DMAENGINE: ste_dma40: Fix failed to restart logical channel bug
[pandora-kernel.git] / drivers / dma / ste_dma40.c
1 /*
2  * driver/dma/ste_dma40.c
3  *
4  * Copyright (C) ST-Ericsson 2007-2010
5  * License terms: GNU General Public License (GPL) version 2
6  * Author: Per Friden <per.friden@stericsson.com>
7  * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
8  *
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17
18 #include <plat/ste_dma40.h>
19
20 #include "ste_dma40_ll.h"
21
22 #define D40_NAME "dma40"
23
24 #define D40_PHY_CHAN -1
25
26 /* For masking out/in 2 bit channel positions */
27 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
28 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
29
30 /* Maximum iterations taken before giving up suspending a channel */
31 #define D40_SUSPEND_MAX_IT 500
32
33 /* Hardware requirement on LCLA alignment */
34 #define LCLA_ALIGNMENT 0x40000
35 /* Attempts before giving up to trying to get pages that are aligned */
36 #define MAX_LCLA_ALLOC_ATTEMPTS 256
37
38 /* Bit markings for allocation map */
39 #define D40_ALLOC_FREE          (1 << 31)
40 #define D40_ALLOC_PHY           (1 << 30)
41 #define D40_ALLOC_LOG_FREE      0
42
43 /* Hardware designer of the block */
44 #define D40_PERIPHID2_DESIGNER 0x8
45
46 /**
47  * enum 40_command - The different commands and/or statuses.
48  *
49  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
50  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
51  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
52  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
53  */
54 enum d40_command {
55         D40_DMA_STOP            = 0,
56         D40_DMA_RUN             = 1,
57         D40_DMA_SUSPEND_REQ     = 2,
58         D40_DMA_SUSPENDED       = 3
59 };
60
61 /**
62  * struct d40_lli_pool - Structure for keeping LLIs in memory
63  *
64  * @base: Pointer to memory area when the pre_alloc_lli's are not large
65  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
66  * pre_alloc_lli is used.
67  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
68  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
69  * one buffer to one buffer.
70  */
71 struct d40_lli_pool {
72         void    *base;
73         int      size;
74         /* Space for dst and src, plus an extra for padding */
75         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
76 };
77
78 /**
79  * struct d40_desc - A descriptor is one DMA job.
80  *
81  * @lli_phy: LLI settings for physical channel. Both src and dst=
82  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
83  * lli_len equals one.
84  * @lli_log: Same as above but for logical channels.
85  * @lli_pool: The pool with two entries pre-allocated.
86  * @lli_len: Number of llis of current descriptor.
87  * @lli_count: Number of transfered llis.
88  * @lli_tx_len: Max number of LLIs per transfer, there can be
89  * many transfer for one descriptor.
90  * @txd: DMA engine struct. Used for among other things for communication
91  * during a transfer.
92  * @node: List entry.
93  * @dir: The transfer direction of this job.
94  * @is_in_client_list: true if the client owns this descriptor.
95  *
96  * This descriptor is used for both logical and physical transfers.
97  */
98
99 struct d40_desc {
100         /* LLI physical */
101         struct d40_phy_lli_bidir         lli_phy;
102         /* LLI logical */
103         struct d40_log_lli_bidir         lli_log;
104
105         struct d40_lli_pool              lli_pool;
106         int                              lli_len;
107         int                              lli_count;
108         u32                              lli_tx_len;
109
110         struct dma_async_tx_descriptor   txd;
111         struct list_head                 node;
112
113         enum dma_data_direction          dir;
114         bool                             is_in_client_list;
115 };
116
117 /**
118  * struct d40_lcla_pool - LCLA pool settings and data.
119  *
120  * @base: The virtual address of LCLA. 18 bit aligned.
121  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
122  * This pointer is only there for clean-up on error.
123  * @pages: The number of pages needed for all physical channels.
124  * Only used later for clean-up on error
125  * @lock: Lock to protect the content in this struct.
126  * @alloc_map: Bitmap mapping between physical channel and LCLA entries.
127  * @num_blocks: The number of entries of alloc_map. Equals to the
128  * number of physical channels.
129  */
130 struct d40_lcla_pool {
131         void            *base;
132         void            *base_unaligned;
133         int              pages;
134         spinlock_t       lock;
135         u32             *alloc_map;
136         int              num_blocks;
137 };
138
139 /**
140  * struct d40_phy_res - struct for handling eventlines mapped to physical
141  * channels.
142  *
143  * @lock: A lock protection this entity.
144  * @num: The physical channel number of this entity.
145  * @allocated_src: Bit mapped to show which src event line's are mapped to
146  * this physical channel. Can also be free or physically allocated.
147  * @allocated_dst: Same as for src but is dst.
148  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
149  * event line number. Both allocated_src and allocated_dst can not be
150  * allocated to a physical channel, since the interrupt handler has then
151  * no way of figure out which one the interrupt belongs to.
152  */
153 struct d40_phy_res {
154         spinlock_t lock;
155         int        num;
156         u32        allocated_src;
157         u32        allocated_dst;
158 };
159
160 struct d40_base;
161
162 /**
163  * struct d40_chan - Struct that describes a channel.
164  *
165  * @lock: A spinlock to protect this struct.
166  * @log_num: The logical number, if any of this channel.
167  * @completed: Starts with 1, after first interrupt it is set to dma engine's
168  * current cookie.
169  * @pending_tx: The number of pending transfers. Used between interrupt handler
170  * and tasklet.
171  * @busy: Set to true when transfer is ongoing on this channel.
172  * @phy_chan: Pointer to physical channel which this instance runs on. If this
173  * point is NULL, then the channel is not allocated.
174  * @chan: DMA engine handle.
175  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
176  * transfer and call client callback.
177  * @client: Cliented owned descriptor list.
178  * @active: Active descriptor.
179  * @queue: Queued jobs.
180  * @dma_cfg: The client configuration of this dma channel.
181  * @base: Pointer to the device instance struct.
182  * @src_def_cfg: Default cfg register setting for src.
183  * @dst_def_cfg: Default cfg register setting for dst.
184  * @log_def: Default logical channel settings.
185  * @lcla: Space for one dst src pair for logical channel transfers.
186  * @lcpa: Pointer to dst and src lcpa settings.
187  *
188  * This struct can either "be" a logical or a physical channel.
189  */
190 struct d40_chan {
191         spinlock_t                       lock;
192         int                              log_num;
193         /* ID of the most recent completed transfer */
194         int                              completed;
195         int                              pending_tx;
196         bool                             busy;
197         struct d40_phy_res              *phy_chan;
198         struct dma_chan                  chan;
199         struct tasklet_struct            tasklet;
200         struct list_head                 client;
201         struct list_head                 active;
202         struct list_head                 queue;
203         struct stedma40_chan_cfg         dma_cfg;
204         struct d40_base                 *base;
205         /* Default register configurations */
206         u32                              src_def_cfg;
207         u32                              dst_def_cfg;
208         struct d40_def_lcsp              log_def;
209         struct d40_lcla_elem             lcla;
210         struct d40_log_lli_full         *lcpa;
211         /* Runtime reconfiguration */
212         dma_addr_t                      runtime_addr;
213         enum dma_data_direction         runtime_direction;
214 };
215
216 /**
217  * struct d40_base - The big global struct, one for each probe'd instance.
218  *
219  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
220  * @execmd_lock: Lock for execute command usage since several channels share
221  * the same physical register.
222  * @dev: The device structure.
223  * @virtbase: The virtual base address of the DMA's register.
224  * @rev: silicon revision detected.
225  * @clk: Pointer to the DMA clock structure.
226  * @phy_start: Physical memory start of the DMA registers.
227  * @phy_size: Size of the DMA register map.
228  * @irq: The IRQ number.
229  * @num_phy_chans: The number of physical channels. Read from HW. This
230  * is the number of available channels for this driver, not counting "Secure
231  * mode" allocated physical channels.
232  * @num_log_chans: The number of logical channels. Calculated from
233  * num_phy_chans.
234  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
235  * @dma_slave: dma_device channels that can do only do slave transfers.
236  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
237  * @phy_chans: Room for all possible physical channels in system.
238  * @log_chans: Room for all possible logical channels in system.
239  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
240  * to log_chans entries.
241  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
242  * to phy_chans entries.
243  * @plat_data: Pointer to provided platform_data which is the driver
244  * configuration.
245  * @phy_res: Vector containing all physical channels.
246  * @lcla_pool: lcla pool settings and data.
247  * @lcpa_base: The virtual mapped address of LCPA.
248  * @phy_lcpa: The physical address of the LCPA.
249  * @lcpa_size: The size of the LCPA area.
250  * @desc_slab: cache for descriptors.
251  */
252 struct d40_base {
253         spinlock_t                       interrupt_lock;
254         spinlock_t                       execmd_lock;
255         struct device                    *dev;
256         void __iomem                     *virtbase;
257         u8                                rev:4;
258         struct clk                       *clk;
259         phys_addr_t                       phy_start;
260         resource_size_t                   phy_size;
261         int                               irq;
262         int                               num_phy_chans;
263         int                               num_log_chans;
264         struct dma_device                 dma_both;
265         struct dma_device                 dma_slave;
266         struct dma_device                 dma_memcpy;
267         struct d40_chan                  *phy_chans;
268         struct d40_chan                  *log_chans;
269         struct d40_chan                 **lookup_log_chans;
270         struct d40_chan                 **lookup_phy_chans;
271         struct stedma40_platform_data    *plat_data;
272         /* Physical half channels */
273         struct d40_phy_res               *phy_res;
274         struct d40_lcla_pool              lcla_pool;
275         void                             *lcpa_base;
276         dma_addr_t                        phy_lcpa;
277         resource_size_t                   lcpa_size;
278         struct kmem_cache                *desc_slab;
279 };
280
281 /**
282  * struct d40_interrupt_lookup - lookup table for interrupt handler
283  *
284  * @src: Interrupt mask register.
285  * @clr: Interrupt clear register.
286  * @is_error: true if this is an error interrupt.
287  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
288  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
289  */
290 struct d40_interrupt_lookup {
291         u32 src;
292         u32 clr;
293         bool is_error;
294         int offset;
295 };
296
297 /**
298  * struct d40_reg_val - simple lookup struct
299  *
300  * @reg: The register.
301  * @val: The value that belongs to the register in reg.
302  */
303 struct d40_reg_val {
304         unsigned int reg;
305         unsigned int val;
306 };
307
308 static int d40_pool_lli_alloc(struct d40_desc *d40d,
309                               int lli_len, bool is_log)
310 {
311         u32 align;
312         void *base;
313
314         if (is_log)
315                 align = sizeof(struct d40_log_lli);
316         else
317                 align = sizeof(struct d40_phy_lli);
318
319         if (lli_len == 1) {
320                 base = d40d->lli_pool.pre_alloc_lli;
321                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
322                 d40d->lli_pool.base = NULL;
323         } else {
324                 d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
325
326                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
327                 d40d->lli_pool.base = base;
328
329                 if (d40d->lli_pool.base == NULL)
330                         return -ENOMEM;
331         }
332
333         if (is_log) {
334                 d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
335                                               align);
336                 d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
337                                               align);
338         } else {
339                 d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
340                                               align);
341                 d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
342                                               align);
343
344                 d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src);
345                 d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst);
346         }
347
348         return 0;
349 }
350
351 static void d40_pool_lli_free(struct d40_desc *d40d)
352 {
353         kfree(d40d->lli_pool.base);
354         d40d->lli_pool.base = NULL;
355         d40d->lli_pool.size = 0;
356         d40d->lli_log.src = NULL;
357         d40d->lli_log.dst = NULL;
358         d40d->lli_phy.src = NULL;
359         d40d->lli_phy.dst = NULL;
360         d40d->lli_phy.src_addr = 0;
361         d40d->lli_phy.dst_addr = 0;
362 }
363
364 static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
365                                       struct d40_desc *desc)
366 {
367         dma_cookie_t cookie = d40c->chan.cookie;
368
369         if (++cookie < 0)
370                 cookie = 1;
371
372         d40c->chan.cookie = cookie;
373         desc->txd.cookie = cookie;
374
375         return cookie;
376 }
377
378 static void d40_desc_remove(struct d40_desc *d40d)
379 {
380         list_del(&d40d->node);
381 }
382
383 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
384 {
385         struct d40_desc *d;
386         struct d40_desc *_d;
387
388         if (!list_empty(&d40c->client)) {
389                 list_for_each_entry_safe(d, _d, &d40c->client, node)
390                         if (async_tx_test_ack(&d->txd)) {
391                                 d40_pool_lli_free(d);
392                                 d40_desc_remove(d);
393                                 break;
394                         }
395         } else {
396                 d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT);
397                 if (d != NULL) {
398                         memset(d, 0, sizeof(struct d40_desc));
399                         INIT_LIST_HEAD(&d->node);
400                 }
401         }
402         return d;
403 }
404
405 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
406 {
407         kmem_cache_free(d40c->base->desc_slab, d40d);
408 }
409
410 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
411 {
412         list_add_tail(&desc->node, &d40c->active);
413 }
414
415 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
416 {
417         struct d40_desc *d;
418
419         if (list_empty(&d40c->active))
420                 return NULL;
421
422         d = list_first_entry(&d40c->active,
423                              struct d40_desc,
424                              node);
425         return d;
426 }
427
428 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
429 {
430         list_add_tail(&desc->node, &d40c->queue);
431 }
432
433 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
434 {
435         struct d40_desc *d;
436
437         if (list_empty(&d40c->queue))
438                 return NULL;
439
440         d = list_first_entry(&d40c->queue,
441                              struct d40_desc,
442                              node);
443         return d;
444 }
445
446 /* Support functions for logical channels */
447
448 static int d40_lcla_id_get(struct d40_chan *d40c)
449 {
450         int src_id = 0;
451         int dst_id = 0;
452         struct d40_log_lli *lcla_lidx_base =
453                 d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024;
454         int i;
455         int lli_per_log = d40c->base->plat_data->llis_per_log;
456         unsigned long flags;
457
458         if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
459                 return 0;
460
461         if (d40c->base->lcla_pool.num_blocks > 32)
462                 return -EINVAL;
463
464         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
465
466         for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) {
467                 if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
468                       (0x1 << i))) {
469                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
470                                 (0x1 << i);
471                         break;
472                 }
473         }
474         src_id = i;
475         if (src_id >= d40c->base->lcla_pool.num_blocks)
476                 goto err;
477
478         for (; i < d40c->base->lcla_pool.num_blocks; i++) {
479                 if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
480                       (0x1 << i))) {
481                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
482                                 (0x1 << i);
483                         break;
484                 }
485         }
486
487         dst_id = i;
488         if (dst_id == src_id)
489                 goto err;
490
491         d40c->lcla.src_id = src_id;
492         d40c->lcla.dst_id = dst_id;
493         d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
494         d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
495
496         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
497         return 0;
498 err:
499         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
500         return -EINVAL;
501 }
502
503
504 static int d40_channel_execute_command(struct d40_chan *d40c,
505                                        enum d40_command command)
506 {
507         int status, i;
508         void __iomem *active_reg;
509         int ret = 0;
510         unsigned long flags;
511         u32 wmask;
512
513         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
514
515         if (d40c->phy_chan->num % 2 == 0)
516                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
517         else
518                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
519
520         if (command == D40_DMA_SUSPEND_REQ) {
521                 status = (readl(active_reg) &
522                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
523                         D40_CHAN_POS(d40c->phy_chan->num);
524
525                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
526                         goto done;
527         }
528
529         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
530         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
531                active_reg);
532
533         if (command == D40_DMA_SUSPEND_REQ) {
534
535                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
536                         status = (readl(active_reg) &
537                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
538                                 D40_CHAN_POS(d40c->phy_chan->num);
539
540                         cpu_relax();
541                         /*
542                          * Reduce the number of bus accesses while
543                          * waiting for the DMA to suspend.
544                          */
545                         udelay(3);
546
547                         if (status == D40_DMA_STOP ||
548                             status == D40_DMA_SUSPENDED)
549                                 break;
550                 }
551
552                 if (i == D40_SUSPEND_MAX_IT) {
553                         dev_err(&d40c->chan.dev->device,
554                                 "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
555                                 __func__, d40c->phy_chan->num, d40c->log_num,
556                                 status);
557                         dump_stack();
558                         ret = -EBUSY;
559                 }
560
561         }
562 done:
563         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
564         return ret;
565 }
566
567 static void d40_term_all(struct d40_chan *d40c)
568 {
569         struct d40_desc *d40d;
570         unsigned long flags;
571
572         /* Release active descriptors */
573         while ((d40d = d40_first_active_get(d40c))) {
574                 d40_desc_remove(d40d);
575
576                 /* Return desc to free-list */
577                 d40_desc_free(d40c, d40d);
578         }
579
580         /* Release queued descriptors waiting for transfer */
581         while ((d40d = d40_first_queued(d40c))) {
582                 d40_desc_remove(d40d);
583
584                 /* Return desc to free-list */
585                 d40_desc_free(d40c, d40d);
586         }
587
588         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
589
590         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
591                 (~(0x1 << d40c->lcla.dst_id));
592         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
593                 (~(0x1 << d40c->lcla.src_id));
594
595         d40c->lcla.src_id = -1;
596         d40c->lcla.dst_id = -1;
597
598         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
599
600         d40c->pending_tx = 0;
601         d40c->busy = false;
602 }
603
604 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
605 {
606         u32 val;
607         unsigned long flags;
608
609         /* Notice, that disable requires the physical channel to be stopped */
610         if (do_enable)
611                 val = D40_ACTIVATE_EVENTLINE;
612         else
613                 val = D40_DEACTIVATE_EVENTLINE;
614
615         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
616
617         /* Enable event line connected to device (or memcpy) */
618         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
619             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
620                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
621
622                 writel((val << D40_EVENTLINE_POS(event)) |
623                        ~D40_EVENTLINE_MASK(event),
624                        d40c->base->virtbase + D40_DREG_PCBASE +
625                        d40c->phy_chan->num * D40_DREG_PCDELTA +
626                        D40_CHAN_REG_SSLNK);
627         }
628         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
629                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
630
631                 writel((val << D40_EVENTLINE_POS(event)) |
632                        ~D40_EVENTLINE_MASK(event),
633                        d40c->base->virtbase + D40_DREG_PCBASE +
634                        d40c->phy_chan->num * D40_DREG_PCDELTA +
635                        D40_CHAN_REG_SDLNK);
636         }
637
638         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
639 }
640
641 static u32 d40_chan_has_events(struct d40_chan *d40c)
642 {
643         u32 val;
644
645         val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
646                     d40c->phy_chan->num * D40_DREG_PCDELTA +
647                     D40_CHAN_REG_SSLNK);
648
649         val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
650                      d40c->phy_chan->num * D40_DREG_PCDELTA +
651                      D40_CHAN_REG_SDLNK);
652         return val;
653 }
654
655 static void d40_config_enable_lidx(struct d40_chan *d40c)
656 {
657         /* Set LIDX for lcla */
658         writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
659                D40_SREG_ELEM_LOG_LIDX_MASK,
660                d40c->base->virtbase + D40_DREG_PCBASE +
661                d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
662
663         writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
664                D40_SREG_ELEM_LOG_LIDX_MASK,
665                d40c->base->virtbase + D40_DREG_PCBASE +
666                d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
667 }
668
669 static int d40_config_write(struct d40_chan *d40c)
670 {
671         u32 addr_base;
672         u32 var;
673         int res;
674
675         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
676         if (res)
677                 return res;
678
679         /* Odd addresses are even addresses + 4 */
680         addr_base = (d40c->phy_chan->num % 2) * 4;
681         /* Setup channel mode to logical or physical */
682         var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
683                 D40_CHAN_POS(d40c->phy_chan->num);
684         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
685
686         /* Setup operational mode option register */
687         var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
688                0x3) << D40_CHAN_POS(d40c->phy_chan->num);
689
690         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
691
692         if (d40c->log_num != D40_PHY_CHAN) {
693                 /* Set default config for CFG reg */
694                 writel(d40c->src_def_cfg,
695                        d40c->base->virtbase + D40_DREG_PCBASE +
696                        d40c->phy_chan->num * D40_DREG_PCDELTA +
697                        D40_CHAN_REG_SSCFG);
698                 writel(d40c->dst_def_cfg,
699                        d40c->base->virtbase + D40_DREG_PCBASE +
700                        d40c->phy_chan->num * D40_DREG_PCDELTA +
701                        D40_CHAN_REG_SDCFG);
702
703                 d40_config_enable_lidx(d40c);
704         }
705         return res;
706 }
707
708 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
709 {
710         if (d40d->lli_phy.dst && d40d->lli_phy.src) {
711                 d40_phy_lli_write(d40c->base->virtbase,
712                                   d40c->phy_chan->num,
713                                   d40d->lli_phy.dst,
714                                   d40d->lli_phy.src);
715         } else if (d40d->lli_log.dst && d40d->lli_log.src) {
716                 struct d40_log_lli *src = d40d->lli_log.src;
717                 struct d40_log_lli *dst = d40d->lli_log.dst;
718                 int s;
719
720                 src += d40d->lli_count;
721                 dst += d40d->lli_count;
722                 s = d40_log_lli_write(d40c->lcpa,
723                                       d40c->lcla.src, d40c->lcla.dst,
724                                       dst, src,
725                                       d40c->base->plat_data->llis_per_log);
726
727                 /* If s equals to zero, the job is not linked */
728                 if (s > 0) {
729                         (void) dma_map_single(d40c->base->dev, d40c->lcla.src,
730                                               s * sizeof(struct d40_log_lli),
731                                               DMA_TO_DEVICE);
732                         (void) dma_map_single(d40c->base->dev, d40c->lcla.dst,
733                                               s * sizeof(struct d40_log_lli),
734                                               DMA_TO_DEVICE);
735                 }
736         }
737         d40d->lli_count += d40d->lli_tx_len;
738 }
739
740 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
741 {
742         struct d40_chan *d40c = container_of(tx->chan,
743                                              struct d40_chan,
744                                              chan);
745         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
746         unsigned long flags;
747
748         spin_lock_irqsave(&d40c->lock, flags);
749
750         tx->cookie = d40_assign_cookie(d40c, d40d);
751
752         d40_desc_queue(d40c, d40d);
753
754         spin_unlock_irqrestore(&d40c->lock, flags);
755
756         return tx->cookie;
757 }
758
759 static int d40_start(struct d40_chan *d40c)
760 {
761         if (d40c->base->rev == 0) {
762                 int err;
763
764                 if (d40c->log_num != D40_PHY_CHAN) {
765                         err = d40_channel_execute_command(d40c,
766                                                           D40_DMA_SUSPEND_REQ);
767                         if (err)
768                                 return err;
769                 }
770         }
771
772         if (d40c->log_num != D40_PHY_CHAN)
773                 d40_config_set_event(d40c, true);
774
775         return d40_channel_execute_command(d40c, D40_DMA_RUN);
776 }
777
778 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
779 {
780         struct d40_desc *d40d;
781         int err;
782
783         /* Start queued jobs, if any */
784         d40d = d40_first_queued(d40c);
785
786         if (d40d != NULL) {
787                 d40c->busy = true;
788
789                 /* Remove from queue */
790                 d40_desc_remove(d40d);
791
792                 /* Add to active queue */
793                 d40_desc_submit(d40c, d40d);
794
795                 /* Initiate DMA job */
796                 d40_desc_load(d40c, d40d);
797
798                 /* Start dma job */
799                 err = d40_start(d40c);
800
801                 if (err)
802                         return NULL;
803         }
804
805         return d40d;
806 }
807
808 /* called from interrupt context */
809 static void dma_tc_handle(struct d40_chan *d40c)
810 {
811         struct d40_desc *d40d;
812
813         if (!d40c->phy_chan)
814                 return;
815
816         /* Get first active entry from list */
817         d40d = d40_first_active_get(d40c);
818
819         if (d40d == NULL)
820                 return;
821
822         if (d40d->lli_count < d40d->lli_len) {
823
824                 d40_desc_load(d40c, d40d);
825                 /* Start dma job */
826                 (void) d40_start(d40c);
827                 return;
828         }
829
830         if (d40_queue_start(d40c) == NULL)
831                 d40c->busy = false;
832
833         d40c->pending_tx++;
834         tasklet_schedule(&d40c->tasklet);
835
836 }
837
838 static void dma_tasklet(unsigned long data)
839 {
840         struct d40_chan *d40c = (struct d40_chan *) data;
841         struct d40_desc *d40d_fin;
842         unsigned long flags;
843         dma_async_tx_callback callback;
844         void *callback_param;
845
846         spin_lock_irqsave(&d40c->lock, flags);
847
848         /* Get first active entry from list */
849         d40d_fin = d40_first_active_get(d40c);
850
851         if (d40d_fin == NULL)
852                 goto err;
853
854         d40c->completed = d40d_fin->txd.cookie;
855
856         /*
857          * If terminating a channel pending_tx is set to zero.
858          * This prevents any finished active jobs to return to the client.
859          */
860         if (d40c->pending_tx == 0) {
861                 spin_unlock_irqrestore(&d40c->lock, flags);
862                 return;
863         }
864
865         /* Callback to client */
866         callback = d40d_fin->txd.callback;
867         callback_param = d40d_fin->txd.callback_param;
868
869         if (async_tx_test_ack(&d40d_fin->txd)) {
870                 d40_pool_lli_free(d40d_fin);
871                 d40_desc_remove(d40d_fin);
872                 /* Return desc to free-list */
873                 d40_desc_free(d40c, d40d_fin);
874         } else {
875                 if (!d40d_fin->is_in_client_list) {
876                         d40_desc_remove(d40d_fin);
877                         list_add_tail(&d40d_fin->node, &d40c->client);
878                         d40d_fin->is_in_client_list = true;
879                 }
880         }
881
882         d40c->pending_tx--;
883
884         if (d40c->pending_tx)
885                 tasklet_schedule(&d40c->tasklet);
886
887         spin_unlock_irqrestore(&d40c->lock, flags);
888
889         if (callback)
890                 callback(callback_param);
891
892         return;
893
894  err:
895         /* Rescue manouver if receiving double interrupts */
896         if (d40c->pending_tx > 0)
897                 d40c->pending_tx--;
898         spin_unlock_irqrestore(&d40c->lock, flags);
899 }
900
901 static irqreturn_t d40_handle_interrupt(int irq, void *data)
902 {
903         static const struct d40_interrupt_lookup il[] = {
904                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
905                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
906                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
907                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
908                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
909                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
910                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
911                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
912                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
913                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
914         };
915
916         int i;
917         u32 regs[ARRAY_SIZE(il)];
918         u32 tmp;
919         u32 idx;
920         u32 row;
921         long chan = -1;
922         struct d40_chan *d40c;
923         unsigned long flags;
924         struct d40_base *base = data;
925
926         spin_lock_irqsave(&base->interrupt_lock, flags);
927
928         /* Read interrupt status of both logical and physical channels */
929         for (i = 0; i < ARRAY_SIZE(il); i++)
930                 regs[i] = readl(base->virtbase + il[i].src);
931
932         for (;;) {
933
934                 chan = find_next_bit((unsigned long *)regs,
935                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
936
937                 /* No more set bits found? */
938                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
939                         break;
940
941                 row = chan / BITS_PER_LONG;
942                 idx = chan & (BITS_PER_LONG - 1);
943
944                 /* ACK interrupt */
945                 tmp = readl(base->virtbase + il[row].clr);
946                 tmp |= 1 << idx;
947                 writel(tmp, base->virtbase + il[row].clr);
948
949                 if (il[row].offset == D40_PHY_CHAN)
950                         d40c = base->lookup_phy_chans[idx];
951                 else
952                         d40c = base->lookup_log_chans[il[row].offset + idx];
953                 spin_lock(&d40c->lock);
954
955                 if (!il[row].is_error)
956                         dma_tc_handle(d40c);
957                 else
958                         dev_err(base->dev,
959                                 "[%s] IRQ chan: %ld offset %d idx %d\n",
960                                 __func__, chan, il[row].offset, idx);
961
962                 spin_unlock(&d40c->lock);
963         }
964
965         spin_unlock_irqrestore(&base->interrupt_lock, flags);
966
967         return IRQ_HANDLED;
968 }
969
970
971 static int d40_validate_conf(struct d40_chan *d40c,
972                              struct stedma40_chan_cfg *conf)
973 {
974         int res = 0;
975         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
976         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
977         bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
978                 == STEDMA40_CHANNEL_IN_LOG_MODE;
979
980         if (!conf->dir) {
981                 dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
982                         __func__);
983                 res = -EINVAL;
984         }
985
986         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
987             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
988             d40c->runtime_addr == 0) {
989
990                 dev_err(&d40c->chan.dev->device,
991                         "[%s] Invalid TX channel address (%d)\n",
992                         __func__, conf->dst_dev_type);
993                 res = -EINVAL;
994         }
995
996         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
997             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
998             d40c->runtime_addr == 0) {
999                 dev_err(&d40c->chan.dev->device,
1000                         "[%s] Invalid RX channel address (%d)\n",
1001                         __func__, conf->src_dev_type);
1002                 res = -EINVAL;
1003         }
1004
1005         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1006             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1007                 dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
1008                         __func__);
1009                 res = -EINVAL;
1010         }
1011
1012         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1013             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1014                 dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
1015                         __func__);
1016                 res = -EINVAL;
1017         }
1018
1019         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1020             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1021                 dev_err(&d40c->chan.dev->device,
1022                         "[%s] No event line\n", __func__);
1023                 res = -EINVAL;
1024         }
1025
1026         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1027             (src_event_group != dst_event_group)) {
1028                 dev_err(&d40c->chan.dev->device,
1029                         "[%s] Invalid event group\n", __func__);
1030                 res = -EINVAL;
1031         }
1032
1033         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1034                 /*
1035                  * DMAC HW supports it. Will be added to this driver,
1036                  * in case any dma client requires it.
1037                  */
1038                 dev_err(&d40c->chan.dev->device,
1039                         "[%s] periph to periph not supported\n",
1040                         __func__);
1041                 res = -EINVAL;
1042         }
1043
1044         return res;
1045 }
1046
1047 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1048                                int log_event_line, bool is_log)
1049 {
1050         unsigned long flags;
1051         spin_lock_irqsave(&phy->lock, flags);
1052         if (!is_log) {
1053                 /* Physical interrupts are masked per physical full channel */
1054                 if (phy->allocated_src == D40_ALLOC_FREE &&
1055                     phy->allocated_dst == D40_ALLOC_FREE) {
1056                         phy->allocated_dst = D40_ALLOC_PHY;
1057                         phy->allocated_src = D40_ALLOC_PHY;
1058                         goto found;
1059                 } else
1060                         goto not_found;
1061         }
1062
1063         /* Logical channel */
1064         if (is_src) {
1065                 if (phy->allocated_src == D40_ALLOC_PHY)
1066                         goto not_found;
1067
1068                 if (phy->allocated_src == D40_ALLOC_FREE)
1069                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1070
1071                 if (!(phy->allocated_src & (1 << log_event_line))) {
1072                         phy->allocated_src |= 1 << log_event_line;
1073                         goto found;
1074                 } else
1075                         goto not_found;
1076         } else {
1077                 if (phy->allocated_dst == D40_ALLOC_PHY)
1078                         goto not_found;
1079
1080                 if (phy->allocated_dst == D40_ALLOC_FREE)
1081                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1082
1083                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1084                         phy->allocated_dst |= 1 << log_event_line;
1085                         goto found;
1086                 } else
1087                         goto not_found;
1088         }
1089
1090 not_found:
1091         spin_unlock_irqrestore(&phy->lock, flags);
1092         return false;
1093 found:
1094         spin_unlock_irqrestore(&phy->lock, flags);
1095         return true;
1096 }
1097
1098 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1099                                int log_event_line)
1100 {
1101         unsigned long flags;
1102         bool is_free = false;
1103
1104         spin_lock_irqsave(&phy->lock, flags);
1105         if (!log_event_line) {
1106                 /* Physical interrupts are masked per physical full channel */
1107                 phy->allocated_dst = D40_ALLOC_FREE;
1108                 phy->allocated_src = D40_ALLOC_FREE;
1109                 is_free = true;
1110                 goto out;
1111         }
1112
1113         /* Logical channel */
1114         if (is_src) {
1115                 phy->allocated_src &= ~(1 << log_event_line);
1116                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1117                         phy->allocated_src = D40_ALLOC_FREE;
1118         } else {
1119                 phy->allocated_dst &= ~(1 << log_event_line);
1120                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1121                         phy->allocated_dst = D40_ALLOC_FREE;
1122         }
1123
1124         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1125                    D40_ALLOC_FREE);
1126
1127 out:
1128         spin_unlock_irqrestore(&phy->lock, flags);
1129
1130         return is_free;
1131 }
1132
1133 static int d40_allocate_channel(struct d40_chan *d40c)
1134 {
1135         int dev_type;
1136         int event_group;
1137         int event_line;
1138         struct d40_phy_res *phys;
1139         int i;
1140         int j;
1141         int log_num;
1142         bool is_src;
1143         bool is_log = (d40c->dma_cfg.channel_type &
1144                        STEDMA40_CHANNEL_IN_OPER_MODE)
1145                 == STEDMA40_CHANNEL_IN_LOG_MODE;
1146
1147
1148         phys = d40c->base->phy_res;
1149
1150         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1151                 dev_type = d40c->dma_cfg.src_dev_type;
1152                 log_num = 2 * dev_type;
1153                 is_src = true;
1154         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1155                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1156                 /* dst event lines are used for logical memcpy */
1157                 dev_type = d40c->dma_cfg.dst_dev_type;
1158                 log_num = 2 * dev_type + 1;
1159                 is_src = false;
1160         } else
1161                 return -EINVAL;
1162
1163         event_group = D40_TYPE_TO_GROUP(dev_type);
1164         event_line = D40_TYPE_TO_EVENT(dev_type);
1165
1166         if (!is_log) {
1167                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1168                         /* Find physical half channel */
1169                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1170
1171                                 if (d40_alloc_mask_set(&phys[i], is_src,
1172                                                        0, is_log))
1173                                         goto found_phy;
1174                         }
1175                 } else
1176                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1177                                 int phy_num = j  + event_group * 2;
1178                                 for (i = phy_num; i < phy_num + 2; i++) {
1179                                         if (d40_alloc_mask_set(&phys[i],
1180                                                                is_src,
1181                                                                0,
1182                                                                is_log))
1183                                                 goto found_phy;
1184                                 }
1185                         }
1186                 return -EINVAL;
1187 found_phy:
1188                 d40c->phy_chan = &phys[i];
1189                 d40c->log_num = D40_PHY_CHAN;
1190                 goto out;
1191         }
1192         if (dev_type == -1)
1193                 return -EINVAL;
1194
1195         /* Find logical channel */
1196         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1197                 int phy_num = j + event_group * 2;
1198                 /*
1199                  * Spread logical channels across all available physical rather
1200                  * than pack every logical channel at the first available phy
1201                  * channels.
1202                  */
1203                 if (is_src) {
1204                         for (i = phy_num; i < phy_num + 2; i++) {
1205                                 if (d40_alloc_mask_set(&phys[i], is_src,
1206                                                        event_line, is_log))
1207                                         goto found_log;
1208                         }
1209                 } else {
1210                         for (i = phy_num + 1; i >= phy_num; i--) {
1211                                 if (d40_alloc_mask_set(&phys[i], is_src,
1212                                                        event_line, is_log))
1213                                         goto found_log;
1214                         }
1215                 }
1216         }
1217         return -EINVAL;
1218
1219 found_log:
1220         d40c->phy_chan = &phys[i];
1221         d40c->log_num = log_num;
1222 out:
1223
1224         if (is_log)
1225                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1226         else
1227                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1228
1229         return 0;
1230
1231 }
1232
1233 static int d40_config_memcpy(struct d40_chan *d40c)
1234 {
1235         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1236
1237         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1238                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1239                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1240                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1241                         memcpy[d40c->chan.chan_id];
1242
1243         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1244                    dma_has_cap(DMA_SLAVE, cap)) {
1245                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1246         } else {
1247                 dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
1248                         __func__);
1249                 return -EINVAL;
1250         }
1251
1252         return 0;
1253 }
1254
1255
1256 static int d40_free_dma(struct d40_chan *d40c)
1257 {
1258
1259         int res = 0;
1260         u32 event;
1261         struct d40_phy_res *phy = d40c->phy_chan;
1262         bool is_src;
1263         struct d40_desc *d;
1264         struct d40_desc *_d;
1265
1266
1267         /* Terminate all queued and active transfers */
1268         d40_term_all(d40c);
1269
1270         /* Release client owned descriptors */
1271         if (!list_empty(&d40c->client))
1272                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1273                         d40_pool_lli_free(d);
1274                         d40_desc_remove(d);
1275                         /* Return desc to free-list */
1276                         d40_desc_free(d40c, d);
1277                 }
1278
1279         if (phy == NULL) {
1280                 dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
1281                         __func__);
1282                 return -EINVAL;
1283         }
1284
1285         if (phy->allocated_src == D40_ALLOC_FREE &&
1286             phy->allocated_dst == D40_ALLOC_FREE) {
1287                 dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
1288                         __func__);
1289                 return -EINVAL;
1290         }
1291
1292         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1293             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1294                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1295                 is_src = false;
1296         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1297                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1298                 is_src = true;
1299         } else {
1300                 dev_err(&d40c->chan.dev->device,
1301                         "[%s] Unknown direction\n", __func__);
1302                 return -EINVAL;
1303         }
1304
1305         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1306         if (res) {
1307                 dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
1308                         __func__);
1309                 return res;
1310         }
1311
1312         if (d40c->log_num != D40_PHY_CHAN) {
1313                 /* Release logical channel, deactivate the event line */
1314
1315                 d40_config_set_event(d40c, false);
1316                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1317
1318                 /*
1319                  * Check if there are more logical allocation
1320                  * on this phy channel.
1321                  */
1322                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1323                         /* Resume the other logical channels if any */
1324                         if (d40_chan_has_events(d40c)) {
1325                                 res = d40_channel_execute_command(d40c,
1326                                                                   D40_DMA_RUN);
1327                                 if (res) {
1328                                         dev_err(&d40c->chan.dev->device,
1329                                                 "[%s] Executing RUN command\n",
1330                                                 __func__);
1331                                         return res;
1332                                 }
1333                         }
1334                         return 0;
1335                 }
1336         } else {
1337                 (void) d40_alloc_mask_free(phy, is_src, 0);
1338         }
1339
1340         /* Release physical channel */
1341         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1342         if (res) {
1343                 dev_err(&d40c->chan.dev->device,
1344                         "[%s] Failed to stop channel\n", __func__);
1345                 return res;
1346         }
1347         d40c->phy_chan = NULL;
1348         /* Invalidate channel type */
1349         d40c->dma_cfg.channel_type = 0;
1350         d40c->base->lookup_phy_chans[phy->num] = NULL;
1351
1352         return 0;
1353 }
1354
1355 static int d40_pause(struct dma_chan *chan)
1356 {
1357         struct d40_chan *d40c =
1358                 container_of(chan, struct d40_chan, chan);
1359         int res;
1360         unsigned long flags;
1361
1362         spin_lock_irqsave(&d40c->lock, flags);
1363
1364         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1365         if (res == 0) {
1366                 if (d40c->log_num != D40_PHY_CHAN) {
1367                         d40_config_set_event(d40c, false);
1368                         /* Resume the other logical channels if any */
1369                         if (d40_chan_has_events(d40c))
1370                                 res = d40_channel_execute_command(d40c,
1371                                                                   D40_DMA_RUN);
1372                 }
1373         }
1374
1375         spin_unlock_irqrestore(&d40c->lock, flags);
1376         return res;
1377 }
1378
1379 static bool d40_is_paused(struct d40_chan *d40c)
1380 {
1381         bool is_paused = false;
1382         unsigned long flags;
1383         void __iomem *active_reg;
1384         u32 status;
1385         u32 event;
1386
1387         spin_lock_irqsave(&d40c->lock, flags);
1388
1389         if (d40c->log_num == D40_PHY_CHAN) {
1390                 if (d40c->phy_chan->num % 2 == 0)
1391                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1392                 else
1393                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1394
1395                 status = (readl(active_reg) &
1396                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1397                         D40_CHAN_POS(d40c->phy_chan->num);
1398                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1399                         is_paused = true;
1400
1401                 goto _exit;
1402         }
1403
1404         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1405             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
1406                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1407         else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1408                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1409         else {
1410                 dev_err(&d40c->chan.dev->device,
1411                         "[%s] Unknown direction\n", __func__);
1412                 goto _exit;
1413         }
1414         status = d40_chan_has_events(d40c);
1415         status = (status & D40_EVENTLINE_MASK(event)) >>
1416                 D40_EVENTLINE_POS(event);
1417
1418         if (status != D40_DMA_RUN)
1419                 is_paused = true;
1420 _exit:
1421         spin_unlock_irqrestore(&d40c->lock, flags);
1422         return is_paused;
1423
1424 }
1425
1426
1427 static bool d40_tx_is_linked(struct d40_chan *d40c)
1428 {
1429         bool is_link;
1430
1431         if (d40c->log_num != D40_PHY_CHAN)
1432                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1433         else
1434                 is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1435                                 d40c->phy_chan->num * D40_DREG_PCDELTA +
1436                                 D40_CHAN_REG_SDLNK) &
1437                         D40_SREG_LNK_PHYS_LNK_MASK;
1438         return is_link;
1439 }
1440
1441 static u32 d40_residue(struct d40_chan *d40c)
1442 {
1443         u32 num_elt;
1444
1445         if (d40c->log_num != D40_PHY_CHAN)
1446                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1447                         >> D40_MEM_LCSP2_ECNT_POS;
1448         else
1449                 num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
1450                                  d40c->phy_chan->num * D40_DREG_PCDELTA +
1451                                  D40_CHAN_REG_SDELT) &
1452                            D40_SREG_ELEM_PHY_ECNT_MASK) >>
1453                         D40_SREG_ELEM_PHY_ECNT_POS;
1454         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1455 }
1456
1457 static int d40_resume(struct dma_chan *chan)
1458 {
1459         struct d40_chan *d40c =
1460                 container_of(chan, struct d40_chan, chan);
1461         int res = 0;
1462         unsigned long flags;
1463
1464         spin_lock_irqsave(&d40c->lock, flags);
1465
1466         if (d40c->base->rev == 0)
1467                 if (d40c->log_num != D40_PHY_CHAN) {
1468                         res = d40_channel_execute_command(d40c,
1469                                                           D40_DMA_SUSPEND_REQ);
1470                         goto no_suspend;
1471                 }
1472
1473         /* If bytes left to transfer or linked tx resume job */
1474         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1475                 if (d40c->log_num != D40_PHY_CHAN)
1476                         d40_config_set_event(d40c, true);
1477                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1478         }
1479
1480 no_suspend:
1481         spin_unlock_irqrestore(&d40c->lock, flags);
1482         return res;
1483 }
1484
1485 static u32 stedma40_residue(struct dma_chan *chan)
1486 {
1487         struct d40_chan *d40c =
1488                 container_of(chan, struct d40_chan, chan);
1489         u32 bytes_left;
1490         unsigned long flags;
1491
1492         spin_lock_irqsave(&d40c->lock, flags);
1493         bytes_left = d40_residue(d40c);
1494         spin_unlock_irqrestore(&d40c->lock, flags);
1495
1496         return bytes_left;
1497 }
1498
1499 /* Public DMA functions in addition to the DMA engine framework */
1500
1501 int stedma40_set_psize(struct dma_chan *chan,
1502                        int src_psize,
1503                        int dst_psize)
1504 {
1505         struct d40_chan *d40c =
1506                 container_of(chan, struct d40_chan, chan);
1507         unsigned long flags;
1508
1509         spin_lock_irqsave(&d40c->lock, flags);
1510
1511         if (d40c->log_num != D40_PHY_CHAN) {
1512                 d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1513                 d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1514                 d40c->log_def.lcsp1 |= src_psize <<
1515                         D40_MEM_LCSP1_SCFG_PSIZE_POS;
1516                 d40c->log_def.lcsp3 |= dst_psize <<
1517                         D40_MEM_LCSP1_SCFG_PSIZE_POS;
1518                 goto out;
1519         }
1520
1521         if (src_psize == STEDMA40_PSIZE_PHY_1)
1522                 d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1523         else {
1524                 d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1525                 d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1526                                        D40_SREG_CFG_PSIZE_POS);
1527                 d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
1528         }
1529
1530         if (dst_psize == STEDMA40_PSIZE_PHY_1)
1531                 d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1532         else {
1533                 d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1534                 d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1535                                        D40_SREG_CFG_PSIZE_POS);
1536                 d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
1537         }
1538 out:
1539         spin_unlock_irqrestore(&d40c->lock, flags);
1540         return 0;
1541 }
1542 EXPORT_SYMBOL(stedma40_set_psize);
1543
1544 struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1545                                                    struct scatterlist *sgl_dst,
1546                                                    struct scatterlist *sgl_src,
1547                                                    unsigned int sgl_len,
1548                                                    unsigned long dma_flags)
1549 {
1550         int res;
1551         struct d40_desc *d40d;
1552         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1553                                              chan);
1554         unsigned long flags;
1555
1556         if (d40c->phy_chan == NULL) {
1557                 dev_err(&d40c->chan.dev->device,
1558                         "[%s] Unallocated channel.\n", __func__);
1559                 return ERR_PTR(-EINVAL);
1560         }
1561
1562         spin_lock_irqsave(&d40c->lock, flags);
1563         d40d = d40_desc_get(d40c);
1564
1565         if (d40d == NULL)
1566                 goto err;
1567
1568         d40d->lli_len = sgl_len;
1569         d40d->lli_tx_len = d40d->lli_len;
1570         d40d->txd.flags = dma_flags;
1571
1572         if (d40c->log_num != D40_PHY_CHAN) {
1573                 if (d40d->lli_len > d40c->base->plat_data->llis_per_log)
1574                         d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
1575
1576                 if (sgl_len > 1)
1577                         /*
1578                          * Check if there is space available in lcla. If not,
1579                          * split list into 1-length and run only in lcpa
1580                          * space.
1581                          */
1582                         if (d40_lcla_id_get(d40c) != 0)
1583                                 d40d->lli_tx_len = 1;
1584
1585                 if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
1586                         dev_err(&d40c->chan.dev->device,
1587                                 "[%s] Out of memory\n", __func__);
1588                         goto err;
1589                 }
1590
1591                 (void) d40_log_sg_to_lli(d40c->lcla.src_id,
1592                                          sgl_src,
1593                                          sgl_len,
1594                                          d40d->lli_log.src,
1595                                          d40c->log_def.lcsp1,
1596                                          d40c->dma_cfg.src_info.data_width,
1597                                          dma_flags & DMA_PREP_INTERRUPT,
1598                                          d40d->lli_tx_len,
1599                                          d40c->base->plat_data->llis_per_log);
1600
1601                 (void) d40_log_sg_to_lli(d40c->lcla.dst_id,
1602                                          sgl_dst,
1603                                          sgl_len,
1604                                          d40d->lli_log.dst,
1605                                          d40c->log_def.lcsp3,
1606                                          d40c->dma_cfg.dst_info.data_width,
1607                                          dma_flags & DMA_PREP_INTERRUPT,
1608                                          d40d->lli_tx_len,
1609                                          d40c->base->plat_data->llis_per_log);
1610
1611
1612         } else {
1613                 if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1614                         dev_err(&d40c->chan.dev->device,
1615                                 "[%s] Out of memory\n", __func__);
1616                         goto err;
1617                 }
1618
1619                 res = d40_phy_sg_to_lli(sgl_src,
1620                                         sgl_len,
1621                                         0,
1622                                         d40d->lli_phy.src,
1623                                         d40d->lli_phy.src_addr,
1624                                         d40c->src_def_cfg,
1625                                         d40c->dma_cfg.src_info.data_width,
1626                                         d40c->dma_cfg.src_info.psize,
1627                                         true);
1628
1629                 if (res < 0)
1630                         goto err;
1631
1632                 res = d40_phy_sg_to_lli(sgl_dst,
1633                                         sgl_len,
1634                                         0,
1635                                         d40d->lli_phy.dst,
1636                                         d40d->lli_phy.dst_addr,
1637                                         d40c->dst_def_cfg,
1638                                         d40c->dma_cfg.dst_info.data_width,
1639                                         d40c->dma_cfg.dst_info.psize,
1640                                         true);
1641
1642                 if (res < 0)
1643                         goto err;
1644
1645                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1646                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1647         }
1648
1649         dma_async_tx_descriptor_init(&d40d->txd, chan);
1650
1651         d40d->txd.tx_submit = d40_tx_submit;
1652
1653         spin_unlock_irqrestore(&d40c->lock, flags);
1654
1655         return &d40d->txd;
1656 err:
1657         spin_unlock_irqrestore(&d40c->lock, flags);
1658         return NULL;
1659 }
1660 EXPORT_SYMBOL(stedma40_memcpy_sg);
1661
1662 bool stedma40_filter(struct dma_chan *chan, void *data)
1663 {
1664         struct stedma40_chan_cfg *info = data;
1665         struct d40_chan *d40c =
1666                 container_of(chan, struct d40_chan, chan);
1667         int err;
1668
1669         if (data) {
1670                 err = d40_validate_conf(d40c, info);
1671                 if (!err)
1672                         d40c->dma_cfg = *info;
1673         } else
1674                 err = d40_config_memcpy(d40c);
1675
1676         return err == 0;
1677 }
1678 EXPORT_SYMBOL(stedma40_filter);
1679
1680 /* DMA ENGINE functions */
1681 static int d40_alloc_chan_resources(struct dma_chan *chan)
1682 {
1683         int err;
1684         unsigned long flags;
1685         struct d40_chan *d40c =
1686                 container_of(chan, struct d40_chan, chan);
1687         bool is_free_phy;
1688         spin_lock_irqsave(&d40c->lock, flags);
1689
1690         d40c->completed = chan->cookie = 1;
1691
1692         /*
1693          * If no dma configuration is set (channel_type == 0)
1694          * use default configuration (memcpy)
1695          */
1696         if (d40c->dma_cfg.channel_type == 0) {
1697                 err = d40_config_memcpy(d40c);
1698                 if (err) {
1699                         dev_err(&d40c->chan.dev->device,
1700                                 "[%s] Failed to configure memcpy channel\n",
1701                                 __func__);
1702                         goto fail;
1703                 }
1704         }
1705         is_free_phy = (d40c->phy_chan == NULL);
1706
1707         err = d40_allocate_channel(d40c);
1708         if (err) {
1709                 dev_err(&d40c->chan.dev->device,
1710                         "[%s] Failed to allocate channel\n", __func__);
1711                 goto fail;
1712         }
1713
1714         /* Fill in basic CFG register values */
1715         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1716                     &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
1717
1718         if (d40c->log_num != D40_PHY_CHAN) {
1719                 d40_log_cfg(&d40c->dma_cfg,
1720                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1721
1722                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1723                         d40c->lcpa = d40c->base->lcpa_base +
1724                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1725                 else
1726                         d40c->lcpa = d40c->base->lcpa_base +
1727                           d40c->dma_cfg.dst_dev_type *
1728                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1729         }
1730
1731         /*
1732          * Only write channel configuration to the DMA if the physical
1733          * resource is free. In case of multiple logical channels
1734          * on the same physical resource, only the first write is necessary.
1735          */
1736         if (is_free_phy) {
1737                 err = d40_config_write(d40c);
1738                 if (err) {
1739                         dev_err(&d40c->chan.dev->device,
1740                                 "[%s] Failed to configure channel\n",
1741                                 __func__);
1742                 }
1743         }
1744 fail:
1745         spin_unlock_irqrestore(&d40c->lock, flags);
1746         return err;
1747 }
1748
1749 static void d40_free_chan_resources(struct dma_chan *chan)
1750 {
1751         struct d40_chan *d40c =
1752                 container_of(chan, struct d40_chan, chan);
1753         int err;
1754         unsigned long flags;
1755
1756         if (d40c->phy_chan == NULL) {
1757                 dev_err(&d40c->chan.dev->device,
1758                         "[%s] Cannot free unallocated channel\n", __func__);
1759                 return;
1760         }
1761
1762
1763         spin_lock_irqsave(&d40c->lock, flags);
1764
1765         err = d40_free_dma(d40c);
1766
1767         if (err)
1768                 dev_err(&d40c->chan.dev->device,
1769                         "[%s] Failed to free channel\n", __func__);
1770         spin_unlock_irqrestore(&d40c->lock, flags);
1771 }
1772
1773 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1774                                                        dma_addr_t dst,
1775                                                        dma_addr_t src,
1776                                                        size_t size,
1777                                                        unsigned long dma_flags)
1778 {
1779         struct d40_desc *d40d;
1780         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1781                                              chan);
1782         unsigned long flags;
1783         int err = 0;
1784
1785         if (d40c->phy_chan == NULL) {
1786                 dev_err(&d40c->chan.dev->device,
1787                         "[%s] Channel is not allocated.\n", __func__);
1788                 return ERR_PTR(-EINVAL);
1789         }
1790
1791         spin_lock_irqsave(&d40c->lock, flags);
1792         d40d = d40_desc_get(d40c);
1793
1794         if (d40d == NULL) {
1795                 dev_err(&d40c->chan.dev->device,
1796                         "[%s] Descriptor is NULL\n", __func__);
1797                 goto err;
1798         }
1799
1800         d40d->txd.flags = dma_flags;
1801
1802         dma_async_tx_descriptor_init(&d40d->txd, chan);
1803
1804         d40d->txd.tx_submit = d40_tx_submit;
1805
1806         if (d40c->log_num != D40_PHY_CHAN) {
1807
1808                 if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
1809                         dev_err(&d40c->chan.dev->device,
1810                                 "[%s] Out of memory\n", __func__);
1811                         goto err;
1812                 }
1813                 d40d->lli_len = 1;
1814                 d40d->lli_tx_len = 1;
1815
1816                 d40_log_fill_lli(d40d->lli_log.src,
1817                                  src,
1818                                  size,
1819                                  0,
1820                                  d40c->log_def.lcsp1,
1821                                  d40c->dma_cfg.src_info.data_width,
1822                                  false, true);
1823
1824                 d40_log_fill_lli(d40d->lli_log.dst,
1825                                  dst,
1826                                  size,
1827                                  0,
1828                                  d40c->log_def.lcsp3,
1829                                  d40c->dma_cfg.dst_info.data_width,
1830                                  true, true);
1831
1832         } else {
1833
1834                 if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
1835                         dev_err(&d40c->chan.dev->device,
1836                                 "[%s] Out of memory\n", __func__);
1837                         goto err;
1838                 }
1839
1840                 err = d40_phy_fill_lli(d40d->lli_phy.src,
1841                                        src,
1842                                        size,
1843                                        d40c->dma_cfg.src_info.psize,
1844                                        0,
1845                                        d40c->src_def_cfg,
1846                                        true,
1847                                        d40c->dma_cfg.src_info.data_width,
1848                                        false);
1849                 if (err)
1850                         goto err_fill_lli;
1851
1852                 err = d40_phy_fill_lli(d40d->lli_phy.dst,
1853                                        dst,
1854                                        size,
1855                                        d40c->dma_cfg.dst_info.psize,
1856                                        0,
1857                                        d40c->dst_def_cfg,
1858                                        true,
1859                                        d40c->dma_cfg.dst_info.data_width,
1860                                        false);
1861
1862                 if (err)
1863                         goto err_fill_lli;
1864
1865                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1866                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1867         }
1868
1869         spin_unlock_irqrestore(&d40c->lock, flags);
1870         return &d40d->txd;
1871
1872 err_fill_lli:
1873         dev_err(&d40c->chan.dev->device,
1874                 "[%s] Failed filling in PHY LLI\n", __func__);
1875         d40_pool_lli_free(d40d);
1876 err:
1877         spin_unlock_irqrestore(&d40c->lock, flags);
1878         return NULL;
1879 }
1880
1881 static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1882                                  struct d40_chan *d40c,
1883                                  struct scatterlist *sgl,
1884                                  unsigned int sg_len,
1885                                  enum dma_data_direction direction,
1886                                  unsigned long dma_flags)
1887 {
1888         dma_addr_t dev_addr = 0;
1889         int total_size;
1890
1891         if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
1892                 dev_err(&d40c->chan.dev->device,
1893                         "[%s] Out of memory\n", __func__);
1894                 return -ENOMEM;
1895         }
1896
1897         d40d->lli_len = sg_len;
1898         if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
1899                 d40d->lli_tx_len = d40d->lli_len;
1900         else
1901                 d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
1902
1903         if (sg_len > 1)
1904                 /*
1905                  * Check if there is space available in lcla.
1906                  * If not, split list into 1-length and run only
1907                  * in lcpa space.
1908                  */
1909                 if (d40_lcla_id_get(d40c) != 0)
1910                         d40d->lli_tx_len = 1;
1911
1912         if (direction == DMA_FROM_DEVICE)
1913                 if (d40c->runtime_addr)
1914                         dev_addr = d40c->runtime_addr;
1915                 else
1916                         dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1917         else if (direction == DMA_TO_DEVICE)
1918                 if (d40c->runtime_addr)
1919                         dev_addr = d40c->runtime_addr;
1920                 else
1921                         dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1922
1923         else
1924                 return -EINVAL;
1925
1926         total_size = d40_log_sg_to_dev(&d40c->lcla,
1927                                        sgl, sg_len,
1928                                        &d40d->lli_log,
1929                                        &d40c->log_def,
1930                                        d40c->dma_cfg.src_info.data_width,
1931                                        d40c->dma_cfg.dst_info.data_width,
1932                                        direction,
1933                                        dma_flags & DMA_PREP_INTERRUPT,
1934                                        dev_addr, d40d->lli_tx_len,
1935                                        d40c->base->plat_data->llis_per_log);
1936
1937         if (total_size < 0)
1938                 return -EINVAL;
1939
1940         return 0;
1941 }
1942
1943 static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
1944                                  struct d40_chan *d40c,
1945                                  struct scatterlist *sgl,
1946                                  unsigned int sgl_len,
1947                                  enum dma_data_direction direction,
1948                                  unsigned long dma_flags)
1949 {
1950         dma_addr_t src_dev_addr;
1951         dma_addr_t dst_dev_addr;
1952         int res;
1953
1954         if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1955                 dev_err(&d40c->chan.dev->device,
1956                         "[%s] Out of memory\n", __func__);
1957                 return -ENOMEM;
1958         }
1959
1960         d40d->lli_len = sgl_len;
1961         d40d->lli_tx_len = sgl_len;
1962
1963         if (direction == DMA_FROM_DEVICE) {
1964                 dst_dev_addr = 0;
1965                 if (d40c->runtime_addr)
1966                         src_dev_addr = d40c->runtime_addr;
1967                 else
1968                         src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1969         } else if (direction == DMA_TO_DEVICE) {
1970                 if (d40c->runtime_addr)
1971                         dst_dev_addr = d40c->runtime_addr;
1972                 else
1973                         dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1974                 src_dev_addr = 0;
1975         } else
1976                 return -EINVAL;
1977
1978         res = d40_phy_sg_to_lli(sgl,
1979                                 sgl_len,
1980                                 src_dev_addr,
1981                                 d40d->lli_phy.src,
1982                                 d40d->lli_phy.src_addr,
1983                                 d40c->src_def_cfg,
1984                                 d40c->dma_cfg.src_info.data_width,
1985                                 d40c->dma_cfg.src_info.psize,
1986                                 true);
1987         if (res < 0)
1988                 return res;
1989
1990         res = d40_phy_sg_to_lli(sgl,
1991                                 sgl_len,
1992                                 dst_dev_addr,
1993                                 d40d->lli_phy.dst,
1994                                 d40d->lli_phy.dst_addr,
1995                                 d40c->dst_def_cfg,
1996                                 d40c->dma_cfg.dst_info.data_width,
1997                                 d40c->dma_cfg.dst_info.psize,
1998                                  true);
1999         if (res < 0)
2000                 return res;
2001
2002         (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
2003                               d40d->lli_pool.size, DMA_TO_DEVICE);
2004         return 0;
2005 }
2006
2007 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2008                                                          struct scatterlist *sgl,
2009                                                          unsigned int sg_len,
2010                                                          enum dma_data_direction direction,
2011                                                          unsigned long dma_flags)
2012 {
2013         struct d40_desc *d40d;
2014         struct d40_chan *d40c = container_of(chan, struct d40_chan,
2015                                              chan);
2016         unsigned long flags;
2017         int err;
2018
2019         if (d40c->phy_chan == NULL) {
2020                 dev_err(&d40c->chan.dev->device,
2021                         "[%s] Cannot prepare unallocated channel\n", __func__);
2022                 return ERR_PTR(-EINVAL);
2023         }
2024
2025         if (d40c->dma_cfg.pre_transfer)
2026                 d40c->dma_cfg.pre_transfer(chan,
2027                                            d40c->dma_cfg.pre_transfer_data,
2028                                            sg_dma_len(sgl));
2029
2030         spin_lock_irqsave(&d40c->lock, flags);
2031         d40d = d40_desc_get(d40c);
2032         spin_unlock_irqrestore(&d40c->lock, flags);
2033
2034         if (d40d == NULL)
2035                 return NULL;
2036
2037         if (d40c->log_num != D40_PHY_CHAN)
2038                 err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2039                                             direction, dma_flags);
2040         else
2041                 err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2042                                             direction, dma_flags);
2043         if (err) {
2044                 dev_err(&d40c->chan.dev->device,
2045                         "[%s] Failed to prepare %s slave sg job: %d\n",
2046                         __func__,
2047                         d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
2048                 return NULL;
2049         }
2050
2051         d40d->txd.flags = dma_flags;
2052
2053         dma_async_tx_descriptor_init(&d40d->txd, chan);
2054
2055         d40d->txd.tx_submit = d40_tx_submit;
2056
2057         return &d40d->txd;
2058 }
2059
2060 static enum dma_status d40_tx_status(struct dma_chan *chan,
2061                                      dma_cookie_t cookie,
2062                                      struct dma_tx_state *txstate)
2063 {
2064         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2065         dma_cookie_t last_used;
2066         dma_cookie_t last_complete;
2067         int ret;
2068
2069         if (d40c->phy_chan == NULL) {
2070                 dev_err(&d40c->chan.dev->device,
2071                         "[%s] Cannot read status of unallocated channel\n",
2072                         __func__);
2073                 return -EINVAL;
2074         }
2075
2076         last_complete = d40c->completed;
2077         last_used = chan->cookie;
2078
2079         if (d40_is_paused(d40c))
2080                 ret = DMA_PAUSED;
2081         else
2082                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2083
2084         dma_set_tx_state(txstate, last_complete, last_used,
2085                          stedma40_residue(chan));
2086
2087         return ret;
2088 }
2089
2090 static void d40_issue_pending(struct dma_chan *chan)
2091 {
2092         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2093         unsigned long flags;
2094
2095         if (d40c->phy_chan == NULL) {
2096                 dev_err(&d40c->chan.dev->device,
2097                         "[%s] Channel is not allocated!\n", __func__);
2098                 return;
2099         }
2100
2101         spin_lock_irqsave(&d40c->lock, flags);
2102
2103         /* Busy means that pending jobs are already being processed */
2104         if (!d40c->busy)
2105                 (void) d40_queue_start(d40c);
2106
2107         spin_unlock_irqrestore(&d40c->lock, flags);
2108 }
2109
2110 /* Runtime reconfiguration extension */
2111 static void d40_set_runtime_config(struct dma_chan *chan,
2112                                struct dma_slave_config *config)
2113 {
2114         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2115         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2116         enum dma_slave_buswidth config_addr_width;
2117         dma_addr_t config_addr;
2118         u32 config_maxburst;
2119         enum stedma40_periph_data_width addr_width;
2120         int psize;
2121
2122         if (config->direction == DMA_FROM_DEVICE) {
2123                 dma_addr_t dev_addr_rx =
2124                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2125
2126                 config_addr = config->src_addr;
2127                 if (dev_addr_rx)
2128                         dev_dbg(d40c->base->dev,
2129                                 "channel has a pre-wired RX address %08x "
2130                                 "overriding with %08x\n",
2131                                 dev_addr_rx, config_addr);
2132                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2133                         dev_dbg(d40c->base->dev,
2134                                 "channel was not configured for peripheral "
2135                                 "to memory transfer (%d) overriding\n",
2136                                 cfg->dir);
2137                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2138
2139                 config_addr_width = config->src_addr_width;
2140                 config_maxburst = config->src_maxburst;
2141
2142         } else if (config->direction == DMA_TO_DEVICE) {
2143                 dma_addr_t dev_addr_tx =
2144                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2145
2146                 config_addr = config->dst_addr;
2147                 if (dev_addr_tx)
2148                         dev_dbg(d40c->base->dev,
2149                                 "channel has a pre-wired TX address %08x "
2150                                 "overriding with %08x\n",
2151                                 dev_addr_tx, config_addr);
2152                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2153                         dev_dbg(d40c->base->dev,
2154                                 "channel was not configured for memory "
2155                                 "to peripheral transfer (%d) overriding\n",
2156                                 cfg->dir);
2157                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2158
2159                 config_addr_width = config->dst_addr_width;
2160                 config_maxburst = config->dst_maxburst;
2161
2162         } else {
2163                 dev_err(d40c->base->dev,
2164                         "unrecognized channel direction %d\n",
2165                         config->direction);
2166                 return;
2167         }
2168
2169         switch (config_addr_width) {
2170         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2171                 addr_width = STEDMA40_BYTE_WIDTH;
2172                 break;
2173         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2174                 addr_width = STEDMA40_HALFWORD_WIDTH;
2175                 break;
2176         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2177                 addr_width = STEDMA40_WORD_WIDTH;
2178                 break;
2179         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2180                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2181                 break;
2182         default:
2183                 dev_err(d40c->base->dev,
2184                         "illegal peripheral address width "
2185                         "requested (%d)\n",
2186                         config->src_addr_width);
2187                 return;
2188         }
2189
2190         if (config_maxburst >= 16)
2191                 psize = STEDMA40_PSIZE_LOG_16;
2192         else if (config_maxburst >= 8)
2193                 psize = STEDMA40_PSIZE_LOG_8;
2194         else if (config_maxburst >= 4)
2195                 psize = STEDMA40_PSIZE_LOG_4;
2196         else
2197                 psize = STEDMA40_PSIZE_LOG_1;
2198
2199         /* Set up all the endpoint configs */
2200         cfg->src_info.data_width = addr_width;
2201         cfg->src_info.psize = psize;
2202         cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
2203         cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2204         cfg->dst_info.data_width = addr_width;
2205         cfg->dst_info.psize = psize;
2206         cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
2207         cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2208
2209         /* These settings will take precedence later */
2210         d40c->runtime_addr = config_addr;
2211         d40c->runtime_direction = config->direction;
2212         dev_dbg(d40c->base->dev,
2213                 "configured channel %s for %s, data width %d, "
2214                 "maxburst %d bytes, LE, no flow control\n",
2215                 dma_chan_name(chan),
2216                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2217                 config_addr_width,
2218                 config_maxburst);
2219 }
2220
2221 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2222                        unsigned long arg)
2223 {
2224         unsigned long flags;
2225         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2226
2227         if (d40c->phy_chan == NULL) {
2228                 dev_err(&d40c->chan.dev->device,
2229                         "[%s] Channel is not allocated!\n", __func__);
2230                 return -EINVAL;
2231         }
2232
2233         switch (cmd) {
2234         case DMA_TERMINATE_ALL:
2235                 spin_lock_irqsave(&d40c->lock, flags);
2236                 d40_term_all(d40c);
2237                 spin_unlock_irqrestore(&d40c->lock, flags);
2238                 return 0;
2239         case DMA_PAUSE:
2240                 return d40_pause(chan);
2241         case DMA_RESUME:
2242                 return d40_resume(chan);
2243         case DMA_SLAVE_CONFIG:
2244                 d40_set_runtime_config(chan,
2245                         (struct dma_slave_config *) arg);
2246                 return 0;
2247         default:
2248                 break;
2249         }
2250
2251         /* Other commands are unimplemented */
2252         return -ENXIO;
2253 }
2254
2255 /* Initialization functions */
2256
2257 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2258                                  struct d40_chan *chans, int offset,
2259                                  int num_chans)
2260 {
2261         int i = 0;
2262         struct d40_chan *d40c;
2263
2264         INIT_LIST_HEAD(&dma->channels);
2265
2266         for (i = offset; i < offset + num_chans; i++) {
2267                 d40c = &chans[i];
2268                 d40c->base = base;
2269                 d40c->chan.device = dma;
2270
2271                 /* Invalidate lcla element */
2272                 d40c->lcla.src_id = -1;
2273                 d40c->lcla.dst_id = -1;
2274
2275                 spin_lock_init(&d40c->lock);
2276
2277                 d40c->log_num = D40_PHY_CHAN;
2278
2279                 INIT_LIST_HEAD(&d40c->active);
2280                 INIT_LIST_HEAD(&d40c->queue);
2281                 INIT_LIST_HEAD(&d40c->client);
2282
2283                 tasklet_init(&d40c->tasklet, dma_tasklet,
2284                              (unsigned long) d40c);
2285
2286                 list_add_tail(&d40c->chan.device_node,
2287                               &dma->channels);
2288         }
2289 }
2290
2291 static int __init d40_dmaengine_init(struct d40_base *base,
2292                                      int num_reserved_chans)
2293 {
2294         int err ;
2295
2296         d40_chan_init(base, &base->dma_slave, base->log_chans,
2297                       0, base->num_log_chans);
2298
2299         dma_cap_zero(base->dma_slave.cap_mask);
2300         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2301
2302         base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2303         base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2304         base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2305         base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2306         base->dma_slave.device_tx_status = d40_tx_status;
2307         base->dma_slave.device_issue_pending = d40_issue_pending;
2308         base->dma_slave.device_control = d40_control;
2309         base->dma_slave.dev = base->dev;
2310
2311         err = dma_async_device_register(&base->dma_slave);
2312
2313         if (err) {
2314                 dev_err(base->dev,
2315                         "[%s] Failed to register slave channels\n",
2316                         __func__);
2317                 goto failure1;
2318         }
2319
2320         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2321                       base->num_log_chans, base->plat_data->memcpy_len);
2322
2323         dma_cap_zero(base->dma_memcpy.cap_mask);
2324         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2325
2326         base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2327         base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2328         base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2329         base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2330         base->dma_memcpy.device_tx_status = d40_tx_status;
2331         base->dma_memcpy.device_issue_pending = d40_issue_pending;
2332         base->dma_memcpy.device_control = d40_control;
2333         base->dma_memcpy.dev = base->dev;
2334         /*
2335          * This controller can only access address at even
2336          * 32bit boundaries, i.e. 2^2
2337          */
2338         base->dma_memcpy.copy_align = 2;
2339
2340         err = dma_async_device_register(&base->dma_memcpy);
2341
2342         if (err) {
2343                 dev_err(base->dev,
2344                         "[%s] Failed to regsiter memcpy only channels\n",
2345                         __func__);
2346                 goto failure2;
2347         }
2348
2349         d40_chan_init(base, &base->dma_both, base->phy_chans,
2350                       0, num_reserved_chans);
2351
2352         dma_cap_zero(base->dma_both.cap_mask);
2353         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2354         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2355
2356         base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2357         base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2358         base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2359         base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2360         base->dma_both.device_tx_status = d40_tx_status;
2361         base->dma_both.device_issue_pending = d40_issue_pending;
2362         base->dma_both.device_control = d40_control;
2363         base->dma_both.dev = base->dev;
2364         base->dma_both.copy_align = 2;
2365         err = dma_async_device_register(&base->dma_both);
2366
2367         if (err) {
2368                 dev_err(base->dev,
2369                         "[%s] Failed to register logical and physical capable channels\n",
2370                         __func__);
2371                 goto failure3;
2372         }
2373         return 0;
2374 failure3:
2375         dma_async_device_unregister(&base->dma_memcpy);
2376 failure2:
2377         dma_async_device_unregister(&base->dma_slave);
2378 failure1:
2379         return err;
2380 }
2381
2382 /* Initialization functions. */
2383
2384 static int __init d40_phy_res_init(struct d40_base *base)
2385 {
2386         int i;
2387         int num_phy_chans_avail = 0;
2388         u32 val[2];
2389         int odd_even_bit = -2;
2390
2391         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2392         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2393
2394         for (i = 0; i < base->num_phy_chans; i++) {
2395                 base->phy_res[i].num = i;
2396                 odd_even_bit += 2 * ((i % 2) == 0);
2397                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2398                         /* Mark security only channels as occupied */
2399                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2400                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2401                 } else {
2402                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2403                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2404                         num_phy_chans_avail++;
2405                 }
2406                 spin_lock_init(&base->phy_res[i].lock);
2407         }
2408
2409         /* Mark disabled channels as occupied */
2410         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2411                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2412                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2413                         num_phy_chans_avail--;
2414         }
2415
2416         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2417                  num_phy_chans_avail, base->num_phy_chans);
2418
2419         /* Verify settings extended vs standard */
2420         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2421
2422         for (i = 0; i < base->num_phy_chans; i++) {
2423
2424                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2425                     (val[0] & 0x3) != 1)
2426                         dev_info(base->dev,
2427                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2428                                  __func__, i, val[0] & 0x3);
2429
2430                 val[0] = val[0] >> 2;
2431         }
2432
2433         return num_phy_chans_avail;
2434 }
2435
2436 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2437 {
2438         static const struct d40_reg_val dma_id_regs[] = {
2439                 /* Peripheral Id */
2440                 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2441                 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2442                 /*
2443                  * D40_DREG_PERIPHID2 Depends on HW revision:
2444                  *  MOP500/HREF ED has 0x0008,
2445                  *  ? has 0x0018,
2446                  *  HREF V1 has 0x0028
2447                  */
2448                 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2449
2450                 /* PCell Id */
2451                 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2452                 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2453                 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2454                 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2455         };
2456         struct stedma40_platform_data *plat_data;
2457         struct clk *clk = NULL;
2458         void __iomem *virtbase = NULL;
2459         struct resource *res = NULL;
2460         struct d40_base *base = NULL;
2461         int num_log_chans = 0;
2462         int num_phy_chans;
2463         int i;
2464         u32 val;
2465
2466         clk = clk_get(&pdev->dev, NULL);
2467
2468         if (IS_ERR(clk)) {
2469                 dev_err(&pdev->dev, "[%s] No matching clock found\n",
2470                         __func__);
2471                 goto failure;
2472         }
2473
2474         clk_enable(clk);
2475
2476         /* Get IO for DMAC base address */
2477         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2478         if (!res)
2479                 goto failure;
2480
2481         if (request_mem_region(res->start, resource_size(res),
2482                                D40_NAME " I/O base") == NULL)
2483                 goto failure;
2484
2485         virtbase = ioremap(res->start, resource_size(res));
2486         if (!virtbase)
2487                 goto failure;
2488
2489         /* HW version check */
2490         for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2491                 if (dma_id_regs[i].val !=
2492                     readl(virtbase + dma_id_regs[i].reg)) {
2493                         dev_err(&pdev->dev,
2494                                 "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2495                                 __func__,
2496                                 dma_id_regs[i].val,
2497                                 dma_id_regs[i].reg,
2498                                 readl(virtbase + dma_id_regs[i].reg));
2499                         goto failure;
2500                 }
2501         }
2502
2503         /* Get silicon revision */
2504         val = readl(virtbase + D40_DREG_PERIPHID2);
2505
2506         if ((val & 0xf) != D40_PERIPHID2_DESIGNER) {
2507                 dev_err(&pdev->dev,
2508                         "[%s] Unknown designer! Got %x wanted %x\n",
2509                         __func__, val & 0xf, D40_PERIPHID2_DESIGNER);
2510                 goto failure;
2511         }
2512
2513         /* The number of physical channels on this HW */
2514         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2515
2516         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2517                  (val >> 4) & 0xf, res->start);
2518
2519         plat_data = pdev->dev.platform_data;
2520
2521         /* Count the number of logical channels in use */
2522         for (i = 0; i < plat_data->dev_len; i++)
2523                 if (plat_data->dev_rx[i] != 0)
2524                         num_log_chans++;
2525
2526         for (i = 0; i < plat_data->dev_len; i++)
2527                 if (plat_data->dev_tx[i] != 0)
2528                         num_log_chans++;
2529
2530         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2531                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2532                        sizeof(struct d40_chan), GFP_KERNEL);
2533
2534         if (base == NULL) {
2535                 dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
2536                 goto failure;
2537         }
2538
2539         base->rev = (val >> 4) & 0xf;
2540         base->clk = clk;
2541         base->num_phy_chans = num_phy_chans;
2542         base->num_log_chans = num_log_chans;
2543         base->phy_start = res->start;
2544         base->phy_size = resource_size(res);
2545         base->virtbase = virtbase;
2546         base->plat_data = plat_data;
2547         base->dev = &pdev->dev;
2548         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2549         base->log_chans = &base->phy_chans[num_phy_chans];
2550
2551         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2552                                 GFP_KERNEL);
2553         if (!base->phy_res)
2554                 goto failure;
2555
2556         base->lookup_phy_chans = kzalloc(num_phy_chans *
2557                                          sizeof(struct d40_chan *),
2558                                          GFP_KERNEL);
2559         if (!base->lookup_phy_chans)
2560                 goto failure;
2561
2562         if (num_log_chans + plat_data->memcpy_len) {
2563                 /*
2564                  * The max number of logical channels are event lines for all
2565                  * src devices and dst devices
2566                  */
2567                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2568                                                  sizeof(struct d40_chan *),
2569                                                  GFP_KERNEL);
2570                 if (!base->lookup_log_chans)
2571                         goto failure;
2572         }
2573         base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
2574                                             GFP_KERNEL);
2575         if (!base->lcla_pool.alloc_map)
2576                 goto failure;
2577
2578         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2579                                             0, SLAB_HWCACHE_ALIGN,
2580                                             NULL);
2581         if (base->desc_slab == NULL)
2582                 goto failure;
2583
2584         return base;
2585
2586 failure:
2587         if (clk) {
2588                 clk_disable(clk);
2589                 clk_put(clk);
2590         }
2591         if (virtbase)
2592                 iounmap(virtbase);
2593         if (res)
2594                 release_mem_region(res->start,
2595                                    resource_size(res));
2596         if (virtbase)
2597                 iounmap(virtbase);
2598
2599         if (base) {
2600                 kfree(base->lcla_pool.alloc_map);
2601                 kfree(base->lookup_log_chans);
2602                 kfree(base->lookup_phy_chans);
2603                 kfree(base->phy_res);
2604                 kfree(base);
2605         }
2606
2607         return NULL;
2608 }
2609
2610 static void __init d40_hw_init(struct d40_base *base)
2611 {
2612
2613         static const struct d40_reg_val dma_init_reg[] = {
2614                 /* Clock every part of the DMA block from start */
2615                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2616
2617                 /* Interrupts on all logical channels */
2618                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2619                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2620                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2621                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2622                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2623                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2624                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2625                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2626                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2627                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2628                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2629                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2630         };
2631         int i;
2632         u32 prmseo[2] = {0, 0};
2633         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2634         u32 pcmis = 0;
2635         u32 pcicr = 0;
2636
2637         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2638                 writel(dma_init_reg[i].val,
2639                        base->virtbase + dma_init_reg[i].reg);
2640
2641         /* Configure all our dma channels to default settings */
2642         for (i = 0; i < base->num_phy_chans; i++) {
2643
2644                 activeo[i % 2] = activeo[i % 2] << 2;
2645
2646                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2647                     == D40_ALLOC_PHY) {
2648                         activeo[i % 2] |= 3;
2649                         continue;
2650                 }
2651
2652                 /* Enable interrupt # */
2653                 pcmis = (pcmis << 1) | 1;
2654
2655                 /* Clear interrupt # */
2656                 pcicr = (pcicr << 1) | 1;
2657
2658                 /* Set channel to physical mode */
2659                 prmseo[i % 2] = prmseo[i % 2] << 2;
2660                 prmseo[i % 2] |= 1;
2661
2662         }
2663
2664         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2665         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2666         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2667         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2668
2669         /* Write which interrupt to enable */
2670         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2671
2672         /* Write which interrupt to clear */
2673         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2674
2675 }
2676
2677 static int __init d40_lcla_allocate(struct d40_base *base)
2678 {
2679         unsigned long *page_list;
2680         int i, j;
2681         int ret = 0;
2682
2683         /*
2684          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2685          * To full fill this hardware requirement without wasting 256 kb
2686          * we allocate pages until we get an aligned one.
2687          */
2688         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2689                             GFP_KERNEL);
2690
2691         if (!page_list) {
2692                 ret = -ENOMEM;
2693                 goto failure;
2694         }
2695
2696         /* Calculating how many pages that are required */
2697         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2698
2699         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2700                 page_list[i] = __get_free_pages(GFP_KERNEL,
2701                                                 base->lcla_pool.pages);
2702                 if (!page_list[i]) {
2703
2704                         dev_err(base->dev,
2705                                 "[%s] Failed to allocate %d pages.\n",
2706                                 __func__, base->lcla_pool.pages);
2707
2708                         for (j = 0; j < i; j++)
2709                                 free_pages(page_list[j], base->lcla_pool.pages);
2710                         goto failure;
2711                 }
2712
2713                 if ((virt_to_phys((void *)page_list[i]) &
2714                      (LCLA_ALIGNMENT - 1)) == 0)
2715                         break;
2716         }
2717
2718         for (j = 0; j < i; j++)
2719                 free_pages(page_list[j], base->lcla_pool.pages);
2720
2721         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2722                 base->lcla_pool.base = (void *)page_list[i];
2723         } else {
2724                 /* After many attempts, no succees with finding the correct
2725                  * alignment try with allocating a big buffer */
2726                 dev_warn(base->dev,
2727                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2728                          __func__, base->lcla_pool.pages);
2729                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2730                                                          base->num_phy_chans +
2731                                                          LCLA_ALIGNMENT,
2732                                                          GFP_KERNEL);
2733                 if (!base->lcla_pool.base_unaligned) {
2734                         ret = -ENOMEM;
2735                         goto failure;
2736                 }
2737
2738                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2739                                                  LCLA_ALIGNMENT);
2740         }
2741
2742         writel(virt_to_phys(base->lcla_pool.base),
2743                base->virtbase + D40_DREG_LCLA);
2744 failure:
2745         kfree(page_list);
2746         return ret;
2747 }
2748
2749 static int __init d40_probe(struct platform_device *pdev)
2750 {
2751         int err;
2752         int ret = -ENOENT;
2753         struct d40_base *base;
2754         struct resource *res = NULL;
2755         int num_reserved_chans;
2756         u32 val;
2757
2758         base = d40_hw_detect_init(pdev);
2759
2760         if (!base)
2761                 goto failure;
2762
2763         num_reserved_chans = d40_phy_res_init(base);
2764
2765         platform_set_drvdata(pdev, base);
2766
2767         spin_lock_init(&base->interrupt_lock);
2768         spin_lock_init(&base->execmd_lock);
2769
2770         /* Get IO for logical channel parameter address */
2771         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2772         if (!res) {
2773                 ret = -ENOENT;
2774                 dev_err(&pdev->dev,
2775                         "[%s] No \"lcpa\" memory resource\n",
2776                         __func__);
2777                 goto failure;
2778         }
2779         base->lcpa_size = resource_size(res);
2780         base->phy_lcpa = res->start;
2781
2782         if (request_mem_region(res->start, resource_size(res),
2783                                D40_NAME " I/O lcpa") == NULL) {
2784                 ret = -EBUSY;
2785                 dev_err(&pdev->dev,
2786                         "[%s] Failed to request LCPA region 0x%x-0x%x\n",
2787                         __func__, res->start, res->end);
2788                 goto failure;
2789         }
2790
2791         /* We make use of ESRAM memory for this. */
2792         val = readl(base->virtbase + D40_DREG_LCPA);
2793         if (res->start != val && val != 0) {
2794                 dev_warn(&pdev->dev,
2795                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2796                          __func__, val, res->start);
2797         } else
2798                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2799
2800         base->lcpa_base = ioremap(res->start, resource_size(res));
2801         if (!base->lcpa_base) {
2802                 ret = -ENOMEM;
2803                 dev_err(&pdev->dev,
2804                         "[%s] Failed to ioremap LCPA region\n",
2805                         __func__);
2806                 goto failure;
2807         }
2808
2809         ret = d40_lcla_allocate(base);
2810         if (ret) {
2811                 dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
2812                         __func__);
2813                 goto failure;
2814         }
2815
2816         spin_lock_init(&base->lcla_pool.lock);
2817
2818         base->lcla_pool.num_blocks = base->num_phy_chans;
2819
2820         base->irq = platform_get_irq(pdev, 0);
2821
2822         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2823
2824         if (ret) {
2825                 dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
2826                 goto failure;
2827         }
2828
2829         err = d40_dmaengine_init(base, num_reserved_chans);
2830         if (err)
2831                 goto failure;
2832
2833         d40_hw_init(base);
2834
2835         dev_info(base->dev, "initialized\n");
2836         return 0;
2837
2838 failure:
2839         if (base) {
2840                 if (base->desc_slab)
2841                         kmem_cache_destroy(base->desc_slab);
2842                 if (base->virtbase)
2843                         iounmap(base->virtbase);
2844                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2845                         free_pages((unsigned long)base->lcla_pool.base,
2846                                    base->lcla_pool.pages);
2847                 if (base->lcla_pool.base_unaligned)
2848                         kfree(base->lcla_pool.base_unaligned);
2849                 if (base->phy_lcpa)
2850                         release_mem_region(base->phy_lcpa,
2851                                            base->lcpa_size);
2852                 if (base->phy_start)
2853                         release_mem_region(base->phy_start,
2854                                            base->phy_size);
2855                 if (base->clk) {
2856                         clk_disable(base->clk);
2857                         clk_put(base->clk);
2858                 }
2859
2860                 kfree(base->lcla_pool.alloc_map);
2861                 kfree(base->lookup_log_chans);
2862                 kfree(base->lookup_phy_chans);
2863                 kfree(base->phy_res);
2864                 kfree(base);
2865         }
2866
2867         dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
2868         return ret;
2869 }
2870
2871 static struct platform_driver d40_driver = {
2872         .driver = {
2873                 .owner = THIS_MODULE,
2874                 .name  = D40_NAME,
2875         },
2876 };
2877
2878 int __init stedma40_init(void)
2879 {
2880         return platform_driver_probe(&d40_driver, d40_probe);
2881 }
2882 arch_initcall(stedma40_init);