2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
44 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
50 bool map_and_fenceable);
51 static void i915_gem_clear_fence_reg(struct drm_device *dev,
52 struct drm_i915_fence_reg *reg);
53 static int i915_gem_phys_pwrite(struct drm_device *dev,
54 struct drm_i915_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file);
57 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
59 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60 struct shrink_control *sc);
62 /* some bookkeeping */
63 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 dev_priv->mm.object_count++;
67 dev_priv->mm.object_memory += size;
70 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
73 dev_priv->mm.object_count--;
74 dev_priv->mm.object_memory -= size;
78 i915_gem_wait_for_error(struct drm_device *dev)
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct completion *x = &dev_priv->error_completion;
85 if (!atomic_read(&dev_priv->mm.wedged))
88 ret = wait_for_completion_interruptible(x);
92 if (atomic_read(&dev_priv->mm.wedged)) {
93 /* GPU is hung, bump the completion count to account for
94 * the token we just consumed so that we never hit zero and
95 * end up waiting upon a subsequent completion event that
98 spin_lock_irqsave(&x->wait.lock, flags);
100 spin_unlock_irqrestore(&x->wait.lock, flags);
105 int i915_mutex_lock_interruptible(struct drm_device *dev)
109 ret = i915_gem_wait_for_error(dev);
113 ret = mutex_lock_interruptible(&dev->struct_mutex);
117 WARN_ON(i915_verify_lists(dev));
122 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124 return obj->gtt_space && !obj->active && obj->pin_count == 0;
127 void i915_gem_do_init(struct drm_device *dev,
129 unsigned long mappable_end,
132 drm_i915_private_t *dev_priv = dev->dev_private;
134 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136 dev_priv->mm.gtt_start = start;
137 dev_priv->mm.gtt_mappable_end = mappable_end;
138 dev_priv->mm.gtt_end = end;
139 dev_priv->mm.gtt_total = end - start;
140 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142 /* Take over this portion of the GTT */
143 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
147 i915_gem_init_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
150 struct drm_i915_gem_init *args = data;
152 if (args->gtt_start >= args->gtt_end ||
153 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
156 mutex_lock(&dev->struct_mutex);
157 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
158 mutex_unlock(&dev->struct_mutex);
164 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_get_aperture *args = data;
169 struct drm_i915_gem_object *obj;
172 if (!(dev->driver->driver_features & DRIVER_GEM))
176 mutex_lock(&dev->struct_mutex);
177 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
178 pinned += obj->gtt_space->size;
179 mutex_unlock(&dev->struct_mutex);
181 args->aper_size = dev_priv->mm.gtt_total;
182 args->aper_available_size = args->aper_size - pinned;
188 i915_gem_create(struct drm_file *file,
189 struct drm_device *dev,
193 struct drm_i915_gem_object *obj;
197 size = roundup(size, PAGE_SIZE);
201 /* Allocate the new object */
202 obj = i915_gem_alloc_object(dev, size);
206 ret = drm_gem_handle_create(file, &obj->base, &handle);
208 drm_gem_object_release(&obj->base);
209 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
214 /* drop reference from allocate - handle holds it now */
215 drm_gem_object_unreference(&obj->base);
216 trace_i915_gem_object_create(obj);
223 i915_gem_dumb_create(struct drm_file *file,
224 struct drm_device *dev,
225 struct drm_mode_create_dumb *args)
227 /* have to work out size/pitch and return them */
228 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
229 args->size = args->pitch * args->height;
230 return i915_gem_create(file, dev,
231 args->size, &args->handle);
234 int i915_gem_dumb_destroy(struct drm_file *file,
235 struct drm_device *dev,
238 return drm_gem_handle_delete(file, handle);
242 * Creates a new mm object and returns a handle to it.
245 i915_gem_create_ioctl(struct drm_device *dev, void *data,
246 struct drm_file *file)
248 struct drm_i915_gem_create *args = data;
249 return i915_gem_create(file, dev,
250 args->size, &args->handle);
253 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
255 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
257 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
258 obj->tiling_mode != I915_TILING_NONE;
262 slow_shmem_copy(struct page *dst_page,
264 struct page *src_page,
268 char *dst_vaddr, *src_vaddr;
270 dst_vaddr = kmap(dst_page);
271 src_vaddr = kmap(src_page);
273 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
280 slow_shmem_bit17_copy(struct page *gpu_page,
282 struct page *cpu_page,
287 char *gpu_vaddr, *cpu_vaddr;
289 /* Use the unswizzled path if this page isn't affected. */
290 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
292 return slow_shmem_copy(cpu_page, cpu_offset,
293 gpu_page, gpu_offset, length);
295 return slow_shmem_copy(gpu_page, gpu_offset,
296 cpu_page, cpu_offset, length);
299 gpu_vaddr = kmap(gpu_page);
300 cpu_vaddr = kmap(cpu_page);
302 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
303 * XORing with the other bits (A9 for Y, A9 and A10 for X)
306 int cacheline_end = ALIGN(gpu_offset + 1, 64);
307 int this_length = min(cacheline_end - gpu_offset, length);
308 int swizzled_gpu_offset = gpu_offset ^ 64;
311 memcpy(cpu_vaddr + cpu_offset,
312 gpu_vaddr + swizzled_gpu_offset,
315 memcpy(gpu_vaddr + swizzled_gpu_offset,
316 cpu_vaddr + cpu_offset,
319 cpu_offset += this_length;
320 gpu_offset += this_length;
321 length -= this_length;
329 * This is the fast shmem pread path, which attempts to copy_from_user directly
330 * from the backing pages of the object to the user's address space. On a
331 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
334 i915_gem_shmem_pread_fast(struct drm_device *dev,
335 struct drm_i915_gem_object *obj,
336 struct drm_i915_gem_pread *args,
337 struct drm_file *file)
339 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
342 char __user *user_data;
343 int page_offset, page_length;
345 user_data = (char __user *) (uintptr_t) args->data_ptr;
348 offset = args->offset;
355 /* Operation in this page
357 * page_offset = offset within page
358 * page_length = bytes to copy for this page
360 page_offset = offset_in_page(offset);
361 page_length = remain;
362 if ((page_offset + remain) > PAGE_SIZE)
363 page_length = PAGE_SIZE - page_offset;
365 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
367 return PTR_ERR(page);
369 vaddr = kmap_atomic(page);
370 ret = __copy_to_user_inatomic(user_data,
373 kunmap_atomic(vaddr);
375 mark_page_accessed(page);
376 page_cache_release(page);
380 remain -= page_length;
381 user_data += page_length;
382 offset += page_length;
389 * This is the fallback shmem pread path, which allocates temporary storage
390 * in kernel space to copy_to_user into outside of the struct_mutex, so we
391 * can copy out of the object's backing pages while holding the struct mutex
392 * and not take page faults.
395 i915_gem_shmem_pread_slow(struct drm_device *dev,
396 struct drm_i915_gem_object *obj,
397 struct drm_i915_gem_pread *args,
398 struct drm_file *file)
400 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
401 struct mm_struct *mm = current->mm;
402 struct page **user_pages;
404 loff_t offset, pinned_pages, i;
405 loff_t first_data_page, last_data_page, num_pages;
406 int shmem_page_offset;
407 int data_page_index, data_page_offset;
410 uint64_t data_ptr = args->data_ptr;
411 int do_bit17_swizzling;
415 /* Pin the user pages containing the data. We can't fault while
416 * holding the struct mutex, yet we want to hold it while
417 * dereferencing the user data.
419 first_data_page = data_ptr / PAGE_SIZE;
420 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
421 num_pages = last_data_page - first_data_page + 1;
423 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
424 if (user_pages == NULL)
427 mutex_unlock(&dev->struct_mutex);
428 down_read(&mm->mmap_sem);
429 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
430 num_pages, 1, 0, user_pages, NULL);
431 up_read(&mm->mmap_sem);
432 mutex_lock(&dev->struct_mutex);
433 if (pinned_pages < num_pages) {
438 ret = i915_gem_object_set_cpu_read_domain_range(obj,
444 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
446 offset = args->offset;
451 /* Operation in this page
453 * shmem_page_offset = offset within page in shmem file
454 * data_page_index = page number in get_user_pages return
455 * data_page_offset = offset with data_page_index page.
456 * page_length = bytes to copy for this page
458 shmem_page_offset = offset_in_page(offset);
459 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460 data_page_offset = offset_in_page(data_ptr);
462 page_length = remain;
463 if ((shmem_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - shmem_page_offset;
465 if ((data_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - data_page_offset;
468 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
474 if (do_bit17_swizzling) {
475 slow_shmem_bit17_copy(page,
477 user_pages[data_page_index],
482 slow_shmem_copy(user_pages[data_page_index],
489 mark_page_accessed(page);
490 page_cache_release(page);
492 remain -= page_length;
493 data_ptr += page_length;
494 offset += page_length;
498 for (i = 0; i < pinned_pages; i++) {
499 SetPageDirty(user_pages[i]);
500 mark_page_accessed(user_pages[i]);
501 page_cache_release(user_pages[i]);
503 drm_free_large(user_pages);
509 * Reads data from the object referenced by handle.
511 * On error, the contents of *data are undefined.
514 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
515 struct drm_file *file)
517 struct drm_i915_gem_pread *args = data;
518 struct drm_i915_gem_object *obj;
524 if (!access_ok(VERIFY_WRITE,
525 (char __user *)(uintptr_t)args->data_ptr,
529 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
534 ret = i915_mutex_lock_interruptible(dev);
538 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
539 if (&obj->base == NULL) {
544 /* Bounds check source. */
545 if (args->offset > obj->base.size ||
546 args->size > obj->base.size - args->offset) {
551 trace_i915_gem_object_pread(obj, args->offset, args->size);
553 ret = i915_gem_object_set_cpu_read_domain_range(obj,
560 if (!i915_gem_object_needs_bit17_swizzle(obj))
561 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
563 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
566 drm_gem_object_unreference(&obj->base);
568 mutex_unlock(&dev->struct_mutex);
572 /* This is the fast write path which cannot handle
573 * page faults in the source data
577 fast_user_write(struct io_mapping *mapping,
578 loff_t page_base, int page_offset,
579 char __user *user_data,
583 unsigned long unwritten;
585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
588 io_mapping_unmap_atomic(vaddr_atomic);
592 /* Here's the write path which can sleep for
597 slow_kernel_write(struct io_mapping *mapping,
598 loff_t gtt_base, int gtt_offset,
599 struct page *user_page, int user_offset,
602 char __iomem *dst_vaddr;
605 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
606 src_vaddr = kmap(user_page);
608 memcpy_toio(dst_vaddr + gtt_offset,
609 src_vaddr + user_offset,
613 io_mapping_unmap(dst_vaddr);
617 * This is the fast pwrite path, where we copy the data directly from the
618 * user into the GTT, uncached.
621 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
622 struct drm_i915_gem_object *obj,
623 struct drm_i915_gem_pwrite *args,
624 struct drm_file *file)
626 drm_i915_private_t *dev_priv = dev->dev_private;
628 loff_t offset, page_base;
629 char __user *user_data;
630 int page_offset, page_length;
632 user_data = (char __user *) (uintptr_t) args->data_ptr;
635 offset = obj->gtt_offset + args->offset;
638 /* Operation in this page
640 * page_base = page offset within aperture
641 * page_offset = offset within page
642 * page_length = bytes to copy for this page
644 page_base = offset & PAGE_MASK;
645 page_offset = offset_in_page(offset);
646 page_length = remain;
647 if ((page_offset + remain) > PAGE_SIZE)
648 page_length = PAGE_SIZE - page_offset;
650 /* If we get a fault while copying data, then (presumably) our
651 * source page isn't available. Return the error and we'll
652 * retry in the slow path.
654 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
655 page_offset, user_data, page_length))
658 remain -= page_length;
659 user_data += page_length;
660 offset += page_length;
667 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
668 * the memory and maps it using kmap_atomic for copying.
670 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
671 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
674 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
675 struct drm_i915_gem_object *obj,
676 struct drm_i915_gem_pwrite *args,
677 struct drm_file *file)
679 drm_i915_private_t *dev_priv = dev->dev_private;
681 loff_t gtt_page_base, offset;
682 loff_t first_data_page, last_data_page, num_pages;
683 loff_t pinned_pages, i;
684 struct page **user_pages;
685 struct mm_struct *mm = current->mm;
686 int gtt_page_offset, data_page_offset, data_page_index, page_length;
688 uint64_t data_ptr = args->data_ptr;
692 /* Pin the user pages containing the data. We can't fault while
693 * holding the struct mutex, and all of the pwrite implementations
694 * want to hold it while dereferencing the user data.
696 first_data_page = data_ptr / PAGE_SIZE;
697 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
698 num_pages = last_data_page - first_data_page + 1;
700 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
701 if (user_pages == NULL)
704 mutex_unlock(&dev->struct_mutex);
705 down_read(&mm->mmap_sem);
706 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
707 num_pages, 0, 0, user_pages, NULL);
708 up_read(&mm->mmap_sem);
709 mutex_lock(&dev->struct_mutex);
710 if (pinned_pages < num_pages) {
712 goto out_unpin_pages;
715 ret = i915_gem_object_set_to_gtt_domain(obj, true);
717 goto out_unpin_pages;
719 ret = i915_gem_object_put_fence(obj);
721 goto out_unpin_pages;
723 offset = obj->gtt_offset + args->offset;
726 /* Operation in this page
728 * gtt_page_base = page offset within aperture
729 * gtt_page_offset = offset within page in aperture
730 * data_page_index = page number in get_user_pages return
731 * data_page_offset = offset with data_page_index page.
732 * page_length = bytes to copy for this page
734 gtt_page_base = offset & PAGE_MASK;
735 gtt_page_offset = offset_in_page(offset);
736 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737 data_page_offset = offset_in_page(data_ptr);
739 page_length = remain;
740 if ((gtt_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - gtt_page_offset;
742 if ((data_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - data_page_offset;
745 slow_kernel_write(dev_priv->mm.gtt_mapping,
746 gtt_page_base, gtt_page_offset,
747 user_pages[data_page_index],
751 remain -= page_length;
752 offset += page_length;
753 data_ptr += page_length;
757 for (i = 0; i < pinned_pages; i++)
758 page_cache_release(user_pages[i]);
759 drm_free_large(user_pages);
765 * This is the fast shmem pwrite path, which attempts to directly
766 * copy_from_user into the kmapped pages backing the object.
769 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
770 struct drm_i915_gem_object *obj,
771 struct drm_i915_gem_pwrite *args,
772 struct drm_file *file)
774 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
777 char __user *user_data;
778 int page_offset, page_length;
780 user_data = (char __user *) (uintptr_t) args->data_ptr;
783 offset = args->offset;
791 /* Operation in this page
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
796 page_offset = offset_in_page(offset);
797 page_length = remain;
798 if ((page_offset + remain) > PAGE_SIZE)
799 page_length = PAGE_SIZE - page_offset;
801 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
803 return PTR_ERR(page);
805 vaddr = kmap_atomic(page);
806 ret = __copy_from_user_inatomic(vaddr + page_offset,
809 kunmap_atomic(vaddr);
811 set_page_dirty(page);
812 mark_page_accessed(page);
813 page_cache_release(page);
815 /* If we get a fault while copying data, then (presumably) our
816 * source page isn't available. Return the error and we'll
817 * retry in the slow path.
822 remain -= page_length;
823 user_data += page_length;
824 offset += page_length;
831 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
832 * the memory and maps it using kmap_atomic for copying.
834 * This avoids taking mmap_sem for faulting on the user's address while the
835 * struct_mutex is held.
838 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
839 struct drm_i915_gem_object *obj,
840 struct drm_i915_gem_pwrite *args,
841 struct drm_file *file)
843 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
844 struct mm_struct *mm = current->mm;
845 struct page **user_pages;
847 loff_t offset, pinned_pages, i;
848 loff_t first_data_page, last_data_page, num_pages;
849 int shmem_page_offset;
850 int data_page_index, data_page_offset;
853 uint64_t data_ptr = args->data_ptr;
854 int do_bit17_swizzling;
858 /* Pin the user pages containing the data. We can't fault while
859 * holding the struct mutex, and all of the pwrite implementations
860 * want to hold it while dereferencing the user data.
862 first_data_page = data_ptr / PAGE_SIZE;
863 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
864 num_pages = last_data_page - first_data_page + 1;
866 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
867 if (user_pages == NULL)
870 mutex_unlock(&dev->struct_mutex);
871 down_read(&mm->mmap_sem);
872 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
873 num_pages, 0, 0, user_pages, NULL);
874 up_read(&mm->mmap_sem);
875 mutex_lock(&dev->struct_mutex);
876 if (pinned_pages < num_pages) {
881 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
885 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
887 offset = args->offset;
893 /* Operation in this page
895 * shmem_page_offset = offset within page in shmem file
896 * data_page_index = page number in get_user_pages return
897 * data_page_offset = offset with data_page_index page.
898 * page_length = bytes to copy for this page
900 shmem_page_offset = offset_in_page(offset);
901 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
902 data_page_offset = offset_in_page(data_ptr);
904 page_length = remain;
905 if ((shmem_page_offset + page_length) > PAGE_SIZE)
906 page_length = PAGE_SIZE - shmem_page_offset;
907 if ((data_page_offset + page_length) > PAGE_SIZE)
908 page_length = PAGE_SIZE - data_page_offset;
910 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
916 if (do_bit17_swizzling) {
917 slow_shmem_bit17_copy(page,
919 user_pages[data_page_index],
924 slow_shmem_copy(page,
926 user_pages[data_page_index],
931 set_page_dirty(page);
932 mark_page_accessed(page);
933 page_cache_release(page);
935 remain -= page_length;
936 data_ptr += page_length;
937 offset += page_length;
941 for (i = 0; i < pinned_pages; i++)
942 page_cache_release(user_pages[i]);
943 drm_free_large(user_pages);
949 * Writes data to the object referenced by handle.
951 * On error, the contents of the buffer that were to be modified are undefined.
954 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
955 struct drm_file *file)
957 struct drm_i915_gem_pwrite *args = data;
958 struct drm_i915_gem_object *obj;
964 if (!access_ok(VERIFY_READ,
965 (char __user *)(uintptr_t)args->data_ptr,
969 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
974 ret = i915_mutex_lock_interruptible(dev);
978 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
979 if (&obj->base == NULL) {
984 /* Bounds check destination. */
985 if (args->offset > obj->base.size ||
986 args->size > obj->base.size - args->offset) {
991 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
993 /* We can only do the GTT pwrite on untiled buffers, as otherwise
994 * it would end up going through the fenced access, and we'll get
995 * different detiling behavior between reading and writing.
996 * pread/pwrite currently are reading and writing from the CPU
997 * perspective, requiring manual detiling by the client.
1000 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1001 else if (obj->gtt_space &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003 ret = i915_gem_object_pin(obj, 0, true);
1007 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1011 ret = i915_gem_object_put_fence(obj);
1015 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1017 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1020 i915_gem_object_unpin(obj);
1022 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1027 if (!i915_gem_object_needs_bit17_swizzle(obj))
1028 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1030 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1034 drm_gem_object_unreference(&obj->base);
1036 mutex_unlock(&dev->struct_mutex);
1041 * Called when user space prepares to use an object with the CPU, either
1042 * through the mmap ioctl's mapping or a GTT mapping.
1045 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1048 struct drm_i915_gem_set_domain *args = data;
1049 struct drm_i915_gem_object *obj;
1050 uint32_t read_domains = args->read_domains;
1051 uint32_t write_domain = args->write_domain;
1054 if (!(dev->driver->driver_features & DRIVER_GEM))
1057 /* Only handle setting domains to types used by the CPU. */
1058 if (write_domain & I915_GEM_GPU_DOMAINS)
1061 if (read_domains & I915_GEM_GPU_DOMAINS)
1064 /* Having something in the write domain implies it's in the read
1065 * domain, and only that read domain. Enforce that in the request.
1067 if (write_domain != 0 && read_domains != write_domain)
1070 ret = i915_mutex_lock_interruptible(dev);
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1080 if (read_domains & I915_GEM_DOMAIN_GTT) {
1081 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1083 /* Silently promote "you're not bound, there was nothing to do"
1084 * to success, since the client was just asking us to
1085 * make sure everything was done.
1090 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1093 drm_gem_object_unreference(&obj->base);
1095 mutex_unlock(&dev->struct_mutex);
1100 * Called when user space has done writes to this buffer
1103 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1104 struct drm_file *file)
1106 struct drm_i915_gem_sw_finish *args = data;
1107 struct drm_i915_gem_object *obj;
1110 if (!(dev->driver->driver_features & DRIVER_GEM))
1113 ret = i915_mutex_lock_interruptible(dev);
1117 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1118 if (&obj->base == NULL) {
1123 /* Pinned buffers may be scanout, so flush the cache */
1125 i915_gem_object_flush_cpu_write_domain(obj);
1127 drm_gem_object_unreference(&obj->base);
1129 mutex_unlock(&dev->struct_mutex);
1134 * Maps the contents of an object, returning the address it is mapped
1137 * While the mapping holds a reference on the contents of the object, it doesn't
1138 * imply a ref on the object itself.
1141 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1142 struct drm_file *file)
1144 struct drm_i915_private *dev_priv = dev->dev_private;
1145 struct drm_i915_gem_mmap *args = data;
1146 struct drm_gem_object *obj;
1149 if (!(dev->driver->driver_features & DRIVER_GEM))
1152 obj = drm_gem_object_lookup(dev, file, args->handle);
1156 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1157 drm_gem_object_unreference_unlocked(obj);
1161 down_write(¤t->mm->mmap_sem);
1162 addr = do_mmap(obj->filp, 0, args->size,
1163 PROT_READ | PROT_WRITE, MAP_SHARED,
1165 up_write(¤t->mm->mmap_sem);
1166 drm_gem_object_unreference_unlocked(obj);
1167 if (IS_ERR((void *)addr))
1170 args->addr_ptr = (uint64_t) addr;
1176 * i915_gem_fault - fault a page into the GTT
1177 * vma: VMA in question
1180 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1181 * from userspace. The fault handler takes care of binding the object to
1182 * the GTT (if needed), allocating and programming a fence register (again,
1183 * only if needed based on whether the old reg is still valid or the object
1184 * is tiled) and inserting a new PTE into the faulting process.
1186 * Note that the faulting process may involve evicting existing objects
1187 * from the GTT and/or fence registers to make room. So performance may
1188 * suffer if the GTT working set is large or there are few fence registers
1191 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1193 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1194 struct drm_device *dev = obj->base.dev;
1195 drm_i915_private_t *dev_priv = dev->dev_private;
1196 pgoff_t page_offset;
1199 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1201 /* We don't use vmf->pgoff since that has the fake offset */
1202 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1205 ret = i915_mutex_lock_interruptible(dev);
1209 trace_i915_gem_object_fault(obj, page_offset, true, write);
1211 /* Now bind it into the GTT if needed */
1212 if (!obj->map_and_fenceable) {
1213 ret = i915_gem_object_unbind(obj);
1217 if (!obj->gtt_space) {
1218 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1227 if (obj->tiling_mode == I915_TILING_NONE)
1228 ret = i915_gem_object_put_fence(obj);
1230 ret = i915_gem_object_get_fence(obj, NULL);
1234 if (i915_gem_object_is_inactive(obj))
1235 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1237 obj->fault_mappable = true;
1239 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1242 /* Finally, remap it using the new GTT offset */
1243 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1245 mutex_unlock(&dev->struct_mutex);
1250 /* Give the error handler a chance to run and move the
1251 * objects off the GPU active list. Next time we service the
1252 * fault, we should be able to transition the page into the
1253 * GTT without touching the GPU (and so avoid further
1254 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1255 * with coherency, just lost writes.
1261 return VM_FAULT_NOPAGE;
1263 return VM_FAULT_OOM;
1265 return VM_FAULT_SIGBUS;
1270 * i915_gem_release_mmap - remove physical page mappings
1271 * @obj: obj in question
1273 * Preserve the reservation of the mmapping with the DRM core code, but
1274 * relinquish ownership of the pages back to the system.
1276 * It is vital that we remove the page mapping if we have mapped a tiled
1277 * object through the GTT and then lose the fence register due to
1278 * resource pressure. Similarly if the object has been moved out of the
1279 * aperture, than pages mapped into userspace must be revoked. Removing the
1280 * mapping will then trigger a page fault on the next user access, allowing
1281 * fixup by i915_gem_fault().
1284 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1286 if (!obj->fault_mappable)
1289 if (obj->base.dev->dev_mapping)
1290 unmap_mapping_range(obj->base.dev->dev_mapping,
1291 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1294 obj->fault_mappable = false;
1298 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1302 if (INTEL_INFO(dev)->gen >= 4 ||
1303 tiling_mode == I915_TILING_NONE)
1306 /* Previous chips need a power-of-two fence region when tiling */
1307 if (INTEL_INFO(dev)->gen == 3)
1308 gtt_size = 1024*1024;
1310 gtt_size = 512*1024;
1312 while (gtt_size < size)
1319 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1320 * @obj: object to check
1322 * Return the required GTT alignment for an object, taking into account
1323 * potential fence register mapping.
1326 i915_gem_get_gtt_alignment(struct drm_device *dev,
1331 * Minimum alignment is 4k (GTT page size), but might be greater
1332 * if a fence register is needed for the object.
1334 if (INTEL_INFO(dev)->gen >= 4 ||
1335 tiling_mode == I915_TILING_NONE)
1339 * Previous chips need to be aligned to the size of the smallest
1340 * fence register that can contain the object.
1342 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1346 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1349 * @size: size of the object
1350 * @tiling_mode: tiling mode of the object
1352 * Return the required GTT alignment for an object, only taking into account
1353 * unfenced tiled surface requirements.
1356 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1361 * Minimum alignment is 4k (GTT page size) for sane hw.
1363 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1364 tiling_mode == I915_TILING_NONE)
1367 /* Previous hardware however needs to be aligned to a power-of-two
1368 * tile height. The simplest method for determining this is to reuse
1369 * the power-of-tile object size.
1371 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1375 i915_gem_mmap_gtt(struct drm_file *file,
1376 struct drm_device *dev,
1380 struct drm_i915_private *dev_priv = dev->dev_private;
1381 struct drm_i915_gem_object *obj;
1384 if (!(dev->driver->driver_features & DRIVER_GEM))
1387 ret = i915_mutex_lock_interruptible(dev);
1391 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1392 if (&obj->base == NULL) {
1397 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1402 if (obj->madv != I915_MADV_WILLNEED) {
1403 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1408 if (!obj->base.map_list.map) {
1409 ret = drm_gem_create_mmap_offset(&obj->base);
1414 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1417 drm_gem_object_unreference(&obj->base);
1419 mutex_unlock(&dev->struct_mutex);
1424 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1426 * @data: GTT mapping ioctl data
1427 * @file: GEM object info
1429 * Simply returns the fake offset to userspace so it can mmap it.
1430 * The mmap call will end up in drm_gem_mmap(), which will set things
1431 * up so we can get faults in the handler above.
1433 * The fault handler will take care of binding the object into the GTT
1434 * (since it may have been evicted to make room for something), allocating
1435 * a fence register, and mapping the appropriate aperture address into
1439 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1440 struct drm_file *file)
1442 struct drm_i915_gem_mmap_gtt *args = data;
1444 if (!(dev->driver->driver_features & DRIVER_GEM))
1447 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1452 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1456 struct address_space *mapping;
1457 struct inode *inode;
1460 /* Get the list of pages out of our struct file. They'll be pinned
1461 * at this point until we release them.
1463 page_count = obj->base.size / PAGE_SIZE;
1464 BUG_ON(obj->pages != NULL);
1465 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1466 if (obj->pages == NULL)
1469 inode = obj->base.filp->f_path.dentry->d_inode;
1470 mapping = inode->i_mapping;
1471 gfpmask |= mapping_gfp_mask(mapping);
1473 for (i = 0; i < page_count; i++) {
1474 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1478 obj->pages[i] = page;
1481 if (i915_gem_object_needs_bit17_swizzle(obj))
1482 i915_gem_object_do_bit_17_swizzle(obj);
1488 page_cache_release(obj->pages[i]);
1490 drm_free_large(obj->pages);
1492 return PTR_ERR(page);
1496 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1498 int page_count = obj->base.size / PAGE_SIZE;
1501 BUG_ON(obj->madv == __I915_MADV_PURGED);
1503 if (i915_gem_object_needs_bit17_swizzle(obj))
1504 i915_gem_object_save_bit_17_swizzle(obj);
1506 if (obj->madv == I915_MADV_DONTNEED)
1509 for (i = 0; i < page_count; i++) {
1511 set_page_dirty(obj->pages[i]);
1513 if (obj->madv == I915_MADV_WILLNEED)
1514 mark_page_accessed(obj->pages[i]);
1516 page_cache_release(obj->pages[i]);
1520 drm_free_large(obj->pages);
1525 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1526 struct intel_ring_buffer *ring,
1529 struct drm_device *dev = obj->base.dev;
1530 struct drm_i915_private *dev_priv = dev->dev_private;
1532 BUG_ON(ring == NULL);
1535 /* Add a reference if we're newly entering the active list. */
1537 drm_gem_object_reference(&obj->base);
1541 /* Move from whatever list we were on to the tail of execution. */
1542 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1543 list_move_tail(&obj->ring_list, &ring->active_list);
1545 obj->last_rendering_seqno = seqno;
1546 if (obj->fenced_gpu_access) {
1547 struct drm_i915_fence_reg *reg;
1549 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1551 obj->last_fenced_seqno = seqno;
1552 obj->last_fenced_ring = ring;
1554 reg = &dev_priv->fence_regs[obj->fence_reg];
1555 list_move_tail(®->lru_list, &dev_priv->mm.fence_list);
1560 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1562 list_del_init(&obj->ring_list);
1563 obj->last_rendering_seqno = 0;
1567 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1569 struct drm_device *dev = obj->base.dev;
1570 drm_i915_private_t *dev_priv = dev->dev_private;
1572 BUG_ON(!obj->active);
1573 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1575 i915_gem_object_move_off_active(obj);
1579 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1581 struct drm_device *dev = obj->base.dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1584 if (obj->pin_count != 0)
1585 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1587 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1589 BUG_ON(!list_empty(&obj->gpu_write_list));
1590 BUG_ON(!obj->active);
1593 i915_gem_object_move_off_active(obj);
1594 obj->fenced_gpu_access = false;
1597 obj->pending_gpu_write = false;
1598 drm_gem_object_unreference(&obj->base);
1600 WARN_ON(i915_verify_lists(dev));
1603 /* Immediately discard the backing storage */
1605 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1607 struct inode *inode;
1609 /* Our goal here is to return as much of the memory as
1610 * is possible back to the system as we are called from OOM.
1611 * To do this we must instruct the shmfs to drop all of its
1612 * backing pages, *now*.
1614 inode = obj->base.filp->f_path.dentry->d_inode;
1615 shmem_truncate_range(inode, 0, (loff_t)-1);
1617 obj->madv = __I915_MADV_PURGED;
1621 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1623 return obj->madv == I915_MADV_DONTNEED;
1627 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1628 uint32_t flush_domains)
1630 struct drm_i915_gem_object *obj, *next;
1632 list_for_each_entry_safe(obj, next,
1633 &ring->gpu_write_list,
1635 if (obj->base.write_domain & flush_domains) {
1636 uint32_t old_write_domain = obj->base.write_domain;
1638 obj->base.write_domain = 0;
1639 list_del_init(&obj->gpu_write_list);
1640 i915_gem_object_move_to_active(obj, ring,
1641 i915_gem_next_request_seqno(ring));
1643 trace_i915_gem_object_change_domain(obj,
1644 obj->base.read_domains,
1651 i915_add_request(struct intel_ring_buffer *ring,
1652 struct drm_file *file,
1653 struct drm_i915_gem_request *request)
1655 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1660 BUG_ON(request == NULL);
1662 ret = ring->add_request(ring, &seqno);
1666 trace_i915_gem_request_add(ring, seqno);
1668 request->seqno = seqno;
1669 request->ring = ring;
1670 request->emitted_jiffies = jiffies;
1671 was_empty = list_empty(&ring->request_list);
1672 list_add_tail(&request->list, &ring->request_list);
1675 struct drm_i915_file_private *file_priv = file->driver_priv;
1677 spin_lock(&file_priv->mm.lock);
1678 request->file_priv = file_priv;
1679 list_add_tail(&request->client_list,
1680 &file_priv->mm.request_list);
1681 spin_unlock(&file_priv->mm.lock);
1684 ring->outstanding_lazy_request = false;
1686 if (!dev_priv->mm.suspended) {
1687 if (i915_enable_hangcheck) {
1688 mod_timer(&dev_priv->hangcheck_timer,
1690 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1693 queue_delayed_work(dev_priv->wq,
1694 &dev_priv->mm.retire_work, HZ);
1700 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1702 struct drm_i915_file_private *file_priv = request->file_priv;
1707 spin_lock(&file_priv->mm.lock);
1708 if (request->file_priv) {
1709 list_del(&request->client_list);
1710 request->file_priv = NULL;
1712 spin_unlock(&file_priv->mm.lock);
1715 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1716 struct intel_ring_buffer *ring)
1718 while (!list_empty(&ring->request_list)) {
1719 struct drm_i915_gem_request *request;
1721 request = list_first_entry(&ring->request_list,
1722 struct drm_i915_gem_request,
1725 list_del(&request->list);
1726 i915_gem_request_remove_from_client(request);
1730 while (!list_empty(&ring->active_list)) {
1731 struct drm_i915_gem_object *obj;
1733 obj = list_first_entry(&ring->active_list,
1734 struct drm_i915_gem_object,
1737 obj->base.write_domain = 0;
1738 list_del_init(&obj->gpu_write_list);
1739 i915_gem_object_move_to_inactive(obj);
1743 static void i915_gem_reset_fences(struct drm_device *dev)
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1748 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1749 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1750 struct drm_i915_gem_object *obj = reg->obj;
1755 if (obj->tiling_mode)
1756 i915_gem_release_mmap(obj);
1758 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1759 reg->obj->fenced_gpu_access = false;
1760 reg->obj->last_fenced_seqno = 0;
1761 reg->obj->last_fenced_ring = NULL;
1762 i915_gem_clear_fence_reg(dev, reg);
1766 void i915_gem_reset(struct drm_device *dev)
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 struct drm_i915_gem_object *obj;
1772 for (i = 0; i < I915_NUM_RINGS; i++)
1773 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1775 /* Remove anything from the flushing lists. The GPU cache is likely
1776 * to be lost on reset along with the data, so simply move the
1777 * lost bo to the inactive list.
1779 while (!list_empty(&dev_priv->mm.flushing_list)) {
1780 obj = list_first_entry(&dev_priv->mm.flushing_list,
1781 struct drm_i915_gem_object,
1784 obj->base.write_domain = 0;
1785 list_del_init(&obj->gpu_write_list);
1786 i915_gem_object_move_to_inactive(obj);
1789 /* Move everything out of the GPU domains to ensure we do any
1790 * necessary invalidation upon reuse.
1792 list_for_each_entry(obj,
1793 &dev_priv->mm.inactive_list,
1796 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1799 /* The fence registers are invalidated so clear them out */
1800 i915_gem_reset_fences(dev);
1804 * This function clears the request list as sequence numbers are passed.
1807 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1812 if (list_empty(&ring->request_list))
1815 WARN_ON(i915_verify_lists(ring->dev));
1817 seqno = ring->get_seqno(ring);
1819 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1820 if (seqno >= ring->sync_seqno[i])
1821 ring->sync_seqno[i] = 0;
1823 while (!list_empty(&ring->request_list)) {
1824 struct drm_i915_gem_request *request;
1826 request = list_first_entry(&ring->request_list,
1827 struct drm_i915_gem_request,
1830 if (!i915_seqno_passed(seqno, request->seqno))
1833 trace_i915_gem_request_retire(ring, request->seqno);
1835 list_del(&request->list);
1836 i915_gem_request_remove_from_client(request);
1840 /* Move any buffers on the active list that are no longer referenced
1841 * by the ringbuffer to the flushing/inactive lists as appropriate.
1843 while (!list_empty(&ring->active_list)) {
1844 struct drm_i915_gem_object *obj;
1846 obj = list_first_entry(&ring->active_list,
1847 struct drm_i915_gem_object,
1850 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1853 if (obj->base.write_domain != 0)
1854 i915_gem_object_move_to_flushing(obj);
1856 i915_gem_object_move_to_inactive(obj);
1859 if (unlikely(ring->trace_irq_seqno &&
1860 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1861 ring->irq_put(ring);
1862 ring->trace_irq_seqno = 0;
1865 WARN_ON(i915_verify_lists(ring->dev));
1869 i915_gem_retire_requests(struct drm_device *dev)
1871 drm_i915_private_t *dev_priv = dev->dev_private;
1874 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1875 struct drm_i915_gem_object *obj, *next;
1877 /* We must be careful that during unbind() we do not
1878 * accidentally infinitely recurse into retire requests.
1880 * retire -> free -> unbind -> wait -> retire_ring
1882 list_for_each_entry_safe(obj, next,
1883 &dev_priv->mm.deferred_free_list,
1885 i915_gem_free_object_tail(obj);
1888 for (i = 0; i < I915_NUM_RINGS; i++)
1889 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1893 i915_gem_retire_work_handler(struct work_struct *work)
1895 drm_i915_private_t *dev_priv;
1896 struct drm_device *dev;
1900 dev_priv = container_of(work, drm_i915_private_t,
1901 mm.retire_work.work);
1902 dev = dev_priv->dev;
1904 /* Come back later if the device is busy... */
1905 if (!mutex_trylock(&dev->struct_mutex)) {
1906 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1910 i915_gem_retire_requests(dev);
1912 /* Send a periodic flush down the ring so we don't hold onto GEM
1913 * objects indefinitely.
1916 for (i = 0; i < I915_NUM_RINGS; i++) {
1917 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1919 if (!list_empty(&ring->gpu_write_list)) {
1920 struct drm_i915_gem_request *request;
1923 ret = i915_gem_flush_ring(ring,
1924 0, I915_GEM_GPU_DOMAINS);
1925 request = kzalloc(sizeof(*request), GFP_KERNEL);
1926 if (ret || request == NULL ||
1927 i915_add_request(ring, NULL, request))
1931 idle &= list_empty(&ring->request_list);
1934 if (!dev_priv->mm.suspended && !idle)
1935 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1937 mutex_unlock(&dev->struct_mutex);
1941 * Waits for a sequence number to be signaled, and cleans up the
1942 * request and object lists appropriately for that event.
1945 i915_wait_request(struct intel_ring_buffer *ring,
1948 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1954 if (atomic_read(&dev_priv->mm.wedged)) {
1955 struct completion *x = &dev_priv->error_completion;
1956 bool recovery_complete;
1957 unsigned long flags;
1959 /* Give the error handler a chance to run. */
1960 spin_lock_irqsave(&x->wait.lock, flags);
1961 recovery_complete = x->done > 0;
1962 spin_unlock_irqrestore(&x->wait.lock, flags);
1964 return recovery_complete ? -EIO : -EAGAIN;
1967 if (seqno == ring->outstanding_lazy_request) {
1968 struct drm_i915_gem_request *request;
1970 request = kzalloc(sizeof(*request), GFP_KERNEL);
1971 if (request == NULL)
1974 ret = i915_add_request(ring, NULL, request);
1980 seqno = request->seqno;
1983 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1984 if (HAS_PCH_SPLIT(ring->dev))
1985 ier = I915_READ(DEIER) | I915_READ(GTIER);
1987 ier = I915_READ(IER);
1989 DRM_ERROR("something (likely vbetool) disabled "
1990 "interrupts, re-enabling\n");
1991 ring->dev->driver->irq_preinstall(ring->dev);
1992 ring->dev->driver->irq_postinstall(ring->dev);
1995 trace_i915_gem_request_wait_begin(ring, seqno);
1997 ring->waiting_seqno = seqno;
1998 if (ring->irq_get(ring)) {
1999 if (dev_priv->mm.interruptible)
2000 ret = wait_event_interruptible(ring->irq_queue,
2001 i915_seqno_passed(ring->get_seqno(ring), seqno)
2002 || atomic_read(&dev_priv->mm.wedged));
2004 wait_event(ring->irq_queue,
2005 i915_seqno_passed(ring->get_seqno(ring), seqno)
2006 || atomic_read(&dev_priv->mm.wedged));
2008 ring->irq_put(ring);
2009 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2011 atomic_read(&dev_priv->mm.wedged), 3000))
2013 ring->waiting_seqno = 0;
2015 trace_i915_gem_request_wait_end(ring, seqno);
2017 if (atomic_read(&dev_priv->mm.wedged))
2020 if (ret && ret != -ERESTARTSYS)
2021 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2022 __func__, ret, seqno, ring->get_seqno(ring),
2023 dev_priv->next_seqno);
2025 /* Directly dispatch request retiring. While we have the work queue
2026 * to handle this, the waiter on a request often wants an associated
2027 * buffer to have made it to the inactive list, and we would need
2028 * a separate wait queue to handle that.
2031 i915_gem_retire_requests_ring(ring);
2037 * Ensures that all rendering to the object has completed and the object is
2038 * safe to unbind from the GTT or access from the CPU.
2041 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2045 /* This function only exists to support waiting for existing rendering,
2046 * not for emitting required flushes.
2048 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2050 /* If there is rendering queued on the buffer being evicted, wait for
2054 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2062 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2064 u32 old_write_domain, old_read_domains;
2066 /* Act a barrier for all accesses through the GTT */
2069 /* Force a pagefault for domain tracking on next user access */
2070 i915_gem_release_mmap(obj);
2072 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2075 old_read_domains = obj->base.read_domains;
2076 old_write_domain = obj->base.write_domain;
2078 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2079 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2081 trace_i915_gem_object_change_domain(obj,
2087 * Unbinds an object from the GTT aperture.
2090 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2094 if (obj->gtt_space == NULL)
2097 if (obj->pin_count != 0) {
2098 DRM_ERROR("Attempting to unbind pinned buffer\n");
2102 ret = i915_gem_object_finish_gpu(obj);
2103 if (ret == -ERESTARTSYS)
2105 /* Continue on if we fail due to EIO, the GPU is hung so we
2106 * should be safe and we need to cleanup or else we might
2107 * cause memory corruption through use-after-free.
2110 i915_gem_object_finish_gtt(obj);
2112 /* Move the object to the CPU domain to ensure that
2113 * any possible CPU writes while it's not in the GTT
2114 * are flushed when we go to remap it.
2117 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2118 if (ret == -ERESTARTSYS)
2121 /* In the event of a disaster, abandon all caches and
2122 * hope for the best.
2124 i915_gem_clflush_object(obj);
2125 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2128 /* release the fence reg _after_ flushing */
2129 ret = i915_gem_object_put_fence(obj);
2130 if (ret == -ERESTARTSYS)
2133 trace_i915_gem_object_unbind(obj);
2135 i915_gem_gtt_unbind_object(obj);
2136 i915_gem_object_put_pages_gtt(obj);
2138 list_del_init(&obj->gtt_list);
2139 list_del_init(&obj->mm_list);
2140 /* Avoid an unnecessary call to unbind on rebind. */
2141 obj->map_and_fenceable = true;
2143 drm_mm_put_block(obj->gtt_space);
2144 obj->gtt_space = NULL;
2145 obj->gtt_offset = 0;
2147 if (i915_gem_object_is_purgeable(obj))
2148 i915_gem_object_truncate(obj);
2154 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2155 uint32_t invalidate_domains,
2156 uint32_t flush_domains)
2160 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2163 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2165 ret = ring->flush(ring, invalidate_domains, flush_domains);
2169 if (flush_domains & I915_GEM_GPU_DOMAINS)
2170 i915_gem_process_flushing_list(ring, flush_domains);
2175 static int i915_ring_idle(struct intel_ring_buffer *ring)
2179 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2182 if (!list_empty(&ring->gpu_write_list)) {
2183 ret = i915_gem_flush_ring(ring,
2184 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2189 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2193 i915_gpu_idle(struct drm_device *dev)
2195 drm_i915_private_t *dev_priv = dev->dev_private;
2198 /* Flush everything onto the inactive list. */
2199 for (i = 0; i < I915_NUM_RINGS; i++) {
2200 ret = i915_ring_idle(&dev_priv->ring[i]);
2208 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2209 struct intel_ring_buffer *pipelined)
2211 struct drm_device *dev = obj->base.dev;
2212 drm_i915_private_t *dev_priv = dev->dev_private;
2213 u32 size = obj->gtt_space->size;
2214 int regnum = obj->fence_reg;
2217 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2219 val |= obj->gtt_offset & 0xfffff000;
2220 val |= (uint64_t)((obj->stride / 128) - 1) <<
2221 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2223 if (obj->tiling_mode == I915_TILING_Y)
2224 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2225 val |= I965_FENCE_REG_VALID;
2228 int ret = intel_ring_begin(pipelined, 6);
2232 intel_ring_emit(pipelined, MI_NOOP);
2233 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2234 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2235 intel_ring_emit(pipelined, (u32)val);
2236 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2237 intel_ring_emit(pipelined, (u32)(val >> 32));
2238 intel_ring_advance(pipelined);
2240 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2245 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2246 struct intel_ring_buffer *pipelined)
2248 struct drm_device *dev = obj->base.dev;
2249 drm_i915_private_t *dev_priv = dev->dev_private;
2250 u32 size = obj->gtt_space->size;
2251 int regnum = obj->fence_reg;
2254 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2256 val |= obj->gtt_offset & 0xfffff000;
2257 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2258 if (obj->tiling_mode == I915_TILING_Y)
2259 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2260 val |= I965_FENCE_REG_VALID;
2263 int ret = intel_ring_begin(pipelined, 6);
2267 intel_ring_emit(pipelined, MI_NOOP);
2268 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2269 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2270 intel_ring_emit(pipelined, (u32)val);
2271 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2272 intel_ring_emit(pipelined, (u32)(val >> 32));
2273 intel_ring_advance(pipelined);
2275 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2280 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2281 struct intel_ring_buffer *pipelined)
2283 struct drm_device *dev = obj->base.dev;
2284 drm_i915_private_t *dev_priv = dev->dev_private;
2285 u32 size = obj->gtt_space->size;
2286 u32 fence_reg, val, pitch_val;
2289 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2290 (size & -size) != size ||
2291 (obj->gtt_offset & (size - 1)),
2292 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2293 obj->gtt_offset, obj->map_and_fenceable, size))
2296 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2301 /* Note: pitch better be a power of two tile widths */
2302 pitch_val = obj->stride / tile_width;
2303 pitch_val = ffs(pitch_val) - 1;
2305 val = obj->gtt_offset;
2306 if (obj->tiling_mode == I915_TILING_Y)
2307 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2308 val |= I915_FENCE_SIZE_BITS(size);
2309 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2310 val |= I830_FENCE_REG_VALID;
2312 fence_reg = obj->fence_reg;
2314 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2316 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2319 int ret = intel_ring_begin(pipelined, 4);
2323 intel_ring_emit(pipelined, MI_NOOP);
2324 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2325 intel_ring_emit(pipelined, fence_reg);
2326 intel_ring_emit(pipelined, val);
2327 intel_ring_advance(pipelined);
2329 I915_WRITE(fence_reg, val);
2334 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2335 struct intel_ring_buffer *pipelined)
2337 struct drm_device *dev = obj->base.dev;
2338 drm_i915_private_t *dev_priv = dev->dev_private;
2339 u32 size = obj->gtt_space->size;
2340 int regnum = obj->fence_reg;
2344 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2345 (size & -size) != size ||
2346 (obj->gtt_offset & (size - 1)),
2347 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2348 obj->gtt_offset, size))
2351 pitch_val = obj->stride / 128;
2352 pitch_val = ffs(pitch_val) - 1;
2354 val = obj->gtt_offset;
2355 if (obj->tiling_mode == I915_TILING_Y)
2356 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2357 val |= I830_FENCE_SIZE_BITS(size);
2358 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2359 val |= I830_FENCE_REG_VALID;
2362 int ret = intel_ring_begin(pipelined, 4);
2366 intel_ring_emit(pipelined, MI_NOOP);
2367 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2368 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2369 intel_ring_emit(pipelined, val);
2370 intel_ring_advance(pipelined);
2372 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2377 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2379 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2383 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2384 struct intel_ring_buffer *pipelined)
2388 if (obj->fenced_gpu_access) {
2389 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2390 ret = i915_gem_flush_ring(obj->last_fenced_ring,
2391 0, obj->base.write_domain);
2396 obj->fenced_gpu_access = false;
2399 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2400 if (!ring_passed_seqno(obj->last_fenced_ring,
2401 obj->last_fenced_seqno)) {
2402 ret = i915_wait_request(obj->last_fenced_ring,
2403 obj->last_fenced_seqno);
2408 obj->last_fenced_seqno = 0;
2409 obj->last_fenced_ring = NULL;
2412 /* Ensure that all CPU reads are completed before installing a fence
2413 * and all writes before removing the fence.
2415 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2422 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2426 if (obj->tiling_mode)
2427 i915_gem_release_mmap(obj);
2429 ret = i915_gem_object_flush_fence(obj, NULL);
2433 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2434 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2435 i915_gem_clear_fence_reg(obj->base.dev,
2436 &dev_priv->fence_regs[obj->fence_reg]);
2438 obj->fence_reg = I915_FENCE_REG_NONE;
2444 static struct drm_i915_fence_reg *
2445 i915_find_fence_reg(struct drm_device *dev,
2446 struct intel_ring_buffer *pipelined)
2448 struct drm_i915_private *dev_priv = dev->dev_private;
2449 struct drm_i915_fence_reg *reg, *first, *avail;
2452 /* First try to find a free reg */
2454 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2455 reg = &dev_priv->fence_regs[i];
2459 if (!reg->obj->pin_count)
2466 /* None available, try to steal one or wait for a user to finish */
2467 avail = first = NULL;
2468 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2469 if (reg->obj->pin_count)
2476 !reg->obj->last_fenced_ring ||
2477 reg->obj->last_fenced_ring == pipelined) {
2490 * i915_gem_object_get_fence - set up a fence reg for an object
2491 * @obj: object to map through a fence reg
2492 * @pipelined: ring on which to queue the change, or NULL for CPU access
2493 * @interruptible: must we wait uninterruptibly for the register to retire?
2495 * When mapping objects through the GTT, userspace wants to be able to write
2496 * to them without having to worry about swizzling if the object is tiled.
2498 * This function walks the fence regs looking for a free one for @obj,
2499 * stealing one if it can't find any.
2501 * It then sets up the reg based on the object's properties: address, pitch
2502 * and tiling format.
2505 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2506 struct intel_ring_buffer *pipelined)
2508 struct drm_device *dev = obj->base.dev;
2509 struct drm_i915_private *dev_priv = dev->dev_private;
2510 struct drm_i915_fence_reg *reg;
2513 /* XXX disable pipelining. There are bugs. Shocking. */
2516 /* Just update our place in the LRU if our fence is getting reused. */
2517 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2518 reg = &dev_priv->fence_regs[obj->fence_reg];
2519 list_move_tail(®->lru_list, &dev_priv->mm.fence_list);
2521 if (obj->tiling_changed) {
2522 ret = i915_gem_object_flush_fence(obj, pipelined);
2526 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2531 i915_gem_next_request_seqno(pipelined);
2532 obj->last_fenced_seqno = reg->setup_seqno;
2533 obj->last_fenced_ring = pipelined;
2540 if (reg->setup_seqno) {
2541 if (!ring_passed_seqno(obj->last_fenced_ring,
2542 reg->setup_seqno)) {
2543 ret = i915_wait_request(obj->last_fenced_ring,
2549 reg->setup_seqno = 0;
2551 } else if (obj->last_fenced_ring &&
2552 obj->last_fenced_ring != pipelined) {
2553 ret = i915_gem_object_flush_fence(obj, pipelined);
2561 reg = i915_find_fence_reg(dev, pipelined);
2565 ret = i915_gem_object_flush_fence(obj, pipelined);
2570 struct drm_i915_gem_object *old = reg->obj;
2572 drm_gem_object_reference(&old->base);
2574 if (old->tiling_mode)
2575 i915_gem_release_mmap(old);
2577 ret = i915_gem_object_flush_fence(old, pipelined);
2579 drm_gem_object_unreference(&old->base);
2583 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2586 old->fence_reg = I915_FENCE_REG_NONE;
2587 old->last_fenced_ring = pipelined;
2588 old->last_fenced_seqno =
2589 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2591 drm_gem_object_unreference(&old->base);
2592 } else if (obj->last_fenced_seqno == 0)
2596 list_move_tail(®->lru_list, &dev_priv->mm.fence_list);
2597 obj->fence_reg = reg - dev_priv->fence_regs;
2598 obj->last_fenced_ring = pipelined;
2601 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2602 obj->last_fenced_seqno = reg->setup_seqno;
2605 obj->tiling_changed = false;
2606 switch (INTEL_INFO(dev)->gen) {
2609 ret = sandybridge_write_fence_reg(obj, pipelined);
2613 ret = i965_write_fence_reg(obj, pipelined);
2616 ret = i915_write_fence_reg(obj, pipelined);
2619 ret = i830_write_fence_reg(obj, pipelined);
2627 * i915_gem_clear_fence_reg - clear out fence register info
2628 * @obj: object to clear
2630 * Zeroes out the fence register itself and clears out the associated
2631 * data structures in dev_priv and obj.
2634 i915_gem_clear_fence_reg(struct drm_device *dev,
2635 struct drm_i915_fence_reg *reg)
2637 drm_i915_private_t *dev_priv = dev->dev_private;
2638 uint32_t fence_reg = reg - dev_priv->fence_regs;
2640 switch (INTEL_INFO(dev)->gen) {
2643 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2647 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2651 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2654 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2656 I915_WRITE(fence_reg, 0);
2660 list_del_init(®->lru_list);
2662 reg->setup_seqno = 0;
2666 * Finds free space in the GTT aperture and binds the object there.
2669 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2671 bool map_and_fenceable)
2673 struct drm_device *dev = obj->base.dev;
2674 drm_i915_private_t *dev_priv = dev->dev_private;
2675 struct drm_mm_node *free_space;
2676 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2677 u32 size, fence_size, fence_alignment, unfenced_alignment;
2678 bool mappable, fenceable;
2681 if (obj->madv != I915_MADV_WILLNEED) {
2682 DRM_ERROR("Attempting to bind a purgeable object\n");
2686 fence_size = i915_gem_get_gtt_size(dev,
2689 fence_alignment = i915_gem_get_gtt_alignment(dev,
2692 unfenced_alignment =
2693 i915_gem_get_unfenced_gtt_alignment(dev,
2698 alignment = map_and_fenceable ? fence_alignment :
2700 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2701 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2705 size = map_and_fenceable ? fence_size : obj->base.size;
2707 /* If the object is bigger than the entire aperture, reject it early
2708 * before evicting everything in a vain attempt to find space.
2710 if (obj->base.size >
2711 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2712 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2717 if (map_and_fenceable)
2719 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2721 dev_priv->mm.gtt_mappable_end,
2724 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2725 size, alignment, 0);
2727 if (free_space != NULL) {
2728 if (map_and_fenceable)
2730 drm_mm_get_block_range_generic(free_space,
2732 dev_priv->mm.gtt_mappable_end,
2736 drm_mm_get_block(free_space, size, alignment);
2738 if (obj->gtt_space == NULL) {
2739 /* If the gtt is empty and we're still having trouble
2740 * fitting our object in, we're out of memory.
2742 ret = i915_gem_evict_something(dev, size, alignment,
2750 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2752 drm_mm_put_block(obj->gtt_space);
2753 obj->gtt_space = NULL;
2755 if (ret == -ENOMEM) {
2756 /* first try to reclaim some memory by clearing the GTT */
2757 ret = i915_gem_evict_everything(dev, false);
2759 /* now try to shrink everyone else */
2774 ret = i915_gem_gtt_bind_object(obj);
2776 i915_gem_object_put_pages_gtt(obj);
2777 drm_mm_put_block(obj->gtt_space);
2778 obj->gtt_space = NULL;
2780 if (i915_gem_evict_everything(dev, false))
2786 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2787 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2789 /* Assert that the object is not currently in any GPU domain. As it
2790 * wasn't in the GTT, there shouldn't be any way it could have been in
2793 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2794 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2796 obj->gtt_offset = obj->gtt_space->start;
2799 obj->gtt_space->size == fence_size &&
2800 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2803 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2805 obj->map_and_fenceable = mappable && fenceable;
2807 trace_i915_gem_object_bind(obj, map_and_fenceable);
2812 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2814 /* If we don't have a page list set up, then we're not pinned
2815 * to GPU, and we can ignore the cache flush because it'll happen
2816 * again at bind time.
2818 if (obj->pages == NULL)
2821 /* If the GPU is snooping the contents of the CPU cache,
2822 * we do not need to manually clear the CPU cache lines. However,
2823 * the caches are only snooped when the render cache is
2824 * flushed/invalidated. As we always have to emit invalidations
2825 * and flushes when moving into and out of the RENDER domain, correct
2826 * snooping behaviour occurs naturally as the result of our domain
2829 if (obj->cache_level != I915_CACHE_NONE)
2832 trace_i915_gem_object_clflush(obj);
2834 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2837 /** Flushes any GPU write domain for the object if it's dirty. */
2839 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2841 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2844 /* Queue the GPU write cache flushing we need. */
2845 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2848 /** Flushes the GTT write domain for the object if it's dirty. */
2850 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2852 uint32_t old_write_domain;
2854 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2857 /* No actual flushing is required for the GTT write domain. Writes
2858 * to it immediately go to main memory as far as we know, so there's
2859 * no chipset flush. It also doesn't land in render cache.
2861 * However, we do have to enforce the order so that all writes through
2862 * the GTT land before any writes to the device, such as updates to
2867 old_write_domain = obj->base.write_domain;
2868 obj->base.write_domain = 0;
2870 trace_i915_gem_object_change_domain(obj,
2871 obj->base.read_domains,
2875 /** Flushes the CPU write domain for the object if it's dirty. */
2877 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2879 uint32_t old_write_domain;
2881 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2884 i915_gem_clflush_object(obj);
2885 intel_gtt_chipset_flush();
2886 old_write_domain = obj->base.write_domain;
2887 obj->base.write_domain = 0;
2889 trace_i915_gem_object_change_domain(obj,
2890 obj->base.read_domains,
2895 * Moves a single object to the GTT read, and possibly write domain.
2897 * This function returns when the move is complete, including waiting on
2901 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2903 uint32_t old_write_domain, old_read_domains;
2906 /* Not valid to be called on unbound objects. */
2907 if (obj->gtt_space == NULL)
2910 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2913 ret = i915_gem_object_flush_gpu_write_domain(obj);
2917 if (obj->pending_gpu_write || write) {
2918 ret = i915_gem_object_wait_rendering(obj);
2923 i915_gem_object_flush_cpu_write_domain(obj);
2925 old_write_domain = obj->base.write_domain;
2926 old_read_domains = obj->base.read_domains;
2928 /* It should now be out of any other write domains, and we can update
2929 * the domain values for our changes.
2931 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2932 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2934 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2935 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2939 trace_i915_gem_object_change_domain(obj,
2946 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2947 enum i915_cache_level cache_level)
2951 if (obj->cache_level == cache_level)
2954 if (obj->pin_count) {
2955 DRM_DEBUG("can not change the cache level of pinned objects\n");
2959 if (obj->gtt_space) {
2960 ret = i915_gem_object_finish_gpu(obj);
2964 i915_gem_object_finish_gtt(obj);
2966 /* Before SandyBridge, you could not use tiling or fence
2967 * registers with snooped memory, so relinquish any fences
2968 * currently pointing to our region in the aperture.
2970 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2971 ret = i915_gem_object_put_fence(obj);
2976 i915_gem_gtt_rebind_object(obj, cache_level);
2979 if (cache_level == I915_CACHE_NONE) {
2980 u32 old_read_domains, old_write_domain;
2982 /* If we're coming from LLC cached, then we haven't
2983 * actually been tracking whether the data is in the
2984 * CPU cache or not, since we only allow one bit set
2985 * in obj->write_domain and have been skipping the clflushes.
2986 * Just set it to the CPU cache for now.
2988 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2989 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2991 old_read_domains = obj->base.read_domains;
2992 old_write_domain = obj->base.write_domain;
2994 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2995 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2997 trace_i915_gem_object_change_domain(obj,
3002 obj->cache_level = cache_level;
3007 * Prepare buffer for display plane (scanout, cursors, etc).
3008 * Can be called from an uninterruptible phase (modesetting) and allows
3009 * any flushes to be pipelined (for pageflips).
3011 * For the display plane, we want to be in the GTT but out of any write
3012 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
3013 * ability to pipeline the waits, pinning and any additional subtleties
3014 * that may differentiate the display plane from ordinary buffers.
3017 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3019 struct intel_ring_buffer *pipelined)
3021 u32 old_read_domains, old_write_domain;
3024 ret = i915_gem_object_flush_gpu_write_domain(obj);
3028 if (pipelined != obj->ring) {
3029 ret = i915_gem_object_wait_rendering(obj);
3030 if (ret == -ERESTARTSYS)
3034 /* The display engine is not coherent with the LLC cache on gen6. As
3035 * a result, we make sure that the pinning that is about to occur is
3036 * done with uncached PTEs. This is lowest common denominator for all
3039 * However for gen6+, we could do better by using the GFDT bit instead
3040 * of uncaching, which would allow us to flush all the LLC-cached data
3041 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3043 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3047 /* As the user may map the buffer once pinned in the display plane
3048 * (e.g. libkms for the bootup splash), we have to ensure that we
3049 * always use map_and_fenceable for all scanout buffers.
3051 ret = i915_gem_object_pin(obj, alignment, true);
3055 i915_gem_object_flush_cpu_write_domain(obj);
3057 old_write_domain = obj->base.write_domain;
3058 old_read_domains = obj->base.read_domains;
3060 /* It should now be out of any other write domains, and we can update
3061 * the domain values for our changes.
3063 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3064 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3066 trace_i915_gem_object_change_domain(obj,
3074 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3078 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3081 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3082 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3087 /* Ensure that we invalidate the GPU's caches and TLBs. */
3088 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3090 return i915_gem_object_wait_rendering(obj);
3094 * Moves a single object to the CPU read, and possibly write domain.