Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
39
40 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
43 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
44                                              int write);
45 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
46                                                      uint64_t offset,
47                                                      uint64_t size);
48 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
49 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
50 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
51                                            unsigned alignment);
52 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
54 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
55 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
56                                 struct drm_i915_gem_pwrite *args,
57                                 struct drm_file *file_priv);
58
59 static LIST_HEAD(shrink_list);
60 static DEFINE_SPINLOCK(shrink_list_lock);
61
62 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
63                      unsigned long end)
64 {
65         drm_i915_private_t *dev_priv = dev->dev_private;
66
67         if (start >= end ||
68             (start & (PAGE_SIZE - 1)) != 0 ||
69             (end & (PAGE_SIZE - 1)) != 0) {
70                 return -EINVAL;
71         }
72
73         drm_mm_init(&dev_priv->mm.gtt_space, start,
74                     end - start);
75
76         dev->gtt_total = (uint32_t) (end - start);
77
78         return 0;
79 }
80
81 int
82 i915_gem_init_ioctl(struct drm_device *dev, void *data,
83                     struct drm_file *file_priv)
84 {
85         struct drm_i915_gem_init *args = data;
86         int ret;
87
88         mutex_lock(&dev->struct_mutex);
89         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
90         mutex_unlock(&dev->struct_mutex);
91
92         return ret;
93 }
94
95 int
96 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
97                             struct drm_file *file_priv)
98 {
99         struct drm_i915_gem_get_aperture *args = data;
100
101         if (!(dev->driver->driver_features & DRIVER_GEM))
102                 return -ENODEV;
103
104         args->aper_size = dev->gtt_total;
105         args->aper_available_size = (args->aper_size -
106                                      atomic_read(&dev->pin_memory));
107
108         return 0;
109 }
110
111
112 /**
113  * Creates a new mm object and returns a handle to it.
114  */
115 int
116 i915_gem_create_ioctl(struct drm_device *dev, void *data,
117                       struct drm_file *file_priv)
118 {
119         struct drm_i915_gem_create *args = data;
120         struct drm_gem_object *obj;
121         int ret;
122         u32 handle;
123
124         args->size = roundup(args->size, PAGE_SIZE);
125
126         /* Allocate the new object */
127         obj = drm_gem_object_alloc(dev, args->size);
128         if (obj == NULL)
129                 return -ENOMEM;
130
131         ret = drm_gem_handle_create(file_priv, obj, &handle);
132         drm_gem_object_handle_unreference_unlocked(obj);
133
134         if (ret)
135                 return ret;
136
137         args->handle = handle;
138
139         return 0;
140 }
141
142 static inline int
143 fast_shmem_read(struct page **pages,
144                 loff_t page_base, int page_offset,
145                 char __user *data,
146                 int length)
147 {
148         char __iomem *vaddr;
149         int unwritten;
150
151         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
152         if (vaddr == NULL)
153                 return -ENOMEM;
154         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
155         kunmap_atomic(vaddr, KM_USER0);
156
157         if (unwritten)
158                 return -EFAULT;
159
160         return 0;
161 }
162
163 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
164 {
165         drm_i915_private_t *dev_priv = obj->dev->dev_private;
166         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
167
168         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
169                 obj_priv->tiling_mode != I915_TILING_NONE;
170 }
171
172 static inline int
173 slow_shmem_copy(struct page *dst_page,
174                 int dst_offset,
175                 struct page *src_page,
176                 int src_offset,
177                 int length)
178 {
179         char *dst_vaddr, *src_vaddr;
180
181         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
182         if (dst_vaddr == NULL)
183                 return -ENOMEM;
184
185         src_vaddr = kmap_atomic(src_page, KM_USER1);
186         if (src_vaddr == NULL) {
187                 kunmap_atomic(dst_vaddr, KM_USER0);
188                 return -ENOMEM;
189         }
190
191         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
192
193         kunmap_atomic(src_vaddr, KM_USER1);
194         kunmap_atomic(dst_vaddr, KM_USER0);
195
196         return 0;
197 }
198
199 static inline int
200 slow_shmem_bit17_copy(struct page *gpu_page,
201                       int gpu_offset,
202                       struct page *cpu_page,
203                       int cpu_offset,
204                       int length,
205                       int is_read)
206 {
207         char *gpu_vaddr, *cpu_vaddr;
208
209         /* Use the unswizzled path if this page isn't affected. */
210         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
211                 if (is_read)
212                         return slow_shmem_copy(cpu_page, cpu_offset,
213                                                gpu_page, gpu_offset, length);
214                 else
215                         return slow_shmem_copy(gpu_page, gpu_offset,
216                                                cpu_page, cpu_offset, length);
217         }
218
219         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
220         if (gpu_vaddr == NULL)
221                 return -ENOMEM;
222
223         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
224         if (cpu_vaddr == NULL) {
225                 kunmap_atomic(gpu_vaddr, KM_USER0);
226                 return -ENOMEM;
227         }
228
229         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
230          * XORing with the other bits (A9 for Y, A9 and A10 for X)
231          */
232         while (length > 0) {
233                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
234                 int this_length = min(cacheline_end - gpu_offset, length);
235                 int swizzled_gpu_offset = gpu_offset ^ 64;
236
237                 if (is_read) {
238                         memcpy(cpu_vaddr + cpu_offset,
239                                gpu_vaddr + swizzled_gpu_offset,
240                                this_length);
241                 } else {
242                         memcpy(gpu_vaddr + swizzled_gpu_offset,
243                                cpu_vaddr + cpu_offset,
244                                this_length);
245                 }
246                 cpu_offset += this_length;
247                 gpu_offset += this_length;
248                 length -= this_length;
249         }
250
251         kunmap_atomic(cpu_vaddr, KM_USER1);
252         kunmap_atomic(gpu_vaddr, KM_USER0);
253
254         return 0;
255 }
256
257 /**
258  * This is the fast shmem pread path, which attempts to copy_from_user directly
259  * from the backing pages of the object to the user's address space.  On a
260  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
261  */
262 static int
263 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
264                           struct drm_i915_gem_pread *args,
265                           struct drm_file *file_priv)
266 {
267         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
268         ssize_t remain;
269         loff_t offset, page_base;
270         char __user *user_data;
271         int page_offset, page_length;
272         int ret;
273
274         user_data = (char __user *) (uintptr_t) args->data_ptr;
275         remain = args->size;
276
277         mutex_lock(&dev->struct_mutex);
278
279         ret = i915_gem_object_get_pages(obj, 0);
280         if (ret != 0)
281                 goto fail_unlock;
282
283         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
284                                                         args->size);
285         if (ret != 0)
286                 goto fail_put_pages;
287
288         obj_priv = to_intel_bo(obj);
289         offset = args->offset;
290
291         while (remain > 0) {
292                 /* Operation in this page
293                  *
294                  * page_base = page offset within aperture
295                  * page_offset = offset within page
296                  * page_length = bytes to copy for this page
297                  */
298                 page_base = (offset & ~(PAGE_SIZE-1));
299                 page_offset = offset & (PAGE_SIZE-1);
300                 page_length = remain;
301                 if ((page_offset + remain) > PAGE_SIZE)
302                         page_length = PAGE_SIZE - page_offset;
303
304                 ret = fast_shmem_read(obj_priv->pages,
305                                       page_base, page_offset,
306                                       user_data, page_length);
307                 if (ret)
308                         goto fail_put_pages;
309
310                 remain -= page_length;
311                 user_data += page_length;
312                 offset += page_length;
313         }
314
315 fail_put_pages:
316         i915_gem_object_put_pages(obj);
317 fail_unlock:
318         mutex_unlock(&dev->struct_mutex);
319
320         return ret;
321 }
322
323 static int
324 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
325 {
326         int ret;
327
328         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
329
330         /* If we've insufficient memory to map in the pages, attempt
331          * to make some space by throwing out some old buffers.
332          */
333         if (ret == -ENOMEM) {
334                 struct drm_device *dev = obj->dev;
335
336                 ret = i915_gem_evict_something(dev, obj->size);
337                 if (ret)
338                         return ret;
339
340                 ret = i915_gem_object_get_pages(obj, 0);
341         }
342
343         return ret;
344 }
345
346 /**
347  * This is the fallback shmem pread path, which allocates temporary storage
348  * in kernel space to copy_to_user into outside of the struct_mutex, so we
349  * can copy out of the object's backing pages while holding the struct mutex
350  * and not take page faults.
351  */
352 static int
353 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
354                           struct drm_i915_gem_pread *args,
355                           struct drm_file *file_priv)
356 {
357         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
358         struct mm_struct *mm = current->mm;
359         struct page **user_pages;
360         ssize_t remain;
361         loff_t offset, pinned_pages, i;
362         loff_t first_data_page, last_data_page, num_pages;
363         int shmem_page_index, shmem_page_offset;
364         int data_page_index,  data_page_offset;
365         int page_length;
366         int ret;
367         uint64_t data_ptr = args->data_ptr;
368         int do_bit17_swizzling;
369
370         remain = args->size;
371
372         /* Pin the user pages containing the data.  We can't fault while
373          * holding the struct mutex, yet we want to hold it while
374          * dereferencing the user data.
375          */
376         first_data_page = data_ptr / PAGE_SIZE;
377         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
378         num_pages = last_data_page - first_data_page + 1;
379
380         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
381         if (user_pages == NULL)
382                 return -ENOMEM;
383
384         down_read(&mm->mmap_sem);
385         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
386                                       num_pages, 1, 0, user_pages, NULL);
387         up_read(&mm->mmap_sem);
388         if (pinned_pages < num_pages) {
389                 ret = -EFAULT;
390                 goto fail_put_user_pages;
391         }
392
393         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
394
395         mutex_lock(&dev->struct_mutex);
396
397         ret = i915_gem_object_get_pages_or_evict(obj);
398         if (ret)
399                 goto fail_unlock;
400
401         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
402                                                         args->size);
403         if (ret != 0)
404                 goto fail_put_pages;
405
406         obj_priv = to_intel_bo(obj);
407         offset = args->offset;
408
409         while (remain > 0) {
410                 /* Operation in this page
411                  *
412                  * shmem_page_index = page number within shmem file
413                  * shmem_page_offset = offset within page in shmem file
414                  * data_page_index = page number in get_user_pages return
415                  * data_page_offset = offset with data_page_index page.
416                  * page_length = bytes to copy for this page
417                  */
418                 shmem_page_index = offset / PAGE_SIZE;
419                 shmem_page_offset = offset & ~PAGE_MASK;
420                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
421                 data_page_offset = data_ptr & ~PAGE_MASK;
422
423                 page_length = remain;
424                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
425                         page_length = PAGE_SIZE - shmem_page_offset;
426                 if ((data_page_offset + page_length) > PAGE_SIZE)
427                         page_length = PAGE_SIZE - data_page_offset;
428
429                 if (do_bit17_swizzling) {
430                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
431                                                     shmem_page_offset,
432                                                     user_pages[data_page_index],
433                                                     data_page_offset,
434                                                     page_length,
435                                                     1);
436                 } else {
437                         ret = slow_shmem_copy(user_pages[data_page_index],
438                                               data_page_offset,
439                                               obj_priv->pages[shmem_page_index],
440                                               shmem_page_offset,
441                                               page_length);
442                 }
443                 if (ret)
444                         goto fail_put_pages;
445
446                 remain -= page_length;
447                 data_ptr += page_length;
448                 offset += page_length;
449         }
450
451 fail_put_pages:
452         i915_gem_object_put_pages(obj);
453 fail_unlock:
454         mutex_unlock(&dev->struct_mutex);
455 fail_put_user_pages:
456         for (i = 0; i < pinned_pages; i++) {
457                 SetPageDirty(user_pages[i]);
458                 page_cache_release(user_pages[i]);
459         }
460         drm_free_large(user_pages);
461
462         return ret;
463 }
464
465 /**
466  * Reads data from the object referenced by handle.
467  *
468  * On error, the contents of *data are undefined.
469  */
470 int
471 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
472                      struct drm_file *file_priv)
473 {
474         struct drm_i915_gem_pread *args = data;
475         struct drm_gem_object *obj;
476         struct drm_i915_gem_object *obj_priv;
477         int ret;
478
479         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
480         if (obj == NULL)
481                 return -EBADF;
482         obj_priv = to_intel_bo(obj);
483
484         /* Bounds check source.
485          *
486          * XXX: This could use review for overflow issues...
487          */
488         if (args->offset > obj->size || args->size > obj->size ||
489             args->offset + args->size > obj->size) {
490                 drm_gem_object_unreference_unlocked(obj);
491                 return -EINVAL;
492         }
493
494         if (i915_gem_object_needs_bit17_swizzle(obj)) {
495                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
496         } else {
497                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
498                 if (ret != 0)
499                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
500                                                         file_priv);
501         }
502
503         drm_gem_object_unreference_unlocked(obj);
504
505         return ret;
506 }
507
508 /* This is the fast write path which cannot handle
509  * page faults in the source data
510  */
511
512 static inline int
513 fast_user_write(struct io_mapping *mapping,
514                 loff_t page_base, int page_offset,
515                 char __user *user_data,
516                 int length)
517 {
518         char *vaddr_atomic;
519         unsigned long unwritten;
520
521         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
522         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
523                                                       user_data, length);
524         io_mapping_unmap_atomic(vaddr_atomic);
525         if (unwritten)
526                 return -EFAULT;
527         return 0;
528 }
529
530 /* Here's the write path which can sleep for
531  * page faults
532  */
533
534 static inline int
535 slow_kernel_write(struct io_mapping *mapping,
536                   loff_t gtt_base, int gtt_offset,
537                   struct page *user_page, int user_offset,
538                   int length)
539 {
540         char *src_vaddr, *dst_vaddr;
541         unsigned long unwritten;
542
543         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
544         src_vaddr = kmap_atomic(user_page, KM_USER1);
545         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
546                                                       src_vaddr + user_offset,
547                                                       length);
548         kunmap_atomic(src_vaddr, KM_USER1);
549         io_mapping_unmap_atomic(dst_vaddr);
550         if (unwritten)
551                 return -EFAULT;
552         return 0;
553 }
554
555 static inline int
556 fast_shmem_write(struct page **pages,
557                  loff_t page_base, int page_offset,
558                  char __user *data,
559                  int length)
560 {
561         char __iomem *vaddr;
562         unsigned long unwritten;
563
564         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
565         if (vaddr == NULL)
566                 return -ENOMEM;
567         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
568         kunmap_atomic(vaddr, KM_USER0);
569
570         if (unwritten)
571                 return -EFAULT;
572         return 0;
573 }
574
575 /**
576  * This is the fast pwrite path, where we copy the data directly from the
577  * user into the GTT, uncached.
578  */
579 static int
580 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
581                          struct drm_i915_gem_pwrite *args,
582                          struct drm_file *file_priv)
583 {
584         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
585         drm_i915_private_t *dev_priv = dev->dev_private;
586         ssize_t remain;
587         loff_t offset, page_base;
588         char __user *user_data;
589         int page_offset, page_length;
590         int ret;
591
592         user_data = (char __user *) (uintptr_t) args->data_ptr;
593         remain = args->size;
594         if (!access_ok(VERIFY_READ, user_data, remain))
595                 return -EFAULT;
596
597
598         mutex_lock(&dev->struct_mutex);
599         ret = i915_gem_object_pin(obj, 0);
600         if (ret) {
601                 mutex_unlock(&dev->struct_mutex);
602                 return ret;
603         }
604         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
605         if (ret)
606                 goto fail;
607
608         obj_priv = to_intel_bo(obj);
609         offset = obj_priv->gtt_offset + args->offset;
610
611         while (remain > 0) {
612                 /* Operation in this page
613                  *
614                  * page_base = page offset within aperture
615                  * page_offset = offset within page
616                  * page_length = bytes to copy for this page
617                  */
618                 page_base = (offset & ~(PAGE_SIZE-1));
619                 page_offset = offset & (PAGE_SIZE-1);
620                 page_length = remain;
621                 if ((page_offset + remain) > PAGE_SIZE)
622                         page_length = PAGE_SIZE - page_offset;
623
624                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
625                                        page_offset, user_data, page_length);
626
627                 /* If we get a fault while copying data, then (presumably) our
628                  * source page isn't available.  Return the error and we'll
629                  * retry in the slow path.
630                  */
631                 if (ret)
632                         goto fail;
633
634                 remain -= page_length;
635                 user_data += page_length;
636                 offset += page_length;
637         }
638
639 fail:
640         i915_gem_object_unpin(obj);
641         mutex_unlock(&dev->struct_mutex);
642
643         return ret;
644 }
645
646 /**
647  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
648  * the memory and maps it using kmap_atomic for copying.
649  *
650  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
651  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
652  */
653 static int
654 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
655                          struct drm_i915_gem_pwrite *args,
656                          struct drm_file *file_priv)
657 {
658         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
659         drm_i915_private_t *dev_priv = dev->dev_private;
660         ssize_t remain;
661         loff_t gtt_page_base, offset;
662         loff_t first_data_page, last_data_page, num_pages;
663         loff_t pinned_pages, i;
664         struct page **user_pages;
665         struct mm_struct *mm = current->mm;
666         int gtt_page_offset, data_page_offset, data_page_index, page_length;
667         int ret;
668         uint64_t data_ptr = args->data_ptr;
669
670         remain = args->size;
671
672         /* Pin the user pages containing the data.  We can't fault while
673          * holding the struct mutex, and all of the pwrite implementations
674          * want to hold it while dereferencing the user data.
675          */
676         first_data_page = data_ptr / PAGE_SIZE;
677         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
678         num_pages = last_data_page - first_data_page + 1;
679
680         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
681         if (user_pages == NULL)
682                 return -ENOMEM;
683
684         down_read(&mm->mmap_sem);
685         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
686                                       num_pages, 0, 0, user_pages, NULL);
687         up_read(&mm->mmap_sem);
688         if (pinned_pages < num_pages) {
689                 ret = -EFAULT;
690                 goto out_unpin_pages;
691         }
692
693         mutex_lock(&dev->struct_mutex);
694         ret = i915_gem_object_pin(obj, 0);
695         if (ret)
696                 goto out_unlock;
697
698         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
699         if (ret)
700                 goto out_unpin_object;
701
702         obj_priv = to_intel_bo(obj);
703         offset = obj_priv->gtt_offset + args->offset;
704
705         while (remain > 0) {
706                 /* Operation in this page
707                  *
708                  * gtt_page_base = page offset within aperture
709                  * gtt_page_offset = offset within page in aperture
710                  * data_page_index = page number in get_user_pages return
711                  * data_page_offset = offset with data_page_index page.
712                  * page_length = bytes to copy for this page
713                  */
714                 gtt_page_base = offset & PAGE_MASK;
715                 gtt_page_offset = offset & ~PAGE_MASK;
716                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
717                 data_page_offset = data_ptr & ~PAGE_MASK;
718
719                 page_length = remain;
720                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
721                         page_length = PAGE_SIZE - gtt_page_offset;
722                 if ((data_page_offset + page_length) > PAGE_SIZE)
723                         page_length = PAGE_SIZE - data_page_offset;
724
725                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
726                                         gtt_page_base, gtt_page_offset,
727                                         user_pages[data_page_index],
728                                         data_page_offset,
729                                         page_length);
730
731                 /* If we get a fault while copying data, then (presumably) our
732                  * source page isn't available.  Return the error and we'll
733                  * retry in the slow path.
734                  */
735                 if (ret)
736                         goto out_unpin_object;
737
738                 remain -= page_length;
739                 offset += page_length;
740                 data_ptr += page_length;
741         }
742
743 out_unpin_object:
744         i915_gem_object_unpin(obj);
745 out_unlock:
746         mutex_unlock(&dev->struct_mutex);
747 out_unpin_pages:
748         for (i = 0; i < pinned_pages; i++)
749                 page_cache_release(user_pages[i]);
750         drm_free_large(user_pages);
751
752         return ret;
753 }
754
755 /**
756  * This is the fast shmem pwrite path, which attempts to directly
757  * copy_from_user into the kmapped pages backing the object.
758  */
759 static int
760 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
761                            struct drm_i915_gem_pwrite *args,
762                            struct drm_file *file_priv)
763 {
764         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
765         ssize_t remain;
766         loff_t offset, page_base;
767         char __user *user_data;
768         int page_offset, page_length;
769         int ret;
770
771         user_data = (char __user *) (uintptr_t) args->data_ptr;
772         remain = args->size;
773
774         mutex_lock(&dev->struct_mutex);
775
776         ret = i915_gem_object_get_pages(obj, 0);
777         if (ret != 0)
778                 goto fail_unlock;
779
780         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
781         if (ret != 0)
782                 goto fail_put_pages;
783
784         obj_priv = to_intel_bo(obj);
785         offset = args->offset;
786         obj_priv->dirty = 1;
787
788         while (remain > 0) {
789                 /* Operation in this page
790                  *
791                  * page_base = page offset within aperture
792                  * page_offset = offset within page
793                  * page_length = bytes to copy for this page
794                  */
795                 page_base = (offset & ~(PAGE_SIZE-1));
796                 page_offset = offset & (PAGE_SIZE-1);
797                 page_length = remain;
798                 if ((page_offset + remain) > PAGE_SIZE)
799                         page_length = PAGE_SIZE - page_offset;
800
801                 ret = fast_shmem_write(obj_priv->pages,
802                                        page_base, page_offset,
803                                        user_data, page_length);
804                 if (ret)
805                         goto fail_put_pages;
806
807                 remain -= page_length;
808                 user_data += page_length;
809                 offset += page_length;
810         }
811
812 fail_put_pages:
813         i915_gem_object_put_pages(obj);
814 fail_unlock:
815         mutex_unlock(&dev->struct_mutex);
816
817         return ret;
818 }
819
820 /**
821  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
822  * the memory and maps it using kmap_atomic for copying.
823  *
824  * This avoids taking mmap_sem for faulting on the user's address while the
825  * struct_mutex is held.
826  */
827 static int
828 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
829                            struct drm_i915_gem_pwrite *args,
830                            struct drm_file *file_priv)
831 {
832         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
833         struct mm_struct *mm = current->mm;
834         struct page **user_pages;
835         ssize_t remain;
836         loff_t offset, pinned_pages, i;
837         loff_t first_data_page, last_data_page, num_pages;
838         int shmem_page_index, shmem_page_offset;
839         int data_page_index,  data_page_offset;
840         int page_length;
841         int ret;
842         uint64_t data_ptr = args->data_ptr;
843         int do_bit17_swizzling;
844
845         remain = args->size;
846
847         /* Pin the user pages containing the data.  We can't fault while
848          * holding the struct mutex, and all of the pwrite implementations
849          * want to hold it while dereferencing the user data.
850          */
851         first_data_page = data_ptr / PAGE_SIZE;
852         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
853         num_pages = last_data_page - first_data_page + 1;
854
855         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
856         if (user_pages == NULL)
857                 return -ENOMEM;
858
859         down_read(&mm->mmap_sem);
860         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
861                                       num_pages, 0, 0, user_pages, NULL);
862         up_read(&mm->mmap_sem);
863         if (pinned_pages < num_pages) {
864                 ret = -EFAULT;
865                 goto fail_put_user_pages;
866         }
867
868         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
869
870         mutex_lock(&dev->struct_mutex);
871
872         ret = i915_gem_object_get_pages_or_evict(obj);
873         if (ret)
874                 goto fail_unlock;
875
876         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
877         if (ret != 0)
878                 goto fail_put_pages;
879
880         obj_priv = to_intel_bo(obj);
881         offset = args->offset;
882         obj_priv->dirty = 1;
883
884         while (remain > 0) {
885                 /* Operation in this page
886                  *
887                  * shmem_page_index = page number within shmem file
888                  * shmem_page_offset = offset within page in shmem file
889                  * data_page_index = page number in get_user_pages return
890                  * data_page_offset = offset with data_page_index page.
891                  * page_length = bytes to copy for this page
892                  */
893                 shmem_page_index = offset / PAGE_SIZE;
894                 shmem_page_offset = offset & ~PAGE_MASK;
895                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
896                 data_page_offset = data_ptr & ~PAGE_MASK;
897
898                 page_length = remain;
899                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
900                         page_length = PAGE_SIZE - shmem_page_offset;
901                 if ((data_page_offset + page_length) > PAGE_SIZE)
902                         page_length = PAGE_SIZE - data_page_offset;
903
904                 if (do_bit17_swizzling) {
905                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
906                                                     shmem_page_offset,
907                                                     user_pages[data_page_index],
908                                                     data_page_offset,
909                                                     page_length,
910                                                     0);
911                 } else {
912                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
913                                               shmem_page_offset,
914                                               user_pages[data_page_index],
915                                               data_page_offset,
916                                               page_length);
917                 }
918                 if (ret)
919                         goto fail_put_pages;
920
921                 remain -= page_length;
922                 data_ptr += page_length;
923                 offset += page_length;
924         }
925
926 fail_put_pages:
927         i915_gem_object_put_pages(obj);
928 fail_unlock:
929         mutex_unlock(&dev->struct_mutex);
930 fail_put_user_pages:
931         for (i = 0; i < pinned_pages; i++)
932                 page_cache_release(user_pages[i]);
933         drm_free_large(user_pages);
934
935         return ret;
936 }
937
938 /**
939  * Writes data to the object referenced by handle.
940  *
941  * On error, the contents of the buffer that were to be modified are undefined.
942  */
943 int
944 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
945                       struct drm_file *file_priv)
946 {
947         struct drm_i915_gem_pwrite *args = data;
948         struct drm_gem_object *obj;
949         struct drm_i915_gem_object *obj_priv;
950         int ret = 0;
951
952         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
953         if (obj == NULL)
954                 return -EBADF;
955         obj_priv = to_intel_bo(obj);
956
957         /* Bounds check destination.
958          *
959          * XXX: This could use review for overflow issues...
960          */
961         if (args->offset > obj->size || args->size > obj->size ||
962             args->offset + args->size > obj->size) {
963                 drm_gem_object_unreference_unlocked(obj);
964                 return -EINVAL;
965         }
966
967         /* We can only do the GTT pwrite on untiled buffers, as otherwise
968          * it would end up going through the fenced access, and we'll get
969          * different detiling behavior between reading and writing.
970          * pread/pwrite currently are reading and writing from the CPU
971          * perspective, requiring manual detiling by the client.
972          */
973         if (obj_priv->phys_obj)
974                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
975         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
976                  dev->gtt_total != 0) {
977                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
978                 if (ret == -EFAULT) {
979                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
980                                                        file_priv);
981                 }
982         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
983                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
984         } else {
985                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
986                 if (ret == -EFAULT) {
987                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
988                                                          file_priv);
989                 }
990         }
991
992 #if WATCH_PWRITE
993         if (ret)
994                 DRM_INFO("pwrite failed %d\n", ret);
995 #endif
996
997         drm_gem_object_unreference_unlocked(obj);
998
999         return ret;
1000 }
1001
1002 /**
1003  * Called when user space prepares to use an object with the CPU, either
1004  * through the mmap ioctl's mapping or a GTT mapping.
1005  */
1006 int
1007 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1008                           struct drm_file *file_priv)
1009 {
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         struct drm_i915_gem_set_domain *args = data;
1012         struct drm_gem_object *obj;
1013         struct drm_i915_gem_object *obj_priv;
1014         uint32_t read_domains = args->read_domains;
1015         uint32_t write_domain = args->write_domain;
1016         int ret;
1017
1018         if (!(dev->driver->driver_features & DRIVER_GEM))
1019                 return -ENODEV;
1020
1021         /* Only handle setting domains to types used by the CPU. */
1022         if (write_domain & I915_GEM_GPU_DOMAINS)
1023                 return -EINVAL;
1024
1025         if (read_domains & I915_GEM_GPU_DOMAINS)
1026                 return -EINVAL;
1027
1028         /* Having something in the write domain implies it's in the read
1029          * domain, and only that read domain.  Enforce that in the request.
1030          */
1031         if (write_domain != 0 && read_domains != write_domain)
1032                 return -EINVAL;
1033
1034         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1035         if (obj == NULL)
1036                 return -EBADF;
1037         obj_priv = to_intel_bo(obj);
1038
1039         mutex_lock(&dev->struct_mutex);
1040
1041         intel_mark_busy(dev, obj);
1042
1043 #if WATCH_BUF
1044         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1045                  obj, obj->size, read_domains, write_domain);
1046 #endif
1047         if (read_domains & I915_GEM_DOMAIN_GTT) {
1048                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1049
1050                 /* Update the LRU on the fence for the CPU access that's
1051                  * about to occur.
1052                  */
1053                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1054                         list_move_tail(&obj_priv->fence_list,
1055                                        &dev_priv->mm.fence_list);
1056                 }
1057
1058                 /* Silently promote "you're not bound, there was nothing to do"
1059                  * to success, since the client was just asking us to
1060                  * make sure everything was done.
1061                  */
1062                 if (ret == -EINVAL)
1063                         ret = 0;
1064         } else {
1065                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1066         }
1067
1068         drm_gem_object_unreference(obj);
1069         mutex_unlock(&dev->struct_mutex);
1070         return ret;
1071 }
1072
1073 /**
1074  * Called when user space has done writes to this buffer
1075  */
1076 int
1077 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1078                       struct drm_file *file_priv)
1079 {
1080         struct drm_i915_gem_sw_finish *args = data;
1081         struct drm_gem_object *obj;
1082         struct drm_i915_gem_object *obj_priv;
1083         int ret = 0;
1084
1085         if (!(dev->driver->driver_features & DRIVER_GEM))
1086                 return -ENODEV;
1087
1088         mutex_lock(&dev->struct_mutex);
1089         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1090         if (obj == NULL) {
1091                 mutex_unlock(&dev->struct_mutex);
1092                 return -EBADF;
1093         }
1094
1095 #if WATCH_BUF
1096         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1097                  __func__, args->handle, obj, obj->size);
1098 #endif
1099         obj_priv = to_intel_bo(obj);
1100
1101         /* Pinned buffers may be scanout, so flush the cache */
1102         if (obj_priv->pin_count)
1103                 i915_gem_object_flush_cpu_write_domain(obj);
1104
1105         drm_gem_object_unreference(obj);
1106         mutex_unlock(&dev->struct_mutex);
1107         return ret;
1108 }
1109
1110 /**
1111  * Maps the contents of an object, returning the address it is mapped
1112  * into.
1113  *
1114  * While the mapping holds a reference on the contents of the object, it doesn't
1115  * imply a ref on the object itself.
1116  */
1117 int
1118 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1119                    struct drm_file *file_priv)
1120 {
1121         struct drm_i915_gem_mmap *args = data;
1122         struct drm_gem_object *obj;
1123         loff_t offset;
1124         unsigned long addr;
1125
1126         if (!(dev->driver->driver_features & DRIVER_GEM))
1127                 return -ENODEV;
1128
1129         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1130         if (obj == NULL)
1131                 return -EBADF;
1132
1133         offset = args->offset;
1134
1135         down_write(&current->mm->mmap_sem);
1136         addr = do_mmap(obj->filp, 0, args->size,
1137                        PROT_READ | PROT_WRITE, MAP_SHARED,
1138                        args->offset);
1139         up_write(&current->mm->mmap_sem);
1140         drm_gem_object_unreference_unlocked(obj);
1141         if (IS_ERR((void *)addr))
1142                 return addr;
1143
1144         args->addr_ptr = (uint64_t) addr;
1145
1146         return 0;
1147 }
1148
1149 /**
1150  * i915_gem_fault - fault a page into the GTT
1151  * vma: VMA in question
1152  * vmf: fault info
1153  *
1154  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1155  * from userspace.  The fault handler takes care of binding the object to
1156  * the GTT (if needed), allocating and programming a fence register (again,
1157  * only if needed based on whether the old reg is still valid or the object
1158  * is tiled) and inserting a new PTE into the faulting process.
1159  *
1160  * Note that the faulting process may involve evicting existing objects
1161  * from the GTT and/or fence registers to make room.  So performance may
1162  * suffer if the GTT working set is large or there are few fence registers
1163  * left.
1164  */
1165 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1166 {
1167         struct drm_gem_object *obj = vma->vm_private_data;
1168         struct drm_device *dev = obj->dev;
1169         struct drm_i915_private *dev_priv = dev->dev_private;
1170         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1171         pgoff_t page_offset;
1172         unsigned long pfn;
1173         int ret = 0;
1174         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1175
1176         /* We don't use vmf->pgoff since that has the fake offset */
1177         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1178                 PAGE_SHIFT;
1179
1180         /* Now bind it into the GTT if needed */
1181         mutex_lock(&dev->struct_mutex);
1182         if (!obj_priv->gtt_space) {
1183                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1184                 if (ret)
1185                         goto unlock;
1186
1187                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1188
1189                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1190                 if (ret)
1191                         goto unlock;
1192         }
1193
1194         /* Need a new fence register? */
1195         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1196                 ret = i915_gem_object_get_fence_reg(obj);
1197                 if (ret)
1198                         goto unlock;
1199         }
1200
1201         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1202                 page_offset;
1203
1204         /* Finally, remap it using the new GTT offset */
1205         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1206 unlock:
1207         mutex_unlock(&dev->struct_mutex);
1208
1209         switch (ret) {
1210         case 0:
1211         case -ERESTARTSYS:
1212                 return VM_FAULT_NOPAGE;
1213         case -ENOMEM:
1214         case -EAGAIN:
1215                 return VM_FAULT_OOM;
1216         default:
1217                 return VM_FAULT_SIGBUS;
1218         }
1219 }
1220
1221 /**
1222  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1223  * @obj: obj in question
1224  *
1225  * GEM memory mapping works by handing back to userspace a fake mmap offset
1226  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1227  * up the object based on the offset and sets up the various memory mapping
1228  * structures.
1229  *
1230  * This routine allocates and attaches a fake offset for @obj.
1231  */
1232 static int
1233 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1234 {
1235         struct drm_device *dev = obj->dev;
1236         struct drm_gem_mm *mm = dev->mm_private;
1237         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1238         struct drm_map_list *list;
1239         struct drm_local_map *map;
1240         int ret = 0;
1241
1242         /* Set the object up for mmap'ing */
1243         list = &obj->map_list;
1244         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1245         if (!list->map)
1246                 return -ENOMEM;
1247
1248         map = list->map;
1249         map->type = _DRM_GEM;
1250         map->size = obj->size;
1251         map->handle = obj;
1252
1253         /* Get a DRM GEM mmap offset allocated... */
1254         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1255                                                     obj->size / PAGE_SIZE, 0, 0);
1256         if (!list->file_offset_node) {
1257                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1258                 ret = -ENOMEM;
1259                 goto out_free_list;
1260         }
1261
1262         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1263                                                   obj->size / PAGE_SIZE, 0);
1264         if (!list->file_offset_node) {
1265                 ret = -ENOMEM;
1266                 goto out_free_list;
1267         }
1268
1269         list->hash.key = list->file_offset_node->start;
1270         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1271                 DRM_ERROR("failed to add to map hash\n");
1272                 ret = -ENOMEM;
1273                 goto out_free_mm;
1274         }
1275
1276         /* By now we should be all set, any drm_mmap request on the offset
1277          * below will get to our mmap & fault handler */
1278         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1279
1280         return 0;
1281
1282 out_free_mm:
1283         drm_mm_put_block(list->file_offset_node);
1284 out_free_list:
1285         kfree(list->map);
1286
1287         return ret;
1288 }
1289
1290 /**
1291  * i915_gem_release_mmap - remove physical page mappings
1292  * @obj: obj in question
1293  *
1294  * Preserve the reservation of the mmapping with the DRM core code, but
1295  * relinquish ownership of the pages back to the system.
1296  *
1297  * It is vital that we remove the page mapping if we have mapped a tiled
1298  * object through the GTT and then lose the fence register due to
1299  * resource pressure. Similarly if the object has been moved out of the
1300  * aperture, than pages mapped into userspace must be revoked. Removing the
1301  * mapping will then trigger a page fault on the next user access, allowing
1302  * fixup by i915_gem_fault().
1303  */
1304 void
1305 i915_gem_release_mmap(struct drm_gem_object *obj)
1306 {
1307         struct drm_device *dev = obj->dev;
1308         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1309
1310         if (dev->dev_mapping)
1311                 unmap_mapping_range(dev->dev_mapping,
1312                                     obj_priv->mmap_offset, obj->size, 1);
1313 }
1314
1315 static void
1316 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1317 {
1318         struct drm_device *dev = obj->dev;
1319         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1320         struct drm_gem_mm *mm = dev->mm_private;
1321         struct drm_map_list *list;
1322
1323         list = &obj->map_list;
1324         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1325
1326         if (list->file_offset_node) {
1327                 drm_mm_put_block(list->file_offset_node);
1328                 list->file_offset_node = NULL;
1329         }
1330
1331         if (list->map) {
1332                 kfree(list->map);
1333                 list->map = NULL;
1334         }
1335
1336         obj_priv->mmap_offset = 0;
1337 }
1338
1339 /**
1340  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1341  * @obj: object to check
1342  *
1343  * Return the required GTT alignment for an object, taking into account
1344  * potential fence register mapping if needed.
1345  */
1346 static uint32_t
1347 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1348 {
1349         struct drm_device *dev = obj->dev;
1350         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1351         int start, i;
1352
1353         /*
1354          * Minimum alignment is 4k (GTT page size), but might be greater
1355          * if a fence register is needed for the object.
1356          */
1357         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1358                 return 4096;
1359
1360         /*
1361          * Previous chips need to be aligned to the size of the smallest
1362          * fence register that can contain the object.
1363          */
1364         if (IS_I9XX(dev))
1365                 start = 1024*1024;
1366         else
1367                 start = 512*1024;
1368
1369         for (i = start; i < obj->size; i <<= 1)
1370                 ;
1371
1372         return i;
1373 }
1374
1375 /**
1376  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1377  * @dev: DRM device
1378  * @data: GTT mapping ioctl data
1379  * @file_priv: GEM object info
1380  *
1381  * Simply returns the fake offset to userspace so it can mmap it.
1382  * The mmap call will end up in drm_gem_mmap(), which will set things
1383  * up so we can get faults in the handler above.
1384  *
1385  * The fault handler will take care of binding the object into the GTT
1386  * (since it may have been evicted to make room for something), allocating
1387  * a fence register, and mapping the appropriate aperture address into
1388  * userspace.
1389  */
1390 int
1391 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1392                         struct drm_file *file_priv)
1393 {
1394         struct drm_i915_gem_mmap_gtt *args = data;
1395         struct drm_i915_private *dev_priv = dev->dev_private;
1396         struct drm_gem_object *obj;
1397         struct drm_i915_gem_object *obj_priv;
1398         int ret;
1399
1400         if (!(dev->driver->driver_features & DRIVER_GEM))
1401                 return -ENODEV;
1402
1403         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1404         if (obj == NULL)
1405                 return -EBADF;
1406
1407         mutex_lock(&dev->struct_mutex);
1408
1409         obj_priv = to_intel_bo(obj);
1410
1411         if (obj_priv->madv != I915_MADV_WILLNEED) {
1412                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1413                 drm_gem_object_unreference(obj);
1414                 mutex_unlock(&dev->struct_mutex);
1415                 return -EINVAL;
1416         }
1417
1418
1419         if (!obj_priv->mmap_offset) {
1420                 ret = i915_gem_create_mmap_offset(obj);
1421                 if (ret) {
1422                         drm_gem_object_unreference(obj);
1423                         mutex_unlock(&dev->struct_mutex);
1424                         return ret;
1425                 }
1426         }
1427
1428         args->offset = obj_priv->mmap_offset;
1429
1430         /*
1431          * Pull it into the GTT so that we have a page list (makes the
1432          * initial fault faster and any subsequent flushing possible).
1433          */
1434         if (!obj_priv->agp_mem) {
1435                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1436                 if (ret) {
1437                         drm_gem_object_unreference(obj);
1438                         mutex_unlock(&dev->struct_mutex);
1439                         return ret;
1440                 }
1441                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1442         }
1443
1444         drm_gem_object_unreference(obj);
1445         mutex_unlock(&dev->struct_mutex);
1446
1447         return 0;
1448 }
1449
1450 void
1451 i915_gem_object_put_pages(struct drm_gem_object *obj)
1452 {
1453         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1454         int page_count = obj->size / PAGE_SIZE;
1455         int i;
1456
1457         BUG_ON(obj_priv->pages_refcount == 0);
1458         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1459
1460         if (--obj_priv->pages_refcount != 0)
1461                 return;
1462
1463         if (obj_priv->tiling_mode != I915_TILING_NONE)
1464                 i915_gem_object_save_bit_17_swizzle(obj);
1465
1466         if (obj_priv->madv == I915_MADV_DONTNEED)
1467                 obj_priv->dirty = 0;
1468
1469         for (i = 0; i < page_count; i++) {
1470                 if (obj_priv->dirty)
1471                         set_page_dirty(obj_priv->pages[i]);
1472
1473                 if (obj_priv->madv == I915_MADV_WILLNEED)
1474                         mark_page_accessed(obj_priv->pages[i]);
1475
1476                 page_cache_release(obj_priv->pages[i]);
1477         }
1478         obj_priv->dirty = 0;
1479
1480         drm_free_large(obj_priv->pages);
1481         obj_priv->pages = NULL;
1482 }
1483
1484 static void
1485 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1486 {
1487         struct drm_device *dev = obj->dev;
1488         drm_i915_private_t *dev_priv = dev->dev_private;
1489         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1490
1491         /* Add a reference if we're newly entering the active list. */
1492         if (!obj_priv->active) {
1493                 drm_gem_object_reference(obj);
1494                 obj_priv->active = 1;
1495         }
1496         /* Move from whatever list we were on to the tail of execution. */
1497         spin_lock(&dev_priv->mm.active_list_lock);
1498         list_move_tail(&obj_priv->list,
1499                        &dev_priv->mm.active_list);
1500         spin_unlock(&dev_priv->mm.active_list_lock);
1501         obj_priv->last_rendering_seqno = seqno;
1502 }
1503
1504 static void
1505 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1506 {
1507         struct drm_device *dev = obj->dev;
1508         drm_i915_private_t *dev_priv = dev->dev_private;
1509         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1510
1511         BUG_ON(!obj_priv->active);
1512         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1513         obj_priv->last_rendering_seqno = 0;
1514 }
1515
1516 /* Immediately discard the backing storage */
1517 static void
1518 i915_gem_object_truncate(struct drm_gem_object *obj)
1519 {
1520         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1521         struct inode *inode;
1522
1523         inode = obj->filp->f_path.dentry->d_inode;
1524         if (inode->i_op->truncate)
1525                 inode->i_op->truncate (inode);
1526
1527         obj_priv->madv = __I915_MADV_PURGED;
1528 }
1529
1530 static inline int
1531 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1532 {
1533         return obj_priv->madv == I915_MADV_DONTNEED;
1534 }
1535
1536 static void
1537 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1538 {
1539         struct drm_device *dev = obj->dev;
1540         drm_i915_private_t *dev_priv = dev->dev_private;
1541         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1542
1543         i915_verify_inactive(dev, __FILE__, __LINE__);
1544         if (obj_priv->pin_count != 0)
1545                 list_del_init(&obj_priv->list);
1546         else
1547                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1548
1549         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1550
1551         obj_priv->last_rendering_seqno = 0;
1552         if (obj_priv->active) {
1553                 obj_priv->active = 0;
1554                 drm_gem_object_unreference(obj);
1555         }
1556         i915_verify_inactive(dev, __FILE__, __LINE__);
1557 }
1558
1559 static void
1560 i915_gem_process_flushing_list(struct drm_device *dev,
1561                                uint32_t flush_domains, uint32_t seqno)
1562 {
1563         drm_i915_private_t *dev_priv = dev->dev_private;
1564         struct drm_i915_gem_object *obj_priv, *next;
1565
1566         list_for_each_entry_safe(obj_priv, next,
1567                                  &dev_priv->mm.gpu_write_list,
1568                                  gpu_write_list) {
1569                 struct drm_gem_object *obj = obj_priv->obj;
1570
1571                 if ((obj->write_domain & flush_domains) ==
1572                     obj->write_domain) {
1573                         uint32_t old_write_domain = obj->write_domain;
1574
1575                         obj->write_domain = 0;
1576                         list_del_init(&obj_priv->gpu_write_list);
1577                         i915_gem_object_move_to_active(obj, seqno);
1578
1579                         /* update the fence lru list */
1580                         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1581                                 list_move_tail(&obj_priv->fence_list,
1582                                                 &dev_priv->mm.fence_list);
1583
1584                         trace_i915_gem_object_change_domain(obj,
1585                                                             obj->read_domains,
1586                                                             old_write_domain);
1587                 }
1588         }
1589 }
1590
1591 #define PIPE_CONTROL_FLUSH(addr)                                        \
1592         OUT_RING(GFX_OP_PIPE_CONTROL | PIPE_CONTROL_QW_WRITE |          \
1593                  PIPE_CONTROL_DEPTH_STALL);                             \
1594         OUT_RING(addr | PIPE_CONTROL_GLOBAL_GTT);                       \
1595         OUT_RING(0);                                                    \
1596         OUT_RING(0);                                                    \
1597
1598 /**
1599  * Creates a new sequence number, emitting a write of it to the status page
1600  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1601  *
1602  * Must be called with struct_lock held.
1603  *
1604  * Returned sequence numbers are nonzero on success.
1605  */
1606 uint32_t
1607 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1608                  uint32_t flush_domains)
1609 {
1610         drm_i915_private_t *dev_priv = dev->dev_private;
1611         struct drm_i915_file_private *i915_file_priv = NULL;
1612         struct drm_i915_gem_request *request;
1613         uint32_t seqno;
1614         int was_empty;
1615         RING_LOCALS;
1616
1617         if (file_priv != NULL)
1618                 i915_file_priv = file_priv->driver_priv;
1619
1620         request = kzalloc(sizeof(*request), GFP_KERNEL);
1621         if (request == NULL)
1622                 return 0;
1623
1624         /* Grab the seqno we're going to make this request be, and bump the
1625          * next (skipping 0 so it can be the reserved no-seqno value).
1626          */
1627         seqno = dev_priv->mm.next_gem_seqno;
1628         dev_priv->mm.next_gem_seqno++;
1629         if (dev_priv->mm.next_gem_seqno == 0)
1630                 dev_priv->mm.next_gem_seqno++;
1631
1632         if (HAS_PIPE_CONTROL(dev)) {
1633                 u32 scratch_addr = dev_priv->seqno_gfx_addr + 128;
1634
1635                 /*
1636                  * Workaround qword write incoherence by flushing the
1637                  * PIPE_NOTIFY buffers out to memory before requesting
1638                  * an interrupt.
1639                  */
1640                 BEGIN_LP_RING(32);
1641                 OUT_RING(GFX_OP_PIPE_CONTROL | PIPE_CONTROL_QW_WRITE |
1642                          PIPE_CONTROL_WC_FLUSH | PIPE_CONTROL_TC_FLUSH);
1643                 OUT_RING(dev_priv->seqno_gfx_addr | PIPE_CONTROL_GLOBAL_GTT);
1644                 OUT_RING(seqno);
1645                 OUT_RING(0);
1646                 PIPE_CONTROL_FLUSH(scratch_addr);
1647                 scratch_addr += 128; /* write to separate cachelines */
1648                 PIPE_CONTROL_FLUSH(scratch_addr);
1649                 scratch_addr += 128;
1650                 PIPE_CONTROL_FLUSH(scratch_addr);
1651                 scratch_addr += 128;
1652                 PIPE_CONTROL_FLUSH(scratch_addr);
1653                 scratch_addr += 128;
1654                 PIPE_CONTROL_FLUSH(scratch_addr);
1655                 scratch_addr += 128;
1656                 PIPE_CONTROL_FLUSH(scratch_addr);
1657                 OUT_RING(GFX_OP_PIPE_CONTROL | PIPE_CONTROL_QW_WRITE |
1658                          PIPE_CONTROL_WC_FLUSH | PIPE_CONTROL_TC_FLUSH |
1659                          PIPE_CONTROL_NOTIFY);
1660                 OUT_RING(dev_priv->seqno_gfx_addr | PIPE_CONTROL_GLOBAL_GTT);
1661                 OUT_RING(seqno);
1662                 OUT_RING(0);
1663                 ADVANCE_LP_RING();
1664         } else {
1665                 BEGIN_LP_RING(4);
1666                 OUT_RING(MI_STORE_DWORD_INDEX);
1667                 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1668                 OUT_RING(seqno);
1669
1670                 OUT_RING(MI_USER_INTERRUPT);
1671                 ADVANCE_LP_RING();
1672         }
1673
1674         DRM_DEBUG_DRIVER("%d\n", seqno);
1675
1676         request->seqno = seqno;
1677         request->emitted_jiffies = jiffies;
1678         was_empty = list_empty(&dev_priv->mm.request_list);
1679         list_add_tail(&request->list, &dev_priv->mm.request_list);
1680         if (i915_file_priv) {
1681                 list_add_tail(&request->client_list,
1682                               &i915_file_priv->mm.request_list);
1683         } else {
1684                 INIT_LIST_HEAD(&request->client_list);
1685         }
1686
1687         /* Associate any objects on the flushing list matching the write
1688          * domain we're flushing with our flush.
1689          */
1690         if (flush_domains != 0) 
1691                 i915_gem_process_flushing_list(dev, flush_domains, seqno);
1692
1693         if (!dev_priv->mm.suspended) {
1694                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1695                 if (was_empty)
1696                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1697         }
1698         return seqno;
1699 }
1700
1701 /**
1702  * Command execution barrier
1703  *
1704  * Ensures that all commands in the ring are finished
1705  * before signalling the CPU
1706  */
1707 static uint32_t
1708 i915_retire_commands(struct drm_device *dev)
1709 {
1710         drm_i915_private_t *dev_priv = dev->dev_private;
1711         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1712         uint32_t flush_domains = 0;
1713         RING_LOCALS;
1714
1715         /* The sampler always gets flushed on i965 (sigh) */
1716         if (IS_I965G(dev))
1717                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1718         BEGIN_LP_RING(2);
1719         OUT_RING(cmd);
1720         OUT_RING(0); /* noop */
1721         ADVANCE_LP_RING();
1722         return flush_domains;
1723 }
1724
1725 /**
1726  * Moves buffers associated only with the given active seqno from the active
1727  * to inactive list, potentially freeing them.
1728  */
1729 static void
1730 i915_gem_retire_request(struct drm_device *dev,
1731                         struct drm_i915_gem_request *request)
1732 {
1733         drm_i915_private_t *dev_priv = dev->dev_private;
1734
1735         trace_i915_gem_request_retire(dev, request->seqno);
1736
1737         /* Move any buffers on the active list that are no longer referenced
1738          * by the ringbuffer to the flushing/inactive lists as appropriate.
1739          */
1740         spin_lock(&dev_priv->mm.active_list_lock);
1741         while (!list_empty(&dev_priv->mm.active_list)) {
1742                 struct drm_gem_object *obj;
1743                 struct drm_i915_gem_object *obj_priv;
1744
1745                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1746                                             struct drm_i915_gem_object,
1747                                             list);
1748                 obj = obj_priv->obj;
1749
1750                 /* If the seqno being retired doesn't match the oldest in the
1751                  * list, then the oldest in the list must still be newer than
1752                  * this seqno.
1753                  */
1754                 if (obj_priv->last_rendering_seqno != request->seqno)
1755                         goto out;
1756
1757 #if WATCH_LRU
1758                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1759                          __func__, request->seqno, obj);
1760 #endif
1761
1762                 if (obj->write_domain != 0)
1763                         i915_gem_object_move_to_flushing(obj);
1764                 else {
1765                         /* Take a reference on the object so it won't be
1766                          * freed while the spinlock is held.  The list
1767                          * protection for this spinlock is safe when breaking
1768                          * the lock like this since the next thing we do
1769                          * is just get the head of the list again.
1770                          */
1771                         drm_gem_object_reference(obj);
1772                         i915_gem_object_move_to_inactive(obj);
1773                         spin_unlock(&dev_priv->mm.active_list_lock);
1774                         drm_gem_object_unreference(obj);
1775                         spin_lock(&dev_priv->mm.active_list_lock);
1776                 }
1777         }
1778 out:
1779         spin_unlock(&dev_priv->mm.active_list_lock);
1780 }
1781
1782 /**
1783  * Returns true if seq1 is later than seq2.
1784  */
1785 bool
1786 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1787 {
1788         return (int32_t)(seq1 - seq2) >= 0;
1789 }
1790
1791 uint32_t
1792 i915_get_gem_seqno(struct drm_device *dev)
1793 {
1794         drm_i915_private_t *dev_priv = dev->dev_private;
1795
1796         if (HAS_PIPE_CONTROL(dev))
1797                 return ((volatile u32 *)(dev_priv->seqno_page))[0];
1798         else
1799                 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1800 }
1801
1802 /**
1803  * This function clears the request list as sequence numbers are passed.
1804  */
1805 void
1806 i915_gem_retire_requests(struct drm_device *dev)
1807 {
1808         drm_i915_private_t *dev_priv = dev->dev_private;
1809         uint32_t seqno;
1810
1811         if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1812                 return;
1813
1814         seqno = i915_get_gem_seqno(dev);
1815
1816         while (!list_empty(&dev_priv->mm.request_list)) {
1817                 struct drm_i915_gem_request *request;
1818                 uint32_t retiring_seqno;
1819
1820                 request = list_first_entry(&dev_priv->mm.request_list,
1821                                            struct drm_i915_gem_request,
1822                                            list);
1823                 retiring_seqno = request->seqno;
1824
1825                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1826                     atomic_read(&dev_priv->mm.wedged)) {
1827                         i915_gem_retire_request(dev, request);
1828
1829                         list_del(&request->list);
1830                         list_del(&request->client_list);
1831                         kfree(request);
1832                 } else
1833                         break;
1834         }
1835
1836         if (unlikely (dev_priv->trace_irq_seqno &&
1837                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1838                 i915_user_irq_put(dev);
1839                 dev_priv->trace_irq_seqno = 0;
1840         }
1841 }
1842
1843 void
1844 i915_gem_retire_work_handler(struct work_struct *work)
1845 {
1846         drm_i915_private_t *dev_priv;
1847         struct drm_device *dev;
1848
1849         dev_priv = container_of(work, drm_i915_private_t,
1850                                 mm.retire_work.work);
1851         dev = dev_priv->dev;
1852
1853         mutex_lock(&dev->struct_mutex);
1854         i915_gem_retire_requests(dev);
1855         if (!dev_priv->mm.suspended &&
1856             !list_empty(&dev_priv->mm.request_list))
1857                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1858         mutex_unlock(&dev->struct_mutex);
1859 }
1860
1861 int
1862 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1863 {
1864         drm_i915_private_t *dev_priv = dev->dev_private;
1865         u32 ier;
1866         int ret = 0;
1867
1868         BUG_ON(seqno == 0);
1869
1870         if (atomic_read(&dev_priv->mm.wedged))
1871                 return -EIO;
1872
1873         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1874                 if (HAS_PCH_SPLIT(dev))
1875                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1876                 else
1877                         ier = I915_READ(IER);
1878                 if (!ier) {
1879                         DRM_ERROR("something (likely vbetool) disabled "
1880                                   "interrupts, re-enabling\n");
1881                         i915_driver_irq_preinstall(dev);
1882                         i915_driver_irq_postinstall(dev);
1883                 }
1884
1885                 trace_i915_gem_request_wait_begin(dev, seqno);
1886
1887                 dev_priv->mm.waiting_gem_seqno = seqno;
1888                 i915_user_irq_get(dev);
1889                 if (interruptible)
1890                         ret = wait_event_interruptible(dev_priv->irq_queue,
1891                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1892                                 atomic_read(&dev_priv->mm.wedged));
1893                 else
1894                         wait_event(dev_priv->irq_queue,
1895                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1896                                 atomic_read(&dev_priv->mm.wedged));
1897
1898                 i915_user_irq_put(dev);
1899                 dev_priv->mm.waiting_gem_seqno = 0;
1900
1901                 trace_i915_gem_request_wait_end(dev, seqno);
1902         }
1903         if (atomic_read(&dev_priv->mm.wedged))
1904                 ret = -EIO;
1905
1906         if (ret && ret != -ERESTARTSYS)
1907                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1908                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1909
1910         /* Directly dispatch request retiring.  While we have the work queue
1911          * to handle this, the waiter on a request often wants an associated
1912          * buffer to have made it to the inactive list, and we would need
1913          * a separate wait queue to handle that.
1914          */
1915         if (ret == 0)
1916                 i915_gem_retire_requests(dev);
1917
1918         return ret;
1919 }
1920
1921 /**
1922  * Waits for a sequence number to be signaled, and cleans up the
1923  * request and object lists appropriately for that event.
1924  */
1925 static int
1926 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1927 {
1928         return i915_do_wait_request(dev, seqno, 1);
1929 }
1930
1931 static void
1932 i915_gem_flush(struct drm_device *dev,
1933                uint32_t invalidate_domains,
1934                uint32_t flush_domains)
1935 {
1936         drm_i915_private_t *dev_priv = dev->dev_private;
1937         uint32_t cmd;
1938         RING_LOCALS;
1939
1940 #if WATCH_EXEC
1941         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1942                   invalidate_domains, flush_domains);
1943 #endif
1944         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1945                                      invalidate_domains, flush_domains);
1946
1947         if (flush_domains & I915_GEM_DOMAIN_CPU)
1948                 drm_agp_chipset_flush(dev);
1949
1950         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1951                 /*
1952                  * read/write caches:
1953                  *
1954                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1955                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1956                  * also flushed at 2d versus 3d pipeline switches.
1957                  *
1958                  * read-only caches:
1959                  *
1960                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1961                  * MI_READ_FLUSH is set, and is always flushed on 965.
1962                  *
1963                  * I915_GEM_DOMAIN_COMMAND may not exist?
1964                  *
1965                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1966                  * invalidated when MI_EXE_FLUSH is set.
1967                  *
1968                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1969                  * invalidated with every MI_FLUSH.
1970                  *
1971                  * TLBs:
1972                  *
1973                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1974                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1975                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1976                  * are flushed at any MI_FLUSH.
1977                  */
1978
1979                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1980                 if ((invalidate_domains|flush_domains) &
1981                     I915_GEM_DOMAIN_RENDER)
1982                         cmd &= ~MI_NO_WRITE_FLUSH;
1983                 if (!IS_I965G(dev)) {
1984                         /*
1985                          * On the 965, the sampler cache always gets flushed
1986                          * and this bit is reserved.
1987                          */
1988                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1989                                 cmd |= MI_READ_FLUSH;
1990                 }
1991                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1992                         cmd |= MI_EXE_FLUSH;
1993
1994 #if WATCH_EXEC
1995                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1996 #endif
1997                 BEGIN_LP_RING(2);
1998                 OUT_RING(cmd);
1999                 OUT_RING(MI_NOOP);
2000                 ADVANCE_LP_RING();
2001         }
2002 }
2003
2004 /**
2005  * Ensures that all rendering to the object has completed and the object is
2006  * safe to unbind from the GTT or access from the CPU.
2007  */
2008 static int
2009 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
2010 {
2011         struct drm_device *dev = obj->dev;
2012         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2013         int ret;
2014
2015         /* This function only exists to support waiting for existing rendering,
2016          * not for emitting required flushes.
2017          */
2018         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2019
2020         /* If there is rendering queued on the buffer being evicted, wait for
2021          * it.
2022          */
2023         if (obj_priv->active) {
2024 #if WATCH_BUF
2025                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2026                           __func__, obj, obj_priv->last_rendering_seqno);
2027 #endif
2028                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
2029                 if (ret != 0)
2030                         return ret;
2031         }
2032
2033         return 0;
2034 }
2035
2036 /**
2037  * Unbinds an object from the GTT aperture.
2038  */
2039 int
2040 i915_gem_object_unbind(struct drm_gem_object *obj)
2041 {
2042         struct drm_device *dev = obj->dev;
2043         drm_i915_private_t *dev_priv = dev->dev_private;
2044         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2045         int ret = 0;
2046
2047 #if WATCH_BUF
2048         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2049         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2050 #endif
2051         if (obj_priv->gtt_space == NULL)
2052                 return 0;
2053
2054         if (obj_priv->pin_count != 0) {
2055                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2056                 return -EINVAL;
2057         }
2058
2059         /* blow away mappings if mapped through GTT */
2060         i915_gem_release_mmap(obj);
2061
2062         /* Move the object to the CPU domain to ensure that
2063          * any possible CPU writes while it's not in the GTT
2064          * are flushed when we go to remap it. This will
2065          * also ensure that all pending GPU writes are finished
2066          * before we unbind.
2067          */
2068         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2069         if (ret) {
2070                 if (ret != -ERESTARTSYS)
2071                         DRM_ERROR("set_domain failed: %d\n", ret);
2072                 return ret;
2073         }
2074
2075         BUG_ON(obj_priv->active);
2076
2077         /* release the fence reg _after_ flushing */
2078         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2079                 i915_gem_clear_fence_reg(obj);
2080
2081         if (obj_priv->agp_mem != NULL) {
2082                 drm_unbind_agp(obj_priv->agp_mem);
2083                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2084                 obj_priv->agp_mem = NULL;
2085         }
2086
2087         i915_gem_object_put_pages(obj);
2088         BUG_ON(obj_priv->pages_refcount);
2089
2090         if (obj_priv->gtt_space) {
2091                 atomic_dec(&dev->gtt_count);
2092                 atomic_sub(obj->size, &dev->gtt_memory);
2093
2094                 drm_mm_put_block(obj_priv->gtt_space);
2095                 obj_priv->gtt_space = NULL;
2096         }
2097
2098         /* Remove ourselves from the LRU list if present. */
2099         spin_lock(&dev_priv->mm.active_list_lock);
2100         if (!list_empty(&obj_priv->list))
2101                 list_del_init(&obj_priv->list);
2102         spin_unlock(&dev_priv->mm.active_list_lock);
2103
2104         if (i915_gem_object_is_purgeable(obj_priv))
2105                 i915_gem_object_truncate(obj);
2106
2107         trace_i915_gem_object_unbind(obj);
2108
2109         return 0;
2110 }
2111
2112 static struct drm_gem_object *
2113 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2114 {
2115         drm_i915_private_t *dev_priv = dev->dev_private;
2116         struct drm_i915_gem_object *obj_priv;
2117         struct drm_gem_object *best = NULL;
2118         struct drm_gem_object *first = NULL;
2119
2120         /* Try to find the smallest clean object */
2121         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2122                 struct drm_gem_object *obj = obj_priv->obj;
2123                 if (obj->size >= min_size) {
2124                         if ((!obj_priv->dirty ||
2125                              i915_gem_object_is_purgeable(obj_priv)) &&
2126                             (!best || obj->size < best->size)) {
2127                                 best = obj;
2128                                 if (best->size == min_size)
2129                                         return best;
2130                         }
2131                         if (!first)
2132                             first = obj;
2133                 }
2134         }
2135
2136         return best ? best : first;
2137 }
2138
2139 static int
2140 i915_gpu_idle(struct drm_device *dev)
2141 {
2142         drm_i915_private_t *dev_priv = dev->dev_private;
2143         bool lists_empty;
2144         uint32_t seqno;
2145
2146         spin_lock(&dev_priv->mm.active_list_lock);
2147         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
2148                       list_empty(&dev_priv->mm.active_list);
2149         spin_unlock(&dev_priv->mm.active_list_lock);
2150
2151         if (lists_empty)
2152                 return 0;
2153
2154         /* Flush everything onto the inactive list. */
2155         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2156         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2157         if (seqno == 0)
2158                 return -ENOMEM;
2159
2160         return i915_wait_request(dev, seqno);
2161 }
2162
2163 static int
2164 i915_gem_evict_everything(struct drm_device *dev)
2165 {
2166         drm_i915_private_t *dev_priv = dev->dev_private;
2167         int ret;
2168         bool lists_empty;
2169
2170         spin_lock(&dev_priv->mm.active_list_lock);
2171         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2172                        list_empty(&dev_priv->mm.flushing_list) &&
2173                        list_empty(&dev_priv->mm.active_list));
2174         spin_unlock(&dev_priv->mm.active_list_lock);
2175
2176         if (lists_empty)
2177                 return -ENOSPC;
2178
2179         /* Flush everything (on to the inactive lists) and evict */
2180         ret = i915_gpu_idle(dev);
2181         if (ret)
2182                 return ret;
2183
2184         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2185
2186         ret = i915_gem_evict_from_inactive_list(dev);
2187         if (ret)
2188                 return ret;
2189
2190         spin_lock(&dev_priv->mm.active_list_lock);
2191         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2192                        list_empty(&dev_priv->mm.flushing_list) &&
2193                        list_empty(&dev_priv->mm.active_list));
2194         spin_unlock(&dev_priv->mm.active_list_lock);
2195         BUG_ON(!lists_empty);
2196
2197         return 0;
2198 }
2199
2200 static int
2201 i915_gem_evict_something(struct drm_device *dev, int min_size)
2202 {
2203         drm_i915_private_t *dev_priv = dev->dev_private;
2204         struct drm_gem_object *obj;
2205         int ret;
2206
2207         for (;;) {
2208                 i915_gem_retire_requests(dev);
2209
2210                 /* If there's an inactive buffer available now, grab it
2211                  * and be done.
2212                  */
2213                 obj = i915_gem_find_inactive_object(dev, min_size);
2214                 if (obj) {
2215                         struct drm_i915_gem_object *obj_priv;
2216
2217 #if WATCH_LRU
2218                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2219 #endif
2220                         obj_priv = to_intel_bo(obj);
2221                         BUG_ON(obj_priv->pin_count != 0);
2222                         BUG_ON(obj_priv->active);
2223
2224                         /* Wait on the rendering and unbind the buffer. */
2225                         return i915_gem_object_unbind(obj);
2226                 }
2227
2228                 /* If we didn't get anything, but the ring is still processing
2229                  * things, wait for the next to finish and hopefully leave us
2230                  * a buffer to evict.
2231                  */
2232                 if (!list_empty(&dev_priv->mm.request_list)) {
2233                         struct drm_i915_gem_request *request;
2234
2235                         request = list_first_entry(&dev_priv->mm.request_list,
2236                                                    struct drm_i915_gem_request,
2237                                                    list);
2238
2239                         ret = i915_wait_request(dev, request->seqno);
2240                         if (ret)
2241                                 return ret;
2242
2243                         continue;
2244                 }
2245
2246                 /* If we didn't have anything on the request list but there
2247                  * are buffers awaiting a flush, emit one and try again.
2248                  * When we wait on it, those buffers waiting for that flush
2249                  * will get moved to inactive.
2250                  */
2251                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2252                         struct drm_i915_gem_object *obj_priv;
2253
2254                         /* Find an object that we can immediately reuse */
2255                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2256                                 obj = obj_priv->obj;
2257                                 if (obj->size >= min_size)
2258                                         break;
2259
2260                                 obj = NULL;
2261                         }
2262
2263                         if (obj != NULL) {
2264                                 uint32_t seqno;
2265
2266                                 i915_gem_flush(dev,
2267                                                obj->write_domain,
2268                                                obj->write_domain);
2269                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2270                                 if (seqno == 0)
2271                                         return -ENOMEM;
2272                                 continue;
2273                         }
2274                 }
2275
2276                 /* If we didn't do any of the above, there's no single buffer
2277                  * large enough to swap out for the new one, so just evict
2278                  * everything and start again. (This should be rare.)
2279                  */
2280                 if (!list_empty (&dev_priv->mm.inactive_list))
2281                         return i915_gem_evict_from_inactive_list(dev);
2282                 else
2283                         return i915_gem_evict_everything(dev);
2284         }
2285 }
2286
2287 int
2288 i915_gem_object_get_pages(struct drm_gem_object *obj,
2289                           gfp_t gfpmask)
2290 {
2291         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2292         int page_count, i;
2293         struct address_space *mapping;
2294         struct inode *inode;
2295         struct page *page;
2296
2297         if (obj_priv->pages_refcount++ != 0)
2298                 return 0;
2299
2300         /* Get the list of pages out of our struct file.  They'll be pinned
2301          * at this point until we release them.
2302          */
2303         page_count = obj->size / PAGE_SIZE;
2304         BUG_ON(obj_priv->pages != NULL);
2305         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2306         if (obj_priv->pages == NULL) {
2307                 obj_priv->pages_refcount--;
2308                 return -ENOMEM;
2309         }
2310
2311         inode = obj->filp->f_path.dentry->d_inode;
2312         mapping = inode->i_mapping;
2313         for (i = 0; i < page_count; i++) {
2314                 page = read_cache_page_gfp(mapping, i,
2315                                            mapping_gfp_mask (mapping) |
2316                                            __GFP_COLD |
2317                                            gfpmask);
2318                 if (IS_ERR(page))
2319                         goto err_pages;
2320
2321                 obj_priv->pages[i] = page;
2322         }
2323
2324         if (obj_priv->tiling_mode != I915_TILING_NONE)
2325                 i915_gem_object_do_bit_17_swizzle(obj);
2326
2327         return 0;
2328
2329 err_pages:
2330         while (i--)
2331                 page_cache_release(obj_priv->pages[i]);
2332
2333         drm_free_large(obj_priv->pages);
2334         obj_priv->pages = NULL;
2335         obj_priv->pages_refcount--;
2336         return PTR_ERR(page);
2337 }
2338
2339 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2340 {
2341         struct drm_gem_object *obj = reg->obj;
2342         struct drm_device *dev = obj->dev;
2343         drm_i915_private_t *dev_priv = dev->dev_private;
2344         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2345         int regnum = obj_priv->fence_reg;
2346         uint64_t val;
2347
2348         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2349                     0xfffff000) << 32;
2350         val |= obj_priv->gtt_offset & 0xfffff000;
2351         val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2352                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2353
2354         if (obj_priv->tiling_mode == I915_TILING_Y)
2355                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2356         val |= I965_FENCE_REG_VALID;
2357
2358         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2359 }
2360
2361 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2362 {
2363         struct drm_gem_object *obj = reg->obj;
2364         struct drm_device *dev = obj->dev;
2365         drm_i915_private_t *dev_priv = dev->dev_private;
2366         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2367         int regnum = obj_priv->fence_reg;
2368         uint64_t val;
2369
2370         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2371                     0xfffff000) << 32;
2372         val |= obj_priv->gtt_offset & 0xfffff000;
2373         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2374         if (obj_priv->tiling_mode == I915_TILING_Y)
2375                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2376         val |= I965_FENCE_REG_VALID;
2377
2378         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2379 }
2380
2381 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2382 {
2383         struct drm_gem_object *obj = reg->obj;
2384         struct drm_device *dev = obj->dev;
2385         drm_i915_private_t *dev_priv = dev->dev_private;
2386         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2387         int regnum = obj_priv->fence_reg;
2388         int tile_width;
2389         uint32_t fence_reg, val;
2390         uint32_t pitch_val;
2391
2392         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2393             (obj_priv->gtt_offset & (obj->size - 1))) {
2394                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2395                      __func__, obj_priv->gtt_offset, obj->size);
2396                 return;
2397         }
2398
2399         if (obj_priv->tiling_mode == I915_TILING_Y &&
2400             HAS_128_BYTE_Y_TILING(dev))
2401                 tile_width = 128;
2402         else
2403                 tile_width = 512;
2404
2405         /* Note: pitch better be a power of two tile widths */
2406         pitch_val = obj_priv->stride / tile_width;
2407         pitch_val = ffs(pitch_val) - 1;
2408
2409         if (obj_priv->tiling_mode == I915_TILING_Y &&
2410             HAS_128_BYTE_Y_TILING(dev))
2411                 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2412         else
2413                 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2414
2415         val = obj_priv->gtt_offset;
2416         if (obj_priv->tiling_mode == I915_TILING_Y)
2417                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2418         val |= I915_FENCE_SIZE_BITS(obj->size);
2419         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2420         val |= I830_FENCE_REG_VALID;
2421
2422         if (regnum < 8)
2423                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2424         else
2425                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2426         I915_WRITE(fence_reg, val);
2427 }
2428
2429 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2430 {
2431         struct drm_gem_object *obj = reg->obj;
2432         struct drm_device *dev = obj->dev;
2433         drm_i915_private_t *dev_priv = dev->dev_private;
2434         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2435         int regnum = obj_priv->fence_reg;
2436         uint32_t val;
2437         uint32_t pitch_val;
2438         uint32_t fence_size_bits;
2439
2440         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2441             (obj_priv->gtt_offset & (obj->size - 1))) {
2442                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2443                      __func__, obj_priv->gtt_offset);
2444                 return;
2445         }
2446
2447         pitch_val = obj_priv->stride / 128;
2448         pitch_val = ffs(pitch_val) - 1;
2449         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2450
2451         val = obj_priv->gtt_offset;
2452         if (obj_priv->tiling_mode == I915_TILING_Y)
2453                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2454         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2455         WARN_ON(fence_size_bits & ~0x00000f00);
2456         val |= fence_size_bits;
2457         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2458         val |= I830_FENCE_REG_VALID;
2459
2460         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2461 }
2462
2463 static int i915_find_fence_reg(struct drm_device *dev)
2464 {
2465         struct drm_i915_fence_reg *reg = NULL;
2466         struct drm_i915_gem_object *obj_priv = NULL;
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         struct drm_gem_object *obj = NULL;
2469         int i, avail, ret;
2470
2471         /* First try to find a free reg */
2472         avail = 0;
2473         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2474                 reg = &dev_priv->fence_regs[i];
2475                 if (!reg->obj)
2476                         return i;
2477
2478                 obj_priv = to_intel_bo(reg->obj);
2479                 if (!obj_priv->pin_count)
2480                     avail++;
2481         }
2482
2483         if (avail == 0)
2484                 return -ENOSPC;
2485
2486         /* None available, try to steal one or wait for a user to finish */
2487         i = I915_FENCE_REG_NONE;
2488         list_for_each_entry(obj_priv, &dev_priv->mm.fence_list,
2489                             fence_list) {
2490                 obj = obj_priv->obj;
2491
2492                 if (obj_priv->pin_count)
2493                         continue;
2494
2495                 /* found one! */
2496                 i = obj_priv->fence_reg;
2497                 break;
2498         }
2499
2500         BUG_ON(i == I915_FENCE_REG_NONE);
2501
2502         /* We only have a reference on obj from the active list. put_fence_reg
2503          * might drop that one, causing a use-after-free in it. So hold a
2504          * private reference to obj like the other callers of put_fence_reg
2505          * (set_tiling ioctl) do. */
2506         drm_gem_object_reference(obj);
2507         ret = i915_gem_object_put_fence_reg(obj);
2508         drm_gem_object_unreference(obj);
2509         if (ret != 0)
2510                 return ret;
2511
2512         return i;
2513 }
2514
2515 /**
2516  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2517  * @obj: object to map through a fence reg
2518  *
2519  * When mapping objects through the GTT, userspace wants to be able to write
2520  * to them without having to worry about swizzling if the object is tiled.
2521  *
2522  * This function walks the fence regs looking for a free one for @obj,
2523  * stealing one if it can't find any.
2524  *
2525  * It then sets up the reg based on the object's properties: address, pitch
2526  * and tiling format.
2527  */
2528 int
2529 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2530 {
2531         struct drm_device *dev = obj->dev;
2532         struct drm_i915_private *dev_priv = dev->dev_private;
2533         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2534         struct drm_i915_fence_reg *reg = NULL;
2535         int ret;
2536
2537         /* Just update our place in the LRU if our fence is getting used. */
2538         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2539                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2540                 return 0;
2541         }
2542
2543         switch (obj_priv->tiling_mode) {
2544         case I915_TILING_NONE:
2545                 WARN(1, "allocating a fence for non-tiled object?\n");
2546                 break;
2547         case I915_TILING_X:
2548                 if (!obj_priv->stride)
2549                         return -EINVAL;
2550                 WARN((obj_priv->stride & (512 - 1)),
2551                      "object 0x%08x is X tiled but has non-512B pitch\n",
2552                      obj_priv->gtt_offset);
2553                 break;
2554         case I915_TILING_Y:
2555                 if (!obj_priv->stride)
2556                         return -EINVAL;
2557                 WARN((obj_priv->stride & (128 - 1)),
2558                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2559                      obj_priv->gtt_offset);
2560                 break;
2561         }
2562
2563         ret = i915_find_fence_reg(dev);
2564         if (ret < 0)
2565                 return ret;
2566
2567         obj_priv->fence_reg = ret;
2568         reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2569         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2570
2571         reg->obj = obj;
2572
2573         if (IS_GEN6(dev))
2574                 sandybridge_write_fence_reg(reg);
2575         else if (IS_I965G(dev))
2576                 i965_write_fence_reg(reg);
2577         else if (IS_I9XX(dev))
2578                 i915_write_fence_reg(reg);
2579         else
2580                 i830_write_fence_reg(reg);
2581
2582         trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2583                         obj_priv->tiling_mode);
2584
2585         return 0;
2586 }
2587
2588 /**
2589  * i915_gem_clear_fence_reg - clear out fence register info
2590  * @obj: object to clear
2591  *
2592  * Zeroes out the fence register itself and clears out the associated
2593  * data structures in dev_priv and obj_priv.
2594  */
2595 static void
2596 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2597 {
2598         struct drm_device *dev = obj->dev;
2599         drm_i915_private_t *dev_priv = dev->dev_private;
2600         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2601
2602         if (IS_GEN6(dev)) {
2603                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2604                              (obj_priv->fence_reg * 8), 0);
2605         } else if (IS_I965G(dev)) {
2606                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2607         } else {
2608                 uint32_t fence_reg;
2609
2610                 if (obj_priv->fence_reg < 8)
2611                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2612                 else
2613                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2614                                                        8) * 4;
2615
2616                 I915_WRITE(fence_reg, 0);
2617         }
2618
2619         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2620         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2621         list_del_init(&obj_priv->fence_list);
2622 }
2623
2624 /**
2625  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2626  * to the buffer to finish, and then resets the fence register.
2627  * @obj: tiled object holding a fence register.
2628  *
2629  * Zeroes out the fence register itself and clears out the associated
2630  * data structures in dev_priv and obj_priv.
2631  */
2632 int
2633 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2634 {
2635         struct drm_device *dev = obj->dev;
2636         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2637
2638         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2639                 return 0;
2640
2641         /* If we've changed tiling, GTT-mappings of the object
2642          * need to re-fault to ensure that the correct fence register
2643          * setup is in place.
2644          */
2645         i915_gem_release_mmap(obj);
2646
2647         /* On the i915, GPU access to tiled buffers is via a fence,
2648          * therefore we must wait for any outstanding access to complete
2649          * before clearing the fence.
2650          */
2651         if (!IS_I965G(dev)) {
2652                 int ret;
2653
2654                 i915_gem_object_flush_gpu_write_domain(obj);
2655                 ret = i915_gem_object_wait_rendering(obj);
2656                 if (ret != 0)
2657                         return ret;
2658         }
2659
2660         i915_gem_object_flush_gtt_write_domain(obj);
2661         i915_gem_clear_fence_reg (obj);
2662
2663         return 0;
2664 }
2665
2666 /**
2667  * Finds free space in the GTT aperture and binds the object there.
2668  */
2669 static int
2670 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2671 {
2672         struct drm_device *dev = obj->dev;
2673         drm_i915_private_t *dev_priv = dev->dev_private;
2674         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2675         struct drm_mm_node *free_space;
2676         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2677         int ret;
2678
2679         if (obj_priv->madv != I915_MADV_WILLNEED) {
2680                 DRM_ERROR("Attempting to bind a purgeable object\n");
2681                 return -EINVAL;
2682         }
2683
2684         if (alignment == 0)
2685                 alignment = i915_gem_get_gtt_alignment(obj);
2686         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2687                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2688                 return -EINVAL;
2689         }
2690
2691  search_free:
2692         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2693                                         obj->size, alignment, 0);
2694         if (free_space != NULL) {
2695                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2696                                                        alignment);
2697                 if (obj_priv->gtt_space != NULL) {
2698                         obj_priv->gtt_space->private = obj;
2699                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2700                 }
2701         }
2702         if (obj_priv->gtt_space == NULL) {
2703                 /* If the gtt is empty and we're still having trouble
2704                  * fitting our object in, we're out of memory.
2705                  */
2706 #if WATCH_LRU
2707                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2708 #endif
2709                 ret = i915_gem_evict_something(dev, obj->size);
2710                 if (ret)
2711                         return ret;
2712
2713                 goto search_free;
2714         }
2715
2716 #if WATCH_BUF
2717         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2718                  obj->size, obj_priv->gtt_offset);
2719 #endif
2720         ret = i915_gem_object_get_pages(obj, gfpmask);
2721         if (ret) {
2722                 drm_mm_put_block(obj_priv->gtt_space);
2723                 obj_priv->gtt_space = NULL;
2724
2725                 if (ret == -ENOMEM) {
2726                         /* first try to clear up some space from the GTT */
2727                         ret = i915_gem_evict_something(dev, obj->size);
2728                         if (ret) {
2729                                 /* now try to shrink everyone else */
2730                                 if (gfpmask) {
2731                                         gfpmask = 0;
2732                                         goto search_free;
2733                                 }
2734
2735                                 return ret;
2736                         }
2737
2738                         goto search_free;
2739                 }
2740
2741                 return ret;
2742         }
2743
2744         /* Create an AGP memory structure pointing at our pages, and bind it
2745          * into the GTT.
2746          */
2747         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2748                                                obj_priv->pages,
2749                                                obj->size >> PAGE_SHIFT,
2750                                                obj_priv->gtt_offset,
2751                                                obj_priv->agp_type);
2752         if (obj_priv->agp_mem == NULL) {
2753                 i915_gem_object_put_pages(obj);
2754                 drm_mm_put_block(obj_priv->gtt_space);
2755                 obj_priv->gtt_space = NULL;
2756
2757                 ret = i915_gem_evict_something(dev, obj->size);
2758                 if (ret)
2759                         return ret;
2760
2761                 goto search_free;
2762         }
2763         atomic_inc(&dev->gtt_count);
2764         atomic_add(obj->size, &dev->gtt_memory);
2765
2766         /* Assert that the object is not currently in any GPU domain. As it
2767          * wasn't in the GTT, there shouldn't be any way it could have been in
2768          * a GPU cache
2769          */
2770         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2771         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2772
2773         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2774
2775         return 0;
2776 }
2777
2778 void
2779 i915_gem_clflush_object(struct drm_gem_object *obj)
2780 {
2781         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
2782
2783         /* If we don't have a page list set up, then we're not pinned
2784          * to GPU, and we can ignore the cache flush because it'll happen
2785          * again at bind time.
2786          */
2787         if (obj_priv->pages == NULL)
2788                 return;
2789
2790         trace_i915_gem_object_clflush(obj);
2791
2792         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2793 }
2794
2795 /** Flushes any GPU write domain for the object if it's dirty. */
2796 static void
2797 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2798 {
2799         struct drm_device *dev = obj->dev;
2800         uint32_t old_write_domain;
2801
2802         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2803                 return;
2804
2805         /* Queue the GPU write cache flushing we need. */
2806         old_write_domain = obj->write_domain;
2807         i915_gem_flush(dev, 0, obj->write_domain);
2808         (void) i915_add_request(dev, NULL, obj->write_domain);
2809         BUG_ON(obj->write_domain);
2810
2811         trace_i915_gem_object_change_domain(obj,
2812                                             obj->read_domains,
2813                                             old_write_domain);
2814 }
2815
2816 /** Flushes the GTT write domain for the object if it's dirty. */
2817 static void
2818 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2819 {
2820         uint32_t old_write_domain;
2821
2822         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2823                 return;
2824
2825         /* No actual flushing is required for the GTT write domain.   Writes
2826          * to it immediately go to main memory as far as we know, so there's
2827          * no chipset flush.  It also doesn't land in render cache.
2828          */
2829         old_write_domain = obj->write_domain;
2830         obj->write_domain = 0;
2831
2832         trace_i915_gem_object_change_domain(obj,
2833                                             obj->read_domains,
2834                                             old_write_domain);
2835 }
2836
2837 /** Flushes the CPU write domain for the object if it's dirty. */
2838 static void
2839 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2840 {
2841         struct drm_device *dev = obj->dev;
2842         uint32_t old_write_domain;
2843
2844         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2845                 return;
2846
2847         i915_gem_clflush_object(obj);
2848         drm_agp_chipset_flush(dev);
2849         old_write_domain = obj->write_domain;
2850         obj->write_domain = 0;
2851
2852         trace_i915_gem_object_change_domain(obj,
2853                                             obj->read_domains,
2854                                             old_write_domain);
2855 }
2856
2857 void
2858 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2859 {
2860         switch (obj->write_domain) {
2861         case I915_GEM_DOMAIN_GTT:
2862                 i915_gem_object_flush_gtt_write_domain(obj);
2863                 break;
2864         case I915_GEM_DOMAIN_CPU:
2865                 i915_gem_object_flush_cpu_write_domain(obj);
2866                 break;
2867         default:
2868                 i915_gem_object_flush_gpu_write_domain(obj);
2869                 break;
2870         }
2871 }
2872
2873 /**
2874  * Moves a single object to the GTT read, and possibly write domain.
2875  *
2876  * This function returns when the move is complete, including waiting on
2877  * flushes to occur.
2878  */
2879 int
2880 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2881 {
2882         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2883         uint32_t old_write_domain, old_read_domains;
2884         int ret;
2885
2886         /* Not valid to be called on unbound objects. */
2887         if (obj_priv->gtt_space == NULL)
2888                 return -EINVAL;
2889
2890         i915_gem_object_flush_gpu_write_domain(obj);
2891         /* Wait on any GPU rendering and flushing to occur. */
2892         ret = i915_gem_object_wait_rendering(obj);
2893         if (ret != 0)
2894                 return ret;
2895
2896         old_write_domain = obj->write_domain;
2897         old_read_domains = obj->read_domains;
2898
2899         /* If we're writing through the GTT domain, then CPU and GPU caches
2900          * will need to be invalidated at next use.
2901          */
2902         if (write)
2903                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2904
2905         i915_gem_object_flush_cpu_write_domain(obj);
2906
2907         /* It should now be out of any other write domains, and we can update
2908          * the domain values for our changes.
2909          */
2910         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2911         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2912         if (write) {
2913                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2914                 obj_priv->dirty = 1;
2915         }
2916
2917         trace_i915_gem_object_change_domain(obj,
2918                                             old_read_domains,
2919                                             old_write_domain);
2920
2921         return 0;
2922 }
2923
2924 /*
2925  * Prepare buffer for display plane. Use uninterruptible for possible flush
2926  * wait, as in modesetting process we're not supposed to be interrupted.
2927  */
2928 int
2929 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2930 {
2931         struct drm_device *dev = obj->dev;
2932         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2933         uint32_t old_write_domain, old_read_domains;
2934         int ret;
2935
2936         /* Not valid to be called on unbound objects. */
2937         if (obj_priv->gtt_space == NULL)
2938                 return -EINVAL;
2939
2940         i915_gem_object_flush_gpu_write_domain(obj);
2941
2942         /* Wait on any GPU rendering and flushing to occur. */
2943         if (obj_priv->active) {
2944 #if WATCH_BUF
2945                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2946                           __func__, obj, obj_priv->last_rendering_seqno);
2947 #endif
2948                 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2949                 if (ret != 0)
2950                         return ret;
2951         }
2952
2953         old_write_domain = obj->write_domain;
2954         old_read_domains = obj->read_domains;
2955
2956         obj->read_domains &= I915_GEM_DOMAIN_GTT;
2957
2958         i915_gem_object_flush_cpu_write_domain(obj);
2959
2960         /* It should now be out of any other write domains, and we can update
2961          * the domain values for our changes.
2962          */
2963         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2964         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2965         obj->write_domain = I915_GEM_DOMAIN_GTT;
2966         obj_priv->dirty = 1;
2967
2968         trace_i915_gem_object_change_domain(obj,
2969                                             old_read_domains,
2970                                             old_write_domain);
2971
2972         return 0;
2973 }
2974
2975 /**
2976  * Moves a single object to the CPU read, and possibly write domain.
2977  *
2978  * This function returns when the move is complete, including waiting on
2979  * flushes to occur.
2980  */
2981 static int
2982 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2983 {
2984         uint32_t old_write_domain, old_read_domains;
2985         int ret;
2986
2987         i915_gem_object_flush_gpu_write_domain(obj);
2988         /* Wait on any GPU rendering and flushing to occur. */
2989         ret = i915_gem_object_wait_rendering(obj);
2990         if (ret != 0)
2991                 return ret;
2992
2993         i915_gem_object_flush_gtt_write_domain(obj);
2994
2995         /* If we have a partially-valid cache of the object in the CPU,
2996          * finish invalidating it and free the per-page flags.
2997          */
2998         i915_gem_object_set_to_full_cpu_read_domain(obj);
2999
3000         old_write_domain = obj->write_domain;
3001         old_read_domains = obj->read_domains;
3002
3003         /* Flush the CPU cache if it's still invalid. */
3004         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3005                 i915_gem_clflush_object(obj);
3006
3007                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3008         }
3009
3010         /* It should now be out of any other write domains, and we can update
3011          * the domain values for our changes.
3012          */
3013         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3014
3015         /* If we're writing through the CPU, then the GPU read domains will
3016          * need to be invalidated at next use.
3017          */
3018         if (write) {
3019                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
3020                 obj->write_domain = I915_GEM_DOMAIN_CPU;
3021         }
3022
3023         trace_i915_gem_object_change_domain(obj,
3024                                             old_read_domains,
3025                                             old_write_domain);
3026
3027         return 0;
3028 }
3029
3030 /*
3031  * Set the next domain for the specified object. This
3032  * may not actually perform the necessary flushing/invaliding though,
3033  * as that may want to be batched with other set_domain operations
3034  *
3035  * This is (we hope) the only really tricky part of gem. The goal
3036  * is fairly simple -- track which caches hold bits of the object
3037  * and make sure they remain coherent. A few concrete examples may
3038  * help to explain how it works. For shorthand, we use the notation
3039  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3040  * a pair of read and write domain masks.
3041  *
3042  * Case 1: the batch buffer
3043  *
3044  *      1. Allocated
3045  *      2. Written by CPU
3046  *      3. Mapped to GTT
3047  *      4. Read by GPU
3048  *      5. Unmapped from GTT
3049  *      6. Freed
3050  *
3051  *      Let's take these a step at a time
3052  *
3053  *      1. Allocated
3054  *              Pages allocated from the kernel may still have
3055  *              cache contents, so we set them to (CPU, CPU) always.
3056  *      2. Written by CPU (using pwrite)
3057  *              The pwrite function calls set_domain (CPU, CPU) and
3058  *              this function does nothing (as nothing changes)
3059  *      3. Mapped by GTT
3060  *              This function asserts that the object is not
3061  *              currently in any GPU-based read or write domains
3062  *      4. Read by GPU
3063  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
3064  *              As write_domain is zero, this function adds in the
3065  *              current read domains (CPU+COMMAND, 0).
3066  *              flush_domains is set to CPU.
3067  *              invalidate_domains is set to COMMAND
3068  *              clflush is run to get data out of the CPU caches
3069  *              then i915_dev_set_domain calls i915_gem_flush to
3070  *              emit an MI_FLUSH and drm_agp_chipset_flush
3071  *      5. Unmapped from GTT
3072  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
3073  *              flush_domains and invalidate_domains end up both zero
3074  *              so no flushing/invalidating happens
3075  *      6. Freed
3076  *              yay, done
3077  *
3078  * Case 2: The shared render buffer
3079  *
3080  *      1. Allocated
3081  *      2. Mapped to GTT
3082  *      3. Read/written by GPU
3083  *      4. set_domain to (CPU,CPU)
3084  *      5. Read/written by CPU
3085  *      6. Read/written by GPU
3086  *
3087  *      1. Allocated
3088  *              Same as last example, (CPU, CPU)
3089  *      2. Mapped to GTT
3090  *              Nothing changes (assertions find that it is not in the GPU)
3091  *      3. Read/written by GPU
3092  *              execbuffer calls set_domain (RENDER, RENDER)
3093  *              flush_domains gets CPU
3094  *              invalidate_domains gets GPU
3095  *              clflush (obj)
3096  *              MI_FLUSH and drm_agp_chipset_flush
3097  *      4. set_domain (CPU, CPU)
3098  *              flush_domains gets GPU
3099  *              invalidate_domains gets CPU
3100  *              wait_rendering (obj) to make sure all drawing is complete.
3101  *              This will include an MI_FLUSH to get the data from GPU
3102  *              to memory
3103  *              clflush (obj) to invalidate the CPU cache
3104  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3105  *      5. Read/written by CPU
3106  *              cache lines are loaded and dirtied
3107  *      6. Read written by GPU
3108  *              Same as last GPU access
3109  *
3110  * Case 3: The constant buffer
3111  *
3112  *      1. Allocated
3113  *      2. Written by CPU
3114  *      3. Read by GPU
3115  *      4. Updated (written) by CPU again
3116  *      5. Read by GPU
3117  *
3118  *      1. Allocated
3119  *              (CPU, CPU)
3120  *      2. Written by CPU
3121  *              (CPU, CPU)
3122  *      3. Read by GPU
3123  *              (CPU+RENDER, 0)
3124  *              flush_domains = CPU
3125  *              invalidate_domains = RENDER
3126  *              clflush (obj)
3127  *              MI_FLUSH
3128  *              drm_agp_chipset_flush
3129  *      4. Updated (written) by CPU again
3130  *              (CPU, CPU)
3131  *              flush_domains = 0 (no previous write domain)
3132  *              invalidate_domains = 0 (no new read domains)
3133  *      5. Read by GPU
3134  *              (CPU+RENDER, 0)
3135  *              flush_domains = CPU
3136  *              invalidate_domains = RENDER
3137  *              clflush (obj)
3138  *              MI_FLUSH
3139  *              drm_agp_chipset_flush
3140  */
3141 static void
3142 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3143 {
3144         struct drm_device               *dev = obj->dev;
3145         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
3146         uint32_t                        invalidate_domains = 0;
3147         uint32_t                        flush_domains = 0;
3148         uint32_t                        old_read_domains;
3149
3150         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3151         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3152
3153         intel_mark_busy(dev, obj);
3154
3155 #if WATCH_BUF
3156         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3157                  __func__, obj,
3158                  obj->read_domains, obj->pending_read_domains,
3159                  obj->write_domain, obj->pending_write_domain);
3160 #endif
3161         /*
3162          * If the object isn't moving to a new write domain,
3163          * let the object stay in multiple read domains
3164          */
3165         if (obj->pending_write_domain == 0)
3166                 obj->pending_read_domains |= obj->read_domains;
3167         else
3168                 obj_priv->dirty = 1;
3169
3170         /*
3171          * Flush the current write domain if
3172          * the new read domains don't match. Invalidate
3173          * any read domains which differ from the old
3174          * write domain
3175          */
3176         if (obj->write_domain &&
3177             obj->write_domain != obj->pending_read_domains) {
3178                 flush_domains |= obj->write_domain;
3179                 invalidate_domains |=
3180                         obj->pending_read_domains & ~obj->write_domain;
3181         }
3182         /*
3183          * Invalidate any read caches which may have
3184          * stale data. That is, any new read domains.
3185          */
3186         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3187         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3188 #if WATCH_BUF
3189                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3190                          __func__, flush_domains, invalidate_domains);
3191 #endif
3192                 i915_gem_clflush_object(obj);
3193         }
3194
3195         old_read_domains = obj->read_domains;
3196
3197         /* The actual obj->write_domain will be updated with
3198          * pending_write_domain after we emit the accumulated flush for all
3199          * of our domain changes in execbuffers (which clears objects'
3200          * write_domains).  So if we have a current write domain that we
3201          * aren't changing, set pending_write_domain to that.
3202          */
3203         if (flush_domains == 0 && obj->pending_write_domain == 0)
3204                 obj->pending_write_domain = obj->write_domain;
3205         obj->read_domains = obj->pending_read_domains;
3206
3207         dev->invalidate_domains |= invalidate_domains;
3208         dev->flush_domains |= flush_domains;
3209 #if WATCH_BUF
3210         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3211                  __func__,
3212                  obj->read_domains, obj->write_domain,
3213                  dev->invalidate_domains, dev->flush_domains);
3214 #endif
3215
3216         trace_i915_gem_object_change_domain(obj,
3217                                             old_read_domains,
3218                                             obj->write_domain);
3219 }
3220
3221 /**
3222  * Moves the object from a partially CPU read to a full one.
3223  *
3224  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3225  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3226  */
3227 static void
3228 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3229 {
3230         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3231
3232         if (!obj_priv->page_cpu_valid)
3233                 return;
3234
3235         /* If we're partially in the CPU read domain, finish moving it in.
3236          */
3237         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3238                 int i;
3239
3240                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3241                         if (obj_priv->page_cpu_valid[i])
3242                                 continue;
3243                         drm_clflush_pages(obj_priv->pages + i, 1);
3244                 }
3245         }
3246
3247         /* Free the page_cpu_valid mappings which are now stale, whether
3248          * or not we've got I915_GEM_DOMAIN_CPU.
3249          */
3250         kfree(obj_priv->page_cpu_valid);
3251         obj_priv->page_cpu_valid = NULL;
3252 }
3253
3254 /**
3255  * Set the CPU read domain on a range of the object.
3256  *
3257  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3258  * not entirely valid.  The page_cpu_valid member of the object flags which
3259  * pages have been flushed, and will be respected by
3260  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3261  * of the whole object.
3262  *
3263  * This function returns when the move is complete, including waiting on
3264  * flushes to occur.
3265  */
3266 static int
3267 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3268                                           uint64_t offset, uint64_t size)
3269 {
3270         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3271         uint32_t old_read_domains;
3272         int i, ret;
3273
3274         if (offset == 0 && size == obj->size)
3275                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3276
3277         i915_gem_object_flush_gpu_write_domain(obj);
3278         /* Wait on any GPU rendering and flushing to occur. */
3279         ret = i915_gem_object_wait_rendering(obj);
3280         if (ret != 0)
3281                 return ret;
3282         i915_gem_object_flush_gtt_write_domain(obj);
3283
3284         /* If we're already fully in the CPU read domain, we're done. */
3285         if (obj_priv->page_cpu_valid == NULL &&
3286             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3287                 return 0;
3288
3289         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3290          * newly adding I915_GEM_DOMAIN_CPU
3291          */
3292         if (obj_priv->page_cpu_valid == NULL) {
3293                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3294                                                    GFP_KERNEL);
3295                 if (obj_priv->page_cpu_valid == NULL)
3296                         return -ENOMEM;
3297         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3298                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3299
3300         /* Flush the cache on any pages that are still invalid from the CPU's
3301          * perspective.
3302          */
3303         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3304              i++) {
3305                 if (obj_priv->page_cpu_valid[i])
3306                         continue;
3307
3308                 drm_clflush_pages(obj_priv->pages + i, 1);
3309
3310                 obj_priv->page_cpu_valid[i] = 1;
3311         }
3312
3313         /* It should now be out of any other write domains, and we can update
3314          * the domain values for our changes.
3315          */
3316         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3317
3318         old_read_domains = obj->read_domains;
3319         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3320
3321         trace_i915_gem_object_change_domain(obj,
3322                                             old_read_domains,
3323                                             obj->write_domain);
3324
3325         return 0;
3326 }
3327
3328 /**
3329  * Pin an object to the GTT and evaluate the relocations landing in it.
3330  */
3331 static int
3332 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3333                                  struct drm_file *file_priv,
3334                                  struct drm_i915_gem_exec_object2 *entry,
3335                                  struct drm_i915_gem_relocation_entry *relocs)
3336 {
3337         struct drm_device *dev = obj->dev;
3338         drm_i915_private_t *dev_priv = dev->dev_private;
3339         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3340         int i, ret;
3341         void __iomem *reloc_page;
3342         bool need_fence;
3343
3344         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3345                      obj_priv->tiling_mode != I915_TILING_NONE;
3346
3347         /* Check fence reg constraints and rebind if necessary */
3348         if (need_fence && !i915_gem_object_fence_offset_ok(obj,
3349             obj_priv->tiling_mode))
3350                 i915_gem_object_unbind(obj);
3351
3352         /* Choose the GTT offset for our buffer and put it there. */
3353         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3354         if (ret)
3355                 return ret;
3356
3357         /*
3358          * Pre-965 chips need a fence register set up in order to
3359          * properly handle blits to/from tiled surfaces.
3360          */
3361         if (need_fence) {
3362                 ret = i915_gem_object_get_fence_reg(obj);
3363                 if (ret != 0) {
3364                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3365                                 DRM_ERROR("Failure to install fence: %d\n",
3366                                           ret);
3367                         i915_gem_object_unpin(obj);
3368                         return ret;
3369                 }
3370         }
3371
3372         entry->offset = obj_priv->gtt_offset;
3373
3374         /* Apply the relocations, using the GTT aperture to avoid cache
3375          * flushing requirements.
3376          */
3377         for (i = 0; i < entry->relocation_count; i++) {
3378                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3379                 struct drm_gem_object *target_obj;
3380                 struct drm_i915_gem_object *target_obj_priv;
3381                 uint32_t reloc_val, reloc_offset;
3382                 uint32_t __iomem *reloc_entry;
3383
3384                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3385                                                    reloc->target_handle);
3386                 if (target_obj == NULL) {
3387                         i915_gem_object_unpin(obj);
3388                         return -EBADF;
3389                 }
3390                 target_obj_priv = to_intel_bo(target_obj);
3391
3392 #if WATCH_RELOC
3393                 DRM_INFO("%s: obj %p offset %08x target %d "
3394                          "read %08x write %08x gtt %08x "
3395                          "presumed %08x delta %08x\n",
3396                          __func__,
3397                          obj,
3398                          (int) reloc->offset,
3399                          (int) reloc->target_handle,
3400                          (int) reloc->read_domains,
3401                          (int) reloc->write_domain,
3402                          (int) target_obj_priv->gtt_offset,
3403                          (int) reloc->presumed_offset,
3404                          reloc->delta);
3405 #endif
3406
3407                 /* The target buffer should have appeared before us in the
3408                  * exec_object list, so it should have a GTT space bound by now.
3409                  */
3410                 if (target_obj_priv->gtt_space == NULL) {
3411                         DRM_ERROR("No GTT space found for object %d\n",
3412                                   reloc->target_handle);
3413                         drm_gem_object_unreference(target_obj);
3414                         i915_gem_object_unpin(obj);
3415                         return -EINVAL;
3416                 }
3417
3418                 /* Validate that the target is in a valid r/w GPU domain */
3419                 if (reloc->write_domain & (reloc->write_domain - 1)) {
3420                         DRM_ERROR("reloc with multiple write domains: "
3421                                   "obj %p target %d offset %d "
3422                                   "read %08x write %08x",
3423                                   obj, reloc->target_handle,
3424                                   (int) reloc->offset,
3425                                   reloc->read_domains,
3426                                   reloc->write_domain);
3427                         return -EINVAL;
3428                 }
3429                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3430                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3431                         DRM_ERROR("reloc with read/write CPU domains: "
3432                                   "obj %p target %d offset %d "
3433                                   "read %08x write %08x",
3434                                   obj, reloc->target_handle,
3435                                   (int) reloc->offset,
3436                                   reloc->read_domains,
3437                                   reloc->write_domain);
3438                         drm_gem_object_unreference(target_obj);
3439                         i915_gem_object_unpin(obj);
3440                         return -EINVAL;
3441                 }
3442                 if (reloc->write_domain && target_obj->pending_write_domain &&
3443                     reloc->write_domain != target_obj->pending_write_domain) {
3444                         DRM_ERROR("Write domain conflict: "
3445                                   "obj %p target %d offset %d "
3446                                   "new %08x old %08x\n",
3447                                   obj, reloc->target_handle,
3448                                   (int) reloc->offset,
3449                                   reloc->write_domain,
3450                                   target_obj->pending_write_domain);
3451                         drm_gem_object_unreference(target_obj);
3452                         i915_gem_object_unpin(obj);
3453                         return -EINVAL;
3454                 }
3455
3456                 target_obj->pending_read_domains |= reloc->read_domains;
3457                 target_obj->pending_write_domain |= reloc->write_domain;
3458
3459                 /* If the relocation already has the right value in it, no
3460                  * more work needs to be done.
3461                  */
3462                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3463                         drm_gem_object_unreference(target_obj);
3464                         continue;
3465                 }
3466
3467                 /* Check that the relocation address is valid... */
3468                 if (reloc->offset > obj->size - 4) {
3469                         DRM_ERROR("Relocation beyond object bounds: "
3470                                   "obj %p target %d offset %d size %d.\n",
3471                                   obj, reloc->target_handle,
3472                                   (int) reloc->offset, (int) obj->size);
3473                         drm_gem_object_unreference(target_obj);
3474                         i915_gem_object_unpin(obj);
3475                         return -EINVAL;
3476                 }
3477                 if (reloc->offset & 3) {
3478                         DRM_ERROR("Relocation not 4-byte aligned: "
3479                                   "obj %p target %d offset %d.\n",
3480                                   obj, reloc->target_handle,
3481                                   (int) reloc->offset);
3482                         drm_gem_object_unreference(target_obj);
3483                         i915_gem_object_unpin(obj);
3484                         return -EINVAL;
3485                 }
3486
3487                 /* and points to somewhere within the target object. */
3488                 if (reloc->delta >= target_obj->size) {
3489                         DRM_ERROR("Relocation beyond target object bounds: "
3490                                   "obj %p target %d delta %d size %d.\n",
3491                                   obj, reloc->target_handle,
3492                                   (int) reloc->delta, (int) target_obj->size);
3493                         drm_gem_object_unreference(target_obj);
3494                         i915_gem_object_unpin(obj);
3495                         return -EINVAL;
3496                 }
3497
3498                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3499                 if (ret != 0) {
3500                         drm_gem_object_unreference(target_obj);
3501                         i915_gem_object_unpin(obj);
3502                         return -EINVAL;
3503                 }
3504
3505                 /* Map the page containing the relocation we're going to
3506                  * perform.
3507                  */
3508                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3509                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3510                                                       (reloc_offset &
3511                                                        ~(PAGE_SIZE - 1)));
3512                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3513                                                    (reloc_offset & (PAGE_SIZE - 1)));
3514                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3515
3516 #if WATCH_BUF
3517                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3518                           obj, (unsigned int) reloc->offset,
3519                           readl(reloc_entry), reloc_val);
3520 #endif
3521                 writel(reloc_val, reloc_entry);
3522                 io_mapping_unmap_atomic(reloc_page);
3523
3524                 /* The updated presumed offset for this entry will be
3525                  * copied back out to the user.
3526                  */
3527                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3528
3529                 drm_gem_object_unreference(target_obj);
3530         }
3531
3532 #if WATCH_BUF
3533         if (0)
3534                 i915_gem_dump_object(obj, 128, __func__, ~0);
3535 #endif
3536         return 0;
3537 }
3538
3539 /** Dispatch a batchbuffer to the ring
3540  */
3541 static int
3542 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3543                               struct drm_i915_gem_execbuffer2 *exec,
3544                               struct drm_clip_rect *cliprects,
3545                               uint64_t exec_offset)
3546 {
3547         drm_i915_private_t *dev_priv = dev->dev_private;
3548         int nbox = exec->num_cliprects;
3549         int i = 0, count;
3550         uint32_t exec_start, exec_len;
3551         RING_LOCALS;
3552
3553         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3554         exec_len = (uint32_t) exec->batch_len;
3555
3556         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3557
3558         count = nbox ? nbox : 1;
3559
3560         for (i = 0; i < count; i++) {
3561                 if (i < nbox) {
3562                         int ret = i915_emit_box(dev, cliprects, i,
3563                                                 exec->DR1, exec->DR4);
3564                         if (ret)
3565                                 return ret;
3566                 }
3567
3568                 if (IS_I830(dev) || IS_845G(dev)) {
3569                         BEGIN_LP_RING(4);
3570                         OUT_RING(MI_BATCH_BUFFER);
3571                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3572                         OUT_RING(exec_start + exec_len - 4);
3573                         OUT_RING(0);
3574                         ADVANCE_LP_RING();
3575                 } else {
3576                         BEGIN_LP_RING(2);
3577                         if (IS_I965G(dev)) {
3578                                 OUT_RING(MI_BATCH_BUFFER_START |
3579                                          (2 << 6) |
3580                                          MI_BATCH_NON_SECURE_I965);
3581                                 OUT_RING(exec_start);
3582                         } else {
3583                                 OUT_RING(MI_BATCH_BUFFER_START |
3584                                          (2 << 6));
3585                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3586                         }
3587                         ADVANCE_LP_RING();
3588                 }
3589         }
3590
3591         /* XXX breadcrumb */
3592         return 0;
3593 }
3594
3595 /* Throttle our rendering by waiting until the ring has completed our requests
3596  * emitted over 20 msec ago.
3597  *
3598  * Note that if we were to use the current jiffies each time around the loop,
3599  * we wouldn't escape the function with any frames outstanding if the time to
3600  * render a frame was over 20ms.
3601  *
3602  * This should get us reasonable parallelism between CPU and GPU but also
3603  * relatively low latency when blocking on a particular request to finish.
3604  */
3605 static int
3606 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3607 {
3608         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3609         int ret = 0;
3610         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3611
3612         mutex_lock(&dev->struct_mutex);
3613         while (!list_empty(&i915_file_priv->mm.request_list)) {
3614                 struct drm_i915_gem_request *request;
3615
3616                 request = list_first_entry(&i915_file_priv->mm.request_list,
3617                                            struct drm_i915_gem_request,
3618                                            client_list);
3619
3620                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3621                         break;
3622
3623                 ret = i915_wait_request(dev, request->seqno);
3624                 if (ret != 0)
3625                         break;
3626         }
3627         mutex_unlock(&dev->struct_mutex);
3628
3629         return ret;
3630 }
3631
3632 static int
3633 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3634                               uint32_t buffer_count,
3635                               struct drm_i915_gem_relocation_entry **relocs)
3636 {
3637         uint32_t reloc_count = 0, reloc_index = 0, i;
3638         int ret;
3639
3640         *relocs = NULL;
3641         for (i = 0; i < buffer_count; i++) {
3642                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3643                         return -EINVAL;
3644                 reloc_count += exec_list[i].relocation_count;
3645         }
3646
3647         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3648         if (*relocs == NULL) {
3649                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3650                 return -ENOMEM;
3651         }
3652
3653         for (i = 0; i < buffer_count; i++) {
3654                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3655
3656                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3657
3658                 ret = copy_from_user(&(*relocs)[reloc_index],
3659                                      user_relocs,
3660                                      exec_list[i].relocation_count *
3661                                      sizeof(**relocs));
3662                 if (ret != 0) {
3663                         drm_free_large(*relocs);
3664                         *relocs = NULL;
3665                         return -EFAULT;
3666                 }
3667
3668                 reloc_index += exec_list[i].relocation_count;
3669         }
3670
3671         return 0;
3672 }
3673
3674 static int
3675 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3676                             uint32_t buffer_count,
3677                             struct drm_i915_gem_relocation_entry *relocs)
3678 {
3679         uint32_t reloc_count = 0, i;
3680         int ret = 0;
3681
3682         if (relocs == NULL)
3683             return 0;
3684
3685         for (i = 0; i < buffer_count; i++) {
3686                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3687                 int unwritten;
3688
3689                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3690
3691                 unwritten = copy_to_user(user_relocs,
3692                                          &relocs[reloc_count],
3693                                          exec_list[i].relocation_count *
3694                                          sizeof(*relocs));
3695
3696                 if (unwritten) {
3697                         ret = -EFAULT;
3698                         goto err;
3699                 }
3700
3701                 reloc_count += exec_list[i].relocation_count;
3702         }
3703
3704 err:
3705         drm_free_large(relocs);
3706
3707         return ret;
3708 }
3709
3710 static int
3711 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3712                            uint64_t exec_offset)
3713 {
3714         uint32_t exec_start, exec_len;
3715
3716         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3717         exec_len = (uint32_t) exec->batch_len;
3718
3719         if ((exec_start | exec_len) & 0x7)
3720                 return -EINVAL;
3721
3722         if (!exec_start)
3723                 return -EINVAL;
3724
3725         return 0;
3726 }
3727
3728 static int
3729 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3730                                struct drm_gem_object **object_list,
3731                                int count)
3732 {
3733         drm_i915_private_t *dev_priv = dev->dev_private;
3734         struct drm_i915_gem_object *obj_priv;
3735         DEFINE_WAIT(wait);
3736         int i, ret = 0;
3737
3738         for (;;) {
3739                 prepare_to_wait(&dev_priv->pending_flip_queue,
3740                                 &wait, TASK_INTERRUPTIBLE);
3741                 for (i = 0; i < count; i++) {
3742                         obj_priv = to_intel_bo(object_list[i]);
3743                         if (atomic_read(&obj_priv->pending_flip) > 0)
3744                                 break;
3745                 }
3746                 if (i == count)
3747                         break;
3748
3749                 if (!signal_pending(current)) {
3750                         mutex_unlock(&dev->struct_mutex);
3751                         schedule();
3752                         mutex_lock(&dev->struct_mutex);
3753                         continue;
3754                 }
3755                 ret = -ERESTARTSYS;
3756                 break;
3757         }
3758         finish_wait(&dev_priv->pending_flip_queue, &wait);
3759
3760         return ret;
3761 }
3762
3763 int
3764 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3765                        struct drm_file *file_priv,
3766                        struct drm_i915_gem_execbuffer2 *args,
3767                        struct drm_i915_gem_exec_object2 *exec_list)
3768 {
3769         drm_i915_private_t *dev_priv = dev->dev_private;
3770         struct drm_gem_object **object_list = NULL;
3771         struct drm_gem_object *batch_obj;
3772         struct drm_i915_gem_object *obj_priv;
3773         struct drm_clip_rect *cliprects = NULL;
3774         struct drm_i915_gem_relocation_entry *relocs = NULL;
3775         int ret = 0, ret2, i, pinned = 0;
3776         uint64_t exec_offset;
3777         uint32_t seqno, flush_domains, reloc_index;
3778         int pin_tries, flips;
3779
3780 #if WATCH_EXEC
3781         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3782                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3783 #endif
3784
3785         if (args->buffer_count < 1) {
3786                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3787                 return -EINVAL;
3788         }
3789         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3790         if (object_list == NULL) {
3791                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3792                           args->buffer_count);
3793                 ret = -ENOMEM;
3794                 goto pre_mutex_err;
3795         }
3796
3797         if (args->num_cliprects != 0) {
3798                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3799                                     GFP_KERNEL);
3800                 if (cliprects == NULL) {
3801                         ret = -ENOMEM;
3802                         goto pre_mutex_err;
3803                 }
3804
3805                 ret = copy_from_user(cliprects,
3806                                      (struct drm_clip_rect __user *)
3807                                      (uintptr_t) args->cliprects_ptr,
3808                                      sizeof(*cliprects) * args->num_cliprects);
3809                 if (ret != 0) {
3810                         DRM_ERROR("copy %d cliprects failed: %d\n",
3811                                   args->num_cliprects, ret);
3812                         goto pre_mutex_err;
3813                 }
3814         }
3815
3816         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3817                                             &relocs);
3818         if (ret != 0)
3819                 goto pre_mutex_err;
3820
3821         mutex_lock(&dev->struct_mutex);
3822
3823         i915_verify_inactive(dev, __FILE__, __LINE__);
3824
3825         if (atomic_read(&dev_priv->mm.wedged)) {
3826                 mutex_unlock(&dev->struct_mutex);
3827                 ret = -EIO;
3828                 goto pre_mutex_err;
3829         }
3830
3831         if (dev_priv->mm.suspended) {
3832                 mutex_unlock(&dev->struct_mutex);
3833                 ret = -EBUSY;
3834                 goto pre_mutex_err;
3835         }
3836
3837         /* Look up object handles */
3838         flips = 0;
3839         for (i = 0; i < args->buffer_count; i++) {
3840                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3841                                                        exec_list[i].handle);
3842                 if (object_list[i] == NULL) {
3843                         DRM_ERROR("Invalid object handle %d at index %d\n",
3844                                    exec_list[i].handle, i);
3845                         /* prevent error path from reading uninitialized data */
3846                         args->buffer_count = i + 1;
3847                         ret = -EBADF;
3848                         goto err;
3849                 }
3850
3851                 obj_priv = to_intel_bo(object_list[i]);
3852                 if (obj_priv->in_execbuffer) {
3853                         DRM_ERROR("Object %p appears more than once in object list\n",
3854                                    object_list[i]);
3855                         /* prevent error path from reading uninitialized data */
3856                         args->buffer_count = i + 1;
3857                         ret = -EBADF;
3858                         goto err;
3859                 }
3860                 obj_priv->in_execbuffer = true;
3861                 flips += atomic_read(&obj_priv->pending_flip);
3862         }
3863
3864         if (flips > 0) {
3865                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3866                                                      args->buffer_count);
3867                 if (ret)
3868                         goto err;
3869         }
3870
3871         /* Pin and relocate */
3872         for (pin_tries = 0; ; pin_tries++) {
3873                 ret = 0;
3874                 reloc_index = 0;
3875
3876                 for (i = 0; i < args->buffer_count; i++) {
3877                         object_list[i]->pending_read_domains = 0;
3878                         object_list[i]->pending_write_domain = 0;
3879                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3880                                                                file_priv,
3881                                                                &exec_list[i],
3882                                                                &relocs[reloc_index]);
3883                         if (ret)
3884                                 break;
3885                         pinned = i + 1;
3886                         reloc_index += exec_list[i].relocation_count;
3887                 }
3888                 /* success */
3889                 if (ret == 0)
3890                         break;
3891
3892                 /* error other than GTT full, or we've already tried again */
3893                 if (ret != -ENOSPC || pin_tries >= 1) {
3894                         if (ret != -ERESTARTSYS) {
3895                                 unsigned long long total_size = 0;
3896                                 for (i = 0; i < args->buffer_count; i++)
3897                                         total_size += object_list[i]->size;
3898                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3899                                           pinned+1, args->buffer_count,
3900                                           total_size, ret);
3901                                 DRM_ERROR("%d objects [%d pinned], "
3902                                           "%d object bytes [%d pinned], "
3903                                           "%d/%d gtt bytes\n",
3904                                           atomic_read(&dev->object_count),
3905                                           atomic_read(&dev->pin_count),
3906                                           atomic_read(&dev->object_memory),
3907                                           atomic_read(&dev->pin_memory),
3908                                           atomic_read(&dev->gtt_memory),
3909                                           dev->gtt_total);
3910                         }
3911                         goto err;
3912                 }
3913
3914                 /* unpin all of our buffers */
3915                 for (i = 0; i < pinned; i++)
3916                         i915_gem_object_unpin(object_list[i]);
3917                 pinned = 0;
3918
3919                 /* evict everyone we can from the aperture */
3920                 ret = i915_gem_evict_everything(dev);
3921                 if (ret && ret != -ENOSPC)
3922                         goto err;
3923         }
3924
3925         /* Set the pending read domains for the batch buffer to COMMAND */
3926         batch_obj = object_list[args->buffer_count-1];
3927         if (batch_obj->pending_write_domain) {
3928                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3929                 ret = -EINVAL;
3930                 goto err;
3931         }
3932         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3933
3934         /* Sanity check the batch buffer, prior to moving objects */
3935         exec_offset = exec_list[args->buffer_count - 1].offset;
3936         ret = i915_gem_check_execbuffer (args, exec_offset);
3937         if (ret != 0) {
3938                 DRM_ERROR("execbuf with invalid offset/length\n");
3939                 goto err;
3940         }
3941
3942         i915_verify_inactive(dev, __FILE__, __LINE__);
3943
3944         /* Zero the global flush/invalidate flags. These
3945          * will be modified as new domains are computed
3946          * for each object
3947          */
3948         dev->invalidate_domains = 0;
3949         dev->flush_domains = 0;
3950
3951         for (i = 0; i < args->buffer_count; i++) {
3952                 struct drm_gem_object *obj = object_list[i];
3953
3954                 /* Compute new gpu domains and update invalidate/flush */
3955                 i915_gem_object_set_to_gpu_domain(obj);
3956         }
3957
3958         i915_verify_inactive(dev, __FILE__, __LINE__);
3959
3960         if (dev->invalidate_domains | dev->flush_domains) {
3961 #if WATCH_EXEC
3962                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3963                           __func__,
3964                          dev->invalidate_domains,
3965                          dev->flush_domains);
3966 #endif
3967                 i915_gem_flush(dev,
3968                                dev->invalidate_domains,
3969                                dev->flush_domains);
3970                 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3971                         (void)i915_add_request(dev, file_priv,
3972                                                dev->flush_domains);
3973         }
3974
3975         for (i = 0; i < args->buffer_count; i++) {
3976                 struct drm_gem_object *obj = object_list[i];
3977                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3978                 uint32_t old_write_domain = obj->write_domain;
3979
3980                 obj->write_domain = obj->pending_write_domain;
3981                 if (obj->write_domain)
3982                         list_move_tail(&obj_priv->gpu_write_list,
3983                                        &dev_priv->mm.gpu_write_list);
3984                 else
3985                         list_del_init(&obj_priv->gpu_write_list);
3986
3987                 trace_i915_gem_object_change_domain(obj,
3988                                                     obj->read_domains,
3989                                                     old_write_domain);
3990         }
3991
3992         i915_verify_inactive(dev, __FILE__, __LINE__);
3993
3994 #if WATCH_COHERENCY
3995         for (i = 0; i < args->buffer_count; i++) {
3996                 i915_gem_object_check_coherency(object_list[i],
3997                                                 exec_list[i].handle);
3998         }
3999 #endif
4000
4001 #if WATCH_EXEC
4002         i915_gem_dump_object(batch_obj,
4003                               args->batch_len,
4004                               __func__,
4005                               ~0);
4006 #endif
4007
4008         /* Exec the batchbuffer */
4009         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
4010         if (ret) {
4011                 DRM_ERROR("dispatch failed %d\n", ret);
4012                 goto err;
4013         }
4014
4015         /*
4016          * Ensure that the commands in the batch buffer are
4017          * finished before the interrupt fires
4018          */
4019         flush_domains = i915_retire_commands(dev);
4020
4021         i915_verify_inactive(dev, __FILE__, __LINE__);
4022
4023         /*
4024          * Get a seqno representing the execution of the current buffer,
4025          * which we can wait on.  We would like to mitigate these interrupts,
4026          * likely by only creating seqnos occasionally (so that we have
4027          * *some* interrupts representing completion of buffers that we can
4028          * wait on when trying to clear up gtt space).
4029          */
4030         seqno = i915_add_request(dev, file_priv, flush_domains);
4031         BUG_ON(seqno == 0);
4032         for (i = 0; i < args->buffer_count; i++) {
4033                 struct drm_gem_object *obj = object_list[i];
4034
4035                 i915_gem_object_move_to_active(obj, seqno);
4036 #if WATCH_LRU
4037                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
4038 #endif
4039         }
4040 #if WATCH_LRU
4041         i915_dump_lru(dev, __func__);
4042 #endif
4043
4044         i915_verify_inactive(dev, __FILE__, __LINE__);
4045
4046 err:
4047         for (i = 0; i < pinned; i++)
4048                 i915_gem_object_unpin(object_list[i]);
4049
4050         for (i = 0; i < args->buffer_count; i++) {
4051                 if (object_list[i]) {
4052                         obj_priv = to_intel_bo(object_list[i]);
4053                         obj_priv->in_execbuffer = false;
4054                 }
4055                 drm_gem_object_unreference(object_list[i]);
4056         }
4057
4058         mutex_unlock(&dev->struct_mutex);
4059
4060 pre_mutex_err:
4061         /* Copy the updated relocations out regardless of current error
4062          * state.  Failure to update the relocs would mean that the next
4063          * time userland calls execbuf, it would do so with presumed offset
4064          * state that didn't match the actual object state.
4065          */
4066         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
4067                                            relocs);
4068         if (ret2 != 0) {
4069                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
4070
4071                 if (ret == 0)
4072                         ret = ret2;
4073         }
4074
4075         drm_free_large(object_list);
4076         kfree(cliprects);
4077
4078         return ret;
4079 }
4080
4081 /*
4082  * Legacy execbuffer just creates an exec2 list from the original exec object
4083  * list array and passes it to the real function.
4084  */
4085 int
4086 i915_gem_execbuffer(struct drm_device *dev, void *data,
4087                     struct drm_file *file_priv)
4088 {
4089         struct drm_i915_gem_execbuffer *args = data;
4090         struct drm_i915_gem_execbuffer2 exec2;
4091         struct drm_i915_gem_exec_object *exec_list = NULL;
4092         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4093         int ret, i;
4094
4095 #if WATCH_EXEC
4096         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4097                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4098 #endif
4099
4100         if (args->buffer_count < 1) {
4101                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4102                 return -EINVAL;
4103         }
4104
4105         /* Copy in the exec list from userland */
4106         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4107         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4108         if (exec_list == NULL || exec2_list == NULL) {
4109                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4110                           args->buffer_count);
4111                 drm_free_large(exec_list);
4112                 drm_free_large(exec2_list);
4113                 return -ENOMEM;
4114         }
4115         ret = copy_from_user(exec_list,
4116                              (struct drm_i915_relocation_entry __user *)
4117                              (uintptr_t) args->buffers_ptr,
4118                              sizeof(*exec_list) * args->buffer_count);
4119         if (ret != 0) {
4120                 DRM_ERROR("copy %d exec entries failed %d\n",
4121                           args->buffer_count, ret);
4122                 drm_free_large(exec_list);
4123                 drm_free_large(exec2_list);
4124                 return -EFAULT;
4125         }
4126
4127         for (i = 0; i < args->buffer_count; i++) {
4128                 exec2_list[i].handle = exec_list[i].handle;
4129                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4130                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4131                 exec2_list[i].alignment = exec_list[i].alignment;
4132                 exec2_list[i].offset = exec_list[i].offset;
4133                 if (!IS_I965G(dev))
4134                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4135                 else
4136                         exec2_list[i].flags = 0;
4137         }
4138
4139         exec2.buffers_ptr = args->buffers_ptr;
4140         exec2.buffer_count = args->buffer_count;
4141         exec2.batch_start_offset = args->batch_start_offset;
4142         exec2.batch_len = args->batch_len;
4143         exec2.DR1 = args->DR1;
4144         exec2.DR4 = args->DR4;
4145         exec2.num_cliprects = args->num_cliprects;
4146         exec2.cliprects_ptr = args->cliprects_ptr;
4147         exec2.flags = 0;
4148
4149         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4150         if (!ret) {
4151                 /* Copy the new buffer offsets back to the user's exec list. */
4152                 for (i = 0; i < args->buffer_count; i++)
4153                         exec_list[i].offset = exec2_list[i].offset;
4154                 /* ... and back out to userspace */
4155                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4156                                    (uintptr_t) args->buffers_ptr,
4157                                    exec_list,
4158                                    sizeof(*exec_list) * args->buffer_count);
4159                 if (ret) {
4160                         ret = -EFAULT;
4161                         DRM_ERROR("failed to copy %d exec entries "
4162                                   "back to user (%d)\n",
4163                                   args->buffer_count, ret);
4164                 }
4165         }
4166
4167         drm_free_large(exec_list);
4168         drm_free_large(exec2_list);
4169         return ret;
4170 }
4171
4172 int
4173 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4174                      struct drm_file *file_priv)
4175 {
4176         struct drm_i915_gem_execbuffer2 *args = data;
4177         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4178         int ret;
4179
4180 #if WATCH_EXEC
4181         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4182                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4183 #endif
4184
4185         if (args->buffer_count < 1) {
4186                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4187                 return -EINVAL;
4188         }
4189
4190         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4191         if (exec2_list == NULL) {
4192                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4193                           args->buffer_count);
4194                 return -ENOMEM;
4195         }
4196         ret = copy_from_user(exec2_list,
4197                              (struct drm_i915_relocation_entry __user *)
4198                              (uintptr_t) args->buffers_ptr,
4199                              sizeof(*exec2_list) * args->buffer_count);
4200         if (ret != 0) {
4201                 DRM_ERROR("copy %d exec entries failed %d\n",
4202                           args->buffer_count, ret);
4203                 drm_free_large(exec2_list);
4204                 return -EFAULT;
4205         }
4206
4207         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4208         if (!ret) {
4209                 /* Copy the new buffer offsets back to the user's exec list. */
4210                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4211                                    (uintptr_t) args->buffers_ptr,
4212                                    exec2_list,
4213                                    sizeof(*exec2_list) * args->buffer_count);
4214                 if (ret) {
4215                         ret = -EFAULT;
4216                         DRM_ERROR("failed to copy %d exec entries "
4217                                   "back to user (%d)\n",
4218                                   args->buffer_count, ret);
4219                 }
4220         }
4221
4222         drm_free_large(exec2_list);
4223         return ret;
4224 }
4225
4226 int
4227 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4228 {
4229         struct drm_device *dev = obj->dev;
4230         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4231         int ret;
4232
4233         i915_verify_inactive(dev, __FILE__, __LINE__);
4234         if (obj_priv->gtt_space == NULL) {
4235                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4236                 if (ret)
4237                         return ret;
4238         }
4239
4240         obj_priv->pin_count++;
4241
4242         /* If the object is not active and not pending a flush,
4243          * remove it from the inactive list
4244          */
4245         if (obj_priv->pin_count == 1) {
4246                 atomic_inc(&dev->pin_count);
4247                 atomic_add(obj->size, &dev->pin_memory);
4248                 if (!obj_priv->active &&
4249                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4250                     !list_empty(&obj_priv->list))
4251                         list_del_init(&obj_priv->list);
4252         }
4253         i915_verify_inactive(dev, __FILE__, __LINE__);
4254
4255         return 0;
4256 }
4257
4258 void
4259 i915_gem_object_unpin(struct drm_gem_object *obj)
4260 {
4261         struct drm_device *dev = obj->dev;
4262         drm_i915_private_t *dev_priv = dev->dev_private;
4263         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4264
4265         i915_verify_inactive(dev, __FILE__, __LINE__);
4266         obj_priv->pin_count--;
4267         BUG_ON(obj_priv->pin_count < 0);
4268         BUG_ON(obj_priv->gtt_space == NULL);
4269
4270         /* If the object is no longer pinned, and is
4271          * neither active nor being flushed, then stick it on
4272          * the inactive list
4273          */
4274         if (obj_priv->pin_count == 0) {
4275                 if (!obj_priv->active &&
4276                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4277                         list_move_tail(&obj_priv->list,
4278                                        &dev_priv->mm.inactive_list);
4279                 atomic_dec(&dev->pin_count);
4280                 atomic_sub(obj->size, &dev->pin_memory);
4281         }
4282         i915_verify_inactive(dev, __FILE__, __LINE__);
4283 }
4284
4285 int
4286 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4287                    struct drm_file *file_priv)
4288 {
4289         struct drm_i915_gem_pin *args = data;
4290         struct drm_gem_object *obj;
4291         struct drm_i915_gem_object *obj_priv;
4292         int ret;
4293
4294         mutex_lock(&dev->struct_mutex);
4295
4296         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4297         if (obj == NULL) {
4298                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4299                           args->handle);
4300                 mutex_unlock(&dev->struct_mutex);
4301                 return -EBADF;
4302         }
4303         obj_priv = to_intel_bo(obj);
4304
4305         if (obj_priv->madv != I915_MADV_WILLNEED) {
4306                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4307                 drm_gem_object_unreference(obj);
4308                 mutex_unlock(&dev->struct_mutex);
4309                 return -EINVAL;
4310         }
4311
4312         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4313                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4314                           args->handle);
4315                 drm_gem_object_unreference(obj);
4316                 mutex_unlock(&dev->struct_mutex);
4317                 return -EINVAL;
4318         }
4319
4320         obj_priv->user_pin_count++;
4321         obj_priv->pin_filp = file_priv;
4322         if (obj_priv->user_pin_count == 1) {
4323                 ret = i915_gem_object_pin(obj, args->alignment);
4324                 if (ret != 0) {
4325                         drm_gem_object_unreference(obj);
4326                         mutex_unlock(&dev->struct_mutex);
4327                         return ret;
4328                 }
4329         }
4330
4331         /* XXX - flush the CPU caches for pinned objects
4332          * as the X server doesn't manage domains yet
4333          */
4334         i915_gem_object_flush_cpu_write_domain(obj);
4335         args->offset = obj_priv->gtt_offset;
4336         drm_gem_object_unreference(obj);
4337         mutex_unlock(&dev->struct_mutex);
4338
4339         return 0;
4340 }
4341
4342 int
4343 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4344                      struct drm_file *file_priv)
4345 {
4346         struct drm_i915_gem_pin *args = data;
4347         struct drm_gem_object *obj;
4348         struct drm_i915_gem_object *obj_priv;
4349
4350         mutex_lock(&dev->struct_mutex);
4351
4352         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4353         if (obj == NULL) {
4354                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4355                           args->handle);
4356                 mutex_unlock(&dev->struct_mutex);
4357                 return -EBADF;
4358         }
4359
4360         obj_priv = to_intel_bo(obj);
4361         if (obj_priv->pin_filp != file_priv) {
4362                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4363                           args->handle);
4364                 drm_gem_object_unreference(obj);
4365                 mutex_unlock(&dev->struct_mutex);
4366                 return -EINVAL;
4367         }
4368         obj_priv->user_pin_count--;
4369         if (obj_priv->user_pin_count == 0) {
4370                 obj_priv->pin_filp = NULL;
4371                 i915_gem_object_unpin(obj);
4372         }
4373
4374         drm_gem_object_unreference(obj);
4375         mutex_unlock(&dev->struct_mutex);
4376         return 0;
4377 }
4378
4379 int
4380 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4381                     struct drm_file *file_priv)
4382 {
4383         struct drm_i915_gem_busy *args = data;
4384         struct drm_gem_object *obj;
4385         struct drm_i915_gem_object *obj_priv;
4386
4387         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4388         if (obj == NULL) {
4389                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4390                           args->handle);
4391                 return -EBADF;
4392         }
4393
4394         mutex_lock(&dev->struct_mutex);
4395         /* Update the active list for the hardware's current position.
4396          * Otherwise this only updates on a delayed timer or when irqs are
4397          * actually unmasked, and our working set ends up being larger than
4398          * required.
4399          */
4400         i915_gem_retire_requests(dev);
4401
4402         obj_priv = to_intel_bo(obj);
4403         /* Don't count being on the flushing list against the object being
4404          * done.  Otherwise, a buffer left on the flushing list but not getting
4405          * flushed (because nobody's flushing that domain) won't ever return
4406          * unbusy and get reused by libdrm's bo cache.  The other expected
4407          * consumer of this interface, OpenGL's occlusion queries, also specs
4408          * that the objects get unbusy "eventually" without any interference.
4409          */
4410         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4411
4412         drm_gem_object_unreference(obj);
4413         mutex_unlock(&dev->struct_mutex);
4414         return 0;
4415 }
4416
4417 int
4418 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4419                         struct drm_file *file_priv)
4420 {
4421     return i915_gem_ring_throttle(dev, file_priv);
4422 }
4423
4424 int
4425 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4426                        struct drm_file *file_priv)
4427 {
4428         struct drm_i915_gem_madvise *args = data;
4429         struct drm_gem_object *obj;
4430         struct drm_i915_gem_object *obj_priv;
4431
4432         switch (args->madv) {
4433         case I915_MADV_DONTNEED:
4434         case I915_MADV_WILLNEED:
4435             break;
4436         default:
4437             return -EINVAL;
4438         }
4439
4440         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4441         if (obj == NULL) {
4442                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4443                           args->handle);
4444                 return -EBADF;
4445         }
4446
4447         mutex_lock(&dev->struct_mutex);
4448         obj_priv = to_intel_bo(obj);
4449
4450         if (obj_priv->pin_count) {
4451                 drm_gem_object_unreference(obj);
4452                 mutex_unlock(&dev->struct_mutex);
4453
4454                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4455                 return -EINVAL;
4456         }
4457
4458         if (obj_priv->madv != __I915_MADV_PURGED)
4459                 obj_priv->madv = args->madv;
4460
4461         /* if the object is no longer bound, discard its backing storage */
4462         if (i915_gem_object_is_purgeable(obj_priv) &&
4463             obj_priv->gtt_space == NULL)
4464                 i915_gem_object_truncate(obj);
4465
4466         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4467
4468         drm_gem_object_unreference(obj);
4469         mutex_unlock(&dev->struct_mutex);
4470
4471         return 0;
4472 }
4473
4474 int i915_gem_init_object(struct drm_gem_object *obj)
4475 {
4476         struct drm_i915_gem_object *obj_priv;
4477
4478         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4479         if (obj_priv == NULL)
4480                 return -ENOMEM;
4481
4482         /*
4483          * We've just allocated pages from the kernel,
4484          * so they've just been written by the CPU with
4485          * zeros. They'll need to be clflushed before we
4486          * use them with the GPU.
4487          */
4488         obj->write_domain = I915_GEM_DOMAIN_CPU;
4489         obj->read_domains = I915_GEM_DOMAIN_CPU;
4490
4491         obj_priv->agp_type = AGP_USER_MEMORY;
4492
4493         obj->driver_private = obj_priv;
4494         obj_priv->obj = obj;
4495         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4496         INIT_LIST_HEAD(&obj_priv->list);
4497         INIT_LIST_HEAD(&obj_priv->gpu_write_list);
4498         INIT_LIST_HEAD(&obj_priv->fence_list);
4499         obj_priv->madv = I915_MADV_WILLNEED;
4500
4501         trace_i915_gem_object_create(obj);
4502
4503         return 0;
4504 }
4505
4506 void i915_gem_free_object(struct drm_gem_object *obj)
4507 {
4508         struct drm_device *dev = obj->dev;
4509         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4510
4511         trace_i915_gem_object_destroy(obj);
4512
4513         while (obj_priv->pin_count > 0)
4514                 i915_gem_object_unpin(obj);
4515
4516         if (obj_priv->phys_obj)
4517                 i915_gem_detach_phys_object(dev, obj);
4518
4519         i915_gem_object_unbind(obj);
4520
4521         if (obj_priv->mmap_offset)
4522                 i915_gem_free_mmap_offset(obj);
4523
4524         kfree(obj_priv->page_cpu_valid);
4525         kfree(obj_priv->bit_17);
4526         kfree(obj->driver_private);
4527 }
4528
4529 /** Unbinds all inactive objects. */
4530 static int
4531 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4532 {
4533         drm_i915_private_t *dev_priv = dev->dev_private;
4534
4535         while (!list_empty(&dev_priv->mm.inactive_list)) {
4536                 struct drm_gem_object *obj;
4537                 int ret;
4538
4539                 obj = list_first_entry(&dev_priv->mm.inactive_list,
4540                                        struct drm_i915_gem_object,
4541                                        list)->obj;
4542
4543                 ret = i915_gem_object_unbind(obj);
4544                 if (ret != 0) {
4545                         DRM_ERROR("Error unbinding object: %d\n", ret);
4546                         return ret;
4547                 }
4548         }
4549
4550         return 0;
4551 }
4552
4553 int
4554 i915_gem_idle(struct drm_device *dev)
4555 {
4556         drm_i915_private_t *dev_priv = dev->dev_private;
4557         int ret;
4558
4559         mutex_lock(&dev->struct_mutex);
4560
4561         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4562                 mutex_unlock(&dev->struct_mutex);
4563                 return 0;
4564         }
4565
4566         ret = i915_gpu_idle(dev);
4567         if (ret) {
4568                 mutex_unlock(&dev->struct_mutex);
4569                 return ret;
4570         }
4571
4572         /* Under UMS, be paranoid and evict. */
4573         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4574                 ret = i915_gem_evict_from_inactive_list(dev);
4575                 if (ret) {
4576                         mutex_unlock(&dev->struct_mutex);
4577                         return ret;
4578                 }
4579         }
4580
4581         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4582          * We need to replace this with a semaphore, or something.
4583          * And not confound mm.suspended!
4584          */
4585         dev_priv->mm.suspended = 1;
4586         del_timer(&dev_priv->hangcheck_timer);
4587
4588         i915_kernel_lost_context(dev);
4589         i915_gem_cleanup_ringbuffer(dev);
4590
4591         mutex_unlock(&dev->struct_mutex);
4592
4593         /* Cancel the retire work handler, which should be idle now. */
4594         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4595
4596         return 0;
4597 }
4598
4599 /*
4600  * 965+ support PIPE_CONTROL commands, which provide finer grained control
4601  * over cache flushing.
4602  */
4603 static int
4604 i915_gem_init_pipe_control(struct drm_device *dev)
4605 {
4606         drm_i915_private_t *dev_priv = dev->dev_private;
4607         struct drm_gem_object *obj;
4608         struct drm_i915_gem_object *obj_priv;
4609         int ret;
4610
4611         obj = drm_gem_object_alloc(dev, 4096);
4612         if (obj == NULL) {
4613                 DRM_ERROR("Failed to allocate seqno page\n");
4614                 ret = -ENOMEM;
4615                 goto err;
4616         }
4617         obj_priv = to_intel_bo(obj);
4618         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4619
4620         ret = i915_gem_object_pin(obj, 4096);
4621         if (ret)
4622                 goto err_unref;
4623
4624         dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4625         dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
4626         if (dev_priv->seqno_page == NULL)
4627                 goto err_unpin;
4628
4629         dev_priv->seqno_obj = obj;
4630         memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4631
4632         return 0;
4633
4634 err_unpin:
4635         i915_gem_object_unpin(obj);
4636 err_unref:
4637         drm_gem_object_unreference(obj);
4638 err:
4639         return ret;
4640 }
4641
4642 static int
4643 i915_gem_init_hws(struct drm_device *dev)
4644 {
4645         drm_i915_private_t *dev_priv = dev->dev_private;
4646         struct drm_gem_object *obj;
4647         struct drm_i915_gem_object *obj_priv;
4648         int ret;
4649
4650         /* If we need a physical address for the status page, it's already
4651          * initialized at driver load time.
4652          */
4653         if (!I915_NEED_GFX_HWS(dev))
4654                 return 0;
4655
4656         obj = drm_gem_object_alloc(dev, 4096);
4657         if (obj == NULL) {
4658                 DRM_ERROR("Failed to allocate status page\n");
4659                 ret = -ENOMEM;
4660                 goto err;
4661         }
4662         obj_priv = to_intel_bo(obj);
4663         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4664
4665         ret = i915_gem_object_pin(obj, 4096);
4666         if (ret != 0) {
4667                 drm_gem_object_unreference(obj);
4668                 goto err_unref;
4669         }
4670
4671         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4672
4673         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4674         if (dev_priv->hw_status_page == NULL) {
4675                 DRM_ERROR("Failed to map status page.\n");
4676                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4677                 ret = -EINVAL;
4678                 goto err_unpin;
4679         }
4680
4681         if (HAS_PIPE_CONTROL(dev)) {
4682                 ret = i915_gem_init_pipe_control(dev);
4683                 if (ret)
4684                         goto err_unpin;
4685         }
4686
4687         dev_priv->hws_obj = obj;
4688         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4689         if (IS_GEN6(dev)) {
4690                 I915_WRITE(HWS_PGA_GEN6, dev_priv->status_gfx_addr);
4691                 I915_READ(HWS_PGA_GEN6); /* posting read */
4692         } else {
4693                 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4694                 I915_READ(HWS_PGA); /* posting read */
4695         }
4696         DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4697
4698         return 0;
4699
4700 err_unpin:
4701         i915_gem_object_unpin(obj);
4702 err_unref:
4703         drm_gem_object_unreference(obj);
4704 err:
4705         return 0;
4706 }
4707
4708 static void
4709 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4710 {
4711         drm_i915_private_t *dev_priv = dev->dev_private;
4712         struct drm_gem_object *obj;
4713         struct drm_i915_gem_object *obj_priv;
4714
4715         obj = dev_priv->seqno_obj;
4716         obj_priv = to_intel_bo(obj);
4717         kunmap(obj_priv->pages[0]);
4718         i915_gem_object_unpin(obj);
4719         drm_gem_object_unreference(obj);
4720         dev_priv->seqno_obj = NULL;
4721
4722         dev_priv->seqno_page = NULL;
4723 }
4724
4725 static void
4726 i915_gem_cleanup_hws(struct drm_device *dev)
4727 {
4728         drm_i915_private_t *dev_priv = dev->dev_private;
4729         struct drm_gem_object *obj;
4730         struct drm_i915_gem_object *obj_priv;
4731
4732         if (dev_priv->hws_obj == NULL)
4733                 return;
4734
4735         obj = dev_priv->hws_obj;
4736         obj_priv = to_intel_bo(obj);
4737
4738         kunmap(obj_priv->pages[0]);
4739         i915_gem_object_unpin(obj);
4740         drm_gem_object_unreference(obj);
4741         dev_priv->hws_obj = NULL;
4742
4743         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4744         dev_priv->hw_status_page = NULL;
4745
4746         if (HAS_PIPE_CONTROL(dev))
4747                 i915_gem_cleanup_pipe_control(dev);
4748
4749         /* Write high address into HWS_PGA when disabling. */
4750         I915_WRITE(HWS_PGA, 0x1ffff000);
4751 }
4752
4753 int
4754 i915_gem_init_ringbuffer(struct drm_device *dev)
4755 {
4756         drm_i915_private_t *dev_priv = dev->dev_private;
4757         struct drm_gem_object *obj;
4758         struct drm_i915_gem_object *obj_priv;
4759         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4760         int ret;
4761         u32 head;
4762
4763         ret = i915_gem_init_hws(dev);
4764         if (ret != 0)
4765                 return ret;
4766
4767         obj = drm_gem_object_alloc(dev, 128 * 1024);
4768         if (obj == NULL) {
4769                 DRM_ERROR("Failed to allocate ringbuffer\n");
4770                 i915_gem_cleanup_hws(dev);
4771                 return -ENOMEM;
4772         }
4773         obj_priv = to_intel_bo(obj);
4774
4775         ret = i915_gem_object_pin(obj, 4096);
4776         if (ret != 0) {
4777                 drm_gem_object_unreference(obj);
4778                 i915_gem_cleanup_hws(dev);
4779                 return ret;
4780         }
4781
4782         /* Set up the kernel mapping for the ring. */
4783         ring->Size = obj->size;
4784
4785         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4786         ring->map.size = obj->size;
4787         ring->map.type = 0;
4788         ring->map.flags = 0;
4789         ring->map.mtrr = 0;
4790
4791         drm_core_ioremap_wc(&ring->map, dev);
4792         if (ring->map.handle == NULL) {
4793                 DRM_ERROR("Failed to map ringbuffer.\n");
4794                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4795                 i915_gem_object_unpin(obj);
4796                 drm_gem_object_unreference(obj);
4797                 i915_gem_cleanup_hws(dev);
4798                 return -EINVAL;
4799         }
4800         ring->ring_obj = obj;
4801         ring->virtual_start = ring->map.handle;
4802
4803         /* Stop the ring if it's running. */
4804         I915_WRITE(PRB0_CTL, 0);
4805         I915_WRITE(PRB0_TAIL, 0);
4806         I915_WRITE(PRB0_HEAD, 0);
4807
4808         /* Initialize the ring. */
4809         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4810         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4811
4812         /* G45 ring initialization fails to reset head to zero */
4813         if (head != 0) {
4814                 DRM_ERROR("Ring head not reset to zero "
4815                           "ctl %08x head %08x tail %08x start %08x\n",
4816                           I915_READ(PRB0_CTL),
4817                           I915_READ(PRB0_HEAD),
4818                           I915_READ(PRB0_TAIL),
4819                           I915_READ(PRB0_START));
4820                 I915_WRITE(PRB0_HEAD, 0);
4821
4822                 DRM_ERROR("Ring head forced to zero "
4823                           "ctl %08x head %08x tail %08x start %08x\n",
4824                           I915_READ(PRB0_CTL),
4825                           I915_READ(PRB0_HEAD),
4826                           I915_READ(PRB0_TAIL),
4827                           I915_READ(PRB0_START));
4828         }
4829
4830         I915_WRITE(PRB0_CTL,
4831                    ((obj->size - 4096) & RING_NR_PAGES) |
4832                    RING_NO_REPORT |
4833                    RING_VALID);
4834
4835         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4836
4837         /* If the head is still not zero, the ring is dead */
4838         if (head != 0) {
4839                 DRM_ERROR("Ring initialization failed "
4840                           "ctl %08x head %08x tail %08x start %08x\n",
4841                           I915_READ(PRB0_CTL),
4842                           I915_READ(PRB0_HEAD),
4843                           I915_READ(PRB0_TAIL),
4844                           I915_READ(PRB0_START));
4845                 return -EIO;
4846         }
4847
4848         /* Update our cache of the ring state */
4849         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4850                 i915_kernel_lost_context(dev);
4851         else {
4852                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4853                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4854                 ring->space = ring->head - (ring->tail + 8);
4855                 if (ring->space < 0)
4856                         ring->space += ring->Size;
4857         }
4858
4859         if (IS_I9XX(dev) && !IS_GEN3(dev)) {
4860                 I915_WRITE(MI_MODE,
4861                            (VS_TIMER_DISPATCH) << 16 | VS_TIMER_DISPATCH);
4862         }
4863
4864         return 0;
4865 }
4866
4867 void
4868 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4869 {
4870         drm_i915_private_t *dev_priv = dev->dev_private;
4871
4872         if (dev_priv->ring.ring_obj == NULL)
4873                 return;
4874
4875         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4876
4877         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4878         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4879         dev_priv->ring.ring_obj = NULL;
4880         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4881
4882         i915_gem_cleanup_hws(dev);
4883 }
4884
4885 int
4886 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4887                        struct drm_file *file_priv)
4888 {
4889         drm_i915_private_t *dev_priv = dev->dev_private;
4890         int ret;
4891
4892         if (drm_core_check_feature(dev, DRIVER_MODESET))
4893                 return 0;
4894
4895         if (atomic_read(&dev_priv->mm.wedged)) {
4896                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4897                 atomic_set(&dev_priv->mm.wedged, 0);
4898         }
4899
4900         mutex_lock(&dev->struct_mutex);
4901         dev_priv->mm.suspended = 0;
4902
4903         ret = i915_gem_init_ringbuffer(dev);
4904         if (ret != 0) {
4905                 mutex_unlock(&dev->struct_mutex);
4906                 return ret;
4907         }
4908
4909         spin_lock(&dev_priv->mm.active_list_lock);
4910         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4911         spin_unlock(&dev_priv->mm.active_list_lock);
4912
4913         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4914         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4915         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4916         mutex_unlock(&dev->struct_mutex);
4917
4918         drm_irq_install(dev);
4919
4920         return 0;
4921 }
4922
4923 int
4924 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4925                        struct drm_file *file_priv)
4926 {
4927         if (drm_core_check_feature(dev, DRIVER_MODESET))
4928                 return 0;
4929
4930         drm_irq_uninstall(dev);
4931         return i915_gem_idle(dev);
4932 }
4933
4934 void
4935 i915_gem_lastclose(struct drm_device *dev)
4936 {
4937         int ret;
4938
4939         if (drm_core_check_feature(dev, DRIVER_MODESET))
4940                 return;
4941
4942         ret = i915_gem_idle(dev);
4943         if (ret)
4944                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4945 }
4946
4947 void
4948 i915_gem_load(struct drm_device *dev)
4949 {
4950         int i;
4951         drm_i915_private_t *dev_priv = dev->dev_private;
4952
4953         spin_lock_init(&dev_priv->mm.active_list_lock);
4954         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4955         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4956         INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4957         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4958         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4959         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4960         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4961                           i915_gem_retire_work_handler);
4962         dev_priv->mm.next_gem_seqno = 1;
4963
4964         spin_lock(&shrink_list_lock);
4965         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4966         spin_unlock(&shrink_list_lock);
4967
4968         /* Old X drivers will take 0-2 for front, back, depth buffers */
4969         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4970                 dev_priv->fence_reg_start = 3;
4971
4972         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4973                 dev_priv->num_fence_regs = 16;
4974         else
4975                 dev_priv->num_fence_regs = 8;
4976
4977         /* Initialize fence registers to zero */
4978         if (IS_I965G(dev)) {
4979                 for (i = 0; i < 16; i++)
4980                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4981         } else {
4982                 for (i = 0; i < 8; i++)
4983                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4984                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4985                         for (i = 0; i < 8; i++)
4986                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4987         }
4988         i915_gem_detect_bit_6_swizzle(dev);
4989         init_waitqueue_head(&dev_priv->pending_flip_queue);
4990 }
4991
4992 /*
4993  * Create a physically contiguous memory object for this object
4994  * e.g. for cursor + overlay regs
4995  */
4996 int i915_gem_init_phys_object(struct drm_device *dev,
4997                               int id, int size)
4998 {
4999         drm_i915_private_t *dev_priv = dev->dev_private;
5000         struct drm_i915_gem_phys_object *phys_obj;
5001         int ret;
5002
5003         if (dev_priv->mm.phys_objs[id - 1] || !size)
5004                 return 0;
5005
5006         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
5007         if (!phys_obj)
5008                 return -ENOMEM;
5009
5010         phys_obj->id = id;
5011
5012         phys_obj->handle = drm_pci_alloc(dev, size, 0);
5013         if (!phys_obj->handle) {
5014                 ret = -ENOMEM;
5015                 goto kfree_obj;
5016         }
5017 #ifdef CONFIG_X86
5018         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
5019 #endif
5020
5021         dev_priv->mm.phys_objs[id - 1] = phys_obj;
5022
5023         return 0;
5024 kfree_obj:
5025         kfree(phys_obj);
5026         return ret;
5027 }
5028
5029 void i915_gem_free_phys_object(struct drm_device *dev, int id)
5030 {
5031         drm_i915_private_t *dev_priv = dev->dev_private;
5032         struct drm_i915_gem_phys_object *phys_obj;
5033
5034         if (!dev_priv->mm.phys_objs[id - 1])
5035                 return;
5036
5037         phys_obj = dev_priv->mm.phys_objs[id - 1];
5038         if (phys_obj->cur_obj) {
5039                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
5040         }
5041
5042 #ifdef CONFIG_X86
5043         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
5044 #endif
5045         drm_pci_free(dev, phys_obj->handle);
5046         kfree(phys_obj);
5047         dev_priv->mm.phys_objs[id - 1] = NULL;
5048 }
5049
5050 void i915_gem_free_all_phys_object(struct drm_device *dev)
5051 {
5052         int i;
5053
5054         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
5055                 i915_gem_free_phys_object(dev, i);
5056 }
5057
5058 void i915_gem_detach_phys_object(struct drm_device *dev,
5059                                  struct drm_gem_object *obj)
5060 {
5061         struct drm_i915_gem_object *obj_priv;
5062         int i;
5063         int ret;
5064         int page_count;
5065
5066         obj_priv = to_intel_bo(obj);
5067         if (!obj_priv->phys_obj)
5068                 return;
5069
5070         ret = i915_gem_object_get_pages(obj, 0);
5071         if (ret)
5072                 goto out;
5073
5074         page_count = obj->size / PAGE_SIZE;
5075
5076         for (i = 0; i < page_count; i++) {
5077                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
5078                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5079
5080                 memcpy(dst, src, PAGE_SIZE);
5081                 kunmap_atomic(dst, KM_USER0);
5082         }
5083         drm_clflush_pages(obj_priv->pages, page_count);
5084         drm_agp_chipset_flush(dev);
5085
5086         i915_gem_object_put_pages(obj);
5087 out:
5088         obj_priv->phys_obj->cur_obj = NULL;
5089         obj_priv->phys_obj = NULL;
5090 }
5091
5092 int
5093 i915_gem_attach_phys_object(struct drm_device *dev,
5094                             struct drm_gem_object *obj, int id)
5095 {
5096         drm_i915_private_t *dev_priv = dev->dev_private;
5097         struct drm_i915_gem_object *obj_priv;
5098         int ret = 0;
5099         int page_count;
5100         int i;
5101
5102         if (id > I915_MAX_PHYS_OBJECT)
5103                 return -EINVAL;
5104
5105         obj_priv = to_intel_bo(obj);
5106
5107         if (obj_priv->phys_obj) {
5108                 if (obj_priv->phys_obj->id == id)
5109                         return 0;
5110                 i915_gem_detach_phys_object(dev, obj);
5111         }
5112
5113
5114         /* create a new object */
5115         if (!dev_priv->mm.phys_objs[id - 1]) {
5116                 ret = i915_gem_init_phys_object(dev, id,
5117                                                 obj->size);
5118                 if (ret) {
5119                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
5120                         goto out;
5121                 }
5122         }
5123
5124         /* bind to the object */
5125         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
5126         obj_priv->phys_obj->cur_obj = obj;
5127
5128         ret = i915_gem_object_get_pages(obj, 0);
5129         if (ret) {
5130                 DRM_ERROR("failed to get page list\n");
5131                 goto out;
5132         }
5133
5134         page_count = obj->size / PAGE_SIZE;
5135
5136         for (i = 0; i < page_count; i++) {
5137                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
5138                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5139
5140                 memcpy(dst, src, PAGE_SIZE);
5141                 kunmap_atomic(src, KM_USER0);
5142         }
5143
5144         i915_gem_object_put_pages(obj);
5145
5146         return 0;
5147 out:
5148         return ret;
5149 }
5150
5151 static int
5152 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5153                      struct drm_i915_gem_pwrite *args,
5154                      struct drm_file *file_priv)
5155 {
5156         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5157         void *obj_addr;
5158         int ret;
5159         char __user *user_data;
5160
5161         user_data = (char __user *) (uintptr_t) args->data_ptr;
5162         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5163
5164         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5165         ret = copy_from_user(obj_addr, user_data, args->size);
5166         if (ret)
5167                 return -EFAULT;
5168
5169         drm_agp_chipset_flush(dev);
5170         return 0;
5171 }
5172
5173 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5174 {
5175         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5176
5177         /* Clean up our request list when the client is going away, so that
5178          * later retire_requests won't dereference our soon-to-be-gone
5179          * file_priv.
5180          */
5181         mutex_lock(&dev->struct_mutex);
5182         while (!list_empty(&i915_file_priv->mm.request_list))
5183                 list_del_init(i915_file_priv->mm.request_list.next);
5184         mutex_unlock(&dev->struct_mutex);
5185 }
5186
5187 static int
5188 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5189 {
5190         drm_i915_private_t *dev_priv, *next_dev;
5191         struct drm_i915_gem_object *obj_priv, *next_obj;
5192         int cnt = 0;
5193         int would_deadlock = 1;
5194
5195         /* "fast-path" to count number of available objects */
5196         if (nr_to_scan == 0) {
5197                 spin_lock(&shrink_list_lock);
5198                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5199                         struct drm_device *dev = dev_priv->dev;
5200
5201                         if (mutex_trylock(&dev->struct_mutex)) {
5202                                 list_for_each_entry(obj_priv,
5203                                                     &dev_priv->mm.inactive_list,
5204                                                     list)
5205                                         cnt++;
5206                                 mutex_unlock(&dev->struct_mutex);
5207                         }
5208                 }
5209                 spin_unlock(&shrink_list_lock);
5210
5211                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5212         }
5213
5214         spin_lock(&shrink_list_lock);
5215
5216         /* first scan for clean buffers */
5217         list_for_each_entry_safe(dev_priv, next_dev,
5218                                  &shrink_list, mm.shrink_list) {
5219                 struct drm_device *dev = dev_priv->dev;
5220
5221                 if (! mutex_trylock(&dev->struct_mutex))
5222                         continue;
5223
5224                 spin_unlock(&shrink_list_lock);
5225
5226                 i915_gem_retire_requests(dev);
5227
5228                 list_for_each_entry_safe(obj_priv, next_obj,
5229                                          &dev_priv->mm.inactive_list,
5230                                          list) {
5231                         if (i915_gem_object_is_purgeable(obj_priv)) {
5232                                 i915_gem_object_unbind(obj_priv->obj);
5233                                 if (--nr_to_scan <= 0)
5234                                         break;
5235                         }
5236                 }
5237
5238                 spin_lock(&shrink_list_lock);
5239                 mutex_unlock(&dev->struct_mutex);
5240
5241                 would_deadlock = 0;
5242
5243                 if (nr_to_scan <= 0)
5244                         break;
5245         }
5246
5247         /* second pass, evict/count anything still on the inactive list */
5248         list_for_each_entry_safe(dev_priv, next_dev,
5249                                  &shrink_list, mm.shrink_list) {
5250                 struct drm_device *dev = dev_priv->dev;
5251
5252                 if (! mutex_trylock(&dev->struct_mutex))
5253                         continue;
5254
5255                 spin_unlock(&shrink_list_lock);
5256
5257                 list_for_each_entry_safe(obj_priv, next_obj,
5258                                          &dev_priv->mm.inactive_list,
5259                                          list) {
5260                         if (nr_to_scan > 0) {
5261                                 i915_gem_object_unbind(obj_priv->obj);
5262                                 nr_to_scan--;
5263                         } else
5264                                 cnt++;
5265                 }
5266
5267                 spin_lock(&shrink_list_lock);
5268                 mutex_unlock(&dev->struct_mutex);
5269
5270                 would_deadlock = 0;
5271         }
5272
5273         spin_unlock(&shrink_list_lock);
5274
5275         if (would_deadlock)
5276                 return -1;
5277         else if (cnt > 0)
5278                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5279         else
5280                 return 0;
5281 }
5282
5283 static struct shrinker shrinker = {
5284         .shrink = i915_gem_shrink,
5285         .seeks = DEFAULT_SEEKS,
5286 };
5287
5288 __init void
5289 i915_gem_shrinker_init(void)
5290 {
5291     register_shrinker(&shrinker);
5292 }
5293
5294 __exit void
5295 i915_gem_shrinker_exit(void)
5296 {
5297     unregister_shrinker(&shrinker);
5298 }