i915_private_t *dev_priv = dev->dev_private;
2251         bool lists_empty;
2252         int ret, i;
2253
2254         lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2255                        list_empty(&dev_priv->mm.active_list));
2256         if (lists_empty)
2257                 return 0;
2258
2259         /* Flush everything onto the inactive list. */
2260         for (i = 0; i < I915_NUM_RINGS; i++) {
2261                 ret = i915_ring_idle(&dev_priv->ring[i]);
2262                 if (ret)
2263                         return ret;
2264         }
2265
2266         return 0;
2267 }
2268
2269 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2270                                        struct intel_ring_buffer *pipelined)
2271 {
2272         struct drm_device *dev = obj->base.dev;
2273         drm_i915_private_t *dev_priv = dev->dev_private;
2274         u32 size = obj->gtt_space->size;
2275         int regnum = obj->fence_reg;
2276         uint64_t val;
2277
2278         val = (uint64_t)((obj->gtt_offset + size - 4096) &
2279                          0xfffff000) << 32;
2280         val |= obj->gtt_offset & 0xfffff000;
2281         val |= (uint64_t)((obj->stride / 128) - 1) <<
2282                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2283
2284         if (obj->tiling_mode == I915_TILING_Y)
2285                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2286         val |= I965_FENCE_REG_VALID;
2287
2288         if (pipelined) {
2289                 int ret = intel_ring_begin(pipelined, 6);
2290                 if (ret)
2291                         return ret;
2292
2293                 intel_ring_emit(pipelined, MI_NOOP);
2294                 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2295                 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2296                 intel_ring_emit(pipelined, (u32)val);
2297                 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2298                 intel_ring_emit(pipelined, (u32)(val >> 32));
2299                 intel_ring_advance(pipelined);
2300         } else
2301                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2302
2303         return 0;
2304 }
2305
2306 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2307                                 struct intel_ring_buffer *pipelined)
2308 {
2309         struct drm_device *dev = obj->base.dev;
2310         drm_i915_private_t *dev_priv = dev->dev_private;
2311         u32 size = obj->gtt_space->size;
2312         int regnum = obj->fence_reg;
2313         uint64_t val;
2314
2315         val = (uint64_t)((obj->gtt_offset + size - 4096) &
2316                     0xfffff000) << 32;
2317         val |= obj->gtt_offset & 0xfffff000;
2318         val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2319         if (obj->tiling_mode == I915_TILING_Y)
2320                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2321         val |= I965_FENCE_REG_VALID;
2322
2323         if (pipelined) {
2324                 int ret = intel_ring_begin(pipelined, 6);
2325                 if (ret)
2326                         return ret;
2327
2328                 intel_ring_emit(pipelined, MI_NOOP);
2329                 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2330                 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2331                 intel_ring_emit(pipelined, (u32)val);
2332                 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2333                 intel_ring_emit(pipelined, (u32)(val >> 32));
2334                 intel_ring_advance(pipelined);
2335         } else
2336                 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2337
2338         return 0;
2339 }
2340
2341 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2342                                 struct intel_ring_buffer *pipelined)
2343 {
2344         struct drm_device *dev = obj->base.dev;
2345         drm_i915_private_t *dev_priv = dev->dev_private;
2346         u32 size = obj->gtt_space->size;
2347         u32 fence_reg, val, pitch_val;
2348         int tile_width;
2349
2350         if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2351                  (size & -size) != size ||
2352                  (obj->gtt_offset & (size - 1)),
2353                  "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2354                  obj->gtt_offset, obj->map_and_fenceable, size))
2355                 return -EINVAL;
2356
2357         if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2358                 tile_width = 128;
2359         else
2360                 tile_width = 512;
2361
2362         /* Note: pitch better be a power of two tile widths */
2363         pitch_val = obj->stride / tile_width;
2364         pitch_val = ffs(pitch_val) - 1;
2365
2366         val = obj->gtt_offset;
2367         if (obj->tiling_mode == I915_TILING_Y)
2368                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2369         val |= I915_FENCE_SIZE_BITS(size);
2370         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2371         val |= I830_FENCE_REG_VALID;
2372
2373         fence_reg = obj->fence_reg;
2374         if (fence_reg < 8)
2375                 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2376         else
2377                 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2378
2379         if (pipelined) {
2380                 int ret = intel_ring_begin(pipelined, 4);
2381                 if (ret)
2382                         return ret;
2383
2384                 intel_ring_emit(pipelined, MI_NOOP);
2385                 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2386                 intel_ring_emit(pipelined, fence_reg);
2387                 intel_ring_emit(pipelined, val);
2388                 intel_ring_advance(pipelined);
2389         } else
2390                 I915_WRITE(fence_reg, val);
2391
2392         return 0;
2393 }
2394
2395 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2396                                 struct intel_ring_buffer *pipelined)
2397 {
2398         struct drm_device *dev = obj->base.dev;
2399         drm_i915_private_t *dev_priv = dev->dev_private;
2400         u32 size = obj->gtt_space->size;
2401         int regnum = obj->fence_reg;
2402         uint32_t val;
2403         uint32_t pitch_val;
2404
2405         if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2406                  (size & -size) != size ||
2407                  (obj->gtt_offset & (size - 1)),
2408                  "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2409                  obj->gtt_offset, size))
2410                 return -EINVAL;
2411
2412         pitch_val = obj->stride / 128;
2413         pitch_val = ffs(pitch_val) - 1;
2414
2415         val = obj->gtt_offset;
2416         if (obj->tiling_mode == I915_TILING_Y)
2417                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2418         val |= I830_FENCE_SIZE_BITS(size);
2419         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2420         val |= I830_FENCE_REG_VALID;
2421
2422         if (pipelined) {
2423                 int ret = intel_ring_begin(pipelined, 4);
2424                 if (ret)
2425                         return ret;
2426
2427                 intel_ring_emit(pipelined, MI_NOOP);
2428                 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2429                 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2430                 intel_ring_emit(pipelined, val);
2431                 intel_ring_advance(pipelined);
2432         } else
2433                 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2434
2435         return 0;
2436 }
2437
2438 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2439 {
2440         return i915_seqno_passed(ring->get_seqno(ring), seqno);
2441 }
2442
2443 static int
2444 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2445                             struct intel_ring_buffer *pipelined)
2446 {
2447         int ret;
2448
2449         if (obj->fenced_gpu_access) {
2450                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2451                         ret = i915_gem_flush_ring(obj->last_fenced_ring,
2452                                                   0, obj->base.write_domain);
2453                         if (ret)
2454                                 return ret;
2455                 }
2456
2457                 obj->fenced_gpu_access = false;
2458         }
2459
2460         if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2461                 if (!ring_passed_seqno(obj->last_fenced_ring,
2462                                        obj->last_fenced_seqno)) {
2463                         ret = i915_wait_request(obj->last_fenced_ring,
2464                                                 obj->last_fenced_seqno);
2465                         if (ret)
2466                                 return ret;
2467                 }
2468
2469                 obj->last_fenced_seqno = 0;
2470                 obj->last_fenced_ring = NULL;
2471         }
2472
2473         /* Ensure that all CPU reads are completed before installing a fence
2474          * and all writes before removing the fence.
2475          */
2476         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2477                 mb();
2478
2479         return 0;
2480 }
2481
2482 int
2483 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2484 {
2485         int ret;
2486
2487         if (obj->tiling_mode)
2488                 i915_gem_release_mmap(obj);
2489
2490         ret = i915_gem_object_flush_fence(obj, NULL);
2491         if (ret)
2492                 return ret;
2493
2494         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2495                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2496                 i915_gem_clear_fence_reg(obj->base.dev,
2497                                          &dev_priv->fence_regs[obj->fence_reg]);
2498
2499                 obj->fence_reg = I915_FENCE_REG_NONE;
2500         }
2501
2502         return 0;
2503 }
2504
2505 static struct drm_i915_fence_reg *
2506 i915_find_fence_reg(struct drm_device *dev,
2507                     struct intel_ring_buffer *pipelined)
2508 {
2509         struct drm_i915_private *dev_priv = dev->dev_private;
2510         struct drm_i915_fence_reg *reg, *first, *avail;
2511         int i;
2512
2513         /* First try to find a free reg */
2514         avail = NULL;
2515         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2516                 reg = &dev_priv->fence_regs[i];
2517                 if (!reg->obj)
2518                         return reg;
2519
2520                 if (!reg->obj->pin_count)
2521                         avail = reg;
2522         }
2523
2524         if (avail == NULL)
2525                 return NULL;
2526
2527         /* None available, try to steal one or wait for a user to finish */
2528         avail = first = NULL;
2529         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2530                 if (reg->obj->pin_count)
2531                         continue;
2532
2533                 if (first == NULL)
2534                         first = reg;
2535
2536                 if (!pipelined ||
2537                     !reg->obj->last_fenced_ring ||
2538                     reg->obj->last_fenced_ring == pipelined) {
2539                         avail = reg;
2540                         break;
2541                 }
2542         }
2543
2544         if (avail == NULL)
2545                 avail = first;
2546
2547         return avail;
2548 }
2549
2550 /**
2551  * i915_gem_object_get_fence - set up a fence reg for an object
2552  * @obj: object to map through a fence reg
2553  * @pipelined: ring on which to queue the change, or NULL for CPU access
2554  * @interruptible: must we wait uninterruptibly for the register to retire?
2555  *
2556  * When mapping objects through the GTT, userspace wants to be able to write
2557  * to them without having to worry about swizzling if the object is tiled.
2558  *
2559  * This function walks the fence regs looking for a free one for @obj,
2560  * stealing one if it can't find any.
2561  *
2562  * It then sets up the reg based on the object's properties: address, pitch
2563  * and tiling format.
2564  */
2565 int
2566 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2567                           struct intel_ring_buffer *pipelined)
2568 {
2569         struct drm_device *dev = obj->base.dev;
2570         struct drm_i915_private *dev_priv = dev->dev_private;
2571         struct drm_i915_fence_reg *reg;
2572         int ret;
2573
2574         /* XXX disable pipelining. There are bugs. Shocking. */
2575         pipelined = NULL;
2576
2577         /* Just update our place in the LRU if our fence is getting reused. */
2578         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2579                 reg = &dev_priv->fence_regs[obj->fence_reg];
2580                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2581
2582                 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2583                         pipelined = NULL;
2584
2585                 if (!pipelined) {
2586                         if (reg->setup_seqno) {
2587                                 if (!ring_passed_seqno(obj->last_fenced_ring,
2588                                                        reg->setup_seqno)) {
2589                                         ret = i915_wait_request(obj->last_fenced_ring,
2590                                                                 reg->setup_seqno);
2591                                         if (ret)
2592                                                 return ret;
2593                                 }
2594
2595                                 reg->setup_seqno = 0;
2596                         }
2597                 } else if (obj->last_fenced_ring &&
2598                            obj->last_fenced_ring != pipelined) {
2599                         ret = i915_gem_object_flush_fence(obj, pipelined);
2600                         if (ret)
2601                                 return ret;
2602                 } else if (obj->tiling_changed) {
2603                         if (obj->fenced_gpu_access) {
2604                                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2605                                         ret = i915_gem_flush_ring(obj->ring,
2606                                                                   0, obj->base.write_domain);
2607                                         if (ret)
2608                                                 return ret;
2609                                 }
2610
2611                                 obj->fenced_gpu_access = false;
2612                         }
2613                 }
2614
2615                 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2616                         pipelined = NULL;
2617                 BUG_ON(!pipelined && reg->setup_seqno);
2618
2619                 if (obj->tiling_changed) {
2620                         if (pipelined) {
2621                                 reg->setup_seqno =
2622                                         i915_gem_next_request_seqno(pipelined);
2623                                 obj->last_fenced_seqno = reg->setup_seqno;
2624                                 obj->last_fenced_ring = pipelined;
2625                         }
2626                         goto update;
2627                 }
2628
2629                 return 0;
2630         }
2631
2632         reg = i915_find_fence_reg(dev, pipelined);
2633         if (reg == NULL)
2634                 return -ENOSPC;
2635
2636         ret = i915_gem_object_flush_fence(obj, pipelined);
2637         if (ret)
2638                 return ret;
2639
2640         if (reg->obj) {
2641                 struct drm_i915_gem_object *old = reg->obj;
2642
2643                 drm_gem_object_reference(&old->base);
2644
2645                 if (old->tiling_mode)
2646                         i915_gem_release_mmap(old);
2647
2648                 ret = i915_gem_object_flush_fence(old, pipelined);
2649                 if (ret) {
2650                         drm_gem_object_unreference(&old->base);
2651                         return ret;
2652                 }
2653
2654                 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2655                         pipelined = NULL;
2656
2657                 old->fence_reg = I915_FENCE_REG_NONE;
2658                 old->last_fenced_ring = pipelined;
2659                 old->last_fenced_seqno =
2660                         pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2661
2662                 drm_gem_object_unreference(&old->base);
2663         } else if (obj->last_fenced_seqno == 0)
2664                 pipelined = NULL;
2665
2666         reg->obj = obj;
2667         list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2668         obj->fence_reg = reg - dev_priv->fence_regs;
2669         obj->last_fenced_ring = pipelined;
2670
2671         reg->setup_seqno =
2672                 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2673         obj->last_fenced_seqno = reg->setup_seqno;
2674
2675 update:
2676         obj->tiling_changed = false;
2677         switch (INTEL_INFO(dev)->gen) {
2678         case 6:
2679                 ret = sandybridge_write_fence_reg(obj, pipelined);
2680                 break;
2681         case 5:
2682         case 4:
2683                 ret = i965_write_fence_reg(obj, pipelined);
2684                 break;
2685         case 3:
2686                 ret = i915_write_fence_reg(obj, pipelined);
2687                 break;
2688         case 2:
2689                 ret = i830_write_fence_reg(obj, pipelined);
2690                 break;
2691         }
2692
2693         return ret;
2694 }
2695
2696 /**
2697  * i915_gem_clear_fence_reg - clear out fence register info
2698  * @obj: object to clear
2699  *
2700  * Zeroes out the fence register itself and clears out the associated
2701  * data structures in dev_priv and obj.
2702  */
2703 static void
2704 i915_gem_clear_fence_reg(struct drm_device *dev,
2705                          struct drm_i915_fence_reg *reg)
2706 {
2707         drm_i915_private_t *dev_priv = dev->dev_private;
2708         uint32_t fence_reg = reg - dev_priv->fence_regs;
2709
2710         switch (INTEL_INFO(dev)->gen) {
2711         case 6:
2712                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2713                 break;
2714         case 5:
2715         case 4:
2716                 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2717                 break;
2718         case 3:
2719                 if (fence_reg >= 8)
2720                         fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2721                 else
2722         case 2:
2723                         fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2724
2725                 I915_WRITE(fence_reg, 0);
2726                 break;
2727         }
2728
2729         list_del_init(&reg->lru_list);
2730         reg->obj = NULL;
2731         reg->setup_seqno = 0;
2732 }
2733
2734 /**
2735  * Finds free space in the GTT aperture and binds the object there.
2736  */
2737 static int
2738 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2739                             unsigned alignment,
2740                             bool map_and_fenceable)
2741 {
2742         struct drm_device *dev = obj->base.dev;
2743         drm_i915_private_t *dev_priv = dev->dev_private;
2744         struct drm_mm_node *free_space;
2745         gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2746         u32 size, fence_size, fence_alignment, unfenced_alignment;
2747         bool mappable, fenceable;
2748         int ret;
2749
2750         if (obj->madv != I915_MADV_WILLNEED) {
2751                 DRM_ERROR("Attempting to bind a purgeable object\n");
2752                 return -EINVAL;
2753         }
2754
2755         fence_size = i915_gem_get_gtt_size(obj);
2756         fence_alignment = i915_gem_get_gtt_alignment(obj);
2757         unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2758
2759         if (alignment == 0)
2760                 alignment = map_and_fenceable ? fence_alignment :
2761                                                 unfenced_alignment;
2762         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2763                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2764                 return -EINVAL;
2765         }
2766
2767         size = map_and_fenceable ? fence_size : obj->base.size;
2768
2769         /* If the object is bigger than the entire aperture, reject it early
2770          * before evicting everything in a vain attempt to find space.
2771          */
2772         if (obj->base.size >
2773             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2774                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2775                 return -E2BIG;
2776         }
2777
2778  search_free:
2779         if (map_and_fenceable)
2780                 free_space =
2781                         drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2782                                                     size, alignment, 0,
2783                                                     dev_priv->mm.gtt_mappable_end,
2784                                                     0);
2785         else
2786                 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2787                                                 size, alignment, 0);
2788
2789         if (free_space != NULL) {
2790                 if (map_and_fenceable)
2791                         obj->gtt_space =
2792                                 drm_mm_get_block_range_generic(free_space,
2793                                                                size, alignment, 0,
2794                                                                dev_priv->mm.gtt_mappable_end,
2795                                                                0);
2796                 else
2797                         obj->gtt_space =
2798                                 drm_mm_get_block(free_space, size, alignment);
2799         }
2800         if (obj->gtt_space == NULL) {
2801                 /* If the gtt is empty and we're still having trouble
2802                  * fitting our object in, we're out of memory.
2803                  */
2804                 ret = i915_gem_evict_something(dev, size, alignment,
2805                                                map_and_fenceable);
2806                 if (ret)
2807                         return ret;
2808
2809                 goto search_free;
2810         }
2811
2812         ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2813         if (ret) {
2814                 drm_mm_put_block(obj->gtt_space);
2815                 obj->gtt_space = NULL;
2816
2817                 if (ret == -ENOMEM) {
2818                         /* first try to reclaim some memory by clearing the GTT */
2819                         ret = i915_gem_evict_everything(dev, false);
2820                         if (ret) {
2821                                 /* now try to shrink everyone else */
2822                                 if (gfpmask) {
2823                                         gfpmask = 0;
2824                                         goto search_free;
2825                                 }
2826
2827                                 return -ENOMEM;
2828                         }
2829
2830                         goto search_free;
2831                 }
2832
2833                 return ret;
2834         }
2835
2836         ret = i915_gem_gtt_bind_object(obj);
2837         if (ret) {
2838                 i915_gem_object_put_pages_gtt(obj);
2839                 drm_mm_put_block(obj->gtt_space);
2840                 obj->gtt_space = NULL;
2841
2842                 if (i915_gem_evict_everything(dev, false))
2843                         return ret;
2844
2845                 goto search_free;
2846         }
2847
2848         list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2849         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2850
2851         /* Assert that the object is not currently in any GPU domain. As it
2852          * wasn't in the GTT, there shouldn't be any way it could have been in
2853          * a GPU cache
2854          */
2855         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2856         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2857
2858         obj->gtt_offset = obj->gtt_space->start;
2859
2860         fenceable =
2861                 obj->gtt_space->size == fence_size &&
2862                 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2863
2864         mappable =
2865                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2866
2867         obj->map_and_fenceable = mappable && fenceable;
2868
2869         trace_i915_gem_object_bind(obj, map_and_fenceable);
2870         return 0;
2871 }
2872
2873 void
2874 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2875 {
2876         /* If we don't have a page list set up, then we're not pinned
2877          * to GPU, and we can ignore the cache flush because it'll happen
2878          * again at bind time.
2879          */
2880         if (obj->pages == NULL)
2881                 return;
2882
2883         trace_i915_gem_object_clflush(obj);
2884
2885         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2886 }
2887
2888 /** Flushes any GPU write domain for the object if it's dirty. */
2889 static int
2890 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2891 {
2892         if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2893                 return 0;
2894
2895         /* Queue the GPU write cache flushing we need. */
2896         return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2897 }
2898
2899 /** Flushes the GTT write domain for the object if it's dirty. */
2900 static void
2901 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2902 {
2903         uint32_t old_write_domain;
2904
2905         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2906                 return;
2907
2908         /* No actual flushing is required for the GTT write domain.  Writes
2909          * to it immediately go to main memory as far as we know, so there's
2910          * no chipset flush.  It also doesn't land in render cache.
2911          *
2912          * However, we do have to enforce the order so that all writes through
2913          * the GTT land before any writes to the device, such as updates to
2914          * the GATT itself.
2915          */
2916         wmb();
2917
2918         i915_gem_release_mmap(obj);
2919
2920         old_write_domain = obj->base.write_domain;
2921         obj->base.write_domain = 0;
2922
2923         trace_i915_gem_object_change_domain(obj,
2924                                             obj->base.read_domains,
2925                                             old_write_domain);
2926 }
2927
2928 /** Flushes the CPU write domain for the object if it's dirty. */
2929 static void
2930 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2931 {
2932         uint32_t old_write_domain;
2933
2934         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2935                 return;
2936
2937         i915_gem_clflush_object(obj);
2938         intel_gtt_chipset_flush();
2939         old_write_domain = obj->base.write_domain;
2940         obj->base.write_domain = 0;
2941
2942         trace_i915_gem_object_change_domain(obj,
2943                                             obj->base.read_domains,
2944                                             old_write_domain);
2945 }
2946
2947 /**
2948  * Moves a single object to the GTT read, and possibly write domain.
2949  *
2950  * This function returns when the move is complete, including waiting on
2951  * flushes to occur.
2952  */
2953 int
2954 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2955 {
2956         uint32_t old_write_domain, old_read_domains;
2957         int ret;
2958
2959         /* Not valid to be called on unbound objects. */
2960         if (obj->gtt_space == NULL)
2961                 return -EINVAL;
2962
2963         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2964                 return 0;
2965
2966         ret = i915_gem_object_flush_gpu_write_domain(obj);
2967         if (ret)
2968                 return ret;
2969
2970         if (obj->pending_gpu_write || write) {
2971                 ret = i915_gem_object_wait_rendering(obj);
2972                 if (ret)
2973                         return ret;
2974         }
2975
2976         i915_gem_object_flush_cpu_write_domain(obj);
2977
2978         old_write_domain = obj->base.write_domain;
2979         old_read_domains = obj->base.read_domains;
2980
2981         /* It should now be out of any other write domains, and we can update
2982          * the domain values for our changes.
2983          */
2984         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2985         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2986         if (write) {
2987                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2988                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2989                 obj->dirty = 1;
2990         }
2991
2992         trace_i915_gem_object_change_domain(obj,
2993                                             old_read_domains,
2994                                             old_write_domain);
2995
2996         return 0;
2997 }
2998
2999 /*
3000  * Prepare buffer for display plane. Use uninterruptible for possible flush
3001  * wait, as in modesetting process we're not supposed to be interrupted.
3002  */
3003 int
3004 i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
3005                                      struct intel_ring_buffer *pipelined)
3006 {
3007         uint32_t old_read_domains;
3008         int ret;
3009
3010         /* Not valid to be called on unbound objects. */
3011         if (obj->gtt_space == NULL)
3012                 return -EINVAL;
3013
3014         ret = i915_gem_object_flush_gpu_write_domain(obj);
3015         if (ret)
3016                 return ret;
3017
3018
3019         /* Currently, we are always called from an non-interruptible context. */
3020         if (pipelined != obj->ring) {
3021                 ret = i915_gem_object_wait_rendering(obj);
3022                 if (ret)
3023                         return ret;
3024         }
3025
3026         i915_gem_object_flush_cpu_write_domain(obj);
3027
3028         old_read_domains = obj->base.read_domains;
3029         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3030
3031         trace_i915_gem_object_change_domain(obj,
3032                                             old_read_domains,
3033                                             obj->base.write_domain);
3034
3035         return 0;
3036 }
3037
3038 int
3039 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
3040 {
3041         int ret;
3042
3043         if (!obj->active)
3044                 return 0;
3045
3046         if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3047                 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3048                 if (ret)
3049                         return ret;
3050         }
3051
3052         return i915_gem_object_wait_rendering(obj);
3053 }
3054
3055 /**
3056  * Moves a single object to the CPU read, and possibly write domain.
3057  *
3058  * This function returns when the move is complete, including waiting on
3059  * flushes to occur.
3060  */
3061 static int
3062 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3063 {
3064         uint32_t old_write_domain, old_read_domains;
3065         int ret;
3066
3067         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3068                 return 0;
3069
3070         ret = i915_gem_object_flush_gpu_write_domain(obj);
3071         if (ret)
3072                 return ret;
3073
3074         ret = i915_gem_object_wait_rendering(obj);
3075         if (ret)
3076                 return ret;
3077
3078         i915_gem_object_flush_gtt_write_domain(obj);
3079
3080         /* If we have a partially-valid cache of the object in the CPU,
3081          * finish invalidating it and free the per-page flags.
3082          */
3083         i915_gem_object_set_to_full_cpu_read_domain(obj);
3084
3085         old_write_domain = obj->base.write_domain;
3086         old_read_domains = obj->base.read_domains;
3087
3088         /* Flush the CPU cache if it's still invalid. */
3089         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3090                 i915_gem_clflush_object(obj);
3091
3092                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3093         }
3094
3095         /* It should now be out of any other write domains, and we can update
3096          * the domain values for our changes.
3097          */
3098         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3099
3100         /* If we're writing through the CPU, then the GPU read domains will
3101          * need to be invalidated at next use.
3102          */
3103         if (write) {
3104                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3105                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3106         }
3107
3108         trace_i915_gem_object_change_domain(obj,
3109                                             old_read_domains,
3110                                             old_write_domain);
3111
3112         return 0;
3113 }
3114
3115 /**
3116  * Moves the object from a partially CPU read to a full one.
3117  *
3118  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3119  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3120  */
3121 static void
3122 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3123 {
3124         if (!obj->page_cpu_valid)
3125                 return;
3126
3127         /* If we're partially in the CPU read domain, finish moving it in.
3128          */
3129         if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3130                 int i;
3131
3132                 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3133                         if (obj->page_cpu_valid[i])
3134                                 continue;
3135                         drm_clflush_pages(obj->pages + i, 1);
3136                 }
3137         }
3138
3139         /* Free the page_cpu_valid mappings which are now stale, whether
3140          * or not we've got I915_GEM_DOMAIN_CPU.
3141          */
3142         kfree(obj->page_cpu_valid);
3143         obj->page_cpu_valid = NULL;
3144 }
3145
3146 /**
3147  * Set the CPU read domain on a range of the object.
3148  *
3149  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3150  * not entirely valid.  The page_cpu_valid member of the object flags which
3151  * pages have been flushed, and will be respected by
3152  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3153  * of the whole object.
3154  *
3155  * This function returns when the move is complete, including waiting on
3156  * flushes to occur.
3157  */
3158 static int
3159 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3160                                           uint64_t offset, uint64_t size)
3161 {
3162         uint32_t old_read_domains;
3163         int i, ret;
3164
3165         if (offset == 0 && size == obj->base.size)
3166                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3167
3168         ret = i915_gem_object_flush_gpu_write_domain(obj);
3169         if (ret)
3170                 return ret;
3171
3172         ret = i915_gem_object_wait_rendering(obj);
3173         if (ret)
3174                 return ret;
3175
3176         i915_gem_object_flush_gtt_write_domain(obj);
3177
3178         /* If we're already fully in the CPU read domain, we're done. */
3179         if (obj->page_cpu_valid == NULL &&
3180             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3181                 return 0;
3182
3183         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3184          * newly adding I915_GEM_DOMAIN_CPU
3185          */
3186         if (obj->page_cpu_valid == NULL) {
3187                 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3188                                               GFP_KERNEL);
3189                 if (obj->page_cpu_valid == NULL)
3190                         return -ENOMEM;
3191         } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3192                 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3193
3194         /* Flush the cache on any pages that are still invalid from the CPU's
3195          * perspective.
3196          */
3197         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3198              i++) {
3199                 if (obj->page_cpu_valid[i])
3200                         continue;
3201
3202                 drm_clflush_pages(obj->pages + i, 1);
3203
3204                 obj->page_cpu_valid[i] = 1;
3205         }
3206
3207         /* It should now be out of any other write domains, and we can update
3208          * the domain values for our changes.
3209          */
3210         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3211
3212         old_read_domains = obj->base.read_domains;
3213         obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3214
3215         trace_i915_gem_object_change_domain(obj,
3216                                             old_read_domains,
3217                                             obj->base.write_domain);
3218
3219         return 0;
3220 }
3221
3222 /* Throttle our rendering by waiting until the ring has completed our requests
3223  * emitted over 20 msec ago.
3224  *
3225  * Note that if we were to use the current jiffies each time around the loop,
3226  * we wouldn't escape the function with any frames outstanding if the time to
3227  * render a frame was over 20ms.
3228  *
3229  * This should get us reasonable parallelism between CPU and GPU but also
3230  * relatively low latency when blocking on a particular request to finish.
3231  */
3232 static int
3233 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3234 {
3235         struct drm_i915_private *dev_priv = dev->dev_private;
3236         struct drm_i915_file_private *file_priv = file->driver_priv;
3237         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3238         struct drm_i915_gem_request *request;
3239         struct intel_ring_buffer *ring = NULL;
3240         u32 seqno = 0;
3241         int ret;
3242
3243         if (atomic_read(&dev_priv->mm.wedged))
3244                 return -EIO;
3245
3246         spin_lock(&file_priv->mm.lock);
3247         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3248                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3249                         break;
3250
3251                 ring = request->ring;
3252                 seqno = request->seqno;
3253         }
3254         spin_unlock(&file_priv->mm.lock);
3255
3256         if (seqno == 0)
3257                 return 0;
3258
3259         ret = 0;
3260         if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3261                 /* And wait for the seqno passing without holding any locks and
3262                  * causing extra latency for others. This is safe as the irq
3263                  * generation is designed to be run atomically and so is
3264                  * lockless.
3265                  */
3266                 if (ring->irq_get(ring)) {
3267                         ret = wait_event_interruptible(ring->irq_queue,
3268                                                        i915_seqno_passed(ring->get_seqno(ring), seqno)
3269                                                        || atomic_read(&dev_priv->mm.wedged));
3270                         ring->irq_put(ring);
3271
3272                         if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3273                                 ret = -EIO;
3274                 }
3275         }
3276
3277         if (ret == 0)
3278                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3279
3280         return ret;
3281 }
3282
3283 int
3284 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3285                     uint32_t alignment,
3286                     bool map_and_fenceable)
3287 {
3288         struct drm_device *dev = obj->base.dev;
3289         struct drm_i915_private *dev_priv = dev->dev_private;
3290         int ret;
3291
3292         BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3293         WARN_ON(i915_verify_lists(dev));
3294
3295         if (obj->gtt_space != NULL) {
3296                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3297                     (map_and_fenceable && !obj->map_and_fenceable)) {
3298                         WARN(obj->pin_count,
3299                              "bo is already pinned with incorrect alignment:"
3300                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3301                              " obj->map_and_fenceable=%d\n",
3302                              obj->gtt_offset, alignment,
3303                              map_and_fenceable,
3304                              obj->map_and_fenceable);
3305                         ret = i915_gem_object_unbind(obj);
3306                         if (ret)
3307                                 return ret;
3308                 }
3309         }
3310
3311         if (obj->gtt_space == NULL) {
3312                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3313                                                   map_and_fenceable);
3314                 if (ret)
3315                         return ret;
3316         }
3317
3318         if (obj->pin_count++ == 0) {
3319                 if (!obj->active)
3320                         list_move_tail(&obj->mm_list,
3321                                        &dev_priv->mm.pinned_list);
3322         }
3323         obj->pin_mappable |= map_and_fenceable;
3324
3325         WARN_ON(i915_verify_lists(dev));
3326         return 0;
3327 }
3328
3329 void
3330 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3331 {
3332         struct drm_device *dev = obj->base.dev;
3333         drm_i915_private_t *dev_priv = dev->dev_private;
3334
3335         WARN_ON(i915_verify_lists(dev));
3336         BUG_ON(obj->pin_count == 0);
3337         BUG_ON(obj->gtt_space == NULL);
3338
3339         if (--obj->pin_count == 0) {
3340                 if (!obj->active)
3341                         list_move_tail(&obj->mm_list,
3342                                        &dev_priv->mm.inactive_list);
3343                 obj->pin_mappable = false;
3344         }
3345         WARN_ON(i915_verify_lists(dev));
3346 }
3347
3348 int
3349 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3350                    struct drm_file *file)
3351 {
3352         struct drm_i915_gem_pin *args = data;
3353         struct drm_i915_gem_object *obj;
3354         int ret;
3355
3356         ret = i915_mutex_lock_interruptible(dev);
3357         if (ret)
3358                 return ret;
3359
3360         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3361         if (&obj->base == NULL) {
3362                 ret = -ENOENT;
3363                 goto unlock;
3364         }
3365
3366         if (obj->madv != I915_MADV_WILLNEED) {
3367                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3368                 ret = -EINVAL;
3369                 goto out;
3370         }
3371
3372         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3373                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3374                           args->handle);
3375                 ret = -EINVAL;
3376                 goto out;
3377         }
3378
3379         obj->user_pin_count++;
3380         obj->pin_filp = file;
3381         if (obj->user_pin_count == 1) {
3382                 ret = i915_gem_object_pin(obj, args->alignment, true);
3383                 if (ret)
3384                         goto out;
3385         }
3386
3387         /* XXX - flush the CPU caches for pinned objects
3388          * as the X server doesn't manage domains yet
3389          */
3390         i915_gem_object_flush_cpu_write_domain(obj);
3391         args->offset = obj->gtt_offset;
3392 out:
3393         drm_gem_object_unreference(&obj->base);
3394 unlock:
3395         mutex_unlock(&dev->struct_mutex);
3396         return ret;
3397 }
3398
3399 int
3400 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3401                      struct drm_file *file)
3402 {
3403         struct drm_i915_gem_pin *args = data;
3404         struct drm_i915_gem_object *obj;
3405         int ret;
3406
3407         ret = i915_mutex_lock_interruptible(dev);
3408         if (ret)
3409                 return ret;
3410
3411         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3412         if (&obj->base == NULL) {
3413                 ret = -ENOENT;
3414                 goto unlock;
3415         }
3416
3417         if (obj->pin_filp != file) {
3418                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3419                           args->handle);
3420                 ret = -EINVAL;
3421                 goto out;
3422         }
3423         obj->user_pin_count--;
3424         if (obj->user_pin_count == 0) {
3425                 obj->pin_filp = NULL;
3426                 i915_gem_object_unpin(obj);
3427         }
3428
3429 out:
3430         drm_gem_object_unreference(&obj->base);
3431 unlock:
3432         mutex_unlock(&dev->struct_mutex);
3433         return ret;
3434 }
3435
3436 int
3437 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3438                     struct drm_file *file)
3439 {
3440         struct drm_i915_gem_busy *args = data;
3441         struct drm_i915_gem_object *obj;
3442         int ret;
3443
3444         ret = i915_mutex_lock_interruptible(dev);
3445         if (ret)
3446                 return ret;
3447
3448         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3449         if (&obj->base == NULL) {
3450                 ret = -ENOENT;
3451                 goto unlock;
3452         }
3453
3454         /* Count all active objects as busy, even if they are currently not used
3455          * by the gpu. Users of this interface expect objects to eventually
3456          * become non-busy without any further actions, therefore emit any
3457          * necessary flushes here.
3458          */
3459         args->busy = obj->active;
3460         if (args->busy) {
3461                 /* Unconditionally flush objects, even when the gpu still uses this
3462                  * object. Userspace calling this function indicates that it wants to
3463                  * use this buffer rather sooner than later, so issuing the required
3464                  * flush earlier is beneficial.
3465                  */
3466                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3467                         ret = i915_gem_flush_ring(obj->ring,
3468                                                   0, obj->base.write_domain);
3469                 } else if (obj->ring->outstanding_lazy_request ==
3470                            obj->last_rendering_seqno) {
3471                         struct drm_i915_gem_request *request;
3472
3473                         /* This ring is not being cleared by active usage,
3474                          * so emit a request to do so.
3475                          */
3476                         request = kzalloc(sizeof(*request), GFP_KERNEL);
3477                         if (request)
3478                                 ret = i915_add_request(obj->ring, NULL,request);
3479                         else
3480                                 ret = -ENOMEM;
3481                 }
3482
3483                 /* Update the active list for the hardware's current position.
3484                  * Otherwise this only updates on a delayed timer or when irqs
3485                  * are actually unmasked, and our working set ends up being
3486                  * larger than required.
3487                  */
3488                 i915_gem_retire_requests_ring(obj->ring);
3489
3490                 args->busy = obj->active;
3491         }
3492
3493         drm_gem_object_unreference(&obj->base);
3494 unlock:
3495         mutex_unlock(&dev->struct_mutex);
3496         return ret;
3497 }
3498
3499 int
3500 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3501                         struct drm_file *file_priv)
3502 {
3503     return i915_gem_ring_throttle(dev, file_priv);
3504 }
3505
3506 int
3507 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3508                        struct drm_file *file_priv)
3509 {
3510         struct drm_i915_gem_madvise *args = data;
3511         struct drm_i915_gem_object *obj;
3512         int ret;
3513
3514         switch (args->madv) {
3515         case I915_MADV_DONTNEED:
3516         case I915_MADV_WILLNEED:
3517             break;
3518         default:
3519             return -EINVAL;
3520         }
3521
3522         ret = i915_mutex_lock_interruptible(dev);
3523         if (ret)
3524                 return ret;
3525
3526         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3527         if (&obj->base == NULL) {
3528                 ret = -ENOENT;
3529                 goto unlock;
3530         }
3531
3532         if (obj->pin_count) {
3533                 ret = -EINVAL;
3534                 goto out;
3535         }
3536
3537         if (obj->madv != __I915_MADV_PURGED)
3538                 obj->madv = args->madv;
3539
3540         /* if the object is no longer bound, discard its backing storage */
3541         if (i915_gem_object_is_purgeable(obj) &&
3542             obj->gtt_space == NULL)
3543                 i915_gem_object_truncate(obj);
3544
3545         args->retained = obj->madv != __I915_MADV_PURGED;
3546
3547 out:
3548         drm_gem_object_unreference(&obj->base);
3549 unlock:
3550         mutex_unlock(&dev->struct_mutex);
3551         return ret;
3552 }
3553
3554 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3555                                                   size_t size)
3556 {
3557         struct drm_i915_private *dev_priv = dev->dev_private;
3558         struct drm_i915_gem_object *obj;
3559
3560         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3561         if (obj == NULL)
3562                 return NULL;
3563
3564         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3565                 kfree(obj);
3566                 return NULL;
3567         }
3568
3569         i915_gem_info_add_obj(dev_priv, size);
3570
3571         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3572         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3573
3574         obj->agp_type = AGP_USER_MEMORY;
3575         obj->base.driver_private = NULL;
3576         obj->fence_reg = I915_FENCE_REG_NONE;
3577         INIT_LIST_HEAD(&obj->mm_list);
3578         INIT_LIST_HEAD(&obj->gtt_list);
3579         INIT_LIST_HEAD(&obj->ring_list);
3580         INIT_LIST_HEAD(&obj->exec_list);
3581         INIT_LIST_HEAD(&obj->gpu_write_list);
3582         obj->madv = I915_MADV_WILLNEED;
3583         /* Avoid an unnecessary call to unbind on the first bind. */
3584         obj->map_and_fenceable = true;
3585
3586         return obj;
3587 }
3588
3589 int i915_gem_init_object(struct drm_gem_object *obj)
3590 {
3591         BUG();
3592
3593         return 0;
3594 }
3595
3596 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3597 {
3598         struct drm_device *dev = obj->base.dev;
3599         drm_i915_private_t *dev_priv = dev->dev_private;
3600         int ret;
3601
3602         ret = i915_gem_object_unbind(obj);
3603         if (ret == -ERESTARTSYS) {
3604                 list_move(&obj->mm_list,
3605                           &dev_priv->mm.deferred_free_list);
3606                 return;
3607         }
3608
3609         if (obj->base.map_list.map)
3610                 i915_gem_free_mmap_offset(obj);
3611
3612         drm_gem_object_release(&obj->base);
3613         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3614
3615         kfree(obj->page_cpu_valid);
3616         kfree(obj->bit_17);
3617         kfree(obj);
3618
3619         trace_i915_gem_object_destroy(obj);
3620 }
3621
3622 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3623 {
3624         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3625         struct drm_device *dev = obj->base.dev;
3626
3627         while (obj->pin_count > 0)
3628                 i915_gem_object_unpin(obj);
3629
3630         if (obj->phys_obj)
3631                 i915_gem_detach_phys_object(dev, obj);
3632
3633         i915_gem_free_object_tail(obj);
3634 }
3635
3636 int
3637 i915_gem_idle(struct drm_device *dev)
3638 {
3639         drm_i915_private_t *dev_priv = dev->dev_private;
3640         int ret;
3641
3642         mutex_lock(&dev->struct_mutex);
3643
3644         if (dev_priv->mm.suspended) {
3645                 mutex_unlock(&dev->struct_mutex);
3646                 return 0;
3647         }
3648
3649         ret = i915_gpu_idle(dev);
3650         if (ret) {
3651                 mutex_unlock(&dev->struct_mutex);
3652                 return ret;
3653         }
3654
3655         /* Under UMS, be paranoid and evict. */
3656         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3657                 ret = i915_gem_evict_inactive(dev, false);
3658                 if (ret) {
3659                         mutex_unlock(&dev->struct_mutex);
3660                         return ret;
3661                 }
3662         }
3663
3664         i915_gem_reset_fences(dev);
3665
3666         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3667          * We need to replace this with a semaphore, or something.
3668          * And not confound mm.suspended!
3669          */
3670         dev_priv->mm.suspended = 1;
3671         del_timer_sync(&dev_priv->hangcheck_timer);
3672
3673         i915_kernel_lost_context(dev);
3674         i915_gem_cleanup_ringbuffer(dev);
3675
3676         mutex_unlock(&dev->struct_mutex);
3677
3678         /* Cancel the retire work handler, which should be idle now. */
3679         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3680
3681         return 0;
3682 }
3683
3684 int
3685 i915_gem_init_ringbuffer(struct drm_device *dev)
3686 {
3687         drm_i915_private_t *dev_priv = dev->dev_private;
3688         int ret;
3689
3690         ret = intel_init_render_ring_buffer(dev);
3691         if (ret)
3692                 return ret;
3693
3694         if (HAS_BSD(dev)) {
3695                 ret = intel_init_bsd_ring_buffer(dev);
3696                 if (ret)
3697                         goto cleanup_render_ring;
3698         }
3699
3700         if (HAS_BLT(dev)) {
3701                 ret = intel_init_blt_ring_buffer(dev);
3702                 if (ret)
3703                         goto cleanup_bsd_ring;
3704         }
3705
3706         dev_priv->next_seqno = 1;
3707
3708         return 0;
3709
3710 cleanup_bsd_ring:
3711         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3712 cleanup_render_ring:
3713         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3714         return ret;
3715 }
3716
3717 void
3718 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3719 {
3720         drm_i915_private_t *dev_priv = dev->dev_private;
3721         int i;
3722
3723         for (i = 0; i < I915_NUM_RINGS; i++)
3724                 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3725 }
3726
3727 int
3728 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3729                        struct drm_file *file_priv)
3730 {
3731         drm_i915_private_t *dev_priv = dev->dev_private;
3732         int ret, i;
3733
3734         if (drm_core_check_feature(dev, DRIVER_MODESET))
3735                 return 0;
3736
3737         if (atomic_read(&dev_priv->mm.wedged)) {
3738                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3739                 atomic_set(&dev_priv->mm.wedged, 0);
3740         }
3741
3742         mutex_lock(&dev->struct_mutex);
3743         dev_priv->mm.suspended = 0;
3744
3745         ret = i915_gem_init_ringbuffer(dev);
3746         if (ret != 0) {
3747                 mutex_unlock(&dev->struct_mutex);
3748                 return ret;
3749         }
3750
3751         BUG_ON(!list_empty(&dev_priv->mm.active_list));
3752         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3753         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3754         for (i = 0; i < I915_NUM_RINGS; i++) {
3755                 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3756                 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3757         }
3758         mutex_unlock(&dev->struct_mutex);
3759
3760         ret = drm_irq_install(dev);
3761         if (ret)
3762                 goto cleanup_ringbuffer;
3763
3764         return 0;
3765
3766 cleanup_ringbuffer:
3767         mutex_lock(&dev->struct_mutex);
3768         i915_gem_cleanup_ringbuffer(dev);
3769         dev_priv->mm.suspended = 1;
3770         mutex_unlock(&dev->struct_mutex);
3771
3772         return ret;
3773 }
3774
3775 int
3776 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3777                        struct drm_file *file_priv)
3778 {
3779         if (drm_core_check_feature(dev, DRIVER_MODESET))
3780                 return 0;
3781
3782         drm_irq_uninstall(dev);
3783         return i915_gem_idle(dev);
3784 }
3785
3786 void
3787 i915_gem_lastclose(struct drm_device *dev)
3788 {
3789         int ret;
3790
3791         if (drm_core_check_feature(dev, DRIVER_MODESET))
3792                 return;
3793
3794         ret = i915_gem_idle(dev);
3795         if (ret)
3796                 DRM_ERROR("failed to idle hardware: %d\n", ret);
3797 }
3798
3799 static void
3800 init_ring_lists(struct intel_ring_buffer *ring)
3801 {
3802         INIT_LIST_HEAD(&ring->active_list);
3803         INIT_LIST_HEAD(&ring->request_list);
3804         INIT_LIST_HEAD(&ring->gpu_write_list);
3805 }
3806
3807 void
3808 i915_gem_load(struct drm_device *dev)
3809 {
3810         int i;
3811         drm_i915_private_t *dev_priv = dev->dev_private;
3812
3813         INIT_LIST_HEAD(&dev_priv->mm.active_list);
3814         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3815         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3816         INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3817         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3818         INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3819         INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3820         for (i = 0; i < I915_NUM_RINGS; i++)
3821                 init_ring_lists(&dev_priv->ring[i]);
3822         for (i = 0; i < 16; i++)
3823                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3824         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3825                           i915_gem_retire_work_handler);
3826         init_completion(&dev_priv->error_completion);
3827
3828         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3829         if (IS_GEN3(dev)) {
3830                 u32 tmp = I915_READ(MI_ARB_STATE);
3831                 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3832                         /* arb state is a masked write, so set bit + bit in mask */
3833                         tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3834                         I915_WRITE(MI_ARB_STATE, tmp);
3835                 }
3836         }
3837
3838         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3839
3840         /* Old X drivers will take 0-2 for front, back, depth buffers */
3841         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3842                 dev_priv->fence_reg_start = 3;
3843
3844         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3845                 dev_priv->num_fence_regs = 16;
3846         else
3847                 dev_priv->num_fence_regs = 8;
3848
3849         /* Initialize fence registers to zero */
3850         switch (INTEL_INFO(dev)->gen) {
3851         case 6:
3852                 for (i = 0; i < 16; i++)
3853                         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3854                 break;
3855         case 5:
3856         case 4:
3857                 for (i = 0; i < 16; i++)
3858                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3859                 break;
3860         case 3:
3861                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3862                         for (i = 0; i < 8; i++)
3863                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3864         case 2:
3865                 for (i = 0; i < 8; i++)
3866                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3867                 break;
3868         }
3869         i915_gem_detect_bit_6_swizzle(dev);
3870         init_waitqueue_head(&dev_priv->pending_flip_queue);
3871
3872         dev_priv->mm.interruptible = true;
3873
3874         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3875         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3876         register_shrinker(&dev_priv->mm.inactive_shrinker);
3877 }
3878
3879 /*
3880  * Create a physically contiguous memory object for this object
3881  * e.g. for cursor + overlay regs
3882  */
3883 static int i915_gem_init_phys_object(struct drm_device *dev,
3884                                      int id, int size, int align)
3885 {
3886         drm_i915_private_t *dev_priv = dev->dev_private;
3887         struct drm_i915_gem_phys_object *phys_obj;
3888         int ret;
3889
3890         if (dev_priv->mm.phys_objs[id - 1] || !size)
3891                 return 0;
3892
3893         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3894         if (!phys_obj)
3895                 return -ENOMEM;
3896
3897         phys_obj->id = id;
3898
3899         phys_obj->handle = drm_pci_alloc(dev, size, align);
3900         if (!phys_obj->handle) {
3901                 ret = -ENOMEM;
3902                 goto kfree_obj;
3903         }
3904 #ifdef CONFIG_X86
3905         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3906 #endif
3907
3908         dev_priv->mm.phys_objs[id - 1] = phys_obj;
3909
3910         return 0;
3911 kfree_obj:
3912         kfree(phys_obj);
3913         return ret;
3914 }
3915
3916 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3917 {
3918         drm_i915_private_t *dev_priv = dev->dev_private;
3919         struct drm_i915_gem_phys_object *phys_obj;
3920
3921         if (!dev_priv->mm.phys_objs[id - 1])
3922                 return;
3923
3924         phys_obj = dev_priv->mm.phys_objs[id - 1];
3925         if (phys_obj->cur_obj) {
3926                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3927         }
3928
3929 #ifdef CONFIG_X86
3930         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3931 #endif
3932         drm_pci_free(dev, phys_obj->handle);
3933         kfree(phys_obj);
3934         dev_priv->mm.phys_objs[id - 1] = NULL;
3935 }
3936
3937 void i915_gem_free_all_phys_object(struct drm_device *dev)
3938 {
3939         int i;
3940
3941         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3942                 i915_gem_free_phys_object(dev, i);
3943 }
3944
3945 void i915_gem_detach_phys_object(struct drm_device *dev,
3946                                  struct drm_i915_gem_object *obj)
3947 {
3948         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3949         char *vaddr;
3950         int i;
3951         int page_count;
3952
3953         if (!obj->phys_obj)
3954                 return;
3955         vaddr = obj->phys_obj->handle->vaddr;
3956
3957         page_count = obj->base.size / PAGE_SIZE;
3958         for (i = 0; i < page_count; i++) {
3959                 struct page *page = read_cache_page_gfp(mapping, i,
3960                                                         GFP_HIGHUSER | __GFP_RECLAIMABLE);
3961                 if (!IS_ERR(page)) {
3962                         char *dst = kmap_atomic(page);
3963                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3964                         kunmap_atomic(dst);
3965
3966                         drm_clflush_pages(&page, 1);
3967
3968                         set_page_dirty(page);
3969                         mark_page_accessed(page);
3970                         page_cache_release(page);
3971                 }
3972         }
3973         intel_gtt_chipset_flush();
3974
3975         obj->phys_obj->cur_obj = NULL;
3976         obj->phys_obj = NULL;
3977 }
3978
3979 int
3980 i915_gem_attach_phys_object(struct drm_device *dev,
3981                             struct drm_i915_gem_object *obj,
3982                             int id,
3983                             int align)
3984 {
3985         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3986         drm_i915_private_t *dev_priv = dev->dev_private;
3987         int ret = 0;
3988         int page_count;
3989         int i;
3990
3991         if (id > I915_MAX_PHYS_OBJECT)
3992                 return -EINVAL;
3993
3994         if (obj->phys_obj) {
3995                 if (obj->phys_obj->id == id)
3996                         return 0;
3997                 i915_gem_detach_phys_object(dev, obj);
3998         }
3999
4000         /* create a new object */
4001         if (!dev_priv->mm.phys_objs[id - 1]) {
4002                 ret = i915_gem_init_phys_object(dev, id,
4003                                                 obj->base.size, align);
4004                 if (ret) {
4005                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4006                                   id, obj->base.size);
4007                         return ret;
4008                 }
4009         }
4010
4011         /* bind to the object */
4012         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4013         obj->phys_obj->cur_obj = obj;
4014
4015         page_count = obj->base.size / PAGE_SIZE;
4016
4017         for (i = 0; i < page_count; i++) {
4018                 struct page *page;
4019                 char *dst, *src;
4020
4021                 page = read_cache_page_gfp(mapping, i,
4022                                            GFP_HIGHUSER | __GFP_RECLAIMABLE);
4023                 if (IS_ERR(page))
4024                         return PTR_ERR(page);
4025
4026                 src = kmap_atomic(page);
4027                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4028                 memcpy(dst, src, PAGE_SIZE);
4029                 kunmap_atomic(src);
4030
4031                 mark_page_accessed(page);
4032                 page_cache_release(page);
4033         }
4034
4035         return 0;
4036 }
4037
4038 static int
4039 i915_gem_phys_pwrite(struct drm_device *dev,
4040                      struct drm_i915_gem_object *obj,
4041                      struct drm_i915_gem_pwrite *args,
4042                      struct drm_file *file_priv)
4043 {
4044         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4045         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4046
4047         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4048                 unsigned long unwritten;
4049
4050                 /* The physical object once assigned is fixed for the lifetime
4051                  * of the obj, so we can safely drop the lock and continue
4052                  * to access vaddr.
4053                  */
4054                 mutex_unlock(&dev->struct_mutex);
4055                 unwritten = copy_from_user(vaddr, user_data, args->size);
4056                 mutex_lock(&dev->struct_mutex);
4057                 if (unwritten)
4058                         return -EFAULT;
4059         }
4060
4061         intel_gtt_chipset_flush();
4062         return 0;
4063 }
4064
4065 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4066 {
4067         struct drm_i915_file_private *file_priv = file->driver_priv;
4068
4069         /* Clean up our request list when the client is going away, so that
4070          * later retire_requests won't dereference our soon-to-be-gone
4071          * file_priv.
4072          */
4073         spin_lock(&file_priv->mm.lock);
4074         while (!list_empty(&file_priv->mm.request_list)) {
4075                 struct drm_i915_gem_request *request;
4076
4077                 request = list_first_entry(&file_priv->mm.request_list,
4078                                            struct drm_i915_gem_request,
4079                                            client_list);
4080                 list_del(&request->client_list);
4081                 request->file_priv = NULL;
4082         }
4083         spin_unlock(&file_priv->mm.lock);
4084 }
4085
4086 static int
4087 i915_gpu_is_active(struct drm_device *dev)
4088 {
4089         drm_i915_private_t *dev_priv = dev->dev_private;
4090         int lists_empty;
4091
4092         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4093                       list_empty(&dev_priv->mm.active_list);
4094
4095         return !lists_empty;
4096 }
4097
4098 static int
4099 i915_gem_inactive_shrink(struct shrinker *shrinker,
4100                          int nr_to_scan,
4101                          gfp_t gfp_mask)
4102 {
4103         struct drm_i915_private *dev_priv =
4104                 container_of(shrinker,
4105                              struct drm_i915_private,
4106                              mm.inactive_shrinker);
4107         struct drm_device *dev = dev_priv->dev;
4108         struct drm_i915_gem_object *obj, *next;
4109         int cnt;
4110
4111         if (!mutex_trylock(&dev->struct_mutex))
4112                 return 0;
4113
4114         /* "fast-path" to count number of available objects */
4115         if (nr_to_scan == 0) {
4116                 cnt = 0;
4117                 list_for_each_entry(obj,
4118                                     &dev_priv->mm.inactive_list,
4119                                     mm_list)
4120                         cnt++;
4121                 mutex_unlock(&dev->struct_mutex);
4122                 return cnt / 100 * sysctl_vfs_cache_pressure;
4123         }
4124
4125 rescan:
4126         /* first scan for clean buffers */
4127         i915_gem_retire_requests(dev);
4128
4129         list_for_each_entry_safe(obj, next,
4130                                  &dev_priv->mm.inactive_list,
4131                                  mm_list) {
4132                 if (i915_gem_object_is_purgeable(obj)) {
4133                         if (i915_gem_object_unbind(obj) == 0 &&
4134                             --nr_to_scan == 0)
4135                                 break;
4136                 }
4137         }
4138
4139         /* second pass, evict/count anything still on the inactive list */
4140         cnt = 0;
4141         list_for_each_entry_safe(obj, next,
4142                                  &dev_priv->mm.inactive_list,
4143                                  mm_list) {
4144                 if (nr_to_scan &&
4145                     i915_gem_object_unbind(obj) == 0)
4146                         nr_to_scan--;
4147                 else
4148                         cnt++;
4149         }
4150
4151         if (nr_to_scan && i915_gpu_is_active(dev)) {
4152                 /*
4153                  * We are desperate for pages, so as a last resort, wait
4154                  * for the GPU to finish and discard whatever we can.
4155                  * This has a dramatic impact to reduce the number of
4156                  * OOM-killer events whilst running the GPU aggressively.
4157                  */
4158                 if (i915_gpu_idle(dev) == 0)
4159                         goto rescan;
4160         }
4161         mutex_unlock(&dev->struct_mutex);
4162         return cnt / 100 * sysctl_vfs_cache_pressure;
4163 }