Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42 #include <linux/workqueue.h>
43
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48
49 #include "fw-transaction.h"
50 #include "fw-topology.h"
51 #include "fw-device.h"
52
53 /*
54  * So far only bridges from Oxford Semiconductor are known to support
55  * concurrent logins. Depending on firmware, four or two concurrent logins
56  * are possible on OXFW911 and newer Oxsemi bridges.
57  *
58  * Concurrent logins are useful together with cluster filesystems.
59  */
60 static int sbp2_param_exclusive_login = 1;
61 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
62 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
63                  "(default = Y, use N for concurrent initiators)");
64
65 /*
66  * Flags for firmware oddities
67  *
68  * - 128kB max transfer
69  *   Limit transfer size. Necessary for some old bridges.
70  *
71  * - 36 byte inquiry
72  *   When scsi_mod probes the device, let the inquiry command look like that
73  *   from MS Windows.
74  *
75  * - skip mode page 8
76  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
77  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
78  *
79  * - fix capacity
80  *   Tell sd_mod to correct the last sector number reported by read_capacity.
81  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
82  *   Don't use this with devices which don't have this bug.
83  *
84  * - override internal blacklist
85  *   Instead of adding to the built-in blacklist, use only the workarounds
86  *   specified in the module load parameter.
87  *   Useful if a blacklist entry interfered with a non-broken device.
88  */
89 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
90 #define SBP2_WORKAROUND_INQUIRY_36      0x2
91 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
92 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
93 #define SBP2_WORKAROUND_OVERRIDE        0x100
94
95 static int sbp2_param_workarounds;
96 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
97 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
98         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
99         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
100         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
101         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
102         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
103         ", or a combination)");
104
105 /* I don't know why the SCSI stack doesn't define something like this... */
106 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
107
108 static const char sbp2_driver_name[] = "sbp2";
109
110 /*
111  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
112  * and one struct scsi_device per sbp2_logical_unit.
113  */
114 struct sbp2_logical_unit {
115         struct sbp2_target *tgt;
116         struct list_head link;
117         struct scsi_device *sdev;
118         struct fw_address_handler address_handler;
119         struct list_head orb_list;
120
121         u64 command_block_agent_address;
122         u16 lun;
123         int login_id;
124
125         /*
126          * The generation is updated once we've logged in or reconnected
127          * to the logical unit.  Thus, I/O to the device will automatically
128          * fail and get retried if it happens in a window where the device
129          * is not ready, e.g. after a bus reset but before we reconnect.
130          */
131         int generation;
132         int retries;
133         struct delayed_work work;
134 };
135
136 /*
137  * We create one struct sbp2_target per IEEE 1212 Unit Directory
138  * and one struct Scsi_Host per sbp2_target.
139  */
140 struct sbp2_target {
141         struct kref kref;
142         struct fw_unit *unit;
143
144         u64 management_agent_address;
145         int directory_id;
146         int node_id;
147         int address_high;
148
149         unsigned workarounds;
150         struct list_head lu_list;
151 };
152
153 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
154 #define SBP2_MAX_SECTORS                255     /* Max sectors supported */
155 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
156
157 #define SBP2_ORB_NULL                   0x80000000
158
159 #define SBP2_DIRECTION_TO_MEDIA         0x0
160 #define SBP2_DIRECTION_FROM_MEDIA       0x1
161
162 /* Unit directory keys */
163 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
164 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
165 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
166
167 /* Management orb opcodes */
168 #define SBP2_LOGIN_REQUEST              0x0
169 #define SBP2_QUERY_LOGINS_REQUEST       0x1
170 #define SBP2_RECONNECT_REQUEST          0x3
171 #define SBP2_SET_PASSWORD_REQUEST       0x4
172 #define SBP2_LOGOUT_REQUEST             0x7
173 #define SBP2_ABORT_TASK_REQUEST         0xb
174 #define SBP2_ABORT_TASK_SET             0xc
175 #define SBP2_LOGICAL_UNIT_RESET         0xe
176 #define SBP2_TARGET_RESET_REQUEST       0xf
177
178 /* Offsets for command block agent registers */
179 #define SBP2_AGENT_STATE                0x00
180 #define SBP2_AGENT_RESET                0x04
181 #define SBP2_ORB_POINTER                0x08
182 #define SBP2_DOORBELL                   0x10
183 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
184
185 /* Status write response codes */
186 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
187 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
188 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
189 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
190
191 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
192 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
193 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
194 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
195 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
196 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
197 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
198 #define STATUS_GET_DATA(v)              ((v).data)
199
200 struct sbp2_status {
201         u32 status;
202         u32 orb_low;
203         u8 data[24];
204 };
205
206 struct sbp2_pointer {
207         u32 high;
208         u32 low;
209 };
210
211 struct sbp2_orb {
212         struct fw_transaction t;
213         struct kref kref;
214         dma_addr_t request_bus;
215         int rcode;
216         struct sbp2_pointer pointer;
217         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
218         struct list_head link;
219 };
220
221 #define MANAGEMENT_ORB_LUN(v)                   ((v))
222 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
223 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
224 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
225 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
226 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
227
228 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
229 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
230
231 struct sbp2_management_orb {
232         struct sbp2_orb base;
233         struct {
234                 struct sbp2_pointer password;
235                 struct sbp2_pointer response;
236                 u32 misc;
237                 u32 length;
238                 struct sbp2_pointer status_fifo;
239         } request;
240         __be32 response[4];
241         dma_addr_t response_bus;
242         struct completion done;
243         struct sbp2_status status;
244 };
245
246 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
247 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
248
249 struct sbp2_login_response {
250         u32 misc;
251         struct sbp2_pointer command_block_agent;
252         u32 reconnect_hold;
253 };
254 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
255 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
256 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
257 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
258 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
259 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
260 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
261 #define COMMAND_ORB_NOTIFY              ((1) << 31)
262
263 struct sbp2_command_orb {
264         struct sbp2_orb base;
265         struct {
266                 struct sbp2_pointer next;
267                 struct sbp2_pointer data_descriptor;
268                 u32 misc;
269                 u8 command_block[12];
270         } request;
271         struct scsi_cmnd *cmd;
272         scsi_done_fn_t done;
273         struct sbp2_logical_unit *lu;
274
275         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
276         dma_addr_t page_table_bus;
277 };
278
279 /*
280  * List of devices with known bugs.
281  *
282  * The firmware_revision field, masked with 0xffff00, is the best
283  * indicator for the type of bridge chip of a device.  It yields a few
284  * false positives but this did not break correctly behaving devices
285  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
286  * from the config rom can never match that.
287  */
288 static const struct {
289         u32 firmware_revision;
290         u32 model;
291         unsigned workarounds;
292 } sbp2_workarounds_table[] = {
293         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
294                 .firmware_revision      = 0x002800,
295                 .model                  = 0x001010,
296                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
297                                           SBP2_WORKAROUND_MODE_SENSE_8,
298         },
299         /* Initio bridges, actually only needed for some older ones */ {
300                 .firmware_revision      = 0x000200,
301                 .model                  = ~0,
302                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
303         },
304         /* Symbios bridge */ {
305                 .firmware_revision      = 0xa0b800,
306                 .model                  = ~0,
307                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
308         },
309
310         /*
311          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
312          * these iPods do not feature the read_capacity bug according
313          * to one report.  Read_capacity behaviour as well as model_id
314          * could change due to Apple-supplied firmware updates though.
315          */
316
317         /* iPod 4th generation. */ {
318                 .firmware_revision      = 0x0a2700,
319                 .model                  = 0x000021,
320                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
321         },
322         /* iPod mini */ {
323                 .firmware_revision      = 0x0a2700,
324                 .model                  = 0x000023,
325                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
326         },
327         /* iPod Photo */ {
328                 .firmware_revision      = 0x0a2700,
329                 .model                  = 0x00007e,
330                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
331         }
332 };
333
334 static void
335 free_orb(struct kref *kref)
336 {
337         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
338
339         kfree(orb);
340 }
341
342 static void
343 sbp2_status_write(struct fw_card *card, struct fw_request *request,
344                   int tcode, int destination, int source,
345                   int generation, int speed,
346                   unsigned long long offset,
347                   void *payload, size_t length, void *callback_data)
348 {
349         struct sbp2_logical_unit *lu = callback_data;
350         struct sbp2_orb *orb;
351         struct sbp2_status status;
352         size_t header_size;
353         unsigned long flags;
354
355         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
356             length == 0 || length > sizeof(status)) {
357                 fw_send_response(card, request, RCODE_TYPE_ERROR);
358                 return;
359         }
360
361         header_size = min(length, 2 * sizeof(u32));
362         fw_memcpy_from_be32(&status, payload, header_size);
363         if (length > header_size)
364                 memcpy(status.data, payload + 8, length - header_size);
365         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
366                 fw_notify("non-orb related status write, not handled\n");
367                 fw_send_response(card, request, RCODE_COMPLETE);
368                 return;
369         }
370
371         /* Lookup the orb corresponding to this status write. */
372         spin_lock_irqsave(&card->lock, flags);
373         list_for_each_entry(orb, &lu->orb_list, link) {
374                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
375                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
376                         orb->rcode = RCODE_COMPLETE;
377                         list_del(&orb->link);
378                         break;
379                 }
380         }
381         spin_unlock_irqrestore(&card->lock, flags);
382
383         if (&orb->link != &lu->orb_list)
384                 orb->callback(orb, &status);
385         else
386                 fw_error("status write for unknown orb\n");
387
388         kref_put(&orb->kref, free_orb);
389
390         fw_send_response(card, request, RCODE_COMPLETE);
391 }
392
393 static void
394 complete_transaction(struct fw_card *card, int rcode,
395                      void *payload, size_t length, void *data)
396 {
397         struct sbp2_orb *orb = data;
398         unsigned long flags;
399
400         /*
401          * This is a little tricky.  We can get the status write for
402          * the orb before we get this callback.  The status write
403          * handler above will assume the orb pointer transaction was
404          * successful and set the rcode to RCODE_COMPLETE for the orb.
405          * So this callback only sets the rcode if it hasn't already
406          * been set and only does the cleanup if the transaction
407          * failed and we didn't already get a status write.
408          */
409         spin_lock_irqsave(&card->lock, flags);
410
411         if (orb->rcode == -1)
412                 orb->rcode = rcode;
413         if (orb->rcode != RCODE_COMPLETE) {
414                 list_del(&orb->link);
415                 spin_unlock_irqrestore(&card->lock, flags);
416                 orb->callback(orb, NULL);
417         } else {
418                 spin_unlock_irqrestore(&card->lock, flags);
419         }
420
421         kref_put(&orb->kref, free_orb);
422 }
423
424 static void
425 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
426               int node_id, int generation, u64 offset)
427 {
428         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
429         unsigned long flags;
430
431         orb->pointer.high = 0;
432         orb->pointer.low = orb->request_bus;
433         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
434
435         spin_lock_irqsave(&device->card->lock, flags);
436         list_add_tail(&orb->link, &lu->orb_list);
437         spin_unlock_irqrestore(&device->card->lock, flags);
438
439         /* Take a ref for the orb list and for the transaction callback. */
440         kref_get(&orb->kref);
441         kref_get(&orb->kref);
442
443         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
444                         node_id, generation, device->max_speed, offset,
445                         &orb->pointer, sizeof(orb->pointer),
446                         complete_transaction, orb);
447 }
448
449 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
450 {
451         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
452         struct sbp2_orb *orb, *next;
453         struct list_head list;
454         unsigned long flags;
455         int retval = -ENOENT;
456
457         INIT_LIST_HEAD(&list);
458         spin_lock_irqsave(&device->card->lock, flags);
459         list_splice_init(&lu->orb_list, &list);
460         spin_unlock_irqrestore(&device->card->lock, flags);
461
462         list_for_each_entry_safe(orb, next, &list, link) {
463                 retval = 0;
464                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
465                         continue;
466
467                 orb->rcode = RCODE_CANCELLED;
468                 orb->callback(orb, NULL);
469         }
470
471         return retval;
472 }
473
474 static void
475 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
476 {
477         struct sbp2_management_orb *orb =
478                 container_of(base_orb, struct sbp2_management_orb, base);
479
480         if (status)
481                 memcpy(&orb->status, status, sizeof(*status));
482         complete(&orb->done);
483 }
484
485 static int
486 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
487                          int generation, int function, int lun_or_login_id,
488                          void *response)
489 {
490         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
491         struct sbp2_management_orb *orb;
492         int retval = -ENOMEM;
493
494         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
495         if (orb == NULL)
496                 return -ENOMEM;
497
498         kref_init(&orb->base.kref);
499         orb->response_bus =
500                 dma_map_single(device->card->device, &orb->response,
501                                sizeof(orb->response), DMA_FROM_DEVICE);
502         if (dma_mapping_error(orb->response_bus))
503                 goto fail_mapping_response;
504
505         orb->request.response.high    = 0;
506         orb->request.response.low     = orb->response_bus;
507
508         orb->request.misc =
509                 MANAGEMENT_ORB_NOTIFY |
510                 MANAGEMENT_ORB_FUNCTION(function) |
511                 MANAGEMENT_ORB_LUN(lun_or_login_id);
512         orb->request.length =
513                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
514
515         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
516         orb->request.status_fifo.low  = lu->address_handler.offset;
517
518         if (function == SBP2_LOGIN_REQUEST) {
519                 orb->request.misc |=
520                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
521                         MANAGEMENT_ORB_RECONNECT(0);
522         }
523
524         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
525
526         init_completion(&orb->done);
527         orb->base.callback = complete_management_orb;
528
529         orb->base.request_bus =
530                 dma_map_single(device->card->device, &orb->request,
531                                sizeof(orb->request), DMA_TO_DEVICE);
532         if (dma_mapping_error(orb->base.request_bus))
533                 goto fail_mapping_request;
534
535         sbp2_send_orb(&orb->base, lu, node_id, generation,
536                       lu->tgt->management_agent_address);
537
538         wait_for_completion_timeout(&orb->done,
539                                     msecs_to_jiffies(SBP2_ORB_TIMEOUT));
540
541         retval = -EIO;
542         if (sbp2_cancel_orbs(lu) == 0) {
543                 fw_error("orb reply timed out, rcode=0x%02x\n",
544                          orb->base.rcode);
545                 goto out;
546         }
547
548         if (orb->base.rcode != RCODE_COMPLETE) {
549                 fw_error("management write failed, rcode 0x%02x\n",
550                          orb->base.rcode);
551                 goto out;
552         }
553
554         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
555             STATUS_GET_SBP_STATUS(orb->status) != 0) {
556                 fw_error("error status: %d:%d\n",
557                          STATUS_GET_RESPONSE(orb->status),
558                          STATUS_GET_SBP_STATUS(orb->status));
559                 goto out;
560         }
561
562         retval = 0;
563  out:
564         dma_unmap_single(device->card->device, orb->base.request_bus,
565                          sizeof(orb->request), DMA_TO_DEVICE);
566  fail_mapping_request:
567         dma_unmap_single(device->card->device, orb->response_bus,
568                          sizeof(orb->response), DMA_FROM_DEVICE);
569  fail_mapping_response:
570         if (response)
571                 fw_memcpy_from_be32(response,
572                                     orb->response, sizeof(orb->response));
573         kref_put(&orb->base.kref, free_orb);
574
575         return retval;
576 }
577
578 static void
579 complete_agent_reset_write(struct fw_card *card, int rcode,
580                            void *payload, size_t length, void *data)
581 {
582         struct fw_transaction *t = data;
583
584         kfree(t);
585 }
586
587 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
588 {
589         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
590         struct fw_transaction *t;
591         static u32 zero;
592
593         t = kzalloc(sizeof(*t), GFP_ATOMIC);
594         if (t == NULL)
595                 return -ENOMEM;
596
597         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
598                         lu->tgt->node_id, lu->generation, device->max_speed,
599                         lu->command_block_agent_address + SBP2_AGENT_RESET,
600                         &zero, sizeof(zero), complete_agent_reset_write, t);
601
602         return 0;
603 }
604
605 static void sbp2_release_target(struct kref *kref)
606 {
607         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
608         struct sbp2_logical_unit *lu, *next;
609         struct Scsi_Host *shost =
610                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
611
612         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
613                 if (lu->sdev)
614                         scsi_remove_device(lu->sdev);
615
616                 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
617                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
618                 fw_core_remove_address_handler(&lu->address_handler);
619                 list_del(&lu->link);
620                 kfree(lu);
621         }
622         scsi_remove_host(shost);
623         fw_notify("released %s\n", tgt->unit->device.bus_id);
624
625         put_device(&tgt->unit->device);
626         scsi_host_put(shost);
627 }
628
629 static struct workqueue_struct *sbp2_wq;
630
631 static void sbp2_reconnect(struct work_struct *work);
632
633 static void sbp2_login(struct work_struct *work)
634 {
635         struct sbp2_logical_unit *lu =
636                 container_of(work, struct sbp2_logical_unit, work.work);
637         struct Scsi_Host *shost =
638                 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
639         struct scsi_device *sdev;
640         struct scsi_lun eight_bytes_lun;
641         struct fw_unit *unit = lu->tgt->unit;
642         struct fw_device *device = fw_device(unit->device.parent);
643         struct sbp2_login_response response;
644         int generation, node_id, local_node_id;
645
646         generation    = device->card->generation;
647         node_id       = device->node->node_id;
648         local_node_id = device->card->local_node->node_id;
649
650         if (sbp2_send_management_orb(lu, node_id, generation,
651                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
652                 if (lu->retries++ < 5) {
653                         if (queue_delayed_work(sbp2_wq, &lu->work,
654                                                DIV_ROUND_UP(HZ, 5)))
655                                 kref_get(&lu->tgt->kref);
656                 } else {
657                         fw_error("failed to login to %s LUN %04x\n",
658                                  unit->device.bus_id, lu->lun);
659                 }
660                 kref_put(&lu->tgt->kref, sbp2_release_target);
661                 return;
662         }
663
664         lu->generation        = generation;
665         lu->tgt->node_id      = node_id;
666         lu->tgt->address_high = local_node_id << 16;
667
668         /* Get command block agent offset and login id. */
669         lu->command_block_agent_address =
670                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
671                 response.command_block_agent.low;
672         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
673
674         fw_notify("logged in to %s LUN %04x (%d retries)\n",
675                   unit->device.bus_id, lu->lun, lu->retries);
676
677 #if 0
678         /* FIXME: The linux1394 sbp2 does this last step. */
679         sbp2_set_busy_timeout(scsi_id);
680 #endif
681
682         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
683         sbp2_agent_reset(lu);
684
685         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
686         eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
687         eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
688
689         sdev = __scsi_add_device(shost, 0, 0,
690                                  scsilun_to_int(&eight_bytes_lun), lu);
691         if (IS_ERR(sdev)) {
692                 sbp2_send_management_orb(lu, node_id, generation,
693                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
694                 /*
695                  * Set this back to sbp2_login so we fall back and
696                  * retry login on bus reset.
697                  */
698                 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
699         } else {
700                 lu->sdev = sdev;
701                 scsi_device_put(sdev);
702         }
703         kref_put(&lu->tgt->kref, sbp2_release_target);
704 }
705
706 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
707 {
708         struct sbp2_logical_unit *lu;
709
710         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
711         if (!lu)
712                 return -ENOMEM;
713
714         lu->address_handler.length           = 0x100;
715         lu->address_handler.address_callback = sbp2_status_write;
716         lu->address_handler.callback_data    = lu;
717
718         if (fw_core_add_address_handler(&lu->address_handler,
719                                         &fw_high_memory_region) < 0) {
720                 kfree(lu);
721                 return -ENOMEM;
722         }
723
724         lu->tgt  = tgt;
725         lu->sdev = NULL;
726         lu->lun  = lun_entry & 0xffff;
727         lu->retries = 0;
728         INIT_LIST_HEAD(&lu->orb_list);
729         INIT_DELAYED_WORK(&lu->work, sbp2_login);
730
731         list_add_tail(&lu->link, &tgt->lu_list);
732         return 0;
733 }
734
735 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
736 {
737         struct fw_csr_iterator ci;
738         int key, value;
739
740         fw_csr_iterator_init(&ci, directory);
741         while (fw_csr_iterator_next(&ci, &key, &value))
742                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
743                     sbp2_add_logical_unit(tgt, value) < 0)
744                         return -ENOMEM;
745         return 0;
746 }
747
748 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
749                               u32 *model, u32 *firmware_revision)
750 {
751         struct fw_csr_iterator ci;
752         int key, value;
753
754         fw_csr_iterator_init(&ci, directory);
755         while (fw_csr_iterator_next(&ci, &key, &value)) {
756                 switch (key) {
757
758                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
759                         tgt->management_agent_address =
760                                         CSR_REGISTER_BASE + 4 * value;
761                         break;
762
763                 case CSR_DIRECTORY_ID:
764                         tgt->directory_id = value;
765                         break;
766
767                 case CSR_MODEL:
768                         *model = value;
769                         break;
770
771                 case SBP2_CSR_FIRMWARE_REVISION:
772                         *firmware_revision = value;
773                         break;
774
775                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
776                         if (sbp2_add_logical_unit(tgt, value) < 0)
777                                 return -ENOMEM;
778                         break;
779
780                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
781                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
782                                 return -ENOMEM;
783                         break;
784                 }
785         }
786         return 0;
787 }
788
789 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
790                                   u32 firmware_revision)
791 {
792         int i;
793         unsigned w = sbp2_param_workarounds;
794
795         if (w)
796                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
797                           "if you need the workarounds parameter for %s\n",
798                           tgt->unit->device.bus_id);
799
800         if (w & SBP2_WORKAROUND_OVERRIDE)
801                 goto out;
802
803         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
804
805                 if (sbp2_workarounds_table[i].firmware_revision !=
806                     (firmware_revision & 0xffffff00))
807                         continue;
808
809                 if (sbp2_workarounds_table[i].model != model &&
810                     sbp2_workarounds_table[i].model != ~0)
811                         continue;
812
813                 w |= sbp2_workarounds_table[i].workarounds;
814                 break;
815         }
816  out:
817         if (w)
818                 fw_notify("Workarounds for %s: 0x%x "
819                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
820                           tgt->unit->device.bus_id,
821                           w, firmware_revision, model);
822         tgt->workarounds = w;
823 }
824
825 static struct scsi_host_template scsi_driver_template;
826
827 static int sbp2_probe(struct device *dev)
828 {
829         struct fw_unit *unit = fw_unit(dev);
830         struct fw_device *device = fw_device(unit->device.parent);
831         struct sbp2_target *tgt;
832         struct sbp2_logical_unit *lu;
833         struct Scsi_Host *shost;
834         u32 model, firmware_revision;
835
836         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
837         if (shost == NULL)
838                 return -ENOMEM;
839
840         tgt = (struct sbp2_target *)shost->hostdata;
841         unit->device.driver_data = tgt;
842         tgt->unit = unit;
843         kref_init(&tgt->kref);
844         INIT_LIST_HEAD(&tgt->lu_list);
845
846         if (fw_device_enable_phys_dma(device) < 0)
847                 goto fail_shost_put;
848
849         if (scsi_add_host(shost, &unit->device) < 0)
850                 goto fail_shost_put;
851
852         /* Initialize to values that won't match anything in our table. */
853         firmware_revision = 0xff000000;
854         model = 0xff000000;
855
856         /* implicit directory ID */
857         tgt->directory_id = ((unit->directory - device->config_rom) * 4
858                              + CSR_CONFIG_ROM) & 0xffffff;
859
860         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
861                                &firmware_revision) < 0)
862                 goto fail_tgt_put;
863
864         sbp2_init_workarounds(tgt, model, firmware_revision);
865
866         get_device(&unit->device);
867
868         /*
869          * We schedule work to do the login so we can easily
870          * reschedule retries. Always get the ref before scheduling
871          * work.
872          */
873         list_for_each_entry(lu, &tgt->lu_list, link)
874                 if (queue_delayed_work(sbp2_wq, &lu->work, 0))
875                         kref_get(&tgt->kref);
876         return 0;
877
878  fail_tgt_put:
879         kref_put(&tgt->kref, sbp2_release_target);
880         return -ENOMEM;
881
882  fail_shost_put:
883         scsi_host_put(shost);
884         return -ENOMEM;
885 }
886
887 static int sbp2_remove(struct device *dev)
888 {
889         struct fw_unit *unit = fw_unit(dev);
890         struct sbp2_target *tgt = unit->device.driver_data;
891
892         kref_put(&tgt->kref, sbp2_release_target);
893         return 0;
894 }
895
896 static void sbp2_reconnect(struct work_struct *work)
897 {
898         struct sbp2_logical_unit *lu =
899                 container_of(work, struct sbp2_logical_unit, work.work);
900         struct fw_unit *unit = lu->tgt->unit;
901         struct fw_device *device = fw_device(unit->device.parent);
902         int generation, node_id, local_node_id;
903
904         generation    = device->card->generation;
905         node_id       = device->node->node_id;
906         local_node_id = device->card->local_node->node_id;
907
908         if (sbp2_send_management_orb(lu, node_id, generation,
909                                      SBP2_RECONNECT_REQUEST,
910                                      lu->login_id, NULL) < 0) {
911                 if (lu->retries++ >= 5) {
912                         fw_error("failed to reconnect to %s\n",
913                                  unit->device.bus_id);
914                         /* Fall back and try to log in again. */
915                         lu->retries = 0;
916                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
917                 }
918                 if (queue_delayed_work(sbp2_wq, &lu->work, DIV_ROUND_UP(HZ, 5)))
919                         kref_get(&lu->tgt->kref);
920                 kref_put(&lu->tgt->kref, sbp2_release_target);
921                 return;
922         }
923
924         lu->generation        = generation;
925         lu->tgt->node_id      = node_id;
926         lu->tgt->address_high = local_node_id << 16;
927
928         fw_notify("reconnected to %s LUN %04x (%d retries)\n",
929                   unit->device.bus_id, lu->lun, lu->retries);
930
931         sbp2_agent_reset(lu);
932         sbp2_cancel_orbs(lu);
933
934         kref_put(&lu->tgt->kref, sbp2_release_target);
935 }
936
937 static void sbp2_update(struct fw_unit *unit)
938 {
939         struct sbp2_target *tgt = unit->device.driver_data;
940         struct sbp2_logical_unit *lu;
941
942         fw_device_enable_phys_dma(fw_device(unit->device.parent));
943
944         /*
945          * Fw-core serializes sbp2_update() against sbp2_remove().
946          * Iteration over tgt->lu_list is therefore safe here.
947          */
948         list_for_each_entry(lu, &tgt->lu_list, link) {
949                 lu->retries = 0;
950                 if (queue_delayed_work(sbp2_wq, &lu->work, 0))
951                         kref_get(&tgt->kref);
952         }
953 }
954
955 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
956 #define SBP2_SW_VERSION_ENTRY   0x00010483
957
958 static const struct fw_device_id sbp2_id_table[] = {
959         {
960                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
961                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
962                 .version      = SBP2_SW_VERSION_ENTRY,
963         },
964         { }
965 };
966
967 static struct fw_driver sbp2_driver = {
968         .driver   = {
969                 .owner  = THIS_MODULE,
970                 .name   = sbp2_driver_name,
971                 .bus    = &fw_bus_type,
972                 .probe  = sbp2_probe,
973                 .remove = sbp2_remove,
974         },
975         .update   = sbp2_update,
976         .id_table = sbp2_id_table,
977 };
978
979 static unsigned int
980 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
981 {
982         int sam_status;
983
984         sense_data[0] = 0x70;
985         sense_data[1] = 0x0;
986         sense_data[2] = sbp2_status[1];
987         sense_data[3] = sbp2_status[4];
988         sense_data[4] = sbp2_status[5];
989         sense_data[5] = sbp2_status[6];
990         sense_data[6] = sbp2_status[7];
991         sense_data[7] = 10;
992         sense_data[8] = sbp2_status[8];
993         sense_data[9] = sbp2_status[9];
994         sense_data[10] = sbp2_status[10];
995         sense_data[11] = sbp2_status[11];
996         sense_data[12] = sbp2_status[2];
997         sense_data[13] = sbp2_status[3];
998         sense_data[14] = sbp2_status[12];
999         sense_data[15] = sbp2_status[13];
1000
1001         sam_status = sbp2_status[0] & 0x3f;
1002
1003         switch (sam_status) {
1004         case SAM_STAT_GOOD:
1005         case SAM_STAT_CHECK_CONDITION:
1006         case SAM_STAT_CONDITION_MET:
1007         case SAM_STAT_BUSY:
1008         case SAM_STAT_RESERVATION_CONFLICT:
1009         case SAM_STAT_COMMAND_TERMINATED:
1010                 return DID_OK << 16 | sam_status;
1011
1012         default:
1013                 return DID_ERROR << 16;
1014         }
1015 }
1016
1017 static void
1018 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1019 {
1020         struct sbp2_command_orb *orb =
1021                 container_of(base_orb, struct sbp2_command_orb, base);
1022         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1023         int result;
1024
1025         if (status != NULL) {
1026                 if (STATUS_GET_DEAD(*status))
1027                         sbp2_agent_reset(orb->lu);
1028
1029                 switch (STATUS_GET_RESPONSE(*status)) {
1030                 case SBP2_STATUS_REQUEST_COMPLETE:
1031                         result = DID_OK << 16;
1032                         break;
1033                 case SBP2_STATUS_TRANSPORT_FAILURE:
1034                         result = DID_BUS_BUSY << 16;
1035                         break;
1036                 case SBP2_STATUS_ILLEGAL_REQUEST:
1037                 case SBP2_STATUS_VENDOR_DEPENDENT:
1038                 default:
1039                         result = DID_ERROR << 16;
1040                         break;
1041                 }
1042
1043                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1044                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1045                                                            orb->cmd->sense_buffer);
1046         } else {
1047                 /*
1048                  * If the orb completes with status == NULL, something
1049                  * went wrong, typically a bus reset happened mid-orb
1050                  * or when sending the write (less likely).
1051                  */
1052                 result = DID_BUS_BUSY << 16;
1053         }
1054
1055         dma_unmap_single(device->card->device, orb->base.request_bus,
1056                          sizeof(orb->request), DMA_TO_DEVICE);
1057
1058         if (scsi_sg_count(orb->cmd) > 0)
1059                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1060                              scsi_sg_count(orb->cmd),
1061                              orb->cmd->sc_data_direction);
1062
1063         if (orb->page_table_bus != 0)
1064                 dma_unmap_single(device->card->device, orb->page_table_bus,
1065                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1066
1067         orb->cmd->result = result;
1068         orb->done(orb->cmd);
1069 }
1070
1071 static int
1072 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1073                      struct sbp2_logical_unit *lu)
1074 {
1075         struct scatterlist *sg;
1076         int sg_len, l, i, j, count;
1077         dma_addr_t sg_addr;
1078
1079         sg = scsi_sglist(orb->cmd);
1080         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1081                            orb->cmd->sc_data_direction);
1082         if (count == 0)
1083                 goto fail;
1084
1085         /*
1086          * Handle the special case where there is only one element in
1087          * the scatter list by converting it to an immediate block
1088          * request. This is also a workaround for broken devices such
1089          * as the second generation iPod which doesn't support page
1090          * tables.
1091          */
1092         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1093                 orb->request.data_descriptor.high = lu->tgt->address_high;
1094                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1095                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1096                 return 0;
1097         }
1098
1099         /*
1100          * Convert the scatterlist to an sbp2 page table.  If any
1101          * scatterlist entries are too big for sbp2, we split them as we
1102          * go.  Even if we ask the block I/O layer to not give us sg
1103          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1104          * during DMA mapping, and Linux currently doesn't prevent this.
1105          */
1106         for (i = 0, j = 0; i < count; i++) {
1107                 sg_len = sg_dma_len(sg + i);
1108                 sg_addr = sg_dma_address(sg + i);
1109                 while (sg_len) {
1110                         /* FIXME: This won't get us out of the pinch. */
1111                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1112                                 fw_error("page table overflow\n");
1113                                 goto fail_page_table;
1114                         }
1115                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1116                         orb->page_table[j].low = sg_addr;
1117                         orb->page_table[j].high = (l << 16);
1118                         sg_addr += l;
1119                         sg_len -= l;
1120                         j++;
1121                 }
1122         }
1123
1124         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1125                           sizeof(orb->page_table[0]) * j);
1126         orb->page_table_bus =
1127                 dma_map_single(device->card->device, orb->page_table,
1128                                sizeof(orb->page_table), DMA_TO_DEVICE);
1129         if (dma_mapping_error(orb->page_table_bus))
1130                 goto fail_page_table;
1131
1132         /*
1133          * The data_descriptor pointer is the one case where we need
1134          * to fill in the node ID part of the address.  All other
1135          * pointers assume that the data referenced reside on the
1136          * initiator (i.e. us), but data_descriptor can refer to data
1137          * on other nodes so we need to put our ID in descriptor.high.
1138          */
1139         orb->request.data_descriptor.high = lu->tgt->address_high;
1140         orb->request.data_descriptor.low  = orb->page_table_bus;
1141         orb->request.misc |=
1142                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1143                 COMMAND_ORB_DATA_SIZE(j);
1144
1145         return 0;
1146
1147  fail_page_table:
1148         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1149                      orb->cmd->sc_data_direction);
1150  fail:
1151         return -ENOMEM;
1152 }
1153
1154 /* SCSI stack integration */
1155
1156 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1157 {
1158         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1159         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1160         struct sbp2_command_orb *orb;
1161         unsigned max_payload;
1162         int retval = SCSI_MLQUEUE_HOST_BUSY;
1163
1164         /*
1165          * Bidirectional commands are not yet implemented, and unknown
1166          * transfer direction not handled.
1167          */
1168         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1169                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1170                 cmd->result = DID_ERROR << 16;
1171                 done(cmd);
1172                 return 0;
1173         }
1174
1175         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1176         if (orb == NULL) {
1177                 fw_notify("failed to alloc orb\n");
1178                 return SCSI_MLQUEUE_HOST_BUSY;
1179         }
1180
1181         /* Initialize rcode to something not RCODE_COMPLETE. */
1182         orb->base.rcode = -1;
1183         kref_init(&orb->base.kref);
1184
1185         orb->lu   = lu;
1186         orb->done = done;
1187         orb->cmd  = cmd;
1188
1189         orb->request.next.high   = SBP2_ORB_NULL;
1190         orb->request.next.low    = 0x0;
1191         /*
1192          * At speed 100 we can do 512 bytes per packet, at speed 200,
1193          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1194          * specifies the max payload size as 2 ^ (max_payload + 2), so
1195          * if we set this to max_speed + 7, we get the right value.
1196          */
1197         max_payload = min(device->max_speed + 7,
1198                           device->card->max_receive - 1);
1199         orb->request.misc =
1200                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1201                 COMMAND_ORB_SPEED(device->max_speed) |
1202                 COMMAND_ORB_NOTIFY;
1203
1204         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1205                 orb->request.misc |=
1206                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1207         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1208                 orb->request.misc |=
1209                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1210
1211         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1212                 goto out;
1213
1214         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1215
1216         memset(orb->request.command_block,
1217                0, sizeof(orb->request.command_block));
1218         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1219
1220         orb->base.callback = complete_command_orb;
1221         orb->base.request_bus =
1222                 dma_map_single(device->card->device, &orb->request,
1223                                sizeof(orb->request), DMA_TO_DEVICE);
1224         if (dma_mapping_error(orb->base.request_bus))
1225                 goto out;
1226
1227         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1228                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1229         retval = 0;
1230  out:
1231         kref_put(&orb->base.kref, free_orb);
1232         return retval;
1233 }
1234
1235 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1236 {
1237         struct sbp2_logical_unit *lu = sdev->hostdata;
1238
1239         sdev->allow_restart = 1;
1240
1241         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1242                 sdev->inquiry_len = 36;
1243
1244         return 0;
1245 }
1246
1247 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1248 {
1249         struct sbp2_logical_unit *lu = sdev->hostdata;
1250
1251         sdev->use_10_for_rw = 1;
1252
1253         if (sdev->type == TYPE_ROM)
1254                 sdev->use_10_for_ms = 1;
1255
1256         if (sdev->type == TYPE_DISK &&
1257             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1258                 sdev->skip_ms_page_8 = 1;
1259
1260         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1261                 sdev->fix_capacity = 1;
1262
1263         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1264                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1265
1266         return 0;
1267 }
1268
1269 /*
1270  * Called by scsi stack when something has really gone wrong.  Usually
1271  * called when a command has timed-out for some reason.
1272  */
1273 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1274 {
1275         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1276
1277         fw_notify("sbp2_scsi_abort\n");
1278         sbp2_agent_reset(lu);
1279         sbp2_cancel_orbs(lu);
1280
1281         return SUCCESS;
1282 }
1283
1284 /*
1285  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1286  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1287  *
1288  * This is the concatenation of target port identifier and logical unit
1289  * identifier as per SAM-2...SAM-4 annex A.
1290  */
1291 static ssize_t
1292 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1293                             char *buf)
1294 {
1295         struct scsi_device *sdev = to_scsi_device(dev);
1296         struct sbp2_logical_unit *lu;
1297         struct fw_device *device;
1298
1299         if (!sdev)
1300                 return 0;
1301
1302         lu = sdev->hostdata;
1303         device = fw_device(lu->tgt->unit->device.parent);
1304
1305         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1306                         device->config_rom[3], device->config_rom[4],
1307                         lu->tgt->directory_id, lu->lun);
1308 }
1309
1310 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1311
1312 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1313         &dev_attr_ieee1394_id,
1314         NULL
1315 };
1316
1317 static struct scsi_host_template scsi_driver_template = {
1318         .module                 = THIS_MODULE,
1319         .name                   = "SBP-2 IEEE-1394",
1320         .proc_name              = sbp2_driver_name,
1321         .queuecommand           = sbp2_scsi_queuecommand,
1322         .slave_alloc            = sbp2_scsi_slave_alloc,
1323         .slave_configure        = sbp2_scsi_slave_configure,
1324         .eh_abort_handler       = sbp2_scsi_abort,
1325         .this_id                = -1,
1326         .sg_tablesize           = SG_ALL,
1327         .use_clustering         = ENABLE_CLUSTERING,
1328         .cmd_per_lun            = 1,
1329         .can_queue              = 1,
1330         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1331 };
1332
1333 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1334 MODULE_DESCRIPTION("SCSI over IEEE1394");
1335 MODULE_LICENSE("GPL");
1336 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1337
1338 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1339 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1340 MODULE_ALIAS("sbp2");
1341 #endif
1342
1343 static int __init sbp2_init(void)
1344 {
1345         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1346         if (!sbp2_wq)
1347                 return -ENOMEM;
1348
1349         return driver_register(&sbp2_driver.driver);
1350 }
1351
1352 static void __exit sbp2_cleanup(void)
1353 {
1354         driver_unregister(&sbp2_driver.driver);
1355         destroy_workqueue(sbp2_wq);
1356 }
1357
1358 module_init(sbp2_init);
1359 module_exit(sbp2_cleanup);