Merge branch 'drm-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43                                                           bool write);
44 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45                                                                   uint64_t offset,
46                                                                   uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49                                                     unsigned alignment,
50                                                     bool map_and_fenceable);
51 static void i915_gem_clear_fence_reg(struct drm_device *dev,
52                                      struct drm_i915_fence_reg *reg);
53 static int i915_gem_phys_pwrite(struct drm_device *dev,
54                                 struct drm_i915_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file);
57 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
58
59 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60                                     struct shrink_control *sc);
61
62 /* some bookkeeping */
63 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
64                                   size_t size)
65 {
66         dev_priv->mm.object_count++;
67         dev_priv->mm.object_memory += size;
68 }
69
70 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
71                                      size_t size)
72 {
73         dev_priv->mm.object_count--;
74         dev_priv->mm.object_memory -= size;
75 }
76
77 static int
78 i915_gem_wait_for_error(struct drm_device *dev)
79 {
80         struct drm_i915_private *dev_priv = dev->dev_private;
81         struct completion *x = &dev_priv->error_completion;
82         unsigned long flags;
83         int ret;
84
85         if (!atomic_read(&dev_priv->mm.wedged))
86                 return 0;
87
88         ret = wait_for_completion_interruptible(x);
89         if (ret)
90                 return ret;
91
92         if (atomic_read(&dev_priv->mm.wedged)) {
93                 /* GPU is hung, bump the completion count to account for
94                  * the token we just consumed so that we never hit zero and
95                  * end up waiting upon a subsequent completion event that
96                  * will never happen.
97                  */
98                 spin_lock_irqsave(&x->wait.lock, flags);
99                 x->done++;
100                 spin_unlock_irqrestore(&x->wait.lock, flags);
101         }
102         return 0;
103 }
104
105 int i915_mutex_lock_interruptible(struct drm_device *dev)
106 {
107         int ret;
108
109         ret = i915_gem_wait_for_error(dev);
110         if (ret)
111                 return ret;
112
113         ret = mutex_lock_interruptible(&dev->struct_mutex);
114         if (ret)
115                 return ret;
116
117         WARN_ON(i915_verify_lists(dev));
118         return 0;
119 }
120
121 static inline bool
122 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
123 {
124         return obj->gtt_space && !obj->active && obj->pin_count == 0;
125 }
126
127 void i915_gem_do_init(struct drm_device *dev,
128                       unsigned long start,
129                       unsigned long mappable_end,
130                       unsigned long end)
131 {
132         drm_i915_private_t *dev_priv = dev->dev_private;
133
134         drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
135
136         dev_priv->mm.gtt_start = start;
137         dev_priv->mm.gtt_mappable_end = mappable_end;
138         dev_priv->mm.gtt_end = end;
139         dev_priv->mm.gtt_total = end - start;
140         dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
141
142         /* Take over this portion of the GTT */
143         intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
144 }
145
146 int
147 i915_gem_init_ioctl(struct drm_device *dev, void *data,
148                     struct drm_file *file)
149 {
150         struct drm_i915_gem_init *args = data;
151
152         if (args->gtt_start >= args->gtt_end ||
153             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
154                 return -EINVAL;
155
156         mutex_lock(&dev->struct_mutex);
157         i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
158         mutex_unlock(&dev->struct_mutex);
159
160         return 0;
161 }
162
163 int
164 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165                             struct drm_file *file)
166 {
167         struct drm_i915_private *dev_priv = dev->dev_private;
168         struct drm_i915_gem_get_aperture *args = data;
169         struct drm_i915_gem_object *obj;
170         size_t pinned;
171
172         if (!(dev->driver->driver_features & DRIVER_GEM))
173                 return -ENODEV;
174
175         pinned = 0;
176         mutex_lock(&dev->struct_mutex);
177         list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
178                 pinned += obj->gtt_space->size;
179         mutex_unlock(&dev->struct_mutex);
180
181         args->aper_size = dev_priv->mm.gtt_total;
182         args->aper_available_size = args->aper_size -pinned;
183
184         return 0;
185 }
186
187 static int
188 i915_gem_create(struct drm_file *file,
189                 struct drm_device *dev,
190                 uint64_t size,
191                 uint32_t *handle_p)
192 {
193         struct drm_i915_gem_object *obj;
194         int ret;
195         u32 handle;
196
197         size = roundup(size, PAGE_SIZE);
198
199         /* Allocate the new object */
200         obj = i915_gem_alloc_object(dev, size);
201         if (obj == NULL)
202                 return -ENOMEM;
203
204         ret = drm_gem_handle_create(file, &obj->base, &handle);
205         if (ret) {
206                 drm_gem_object_release(&obj->base);
207                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
208                 kfree(obj);
209                 return ret;
210         }
211
212         /* drop reference from allocate - handle holds it now */
213         drm_gem_object_unreference(&obj->base);
214         trace_i915_gem_object_create(obj);
215
216         *handle_p = handle;
217         return 0;
218 }
219
220 int
221 i915_gem_dumb_create(struct drm_file *file,
222                      struct drm_device *dev,
223                      struct drm_mode_create_dumb *args)
224 {
225         /* have to work out size/pitch and return them */
226         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
227         args->size = args->pitch * args->height;
228         return i915_gem_create(file, dev,
229                                args->size, &args->handle);
230 }
231
232 int i915_gem_dumb_destroy(struct drm_file *file,
233                           struct drm_device *dev,
234                           uint32_t handle)
235 {
236         return drm_gem_handle_delete(file, handle);
237 }
238
239 /**
240  * Creates a new mm object and returns a handle to it.
241  */
242 int
243 i915_gem_create_ioctl(struct drm_device *dev, void *data,
244                       struct drm_file *file)
245 {
246         struct drm_i915_gem_create *args = data;
247         return i915_gem_create(file, dev,
248                                args->size, &args->handle);
249 }
250
251 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
252 {
253         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
254
255         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
256                 obj->tiling_mode != I915_TILING_NONE;
257 }
258
259 static inline void
260 slow_shmem_copy(struct page *dst_page,
261                 int dst_offset,
262                 struct page *src_page,
263                 int src_offset,
264                 int length)
265 {
266         char *dst_vaddr, *src_vaddr;
267
268         dst_vaddr = kmap(dst_page);
269         src_vaddr = kmap(src_page);
270
271         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
272
273         kunmap(src_page);
274         kunmap(dst_page);
275 }
276
277 static inline void
278 slow_shmem_bit17_copy(struct page *gpu_page,
279                       int gpu_offset,
280                       struct page *cpu_page,
281                       int cpu_offset,
282                       int length,
283                       int is_read)
284 {
285         char *gpu_vaddr, *cpu_vaddr;
286
287         /* Use the unswizzled path if this page isn't affected. */
288         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
289                 if (is_read)
290                         return slow_shmem_copy(cpu_page, cpu_offset,
291                                                gpu_page, gpu_offset, length);
292                 else
293                         return slow_shmem_copy(gpu_page, gpu_offset,
294                                                cpu_page, cpu_offset, length);
295         }
296
297         gpu_vaddr = kmap(gpu_page);
298         cpu_vaddr = kmap(cpu_page);
299
300         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
301          * XORing with the other bits (A9 for Y, A9 and A10 for X)
302          */
303         while (length > 0) {
304                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305                 int this_length = min(cacheline_end - gpu_offset, length);
306                 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308                 if (is_read) {
309                         memcpy(cpu_vaddr + cpu_offset,
310                                gpu_vaddr + swizzled_gpu_offset,
311                                this_length);
312                 } else {
313                         memcpy(gpu_vaddr + swizzled_gpu_offset,
314                                cpu_vaddr + cpu_offset,
315                                this_length);
316                 }
317                 cpu_offset += this_length;
318                 gpu_offset += this_length;
319                 length -= this_length;
320         }
321
322         kunmap(cpu_page);
323         kunmap(gpu_page);
324 }
325
326 /**
327  * This is the fast shmem pread path, which attempts to copy_from_user directly
328  * from the backing pages of the object to the user's address space.  On a
329  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
330  */
331 static int
332 i915_gem_shmem_pread_fast(struct drm_device *dev,
333                           struct drm_i915_gem_object *obj,
334                           struct drm_i915_gem_pread *args,
335                           struct drm_file *file)
336 {
337         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
338         ssize_t remain;
339         loff_t offset;
340         char __user *user_data;
341         int page_offset, page_length;
342
343         user_data = (char __user *) (uintptr_t) args->data_ptr;
344         remain = args->size;
345
346         offset = args->offset;
347
348         while (remain > 0) {
349                 struct page *page;
350                 char *vaddr;
351                 int ret;
352
353                 /* Operation in this page
354                  *
355                  * page_offset = offset within page
356                  * page_length = bytes to copy for this page
357                  */
358                 page_offset = offset_in_page(offset);
359                 page_length = remain;
360                 if ((page_offset + remain) > PAGE_SIZE)
361                         page_length = PAGE_SIZE - page_offset;
362
363                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
364                 if (IS_ERR(page))
365                         return PTR_ERR(page);
366
367                 vaddr = kmap_atomic(page);
368                 ret = __copy_to_user_inatomic(user_data,
369                                               vaddr + page_offset,
370                                               page_length);
371                 kunmap_atomic(vaddr);
372
373                 mark_page_accessed(page);
374                 page_cache_release(page);
375                 if (ret)
376                         return -EFAULT;
377
378                 remain -= page_length;
379                 user_data += page_length;
380                 offset += page_length;
381         }
382
383         return 0;
384 }
385
386 /**
387  * This is the fallback shmem pread path, which allocates temporary storage
388  * in kernel space to copy_to_user into outside of the struct_mutex, so we
389  * can copy out of the object's backing pages while holding the struct mutex
390  * and not take page faults.
391  */
392 static int
393 i915_gem_shmem_pread_slow(struct drm_device *dev,
394                           struct drm_i915_gem_object *obj,
395                           struct drm_i915_gem_pread *args,
396                           struct drm_file *file)
397 {
398         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
399         struct mm_struct *mm = current->mm;
400         struct page **user_pages;
401         ssize_t remain;
402         loff_t offset, pinned_pages, i;
403         loff_t first_data_page, last_data_page, num_pages;
404         int shmem_page_offset;
405         int data_page_index, data_page_offset;
406         int page_length;
407         int ret;
408         uint64_t data_ptr = args->data_ptr;
409         int do_bit17_swizzling;
410
411         remain = args->size;
412
413         /* Pin the user pages containing the data.  We can't fault while
414          * holding the struct mutex, yet we want to hold it while
415          * dereferencing the user data.
416          */
417         first_data_page = data_ptr / PAGE_SIZE;
418         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
419         num_pages = last_data_page - first_data_page + 1;
420
421         user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
422         if (user_pages == NULL)
423                 return -ENOMEM;
424
425         mutex_unlock(&dev->struct_mutex);
426         down_read(&mm->mmap_sem);
427         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
428                                       num_pages, 1, 0, user_pages, NULL);
429         up_read(&mm->mmap_sem);
430         mutex_lock(&dev->struct_mutex);
431         if (pinned_pages < num_pages) {
432                 ret = -EFAULT;
433                 goto out;
434         }
435
436         ret = i915_gem_object_set_cpu_read_domain_range(obj,
437                                                         args->offset,
438                                                         args->size);
439         if (ret)
440                 goto out;
441
442         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
443
444         offset = args->offset;
445
446         while (remain > 0) {
447                 struct page *page;
448
449                 /* Operation in this page
450                  *
451                  * shmem_page_offset = offset within page in shmem file
452                  * data_page_index = page number in get_user_pages return
453                  * data_page_offset = offset with data_page_index page.
454                  * page_length = bytes to copy for this page
455                  */
456                 shmem_page_offset = offset_in_page(offset);
457                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
458                 data_page_offset = offset_in_page(data_ptr);
459
460                 page_length = remain;
461                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
462                         page_length = PAGE_SIZE - shmem_page_offset;
463                 if ((data_page_offset + page_length) > PAGE_SIZE)
464                         page_length = PAGE_SIZE - data_page_offset;
465
466                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
467                 if (IS_ERR(page)) {
468                         ret = PTR_ERR(page);
469                         goto out;
470                 }
471
472                 if (do_bit17_swizzling) {
473                         slow_shmem_bit17_copy(page,
474                                               shmem_page_offset,
475                                               user_pages[data_page_index],
476                                               data_page_offset,
477                                               page_length,
478                                               1);
479                 } else {
480                         slow_shmem_copy(user_pages[data_page_index],
481                                         data_page_offset,
482                                         page,
483                                         shmem_page_offset,
484                                         page_length);
485                 }
486
487                 mark_page_accessed(page);
488                 page_cache_release(page);
489
490                 remain -= page_length;
491                 data_ptr += page_length;
492                 offset += page_length;
493         }
494
495 out:
496         for (i = 0; i < pinned_pages; i++) {
497                 SetPageDirty(user_pages[i]);
498                 mark_page_accessed(user_pages[i]);
499                 page_cache_release(user_pages[i]);
500         }
501         drm_free_large(user_pages);
502
503         return ret;
504 }
505
506 /**
507  * Reads data from the object referenced by handle.
508  *
509  * On error, the contents of *data are undefined.
510  */
511 int
512 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
513                      struct drm_file *file)
514 {
515         struct drm_i915_gem_pread *args = data;
516         struct drm_i915_gem_object *obj;
517         int ret = 0;
518
519         if (args->size == 0)
520                 return 0;
521
522         if (!access_ok(VERIFY_WRITE,
523                        (char __user *)(uintptr_t)args->data_ptr,
524                        args->size))
525                 return -EFAULT;
526
527         ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
528                                        args->size);
529         if (ret)
530                 return -EFAULT;
531
532         ret = i915_mutex_lock_interruptible(dev);
533         if (ret)
534                 return ret;
535
536         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
537         if (&obj->base == NULL) {
538                 ret = -ENOENT;
539                 goto unlock;
540         }
541
542         /* Bounds check source.  */
543         if (args->offset > obj->base.size ||
544             args->size > obj->base.size - args->offset) {
545                 ret = -EINVAL;
546                 goto out;
547         }
548
549         trace_i915_gem_object_pread(obj, args->offset, args->size);
550
551         ret = i915_gem_object_set_cpu_read_domain_range(obj,
552                                                         args->offset,
553                                                         args->size);
554         if (ret)
555                 goto out;
556
557         ret = -EFAULT;
558         if (!i915_gem_object_needs_bit17_swizzle(obj))
559                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
560         if (ret == -EFAULT)
561                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
562
563 out:
564         drm_gem_object_unreference(&obj->base);
565 unlock:
566         mutex_unlock(&dev->struct_mutex);
567         return ret;
568 }
569
570 /* This is the fast write path which cannot handle
571  * page faults in the source data
572  */
573
574 static inline int
575 fast_user_write(struct io_mapping *mapping,
576                 loff_t page_base, int page_offset,
577                 char __user *user_data,
578                 int length)
579 {
580         char *vaddr_atomic;
581         unsigned long unwritten;
582
583         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
585                                                       user_data, length);
586         io_mapping_unmap_atomic(vaddr_atomic);
587         return unwritten;
588 }
589
590 /* Here's the write path which can sleep for
591  * page faults
592  */
593
594 static inline void
595 slow_kernel_write(struct io_mapping *mapping,
596                   loff_t gtt_base, int gtt_offset,
597                   struct page *user_page, int user_offset,
598                   int length)
599 {
600         char __iomem *dst_vaddr;
601         char *src_vaddr;
602
603         dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
604         src_vaddr = kmap(user_page);
605
606         memcpy_toio(dst_vaddr + gtt_offset,
607                     src_vaddr + user_offset,
608                     length);
609
610         kunmap(user_page);
611         io_mapping_unmap(dst_vaddr);
612 }
613
614 /**
615  * This is the fast pwrite path, where we copy the data directly from the
616  * user into the GTT, uncached.
617  */
618 static int
619 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
620                          struct drm_i915_gem_object *obj,
621                          struct drm_i915_gem_pwrite *args,
622                          struct drm_file *file)
623 {
624         drm_i915_private_t *dev_priv = dev->dev_private;
625         ssize_t remain;
626         loff_t offset, page_base;
627         char __user *user_data;
628         int page_offset, page_length;
629
630         user_data = (char __user *) (uintptr_t) args->data_ptr;
631         remain = args->size;
632
633         offset = obj->gtt_offset + args->offset;
634
635         while (remain > 0) {
636                 /* Operation in this page
637                  *
638                  * page_base = page offset within aperture
639                  * page_offset = offset within page
640                  * page_length = bytes to copy for this page
641                  */
642                 page_base = offset & PAGE_MASK;
643                 page_offset = offset_in_page(offset);
644                 page_length = remain;
645                 if ((page_offset + remain) > PAGE_SIZE)
646                         page_length = PAGE_SIZE - page_offset;
647
648                 /* If we get a fault while copying data, then (presumably) our
649                  * source page isn't available.  Return the error and we'll
650                  * retry in the slow path.
651                  */
652                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
653                                     page_offset, user_data, page_length))
654                         return -EFAULT;
655
656                 remain -= page_length;
657                 user_data += page_length;
658                 offset += page_length;
659         }
660
661         return 0;
662 }
663
664 /**
665  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
666  * the memory and maps it using kmap_atomic for copying.
667  *
668  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
669  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
670  */
671 static int
672 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
673                          struct drm_i915_gem_object *obj,
674                          struct drm_i915_gem_pwrite *args,
675                          struct drm_file *file)
676 {
677         drm_i915_private_t *dev_priv = dev->dev_private;
678         ssize_t remain;
679         loff_t gtt_page_base, offset;
680         loff_t first_data_page, last_data_page, num_pages;
681         loff_t pinned_pages, i;
682         struct page **user_pages;
683         struct mm_struct *mm = current->mm;
684         int gtt_page_offset, data_page_offset, data_page_index, page_length;
685         int ret;
686         uint64_t data_ptr = args->data_ptr;
687
688         remain = args->size;
689
690         /* Pin the user pages containing the data.  We can't fault while
691          * holding the struct mutex, and all of the pwrite implementations
692          * want to hold it while dereferencing the user data.
693          */
694         first_data_page = data_ptr / PAGE_SIZE;
695         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
696         num_pages = last_data_page - first_data_page + 1;
697
698         user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
699         if (user_pages == NULL)
700                 return -ENOMEM;
701
702         mutex_unlock(&dev->struct_mutex);
703         down_read(&mm->mmap_sem);
704         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
705                                       num_pages, 0, 0, user_pages, NULL);
706         up_read(&mm->mmap_sem);
707         mutex_lock(&dev->struct_mutex);
708         if (pinned_pages < num_pages) {
709                 ret = -EFAULT;
710                 goto out_unpin_pages;
711         }
712
713         ret = i915_gem_object_set_to_gtt_domain(obj, true);
714         if (ret)
715                 goto out_unpin_pages;
716
717         ret = i915_gem_object_put_fence(obj);
718         if (ret)
719                 goto out_unpin_pages;
720
721         offset = obj->gtt_offset + args->offset;
722
723         while (remain > 0) {
724                 /* Operation in this page
725                  *
726                  * gtt_page_base = page offset within aperture
727                  * gtt_page_offset = offset within page in aperture
728                  * data_page_index = page number in get_user_pages return
729                  * data_page_offset = offset with data_page_index page.
730                  * page_length = bytes to copy for this page
731                  */
732                 gtt_page_base = offset & PAGE_MASK;
733                 gtt_page_offset = offset_in_page(offset);
734                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
735                 data_page_offset = offset_in_page(data_ptr);
736
737                 page_length = remain;
738                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
739                         page_length = PAGE_SIZE - gtt_page_offset;
740                 if ((data_page_offset + page_length) > PAGE_SIZE)
741                         page_length = PAGE_SIZE - data_page_offset;
742
743                 slow_kernel_write(dev_priv->mm.gtt_mapping,
744                                   gtt_page_base, gtt_page_offset,
745                                   user_pages[data_page_index],
746                                   data_page_offset,
747                                   page_length);
748
749                 remain -= page_length;
750                 offset += page_length;
751                 data_ptr += page_length;
752         }
753
754 out_unpin_pages:
755         for (i = 0; i < pinned_pages; i++)
756                 page_cache_release(user_pages[i]);
757         drm_free_large(user_pages);
758
759         return ret;
760 }
761
762 /**
763  * This is the fast shmem pwrite path, which attempts to directly
764  * copy_from_user into the kmapped pages backing the object.
765  */
766 static int
767 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
768                            struct drm_i915_gem_object *obj,
769                            struct drm_i915_gem_pwrite *args,
770                            struct drm_file *file)
771 {
772         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
773         ssize_t remain;
774         loff_t offset;
775         char __user *user_data;
776         int page_offset, page_length;
777
778         user_data = (char __user *) (uintptr_t) args->data_ptr;
779         remain = args->size;
780
781         offset = args->offset;
782         obj->dirty = 1;
783
784         while (remain > 0) {
785                 struct page *page;
786                 char *vaddr;
787                 int ret;
788
789                 /* Operation in this page
790                  *
791                  * page_offset = offset within page
792                  * page_length = bytes to copy for this page
793                  */
794                 page_offset = offset_in_page(offset);
795                 page_length = remain;
796                 if ((page_offset + remain) > PAGE_SIZE)
797                         page_length = PAGE_SIZE - page_offset;
798
799                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
800                 if (IS_ERR(page))
801                         return PTR_ERR(page);
802
803                 vaddr = kmap_atomic(page, KM_USER0);
804                 ret = __copy_from_user_inatomic(vaddr + page_offset,
805                                                 user_data,
806                                                 page_length);
807                 kunmap_atomic(vaddr, KM_USER0);
808
809                 set_page_dirty(page);
810                 mark_page_accessed(page);
811                 page_cache_release(page);
812
813                 /* If we get a fault while copying data, then (presumably) our
814                  * source page isn't available.  Return the error and we'll
815                  * retry in the slow path.
816                  */
817                 if (ret)
818                         return -EFAULT;
819
820                 remain -= page_length;
821                 user_data += page_length;
822                 offset += page_length;
823         }
824
825         return 0;
826 }
827
828 /**
829  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
830  * the memory and maps it using kmap_atomic for copying.
831  *
832  * This avoids taking mmap_sem for faulting on the user's address while the
833  * struct_mutex is held.
834  */
835 static int
836 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
837                            struct drm_i915_gem_object *obj,
838                            struct drm_i915_gem_pwrite *args,
839                            struct drm_file *file)
840 {
841         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
842         struct mm_struct *mm = current->mm;
843         struct page **user_pages;
844         ssize_t remain;
845         loff_t offset, pinned_pages, i;
846         loff_t first_data_page, last_data_page, num_pages;
847         int shmem_page_offset;
848         int data_page_index,  data_page_offset;
849         int page_length;
850         int ret;
851         uint64_t data_ptr = args->data_ptr;
852         int do_bit17_swizzling;
853
854         remain = args->size;
855
856         /* Pin the user pages containing the data.  We can't fault while
857          * holding the struct mutex, and all of the pwrite implementations
858          * want to hold it while dereferencing the user data.
859          */
860         first_data_page = data_ptr / PAGE_SIZE;
861         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
862         num_pages = last_data_page - first_data_page + 1;
863
864         user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
865         if (user_pages == NULL)
866                 return -ENOMEM;
867
868         mutex_unlock(&dev->struct_mutex);
869         down_read(&mm->mmap_sem);
870         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
871                                       num_pages, 0, 0, user_pages, NULL);
872         up_read(&mm->mmap_sem);
873         mutex_lock(&dev->struct_mutex);
874         if (pinned_pages < num_pages) {
875                 ret = -EFAULT;
876                 goto out;
877         }
878
879         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
880         if (ret)
881                 goto out;
882
883         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884
885         offset = args->offset;
886         obj->dirty = 1;
887
888         while (remain > 0) {
889                 struct page *page;
890
891                 /* Operation in this page
892                  *
893                  * shmem_page_offset = offset within page in shmem file
894                  * data_page_index = page number in get_user_pages return
895                  * data_page_offset = offset with data_page_index page.
896                  * page_length = bytes to copy for this page
897                  */
898                 shmem_page_offset = offset_in_page(offset);
899                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
900                 data_page_offset = offset_in_page(data_ptr);
901
902                 page_length = remain;
903                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
904                         page_length = PAGE_SIZE - shmem_page_offset;
905                 if ((data_page_offset + page_length) > PAGE_SIZE)
906                         page_length = PAGE_SIZE - data_page_offset;
907
908                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
909                 if (IS_ERR(page)) {
910                         ret = PTR_ERR(page);
911                         goto out;
912                 }
913
914                 if (do_bit17_swizzling) {
915                         slow_shmem_bit17_copy(page,
916                                               shmem_page_offset,
917                                               user_pages[data_page_index],
918                                               data_page_offset,
919                                               page_length,
920                                               0);
921                 } else {
922                         slow_shmem_copy(page,
923                                         shmem_page_offset,
924                                         user_pages[data_page_index],
925                                         data_page_offset,
926                                         page_length);
927                 }
928
929                 set_page_dirty(page);
930                 mark_page_accessed(page);
931                 page_cache_release(page);
932
933                 remain -= page_length;
934                 data_ptr += page_length;
935                 offset += page_length;
936         }
937
938 out:
939         for (i = 0; i < pinned_pages; i++)
940                 page_cache_release(user_pages[i]);
941         drm_free_large(user_pages);
942
943         return ret;
944 }
945
946 /**
947  * Writes data to the object referenced by handle.
948  *
949  * On error, the contents of the buffer that were to be modified are undefined.
950  */
951 int
952 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
953                       struct drm_file *file)
954 {
955         struct drm_i915_gem_pwrite *args = data;
956         struct drm_i915_gem_object *obj;
957         int ret;
958
959         if (args->size == 0)
960                 return 0;
961
962         if (!access_ok(VERIFY_READ,
963                        (char __user *)(uintptr_t)args->data_ptr,
964                        args->size))
965                 return -EFAULT;
966
967         ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
968                                       args->size);
969         if (ret)
970                 return -EFAULT;
971
972         ret = i915_mutex_lock_interruptible(dev);
973         if (ret)
974                 return ret;
975
976         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
977         if (&obj->base == NULL) {
978                 ret = -ENOENT;
979                 goto unlock;
980         }
981
982         /* Bounds check destination. */
983         if (args->offset > obj->base.size ||
984             args->size > obj->base.size - args->offset) {
985                 ret = -EINVAL;
986                 goto out;
987         }
988
989         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
990
991         /* We can only do the GTT pwrite on untiled buffers, as otherwise
992          * it would end up going through the fenced access, and we'll get
993          * different detiling behavior between reading and writing.
994          * pread/pwrite currently are reading and writing from the CPU
995          * perspective, requiring manual detiling by the client.
996          */
997         if (obj->phys_obj)
998                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
999         else if (obj->gtt_space &&
1000                  obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1001                 ret = i915_gem_object_pin(obj, 0, true);
1002                 if (ret)
1003                         goto out;
1004
1005                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1006                 if (ret)
1007                         goto out_unpin;
1008
1009                 ret = i915_gem_object_put_fence(obj);
1010                 if (ret)
1011                         goto out_unpin;
1012
1013                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1014                 if (ret == -EFAULT)
1015                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1016
1017 out_unpin:
1018                 i915_gem_object_unpin(obj);
1019         } else {
1020                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1021                 if (ret)
1022                         goto out;
1023
1024                 ret = -EFAULT;
1025                 if (!i915_gem_object_needs_bit17_swizzle(obj))
1026                         ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1027                 if (ret == -EFAULT)
1028                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1029         }
1030
1031 out:
1032         drm_gem_object_unreference(&obj->base);
1033 unlock:
1034         mutex_unlock(&dev->struct_mutex);
1035         return ret;
1036 }
1037
1038 /**
1039  * Called when user space prepares to use an object with the CPU, either
1040  * through the mmap ioctl's mapping or a GTT mapping.
1041  */
1042 int
1043 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1044                           struct drm_file *file)
1045 {
1046         struct drm_i915_gem_set_domain *args = data;
1047         struct drm_i915_gem_object *obj;
1048         uint32_t read_domains = args->read_domains;
1049         uint32_t write_domain = args->write_domain;
1050         int ret;
1051
1052         if (!(dev->driver->driver_features & DRIVER_GEM))
1053                 return -ENODEV;
1054
1055         /* Only handle setting domains to types used by the CPU. */
1056         if (write_domain & I915_GEM_GPU_DOMAINS)
1057                 return -EINVAL;
1058
1059         if (read_domains & I915_GEM_GPU_DOMAINS)
1060                 return -EINVAL;
1061
1062         /* Having something in the write domain implies it's in the read
1063          * domain, and only that read domain.  Enforce that in the request.
1064          */
1065         if (write_domain != 0 && read_domains != write_domain)
1066                 return -EINVAL;
1067
1068         ret = i915_mutex_lock_interruptible(dev);
1069         if (ret)
1070                 return ret;
1071
1072         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1073         if (&obj->base == NULL) {
1074                 ret = -ENOENT;
1075                 goto unlock;
1076         }
1077
1078         if (read_domains & I915_GEM_DOMAIN_GTT) {
1079                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1080
1081                 /* Silently promote "you're not bound, there was nothing to do"
1082                  * to success, since the client was just asking us to
1083                  * make sure everything was done.
1084                  */
1085                 if (ret == -EINVAL)
1086                         ret = 0;
1087         } else {
1088                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1089         }
1090
1091         drm_gem_object_unreference(&obj->base);
1092 unlock:
1093         mutex_unlock(&dev->struct_mutex);
1094         return ret;
1095 }
1096
1097 /**
1098  * Called when user space has done writes to this buffer
1099  */
1100 int
1101 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1102                          struct drm_file *file)
1103 {
1104         struct drm_i915_gem_sw_finish *args = data;
1105         struct drm_i915_gem_object *obj;
1106         int ret = 0;
1107
1108         if (!(dev->driver->driver_features & DRIVER_GEM))
1109                 return -ENODEV;
1110
1111         ret = i915_mutex_lock_interruptible(dev);
1112         if (ret)
1113                 return ret;
1114
1115         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1116         if (&obj->base == NULL) {
1117                 ret = -ENOENT;
1118                 goto unlock;
1119         }
1120
1121         /* Pinned buffers may be scanout, so flush the cache */
1122         if (obj->pin_count)
1123                 i915_gem_object_flush_cpu_write_domain(obj);
1124
1125         drm_gem_object_unreference(&obj->base);
1126 unlock:
1127         mutex_unlock(&dev->struct_mutex);
1128         return ret;
1129 }
1130
1131 /**
1132  * Maps the contents of an object, returning the address it is mapped
1133  * into.
1134  *
1135  * While the mapping holds a reference on the contents of the object, it doesn't
1136  * imply a ref on the object itself.
1137  */
1138 int
1139 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1140                     struct drm_file *file)
1141 {
1142         struct drm_i915_private *dev_priv = dev->dev_private;
1143         struct drm_i915_gem_mmap *args = data;
1144         struct drm_gem_object *obj;
1145         unsigned long addr;
1146
1147         if (!(dev->driver->driver_features & DRIVER_GEM))
1148                 return -ENODEV;
1149
1150         obj = drm_gem_object_lookup(dev, file, args->handle);
1151         if (obj == NULL)
1152                 return -ENOENT;
1153
1154         if (obj->size > dev_priv->mm.gtt_mappable_end) {
1155                 drm_gem_object_unreference_unlocked(obj);
1156                 return -E2BIG;
1157         }
1158
1159         down_write(&current->mm->mmap_sem);
1160         addr = do_mmap(obj->filp, 0, args->size,
1161                        PROT_READ | PROT_WRITE, MAP_SHARED,
1162                        args->offset);
1163         up_write(&current->mm->mmap_sem);
1164         drm_gem_object_unreference_unlocked(obj);
1165         if (IS_ERR((void *)addr))
1166                 return addr;
1167
1168         args->addr_ptr = (uint64_t) addr;
1169
1170         return 0;
1171 }
1172
1173 /**
1174  * i915_gem_fault - fault a page into the GTT
1175  * vma: VMA in question
1176  * vmf: fault info
1177  *
1178  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1179  * from userspace.  The fault handler takes care of binding the object to
1180  * the GTT (if needed), allocating and programming a fence register (again,
1181  * only if needed based on whether the old reg is still valid or the object
1182  * is tiled) and inserting a new PTE into the faulting process.
1183  *
1184  * Note that the faulting process may involve evicting existing objects
1185  * from the GTT and/or fence registers to make room.  So performance may
1186  * suffer if the GTT working set is large or there are few fence registers
1187  * left.
1188  */
1189 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1190 {
1191         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1192         struct drm_device *dev = obj->base.dev;
1193         drm_i915_private_t *dev_priv = dev->dev_private;
1194         pgoff_t page_offset;
1195         unsigned long pfn;
1196         int ret = 0;
1197         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1198
1199         /* We don't use vmf->pgoff since that has the fake offset */
1200         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1201                 PAGE_SHIFT;
1202
1203         ret = i915_mutex_lock_interruptible(dev);
1204         if (ret)
1205                 goto out;
1206
1207         trace_i915_gem_object_fault(obj, page_offset, true, write);
1208
1209         /* Now bind it into the GTT if needed */
1210         if (!obj->map_and_fenceable) {
1211                 ret = i915_gem_object_unbind(obj);
1212                 if (ret)
1213                         goto unlock;
1214         }
1215         if (!obj->gtt_space) {
1216                 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1217                 if (ret)
1218                         goto unlock;
1219
1220                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1221                 if (ret)
1222                         goto unlock;
1223         }
1224
1225         if (obj->tiling_mode == I915_TILING_NONE)
1226                 ret = i915_gem_object_put_fence(obj);
1227         else
1228                 ret = i915_gem_object_get_fence(obj, NULL);
1229         if (ret)
1230                 goto unlock;
1231
1232         if (i915_gem_object_is_inactive(obj))
1233                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1234
1235         obj->fault_mappable = true;
1236
1237         pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1238                 page_offset;
1239
1240         /* Finally, remap it using the new GTT offset */
1241         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1242 unlock:
1243         mutex_unlock(&dev->struct_mutex);
1244 out:
1245         switch (ret) {
1246         case -EIO:
1247         case -EAGAIN:
1248                 /* Give the error handler a chance to run and move the
1249                  * objects off the GPU active list. Next time we service the
1250                  * fault, we should be able to transition the page into the
1251                  * GTT without touching the GPU (and so avoid further
1252                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1253                  * with coherency, just lost writes.
1254                  */
1255                 set_need_resched();
1256         case 0:
1257         case -ERESTARTSYS:
1258         case -EINTR:
1259                 return VM_FAULT_NOPAGE;
1260         case -ENOMEM:
1261                 return VM_FAULT_OOM;
1262         default:
1263                 return VM_FAULT_SIGBUS;
1264         }
1265 }
1266
1267 /**
1268  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1269  * @obj: obj in question
1270  *
1271  * GEM memory mapping works by handing back to userspace a fake mmap offset
1272  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1273  * up the object based on the offset and sets up the various memory mapping
1274  * structures.
1275  *
1276  * This routine allocates and attaches a fake offset for @obj.
1277  */
1278 static int
1279 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1280 {
1281         struct drm_device *dev = obj->base.dev;
1282         struct drm_gem_mm *mm = dev->mm_private;
1283         struct drm_map_list *list;
1284         struct drm_local_map *map;
1285         int ret = 0;
1286
1287         /* Set the object up for mmap'ing */
1288         list = &obj->base.map_list;
1289         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1290         if (!list->map)
1291                 return -ENOMEM;
1292
1293         map = list->map;
1294         map->type = _DRM_GEM;
1295         map->size = obj->base.size;
1296         map->handle = obj;
1297
1298         /* Get a DRM GEM mmap offset allocated... */
1299         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1300                                                     obj->base.size / PAGE_SIZE,
1301                                                     0, 0);
1302         if (!list->file_offset_node) {
1303                 DRM_ERROR("failed to allocate offset for bo %d\n",
1304                           obj->base.name);
1305                 ret = -ENOSPC;
1306                 goto out_free_list;
1307         }
1308
1309         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1310                                                   obj->base.size / PAGE_SIZE,
1311                                                   0);
1312         if (!list->file_offset_node) {
1313                 ret = -ENOMEM;
1314                 goto out_free_list;
1315         }
1316
1317         list->hash.key = list->file_offset_node->start;
1318         ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1319         if (ret) {
1320                 DRM_ERROR("failed to add to map hash\n");
1321                 goto out_free_mm;
1322         }
1323
1324         return 0;
1325
1326 out_free_mm:
1327         drm_mm_put_block(list->file_offset_node);
1328 out_free_list:
1329         kfree(list->map);
1330         list->map = NULL;
1331
1332         return ret;
1333 }
1334
1335 /**
1336  * i915_gem_release_mmap - remove physical page mappings
1337  * @obj: obj in question
1338  *
1339  * Preserve the reservation of the mmapping with the DRM core code, but
1340  * relinquish ownership of the pages back to the system.
1341  *
1342  * It is vital that we remove the page mapping if we have mapped a tiled
1343  * object through the GTT and then lose the fence register due to
1344  * resource pressure. Similarly if the object has been moved out of the
1345  * aperture, than pages mapped into userspace must be revoked. Removing the
1346  * mapping will then trigger a page fault on the next user access, allowing
1347  * fixup by i915_gem_fault().
1348  */
1349 void
1350 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1351 {
1352         if (!obj->fault_mappable)
1353                 return;
1354
1355         if (obj->base.dev->dev_mapping)
1356                 unmap_mapping_range(obj->base.dev->dev_mapping,
1357                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1358                                     obj->base.size, 1);
1359
1360         obj->fault_mappable = false;
1361 }
1362
1363 static void
1364 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1365 {
1366         struct drm_device *dev = obj->base.dev;
1367         struct drm_gem_mm *mm = dev->mm_private;
1368         struct drm_map_list *list = &obj->base.map_list;
1369
1370         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1371         drm_mm_put_block(list->file_offset_node);
1372         kfree(list->map);
1373         list->map = NULL;
1374 }
1375
1376 static uint32_t
1377 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1378 {
1379         uint32_t gtt_size;
1380
1381         if (INTEL_INFO(dev)->gen >= 4 ||
1382             tiling_mode == I915_TILING_NONE)
1383                 return size;
1384
1385         /* Previous chips need a power-of-two fence region when tiling */
1386         if (INTEL_INFO(dev)->gen == 3)
1387                 gtt_size = 1024*1024;
1388         else
1389                 gtt_size = 512*1024;
1390
1391         while (gtt_size < size)
1392                 gtt_size <<= 1;
1393
1394         return gtt_size;
1395 }
1396
1397 /**
1398  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1399  * @obj: object to check
1400  *
1401  * Return the required GTT alignment for an object, taking into account
1402  * potential fence register mapping.
1403  */
1404 static uint32_t
1405 i915_gem_get_gtt_alignment(struct drm_device *dev,
1406                            uint32_t size,
1407                            int tiling_mode)
1408 {
1409         /*
1410          * Minimum alignment is 4k (GTT page size), but might be greater
1411          * if a fence register is needed for the object.
1412          */
1413         if (INTEL_INFO(dev)->gen >= 4 ||
1414             tiling_mode == I915_TILING_NONE)
1415                 return 4096;
1416
1417         /*
1418          * Previous chips need to be aligned to the size of the smallest
1419          * fence register that can contain the object.
1420          */
1421         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1422 }
1423
1424 /**
1425  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1426  *                                       unfenced object
1427  * @dev: the device
1428  * @size: size of the object
1429  * @tiling_mode: tiling mode of the object
1430  *
1431  * Return the required GTT alignment for an object, only taking into account
1432  * unfenced tiled surface requirements.
1433  */
1434 uint32_t
1435 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1436                                     uint32_t size,
1437                                     int tiling_mode)
1438 {
1439         /*
1440          * Minimum alignment is 4k (GTT page size) for sane hw.
1441          */
1442         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1443             tiling_mode == I915_TILING_NONE)
1444                 return 4096;
1445
1446         /* Previous hardware however needs to be aligned to a power-of-two
1447          * tile height. The simplest method for determining this is to reuse
1448          * the power-of-tile object size.
1449          */
1450         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1451 }
1452
1453 int
1454 i915_gem_mmap_gtt(struct drm_file *file,
1455                   struct drm_device *dev,
1456                   uint32_t handle,
1457                   uint64_t *offset)
1458 {
1459         struct drm_i915_private *dev_priv = dev->dev_private;
1460         struct drm_i915_gem_object *obj;
1461         int ret;
1462
1463         if (!(dev->driver->driver_features & DRIVER_GEM))
1464                 return -ENODEV;
1465
1466         ret = i915_mutex_lock_interruptible(dev);
1467         if (ret)
1468                 return ret;
1469
1470         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1471         if (&obj->base == NULL) {
1472                 ret = -ENOENT;
1473                 goto unlock;
1474         }
1475
1476         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1477                 ret = -E2BIG;
1478                 goto unlock;
1479         }
1480
1481         if (obj->madv != I915_MADV_WILLNEED) {
1482                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1483                 ret = -EINVAL;
1484                 goto out;
1485         }
1486
1487         if (!obj->base.map_list.map) {
1488                 ret = i915_gem_create_mmap_offset(obj);
1489                 if (ret)
1490                         goto out;
1491         }
1492
1493         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1494
1495 out:
1496         drm_gem_object_unreference(&obj->base);
1497 unlock:
1498         mutex_unlock(&dev->struct_mutex);
1499         return ret;
1500 }
1501
1502 /**
1503  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1504  * @dev: DRM device
1505  * @data: GTT mapping ioctl data
1506  * @file: GEM object info
1507  *
1508  * Simply returns the fake offset to userspace so it can mmap it.
1509  * The mmap call will end up in drm_gem_mmap(), which will set things
1510  * up so we can get faults in the handler above.
1511  *
1512  * The fault handler will take care of binding the object into the GTT
1513  * (since it may have been evicted to make room for something), allocating
1514  * a fence register, and mapping the appropriate aperture address into
1515  * userspace.
1516  */
1517 int
1518 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1519                         struct drm_file *file)
1520 {
1521         struct drm_i915_gem_mmap_gtt *args = data;
1522
1523         if (!(dev->driver->driver_features & DRIVER_GEM))
1524                 return -ENODEV;
1525
1526         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1527 }
1528
1529
1530 static int
1531 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1532                               gfp_t gfpmask)
1533 {
1534         int page_count, i;
1535         struct address_space *mapping;
1536         struct inode *inode;
1537         struct page *page;
1538
1539         /* Get the list of pages out of our struct file.  They'll be pinned
1540          * at this point until we release them.
1541          */
1542         page_count = obj->base.size / PAGE_SIZE;
1543         BUG_ON(obj->pages != NULL);
1544         obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1545         if (obj->pages == NULL)
1546                 return -ENOMEM;
1547
1548         inode = obj->base.filp->f_path.dentry->d_inode;
1549         mapping = inode->i_mapping;
1550         gfpmask |= mapping_gfp_mask(mapping);
1551
1552         for (i = 0; i < page_count; i++) {
1553                 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1554                 if (IS_ERR(page))
1555                         goto err_pages;
1556
1557                 obj->pages[i] = page;
1558         }
1559
1560         if (obj->tiling_mode != I915_TILING_NONE)
1561                 i915_gem_object_do_bit_17_swizzle(obj);
1562
1563         return 0;
1564
1565 err_pages:
1566         while (i--)
1567                 page_cache_release(obj->pages[i]);
1568
1569         drm_free_large(obj->pages);
1570         obj->pages = NULL;
1571         return PTR_ERR(page);
1572 }
1573
1574 static void
1575 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1576 {
1577         int page_count = obj->base.size / PAGE_SIZE;
1578         int i;
1579
1580         BUG_ON(obj->madv == __I915_MADV_PURGED);
1581
1582         if (obj->tiling_mode != I915_TILING_NONE)
1583                 i915_gem_object_save_bit_17_swizzle(obj);
1584
1585         if (obj->madv == I915_MADV_DONTNEED)
1586                 obj->dirty = 0;
1587
1588         for (i = 0; i < page_count; i++) {
1589                 if (obj->dirty)
1590                         set_page_dirty(obj->pages[i]);
1591
1592                 if (obj->madv == I915_MADV_WILLNEED)
1593                         mark_page_accessed(obj->pages[i]);
1594
1595                 page_cache_release(obj->pages[i]);
1596         }
1597         obj->dirty = 0;
1598
1599         drm_free_large(obj->pages);
1600         obj->pages = NULL;
1601 }
1602
1603 void
1604 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1605                                struct intel_ring_buffer *ring,
1606                                u32 seqno)
1607 {
1608         struct drm_device *dev = obj->base.dev;
1609         struct drm_i915_private *dev_priv = dev->dev_private;
1610
1611         BUG_ON(ring == NULL);
1612         obj->ring = ring;
1613
1614         /* Add a reference if we're newly entering the active list. */
1615         if (!obj->active) {
1616                 drm_gem_object_reference(&obj->base);
1617                 obj->active = 1;
1618         }
1619
1620         /* Move from whatever list we were on to the tail of execution. */
1621         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1622         list_move_tail(&obj->ring_list, &ring->active_list);
1623
1624         obj->last_rendering_seqno = seqno;
1625         if (obj->fenced_gpu_access) {
1626                 struct drm_i915_fence_reg *reg;
1627
1628                 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1629
1630                 obj->last_fenced_seqno = seqno;
1631                 obj->last_fenced_ring = ring;
1632
1633                 reg = &dev_priv->fence_regs[obj->fence_reg];
1634                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1635         }
1636 }
1637
1638 static void
1639 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1640 {
1641         list_del_init(&obj->ring_list);
1642         obj->last_rendering_seqno = 0;
1643 }
1644
1645 static void
1646 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1647 {
1648         struct drm_device *dev = obj->base.dev;
1649         drm_i915_private_t *dev_priv = dev->dev_private;
1650
1651         BUG_ON(!obj->active);
1652         list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1653
1654         i915_gem_object_move_off_active(obj);
1655 }
1656
1657 static void
1658 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1659 {
1660         struct drm_device *dev = obj->base.dev;
1661         struct drm_i915_private *dev_priv = dev->dev_private;
1662
1663         if (obj->pin_count != 0)
1664                 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1665         else
1666                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1667
1668         BUG_ON(!list_empty(&obj->gpu_write_list));
1669         BUG_ON(!obj->active);
1670         obj->ring = NULL;
1671
1672         i915_gem_object_move_off_active(obj);
1673         obj->fenced_gpu_access = false;
1674
1675         obj->active = 0;
1676         obj->pending_gpu_write = false;
1677         drm_gem_object_unreference(&obj->base);
1678
1679         WARN_ON(i915_verify_lists(dev));
1680 }
1681
1682 /* Immediately discard the backing storage */
1683 static void
1684 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1685 {
1686         struct inode *inode;
1687
1688         /* Our goal here is to return as much of the memory as
1689          * is possible back to the system as we are called from OOM.
1690          * To do this we must instruct the shmfs to drop all of its
1691          * backing pages, *now*.
1692          */
1693         inode = obj->base.filp->f_path.dentry->d_inode;
1694         shmem_truncate_range(inode, 0, (loff_t)-1);
1695
1696         obj->madv = __I915_MADV_PURGED;
1697 }
1698
1699 static inline int
1700 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1701 {
1702         return obj->madv == I915_MADV_DONTNEED;
1703 }
1704
1705 static void
1706 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1707                                uint32_t flush_domains)
1708 {
1709         struct drm_i915_gem_object *obj, *next;
1710
1711         list_for_each_entry_safe(obj, next,
1712                                  &ring->gpu_write_list,
1713                                  gpu_write_list) {
1714                 if (obj->base.write_domain & flush_domains) {
1715                         uint32_t old_write_domain = obj->base.write_domain;
1716
1717                         obj->base.write_domain = 0;
1718                         list_del_init(&obj->gpu_write_list);
1719                         i915_gem_object_move_to_active(obj, ring,
1720                                                        i915_gem_next_request_seqno(ring));
1721
1722                         trace_i915_gem_object_change_domain(obj,
1723                                                             obj->base.read_domains,
1724                                                             old_write_domain);
1725                 }
1726         }
1727 }
1728
1729 int
1730 i915_add_request(struct intel_ring_buffer *ring,
1731                  struct drm_file *file,
1732                  struct drm_i915_gem_request *request)
1733 {
1734         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1735         uint32_t seqno;
1736         int was_empty;
1737         int ret;
1738
1739         BUG_ON(request == NULL);
1740
1741         ret = ring->add_request(ring, &seqno);
1742         if (ret)
1743             return ret;
1744
1745         trace_i915_gem_request_add(ring, seqno);
1746
1747         request->seqno = seqno;
1748         request->ring = ring;
1749         request->emitted_jiffies = jiffies;
1750         was_empty = list_empty(&ring->request_list);
1751         list_add_tail(&request->list, &ring->request_list);
1752
1753         if (file) {
1754                 struct drm_i915_file_private *file_priv = file->driver_priv;
1755
1756                 spin_lock(&file_priv->mm.lock);
1757                 request->file_priv = file_priv;
1758                 list_add_tail(&request->client_list,
1759                               &file_priv->mm.request_list);
1760                 spin_unlock(&file_priv->mm.lock);
1761         }
1762
1763         ring->outstanding_lazy_request = false;
1764
1765         if (!dev_priv->mm.suspended) {
1766                 if (i915_enable_hangcheck) {
1767                         mod_timer(&dev_priv->hangcheck_timer,
1768                                   jiffies +
1769                                   msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1770                 }
1771                 if (was_empty)
1772                         queue_delayed_work(dev_priv->wq,
1773                                            &dev_priv->mm.retire_work, HZ);
1774         }
1775         return 0;
1776 }
1777
1778 static inline void
1779 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1780 {
1781         struct drm_i915_file_private *file_priv = request->file_priv;
1782
1783         if (!file_priv)
1784                 return;
1785
1786         spin_lock(&file_priv->mm.lock);
1787         if (request->file_priv) {
1788                 list_del(&request->client_list);
1789                 request->file_priv = NULL;
1790         }
1791         spin_unlock(&file_priv->mm.lock);
1792 }
1793
1794 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1795                                       struct intel_ring_buffer *ring)
1796 {
1797         while (!list_empty(&ring->request_list)) {
1798                 struct drm_i915_gem_request *request;
1799
1800                 request = list_first_entry(&ring->request_list,
1801                                            struct drm_i915_gem_request,
1802                                            list);
1803
1804                 list_del(&request->list);
1805                 i915_gem_request_remove_from_client(request);
1806                 kfree(request);
1807         }
1808
1809         while (!list_empty(&ring->active_list)) {
1810                 struct drm_i915_gem_object *obj;
1811
1812                 obj = list_first_entry(&ring->active_list,
1813                                        struct drm_i915_gem_object,
1814                                        ring_list);
1815
1816                 obj->base.write_domain = 0;
1817                 list_del_init(&obj->gpu_write_list);
1818                 i915_gem_object_move_to_inactive(obj);
1819         }
1820 }
1821
1822 static void i915_gem_reset_fences(struct drm_device *dev)
1823 {
1824         struct drm_i915_private *dev_priv = dev->dev_private;
1825         int i;
1826
1827         for (i = 0; i < 16; i++) {
1828                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1829                 struct drm_i915_gem_object *obj = reg->obj;
1830
1831                 if (!obj)
1832                         continue;
1833
1834                 if (obj->tiling_mode)
1835                         i915_gem_release_mmap(obj);
1836
1837                 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1838                 reg->obj->fenced_gpu_access = false;
1839                 reg->obj->last_fenced_seqno = 0;
1840                 reg->obj->last_fenced_ring = NULL;
1841                 i915_gem_clear_fence_reg(dev, reg);
1842         }
1843 }
1844
1845 void i915_gem_reset(struct drm_device *dev)
1846 {
1847         struct drm_i915_private *dev_priv = dev->dev_private;
1848         struct drm_i915_gem_object *obj;
1849         int i;
1850
1851         for (i = 0; i < I915_NUM_RINGS; i++)
1852                 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1853
1854         /* Remove anything from the flushing lists. The GPU cache is likely
1855          * to be lost on reset along with the data, so simply move the
1856          * lost bo to the inactive list.
1857          */
1858         while (!list_empty(&dev_priv->mm.flushing_list)) {
1859                 obj= list_first_entry(&dev_priv->mm.flushing_list,
1860                                       struct drm_i915_gem_object,
1861                                       mm_list);
1862
1863                 obj->base.write_domain = 0;
1864                 list_del_init(&obj->gpu_write_list);
1865                 i915_gem_object_move_to_inactive(obj);
1866         }
1867
1868         /* Move everything out of the GPU domains to ensure we do any
1869          * necessary invalidation upon reuse.
1870          */
1871         list_for_each_entry(obj,
1872                             &dev_priv->mm.inactive_list,
1873                             mm_list)
1874         {
1875                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1876         }
1877
1878         /* The fence registers are invalidated so clear them out */
1879         i915_gem_reset_fences(dev);
1880 }
1881
1882 /**
1883  * This function clears the request list as sequence numbers are passed.
1884  */
1885 static void
1886 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1887 {
1888         uint32_t seqno;
1889         int i;
1890
1891         if (list_empty(&ring->request_list))
1892                 return;
1893
1894         WARN_ON(i915_verify_lists(ring->dev));
1895
1896         seqno = ring->get_seqno(ring);
1897
1898         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1899                 if (seqno >= ring->sync_seqno[i])
1900                         ring->sync_seqno[i] = 0;
1901
1902         while (!list_empty(&ring->request_list)) {
1903                 struct drm_i915_gem_request *request;
1904
1905                 request = list_first_entry(&ring->request_list,
1906                                            struct drm_i915_gem_request,
1907                                            list);
1908
1909                 if (!i915_seqno_passed(seqno, request->seqno))
1910                         break;
1911
1912                 trace_i915_gem_request_retire(ring, request->seqno);
1913
1914                 list_del(&request->list);
1915                 i915_gem_request_remove_from_client(request);
1916                 kfree(request);
1917         }
1918
1919         /* Move any buffers on the active list that are no longer referenced
1920          * by the ringbuffer to the flushing/inactive lists as appropriate.
1921          */
1922         while (!list_empty(&ring->active_list)) {
1923                 struct drm_i915_gem_object *obj;
1924
1925                 obj= list_first_entry(&ring->active_list,
1926                                       struct drm_i915_gem_object,
1927                                       ring_list);
1928
1929                 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1930                         break;
1931
1932                 if (obj->base.write_domain != 0)
1933                         i915_gem_object_move_to_flushing(obj);
1934                 else
1935                         i915_gem_object_move_to_inactive(obj);
1936         }
1937
1938         if (unlikely(ring->trace_irq_seqno &&
1939                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1940                 ring->irq_put(ring);
1941                 ring->trace_irq_seqno = 0;
1942         }
1943
1944         WARN_ON(i915_verify_lists(ring->dev));
1945 }
1946
1947 void
1948 i915_gem_retire_requests(struct drm_device *dev)
1949 {
1950         drm_i915_private_t *dev_priv = dev->dev_private;
1951         int i;
1952
1953         if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1954             struct drm_i915_gem_object *obj, *next;
1955
1956             /* We must be careful that during unbind() we do not
1957              * accidentally infinitely recurse into retire requests.
1958              * Currently:
1959              *   retire -> free -> unbind -> wait -> retire_ring
1960              */
1961             list_for_each_entry_safe(obj, next,
1962                                      &dev_priv->mm.deferred_free_list,
1963                                      mm_list)
1964                     i915_gem_free_object_tail(obj);
1965         }
1966
1967         for (i = 0; i < I915_NUM_RINGS; i++)
1968                 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1969 }
1970
1971 static void
1972 i915_gem_retire_work_handler(struct work_struct *work)
1973 {
1974         drm_i915_private_t *dev_priv;
1975         struct drm_device *dev;
1976         bool idle;
1977         int i;
1978
1979         dev_priv = container_of(work, drm_i915_private_t,
1980                                 mm.retire_work.work);
1981         dev = dev_priv->dev;
1982
1983         /* Come back later if the device is busy... */
1984         if (!mutex_trylock(&dev->struct_mutex)) {
1985                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1986                 return;
1987         }
1988
1989         i915_gem_retire_requests(dev);
1990
1991         /* Send a periodic flush down the ring so we don't hold onto GEM
1992          * objects indefinitely.
1993          */
1994         idle = true;
1995         for (i = 0; i < I915_NUM_RINGS; i++) {
1996                 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1997
1998                 if (!list_empty(&ring->gpu_write_list)) {
1999                         struct drm_i915_gem_request *request;
2000                         int ret;
2001
2002                         ret = i915_gem_flush_ring(ring,
2003                                                   0, I915_GEM_GPU_DOMAINS);
2004                         request = kzalloc(sizeof(*request), GFP_KERNEL);
2005                         if (ret || request == NULL ||
2006                             i915_add_request(ring, NULL, request))
2007                             kfree(request);
2008                 }
2009
2010                 idle &= list_empty(&ring->request_list);
2011         }
2012
2013         if (!dev_priv->mm.suspended && !idle)
2014                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2015
2016         mutex_unlock(&dev->struct_mutex);
2017 }
2018
2019 /**
2020  * Waits for a sequence number to be signaled, and cleans up the
2021  * request and object lists appropriately for that event.
2022  */
2023 int
2024 i915_wait_request(struct intel_ring_buffer *ring,
2025                   uint32_t seqno)
2026 {
2027         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2028         u32 ier;
2029         int ret = 0;
2030
2031         BUG_ON(seqno == 0);
2032
2033         if (atomic_read(&dev_priv->mm.wedged)) {
2034                 struct completion *x = &dev_priv->error_completion;
2035                 bool recovery_complete;
2036                 unsigned long flags;
2037
2038                 /* Give the error handler a chance to run. */
2039                 spin_lock_irqsave(&x->wait.lock, flags);
2040                 recovery_complete = x->done > 0;
2041                 spin_unlock_irqrestore(&x->wait.lock, flags);
2042
2043                 return recovery_complete ? -EIO : -EAGAIN;
2044         }
2045
2046         if (seqno == ring->outstanding_lazy_request) {
2047                 struct drm_i915_gem_request *request;
2048
2049                 request = kzalloc(sizeof(*request), GFP_KERNEL);
2050                 if (request == NULL)
2051                         return -ENOMEM;
2052
2053                 ret = i915_add_request(ring, NULL, request);
2054                 if (ret) {
2055                         kfree(request);
2056                         return ret;
2057                 }
2058
2059                 seqno = request->seqno;
2060         }
2061
2062         if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2063                 if (HAS_PCH_SPLIT(ring->dev))
2064                         ier = I915_READ(DEIER) | I915_READ(GTIER);
2065                 else
2066                         ier = I915_READ(IER);
2067                 if (!ier) {
2068                         DRM_ERROR("something (likely vbetool) disabled "
2069                                   "interrupts, re-enabling\n");
2070                         ring->dev->driver->irq_preinstall(ring->dev);
2071                         ring->dev->driver->irq_postinstall(ring->dev);
2072                 }
2073
2074                 trace_i915_gem_request_wait_begin(ring, seqno);
2075
2076                 ring->waiting_seqno = seqno;
2077                 if (ring->irq_get(ring)) {
2078                         if (dev_priv->mm.interruptible)
2079                                 ret = wait_event_interruptible(ring->irq_queue,
2080                                                                i915_seqno_passed(ring->get_seqno(ring), seqno)
2081                                                                || atomic_read(&dev_priv->mm.wedged));
2082                         else
2083                                 wait_event(ring->irq_queue,
2084                                            i915_seqno_passed(ring->get_seqno(ring), seqno)
2085                                            || atomic_read(&dev_priv->mm.wedged));
2086
2087                         ring->irq_put(ring);
2088                 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2089                                                       seqno) ||
2090                                     atomic_read(&dev_priv->mm.wedged), 3000))
2091                         ret = -EBUSY;
2092                 ring->waiting_seqno = 0;
2093
2094                 trace_i915_gem_request_wait_end(ring, seqno);
2095         }
2096         if (atomic_read(&dev_priv->mm.wedged))
2097                 ret = -EAGAIN;
2098
2099         if (ret && ret != -ERESTARTSYS)
2100                 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2101                           __func__, ret, seqno, ring->get_seqno(ring),
2102                           dev_priv->next_seqno);
2103
2104         /* Directly dispatch request retiring.  While we have the work queue
2105          * to handle this, the waiter on a request often wants an associated
2106          * buffer to have made it to the inactive list, and we would need
2107          * a separate wait queue to handle that.
2108          */
2109         if (ret == 0)
2110                 i915_gem_retire_requests_ring(ring);
2111
2112         return ret;
2113 }
2114
2115 /**
2116  * Ensures that all rendering to the object has completed and the object is
2117  * safe to unbind from the GTT or access from the CPU.
2118  */
2119 int
2120 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2121 {
2122         int ret;
2123
2124         /* This function only exists to support waiting for existing rendering,
2125          * not for emitting required flushes.
2126          */
2127         BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2128
2129         /* If there is rendering queued on the buffer being evicted, wait for
2130          * it.
2131          */
2132         if (obj->active) {
2133                 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2134                 if (ret)
2135                         return ret;
2136         }
2137
2138         return 0;
2139 }
2140
2141 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2142 {
2143         u32 old_write_domain, old_read_domains;
2144
2145         /* Act a barrier for all accesses through the GTT */
2146         mb();
2147
2148         /* Force a pagefault for domain tracking on next user access */
2149         i915_gem_release_mmap(obj);
2150
2151         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2152                 return;
2153
2154         old_read_domains = obj->base.read_domains;
2155         old_write_domain = obj->base.write_domain;
2156
2157         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2158         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2159
2160         trace_i915_gem_object_change_domain(obj,
2161                                             old_read_domains,
2162                                             old_write_domain);
2163 }
2164
2165 /**
2166  * Unbinds an object from the GTT aperture.
2167  */
2168 int
2169 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2170 {
2171         int ret = 0;
2172
2173         if (obj->gtt_space == NULL)
2174                 return 0;
2175
2176         if (obj->pin_count != 0) {
2177                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2178                 return -EINVAL;
2179         }
2180
2181         ret = i915_gem_object_finish_gpu(obj);
2182         if (ret == -ERESTARTSYS)
2183                 return ret;
2184         /* Continue on if we fail due to EIO, the GPU is hung so we
2185          * should be safe and we need to cleanup or else we might
2186          * cause memory corruption through use-after-free.
2187          */
2188
2189         i915_gem_object_finish_gtt(obj);
2190
2191         /* Move the object to the CPU domain to ensure that
2192          * any possible CPU writes while it's not in the GTT
2193          * are flushed when we go to remap it.
2194          */
2195         if (ret == 0)
2196                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2197         if (ret == -ERESTARTSYS)
2198                 return ret;
2199         if (ret) {
2200                 /* In the event of a disaster, abandon all caches and
2201                  * hope for the best.
2202                  */
2203                 i915_gem_clflush_object(obj);
2204                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2205         }
2206
2207         /* release the fence reg _after_ flushing */
2208         ret = i915_gem_object_put_fence(obj);
2209         if (ret == -ERESTARTSYS)
2210                 return ret;
2211
2212         trace_i915_gem_object_unbind(obj);
2213
2214         i915_gem_gtt_unbind_object(obj);
2215         i915_gem_object_put_pages_gtt(obj);
2216
2217         list_del_init(&obj->gtt_list);
2218         list_del_init(&obj->mm_list);
2219         /* Avoid an unnecessary call to unbind on rebind. */
2220         obj->map_and_fenceable = true;
2221
2222         drm_mm_put_block(obj->gtt_space);
2223         obj->gtt_space = NULL;
2224         obj->gtt_offset = 0;
2225
2226         if (i915_gem_object_is_purgeable(obj))
2227                 i915_gem_object_truncate(obj);
2228
2229         return ret;
2230 }
2231
2232 int
2233 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2234                     uint32_t invalidate_domains,
2235                     uint32_t flush_domains)
2236 {
2237         int ret;
2238
2239         if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2240                 return 0;
2241
2242         trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2243
2244         ret = ring->flush(ring, invalidate_domains, flush_domains);
2245         if (ret)
2246                 return ret;
2247
2248         if (flush_domains & I915_GEM_GPU_DOMAINS)
2249                 i915_gem_process_flushing_list(ring, flush_domains);
2250
2251         return 0;
2252 }
2253
2254 static int i915_ring_idle(struct intel_ring_buffer *ring)
2255 {
2256         int ret;
2257
2258         if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2259                 return 0;
2260
2261         if (!list_empty(&ring->gpu_write_list)) {
2262                 ret = i915_gem_flush_ring(ring,
2263                                     I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2264                 if (ret)
2265                         return ret;
2266         }
2267
2268         return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2269 }
2270
2271 int
2272 i915_gpu_idle(struct drm_device *dev)
2273 {
2274         drm_i915_private_t *dev_priv = dev->dev_private;
2275         bool lists_empty;
2276         int ret, i;
2277
2278         lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2279                        list_empty(&dev_priv->mm.active_list));
2280         if (lists_empty)
2281                 return 0;
2282
2283         /* Flush everything onto the inactive list. */
2284         for (i = 0; i < I915_NUM_RINGS; i++) {
2285                 ret = i915_ring_idle(&dev_priv->ring[i]);
2286                 if (ret)
2287                         return ret;
2288         }
2289
2290         return 0;
2291 }
2292
2293 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2294                                        struct intel_ring_buffer *pipelined)
2295 {
2296         struct drm_device *dev = obj->base.dev;
2297         drm_i915_private_t *dev_priv = dev->dev_private;
2298         u32 size = obj->gtt_space->size;
2299         int regnum = obj->fence_reg;
2300         uint64_t val;
2301
2302         val = (uint64_t)((obj->gtt_offset + size - 4096) &
2303                          0xfffff000) << 32;
2304         val |= obj->gtt_offset & 0xfffff000;
2305         val |= (uint64_t)((obj->stride / 128) - 1) <<
2306                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2307
2308         if (obj->tiling_mode == I915_TILING_Y)
2309                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2310         val |= I965_FENCE_REG_VALID;
2311
2312         if (pipelined) {
2313                 int ret = intel_ring_begin(pipelined, 6);
2314                 if (ret)
2315                         return ret;
2316
2317                 intel_ring_emit(pipelined, MI_NOOP);
2318                 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2319                 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2320                 intel_ring_emit(pipelined, (u32)val);
2321                 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2322                 intel_ring_emit(pipelined, (u32)(val >> 32));
2323                 intel_ring_advance(pipelined);
2324         } else
2325                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2326
2327         return 0;
2328 }
2329
2330 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2331                                 struct intel_ring_buffer *pipelined)
2332 {
2333         struct drm_device *dev = obj->base.dev;
2334         drm_i915_private_t *dev_priv = dev->dev_private;
2335         u32 size = obj->gtt_space->size;
2336         int regnum = obj->fence_reg;
2337         uint64_t val;
2338
2339         val = (uint64_t)((obj->gtt_offset + size - 4096) &
2340                     0xfffff000) << 32;
2341         val |= obj->gtt_offset & 0xfffff000;
2342         val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2343         if (obj->tiling_mode == I915_TILING_Y)
2344                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2345         val |= I965_FENCE_REG_VALID;
2346
2347         if (pipelined) {
2348                 int ret = intel_ring_begin(pipelined, 6);
2349                 if (ret)
2350                         return ret;
2351
2352                 intel_ring_emit(pipelined, MI_NOOP);
2353                 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2354                 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2355                 intel_ring_emit(pipelined, (u32)val);
2356                 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2357                 intel_ring_emit(pipelined, (u32)(val >> 32));
2358                 intel_ring_advance(pipelined);
2359         } else
2360                 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2361
2362         return 0;
2363 }
2364
2365 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2366                                 struct intel_ring_buffer *pipelined)
2367 {
2368         struct drm_device *dev = obj->base.dev;
2369         drm_i915_private_t *dev_priv = dev->dev_private;
2370         u32 size = obj->gtt_space->size;
2371         u32 fence_reg, val, pitch_val;
2372         int tile_width;
2373
2374         if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2375                  (size & -size) != size ||
2376                  (obj->gtt_offset & (size - 1)),
2377                  "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2378                  obj->gtt_offset, obj->map_and_fenceable, size))
2379                 return -EINVAL;
2380
2381         if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2382                 tile_width = 128;
2383         else
2384                 tile_width = 512;
2385
2386         /* Note: pitch better be a power of two tile widths */
2387         pitch_val = obj->stride / tile_width;
2388         pitch_val = ffs(pitch_val) - 1;
2389
2390         val = obj->gtt_offset;
2391         if (obj->tiling_mode == I915_TILING_Y)
2392                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2393         val |= I915_FENCE_SIZE_BITS(size);
2394         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2395         val |= I830_FENCE_REG_VALID;
2396
2397         fence_reg = obj->fence_reg;
2398         if (fence_reg < 8)
2399                 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2400         else
2401                 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2402
2403         if (pipelined) {
2404                 int ret = intel_ring_begin(pipelined, 4);
2405                 if (ret)
2406                         return ret;
2407
2408                 intel_ring_emit(pipelined, MI_NOOP);
2409                 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2410                 intel_ring_emit(pipelined, fence_reg);
2411                 intel_ring_emit(pipelined, val);
2412                 intel_ring_advance(pipelined);
2413         } else
2414                 I915_WRITE(fence_reg, val);
2415
2416         return 0;
2417 }
2418
2419 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2420                                 struct intel_ring_buffer *pipelined)
2421 {
2422         struct drm_device *dev = obj->base.dev;
2423         drm_i915_private_t *dev_priv = dev->dev_private;
2424         u32 size = obj->gtt_space->size;
2425         int regnum = obj->fence_reg;
2426         uint32_t val;
2427         uint32_t pitch_val;
2428
2429         if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2430                  (size & -size) != size ||
2431                  (obj->gtt_offset & (size - 1)),
2432                  "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2433                  obj->gtt_offset, size))
2434                 return -EINVAL;
2435
2436         pitch_val = obj->stride / 128;
2437         pitch_val = ffs(pitch_val) - 1;
2438
2439         val = obj->gtt_offset;
2440         if (obj->tiling_mode == I915_TILING_Y)
2441                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2442         val |= I830_FENCE_SIZE_BITS(size);
2443         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2444         val |= I830_FENCE_REG_VALID;
2445
2446         if (pipelined) {
2447                 int ret = intel_ring_begin(pipelined, 4);
2448                 if (ret)
2449                         return ret;
2450
2451                 intel_ring_emit(pipelined, MI_NOOP);
2452                 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2453                 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2454                 intel_ring_emit(pipelined, val);
2455                 intel_ring_advance(pipelined);
2456         } else
2457                 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2458
2459         return 0;
2460 }
2461
2462 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2463 {
2464         return i915_seqno_passed(ring->get_seqno(ring), seqno);
2465 }
2466
2467 static int
2468 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2469                             struct intel_ring_buffer *pipelined)
2470 {
2471         int ret;
2472
2473         if (obj->fenced_gpu_access) {
2474                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2475                         ret = i915_gem_flush_ring(obj->last_fenced_ring,
2476                                                   0, obj->base.write_domain);
2477                         if (ret)
2478                                 return ret;
2479                 }
2480
2481                 obj->fenced_gpu_access = false;
2482         }
2483
2484         if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2485                 if (!ring_passed_seqno(obj->last_fenced_ring,
2486                                        obj->last_fenced_seqno)) {
2487                         ret = i915_wait_request(obj->last_fenced_ring,
2488                                                 obj->last_fenced_seqno);
2489                         if (ret)
2490                                 return ret;
2491                 }
2492
2493                 obj->last_fenced_seqno = 0;
2494                 obj->last_fenced_ring = NULL;
2495         }
2496
2497         /* Ensure that all CPU reads are completed before installing a fence
2498          * and all writes before removing the fence.
2499          */
2500         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2501                 mb();
2502
2503         return 0;
2504 }
2505
2506 int
2507 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2508 {
2509         int ret;
2510
2511         if (obj->tiling_mode)
2512                 i915_gem_release_mmap(obj);
2513
2514         ret = i915_gem_object_flush_fence(obj, NULL);
2515         if (ret)
2516                 return ret;
2517
2518         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2519                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2520                 i915_gem_clear_fence_reg(obj->base.dev,
2521                                          &dev_priv->fence_regs[obj->fence_reg]);
2522
2523                 obj->fence_reg = I915_FENCE_REG_NONE;
2524         }
2525
2526         return 0;
2527 }
2528
2529 static struct drm_i915_fence_reg *
2530 i915_find_fence_reg(struct drm_device *dev,
2531                     struct intel_ring_buffer *pipelined)
2532 {
2533         struct drm_i915_private *dev_priv = dev->dev_private;
2534         struct drm_i915_fence_reg *reg, *first, *avail;
2535         int i;
2536
2537         /* First try to find a free reg */
2538         avail = NULL;
2539         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2540                 reg = &dev_priv->fence_regs[i];
2541                 if (!reg->obj)
2542                         return reg;
2543
2544                 if (!reg->obj->pin_count)
2545                         avail = reg;
2546         }
2547
2548         if (avail == NULL)
2549                 return NULL;
2550
2551         /* None available, try to steal one or wait for a user to finish */
2552         avail = first = NULL;
2553         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2554                 if (reg->obj->pin_count)
2555                         continue;
2556
2557                 if (first == NULL)
2558                         first = reg;
2559
2560                 if (!pipelined ||
2561                     !reg->obj->last_fenced_ring ||
2562                     reg->obj->last_fenced_ring == pipelined) {
2563                         avail = reg;
2564                         break;
2565                 }
2566         }
2567
2568         if (avail == NULL)
2569                 avail = first;
2570
2571         return avail;
2572 }
2573
2574 /**
2575  * i915_gem_object_get_fence - set up a fence reg for an object
2576  * @obj: object to map through a fence reg
2577  * @pipelined: ring on which to queue the change, or NULL for CPU access
2578  * @interruptible: must we wait uninterruptibly for the register to retire?
2579  *
2580  * When mapping objects through the GTT, userspace wants to be able to write
2581  * to them without having to worry about swizzling if the object is tiled.
2582  *
2583  * This function walks the fence regs looking for a free one for @obj,
2584  * stealing one if it can't find any.
2585  *
2586  * It then sets up the reg based on the object's properties: address, pitch
2587  * and tiling format.
2588  */
2589 int
2590 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2591                           struct intel_ring_buffer *pipelined)
2592 {
2593         struct drm_device *dev = obj->base.dev;
2594         struct drm_i915_private *dev_priv = dev->dev_private;
2595         struct drm_i915_fence_reg *reg;
2596         int ret;
2597
2598         /* XXX disable pipelining. There are bugs. Shocking. */
2599         pipelined = NULL;
2600
2601         /* Just update our place in the LRU if our fence is getting reused. */
2602         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2603                 reg = &dev_priv->fence_regs[obj->fence_reg];
2604                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2605
2606                 if (obj->tiling_changed) {
2607                         ret = i915_gem_object_flush_fence(obj, pipelined);
2608                         if (ret)
2609                                 return ret;
2610
2611                         if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2612                                 pipelined = NULL;
2613
2614                         if (pipelined) {
2615                                 reg->setup_seqno =
2616                                         i915_gem_next_request_seqno(pipelined);
2617                                 obj->last_fenced_seqno = reg->setup_seqno;
2618                                 obj->last_fenced_ring = pipelined;
2619                         }
2620
2621                         goto update;
2622                 }
2623
2624                 if (!pipelined) {
2625                         if (reg->setup_seqno) {
2626                                 if (!ring_passed_seqno(obj->last_fenced_ring,
2627                                                        reg->setup_seqno)) {
2628                                         ret = i915_wait_request(obj->last_fenced_ring,
2629                                                                 reg->setup_seqno);
2630                                         if (ret)
2631                                                 return ret;
2632                                 }
2633
2634                                 reg->setup_seqno = 0;
2635                         }
2636                 } else if (obj->last_fenced_ring &&
2637                            obj->last_fenced_ring != pipelined) {
2638                         ret = i915_gem_object_flush_fence(obj, pipelined);
2639                         if (ret)
2640                                 return ret;
2641                 }
2642
2643                 return 0;
2644         }
2645
2646         reg = i915_find_fence_reg(dev, pipelined);
2647         if (reg == NULL)
2648                 return -ENOSPC;
2649
2650         ret = i915_gem_object_flush_fence(obj, pipelined);
2651         if (ret)
2652                 return ret;
2653
2654         if (reg->obj) {
2655                 struct drm_i915_gem_object *old = reg->obj;
2656
2657                 drm_gem_object_reference(&old->base);
2658
2659                 if (old->tiling_mode)
2660                         i915_gem_release_mmap(old);
2661
2662                 ret = i915_gem_object_flush_fence(old, pipelined);
2663                 if (ret) {
2664                         drm_gem_object_unreference(&old->base);
2665                         return ret;
2666                 }
2667
2668                 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2669                         pipelined = NULL;
2670
2671                 old->fence_reg = I915_FENCE_REG_NONE;
2672                 old->last_fenced_ring = pipelined;
2673                 old->last_fenced_seqno =
2674                         pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2675
2676                 drm_gem_object_unreference(&old->base);
2677         } else if (obj->last_fenced_seqno == 0)
2678                 pipelined = NULL;
2679
2680         reg->obj = obj;
2681         list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2682         obj->fence_reg = reg - dev_priv->fence_regs;
2683         obj->last_fenced_ring = pipelined;
2684
2685         reg->setup_seqno =
2686                 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2687         obj->last_fenced_seqno = reg->setup_seqno;
2688
2689 update:
2690         obj->tiling_changed = false;
2691         switch (INTEL_INFO(dev)->gen) {
2692         case 7:
2693         case 6:
2694                 ret = sandybridge_write_fence_reg(obj, pipelined);
2695                 break;
2696         case 5:
2697         case 4:
2698                 ret = i965_write_fence_reg(obj, pipelined);
2699                 break;
2700         case 3:
2701                 ret = i915_write_fence_reg(obj, pipelined);
2702                 break;
2703         case 2:
2704                 ret = i830_write_fence_reg(obj, pipelined);
2705                 break;
2706         }
2707
2708         return ret;
2709 }
2710
2711 /**
2712  * i915_gem_clear_fence_reg - clear out fence register info
2713  * @obj: object to clear
2714  *
2715  * Zeroes out the fence register itself and clears out the associated
2716  * data structures in dev_priv and obj.
2717  */
2718 static void
2719 i915_gem_clear_fence_reg(struct drm_device *dev,
2720                          struct drm_i915_fence_reg *reg)
2721 {
2722         drm_i915_private_t *dev_priv = dev->dev_private;
2723         uint32_t fence_reg = reg - dev_priv->fence_regs;
2724
2725         switch (INTEL_INFO(dev)->gen) {
2726         case 7:
2727         case 6:
2728                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2729                 break;
2730         case 5:
2731         case 4:
2732                 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2733                 break;
2734         case 3:
2735                 if (fence_reg >= 8)
2736                         fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2737                 else
2738         case 2:
2739                         fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2740
2741                 I915_WRITE(fence_reg, 0);
2742                 break;
2743         }
2744
2745         list_del_init(&reg->lru_list);
2746         reg->obj = NULL;
2747         reg->setup_seqno = 0;
2748 }
2749
2750 /**
2751  * Finds free space in the GTT aperture and binds the object there.
2752  */
2753 static int
2754 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2755                             unsigned alignment,
2756                             bool map_and_fenceable)
2757 {
2758         struct drm_device *dev = obj->base.dev;
2759         drm_i915_private_t *dev_priv = dev->dev_private;
2760         struct drm_mm_node *free_space;
2761         gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2762         u32 size, fence_size, fence_alignment, unfenced_alignment;
2763         bool mappable, fenceable;
2764         int ret;
2765
2766         if (obj->madv != I915_MADV_WILLNEED) {
2767                 DRM_ERROR("Attempting to bind a purgeable object\n");
2768                 return -EINVAL;
2769         }
2770
2771         fence_size = i915_gem_get_gtt_size(dev,
2772                                            obj->base.size,
2773                                            obj->tiling_mode);
2774         fence_alignment = i915_gem_get_gtt_alignment(dev,
2775                                                      obj->base.size,
2776                                                      obj->tiling_mode);
2777         unfenced_alignment =
2778                 i915_gem_get_unfenced_gtt_alignment(dev,
2779                                                     obj->base.size,
2780                                                     obj->tiling_mode);
2781
2782         if (alignment == 0)
2783                 alignment = map_and_fenceable ? fence_alignment :
2784                                                 unfenced_alignment;
2785         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2786                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2787                 return -EINVAL;
2788         }
2789
2790         size = map_and_fenceable ? fence_size : obj->base.size;
2791
2792         /* If the object is bigger than the entire aperture, reject it early
2793          * before evicting everything in a vain attempt to find space.
2794          */
2795         if (obj->base.size >
2796             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2797                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2798                 return -E2BIG;
2799         }
2800
2801  search_free:
2802         if (map_and_fenceable)
2803                 free_space =
2804                         drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2805                                                     size, alignment, 0,
2806                                                     dev_priv->mm.gtt_mappable_end,
2807                                                     0);
2808         else
2809                 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2810                                                 size, alignment, 0);
2811
2812         if (free_space != NULL) {
2813                 if (map_and_fenceable)
2814                         obj->gtt_space =
2815                                 drm_mm_get_block_range_generic(free_space,
2816                                                                size, alignment, 0,
2817                                                                dev_priv->mm.gtt_mappable_end,
2818                                                                0);
2819                 else
2820                         obj->gtt_space =
2821                                 drm_mm_get_block(free_space, size, alignment);
2822         }
2823         if (obj->gtt_space == NULL) {
2824                 /* If the gtt is empty and we're still having trouble
2825                  * fitting our object in, we're out of memory.
2826                  */
2827                 ret = i915_gem_evict_something(dev, size, alignment,
2828                                                map_and_fenceable);
2829                 if (ret)
2830                         return ret;
2831
2832                 goto search_free;
2833         }
2834
2835         ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2836         if (ret) {
2837                 drm_mm_put_block(obj->gtt_space);
2838                 obj->gtt_space = NULL;
2839
2840                 if (ret == -ENOMEM) {
2841                         /* first try to reclaim some memory by clearing the GTT */
2842                         ret = i915_gem_evict_everything(dev, false);
2843                         if (ret) {
2844                                 /* now try to shrink everyone else */
2845                                 if (gfpmask) {
2846                                         gfpmask = 0;
2847                                         goto search_free;
2848                                 }
2849
2850                                 return -ENOMEM;
2851                         }
2852
2853                         goto search_free;
2854                 }
2855
2856                 return ret;
2857         }
2858
2859         ret = i915_gem_gtt_bind_object(obj);
2860         if (ret) {
2861                 i915_gem_object_put_pages_gtt(obj);
2862                 drm_mm_put_block(obj->gtt_space);
2863                 obj->gtt_space = NULL;
2864
2865                 if (i915_gem_evict_everything(dev, false))
2866                         return ret;
2867
2868                 goto search_free;
2869         }
2870
2871         list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2872         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2873
2874         /* Assert that the object is not currently in any GPU domain. As it
2875          * wasn't in the GTT, there shouldn't be any way it could have been in
2876          * a GPU cache
2877          */
2878         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2879         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2880
2881         obj->gtt_offset = obj->gtt_space->start;
2882
2883         fenceable =
2884                 obj->gtt_space->size == fence_size &&
2885                 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2886
2887         mappable =
2888                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2889
2890         obj->map_and_fenceable = mappable && fenceable;
2891
2892         trace_i915_gem_object_bind(obj, map_and_fenceable);
2893         return 0;
2894 }
2895
2896 void
2897 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2898 {
2899         /* If we don't have a page list set up, then we're not pinned
2900          * to GPU, and we can ignore the cache flush because it'll happen
2901          * again at bind time.
2902          */
2903         if (obj->pages == NULL)
2904                 return;
2905
2906         /* If the GPU is snooping the contents of the CPU cache,
2907          * we do not need to manually clear the CPU cache lines.  However,
2908          * the caches are only snooped when the render cache is
2909          * flushed/invalidated.  As we always have to emit invalidations
2910          * and flushes when moving into and out of the RENDER domain, correct
2911          * snooping behaviour occurs naturally as the result of our domain
2912          * tracking.
2913          */
2914         if (obj->cache_level != I915_CACHE_NONE)
2915                 return;
2916
2917         trace_i915_gem_object_clflush(obj);
2918
2919         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2920 }
2921
2922 /** Flushes any GPU write domain for the object if it's dirty. */
2923 static int
2924 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2925 {
2926         if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2927                 return 0;
2928
2929         /* Queue the GPU write cache flushing we need. */
2930         return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2931 }
2932
2933 /** Flushes the GTT write domain for the object if it's dirty. */
2934 static void
2935 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2936 {
2937         uint32_t old_write_domain;
2938
2939         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2940                 return;
2941
2942         /* No actual flushing is required for the GTT write domain.  Writes
2943          * to it immediately go to main memory as far as we know, so there's
2944          * no chipset flush.  It also doesn't land in render cache.
2945          *
2946          * However, we do have to enforce the order so that all writes through
2947          * the GTT land before any writes to the device, such as updates to
2948          * the GATT itself.
2949          */
2950         wmb();
2951
2952         old_write_domain = obj->base.write_domain;
2953         obj->base.write_domain = 0;
2954
2955         trace_i915_gem_object_change_domain(obj,
2956                                             obj->base.read_domains,
2957                                             old_write_domain);
2958 }
2959
2960 /** Flushes the CPU write domain for the object if it's dirty. */
2961 static void
2962 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2963 {
2964         uint32_t old_write_domain;
2965
2966         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2967                 return;
2968
2969         i915_gem_clflush_object(obj);
2970         intel_gtt_chipset_flush();
2971         old_write_domain = obj->base.write_domain;
2972         obj->base.write_domain = 0;
2973
2974         trace_i915_gem_object_change_domain(obj,
2975                                             obj->base.read_domains,
2976                                             old_write_domain);
2977 }
2978
2979 /**
2980  * Moves a single object to the GTT read, and possibly write domain.
2981  *
2982  * This function returns when the move is complete, including waiting on
2983  * flushes to occur.
2984  */
2985 int
2986 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2987 {
2988         uint32_t old_write_domain, old_read_domains;
2989         int ret;
2990
2991         /* Not valid to be called on unbound objects. */
2992         if (obj->gtt_space == NULL)
2993                 return -EINVAL;
2994
2995         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2996                 return 0;
2997
2998         ret = i915_gem_object_flush_gpu_write_domain(obj);
2999         if (ret)
3000                 return ret;
3001
3002         if (obj->pending_gpu_write || write) {
3003                 ret = i915_gem_object_wait_rendering(obj);
3004                 if (ret)
3005                         return ret;
3006         }
3007
3008         i915_gem_object_flush_cpu_write_domain(obj);
3009
3010         old_write_domain = obj->base.write_domain;
3011         old_read_domains = obj->base.read_domains;
3012
3013         /* It should now be out of any other write domains, and we can update
3014          * the domain values for our changes.
3015          */
3016         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3017         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3018         if (write) {
3019                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3020                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3021                 obj->dirty = 1;
3022         }
3023
3024         trace_i915_gem_object_change_domain(obj,
3025                                             old_read_domains,
3026                                             old_write_domain);
3027
3028         return 0;
3029 }
3030
3031 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3032                                     enum i915_cache_level cache_level)
3033 {
3034         int ret;
3035
3036         if (obj->cache_level == cache_level)
3037                 return 0;
3038
3039         if (obj->pin_count) {
3040                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3041                 return -EBUSY;
3042         }
3043
3044         if (obj->gtt_space) {
3045                 ret = i915_gem_object_finish_gpu(obj);
3046                 if (ret)
3047                         return ret;
3048
3049                 i915_gem_object_finish_gtt(obj);
3050
3051                 /* Before SandyBridge, you could not use tiling or fence
3052                  * registers with snooped memory, so relinquish any fences
3053                  * currently pointing to our region in the aperture.
3054                  */
3055                 if (INTEL_INFO(obj->base.dev)->gen < 6) {
3056                         ret = i915_gem_object_put_fence(obj);
3057                         if (ret)
3058                                 return ret;
3059                 }
3060
3061                 i915_gem_gtt_rebind_object(obj, cache_level);
3062         }
3063
3064         if (cache_level == I915_CACHE_NONE) {
3065                 u32 old_read_domains, old_write_domain;
3066
3067                 /* If we're coming from LLC cached, then we haven't
3068                  * actually been tracking whether the data is in the
3069                  * CPU cache or not, since we only allow one bit set
3070                  * in obj->write_domain and have been skipping the clflushes.
3071                  * Just set it to the CPU cache for now.
3072                  */
3073                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3074                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3075
3076                 old_read_domains = obj->base.read_domains;
3077                 old_write_domain = obj->base.write_domain;
3078
3079                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3080                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3081
3082                 trace_i915_gem_object_change_domain(obj,
3083                                                     old_read_domains,
3084                                                     old_write_domain);
3085         }
3086
3087         obj->cache_level = cache_level;
3088         return 0;
3089 }
3090
3091 /*
3092  * Prepare buffer for display plane (scanout, cursors, etc).
3093  * Can be called from an uninterruptible phase (modesetting) and allows
3094  * any flushes to be pipelined (for pageflips).
3095  *
3096  * For the display plane, we want to be in the GTT but out of any write
3097  * domains. So in many ways this looks like set_to_gtt_domain() apart from the
3098  * ability to pipeline the waits, pinning and any additional subtleties
3099  * that may differentiate the display plane from ordinary buffers.
3100  */
3101 int
3102 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3103                                      u32 alignment,
3104                                      struct intel_ring_buffer *pipelined)
3105 {
3106         u32 old_read_domains, old_write_domain;
3107         int ret;
3108
3109         ret = i915_gem_object_flush_gpu_write_domain(obj);
3110         if (ret)
3111                 return ret;
3112
3113         if (pipelined != obj->ring) {
3114                 ret = i915_gem_object_wait_rendering(obj);
3115                 if (ret)
3116                         return ret;
3117         }
3118
3119         /* The display engine is not coherent with the LLC cache on gen6.  As
3120          * a result, we make sure that the pinning that is about to occur is
3121          * done with uncached PTEs. This is lowest common denominator for all
3122          * chipsets.
3123          *
3124          * However for gen6+, we could do better by using the GFDT bit instead
3125          * of uncaching, which would allow us to flush all the LLC-cached data
3126          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3127          */
3128         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3129         if (ret)
3130                 return ret;
3131
3132         /* As the user may map the buffer once pinned in the display plane
3133          * (e.g. libkms for the bootup splash), we have to ensure that we
3134          * always use map_and_fenceable for all scanout buffers.
3135          */
3136         ret = i915_gem_object_pin(obj, alignment, true);
3137         if (ret)
3138                 return ret;
3139
3140         i915_gem_object_flush_cpu_write_domain(obj);
3141
3142         old_write_domain = obj->base.write_domain;
3143         old_read_domains = obj->base.read_domains;
3144
3145         /* It should now be out of any other write domains, and we can update
3146          * the domain values for our changes.
3147          */
3148         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3149         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3150
3151         trace_i915_gem_object_change_domain(obj,
3152                                             old_read_domains,
3153                                             old_write_domain);
3154
3155         return 0;
3156 }
3157
3158 int
3159 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3160 {
3161         int ret;
3162
3163         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3164                 return 0;
3165
3166         if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3167                 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3168                 if (ret)
3169                         return ret;
3170         }
3171
3172         /* Ensure that we invalidate the GPU's caches and TLBs. */
3173         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3174
3175         return i915_gem_object_wait_rendering(obj);
3176 }
3177
3178 /**
3179  * Moves a single object to the CPU read, and possibly write domain.
3180  *
3181  * This function returns when the move is complete, including waiting on
3182  * flushes to occur.
3183  */
3184 static int
3185 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3186 {
3187         uint32_t old_write_domain, old_read_domains;
3188         int ret;
3189
3190         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3191                 return 0;
3192
3193         ret = i915_gem_object_flush_gpu_write_domain(obj);
3194         if (ret)
3195                 return ret;
3196
3197         ret = i915_gem_object_wait_rendering(obj);
3198         if (ret)
3199                 return ret;
3200
3201         i915_gem_object_flush_gtt_write_domain(obj);
3202
3203         /* If we have a partially-valid cache of the object in the CPU,
3204          * finish invalidating it and free the per-page flags.
3205          */
3206         i915_gem_object_set_to_full_cpu_read_domain(obj);
3207
3208         old_write_domain = obj->base.write_domain;
3209         old_read_domains = obj->base.read_domains;
3210
3211         /* Flush the CPU cache if it's still invalid. */
3212         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3213                 i915_gem_clflush_object(obj);
3214
3215                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3216         }
3217
3218         /* It should now be out of any other write domains, and we can update
3219          * the domain values for our changes.
3220          */
3221         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3222
3223         /* If we're writing through the CPU, then the GPU read domains will
3224          * need to be invalidated at next use.
3225          */
3226         if (write) {
3227                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3228                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3229         }
3230
3231         trace_i915_gem_object_change_domain(obj,
3232                                             old_read_domains,
3233                                             old_write_domain);
3234
3235         return 0;
3236 }
3237
3238 /**
3239  * Moves the object from a partially CPU read to a full one.
3240  *
3241  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3242  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3243  */
3244 static void
3245 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3246 {
3247         if (!obj->page_cpu_valid)
3248                 return;
3249
3250         /* If we're partially in the CPU read domain, finish moving it in.
3251          */
3252         if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3253                 int i;
3254
3255                 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3256                         if (obj->page_cpu_valid[i])
3257                                 continue;
3258                         drm_clflush_pages(obj->pages + i, 1);
3259                 }
3260         }
3261
3262         /* Free the page_cpu_valid mappings which are now stale, whether
3263          * or not we've got I915_GEM_DOMAIN_CPU.
3264          */
3265         kfree(obj->page_cpu_valid);
3266         obj->page_cpu_valid = NULL;
3267 }
3268
3269 /**
3270  * Set the CPU read domain on a range of the object.
3271  *
3272  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3273  * not entirely valid.  The page_cpu_valid member of the object flags which
3274  * pages have been flushed, and will be respected by
3275  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3276  * of the whole object.
3277  *
3278  * This function returns when the move is complete, including waiting on
3279  * flushes to occur.
3280  */
3281 static int
3282 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3283                                           uint64_t offset, uint64_t size)
3284 {
3285         uint32_t old_read_domains;
3286         int i, ret;
3287
3288         if (offset == 0 && size == obj->base.size)
3289                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3290
3291         ret = i915_gem_object_flush_gpu_write_domain(obj);
3292         if (ret)
3293                 return ret;
3294
3295         ret = i915_gem_object_wait_rendering(obj);
3296         if (ret)
3297                 return ret;
3298
3299         i915_gem_object_flush_gtt_write_domain(obj);
3300
3301         /* If we're already fully in the CPU read domain, we're done. */
3302         if (obj->page_cpu_valid == NULL &&
3303             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3304                 return 0;
3305
3306         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3307          * newly adding I915_GEM_DOMAIN_CPU
3308          */
3309         if (obj->page_cpu_valid == NULL) {
3310                 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3311                                               GFP_KERNEL);
3312                 if (obj->page_cpu_valid == NULL)
3313                         return -ENOMEM;
3314         } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3315                 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3316
3317         /* Flush the cache on any pages that are still invalid from the CPU's
3318          * perspective.
3319          */
3320         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3321              i++) {
3322                 if (obj->page_cpu_valid[i])
3323                         continue;
3324
3325                 drm_clflush_pages(obj->pages + i, 1);
3326
3327                 obj->page_cpu_valid[i] = 1;
3328         }
3329
3330         /* It should now be out of any other write domains, and we can update
3331          * the domain values for our changes.
3332          */
3333         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3334
3335         old_read_domains = obj->base.read_domains;
3336         obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3337
3338         trace_i915_gem_object_change_domain(obj,
3339                                             old_read_domains,
3340                                             obj->base.write_domain);
3341
3342         return 0;
3343 }
3344
3345 /* Throttle our rendering by waiting until the ring has completed our requests
3346  * emitted over 20 msec ago.
3347  *
3348  * Note that if we were to use the current jiffies each time around the loop,
3349  * we wouldn't escape the function with any frames outstanding if the time to
3350  * render a frame was over 20ms.
3351  *
3352  * This should get us reasonable parallelism between CPU and GPU but also
3353  * relatively low latency when blocking on a particular request to finish.
3354  */
3355 static int
3356 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3357 {
3358         struct drm_i915_private *dev_priv = dev->dev_private;
3359         struct drm_i915_file_private *file_priv = file->driver_priv;
3360         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3361         struct drm_i915_gem_request *request;
3362         struct intel_ring_buffer *ring = NULL;
3363         u32 seqno = 0;
3364         int ret;
3365
3366         if (atomic_read(&dev_priv->mm.wedged))
3367                 return -EIO;
3368
3369         spin_lock(&file_priv->mm.lock);
3370         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3371                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3372                         break;
3373
3374                 ring = request->ring;
3375                 seqno = request->seqno;
3376         }
3377         spin_unlock(&file_priv->mm.lock);
3378
3379         if (seqno == 0)
3380                 return 0;
3381
3382         ret = 0;
3383         if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3384                 /* And wait for the seqno passing without holding any locks and
3385                  * causing extra latency for others. This is safe as the irq
3386                  * generation is designed to be run atomically and so is
3387                  * lockless.
3388                  */
3389                 if (ring->irq_get(ring)) {
3390                         ret = wait_event_interruptible(ring->irq_queue,
3391                                                        i915_seqno_passed(ring->get_seqno(ring), seqno)
3392                                                        || atomic_read(&dev_priv->mm.wedged));
3393                         ring->irq_put(ring);
3394
3395                         if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3396                                 ret = -EIO;
3397                 }
3398         }
3399
3400         if (ret == 0)
3401                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3402
3403         return ret;
3404 }
3405
3406 int
3407 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3408                     uint32_t alignment,
3409                     bool map_and_fenceable)
3410 {
3411         struct drm_device *dev = obj->base.dev;
3412         struct drm_i915_private *dev_priv = dev->dev_private;
3413         int ret;
3414
3415         BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3416         WARN_ON(i915_verify_lists(dev));
3417
3418         if (obj->gtt_space != NULL) {
3419                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3420                     (map_and_fenceable && !obj->map_and_fenceable)) {
3421                         WARN(obj->pin_count,
3422                              "bo is already pinned with incorrect alignment:"
3423                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3424                              " obj->map_and_fenceable=%d\n",
3425                              obj->gtt_offset, alignment,
3426                              map_and_fenceable,
3427                              obj->map_and_fenceable);
3428                         ret = i915_gem_object_unbind(obj);
3429                         if (ret)
3430                                 return ret;
3431                 }
3432         }
3433
3434         if (obj->gtt_space == NULL) {
3435                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3436                                                   map_and_fenceable);
3437                 if (ret)
3438                         return ret;
3439         }
3440
3441         if (obj->pin_count++ == 0) {
3442                 if (!obj->active)
3443                         list_move_tail(&obj->mm_list,
3444                                        &dev_priv->mm.pinned_list);
3445         }
3446         obj->pin_mappable |= map_and_fenceable;
3447
3448         WARN_ON(i915_verify_lists(dev));
3449         return 0;
3450 }
3451
3452 void
3453 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3454 {
3455         struct drm_device *dev = obj->base.dev;
3456         drm_i915_private_t *dev_priv = dev->dev_private;
3457
3458         WARN_ON(i915_verify_lists(dev));
3459         BUG_ON(obj->pin_count == 0);
3460         BUG_ON(obj->gtt_space == NULL);
3461
3462         if (--obj->pin_count == 0) {
3463                 if (!obj->active)
3464                         list_move_tail(&obj->mm_list,
3465                                        &dev_priv->mm.inactive_list);
3466                 obj->pin_mappable = false;
3467         }
3468         WARN_ON(i915_verify_lists(dev));
3469 }
3470
3471 int
3472 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3473                    struct drm_file *file)
3474 {
3475         struct drm_i915_gem_pin *args = data;
3476         struct drm_i915_gem_object *obj;
3477         int ret;
3478
3479         ret = i915_mutex_lock_interruptible(dev);
3480         if (ret)
3481                 return ret;
3482
3483         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3484         if (&obj->base == NULL) {
3485                 ret = -ENOENT;
3486                 goto unlock;
3487         }
3488
3489         if (obj->madv != I915_MADV_WILLNEED) {
3490                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3491                 ret = -EINVAL;
3492                 goto out;
3493         }
3494
3495         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3496                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3497                           args->handle);
3498                 ret = -EINVAL;
3499                 goto out;
3500         }
3501
3502         obj->user_pin_count++;
3503         obj->pin_filp = file;
3504         if (obj->user_pin_count == 1) {
3505                 ret = i915_gem_object_pin(obj, args->alignment, true);
3506                 if (ret)
3507                         goto out;
3508         }
3509
3510         /* XXX - flush the CPU caches for pinned objects
3511          * as the X server doesn't manage domains yet
3512          */
3513         i915_gem_object_flush_cpu_write_domain(obj);
3514         args->offset = obj->gtt_offset;
3515 out:
3516         drm_gem_object_unreference(&obj->base);
3517 unlock:
3518         mutex_unlock(&dev->struct_mutex);
3519         return ret;
3520 }
3521
3522 int
3523 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3524                      struct drm_file *file)
3525 {
3526         struct drm_i915_gem_pin *args = data;
3527         struct drm_i915_gem_object *obj;
3528         int ret;
3529
3530         ret = i915_mutex_lock_interruptible(dev);
3531         if (ret)
3532                 return ret;
3533
3534         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3535         if (&obj->base == NULL) {
3536                 ret = -ENOENT;
3537                 goto unlock;
3538         }
3539
3540         if (obj->pin_filp != file) {
3541                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3542                           args->handle);
3543                 ret = -EINVAL;
3544                 goto out;
3545         }
3546         obj->user_pin_count--;
3547         if (obj->user_pin_count == 0) {
3548                 obj->pin_filp = NULL;
3549                 i915_gem_object_unpin(obj);
3550         }
3551
3552 out:
3553         drm_gem_object_unreference(&obj->base);
3554 unlock:
3555         mutex_unlock(&dev->struct_mutex);
3556         return ret;
3557 }
3558
3559 int
3560 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3561                     struct drm_file *file)
3562 {
3563         struct drm_i915_gem_busy *args = data;
3564         struct drm_i915_gem_object *obj;
3565         int ret;
3566
3567         ret = i915_mutex_lock_interruptible(dev);
3568         if (ret)
3569                 return ret;
3570
3571         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3572         if (&obj->base == NULL) {
3573                 ret = -ENOENT;
3574                 goto unlock;
3575         }
3576
3577         /* Count all active objects as busy, even if they are currently not used
3578          * by the gpu. Users of this interface expect objects to eventually
3579          * become non-busy without any further actions, therefore emit any
3580          * necessary flushes here.
3581          */
3582         args->busy = obj->active;
3583         if (args->busy) {
3584                 /* Unconditionally flush objects, even when the gpu still uses this
3585                  * object. Userspace calling this function indicates that it wants to
3586                  * use this buffer rather sooner than later, so issuing the required
3587                  * flush earlier is beneficial.
3588                  */
3589                 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3590                         ret = i915_gem_flush_ring(obj->ring,
3591                                                   0, obj->base.write_domain);
3592                 } else if (obj->ring->outstanding_lazy_request ==
3593                            obj->last_rendering_seqno) {
3594                         struct drm_i915_gem_request *request;
3595
3596                         /* This ring is not being cleared by active usage,
3597                          * so emit a request to do so.
3598                          */
3599                         request = kzalloc(sizeof(*request), GFP_KERNEL);
3600                         if (request)
3601                                 ret = i915_add_request(obj->ring, NULL,request);
3602                         else
3603                                 ret = -ENOMEM;
3604                 }
3605
3606                 /* Update the active list for the hardware's current position.
3607                  * Otherwise this only updates on a delayed timer or when irqs
3608                  * are actually unmasked, and our working set ends up being
3609                  * larger than required.
3610                  */
3611                 i915_gem_retire_requests_ring(obj->ring);
3612
3613                 args->busy = obj->active;
3614         }
3615
3616         drm_gem_object_unreference(&obj->base);
3617 unlock:
3618         mutex_unlock(&dev->struct_mutex);
3619         return ret;
3620 }
3621
3622 int
3623 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3624                         struct drm_file *file_priv)
3625 {
3626     return i915_gem_ring_throttle(dev, file_priv);
3627 }
3628
3629 int
3630 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3631                        struct drm_file *file_priv)
3632 {
3633         struct drm_i915_gem_madvise *args = data;
3634         struct drm_i915_gem_object *obj;
3635         int ret;
3636
3637         switch (args->madv) {
3638         case I915_MADV_DONTNEED:
3639         case I915_MADV_WILLNEED:
3640             break;
3641         default:
3642             return -EINVAL;
3643         }
3644
3645         ret = i915_mutex_lock_interruptible(dev);
3646         if (ret)
3647                 return ret;
3648
3649         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3650         if (&obj->base == NULL) {
3651                 ret = -ENOENT;
3652                 goto unlock;
3653         }
3654
3655         if (obj->pin_count) {
3656                 ret = -EINVAL;
3657                 goto out;
3658         }
3659
3660         if (obj->madv != __I915_MADV_PURGED)
3661                 obj->madv = args->madv;
3662
3663         /* if the object is no longer bound, discard its backing storage */
3664         if (i915_gem_object_is_purgeable(obj) &&
3665             obj->gtt_space == NULL)
3666                 i915_gem_object_truncate(obj);
3667
3668         args->retained = obj->madv != __I915_MADV_PURGED;
3669
3670 out:
3671         drm_gem_object_unreference(&obj->base);
3672 unlock:
3673         mutex_unlock(&dev->struct_mutex);
3674         return ret;
3675 }
3676
3677 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3678                                                   size_t size)
3679 {
3680         struct drm_i915_private *dev_priv = dev->dev_private;
3681         struct drm_i915_gem_object *obj;
3682         struct address_space *mapping;
3683
3684         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3685         if (obj == NULL)
3686                 return NULL;
3687
3688         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3689                 kfree(obj);
3690                 return NULL;
3691         }
3692
3693         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3694         mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3695
3696         i915_gem_info_add_obj(dev_priv, size);
3697
3698         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3699         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3700
3701         if (IS_GEN6(dev)) {
3702                 /* On Gen6, we can have the GPU use the LLC (the CPU
3703                  * cache) for about a 10% performance improvement
3704                  * compared to uncached.  Graphics requests other than
3705                  * display scanout are coherent with the CPU in
3706                  * accessing this cache.  This means in this mode we
3707                  * don't need to clflush on the CPU side, and on the
3708                  * GPU side we only need to flush internal caches to
3709                  * get data visible to the CPU.
3710                  *
3711                  * However, we maintain the display planes as UC, and so
3712                  * need to rebind when first used as such.
3713                  */
3714                 obj->cache_level = I915_CACHE_LLC;
3715         } else
3716                 obj->cache_level = I915_CACHE_NONE;
3717
3718         obj->base.driver_private = NULL;
3719         obj->fence_reg = I915_FENCE_REG_NONE;
3720         INIT_LIST_HEAD(&obj->mm_list);
3721         INIT_LIST_HEAD(&obj->gtt_list);
3722         INIT_LIST_HEAD(&obj->ring_list);
3723         INIT_LIST_HEAD(&obj->exec_list);
3724         INIT_LIST_HEAD(&obj->gpu_write_list);
3725         obj->madv = I915_MADV_WILLNEED;
3726         /* Avoid an unnecessary call to unbind on the first bind. */
3727         obj->map_and_fenceable = true;
3728
3729         return obj;
3730 }
3731
3732 int i915_gem_init_object(struct drm_gem_object *obj)
3733 {
3734         BUG();
3735
3736         return 0;
3737 }
3738
3739 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3740 {
3741         struct drm_device *dev = obj->base.dev;
3742         drm_i915_private_t *dev_priv = dev->dev_private;
3743         int ret;
3744
3745         ret = i915_gem_object_unbind(obj);
3746         if (ret == -ERESTARTSYS) {
3747                 list_move(&obj->mm_list,
3748                           &dev_priv->mm.deferred_free_list);
3749                 return;
3750         }
3751
3752         trace_i915_gem_object_destroy(obj);
3753
3754         if (obj->base.map_list.map)
3755                 i915_gem_free_mmap_offset(obj);
3756
3757         drm_gem_object_release(&obj->base);
3758         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3759
3760         kfree(obj->page_cpu_valid);
3761         kfree(obj->bit_17);
3762         kfree(obj);
3763 }
3764
3765 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3766 {
3767         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3768         struct drm_device *dev = obj->base.dev;
3769
3770         while (obj->pin_count > 0)
3771                 i915_gem_object_unpin(obj);
3772
3773         if (obj->phys_obj)
3774                 i915_gem_detach_phys_object(dev, obj);
3775
3776         i915_gem_free_object_tail(obj);
3777 }
3778
3779 int
3780 i915_gem_idle(struct drm_device *dev)
3781 {
3782         drm_i915_private_t *dev_priv = dev->dev_private;
3783         int ret;
3784
3785         mutex_lock(&dev->struct_mutex);
3786
3787         if (dev_priv->mm.suspended) {
3788                 mutex_unlock(&dev->struct_mutex);
3789                 return 0;
3790         }
3791
3792         ret = i915_gpu_idle(dev);
3793         if (ret) {
3794                 mutex_unlock(&dev->struct_mutex);
3795                 return ret;
3796         }
3797
3798         /* Under UMS, be paranoid and evict. */
3799         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3800                 ret = i915_gem_evict_inactive(dev, false);
3801                 if (ret) {
3802                         mutex_unlock(&dev->struct_mutex);
3803                         return ret;
3804                 }
3805         }
3806
3807         i915_gem_reset_fences(dev);
3808
3809         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3810          * We need to replace this with a semaphore, or something.
3811          * And not confound mm.suspended!
3812          */
3813         dev_priv->mm.suspended = 1;
3814         del_timer_sync(&dev_priv->hangcheck_timer);
3815
3816         i915_kernel_lost_context(dev);
3817         i915_gem_cleanup_ringbuffer(dev);
3818
3819         mutex_unlock(&dev->struct_mutex);
3820
3821         /* Cancel the retire work handler, which should be idle now. */
3822         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3823
3824         return 0;
3825 }
3826
3827 int
3828 i915_gem_init_ringbuffer(struct drm_device *dev)
3829 {
3830         drm_i915_private_t *dev_priv = dev->dev_private;
3831         int ret;
3832
3833         ret = intel_init_render_ring_buffer(dev);
3834         if (ret)
3835                 return ret;
3836
3837         if (HAS_BSD(dev)) {
3838                 ret = intel_init_bsd_ring_buffer(dev);
3839                 if (ret)
3840                         goto cleanup_render_ring;
3841         }
3842
3843         if (HAS_BLT(dev)) {
3844                 ret = intel_init_blt_ring_buffer(dev);
3845                 if (ret)
3846                         goto cleanup_bsd_ring;
3847         }
3848
3849         dev_priv->next_seqno = 1;
3850
3851         return 0;
3852
3853 cleanup_bsd_ring:
3854         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3855 cleanup_render_ring:
3856         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3857         return ret;
3858 }
3859
3860 void
3861 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3862 {
3863         drm_i915_private_t *dev_priv = dev->dev_private;
3864         int i;
3865
3866         for (i = 0; i < I915_NUM_RINGS; i++)
3867                 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3868 }
3869
3870 int
3871 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3872                        struct drm_file *file_priv)
3873 {
3874         drm_i915_private_t *dev_priv = dev->dev_private;
3875         int ret, i;
3876
3877         if (drm_core_check_feature(dev, DRIVER_MODESET))
3878                 return 0;
3879
3880         if (atomic_read(&dev_priv->mm.wedged)) {
3881                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3882                 atomic_set(&dev_priv->mm.wedged, 0);
3883         }
3884
3885         mutex_lock(&dev->struct_mutex);
3886         dev_priv->mm.suspended = 0;
3887
3888         ret = i915_gem_init_ringbuffer(dev);
3889         if (ret != 0) {
3890                 mutex_unlock(&dev->struct_mutex);
3891                 return ret;
3892         }
3893
3894         BUG_ON(!list_empty(&dev_priv->mm.active_list));
3895         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3896         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3897         for (i = 0; i < I915_NUM_RINGS; i++) {
3898                 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3899                 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3900         }
3901         mutex_unlock(&dev->struct_mutex);
3902
3903         ret = drm_irq_install(dev);
3904         if (ret)
3905                 goto cleanup_ringbuffer;
3906
3907         return 0;
3908
3909 cleanup_ringbuffer:
3910         mutex_lock(&dev->struct_mutex);
3911         i915_gem_cleanup_ringbuffer(dev);
3912         dev_priv->mm.suspended = 1;
3913         mutex_unlock(&dev->struct_mutex);
3914
3915         return ret;
3916 }
3917
3918 int
3919 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3920                        struct drm_file *file_priv)
3921 {
3922         if (drm_core_check_feature(dev, DRIVER_MODESET))
3923                 return 0;
3924
3925         drm_irq_uninstall(dev);
3926         return i915_gem_idle(dev);
3927 }
3928
3929 void
3930 i915_gem_lastclose(struct drm_device *dev)
3931 {
3932         int ret;
3933
3934         if (drm_core_check_feature(dev, DRIVER_MODESET))
3935                 return;
3936
3937         ret = i915_gem_idle(dev);
3938         if (ret)
3939                 DRM_ERROR("failed to idle hardware: %d\n", ret);
3940 }
3941
3942 static void
3943 init_ring_lists(struct intel_ring_buffer *ring)
3944 {
3945         INIT_LIST_HEAD(&ring->active_list);
3946         INIT_LIST_HEAD(&ring->request_list);
3947         INIT_LIST_HEAD(&ring->gpu_write_list);
3948 }
3949
3950 void
3951 i915_gem_load(struct drm_device *dev)
3952 {
3953         int i;
3954         drm_i915_private_t *dev_priv = dev->dev_private;
3955
3956         INIT_LIST_HEAD(&dev_priv->mm.active_list);
3957         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3958         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3959         INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3960         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3961         INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3962         INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3963         for (i = 0; i < I915_NUM_RINGS; i++)
3964                 init_ring_lists(&dev_priv->ring[i]);
3965         for (i = 0; i < 16; i++)
3966                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3967         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3968                           i915_gem_retire_work_handler);
3969         init_completion(&dev_priv->error_completion);
3970
3971         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3972         if (IS_GEN3(dev)) {
3973                 u32 tmp = I915_READ(MI_ARB_STATE);
3974                 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3975                         /* arb state is a masked write, so set bit + bit in mask */
3976                         tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3977                         I915_WRITE(MI_ARB_STATE, tmp);
3978                 }
3979         }
3980
3981         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3982
3983         /* Old X drivers will take 0-2 for front, back, depth buffers */
3984         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3985                 dev_priv->fence_reg_start = 3;
3986
3987         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3988                 dev_priv->num_fence_regs = 16;
3989         else
3990                 dev_priv->num_fence_regs = 8;
3991
3992         /* Initialize fence registers to zero */
3993         for (i = 0; i < dev_priv->num_fence_regs; i++) {
3994                 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3995         }
3996
3997         i915_gem_detect_bit_6_swizzle(dev);
3998         init_waitqueue_head(&dev_priv->pending_flip_queue);
3999
4000         dev_priv->mm.interruptible = true;
4001
4002         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4003         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4004         register_shrinker(&dev_priv->mm.inactive_shrinker);
4005 }
4006
4007 /*
4008  * Create a physically contiguous memory object for this object
4009  * e.g. for cursor + overlay regs
4010  */
4011 static int i915_gem_init_phys_object(struct drm_device *dev,
4012                                      int id, int size, int align)
4013 {
4014         drm_i915_private_t *dev_priv = dev->dev_private;
4015         struct drm_i915_gem_phys_object *phys_obj;
4016         int ret;
4017
4018         if (dev_priv->mm.phys_objs[id - 1] || !size)
4019                 return 0;
4020
4021         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4022         if (!phys_obj)
4023                 return -ENOMEM;
4024
4025         phys_obj->id = id;
4026
4027         phys_obj->handle = drm_pci_alloc(dev, size, align);
4028         if (!phys_obj->handle) {
4029                 ret = -ENOMEM;
4030                 goto kfree_obj;
4031         }
4032 #ifdef CONFIG_X86
4033         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4034 #endif
4035
4036         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4037
4038         return 0;
4039 kfree_obj:
4040         kfree(phys_obj);
4041         return ret;
4042 }
4043
4044 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4045 {
4046         drm_i915_private_t *dev_priv = dev->dev_private;
4047         struct drm_i915_gem_phys_object *phys_obj;
4048
4049         if (!dev_priv->mm.phys_objs[id - 1])
4050                 return;
4051
4052         phys_obj = dev_priv->mm.phys_objs[id - 1];
4053         if (phys_obj->cur_obj) {
4054                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4055         }
4056
4057 #ifdef CONFIG_X86
4058         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4059 #endif
4060         drm_pci_free(dev, phys_obj->handle);
4061         kfree(phys_obj);
4062         dev_priv->mm.phys_objs[id - 1] = NULL;
4063 }
4064
4065 void i915_gem_free_all_phys_object(struct drm_device *dev)
4066 {
4067         int i;
4068
4069         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4070                 i915_gem_free_phys_object(dev, i);
4071 }
4072
4073 void i915_gem_detach_phys_object(struct drm_device *dev,
4074                                  struct drm_i915_gem_object *obj)
4075 {
4076         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4077         char *vaddr;
4078         int i;
4079         int page_count;
4080
4081         if (!obj->phys_obj)
4082                 return;
4083         vaddr = obj->phys_obj->handle->vaddr;
4084
4085         page_count = obj->base.size / PAGE_SIZE;
4086         for (i = 0; i < page_count; i++) {
4087                 struct page *page = shmem_read_mapping_page(mapping, i);
4088                 if (!IS_ERR(page)) {
4089                         char *dst = kmap_atomic(page);
4090                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4091                         kunmap_atomic(dst);
4092
4093                         drm_clflush_pages(&page, 1);
4094
4095                         set_page_dirty(page);
4096                         mark_page_accessed(page);
4097                         page_cache_release(page);
4098                 }
4099         }
4100         intel_gtt_chipset_flush();
4101
4102         obj->phys_obj->cur_obj = NULL;
4103         obj->phys_obj = NULL;
4104 }
4105
4106 int
4107 i915_gem_attach_phys_object(struct drm_device *dev,
4108                             struct drm_i915_gem_object *obj,
4109                             int id,
4110                             int align)
4111 {
4112         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4113         drm_i915_private_t *dev_priv = dev->dev_private;
4114         int ret = 0;
4115         int page_count;
4116         int i;
4117
4118         if (id > I915_MAX_PHYS_OBJECT)
4119                 return -EINVAL;
4120
4121         if (obj->phys_obj) {
4122                 if (obj->phys_obj->id == id)
4123                         return 0;
4124                 i915_gem_detach_phys_object(dev, obj);
4125         }
4126
4127         /* create a new object */
4128         if (!dev_priv->mm.phys_objs[id - 1]) {
4129                 ret = i915_gem_init_phys_object(dev, id,
4130                                                 obj->base.size, align);
4131                 if (ret) {
4132                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4133                                   id, obj->base.size);
4134                         return ret;
4135                 }
4136         }
4137
4138         /* bind to the object */
4139         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4140         obj->phys_obj->cur_obj = obj;
4141
4142         page_count = obj->base.size / PAGE_SIZE;
4143
4144         for (i = 0; i < page_count; i++) {
4145                 struct page *page;
4146                 char *dst, *src;
4147
4148                 page = shmem_read_mapping_page(mapping, i);
4149                 if (IS_ERR(page))
4150                         return PTR_ERR(page);
4151
4152                 src = kmap_atomic(page);
4153                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4154                 memcpy(dst, src, PAGE_SIZE);
4155                 kunmap_atomic(src);
4156
4157                 mark_page_accessed(page);
4158                 page_cache_release(page);
4159         }
4160
4161         return 0;
4162 }
4163
4164 static int
4165 i915_gem_phys_pwrite(struct drm_device *dev,
4166                      struct drm_i915_gem_object *obj,
4167                      struct drm_i915_gem_pwrite *args,
4168                      struct drm_file *file_priv)
4169 {
4170         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4171         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4172
4173         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4174                 unsigned long unwritten;
4175
4176                 /* The physical object once assigned is fixed for the lifetime
4177                  * of the obj, so we can safely drop the lock and continue
4178                  * to access vaddr.
4179                  */
4180                 mutex_unlock(&dev->struct_mutex);
4181                 unwritten = copy_from_user(vaddr, user_data, args->size);
4182                 mutex_lock(&dev->struct_mutex);
4183                 if (unwritten)
4184                         return -EFAULT;
4185         }
4186
4187         intel_gtt_chipset_flush();
4188         return 0;
4189 }
4190
4191 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4192 {
4193         struct drm_i915_file_private *file_priv = file->driver_priv;
4194
4195         /* Clean up our request list when the client is going away, so that
4196          * later retire_requests won't dereference our soon-to-be-gone
4197          * file_priv.
4198          */
4199         spin_lock(&file_priv->mm.lock);
4200         while (!list_empty(&file_priv->mm.request_list)) {
4201                 struct drm_i915_gem_request *request;
4202
4203                 request = list_first_entry(&file_priv->mm.request_list,
4204                                            struct drm_i915_gem_request,
4205                                            client_list);
4206                 list_del(&request->client_list);
4207                 request->file_priv = NULL;
4208         }
4209         spin_unlock(&file_priv->mm.lock);
4210 }
4211
4212 static int
4213 i915_gpu_is_active(struct drm_device *dev)
4214 {
4215         drm_i915_private_t *dev_priv = dev->dev_private;
4216         int lists_empty;
4217
4218         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4219                       list_empty(&dev_priv->mm.active_list);
4220
4221         return !lists_empty;
4222 }
4223
4224 static int
4225 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4226 {
4227         struct drm_i915_private *dev_priv =
4228                 container_of(shrinker,
4229                              struct drm_i915_private,
4230                              mm.inactive_shrinker);
4231         struct drm_device *dev = dev_priv->dev;
4232         struct drm_i915_gem_object *obj, *next;
4233         int nr_to_scan = sc->nr_to_scan;
4234         int cnt;
4235
4236         if (!mutex_trylock(&dev->struct_mutex))
4237                 return 0;
4238
4239         /* "fast-path" to count number of available objects */
4240         if (nr_to_scan == 0) {
4241                 cnt = 0;
4242                 list_for_each_entry(obj,
4243                                     &dev_priv->mm.inactive_list,
4244                                     mm_list)
4245                         cnt++;
4246                 mutex_unlock(&dev->struct_mutex);
4247                 return cnt / 100 * sysctl_vfs_cache_pressure;
4248         }
4249
4250 rescan:
4251         /* first scan for clean buffers */
4252         i915_gem_retire_requests(dev);
4253
4254         list_for_each_entry_safe(obj, next,
4255                                  &dev_priv->mm.inactive_list,
4256                                  mm_list) {
4257                 if (i915_gem_object_is_purgeable(obj)) {
4258                         if (i915_gem_object_unbind(obj) == 0 &&
4259                             --nr_to_scan == 0)
4260                                 break;
4261                 }
4262         }
4263
4264         /* second pass, evict/count anything still on the inactive list */
4265         cnt = 0;
4266         list_for_each_entry_safe(obj, next,
4267                                  &dev_priv->mm.inactive_list,
4268                                  mm_list) {
4269                 if (nr_to_scan &&
4270                     i915_gem_object_unbind(obj) == 0)
4271                         nr_to_scan--;
4272                 else
4273                         cnt++;
4274         }
4275
4276         if (nr_to_scan && i915_gpu_is_active(dev)) {
4277                 /*
4278                  * We are desperate for pages, so as a last resort, wait
4279                  * for the GPU to finish and discard whatever we can.
4280                  * This has a dramatic impact to reduce the number of
4281                  * OOM-killer events whilst running the GPU aggressively.
4282                  */
4283                 if (i915_gpu_idle(dev) == 0)
4284                         goto rescan;
4285         }
4286         mutex_unlock(&dev->struct_mutex);
4287         return cnt / 100 * sysctl_vfs_cache_pressure;
4288 }