Merge branch 'for-2.6.38' of git://linux-nfs.org/~bfields/linux
[pandora-kernel.git] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8
9 #include <linux/bug.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/ethtool.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/highmem.h>
16 #include <linux/in.h>
17 #include <linux/ip.h>
18 #include <linux/jiffies.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mutex.h>
23 #include <linux/netdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27
28 #include <asm/unaligned.h>
29 #include <net/arp.h>
30
31 /* rx limits */
32 #define FWNET_MAX_FRAGMENTS             30 /* arbitrary, > TX queue depth */
33 #define FWNET_ISO_PAGE_COUNT            (PAGE_SIZE < 16*1024 ? 4 : 2)
34
35 /* tx limits */
36 #define FWNET_MAX_QUEUED_DATAGRAMS      20 /* < 64 = number of tlabels */
37 #define FWNET_MIN_QUEUED_DATAGRAMS      10 /* should keep AT DMA busy enough */
38 #define FWNET_TX_QUEUE_LEN              FWNET_MAX_QUEUED_DATAGRAMS /* ? */
39
40 #define IEEE1394_BROADCAST_CHANNEL      31
41 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
42 #define IEEE1394_MAX_PAYLOAD_S100       512
43 #define FWNET_NO_FIFO_ADDR              (~0ULL)
44
45 #define IANA_SPECIFIER_ID               0x00005eU
46 #define RFC2734_SW_VERSION              0x000001U
47
48 #define IEEE1394_GASP_HDR_SIZE  8
49
50 #define RFC2374_UNFRAG_HDR_SIZE 4
51 #define RFC2374_FRAG_HDR_SIZE   8
52 #define RFC2374_FRAG_OVERHEAD   4
53
54 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
55 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
56 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
57 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
58
59 #define RFC2734_HW_ADDR_LEN     16
60
61 struct rfc2734_arp {
62         __be16 hw_type;         /* 0x0018       */
63         __be16 proto_type;      /* 0x0806       */
64         u8 hw_addr_len;         /* 16           */
65         u8 ip_addr_len;         /* 4            */
66         __be16 opcode;          /* ARP Opcode   */
67         /* Above is exactly the same format as struct arphdr */
68
69         __be64 s_uniq_id;       /* Sender's 64bit EUI                   */
70         u8 max_rec;             /* Sender's max packet size             */
71         u8 sspd;                /* Sender's max speed                   */
72         __be16 fifo_hi;         /* hi 16bits of sender's FIFO addr      */
73         __be32 fifo_lo;         /* lo 32bits of sender's FIFO addr      */
74         __be32 sip;             /* Sender's IP Address                  */
75         __be32 tip;             /* IP Address of requested hw addr      */
76 } __attribute__((packed));
77
78 /* This header format is specific to this driver implementation. */
79 #define FWNET_ALEN      8
80 #define FWNET_HLEN      10
81 struct fwnet_header {
82         u8 h_dest[FWNET_ALEN];  /* destination address */
83         __be16 h_proto;         /* packet type ID field */
84 } __attribute__((packed));
85
86 /* IPv4 and IPv6 encapsulation header */
87 struct rfc2734_header {
88         u32 w0;
89         u32 w1;
90 };
91
92 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
93 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
94 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
95 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
96 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
97
98 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
99 #define fwnet_set_hdr_ether_type(et)    (et)
100 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
101 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
102
103 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
104
105 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
106                 unsigned ether_type)
107 {
108         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
109                   | fwnet_set_hdr_ether_type(ether_type);
110 }
111
112 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
113                 unsigned ether_type, unsigned dg_size, unsigned dgl)
114 {
115         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
116                   | fwnet_set_hdr_dg_size(dg_size)
117                   | fwnet_set_hdr_ether_type(ether_type);
118         hdr->w1 = fwnet_set_hdr_dgl(dgl);
119 }
120
121 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
122                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
123 {
124         hdr->w0 = fwnet_set_hdr_lf(lf)
125                   | fwnet_set_hdr_dg_size(dg_size)
126                   | fwnet_set_hdr_fg_off(fg_off);
127         hdr->w1 = fwnet_set_hdr_dgl(dgl);
128 }
129
130 /* This list keeps track of what parts of the datagram have been filled in */
131 struct fwnet_fragment_info {
132         struct list_head fi_link;
133         u16 offset;
134         u16 len;
135 };
136
137 struct fwnet_partial_datagram {
138         struct list_head pd_link;
139         struct list_head fi_list;
140         struct sk_buff *skb;
141         /* FIXME Why not use skb->data? */
142         char *pbuf;
143         u16 datagram_label;
144         u16 ether_type;
145         u16 datagram_size;
146 };
147
148 static DEFINE_MUTEX(fwnet_device_mutex);
149 static LIST_HEAD(fwnet_device_list);
150
151 struct fwnet_device {
152         struct list_head dev_link;
153         spinlock_t lock;
154         enum {
155                 FWNET_BROADCAST_ERROR,
156                 FWNET_BROADCAST_RUNNING,
157                 FWNET_BROADCAST_STOPPED,
158         } broadcast_state;
159         struct fw_iso_context *broadcast_rcv_context;
160         struct fw_iso_buffer broadcast_rcv_buffer;
161         void **broadcast_rcv_buffer_ptrs;
162         unsigned broadcast_rcv_next_ptr;
163         unsigned num_broadcast_rcv_ptrs;
164         unsigned rcv_buffer_size;
165         /*
166          * This value is the maximum unfragmented datagram size that can be
167          * sent by the hardware.  It already has the GASP overhead and the
168          * unfragmented datagram header overhead calculated into it.
169          */
170         unsigned broadcast_xmt_max_payload;
171         u16 broadcast_xmt_datagramlabel;
172
173         /*
174          * The CSR address that remote nodes must send datagrams to for us to
175          * receive them.
176          */
177         struct fw_address_handler handler;
178         u64 local_fifo;
179
180         /* Number of tx datagrams that have been queued but not yet acked */
181         int queued_datagrams;
182
183         int peer_count;
184         struct list_head peer_list;
185         struct fw_card *card;
186         struct net_device *netdev;
187 };
188
189 struct fwnet_peer {
190         struct list_head peer_link;
191         struct fwnet_device *dev;
192         u64 guid;
193         u64 fifo;
194
195         /* guarded by dev->lock */
196         struct list_head pd_list; /* received partial datagrams */
197         unsigned pdg_size;        /* pd_list size */
198
199         u16 datagram_label;       /* outgoing datagram label */
200         u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
201         int node_id;
202         int generation;
203         unsigned speed;
204 };
205
206 /* This is our task struct. It's used for the packet complete callback.  */
207 struct fwnet_packet_task {
208         struct fw_transaction transaction;
209         struct rfc2734_header hdr;
210         struct sk_buff *skb;
211         struct fwnet_device *dev;
212
213         int outstanding_pkts;
214         u64 fifo_addr;
215         u16 dest_node;
216         u16 max_payload;
217         u8 generation;
218         u8 speed;
219         u8 enqueued;
220 };
221
222 /*
223  * saddr == NULL means use device source address.
224  * daddr == NULL means leave destination address (eg unresolved arp).
225  */
226 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
227                         unsigned short type, const void *daddr,
228                         const void *saddr, unsigned len)
229 {
230         struct fwnet_header *h;
231
232         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
233         put_unaligned_be16(type, &h->h_proto);
234
235         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
236                 memset(h->h_dest, 0, net->addr_len);
237
238                 return net->hard_header_len;
239         }
240
241         if (daddr) {
242                 memcpy(h->h_dest, daddr, net->addr_len);
243
244                 return net->hard_header_len;
245         }
246
247         return -net->hard_header_len;
248 }
249
250 static int fwnet_header_rebuild(struct sk_buff *skb)
251 {
252         struct fwnet_header *h = (struct fwnet_header *)skb->data;
253
254         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
255                 return arp_find((unsigned char *)&h->h_dest, skb);
256
257         fw_notify("%s: unable to resolve type %04x addresses\n",
258                   skb->dev->name, be16_to_cpu(h->h_proto));
259         return 0;
260 }
261
262 static int fwnet_header_cache(const struct neighbour *neigh,
263                               struct hh_cache *hh)
264 {
265         struct net_device *net;
266         struct fwnet_header *h;
267
268         if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
269                 return -1;
270         net = neigh->dev;
271         h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
272         h->h_proto = hh->hh_type;
273         memcpy(h->h_dest, neigh->ha, net->addr_len);
274         hh->hh_len = FWNET_HLEN;
275
276         return 0;
277 }
278
279 /* Called by Address Resolution module to notify changes in address. */
280 static void fwnet_header_cache_update(struct hh_cache *hh,
281                 const struct net_device *net, const unsigned char *haddr)
282 {
283         memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
284 }
285
286 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
287 {
288         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
289
290         return FWNET_ALEN;
291 }
292
293 static const struct header_ops fwnet_header_ops = {
294         .create         = fwnet_header_create,
295         .rebuild        = fwnet_header_rebuild,
296         .cache          = fwnet_header_cache,
297         .cache_update   = fwnet_header_cache_update,
298         .parse          = fwnet_header_parse,
299 };
300
301 /* FIXME: is this correct for all cases? */
302 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
303                                unsigned offset, unsigned len)
304 {
305         struct fwnet_fragment_info *fi;
306         unsigned end = offset + len;
307
308         list_for_each_entry(fi, &pd->fi_list, fi_link)
309                 if (offset < fi->offset + fi->len && end > fi->offset)
310                         return true;
311
312         return false;
313 }
314
315 /* Assumes that new fragment does not overlap any existing fragments */
316 static struct fwnet_fragment_info *fwnet_frag_new(
317         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
318 {
319         struct fwnet_fragment_info *fi, *fi2, *new;
320         struct list_head *list;
321
322         list = &pd->fi_list;
323         list_for_each_entry(fi, &pd->fi_list, fi_link) {
324                 if (fi->offset + fi->len == offset) {
325                         /* The new fragment can be tacked on to the end */
326                         /* Did the new fragment plug a hole? */
327                         fi2 = list_entry(fi->fi_link.next,
328                                          struct fwnet_fragment_info, fi_link);
329                         if (fi->offset + fi->len == fi2->offset) {
330                                 /* glue fragments together */
331                                 fi->len += len + fi2->len;
332                                 list_del(&fi2->fi_link);
333                                 kfree(fi2);
334                         } else {
335                                 fi->len += len;
336                         }
337
338                         return fi;
339                 }
340                 if (offset + len == fi->offset) {
341                         /* The new fragment can be tacked on to the beginning */
342                         /* Did the new fragment plug a hole? */
343                         fi2 = list_entry(fi->fi_link.prev,
344                                          struct fwnet_fragment_info, fi_link);
345                         if (fi2->offset + fi2->len == fi->offset) {
346                                 /* glue fragments together */
347                                 fi2->len += fi->len + len;
348                                 list_del(&fi->fi_link);
349                                 kfree(fi);
350
351                                 return fi2;
352                         }
353                         fi->offset = offset;
354                         fi->len += len;
355
356                         return fi;
357                 }
358                 if (offset > fi->offset + fi->len) {
359                         list = &fi->fi_link;
360                         break;
361                 }
362                 if (offset + len < fi->offset) {
363                         list = fi->fi_link.prev;
364                         break;
365                 }
366         }
367
368         new = kmalloc(sizeof(*new), GFP_ATOMIC);
369         if (!new) {
370                 fw_error("out of memory\n");
371                 return NULL;
372         }
373
374         new->offset = offset;
375         new->len = len;
376         list_add(&new->fi_link, list);
377
378         return new;
379 }
380
381 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
382                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
383                 void *frag_buf, unsigned frag_off, unsigned frag_len)
384 {
385         struct fwnet_partial_datagram *new;
386         struct fwnet_fragment_info *fi;
387
388         new = kmalloc(sizeof(*new), GFP_ATOMIC);
389         if (!new)
390                 goto fail;
391
392         INIT_LIST_HEAD(&new->fi_list);
393         fi = fwnet_frag_new(new, frag_off, frag_len);
394         if (fi == NULL)
395                 goto fail_w_new;
396
397         new->datagram_label = datagram_label;
398         new->datagram_size = dg_size;
399         new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
400         if (new->skb == NULL)
401                 goto fail_w_fi;
402
403         skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
404         new->pbuf = skb_put(new->skb, dg_size);
405         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
406         list_add_tail(&new->pd_link, &peer->pd_list);
407
408         return new;
409
410 fail_w_fi:
411         kfree(fi);
412 fail_w_new:
413         kfree(new);
414 fail:
415         fw_error("out of memory\n");
416
417         return NULL;
418 }
419
420 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
421                                                     u16 datagram_label)
422 {
423         struct fwnet_partial_datagram *pd;
424
425         list_for_each_entry(pd, &peer->pd_list, pd_link)
426                 if (pd->datagram_label == datagram_label)
427                         return pd;
428
429         return NULL;
430 }
431
432
433 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
434 {
435         struct fwnet_fragment_info *fi, *n;
436
437         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
438                 kfree(fi);
439
440         list_del(&old->pd_link);
441         dev_kfree_skb_any(old->skb);
442         kfree(old);
443 }
444
445 static bool fwnet_pd_update(struct fwnet_peer *peer,
446                 struct fwnet_partial_datagram *pd, void *frag_buf,
447                 unsigned frag_off, unsigned frag_len)
448 {
449         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
450                 return false;
451
452         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
453
454         /*
455          * Move list entry to beginnig of list so that oldest partial
456          * datagrams percolate to the end of the list
457          */
458         list_move_tail(&pd->pd_link, &peer->pd_list);
459
460         return true;
461 }
462
463 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
464 {
465         struct fwnet_fragment_info *fi;
466
467         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
468
469         return fi->len == pd->datagram_size;
470 }
471
472 /* caller must hold dev->lock */
473 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
474                                                   u64 guid)
475 {
476         struct fwnet_peer *peer;
477
478         list_for_each_entry(peer, &dev->peer_list, peer_link)
479                 if (peer->guid == guid)
480                         return peer;
481
482         return NULL;
483 }
484
485 /* caller must hold dev->lock */
486 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
487                                                 int node_id, int generation)
488 {
489         struct fwnet_peer *peer;
490
491         list_for_each_entry(peer, &dev->peer_list, peer_link)
492                 if (peer->node_id    == node_id &&
493                     peer->generation == generation)
494                         return peer;
495
496         return NULL;
497 }
498
499 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
500 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
501 {
502         max_rec = min(max_rec, speed + 8);
503         max_rec = min(max_rec, 0xbU); /* <= 4096 */
504         if (max_rec < 8) {
505                 fw_notify("max_rec %x out of range\n", max_rec);
506                 max_rec = 8;
507         }
508
509         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
510 }
511
512
513 static int fwnet_finish_incoming_packet(struct net_device *net,
514                                         struct sk_buff *skb, u16 source_node_id,
515                                         bool is_broadcast, u16 ether_type)
516 {
517         struct fwnet_device *dev;
518         static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
519         int status;
520         __be64 guid;
521
522         dev = netdev_priv(net);
523         /* Write metadata, and then pass to the receive level */
524         skb->dev = net;
525         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
526
527         /*
528          * Parse the encapsulation header. This actually does the job of
529          * converting to an ethernet frame header, as well as arp
530          * conversion if needed. ARP conversion is easier in this
531          * direction, since we are using ethernet as our backend.
532          */
533         /*
534          * If this is an ARP packet, convert it. First, we want to make
535          * use of some of the fields, since they tell us a little bit
536          * about the sending machine.
537          */
538         if (ether_type == ETH_P_ARP) {
539                 struct rfc2734_arp *arp1394;
540                 struct arphdr *arp;
541                 unsigned char *arp_ptr;
542                 u64 fifo_addr;
543                 u64 peer_guid;
544                 unsigned sspd;
545                 u16 max_payload;
546                 struct fwnet_peer *peer;
547                 unsigned long flags;
548
549                 arp1394   = (struct rfc2734_arp *)skb->data;
550                 arp       = (struct arphdr *)skb->data;
551                 arp_ptr   = (unsigned char *)(arp + 1);
552                 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
553                 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
554                                 | get_unaligned_be32(&arp1394->fifo_lo);
555
556                 sspd = arp1394->sspd;
557                 /* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
558                 if (sspd > SCODE_3200) {
559                         fw_notify("sspd %x out of range\n", sspd);
560                         sspd = SCODE_3200;
561                 }
562                 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
563
564                 spin_lock_irqsave(&dev->lock, flags);
565                 peer = fwnet_peer_find_by_guid(dev, peer_guid);
566                 if (peer) {
567                         peer->fifo = fifo_addr;
568
569                         if (peer->speed > sspd)
570                                 peer->speed = sspd;
571                         if (peer->max_payload > max_payload)
572                                 peer->max_payload = max_payload;
573                 }
574                 spin_unlock_irqrestore(&dev->lock, flags);
575
576                 if (!peer) {
577                         fw_notify("No peer for ARP packet from %016llx\n",
578                                   (unsigned long long)peer_guid);
579                         goto no_peer;
580                 }
581
582                 /*
583                  * Now that we're done with the 1394 specific stuff, we'll
584                  * need to alter some of the data.  Believe it or not, all
585                  * that needs to be done is sender_IP_address needs to be
586                  * moved, the destination hardware address get stuffed
587                  * in and the hardware address length set to 8.
588                  *
589                  * IMPORTANT: The code below overwrites 1394 specific data
590                  * needed above so keep the munging of the data for the
591                  * higher level IP stack last.
592                  */
593
594                 arp->ar_hln = 8;
595                 /* skip over sender unique id */
596                 arp_ptr += arp->ar_hln;
597                 /* move sender IP addr */
598                 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
599                 /* skip over sender IP addr */
600                 arp_ptr += arp->ar_pln;
601
602                 if (arp->ar_op == htons(ARPOP_REQUEST))
603                         memset(arp_ptr, 0, sizeof(u64));
604                 else
605                         memcpy(arp_ptr, net->dev_addr, sizeof(u64));
606         }
607
608         /* Now add the ethernet header. */
609         guid = cpu_to_be64(dev->card->guid);
610         if (dev_hard_header(skb, net, ether_type,
611                            is_broadcast ? &broadcast_hw : &guid,
612                            NULL, skb->len) >= 0) {
613                 struct fwnet_header *eth;
614                 u16 *rawp;
615                 __be16 protocol;
616
617                 skb_reset_mac_header(skb);
618                 skb_pull(skb, sizeof(*eth));
619                 eth = (struct fwnet_header *)skb_mac_header(skb);
620                 if (*eth->h_dest & 1) {
621                         if (memcmp(eth->h_dest, net->broadcast,
622                                    net->addr_len) == 0)
623                                 skb->pkt_type = PACKET_BROADCAST;
624 #if 0
625                         else
626                                 skb->pkt_type = PACKET_MULTICAST;
627 #endif
628                 } else {
629                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
630                                 skb->pkt_type = PACKET_OTHERHOST;
631                 }
632                 if (ntohs(eth->h_proto) >= 1536) {
633                         protocol = eth->h_proto;
634                 } else {
635                         rawp = (u16 *)skb->data;
636                         if (*rawp == 0xffff)
637                                 protocol = htons(ETH_P_802_3);
638                         else
639                                 protocol = htons(ETH_P_802_2);
640                 }
641                 skb->protocol = protocol;
642         }
643         status = netif_rx(skb);
644         if (status == NET_RX_DROP) {
645                 net->stats.rx_errors++;
646                 net->stats.rx_dropped++;
647         } else {
648                 net->stats.rx_packets++;
649                 net->stats.rx_bytes += skb->len;
650         }
651
652         return 0;
653
654  no_peer:
655         net->stats.rx_errors++;
656         net->stats.rx_dropped++;
657
658         dev_kfree_skb_any(skb);
659
660         return -ENOENT;
661 }
662
663 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
664                                  int source_node_id, int generation,
665                                  bool is_broadcast)
666 {
667         struct sk_buff *skb;
668         struct net_device *net = dev->netdev;
669         struct rfc2734_header hdr;
670         unsigned lf;
671         unsigned long flags;
672         struct fwnet_peer *peer;
673         struct fwnet_partial_datagram *pd;
674         int fg_off;
675         int dg_size;
676         u16 datagram_label;
677         int retval;
678         u16 ether_type;
679
680         hdr.w0 = be32_to_cpu(buf[0]);
681         lf = fwnet_get_hdr_lf(&hdr);
682         if (lf == RFC2374_HDR_UNFRAG) {
683                 /*
684                  * An unfragmented datagram has been received by the ieee1394
685                  * bus. Build an skbuff around it so we can pass it to the
686                  * high level network layer.
687                  */
688                 ether_type = fwnet_get_hdr_ether_type(&hdr);
689                 buf++;
690                 len -= RFC2374_UNFRAG_HDR_SIZE;
691
692                 skb = dev_alloc_skb(len + net->hard_header_len + 15);
693                 if (unlikely(!skb)) {
694                         fw_error("out of memory\n");
695                         net->stats.rx_dropped++;
696
697                         return -ENOMEM;
698                 }
699                 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
700                 memcpy(skb_put(skb, len), buf, len);
701
702                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
703                                                     is_broadcast, ether_type);
704         }
705         /* A datagram fragment has been received, now the fun begins. */
706         hdr.w1 = ntohl(buf[1]);
707         buf += 2;
708         len -= RFC2374_FRAG_HDR_SIZE;
709         if (lf == RFC2374_HDR_FIRSTFRAG) {
710                 ether_type = fwnet_get_hdr_ether_type(&hdr);
711                 fg_off = 0;
712         } else {
713                 ether_type = 0;
714                 fg_off = fwnet_get_hdr_fg_off(&hdr);
715         }
716         datagram_label = fwnet_get_hdr_dgl(&hdr);
717         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
718
719         spin_lock_irqsave(&dev->lock, flags);
720
721         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
722         if (!peer) {
723                 retval = -ENOENT;
724                 goto fail;
725         }
726
727         pd = fwnet_pd_find(peer, datagram_label);
728         if (pd == NULL) {
729                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
730                         /* remove the oldest */
731                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
732                                 struct fwnet_partial_datagram, pd_link));
733                         peer->pdg_size--;
734                 }
735                 pd = fwnet_pd_new(net, peer, datagram_label,
736                                   dg_size, buf, fg_off, len);
737                 if (pd == NULL) {
738                         retval = -ENOMEM;
739                         goto fail;
740                 }
741                 peer->pdg_size++;
742         } else {
743                 if (fwnet_frag_overlap(pd, fg_off, len) ||
744                     pd->datagram_size != dg_size) {
745                         /*
746                          * Differing datagram sizes or overlapping fragments,
747                          * discard old datagram and start a new one.
748                          */
749                         fwnet_pd_delete(pd);
750                         pd = fwnet_pd_new(net, peer, datagram_label,
751                                           dg_size, buf, fg_off, len);
752                         if (pd == NULL) {
753                                 peer->pdg_size--;
754                                 retval = -ENOMEM;
755                                 goto fail;
756                         }
757                 } else {
758                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
759                                 /*
760                                  * Couldn't save off fragment anyway
761                                  * so might as well obliterate the
762                                  * datagram now.
763                                  */
764                                 fwnet_pd_delete(pd);
765                                 peer->pdg_size--;
766                                 retval = -ENOMEM;
767                                 goto fail;
768                         }
769                 }
770         } /* new datagram or add to existing one */
771
772         if (lf == RFC2374_HDR_FIRSTFRAG)
773                 pd->ether_type = ether_type;
774
775         if (fwnet_pd_is_complete(pd)) {
776                 ether_type = pd->ether_type;
777                 peer->pdg_size--;
778                 skb = skb_get(pd->skb);
779                 fwnet_pd_delete(pd);
780
781                 spin_unlock_irqrestore(&dev->lock, flags);
782
783                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
784                                                     false, ether_type);
785         }
786         /*
787          * Datagram is not complete, we're done for the
788          * moment.
789          */
790         retval = 0;
791  fail:
792         spin_unlock_irqrestore(&dev->lock, flags);
793
794         return retval;
795 }
796
797 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
798                 int tcode, int destination, int source, int generation,
799                 unsigned long long offset, void *payload, size_t length,
800                 void *callback_data)
801 {
802         struct fwnet_device *dev = callback_data;
803         int rcode;
804
805         if (destination == IEEE1394_ALL_NODES) {
806                 kfree(r);
807
808                 return;
809         }
810
811         if (offset != dev->handler.offset)
812                 rcode = RCODE_ADDRESS_ERROR;
813         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
814                 rcode = RCODE_TYPE_ERROR;
815         else if (fwnet_incoming_packet(dev, payload, length,
816                                        source, generation, false) != 0) {
817                 fw_error("Incoming packet failure\n");
818                 rcode = RCODE_CONFLICT_ERROR;
819         } else
820                 rcode = RCODE_COMPLETE;
821
822         fw_send_response(card, r, rcode);
823 }
824
825 static void fwnet_receive_broadcast(struct fw_iso_context *context,
826                 u32 cycle, size_t header_length, void *header, void *data)
827 {
828         struct fwnet_device *dev;
829         struct fw_iso_packet packet;
830         struct fw_card *card;
831         __be16 *hdr_ptr;
832         __be32 *buf_ptr;
833         int retval;
834         u32 length;
835         u16 source_node_id;
836         u32 specifier_id;
837         u32 ver;
838         unsigned long offset;
839         unsigned long flags;
840
841         dev = data;
842         card = dev->card;
843         hdr_ptr = header;
844         length = be16_to_cpup(hdr_ptr);
845
846         spin_lock_irqsave(&dev->lock, flags);
847
848         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
849         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
850         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
851                 dev->broadcast_rcv_next_ptr = 0;
852
853         spin_unlock_irqrestore(&dev->lock, flags);
854
855         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
856                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
857         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
858         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
859
860         if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
861                 buf_ptr += 2;
862                 length -= IEEE1394_GASP_HDR_SIZE;
863                 fwnet_incoming_packet(dev, buf_ptr, length,
864                                       source_node_id, -1, true);
865         }
866
867         packet.payload_length = dev->rcv_buffer_size;
868         packet.interrupt = 1;
869         packet.skip = 0;
870         packet.tag = 3;
871         packet.sy = 0;
872         packet.header_length = IEEE1394_GASP_HDR_SIZE;
873
874         spin_lock_irqsave(&dev->lock, flags);
875
876         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
877                                       &dev->broadcast_rcv_buffer, offset);
878
879         spin_unlock_irqrestore(&dev->lock, flags);
880
881         if (retval < 0)
882                 fw_error("requeue failed\n");
883 }
884
885 static struct kmem_cache *fwnet_packet_task_cache;
886
887 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
888 {
889         dev_kfree_skb_any(ptask->skb);
890         kmem_cache_free(fwnet_packet_task_cache, ptask);
891 }
892
893 /* Caller must hold dev->lock. */
894 static void dec_queued_datagrams(struct fwnet_device *dev)
895 {
896         if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
897                 netif_wake_queue(dev->netdev);
898 }
899
900 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
901
902 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
903 {
904         struct fwnet_device *dev = ptask->dev;
905         struct sk_buff *skb = ptask->skb;
906         unsigned long flags;
907         bool free;
908
909         spin_lock_irqsave(&dev->lock, flags);
910
911         ptask->outstanding_pkts--;
912
913         /* Check whether we or the networking TX soft-IRQ is last user. */
914         free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
915         if (free)
916                 dec_queued_datagrams(dev);
917
918         if (ptask->outstanding_pkts == 0) {
919                 dev->netdev->stats.tx_packets++;
920                 dev->netdev->stats.tx_bytes += skb->len;
921         }
922
923         spin_unlock_irqrestore(&dev->lock, flags);
924
925         if (ptask->outstanding_pkts > 0) {
926                 u16 dg_size;
927                 u16 fg_off;
928                 u16 datagram_label;
929                 u16 lf;
930
931                 /* Update the ptask to point to the next fragment and send it */
932                 lf = fwnet_get_hdr_lf(&ptask->hdr);
933                 switch (lf) {
934                 case RFC2374_HDR_LASTFRAG:
935                 case RFC2374_HDR_UNFRAG:
936                 default:
937                         fw_error("Outstanding packet %x lf %x, header %x,%x\n",
938                                  ptask->outstanding_pkts, lf, ptask->hdr.w0,
939                                  ptask->hdr.w1);
940                         BUG();
941
942                 case RFC2374_HDR_FIRSTFRAG:
943                         /* Set frag type here for future interior fragments */
944                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
945                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
946                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
947                         break;
948
949                 case RFC2374_HDR_INTFRAG:
950                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
951                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
952                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
953                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
954                         break;
955                 }
956
957                 skb_pull(skb, ptask->max_payload);
958                 if (ptask->outstanding_pkts > 1) {
959                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
960                                           dg_size, fg_off, datagram_label);
961                 } else {
962                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
963                                           dg_size, fg_off, datagram_label);
964                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
965                 }
966                 fwnet_send_packet(ptask);
967         }
968
969         if (free)
970                 fwnet_free_ptask(ptask);
971 }
972
973 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
974 {
975         struct fwnet_device *dev = ptask->dev;
976         unsigned long flags;
977         bool free;
978
979         spin_lock_irqsave(&dev->lock, flags);
980
981         /* One fragment failed; don't try to send remaining fragments. */
982         ptask->outstanding_pkts = 0;
983
984         /* Check whether we or the networking TX soft-IRQ is last user. */
985         free = ptask->enqueued;
986         if (free)
987                 dec_queued_datagrams(dev);
988
989         dev->netdev->stats.tx_dropped++;
990         dev->netdev->stats.tx_errors++;
991
992         spin_unlock_irqrestore(&dev->lock, flags);
993
994         if (free)
995                 fwnet_free_ptask(ptask);
996 }
997
998 static void fwnet_write_complete(struct fw_card *card, int rcode,
999                                  void *payload, size_t length, void *data)
1000 {
1001         struct fwnet_packet_task *ptask = data;
1002         static unsigned long j;
1003         static int last_rcode, errors_skipped;
1004
1005         if (rcode == RCODE_COMPLETE) {
1006                 fwnet_transmit_packet_done(ptask);
1007         } else {
1008                 fwnet_transmit_packet_failed(ptask);
1009
1010                 if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1011                         fw_error("fwnet_write_complete: "
1012                                 "failed: %x (skipped %d)\n", rcode, errors_skipped);
1013
1014                         errors_skipped = 0;
1015                         last_rcode = rcode;
1016                 } else
1017                         errors_skipped++;
1018         }
1019 }
1020
1021 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1022 {
1023         struct fwnet_device *dev;
1024         unsigned tx_len;
1025         struct rfc2734_header *bufhdr;
1026         unsigned long flags;
1027         bool free;
1028
1029         dev = ptask->dev;
1030         tx_len = ptask->max_payload;
1031         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1032         case RFC2374_HDR_UNFRAG:
1033                 bufhdr = (struct rfc2734_header *)
1034                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1035                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1036                 break;
1037
1038         case RFC2374_HDR_FIRSTFRAG:
1039         case RFC2374_HDR_INTFRAG:
1040         case RFC2374_HDR_LASTFRAG:
1041                 bufhdr = (struct rfc2734_header *)
1042                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1043                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1044                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1045                 break;
1046
1047         default:
1048                 BUG();
1049         }
1050         if (ptask->dest_node == IEEE1394_ALL_NODES) {
1051                 u8 *p;
1052                 int generation;
1053                 int node_id;
1054
1055                 /* ptask->generation may not have been set yet */
1056                 generation = dev->card->generation;
1057                 smp_rmb();
1058                 node_id = dev->card->node_id;
1059
1060                 p = skb_push(ptask->skb, 8);
1061                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1062                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1063                                                 | RFC2734_SW_VERSION, &p[4]);
1064
1065                 /* We should not transmit if broadcast_channel.valid == 0. */
1066                 fw_send_request(dev->card, &ptask->transaction,
1067                                 TCODE_STREAM_DATA,
1068                                 fw_stream_packet_destination_id(3,
1069                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1070                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1071                                 tx_len + 8, fwnet_write_complete, ptask);
1072
1073                 spin_lock_irqsave(&dev->lock, flags);
1074
1075                 /* If the AT tasklet already ran, we may be last user. */
1076                 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1077                 if (!free)
1078                         ptask->enqueued = true;
1079                 else
1080                         dec_queued_datagrams(dev);
1081
1082                 spin_unlock_irqrestore(&dev->lock, flags);
1083
1084                 goto out;
1085         }
1086
1087         fw_send_request(dev->card, &ptask->transaction,
1088                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1089                         ptask->generation, ptask->speed, ptask->fifo_addr,
1090                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1091
1092         spin_lock_irqsave(&dev->lock, flags);
1093
1094         /* If the AT tasklet already ran, we may be last user. */
1095         free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1096         if (!free)
1097                 ptask->enqueued = true;
1098         else
1099                 dec_queued_datagrams(dev);
1100
1101         spin_unlock_irqrestore(&dev->lock, flags);
1102
1103         dev->netdev->trans_start = jiffies;
1104  out:
1105         if (free)
1106                 fwnet_free_ptask(ptask);
1107
1108         return 0;
1109 }
1110
1111 static int fwnet_broadcast_start(struct fwnet_device *dev)
1112 {
1113         struct fw_iso_context *context;
1114         int retval;
1115         unsigned num_packets;
1116         unsigned max_receive;
1117         struct fw_iso_packet packet;
1118         unsigned long offset;
1119         unsigned u;
1120
1121         if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1122                 /* outside OHCI posted write area? */
1123                 static const struct fw_address_region region = {
1124                         .start = 0xffff00000000ULL,
1125                         .end   = CSR_REGISTER_BASE,
1126                 };
1127
1128                 dev->handler.length = 4096;
1129                 dev->handler.address_callback = fwnet_receive_packet;
1130                 dev->handler.callback_data = dev;
1131
1132                 retval = fw_core_add_address_handler(&dev->handler, &region);
1133                 if (retval < 0)
1134                         goto failed_initial;
1135
1136                 dev->local_fifo = dev->handler.offset;
1137         }
1138
1139         max_receive = 1U << (dev->card->max_receive + 1);
1140         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1141
1142         if (!dev->broadcast_rcv_context) {
1143                 void **ptrptr;
1144
1145                 context = fw_iso_context_create(dev->card,
1146                     FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1147                     dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1148                 if (IS_ERR(context)) {
1149                         retval = PTR_ERR(context);
1150                         goto failed_context_create;
1151                 }
1152
1153                 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1154                     dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1155                 if (retval < 0)
1156                         goto failed_buffer_init;
1157
1158                 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1159                 if (!ptrptr) {
1160                         retval = -ENOMEM;
1161                         goto failed_ptrs_alloc;
1162                 }
1163
1164                 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1165                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1166                         void *ptr;
1167                         unsigned v;
1168
1169                         ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1170                         for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1171                                 *ptrptr++ = (void *)
1172                                                 ((char *)ptr + v * max_receive);
1173                 }
1174                 dev->broadcast_rcv_context = context;
1175         } else {
1176                 context = dev->broadcast_rcv_context;
1177         }
1178
1179         packet.payload_length = max_receive;
1180         packet.interrupt = 1;
1181         packet.skip = 0;
1182         packet.tag = 3;
1183         packet.sy = 0;
1184         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1185         offset = 0;
1186
1187         for (u = 0; u < num_packets; u++) {
1188                 retval = fw_iso_context_queue(context, &packet,
1189                                 &dev->broadcast_rcv_buffer, offset);
1190                 if (retval < 0)
1191                         goto failed_rcv_queue;
1192
1193                 offset += max_receive;
1194         }
1195         dev->num_broadcast_rcv_ptrs = num_packets;
1196         dev->rcv_buffer_size = max_receive;
1197         dev->broadcast_rcv_next_ptr = 0U;
1198         retval = fw_iso_context_start(context, -1, 0,
1199                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1200         if (retval < 0)
1201                 goto failed_rcv_queue;
1202
1203         /* FIXME: adjust it according to the min. speed of all known peers? */
1204         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1205                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1206         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1207
1208         return 0;
1209
1210  failed_rcv_queue:
1211         kfree(dev->broadcast_rcv_buffer_ptrs);
1212         dev->broadcast_rcv_buffer_ptrs = NULL;
1213  failed_ptrs_alloc:
1214         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1215  failed_buffer_init:
1216         fw_iso_context_destroy(context);
1217         dev->broadcast_rcv_context = NULL;
1218  failed_context_create:
1219         fw_core_remove_address_handler(&dev->handler);
1220  failed_initial:
1221         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1222
1223         return retval;
1224 }
1225
1226 static void set_carrier_state(struct fwnet_device *dev)
1227 {
1228         if (dev->peer_count > 1)
1229                 netif_carrier_on(dev->netdev);
1230         else
1231                 netif_carrier_off(dev->netdev);
1232 }
1233
1234 /* ifup */
1235 static int fwnet_open(struct net_device *net)
1236 {
1237         struct fwnet_device *dev = netdev_priv(net);
1238         int ret;
1239
1240         if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1241                 ret = fwnet_broadcast_start(dev);
1242                 if (ret)
1243                         return ret;
1244         }
1245         netif_start_queue(net);
1246
1247         spin_lock_irq(&dev->lock);
1248         set_carrier_state(dev);
1249         spin_unlock_irq(&dev->lock);
1250
1251         return 0;
1252 }
1253
1254 /* ifdown */
1255 static int fwnet_stop(struct net_device *net)
1256 {
1257         netif_stop_queue(net);
1258
1259         /* Deallocate iso context for use by other applications? */
1260
1261         return 0;
1262 }
1263
1264 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1265 {
1266         struct fwnet_header hdr_buf;
1267         struct fwnet_device *dev = netdev_priv(net);
1268         __be16 proto;
1269         u16 dest_node;
1270         unsigned max_payload;
1271         u16 dg_size;
1272         u16 *datagram_label_ptr;
1273         struct fwnet_packet_task *ptask;
1274         struct fwnet_peer *peer;
1275         unsigned long flags;
1276
1277         spin_lock_irqsave(&dev->lock, flags);
1278
1279         /* Can this happen? */
1280         if (netif_queue_stopped(dev->netdev)) {
1281                 spin_unlock_irqrestore(&dev->lock, flags);
1282
1283                 return NETDEV_TX_BUSY;
1284         }
1285
1286         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1287         if (ptask == NULL)
1288                 goto fail;
1289
1290         skb = skb_share_check(skb, GFP_ATOMIC);
1291         if (!skb)
1292                 goto fail;
1293
1294         /*
1295          * Make a copy of the driver-specific header.
1296          * We might need to rebuild the header on tx failure.
1297          */
1298         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1299         skb_pull(skb, sizeof(hdr_buf));
1300
1301         proto = hdr_buf.h_proto;
1302         dg_size = skb->len;
1303
1304         /*
1305          * Set the transmission type for the packet.  ARP packets and IP
1306          * broadcast packets are sent via GASP.
1307          */
1308         if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1309             || proto == htons(ETH_P_ARP)
1310             || (proto == htons(ETH_P_IP)
1311                 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1312                 max_payload        = dev->broadcast_xmt_max_payload;
1313                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1314
1315                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1316                 ptask->generation  = 0;
1317                 ptask->dest_node   = IEEE1394_ALL_NODES;
1318                 ptask->speed       = SCODE_100;
1319         } else {
1320                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1321                 u8 generation;
1322
1323                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1324                 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1325                         goto fail;
1326
1327                 generation         = peer->generation;
1328                 dest_node          = peer->node_id;
1329                 max_payload        = peer->max_payload;
1330                 datagram_label_ptr = &peer->datagram_label;
1331
1332                 ptask->fifo_addr   = peer->fifo;
1333                 ptask->generation  = generation;
1334                 ptask->dest_node   = dest_node;
1335                 ptask->speed       = peer->speed;
1336         }
1337
1338         /* If this is an ARP packet, convert it */
1339         if (proto == htons(ETH_P_ARP)) {
1340                 struct arphdr *arp = (struct arphdr *)skb->data;
1341                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1342                 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1343                 __be32 ipaddr;
1344
1345                 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1346
1347                 arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1348                 arp1394->max_rec        = dev->card->max_receive;
1349                 arp1394->sspd           = dev->card->link_speed;
1350
1351                 put_unaligned_be16(dev->local_fifo >> 32,
1352                                    &arp1394->fifo_hi);
1353                 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1354                                    &arp1394->fifo_lo);
1355                 put_unaligned(ipaddr, &arp1394->sip);
1356         }
1357
1358         ptask->hdr.w0 = 0;
1359         ptask->hdr.w1 = 0;
1360         ptask->skb = skb;
1361         ptask->dev = dev;
1362
1363         /* Does it all fit in one packet? */
1364         if (dg_size <= max_payload) {
1365                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1366                 ptask->outstanding_pkts = 1;
1367                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1368         } else {
1369                 u16 datagram_label;
1370
1371                 max_payload -= RFC2374_FRAG_OVERHEAD;
1372                 datagram_label = (*datagram_label_ptr)++;
1373                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1374                                   datagram_label);
1375                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1376                 max_payload += RFC2374_FRAG_HDR_SIZE;
1377         }
1378
1379         if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1380                 netif_stop_queue(dev->netdev);
1381
1382         spin_unlock_irqrestore(&dev->lock, flags);
1383
1384         ptask->max_payload = max_payload;
1385         ptask->enqueued    = 0;
1386
1387         fwnet_send_packet(ptask);
1388
1389         return NETDEV_TX_OK;
1390
1391  fail:
1392         spin_unlock_irqrestore(&dev->lock, flags);
1393
1394         if (ptask)
1395                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1396
1397         if (skb != NULL)
1398                 dev_kfree_skb(skb);
1399
1400         net->stats.tx_dropped++;
1401         net->stats.tx_errors++;
1402
1403         /*
1404          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1405          * causes serious problems" here, allegedly.  Before that patch,
1406          * -ERRNO was returned which is not appropriate under Linux 2.6.
1407          * Perhaps more needs to be done?  Stop the queue in serious
1408          * conditions and restart it elsewhere?
1409          */
1410         return NETDEV_TX_OK;
1411 }
1412
1413 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1414 {
1415         if (new_mtu < 68)
1416                 return -EINVAL;
1417
1418         net->mtu = new_mtu;
1419         return 0;
1420 }
1421
1422 static const struct ethtool_ops fwnet_ethtool_ops = {
1423         .get_link       = ethtool_op_get_link,
1424 };
1425
1426 static const struct net_device_ops fwnet_netdev_ops = {
1427         .ndo_open       = fwnet_open,
1428         .ndo_stop       = fwnet_stop,
1429         .ndo_start_xmit = fwnet_tx,
1430         .ndo_change_mtu = fwnet_change_mtu,
1431 };
1432
1433 static void fwnet_init_dev(struct net_device *net)
1434 {
1435         net->header_ops         = &fwnet_header_ops;
1436         net->netdev_ops         = &fwnet_netdev_ops;
1437         net->watchdog_timeo     = 2 * HZ;
1438         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1439         net->features           = NETIF_F_HIGHDMA;
1440         net->addr_len           = FWNET_ALEN;
1441         net->hard_header_len    = FWNET_HLEN;
1442         net->type               = ARPHRD_IEEE1394;
1443         net->tx_queue_len       = FWNET_TX_QUEUE_LEN;
1444         net->ethtool_ops        = &fwnet_ethtool_ops;
1445 }
1446
1447 /* caller must hold fwnet_device_mutex */
1448 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1449 {
1450         struct fwnet_device *dev;
1451
1452         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1453                 if (dev->card == card)
1454                         return dev;
1455
1456         return NULL;
1457 }
1458
1459 static int fwnet_add_peer(struct fwnet_device *dev,
1460                           struct fw_unit *unit, struct fw_device *device)
1461 {
1462         struct fwnet_peer *peer;
1463
1464         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1465         if (!peer)
1466                 return -ENOMEM;
1467
1468         dev_set_drvdata(&unit->device, peer);
1469
1470         peer->dev = dev;
1471         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1472         peer->fifo = FWNET_NO_FIFO_ADDR;
1473         INIT_LIST_HEAD(&peer->pd_list);
1474         peer->pdg_size = 0;
1475         peer->datagram_label = 0;
1476         peer->speed = device->max_speed;
1477         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1478
1479         peer->generation = device->generation;
1480         smp_rmb();
1481         peer->node_id = device->node_id;
1482
1483         spin_lock_irq(&dev->lock);
1484         list_add_tail(&peer->peer_link, &dev->peer_list);
1485         dev->peer_count++;
1486         set_carrier_state(dev);
1487         spin_unlock_irq(&dev->lock);
1488
1489         return 0;
1490 }
1491
1492 static int fwnet_probe(struct device *_dev)
1493 {
1494         struct fw_unit *unit = fw_unit(_dev);
1495         struct fw_device *device = fw_parent_device(unit);
1496         struct fw_card *card = device->card;
1497         struct net_device *net;
1498         bool allocated_netdev = false;
1499         struct fwnet_device *dev;
1500         unsigned max_mtu;
1501         int ret;
1502
1503         mutex_lock(&fwnet_device_mutex);
1504
1505         dev = fwnet_dev_find(card);
1506         if (dev) {
1507                 net = dev->netdev;
1508                 goto have_dev;
1509         }
1510
1511         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1512         if (net == NULL) {
1513                 ret = -ENOMEM;
1514                 goto out;
1515         }
1516
1517         allocated_netdev = true;
1518         SET_NETDEV_DEV(net, card->device);
1519         dev = netdev_priv(net);
1520
1521         spin_lock_init(&dev->lock);
1522         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1523         dev->broadcast_rcv_context = NULL;
1524         dev->broadcast_xmt_max_payload = 0;
1525         dev->broadcast_xmt_datagramlabel = 0;
1526         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1527         dev->queued_datagrams = 0;
1528         INIT_LIST_HEAD(&dev->peer_list);
1529         dev->card = card;
1530         dev->netdev = net;
1531
1532         /*
1533          * Use the RFC 2734 default 1500 octets or the maximum payload
1534          * as initial MTU
1535          */
1536         max_mtu = (1 << (card->max_receive + 1))
1537                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1538         net->mtu = min(1500U, max_mtu);
1539
1540         /* Set our hardware address while we're at it */
1541         put_unaligned_be64(card->guid, net->dev_addr);
1542         put_unaligned_be64(~0ULL, net->broadcast);
1543         ret = register_netdev(net);
1544         if (ret) {
1545                 fw_error("Cannot register the driver\n");
1546                 goto out;
1547         }
1548
1549         list_add_tail(&dev->dev_link, &fwnet_device_list);
1550         fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1551                   net->name, (unsigned long long)card->guid);
1552  have_dev:
1553         ret = fwnet_add_peer(dev, unit, device);
1554         if (ret && allocated_netdev) {
1555                 unregister_netdev(net);
1556                 list_del(&dev->dev_link);
1557         }
1558  out:
1559         if (ret && allocated_netdev)
1560                 free_netdev(net);
1561
1562         mutex_unlock(&fwnet_device_mutex);
1563
1564         return ret;
1565 }
1566
1567 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1568 {
1569         struct fwnet_partial_datagram *pd, *pd_next;
1570
1571         spin_lock_irq(&dev->lock);
1572         list_del(&peer->peer_link);
1573         dev->peer_count--;
1574         set_carrier_state(dev);
1575         spin_unlock_irq(&dev->lock);
1576
1577         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1578                 fwnet_pd_delete(pd);
1579
1580         kfree(peer);
1581 }
1582
1583 static int fwnet_remove(struct device *_dev)
1584 {
1585         struct fwnet_peer *peer = dev_get_drvdata(_dev);
1586         struct fwnet_device *dev = peer->dev;
1587         struct net_device *net;
1588         int i;
1589
1590         mutex_lock(&fwnet_device_mutex);
1591
1592         fwnet_remove_peer(peer, dev);
1593
1594         if (list_empty(&dev->peer_list)) {
1595                 net = dev->netdev;
1596                 unregister_netdev(net);
1597
1598                 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1599                         fw_core_remove_address_handler(&dev->handler);
1600                 if (dev->broadcast_rcv_context) {
1601                         fw_iso_context_stop(dev->broadcast_rcv_context);
1602                         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1603                                               dev->card);
1604                         fw_iso_context_destroy(dev->broadcast_rcv_context);
1605                 }
1606                 for (i = 0; dev->queued_datagrams && i < 5; i++)
1607                         ssleep(1);
1608                 WARN_ON(dev->queued_datagrams);
1609                 list_del(&dev->dev_link);
1610
1611                 free_netdev(net);
1612         }
1613
1614         mutex_unlock(&fwnet_device_mutex);
1615
1616         return 0;
1617 }
1618
1619 /*
1620  * FIXME abort partially sent fragmented datagrams,
1621  * discard partially received fragmented datagrams
1622  */
1623 static void fwnet_update(struct fw_unit *unit)
1624 {
1625         struct fw_device *device = fw_parent_device(unit);
1626         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1627         int generation;
1628
1629         generation = device->generation;
1630
1631         spin_lock_irq(&peer->dev->lock);
1632         peer->node_id    = device->node_id;
1633         peer->generation = generation;
1634         spin_unlock_irq(&peer->dev->lock);
1635 }
1636
1637 static const struct ieee1394_device_id fwnet_id_table[] = {
1638         {
1639                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1640                                 IEEE1394_MATCH_VERSION,
1641                 .specifier_id = IANA_SPECIFIER_ID,
1642                 .version      = RFC2734_SW_VERSION,
1643         },
1644         { }
1645 };
1646
1647 static struct fw_driver fwnet_driver = {
1648         .driver = {
1649                 .owner  = THIS_MODULE,
1650                 .name   = "net",
1651                 .bus    = &fw_bus_type,
1652                 .probe  = fwnet_probe,
1653                 .remove = fwnet_remove,
1654         },
1655         .update   = fwnet_update,
1656         .id_table = fwnet_id_table,
1657 };
1658
1659 static const u32 rfc2374_unit_directory_data[] = {
1660         0x00040000,     /* directory_length             */
1661         0x1200005e,     /* unit_specifier_id: IANA      */
1662         0x81000003,     /* textual descriptor offset    */
1663         0x13000001,     /* unit_sw_version: RFC 2734    */
1664         0x81000005,     /* textual descriptor offset    */
1665         0x00030000,     /* descriptor_length            */
1666         0x00000000,     /* text                         */
1667         0x00000000,     /* minimal ASCII, en            */
1668         0x49414e41,     /* I A N A                      */
1669         0x00030000,     /* descriptor_length            */
1670         0x00000000,     /* text                         */
1671         0x00000000,     /* minimal ASCII, en            */
1672         0x49507634,     /* I P v 4                      */
1673 };
1674
1675 static struct fw_descriptor rfc2374_unit_directory = {
1676         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1677         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1678         .data   = rfc2374_unit_directory_data
1679 };
1680
1681 static int __init fwnet_init(void)
1682 {
1683         int err;
1684
1685         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1686         if (err)
1687                 return err;
1688
1689         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1690                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1691         if (!fwnet_packet_task_cache) {
1692                 err = -ENOMEM;
1693                 goto out;
1694         }
1695
1696         err = driver_register(&fwnet_driver.driver);
1697         if (!err)
1698                 return 0;
1699
1700         kmem_cache_destroy(fwnet_packet_task_cache);
1701 out:
1702         fw_core_remove_descriptor(&rfc2374_unit_directory);
1703
1704         return err;
1705 }
1706 module_init(fwnet_init);
1707
1708 static void __exit fwnet_cleanup(void)
1709 {
1710         driver_unregister(&fwnet_driver.driver);
1711         kmem_cache_destroy(fwnet_packet_task_cache);
1712         fw_core_remove_descriptor(&rfc2374_unit_directory);
1713 }
1714 module_exit(fwnet_cleanup);
1715
1716 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1717 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1718 MODULE_LICENSE("GPL");
1719 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);