dma: ste_dma40: don't dereference free:d descriptor
[pandora-kernel.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/amba/bus.h>
19
20 #include <plat/ste_dma40.h>
21
22 #include "ste_dma40_ll.h"
23
24 #define D40_NAME "dma40"
25
26 #define D40_PHY_CHAN -1
27
28 /* For masking out/in 2 bit channel positions */
29 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
30 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
31
32 /* Maximum iterations taken before giving up suspending a channel */
33 #define D40_SUSPEND_MAX_IT 500
34
35 /* Hardware requirement on LCLA alignment */
36 #define LCLA_ALIGNMENT 0x40000
37
38 /* Max number of links per event group */
39 #define D40_LCLA_LINK_PER_EVENT_GRP 128
40 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
41
42 /* Attempts before giving up to trying to get pages that are aligned */
43 #define MAX_LCLA_ALLOC_ATTEMPTS 256
44
45 /* Bit markings for allocation map */
46 #define D40_ALLOC_FREE          (1 << 31)
47 #define D40_ALLOC_PHY           (1 << 30)
48 #define D40_ALLOC_LOG_FREE      0
49
50 /**
51  * enum 40_command - The different commands and/or statuses.
52  *
53  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
54  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
55  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
56  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57  */
58 enum d40_command {
59         D40_DMA_STOP            = 0,
60         D40_DMA_RUN             = 1,
61         D40_DMA_SUSPEND_REQ     = 2,
62         D40_DMA_SUSPENDED       = 3
63 };
64
65 /**
66  * struct d40_lli_pool - Structure for keeping LLIs in memory
67  *
68  * @base: Pointer to memory area when the pre_alloc_lli's are not large
69  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
70  * pre_alloc_lli is used.
71  * @dma_addr: DMA address, if mapped
72  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
73  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
74  * one buffer to one buffer.
75  */
76 struct d40_lli_pool {
77         void    *base;
78         int      size;
79         dma_addr_t      dma_addr;
80         /* Space for dst and src, plus an extra for padding */
81         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
82 };
83
84 /**
85  * struct d40_desc - A descriptor is one DMA job.
86  *
87  * @lli_phy: LLI settings for physical channel. Both src and dst=
88  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
89  * lli_len equals one.
90  * @lli_log: Same as above but for logical channels.
91  * @lli_pool: The pool with two entries pre-allocated.
92  * @lli_len: Number of llis of current descriptor.
93  * @lli_current: Number of transferred llis.
94  * @lcla_alloc: Number of LCLA entries allocated.
95  * @txd: DMA engine struct. Used for among other things for communication
96  * during a transfer.
97  * @node: List entry.
98  * @is_in_client_list: true if the client owns this descriptor.
99  * the previous one.
100  *
101  * This descriptor is used for both logical and physical transfers.
102  */
103 struct d40_desc {
104         /* LLI physical */
105         struct d40_phy_lli_bidir         lli_phy;
106         /* LLI logical */
107         struct d40_log_lli_bidir         lli_log;
108
109         struct d40_lli_pool              lli_pool;
110         int                              lli_len;
111         int                              lli_current;
112         int                              lcla_alloc;
113
114         struct dma_async_tx_descriptor   txd;
115         struct list_head                 node;
116
117         bool                             is_in_client_list;
118         bool                             cyclic;
119 };
120
121 /**
122  * struct d40_lcla_pool - LCLA pool settings and data.
123  *
124  * @base: The virtual address of LCLA. 18 bit aligned.
125  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
126  * This pointer is only there for clean-up on error.
127  * @pages: The number of pages needed for all physical channels.
128  * Only used later for clean-up on error
129  * @lock: Lock to protect the content in this struct.
130  * @alloc_map: big map over which LCLA entry is own by which job.
131  */
132 struct d40_lcla_pool {
133         void            *base;
134         dma_addr_t      dma_addr;
135         void            *base_unaligned;
136         int              pages;
137         spinlock_t       lock;
138         struct d40_desc **alloc_map;
139 };
140
141 /**
142  * struct d40_phy_res - struct for handling eventlines mapped to physical
143  * channels.
144  *
145  * @lock: A lock protection this entity.
146  * @num: The physical channel number of this entity.
147  * @allocated_src: Bit mapped to show which src event line's are mapped to
148  * this physical channel. Can also be free or physically allocated.
149  * @allocated_dst: Same as for src but is dst.
150  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
151  * event line number.
152  */
153 struct d40_phy_res {
154         spinlock_t lock;
155         int        num;
156         u32        allocated_src;
157         u32        allocated_dst;
158 };
159
160 struct d40_base;
161
162 /**
163  * struct d40_chan - Struct that describes a channel.
164  *
165  * @lock: A spinlock to protect this struct.
166  * @log_num: The logical number, if any of this channel.
167  * @completed: Starts with 1, after first interrupt it is set to dma engine's
168  * current cookie.
169  * @pending_tx: The number of pending transfers. Used between interrupt handler
170  * and tasklet.
171  * @busy: Set to true when transfer is ongoing on this channel.
172  * @phy_chan: Pointer to physical channel which this instance runs on. If this
173  * point is NULL, then the channel is not allocated.
174  * @chan: DMA engine handle.
175  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
176  * transfer and call client callback.
177  * @client: Cliented owned descriptor list.
178  * @pending_queue: Submitted jobs, to be issued by issue_pending()
179  * @active: Active descriptor.
180  * @queue: Queued jobs.
181  * @prepare_queue: Prepared jobs.
182  * @dma_cfg: The client configuration of this dma channel.
183  * @configured: whether the dma_cfg configuration is valid
184  * @base: Pointer to the device instance struct.
185  * @src_def_cfg: Default cfg register setting for src.
186  * @dst_def_cfg: Default cfg register setting for dst.
187  * @log_def: Default logical channel settings.
188  * @lcla: Space for one dst src pair for logical channel transfers.
189  * @lcpa: Pointer to dst and src lcpa settings.
190  * @runtime_addr: runtime configured address.
191  * @runtime_direction: runtime configured direction.
192  *
193  * This struct can either "be" a logical or a physical channel.
194  */
195 struct d40_chan {
196         spinlock_t                       lock;
197         int                              log_num;
198         /* ID of the most recent completed transfer */
199         int                              completed;
200         int                              pending_tx;
201         bool                             busy;
202         struct d40_phy_res              *phy_chan;
203         struct dma_chan                  chan;
204         struct tasklet_struct            tasklet;
205         struct list_head                 client;
206         struct list_head                 pending_queue;
207         struct list_head                 active;
208         struct list_head                 queue;
209         struct list_head                 prepare_queue;
210         struct stedma40_chan_cfg         dma_cfg;
211         bool                             configured;
212         struct d40_base                 *base;
213         /* Default register configurations */
214         u32                              src_def_cfg;
215         u32                              dst_def_cfg;
216         struct d40_def_lcsp              log_def;
217         struct d40_log_lli_full         *lcpa;
218         /* Runtime reconfiguration */
219         dma_addr_t                      runtime_addr;
220         enum dma_data_direction         runtime_direction;
221 };
222
223 /**
224  * struct d40_base - The big global struct, one for each probe'd instance.
225  *
226  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
227  * @execmd_lock: Lock for execute command usage since several channels share
228  * the same physical register.
229  * @dev: The device structure.
230  * @virtbase: The virtual base address of the DMA's register.
231  * @rev: silicon revision detected.
232  * @clk: Pointer to the DMA clock structure.
233  * @phy_start: Physical memory start of the DMA registers.
234  * @phy_size: Size of the DMA register map.
235  * @irq: The IRQ number.
236  * @num_phy_chans: The number of physical channels. Read from HW. This
237  * is the number of available channels for this driver, not counting "Secure
238  * mode" allocated physical channels.
239  * @num_log_chans: The number of logical channels. Calculated from
240  * num_phy_chans.
241  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
242  * @dma_slave: dma_device channels that can do only do slave transfers.
243  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
244  * @log_chans: Room for all possible logical channels in system.
245  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
246  * to log_chans entries.
247  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
248  * to phy_chans entries.
249  * @plat_data: Pointer to provided platform_data which is the driver
250  * configuration.
251  * @phy_res: Vector containing all physical channels.
252  * @lcla_pool: lcla pool settings and data.
253  * @lcpa_base: The virtual mapped address of LCPA.
254  * @phy_lcpa: The physical address of the LCPA.
255  * @lcpa_size: The size of the LCPA area.
256  * @desc_slab: cache for descriptors.
257  */
258 struct d40_base {
259         spinlock_t                       interrupt_lock;
260         spinlock_t                       execmd_lock;
261         struct device                    *dev;
262         void __iomem                     *virtbase;
263         u8                                rev:4;
264         struct clk                       *clk;
265         phys_addr_t                       phy_start;
266         resource_size_t                   phy_size;
267         int                               irq;
268         int                               num_phy_chans;
269         int                               num_log_chans;
270         struct dma_device                 dma_both;
271         struct dma_device                 dma_slave;
272         struct dma_device                 dma_memcpy;
273         struct d40_chan                  *phy_chans;
274         struct d40_chan                  *log_chans;
275         struct d40_chan                 **lookup_log_chans;
276         struct d40_chan                 **lookup_phy_chans;
277         struct stedma40_platform_data    *plat_data;
278         /* Physical half channels */
279         struct d40_phy_res               *phy_res;
280         struct d40_lcla_pool              lcla_pool;
281         void                             *lcpa_base;
282         dma_addr_t                        phy_lcpa;
283         resource_size_t                   lcpa_size;
284         struct kmem_cache                *desc_slab;
285 };
286
287 /**
288  * struct d40_interrupt_lookup - lookup table for interrupt handler
289  *
290  * @src: Interrupt mask register.
291  * @clr: Interrupt clear register.
292  * @is_error: true if this is an error interrupt.
293  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
294  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
295  */
296 struct d40_interrupt_lookup {
297         u32 src;
298         u32 clr;
299         bool is_error;
300         int offset;
301 };
302
303 /**
304  * struct d40_reg_val - simple lookup struct
305  *
306  * @reg: The register.
307  * @val: The value that belongs to the register in reg.
308  */
309 struct d40_reg_val {
310         unsigned int reg;
311         unsigned int val;
312 };
313
314 static struct device *chan2dev(struct d40_chan *d40c)
315 {
316         return &d40c->chan.dev->device;
317 }
318
319 static bool chan_is_physical(struct d40_chan *chan)
320 {
321         return chan->log_num == D40_PHY_CHAN;
322 }
323
324 static bool chan_is_logical(struct d40_chan *chan)
325 {
326         return !chan_is_physical(chan);
327 }
328
329 static void __iomem *chan_base(struct d40_chan *chan)
330 {
331         return chan->base->virtbase + D40_DREG_PCBASE +
332                chan->phy_chan->num * D40_DREG_PCDELTA;
333 }
334
335 #define d40_err(dev, format, arg...)            \
336         dev_err(dev, "[%s] " format, __func__, ## arg)
337
338 #define chan_err(d40c, format, arg...)          \
339         d40_err(chan2dev(d40c), format, ## arg)
340
341 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
342                               int lli_len)
343 {
344         bool is_log = chan_is_logical(d40c);
345         u32 align;
346         void *base;
347
348         if (is_log)
349                 align = sizeof(struct d40_log_lli);
350         else
351                 align = sizeof(struct d40_phy_lli);
352
353         if (lli_len == 1) {
354                 base = d40d->lli_pool.pre_alloc_lli;
355                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
356                 d40d->lli_pool.base = NULL;
357         } else {
358                 d40d->lli_pool.size = lli_len * 2 * align;
359
360                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
361                 d40d->lli_pool.base = base;
362
363                 if (d40d->lli_pool.base == NULL)
364                         return -ENOMEM;
365         }
366
367         if (is_log) {
368                 d40d->lli_log.src = PTR_ALIGN(base, align);
369                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
370
371                 d40d->lli_pool.dma_addr = 0;
372         } else {
373                 d40d->lli_phy.src = PTR_ALIGN(base, align);
374                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
375
376                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
377                                                          d40d->lli_phy.src,
378                                                          d40d->lli_pool.size,
379                                                          DMA_TO_DEVICE);
380
381                 if (dma_mapping_error(d40c->base->dev,
382                                       d40d->lli_pool.dma_addr)) {
383                         kfree(d40d->lli_pool.base);
384                         d40d->lli_pool.base = NULL;
385                         d40d->lli_pool.dma_addr = 0;
386                         return -ENOMEM;
387                 }
388         }
389
390         return 0;
391 }
392
393 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
394 {
395         if (d40d->lli_pool.dma_addr)
396                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
397                                  d40d->lli_pool.size, DMA_TO_DEVICE);
398
399         kfree(d40d->lli_pool.base);
400         d40d->lli_pool.base = NULL;
401         d40d->lli_pool.size = 0;
402         d40d->lli_log.src = NULL;
403         d40d->lli_log.dst = NULL;
404         d40d->lli_phy.src = NULL;
405         d40d->lli_phy.dst = NULL;
406 }
407
408 static int d40_lcla_alloc_one(struct d40_chan *d40c,
409                               struct d40_desc *d40d)
410 {
411         unsigned long flags;
412         int i;
413         int ret = -EINVAL;
414         int p;
415
416         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
417
418         p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
419
420         /*
421          * Allocate both src and dst at the same time, therefore the half
422          * start on 1 since 0 can't be used since zero is used as end marker.
423          */
424         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
425                 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
426                         d40c->base->lcla_pool.alloc_map[p + i] = d40d;
427                         d40d->lcla_alloc++;
428                         ret = i;
429                         break;
430                 }
431         }
432
433         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
434
435         return ret;
436 }
437
438 static int d40_lcla_free_all(struct d40_chan *d40c,
439                              struct d40_desc *d40d)
440 {
441         unsigned long flags;
442         int i;
443         int ret = -EINVAL;
444
445         if (chan_is_physical(d40c))
446                 return 0;
447
448         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
449
450         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
451                 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
452                                                     D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
453                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
454                                                         D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
455                         d40d->lcla_alloc--;
456                         if (d40d->lcla_alloc == 0) {
457                                 ret = 0;
458                                 break;
459                         }
460                 }
461         }
462
463         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
464
465         return ret;
466
467 }
468
469 static void d40_desc_remove(struct d40_desc *d40d)
470 {
471         list_del(&d40d->node);
472 }
473
474 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
475 {
476         struct d40_desc *desc = NULL;
477
478         if (!list_empty(&d40c->client)) {
479                 struct d40_desc *d;
480                 struct d40_desc *_d;
481
482                 list_for_each_entry_safe(d, _d, &d40c->client, node)
483                         if (async_tx_test_ack(&d->txd)) {
484                                 d40_desc_remove(d);
485                                 desc = d;
486                                 memset(desc, 0, sizeof(*desc));
487                                 break;
488                         }
489         }
490
491         if (!desc)
492                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
493
494         if (desc)
495                 INIT_LIST_HEAD(&desc->node);
496
497         return desc;
498 }
499
500 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
501 {
502
503         d40_pool_lli_free(d40c, d40d);
504         d40_lcla_free_all(d40c, d40d);
505         kmem_cache_free(d40c->base->desc_slab, d40d);
506 }
507
508 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
509 {
510         list_add_tail(&desc->node, &d40c->active);
511 }
512
513 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
514 {
515         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
516         struct d40_phy_lli *lli_src = desc->lli_phy.src;
517         void __iomem *base = chan_base(chan);
518
519         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
520         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
521         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
522         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
523
524         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
525         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
526         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
527         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
528 }
529
530 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
531 {
532         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
533         struct d40_log_lli_bidir *lli = &desc->lli_log;
534         int lli_current = desc->lli_current;
535         int lli_len = desc->lli_len;
536         bool cyclic = desc->cyclic;
537         int curr_lcla = -EINVAL;
538         int first_lcla = 0;
539         bool linkback;
540
541         /*
542          * We may have partially running cyclic transfers, in case we did't get
543          * enough LCLA entries.
544          */
545         linkback = cyclic && lli_current == 0;
546
547         /*
548          * For linkback, we need one LCLA even with only one link, because we
549          * can't link back to the one in LCPA space
550          */
551         if (linkback || (lli_len - lli_current > 1)) {
552                 curr_lcla = d40_lcla_alloc_one(chan, desc);
553                 first_lcla = curr_lcla;
554         }
555
556         /*
557          * For linkback, we normally load the LCPA in the loop since we need to
558          * link it to the second LCLA and not the first.  However, if we
559          * couldn't even get a first LCLA, then we have to run in LCPA and
560          * reload manually.
561          */
562         if (!linkback || curr_lcla == -EINVAL) {
563                 unsigned int flags = 0;
564
565                 if (curr_lcla == -EINVAL)
566                         flags |= LLI_TERM_INT;
567
568                 d40_log_lli_lcpa_write(chan->lcpa,
569                                        &lli->dst[lli_current],
570                                        &lli->src[lli_current],
571                                        curr_lcla,
572                                        flags);
573                 lli_current++;
574         }
575
576         if (curr_lcla < 0)
577                 goto out;
578
579         for (; lli_current < lli_len; lli_current++) {
580                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
581                                            8 * curr_lcla * 2;
582                 struct d40_log_lli *lcla = pool->base + lcla_offset;
583                 unsigned int flags = 0;
584                 int next_lcla;
585
586                 if (lli_current + 1 < lli_len)
587                         next_lcla = d40_lcla_alloc_one(chan, desc);
588                 else
589                         next_lcla = linkback ? first_lcla : -EINVAL;
590
591                 if (cyclic || next_lcla == -EINVAL)
592                         flags |= LLI_TERM_INT;
593
594                 if (linkback && curr_lcla == first_lcla) {
595                         /* First link goes in both LCPA and LCLA */
596                         d40_log_lli_lcpa_write(chan->lcpa,
597                                                &lli->dst[lli_current],
598                                                &lli->src[lli_current],
599                                                next_lcla, flags);
600                 }
601
602                 /*
603                  * One unused LCLA in the cyclic case if the very first
604                  * next_lcla fails...
605                  */
606                 d40_log_lli_lcla_write(lcla,
607                                        &lli->dst[lli_current],
608                                        &lli->src[lli_current],
609                                        next_lcla, flags);
610
611                 dma_sync_single_range_for_device(chan->base->dev,
612                                         pool->dma_addr, lcla_offset,
613                                         2 * sizeof(struct d40_log_lli),
614                                         DMA_TO_DEVICE);
615
616                 curr_lcla = next_lcla;
617
618                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
619                         lli_current++;
620                         break;
621                 }
622         }
623
624 out:
625         desc->lli_current = lli_current;
626 }
627
628 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
629 {
630         if (chan_is_physical(d40c)) {
631                 d40_phy_lli_load(d40c, d40d);
632                 d40d->lli_current = d40d->lli_len;
633         } else
634                 d40_log_lli_to_lcxa(d40c, d40d);
635 }
636
637 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
638 {
639         struct d40_desc *d;
640
641         if (list_empty(&d40c->active))
642                 return NULL;
643
644         d = list_first_entry(&d40c->active,
645                              struct d40_desc,
646                              node);
647         return d;
648 }
649
650 /* remove desc from current queue and add it to the pending_queue */
651 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
652 {
653         d40_desc_remove(desc);
654         desc->is_in_client_list = false;
655         list_add_tail(&desc->node, &d40c->pending_queue);
656 }
657
658 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
659 {
660         struct d40_desc *d;
661
662         if (list_empty(&d40c->pending_queue))
663                 return NULL;
664
665         d = list_first_entry(&d40c->pending_queue,
666                              struct d40_desc,
667                              node);
668         return d;
669 }
670
671 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
672 {
673         struct d40_desc *d;
674
675         if (list_empty(&d40c->queue))
676                 return NULL;
677
678         d = list_first_entry(&d40c->queue,
679                              struct d40_desc,
680                              node);
681         return d;
682 }
683
684 static int d40_psize_2_burst_size(bool is_log, int psize)
685 {
686         if (is_log) {
687                 if (psize == STEDMA40_PSIZE_LOG_1)
688                         return 1;
689         } else {
690                 if (psize == STEDMA40_PSIZE_PHY_1)
691                         return 1;
692         }
693
694         return 2 << psize;
695 }
696
697 /*
698  * The dma only supports transmitting packages up to
699  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
700  * dma elements required to send the entire sg list
701  */
702 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
703 {
704         int dmalen;
705         u32 max_w = max(data_width1, data_width2);
706         u32 min_w = min(data_width1, data_width2);
707         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
708
709         if (seg_max > STEDMA40_MAX_SEG_SIZE)
710                 seg_max -= (1 << max_w);
711
712         if (!IS_ALIGNED(size, 1 << max_w))
713                 return -EINVAL;
714
715         if (size <= seg_max)
716                 dmalen = 1;
717         else {
718                 dmalen = size / seg_max;
719                 if (dmalen * seg_max < size)
720                         dmalen++;
721         }
722         return dmalen;
723 }
724
725 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
726                            u32 data_width1, u32 data_width2)
727 {
728         struct scatterlist *sg;
729         int i;
730         int len = 0;
731         int ret;
732
733         for_each_sg(sgl, sg, sg_len, i) {
734                 ret = d40_size_2_dmalen(sg_dma_len(sg),
735                                         data_width1, data_width2);
736                 if (ret < 0)
737                         return ret;
738                 len += ret;
739         }
740         return len;
741 }
742
743 /* Support functions for logical channels */
744
745 static int d40_channel_execute_command(struct d40_chan *d40c,
746                                        enum d40_command command)
747 {
748         u32 status;
749         int i;
750         void __iomem *active_reg;
751         int ret = 0;
752         unsigned long flags;
753         u32 wmask;
754
755         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
756
757         if (d40c->phy_chan->num % 2 == 0)
758                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
759         else
760                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
761
762         if (command == D40_DMA_SUSPEND_REQ) {
763                 status = (readl(active_reg) &
764                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
765                         D40_CHAN_POS(d40c->phy_chan->num);
766
767                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
768                         goto done;
769         }
770
771         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
772         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
773                active_reg);
774
775         if (command == D40_DMA_SUSPEND_REQ) {
776
777                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
778                         status = (readl(active_reg) &
779                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
780                                 D40_CHAN_POS(d40c->phy_chan->num);
781
782                         cpu_relax();
783                         /*
784                          * Reduce the number of bus accesses while
785                          * waiting for the DMA to suspend.
786                          */
787                         udelay(3);
788
789                         if (status == D40_DMA_STOP ||
790                             status == D40_DMA_SUSPENDED)
791                                 break;
792                 }
793
794                 if (i == D40_SUSPEND_MAX_IT) {
795                         chan_err(d40c,
796                                 "unable to suspend the chl %d (log: %d) status %x\n",
797                                 d40c->phy_chan->num, d40c->log_num,
798                                 status);
799                         dump_stack();
800                         ret = -EBUSY;
801                 }
802
803         }
804 done:
805         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
806         return ret;
807 }
808
809 static void d40_term_all(struct d40_chan *d40c)
810 {
811         struct d40_desc *d40d;
812         struct d40_desc *_d;
813
814         /* Release active descriptors */
815         while ((d40d = d40_first_active_get(d40c))) {
816                 d40_desc_remove(d40d);
817                 d40_desc_free(d40c, d40d);
818         }
819
820         /* Release queued descriptors waiting for transfer */
821         while ((d40d = d40_first_queued(d40c))) {
822                 d40_desc_remove(d40d);
823                 d40_desc_free(d40c, d40d);
824         }
825
826         /* Release pending descriptors */
827         while ((d40d = d40_first_pending(d40c))) {
828                 d40_desc_remove(d40d);
829                 d40_desc_free(d40c, d40d);
830         }
831
832         /* Release client owned descriptors */
833         if (!list_empty(&d40c->client))
834                 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
835                         d40_desc_remove(d40d);
836                         d40_desc_free(d40c, d40d);
837                 }
838
839         /* Release descriptors in prepare queue */
840         if (!list_empty(&d40c->prepare_queue))
841                 list_for_each_entry_safe(d40d, _d,
842                                          &d40c->prepare_queue, node) {
843                         d40_desc_remove(d40d);
844                         d40_desc_free(d40c, d40d);
845                 }
846
847         d40c->pending_tx = 0;
848         d40c->busy = false;
849 }
850
851 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
852                                    u32 event, int reg)
853 {
854         void __iomem *addr = chan_base(d40c) + reg;
855         int tries;
856
857         if (!enable) {
858                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
859                        | ~D40_EVENTLINE_MASK(event), addr);
860                 return;
861         }
862
863         /*
864          * The hardware sometimes doesn't register the enable when src and dst
865          * event lines are active on the same logical channel.  Retry to ensure
866          * it does.  Usually only one retry is sufficient.
867          */
868         tries = 100;
869         while (--tries) {
870                 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
871                        | ~D40_EVENTLINE_MASK(event), addr);
872
873                 if (readl(addr) & D40_EVENTLINE_MASK(event))
874                         break;
875         }
876
877         if (tries != 99)
878                 dev_dbg(chan2dev(d40c),
879                         "[%s] workaround enable S%cLNK (%d tries)\n",
880                         __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
881                         100 - tries);
882
883         WARN_ON(!tries);
884 }
885
886 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
887 {
888         unsigned long flags;
889
890         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
891
892         /* Enable event line connected to device (or memcpy) */
893         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
894             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
895                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
896
897                 __d40_config_set_event(d40c, do_enable, event,
898                                        D40_CHAN_REG_SSLNK);
899         }
900
901         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
902                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
903
904                 __d40_config_set_event(d40c, do_enable, event,
905                                        D40_CHAN_REG_SDLNK);
906         }
907
908         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
909 }
910
911 static u32 d40_chan_has_events(struct d40_chan *d40c)
912 {
913         void __iomem *chanbase = chan_base(d40c);
914         u32 val;
915
916         val = readl(chanbase + D40_CHAN_REG_SSLNK);
917         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
918
919         return val;
920 }
921
922 static u32 d40_get_prmo(struct d40_chan *d40c)
923 {
924         static const unsigned int phy_map[] = {
925                 [STEDMA40_PCHAN_BASIC_MODE]
926                         = D40_DREG_PRMO_PCHAN_BASIC,
927                 [STEDMA40_PCHAN_MODULO_MODE]
928                         = D40_DREG_PRMO_PCHAN_MODULO,
929                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
930                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
931         };
932         static const unsigned int log_map[] = {
933                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
934                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
935                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
936                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
937                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
938                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
939         };
940
941         if (chan_is_physical(d40c))
942                 return phy_map[d40c->dma_cfg.mode_opt];
943         else
944                 return log_map[d40c->dma_cfg.mode_opt];
945 }
946
947 static void d40_config_write(struct d40_chan *d40c)
948 {
949         u32 addr_base;
950         u32 var;
951
952         /* Odd addresses are even addresses + 4 */
953         addr_base = (d40c->phy_chan->num % 2) * 4;
954         /* Setup channel mode to logical or physical */
955         var = ((u32)(chan_is_logical(d40c)) + 1) <<
956                 D40_CHAN_POS(d40c->phy_chan->num);
957         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
958
959         /* Setup operational mode option register */
960         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
961
962         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
963
964         if (chan_is_logical(d40c)) {
965                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
966                            & D40_SREG_ELEM_LOG_LIDX_MASK;
967                 void __iomem *chanbase = chan_base(d40c);
968
969                 /* Set default config for CFG reg */
970                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
971                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
972
973                 /* Set LIDX for lcla */
974                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
975                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
976         }
977 }
978
979 static u32 d40_residue(struct d40_chan *d40c)
980 {
981         u32 num_elt;
982
983         if (chan_is_logical(d40c))
984                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
985                         >> D40_MEM_LCSP2_ECNT_POS;
986         else {
987                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
988                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
989                           >> D40_SREG_ELEM_PHY_ECNT_POS;
990         }
991
992         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
993 }
994
995 static bool d40_tx_is_linked(struct d40_chan *d40c)
996 {
997         bool is_link;
998
999         if (chan_is_logical(d40c))
1000                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1001         else
1002                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1003                           & D40_SREG_LNK_PHYS_LNK_MASK;
1004
1005         return is_link;
1006 }
1007
1008 static int d40_pause(struct d40_chan *d40c)
1009 {
1010         int res = 0;
1011         unsigned long flags;
1012
1013         if (!d40c->busy)
1014                 return 0;
1015
1016         spin_lock_irqsave(&d40c->lock, flags);
1017
1018         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1019         if (res == 0) {
1020                 if (chan_is_logical(d40c)) {
1021                         d40_config_set_event(d40c, false);
1022                         /* Resume the other logical channels if any */
1023                         if (d40_chan_has_events(d40c))
1024                                 res = d40_channel_execute_command(d40c,
1025                                                                   D40_DMA_RUN);
1026                 }
1027         }
1028
1029         spin_unlock_irqrestore(&d40c->lock, flags);
1030         return res;
1031 }
1032
1033 static int d40_resume(struct d40_chan *d40c)
1034 {
1035         int res = 0;
1036         unsigned long flags;
1037
1038         if (!d40c->busy)
1039                 return 0;
1040
1041         spin_lock_irqsave(&d40c->lock, flags);
1042
1043         if (d40c->base->rev == 0)
1044                 if (chan_is_logical(d40c)) {
1045                         res = d40_channel_execute_command(d40c,
1046                                                           D40_DMA_SUSPEND_REQ);
1047                         goto no_suspend;
1048                 }
1049
1050         /* If bytes left to transfer or linked tx resume job */
1051         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1052
1053                 if (chan_is_logical(d40c))
1054                         d40_config_set_event(d40c, true);
1055
1056                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1057         }
1058
1059 no_suspend:
1060         spin_unlock_irqrestore(&d40c->lock, flags);
1061         return res;
1062 }
1063
1064 static int d40_terminate_all(struct d40_chan *chan)
1065 {
1066         unsigned long flags;
1067         int ret = 0;
1068
1069         ret = d40_pause(chan);
1070         if (!ret && chan_is_physical(chan))
1071                 ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1072
1073         spin_lock_irqsave(&chan->lock, flags);
1074         d40_term_all(chan);
1075         spin_unlock_irqrestore(&chan->lock, flags);
1076
1077         return ret;
1078 }
1079
1080 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1081 {
1082         struct d40_chan *d40c = container_of(tx->chan,
1083                                              struct d40_chan,
1084                                              chan);
1085         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1086         unsigned long flags;
1087
1088         spin_lock_irqsave(&d40c->lock, flags);
1089
1090         d40c->chan.cookie++;
1091
1092         if (d40c->chan.cookie < 0)
1093                 d40c->chan.cookie = 1;
1094
1095         d40d->txd.cookie = d40c->chan.cookie;
1096
1097         d40_desc_queue(d40c, d40d);
1098
1099         spin_unlock_irqrestore(&d40c->lock, flags);
1100
1101         return tx->cookie;
1102 }
1103
1104 static int d40_start(struct d40_chan *d40c)
1105 {
1106         if (d40c->base->rev == 0) {
1107                 int err;
1108
1109                 if (chan_is_logical(d40c)) {
1110                         err = d40_channel_execute_command(d40c,
1111                                                           D40_DMA_SUSPEND_REQ);
1112                         if (err)
1113                                 return err;
1114                 }
1115         }
1116
1117         if (chan_is_logical(d40c))
1118                 d40_config_set_event(d40c, true);
1119
1120         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1121 }
1122
1123 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1124 {
1125         struct d40_desc *d40d;
1126         int err;
1127
1128         /* Start queued jobs, if any */
1129         d40d = d40_first_queued(d40c);
1130
1131         if (d40d != NULL) {
1132                 d40c->busy = true;
1133
1134                 /* Remove from queue */
1135                 d40_desc_remove(d40d);
1136
1137                 /* Add to active queue */
1138                 d40_desc_submit(d40c, d40d);
1139
1140                 /* Initiate DMA job */
1141                 d40_desc_load(d40c, d40d);
1142
1143                 /* Start dma job */
1144                 err = d40_start(d40c);
1145
1146                 if (err)
1147                         return NULL;
1148         }
1149
1150         return d40d;
1151 }
1152
1153 /* called from interrupt context */
1154 static void dma_tc_handle(struct d40_chan *d40c)
1155 {
1156         struct d40_desc *d40d;
1157
1158         /* Get first active entry from list */
1159         d40d = d40_first_active_get(d40c);
1160
1161         if (d40d == NULL)
1162                 return;
1163
1164         if (d40d->cyclic) {
1165                 /*
1166                  * If this was a paritially loaded list, we need to reloaded
1167                  * it, and only when the list is completed.  We need to check
1168                  * for done because the interrupt will hit for every link, and
1169                  * not just the last one.
1170                  */
1171                 if (d40d->lli_current < d40d->lli_len
1172                     && !d40_tx_is_linked(d40c)
1173                     && !d40_residue(d40c)) {
1174                         d40_lcla_free_all(d40c, d40d);
1175                         d40_desc_load(d40c, d40d);
1176                         (void) d40_start(d40c);
1177
1178                         if (d40d->lli_current == d40d->lli_len)
1179                                 d40d->lli_current = 0;
1180                 }
1181         } else {
1182                 d40_lcla_free_all(d40c, d40d);
1183
1184                 if (d40d->lli_current < d40d->lli_len) {
1185                         d40_desc_load(d40c, d40d);
1186                         /* Start dma job */
1187                         (void) d40_start(d40c);
1188                         return;
1189                 }
1190
1191                 if (d40_queue_start(d40c) == NULL)
1192                         d40c->busy = false;
1193         }
1194
1195         d40c->pending_tx++;
1196         tasklet_schedule(&d40c->tasklet);
1197
1198 }
1199
1200 static void dma_tasklet(unsigned long data)
1201 {
1202         struct d40_chan *d40c = (struct d40_chan *) data;
1203         struct d40_desc *d40d;
1204         unsigned long flags;
1205         bool callback_active;
1206         dma_async_tx_callback callback;
1207         void *callback_param;
1208
1209         spin_lock_irqsave(&d40c->lock, flags);
1210
1211         /* Get first active entry from list */
1212         d40d = d40_first_active_get(d40c);
1213         if (d40d == NULL)
1214                 goto err;
1215
1216         if (!d40d->cyclic)
1217                 d40c->completed = d40d->txd.cookie;
1218
1219         /*
1220          * If terminating a channel pending_tx is set to zero.
1221          * This prevents any finished active jobs to return to the client.
1222          */
1223         if (d40c->pending_tx == 0) {
1224                 spin_unlock_irqrestore(&d40c->lock, flags);
1225                 return;
1226         }
1227
1228         /* Callback to client */
1229         callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1230         callback = d40d->txd.callback;
1231         callback_param = d40d->txd.callback_param;
1232
1233         if (!d40d->cyclic) {
1234                 if (async_tx_test_ack(&d40d->txd)) {
1235                         d40_desc_remove(d40d);
1236                         d40_desc_free(d40c, d40d);
1237                 } else {
1238                         if (!d40d->is_in_client_list) {
1239                                 d40_desc_remove(d40d);
1240                                 d40_lcla_free_all(d40c, d40d);
1241                                 list_add_tail(&d40d->node, &d40c->client);
1242                                 d40d->is_in_client_list = true;
1243                         }
1244                 }
1245         }
1246
1247         d40c->pending_tx--;
1248
1249         if (d40c->pending_tx)
1250                 tasklet_schedule(&d40c->tasklet);
1251
1252         spin_unlock_irqrestore(&d40c->lock, flags);
1253
1254         if (callback_active && callback)
1255                 callback(callback_param);
1256
1257         return;
1258
1259  err:
1260         /* Rescue manoeuvre if receiving double interrupts */
1261         if (d40c->pending_tx > 0)
1262                 d40c->pending_tx--;
1263         spin_unlock_irqrestore(&d40c->lock, flags);
1264 }
1265
1266 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1267 {
1268         static const struct d40_interrupt_lookup il[] = {
1269                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1270                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1271                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1272                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1273                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1274                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1275                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1276                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1277                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1278                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1279         };
1280
1281         int i;
1282         u32 regs[ARRAY_SIZE(il)];
1283         u32 idx;
1284         u32 row;
1285         long chan = -1;
1286         struct d40_chan *d40c;
1287         unsigned long flags;
1288         struct d40_base *base = data;
1289
1290         spin_lock_irqsave(&base->interrupt_lock, flags);
1291
1292         /* Read interrupt status of both logical and physical channels */
1293         for (i = 0; i < ARRAY_SIZE(il); i++)
1294                 regs[i] = readl(base->virtbase + il[i].src);
1295
1296         for (;;) {
1297
1298                 chan = find_next_bit((unsigned long *)regs,
1299                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1300
1301                 /* No more set bits found? */
1302                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1303                         break;
1304
1305                 row = chan / BITS_PER_LONG;
1306                 idx = chan & (BITS_PER_LONG - 1);
1307
1308                 /* ACK interrupt */
1309                 writel(1 << idx, base->virtbase + il[row].clr);
1310
1311                 if (il[row].offset == D40_PHY_CHAN)
1312                         d40c = base->lookup_phy_chans[idx];
1313                 else
1314                         d40c = base->lookup_log_chans[il[row].offset + idx];
1315                 spin_lock(&d40c->lock);
1316
1317                 if (!il[row].is_error)
1318                         dma_tc_handle(d40c);
1319                 else
1320                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1321                                 chan, il[row].offset, idx);
1322
1323                 spin_unlock(&d40c->lock);
1324         }
1325
1326         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1327
1328         return IRQ_HANDLED;
1329 }
1330
1331 static int d40_validate_conf(struct d40_chan *d40c,
1332                              struct stedma40_chan_cfg *conf)
1333 {
1334         int res = 0;
1335         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1336         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1337         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1338
1339         if (!conf->dir) {
1340                 chan_err(d40c, "Invalid direction.\n");
1341                 res = -EINVAL;
1342         }
1343
1344         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1345             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1346             d40c->runtime_addr == 0) {
1347
1348                 chan_err(d40c, "Invalid TX channel address (%d)\n",
1349                          conf->dst_dev_type);
1350                 res = -EINVAL;
1351         }
1352
1353         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1354             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1355             d40c->runtime_addr == 0) {
1356                 chan_err(d40c, "Invalid RX channel address (%d)\n",
1357                         conf->src_dev_type);
1358                 res = -EINVAL;
1359         }
1360
1361         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1362             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1363                 chan_err(d40c, "Invalid dst\n");
1364                 res = -EINVAL;
1365         }
1366
1367         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1368             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1369                 chan_err(d40c, "Invalid src\n");
1370                 res = -EINVAL;
1371         }
1372
1373         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1374             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1375                 chan_err(d40c, "No event line\n");
1376                 res = -EINVAL;
1377         }
1378
1379         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1380             (src_event_group != dst_event_group)) {
1381                 chan_err(d40c, "Invalid event group\n");
1382                 res = -EINVAL;
1383         }
1384
1385         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1386                 /*
1387                  * DMAC HW supports it. Will be added to this driver,
1388                  * in case any dma client requires it.
1389                  */
1390                 chan_err(d40c, "periph to periph not supported\n");
1391                 res = -EINVAL;
1392         }
1393
1394         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1395             (1 << conf->src_info.data_width) !=
1396             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1397             (1 << conf->dst_info.data_width)) {
1398                 /*
1399                  * The DMAC hardware only supports
1400                  * src (burst x width) == dst (burst x width)
1401                  */
1402
1403                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1404                 res = -EINVAL;
1405         }
1406
1407         return res;
1408 }
1409
1410 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1411                                int log_event_line, bool is_log)
1412 {
1413         unsigned long flags;
1414         spin_lock_irqsave(&phy->lock, flags);
1415         if (!is_log) {
1416                 /* Physical interrupts are masked per physical full channel */
1417                 if (phy->allocated_src == D40_ALLOC_FREE &&
1418                     phy->allocated_dst == D40_ALLOC_FREE) {
1419                         phy->allocated_dst = D40_ALLOC_PHY;
1420                         phy->allocated_src = D40_ALLOC_PHY;
1421                         goto found;
1422                 } else
1423                         goto not_found;
1424         }
1425
1426         /* Logical channel */
1427         if (is_src) {
1428                 if (phy->allocated_src == D40_ALLOC_PHY)
1429                         goto not_found;
1430
1431                 if (phy->allocated_src == D40_ALLOC_FREE)
1432                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1433
1434                 if (!(phy->allocated_src & (1 << log_event_line))) {
1435                         phy->allocated_src |= 1 << log_event_line;
1436                         goto found;
1437                 } else
1438                         goto not_found;
1439         } else {
1440                 if (phy->allocated_dst == D40_ALLOC_PHY)
1441                         goto not_found;
1442
1443                 if (phy->allocated_dst == D40_ALLOC_FREE)
1444                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1445
1446                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1447                         phy->allocated_dst |= 1 << log_event_line;
1448                         goto found;
1449                 } else
1450                         goto not_found;
1451         }
1452
1453 not_found:
1454         spin_unlock_irqrestore(&phy->lock, flags);
1455         return false;
1456 found:
1457         spin_unlock_irqrestore(&phy->lock, flags);
1458         return true;
1459 }
1460
1461 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1462                                int log_event_line)
1463 {
1464         unsigned long flags;
1465         bool is_free = false;
1466
1467         spin_lock_irqsave(&phy->lock, flags);
1468         if (!log_event_line) {
1469                 phy->allocated_dst = D40_ALLOC_FREE;
1470                 phy->allocated_src = D40_ALLOC_FREE;
1471                 is_free = true;
1472                 goto out;
1473         }
1474
1475         /* Logical channel */
1476         if (is_src) {
1477                 phy->allocated_src &= ~(1 << log_event_line);
1478                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1479                         phy->allocated_src = D40_ALLOC_FREE;
1480         } else {
1481                 phy->allocated_dst &= ~(1 << log_event_line);
1482                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1483                         phy->allocated_dst = D40_ALLOC_FREE;
1484         }
1485
1486         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1487                    D40_ALLOC_FREE);
1488
1489 out:
1490         spin_unlock_irqrestore(&phy->lock, flags);
1491
1492         return is_free;
1493 }
1494
1495 static int d40_allocate_channel(struct d40_chan *d40c)
1496 {
1497         int dev_type;
1498         int event_group;
1499         int event_line;
1500         struct d40_phy_res *phys;
1501         int i;
1502         int j;
1503         int log_num;
1504         bool is_src;
1505         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1506
1507         phys = d40c->base->phy_res;
1508
1509         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1510                 dev_type = d40c->dma_cfg.src_dev_type;
1511                 log_num = 2 * dev_type;
1512                 is_src = true;
1513         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1514                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1515                 /* dst event lines are used for logical memcpy */
1516                 dev_type = d40c->dma_cfg.dst_dev_type;
1517                 log_num = 2 * dev_type + 1;
1518                 is_src = false;
1519         } else
1520                 return -EINVAL;
1521
1522         event_group = D40_TYPE_TO_GROUP(dev_type);
1523         event_line = D40_TYPE_TO_EVENT(dev_type);
1524
1525         if (!is_log) {
1526                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1527                         /* Find physical half channel */
1528                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1529
1530                                 if (d40_alloc_mask_set(&phys[i], is_src,
1531                                                        0, is_log))
1532                                         goto found_phy;
1533                         }
1534                 } else
1535                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1536                                 int phy_num = j  + event_group * 2;
1537                                 for (i = phy_num; i < phy_num + 2; i++) {
1538                                         if (d40_alloc_mask_set(&phys[i],
1539                                                                is_src,
1540                                                                0,
1541                                                                is_log))
1542                                                 goto found_phy;
1543                                 }
1544                         }
1545                 return -EINVAL;
1546 found_phy:
1547                 d40c->phy_chan = &phys[i];
1548                 d40c->log_num = D40_PHY_CHAN;
1549                 goto out;
1550         }
1551         if (dev_type == -1)
1552                 return -EINVAL;
1553
1554         /* Find logical channel */
1555         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1556                 int phy_num = j + event_group * 2;
1557                 /*
1558                  * Spread logical channels across all available physical rather
1559                  * than pack every logical channel at the first available phy
1560                  * channels.
1561                  */
1562                 if (is_src) {
1563                         for (i = phy_num; i < phy_num + 2; i++) {
1564                                 if (d40_alloc_mask_set(&phys[i], is_src,
1565                                                        event_line, is_log))
1566                                         goto found_log;
1567                         }
1568                 } else {
1569                         for (i = phy_num + 1; i >= phy_num; i--) {
1570                                 if (d40_alloc_mask_set(&phys[i], is_src,
1571                                                        event_line, is_log))
1572                                         goto found_log;
1573                         }
1574                 }
1575         }
1576         return -EINVAL;
1577
1578 found_log:
1579         d40c->phy_chan = &phys[i];
1580         d40c->log_num = log_num;
1581 out:
1582
1583         if (is_log)
1584                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1585         else
1586                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1587
1588         return 0;
1589
1590 }
1591
1592 static int d40_config_memcpy(struct d40_chan *d40c)
1593 {
1594         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1595
1596         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1597                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1598                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1599                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1600                         memcpy[d40c->chan.chan_id];
1601
1602         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1603                    dma_has_cap(DMA_SLAVE, cap)) {
1604                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1605         } else {
1606                 chan_err(d40c, "No memcpy\n");
1607                 return -EINVAL;
1608         }
1609
1610         return 0;
1611 }
1612
1613
1614 static int d40_free_dma(struct d40_chan *d40c)
1615 {
1616
1617         int res = 0;
1618         u32 event;
1619         struct d40_phy_res *phy = d40c->phy_chan;
1620         bool is_src;
1621
1622         /* Terminate all queued and active transfers */
1623         d40_term_all(d40c);
1624
1625         if (phy == NULL) {
1626                 chan_err(d40c, "phy == null\n");
1627                 return -EINVAL;
1628         }
1629
1630         if (phy->allocated_src == D40_ALLOC_FREE &&
1631             phy->allocated_dst == D40_ALLOC_FREE) {
1632                 chan_err(d40c, "channel already free\n");
1633                 return -EINVAL;
1634         }
1635
1636         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1637             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1638                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1639                 is_src = false;
1640         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1641                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1642                 is_src = true;
1643         } else {
1644                 chan_err(d40c, "Unknown direction\n");
1645                 return -EINVAL;
1646         }
1647
1648         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1649         if (res) {
1650                 chan_err(d40c, "suspend failed\n");
1651                 return res;
1652         }
1653
1654         if (chan_is_logical(d40c)) {
1655                 /* Release logical channel, deactivate the event line */
1656
1657                 d40_config_set_event(d40c, false);
1658                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1659
1660                 /*
1661                  * Check if there are more logical allocation
1662                  * on this phy channel.
1663                  */
1664                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1665                         /* Resume the other logical channels if any */
1666                         if (d40_chan_has_events(d40c)) {
1667                                 res = d40_channel_execute_command(d40c,
1668                                                                   D40_DMA_RUN);
1669                                 if (res) {
1670                                         chan_err(d40c,
1671                                                 "Executing RUN command\n");
1672                                         return res;
1673                                 }
1674                         }
1675                         return 0;
1676                 }
1677         } else {
1678                 (void) d40_alloc_mask_free(phy, is_src, 0);
1679         }
1680
1681         /* Release physical channel */
1682         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1683         if (res) {
1684                 chan_err(d40c, "Failed to stop channel\n");
1685                 return res;
1686         }
1687         d40c->phy_chan = NULL;
1688         d40c->configured = false;
1689         d40c->base->lookup_phy_chans[phy->num] = NULL;
1690
1691         return 0;
1692 }
1693
1694 static bool d40_is_paused(struct d40_chan *d40c)
1695 {
1696         void __iomem *chanbase = chan_base(d40c);
1697         bool is_paused = false;
1698         unsigned long flags;
1699         void __iomem *active_reg;
1700         u32 status;
1701         u32 event;
1702
1703         spin_lock_irqsave(&d40c->lock, flags);
1704
1705         if (chan_is_physical(d40c)) {
1706                 if (d40c->phy_chan->num % 2 == 0)
1707                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1708                 else
1709                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1710
1711                 status = (readl(active_reg) &
1712                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1713                         D40_CHAN_POS(d40c->phy_chan->num);
1714                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1715                         is_paused = true;
1716
1717                 goto _exit;
1718         }
1719
1720         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1721             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1722                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1723                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1724         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1725                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1726                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1727         } else {
1728                 chan_err(d40c, "Unknown direction\n");
1729                 goto _exit;
1730         }
1731
1732         status = (status & D40_EVENTLINE_MASK(event)) >>
1733                 D40_EVENTLINE_POS(event);
1734
1735         if (status != D40_DMA_RUN)
1736                 is_paused = true;
1737 _exit:
1738         spin_unlock_irqrestore(&d40c->lock, flags);
1739         return is_paused;
1740
1741 }
1742
1743
1744 static u32 stedma40_residue(struct dma_chan *chan)
1745 {
1746         struct d40_chan *d40c =
1747                 container_of(chan, struct d40_chan, chan);
1748         u32 bytes_left;
1749         unsigned long flags;
1750
1751         spin_lock_irqsave(&d40c->lock, flags);
1752         bytes_left = d40_residue(d40c);
1753         spin_unlock_irqrestore(&d40c->lock, flags);
1754
1755         return bytes_left;
1756 }
1757
1758 static int
1759 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1760                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1761                 unsigned int sg_len, dma_addr_t src_dev_addr,
1762                 dma_addr_t dst_dev_addr)
1763 {
1764         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1765         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1766         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1767         int ret;
1768
1769         ret = d40_log_sg_to_lli(sg_src, sg_len,
1770                                 src_dev_addr,
1771                                 desc->lli_log.src,
1772                                 chan->log_def.lcsp1,
1773                                 src_info->data_width,
1774                                 dst_info->data_width);
1775
1776         ret = d40_log_sg_to_lli(sg_dst, sg_len,
1777                                 dst_dev_addr,
1778                                 desc->lli_log.dst,
1779                                 chan->log_def.lcsp3,
1780                                 dst_info->data_width,
1781                                 src_info->data_width);
1782
1783         return ret < 0 ? ret : 0;
1784 }
1785
1786 static int
1787 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1788                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1789                 unsigned int sg_len, dma_addr_t src_dev_addr,
1790                 dma_addr_t dst_dev_addr)
1791 {
1792         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1793         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1794         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1795         unsigned long flags = 0;
1796         int ret;
1797
1798         if (desc->cyclic)
1799                 flags |= LLI_CYCLIC | LLI_TERM_INT;
1800
1801         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1802                                 desc->lli_phy.src,
1803                                 virt_to_phys(desc->lli_phy.src),
1804                                 chan->src_def_cfg,
1805                                 src_info, dst_info, flags);
1806
1807         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1808                                 desc->lli_phy.dst,
1809                                 virt_to_phys(desc->lli_phy.dst),
1810                                 chan->dst_def_cfg,
1811                                 dst_info, src_info, flags);
1812
1813         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1814                                    desc->lli_pool.size, DMA_TO_DEVICE);
1815
1816         return ret < 0 ? ret : 0;
1817 }
1818
1819
1820 static struct d40_desc *
1821 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1822               unsigned int sg_len, unsigned long dma_flags)
1823 {
1824         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1825         struct d40_desc *desc;
1826         int ret;
1827
1828         desc = d40_desc_get(chan);
1829         if (!desc)
1830                 return NULL;
1831
1832         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1833                                         cfg->dst_info.data_width);
1834         if (desc->lli_len < 0) {
1835                 chan_err(chan, "Unaligned size\n");
1836                 goto err;
1837         }
1838
1839         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1840         if (ret < 0) {
1841                 chan_err(chan, "Could not allocate lli\n");
1842                 goto err;
1843         }
1844
1845
1846         desc->lli_current = 0;
1847         desc->txd.flags = dma_flags;
1848         desc->txd.tx_submit = d40_tx_submit;
1849
1850         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1851
1852         return desc;
1853
1854 err:
1855         d40_desc_free(chan, desc);
1856         return NULL;
1857 }
1858
1859 static dma_addr_t
1860 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1861 {
1862         struct stedma40_platform_data *plat = chan->base->plat_data;
1863         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1864         dma_addr_t addr = 0;
1865
1866         if (chan->runtime_addr)
1867                 return chan->runtime_addr;
1868
1869         if (direction == DMA_FROM_DEVICE)
1870                 addr = plat->dev_rx[cfg->src_dev_type];
1871         else if (direction == DMA_TO_DEVICE)
1872                 addr = plat->dev_tx[cfg->dst_dev_type];
1873
1874         return addr;
1875 }
1876
1877 static struct dma_async_tx_descriptor *
1878 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1879             struct scatterlist *sg_dst, unsigned int sg_len,
1880             enum dma_data_direction direction, unsigned long dma_flags)
1881 {
1882         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1883         dma_addr_t src_dev_addr = 0;
1884         dma_addr_t dst_dev_addr = 0;
1885         struct d40_desc *desc;
1886         unsigned long flags;
1887         int ret;
1888
1889         if (!chan->phy_chan) {
1890                 chan_err(chan, "Cannot prepare unallocated channel\n");
1891                 return NULL;
1892         }
1893
1894
1895         spin_lock_irqsave(&chan->lock, flags);
1896
1897         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1898         if (desc == NULL)
1899                 goto err;
1900
1901         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1902                 desc->cyclic = true;
1903
1904         if (direction != DMA_NONE) {
1905                 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1906
1907                 if (direction == DMA_FROM_DEVICE)
1908                         src_dev_addr = dev_addr;
1909                 else if (direction == DMA_TO_DEVICE)
1910                         dst_dev_addr = dev_addr;
1911         }
1912
1913         if (chan_is_logical(chan))
1914                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1915                                       sg_len, src_dev_addr, dst_dev_addr);
1916         else
1917                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1918                                       sg_len, src_dev_addr, dst_dev_addr);
1919
1920         if (ret) {
1921                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
1922                          chan_is_logical(chan) ? "log" : "phy", ret);
1923                 goto err;
1924         }
1925
1926         /*
1927          * add descriptor to the prepare queue in order to be able
1928          * to free them later in terminate_all
1929          */
1930         list_add_tail(&desc->node, &chan->prepare_queue);
1931
1932         spin_unlock_irqrestore(&chan->lock, flags);
1933
1934         return &desc->txd;
1935
1936 err:
1937         if (desc)
1938                 d40_desc_free(chan, desc);
1939         spin_unlock_irqrestore(&chan->lock, flags);
1940         return NULL;
1941 }
1942
1943 bool stedma40_filter(struct dma_chan *chan, void *data)
1944 {
1945         struct stedma40_chan_cfg *info = data;
1946         struct d40_chan *d40c =
1947                 container_of(chan, struct d40_chan, chan);
1948         int err;
1949
1950         if (data) {
1951                 err = d40_validate_conf(d40c, info);
1952                 if (!err)
1953                         d40c->dma_cfg = *info;
1954         } else
1955                 err = d40_config_memcpy(d40c);
1956
1957         if (!err)
1958                 d40c->configured = true;
1959
1960         return err == 0;
1961 }
1962 EXPORT_SYMBOL(stedma40_filter);
1963
1964 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1965 {
1966         bool realtime = d40c->dma_cfg.realtime;
1967         bool highprio = d40c->dma_cfg.high_priority;
1968         u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1969         u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1970         u32 event = D40_TYPE_TO_EVENT(dev_type);
1971         u32 group = D40_TYPE_TO_GROUP(dev_type);
1972         u32 bit = 1 << event;
1973
1974         /* Destination event lines are stored in the upper halfword */
1975         if (!src)
1976                 bit <<= 16;
1977
1978         writel(bit, d40c->base->virtbase + prioreg + group * 4);
1979         writel(bit, d40c->base->virtbase + rtreg + group * 4);
1980 }
1981
1982 static void d40_set_prio_realtime(struct d40_chan *d40c)
1983 {
1984         if (d40c->base->rev < 3)
1985                 return;
1986
1987         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1988             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1989                 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1990
1991         if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
1992             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1993                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1994 }
1995
1996 /* DMA ENGINE functions */
1997 static int d40_alloc_chan_resources(struct dma_chan *chan)
1998 {
1999         int err;
2000         unsigned long flags;
2001         struct d40_chan *d40c =
2002                 container_of(chan, struct d40_chan, chan);
2003         bool is_free_phy;
2004         spin_lock_irqsave(&d40c->lock, flags);
2005
2006         d40c->completed = chan->cookie = 1;
2007
2008         /* If no dma configuration is set use default configuration (memcpy) */
2009         if (!d40c->configured) {
2010                 err = d40_config_memcpy(d40c);
2011                 if (err) {
2012                         chan_err(d40c, "Failed to configure memcpy channel\n");
2013                         goto fail;
2014                 }
2015         }
2016         is_free_phy = (d40c->phy_chan == NULL);
2017
2018         err = d40_allocate_channel(d40c);
2019         if (err) {
2020                 chan_err(d40c, "Failed to allocate channel\n");
2021                 goto fail;
2022         }
2023
2024         /* Fill in basic CFG register values */
2025         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2026                     &d40c->dst_def_cfg, chan_is_logical(d40c));
2027
2028         d40_set_prio_realtime(d40c);
2029
2030         if (chan_is_logical(d40c)) {
2031                 d40_log_cfg(&d40c->dma_cfg,
2032                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2033
2034                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2035                         d40c->lcpa = d40c->base->lcpa_base +
2036                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2037                 else
2038                         d40c->lcpa = d40c->base->lcpa_base +
2039                           d40c->dma_cfg.dst_dev_type *
2040                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2041         }
2042
2043         /*
2044          * Only write channel configuration to the DMA if the physical
2045          * resource is free. In case of multiple logical channels
2046          * on the same physical resource, only the first write is necessary.
2047          */
2048         if (is_free_phy)
2049                 d40_config_write(d40c);
2050 fail:
2051         spin_unlock_irqrestore(&d40c->lock, flags);
2052         return err;
2053 }
2054
2055 static void d40_free_chan_resources(struct dma_chan *chan)
2056 {
2057         struct d40_chan *d40c =
2058                 container_of(chan, struct d40_chan, chan);
2059         int err;
2060         unsigned long flags;
2061
2062         if (d40c->phy_chan == NULL) {
2063                 chan_err(d40c, "Cannot free unallocated channel\n");
2064                 return;
2065         }
2066
2067
2068         spin_lock_irqsave(&d40c->lock, flags);
2069
2070         err = d40_free_dma(d40c);
2071
2072         if (err)
2073                 chan_err(d40c, "Failed to free channel\n");
2074         spin_unlock_irqrestore(&d40c->lock, flags);
2075 }
2076
2077 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2078                                                        dma_addr_t dst,
2079                                                        dma_addr_t src,
2080                                                        size_t size,
2081                                                        unsigned long dma_flags)
2082 {
2083         struct scatterlist dst_sg;
2084         struct scatterlist src_sg;
2085
2086         sg_init_table(&dst_sg, 1);
2087         sg_init_table(&src_sg, 1);
2088
2089         sg_dma_address(&dst_sg) = dst;
2090         sg_dma_address(&src_sg) = src;
2091
2092         sg_dma_len(&dst_sg) = size;
2093         sg_dma_len(&src_sg) = size;
2094
2095         return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2096 }
2097
2098 static struct dma_async_tx_descriptor *
2099 d40_prep_memcpy_sg(struct dma_chan *chan,
2100                    struct scatterlist *dst_sg, unsigned int dst_nents,
2101                    struct scatterlist *src_sg, unsigned int src_nents,
2102                    unsigned long dma_flags)
2103 {
2104         if (dst_nents != src_nents)
2105                 return NULL;
2106
2107         return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2108 }
2109
2110 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2111                                                          struct scatterlist *sgl,
2112                                                          unsigned int sg_len,
2113                                                          enum dma_data_direction direction,
2114                                                          unsigned long dma_flags)
2115 {
2116         if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2117                 return NULL;
2118
2119         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2120 }
2121
2122 static struct dma_async_tx_descriptor *
2123 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2124                      size_t buf_len, size_t period_len,
2125                      enum dma_data_direction direction)
2126 {
2127         unsigned int periods = buf_len / period_len;
2128         struct dma_async_tx_descriptor *txd;
2129         struct scatterlist *sg;
2130         int i;
2131
2132         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2133         for (i = 0; i < periods; i++) {
2134                 sg_dma_address(&sg[i]) = dma_addr;
2135                 sg_dma_len(&sg[i]) = period_len;
2136                 dma_addr += period_len;
2137         }
2138
2139         sg[periods].offset = 0;
2140         sg[periods].length = 0;
2141         sg[periods].page_link =
2142                 ((unsigned long)sg | 0x01) & ~0x02;
2143
2144         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2145                           DMA_PREP_INTERRUPT);
2146
2147         kfree(sg);
2148
2149         return txd;
2150 }
2151
2152 static enum dma_status d40_tx_status(struct dma_chan *chan,
2153                                      dma_cookie_t cookie,
2154                                      struct dma_tx_state *txstate)
2155 {
2156         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2157         dma_cookie_t last_used;
2158         dma_cookie_t last_complete;
2159         int ret;
2160
2161         if (d40c->phy_chan == NULL) {
2162                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2163                 return -EINVAL;
2164         }
2165
2166         last_complete = d40c->completed;
2167         last_used = chan->cookie;
2168
2169         if (d40_is_paused(d40c))
2170                 ret = DMA_PAUSED;
2171         else
2172                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2173
2174         dma_set_tx_state(txstate, last_complete, last_used,
2175                          stedma40_residue(chan));
2176
2177         return ret;
2178 }
2179
2180 static void d40_issue_pending(struct dma_chan *chan)
2181 {
2182         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2183         unsigned long flags;
2184
2185         if (d40c->phy_chan == NULL) {
2186                 chan_err(d40c, "Channel is not allocated!\n");
2187                 return;
2188         }
2189
2190         spin_lock_irqsave(&d40c->lock, flags);
2191
2192         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2193
2194         /* Busy means that queued jobs are already being processed */
2195         if (!d40c->busy)
2196                 (void) d40_queue_start(d40c);
2197
2198         spin_unlock_irqrestore(&d40c->lock, flags);
2199 }
2200
2201 static int
2202 dma40_config_to_halfchannel(struct d40_chan *d40c,
2203                             struct stedma40_half_channel_info *info,
2204                             enum dma_slave_buswidth width,
2205                             u32 maxburst)
2206 {
2207         enum stedma40_periph_data_width addr_width;
2208         int psize;
2209
2210         switch (width) {
2211         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2212                 addr_width = STEDMA40_BYTE_WIDTH;
2213                 break;
2214         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2215                 addr_width = STEDMA40_HALFWORD_WIDTH;
2216                 break;
2217         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2218                 addr_width = STEDMA40_WORD_WIDTH;
2219                 break;
2220         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2221                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2222                 break;
2223         default:
2224                 dev_err(d40c->base->dev,
2225                         "illegal peripheral address width "
2226                         "requested (%d)\n",
2227                         width);
2228                 return -EINVAL;
2229         }
2230
2231         if (chan_is_logical(d40c)) {
2232                 if (maxburst >= 16)
2233                         psize = STEDMA40_PSIZE_LOG_16;
2234                 else if (maxburst >= 8)
2235                         psize = STEDMA40_PSIZE_LOG_8;
2236                 else if (maxburst >= 4)
2237                         psize = STEDMA40_PSIZE_LOG_4;
2238                 else
2239                         psize = STEDMA40_PSIZE_LOG_1;
2240         } else {
2241                 if (maxburst >= 16)
2242                         psize = STEDMA40_PSIZE_PHY_16;
2243                 else if (maxburst >= 8)
2244                         psize = STEDMA40_PSIZE_PHY_8;
2245                 else if (maxburst >= 4)
2246                         psize = STEDMA40_PSIZE_PHY_4;
2247                 else
2248                         psize = STEDMA40_PSIZE_PHY_1;
2249         }
2250
2251         info->data_width = addr_width;
2252         info->psize = psize;
2253         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2254
2255         return 0;
2256 }
2257
2258 /* Runtime reconfiguration extension */
2259 static int d40_set_runtime_config(struct dma_chan *chan,
2260                                   struct dma_slave_config *config)
2261 {
2262         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2263         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2264         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2265         dma_addr_t config_addr;
2266         u32 src_maxburst, dst_maxburst;
2267         int ret;
2268
2269         src_addr_width = config->src_addr_width;
2270         src_maxburst = config->src_maxburst;
2271         dst_addr_width = config->dst_addr_width;
2272         dst_maxburst = config->dst_maxburst;
2273
2274         if (config->direction == DMA_FROM_DEVICE) {
2275                 dma_addr_t dev_addr_rx =
2276                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2277
2278                 config_addr = config->src_addr;
2279                 if (dev_addr_rx)
2280                         dev_dbg(d40c->base->dev,
2281                                 "channel has a pre-wired RX address %08x "
2282                                 "overriding with %08x\n",
2283                                 dev_addr_rx, config_addr);
2284                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2285                         dev_dbg(d40c->base->dev,
2286                                 "channel was not configured for peripheral "
2287                                 "to memory transfer (%d) overriding\n",
2288                                 cfg->dir);
2289                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2290
2291                 /* Configure the memory side */
2292                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2293                         dst_addr_width = src_addr_width;
2294                 if (dst_maxburst == 0)
2295                         dst_maxburst = src_maxburst;
2296
2297         } else if (config->direction == DMA_TO_DEVICE) {
2298                 dma_addr_t dev_addr_tx =
2299                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2300
2301                 config_addr = config->dst_addr;
2302                 if (dev_addr_tx)
2303                         dev_dbg(d40c->base->dev,
2304                                 "channel has a pre-wired TX address %08x "
2305                                 "overriding with %08x\n",
2306                                 dev_addr_tx, config_addr);
2307                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2308                         dev_dbg(d40c->base->dev,
2309                                 "channel was not configured for memory "
2310                                 "to peripheral transfer (%d) overriding\n",
2311                                 cfg->dir);
2312                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2313
2314                 /* Configure the memory side */
2315                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2316                         src_addr_width = dst_addr_width;
2317                 if (src_maxburst == 0)
2318                         src_maxburst = dst_maxburst;
2319         } else {
2320                 dev_err(d40c->base->dev,
2321                         "unrecognized channel direction %d\n",
2322                         config->direction);
2323                 return -EINVAL;
2324         }
2325
2326         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2327                 dev_err(d40c->base->dev,
2328                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2329                         src_maxburst,
2330                         src_addr_width,
2331                         dst_maxburst,
2332                         dst_addr_width);
2333                 return -EINVAL;
2334         }
2335
2336         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2337                                           src_addr_width,
2338                                           src_maxburst);
2339         if (ret)
2340                 return ret;
2341
2342         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2343                                           dst_addr_width,
2344                                           dst_maxburst);
2345         if (ret)
2346                 return ret;
2347
2348         /* Fill in register values */
2349         if (chan_is_logical(d40c))
2350                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2351         else
2352                 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2353                             &d40c->dst_def_cfg, false);
2354
2355         /* These settings will take precedence later */
2356         d40c->runtime_addr = config_addr;
2357         d40c->runtime_direction = config->direction;
2358         dev_dbg(d40c->base->dev,
2359                 "configured channel %s for %s, data width %d/%d, "
2360                 "maxburst %d/%d elements, LE, no flow control\n",
2361                 dma_chan_name(chan),
2362                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2363                 src_addr_width, dst_addr_width,
2364                 src_maxburst, dst_maxburst);
2365
2366         return 0;
2367 }
2368
2369 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2370                        unsigned long arg)
2371 {
2372         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2373
2374         if (d40c->phy_chan == NULL) {
2375                 chan_err(d40c, "Channel is not allocated!\n");
2376                 return -EINVAL;
2377         }
2378
2379         switch (cmd) {
2380         case DMA_TERMINATE_ALL:
2381                 return d40_terminate_all(d40c);
2382         case DMA_PAUSE:
2383                 return d40_pause(d40c);
2384         case DMA_RESUME:
2385                 return d40_resume(d40c);
2386         case DMA_SLAVE_CONFIG:
2387                 return d40_set_runtime_config(chan,
2388                         (struct dma_slave_config *) arg);
2389         default:
2390                 break;
2391         }
2392
2393         /* Other commands are unimplemented */
2394         return -ENXIO;
2395 }
2396
2397 /* Initialization functions */
2398
2399 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2400                                  struct d40_chan *chans, int offset,
2401                                  int num_chans)
2402 {
2403         int i = 0;
2404         struct d40_chan *d40c;
2405
2406         INIT_LIST_HEAD(&dma->channels);
2407
2408         for (i = offset; i < offset + num_chans; i++) {
2409                 d40c = &chans[i];
2410                 d40c->base = base;
2411                 d40c->chan.device = dma;
2412
2413                 spin_lock_init(&d40c->lock);
2414
2415                 d40c->log_num = D40_PHY_CHAN;
2416
2417                 INIT_LIST_HEAD(&d40c->active);
2418                 INIT_LIST_HEAD(&d40c->queue);
2419                 INIT_LIST_HEAD(&d40c->pending_queue);
2420                 INIT_LIST_HEAD(&d40c->client);
2421                 INIT_LIST_HEAD(&d40c->prepare_queue);
2422
2423                 tasklet_init(&d40c->tasklet, dma_tasklet,
2424                              (unsigned long) d40c);
2425
2426                 list_add_tail(&d40c->chan.device_node,
2427                               &dma->channels);
2428         }
2429 }
2430
2431 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2432 {
2433         if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2434                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2435
2436         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2437                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2438
2439                 /*
2440                  * This controller can only access address at even
2441                  * 32bit boundaries, i.e. 2^2
2442                  */
2443                 dev->copy_align = 2;
2444         }
2445
2446         if (dma_has_cap(DMA_SG, dev->cap_mask))
2447                 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2448
2449         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2450                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2451
2452         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2453         dev->device_free_chan_resources = d40_free_chan_resources;
2454         dev->device_issue_pending = d40_issue_pending;
2455         dev->device_tx_status = d40_tx_status;
2456         dev->device_control = d40_control;
2457         dev->dev = base->dev;
2458 }
2459
2460 static int __init d40_dmaengine_init(struct d40_base *base,
2461                                      int num_reserved_chans)
2462 {
2463         int err ;
2464
2465         d40_chan_init(base, &base->dma_slave, base->log_chans,
2466                       0, base->num_log_chans);
2467
2468         dma_cap_zero(base->dma_slave.cap_mask);
2469         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2470         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2471
2472         d40_ops_init(base, &base->dma_slave);
2473
2474         err = dma_async_device_register(&base->dma_slave);
2475
2476         if (err) {
2477                 d40_err(base->dev, "Failed to register slave channels\n");
2478                 goto failure1;
2479         }
2480
2481         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2482                       base->num_log_chans, base->plat_data->memcpy_len);
2483
2484         dma_cap_zero(base->dma_memcpy.cap_mask);
2485         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2486         dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2487
2488         d40_ops_init(base, &base->dma_memcpy);
2489
2490         err = dma_async_device_register(&base->dma_memcpy);
2491
2492         if (err) {
2493                 d40_err(base->dev,
2494                         "Failed to regsiter memcpy only channels\n");
2495                 goto failure2;
2496         }
2497
2498         d40_chan_init(base, &base->dma_both, base->phy_chans,
2499                       0, num_reserved_chans);
2500
2501         dma_cap_zero(base->dma_both.cap_mask);
2502         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2503         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2504         dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2505         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2506
2507         d40_ops_init(base, &base->dma_both);
2508         err = dma_async_device_register(&base->dma_both);
2509
2510         if (err) {
2511                 d40_err(base->dev,
2512                         "Failed to register logical and physical capable channels\n");
2513                 goto failure3;
2514         }
2515         return 0;
2516 failure3:
2517         dma_async_device_unregister(&base->dma_memcpy);
2518 failure2:
2519         dma_async_device_unregister(&base->dma_slave);
2520 failure1:
2521         return err;
2522 }
2523
2524 /* Initialization functions. */
2525
2526 static int __init d40_phy_res_init(struct d40_base *base)
2527 {
2528         int i;
2529         int num_phy_chans_avail = 0;
2530         u32 val[2];
2531         int odd_even_bit = -2;
2532
2533         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2534         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2535
2536         for (i = 0; i < base->num_phy_chans; i++) {
2537                 base->phy_res[i].num = i;
2538                 odd_even_bit += 2 * ((i % 2) == 0);
2539                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2540                         /* Mark security only channels as occupied */
2541                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2542                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2543                 } else {
2544                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2545                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2546                         num_phy_chans_avail++;
2547                 }
2548                 spin_lock_init(&base->phy_res[i].lock);
2549         }
2550
2551         /* Mark disabled channels as occupied */
2552         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2553                 int chan = base->plat_data->disabled_channels[i];
2554
2555                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2556                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2557                 num_phy_chans_avail--;
2558         }
2559
2560         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2561                  num_phy_chans_avail, base->num_phy_chans);
2562
2563         /* Verify settings extended vs standard */
2564         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2565
2566         for (i = 0; i < base->num_phy_chans; i++) {
2567
2568                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2569                     (val[0] & 0x3) != 1)
2570                         dev_info(base->dev,
2571                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2572                                  __func__, i, val[0] & 0x3);
2573
2574                 val[0] = val[0] >> 2;
2575         }
2576
2577         return num_phy_chans_avail;
2578 }
2579
2580 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2581 {
2582         struct stedma40_platform_data *plat_data;
2583         struct clk *clk = NULL;
2584         void __iomem *virtbase = NULL;
2585         struct resource *res = NULL;
2586         struct d40_base *base = NULL;
2587         int num_log_chans = 0;
2588         int num_phy_chans;
2589         int i;
2590         u32 pid;
2591         u32 cid;
2592         u8 rev;
2593
2594         clk = clk_get(&pdev->dev, NULL);
2595
2596         if (IS_ERR(clk)) {
2597                 d40_err(&pdev->dev, "No matching clock found\n");
2598                 goto failure;
2599         }
2600
2601         clk_enable(clk);
2602
2603         /* Get IO for DMAC base address */
2604         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2605         if (!res)
2606                 goto failure;
2607
2608         if (request_mem_region(res->start, resource_size(res),
2609                                D40_NAME " I/O base") == NULL)
2610                 goto failure;
2611
2612         virtbase = ioremap(res->start, resource_size(res));
2613         if (!virtbase)
2614                 goto failure;
2615
2616         /* This is just a regular AMBA PrimeCell ID actually */
2617         for (pid = 0, i = 0; i < 4; i++)
2618                 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2619                         & 255) << (i * 8);
2620         for (cid = 0, i = 0; i < 4; i++)
2621                 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2622                         & 255) << (i * 8);
2623
2624         if (cid != AMBA_CID) {
2625                 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2626                 goto failure;
2627         }
2628         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2629                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2630                         AMBA_MANF_BITS(pid),
2631                         AMBA_VENDOR_ST);
2632                 goto failure;
2633         }
2634         /*
2635          * HW revision:
2636          * DB8500ed has revision 0
2637          * ? has revision 1
2638          * DB8500v1 has revision 2
2639          * DB8500v2 has revision 3
2640          */
2641         rev = AMBA_REV_BITS(pid);
2642
2643         /* The number of physical channels on this HW */
2644         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2645
2646         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2647                  rev, res->start);
2648
2649         plat_data = pdev->dev.platform_data;
2650
2651         /* Count the number of logical channels in use */
2652         for (i = 0; i < plat_data->dev_len; i++)
2653                 if (plat_data->dev_rx[i] != 0)
2654                         num_log_chans++;
2655
2656         for (i = 0; i < plat_data->dev_len; i++)
2657                 if (plat_data->dev_tx[i] != 0)
2658                         num_log_chans++;
2659
2660         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2661                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2662                        sizeof(struct d40_chan), GFP_KERNEL);
2663
2664         if (base == NULL) {
2665                 d40_err(&pdev->dev, "Out of memory\n");
2666                 goto failure;
2667         }
2668
2669         base->rev = rev;
2670         base->clk = clk;
2671         base->num_phy_chans = num_phy_chans;
2672         base->num_log_chans = num_log_chans;
2673         base->phy_start = res->start;
2674         base->phy_size = resource_size(res);
2675         base->virtbase = virtbase;
2676         base->plat_data = plat_data;
2677         base->dev = &pdev->dev;
2678         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2679         base->log_chans = &base->phy_chans[num_phy_chans];
2680
2681         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2682                                 GFP_KERNEL);
2683         if (!base->phy_res)
2684                 goto failure;
2685
2686         base->lookup_phy_chans = kzalloc(num_phy_chans *
2687                                          sizeof(struct d40_chan *),
2688                                          GFP_KERNEL);
2689         if (!base->lookup_phy_chans)
2690                 goto failure;
2691
2692         if (num_log_chans + plat_data->memcpy_len) {
2693                 /*
2694                  * The max number of logical channels are event lines for all
2695                  * src devices and dst devices
2696                  */
2697                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2698                                                  sizeof(struct d40_chan *),
2699                                                  GFP_KERNEL);
2700                 if (!base->lookup_log_chans)
2701                         goto failure;
2702         }
2703
2704         base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2705                                             sizeof(struct d40_desc *) *
2706                                             D40_LCLA_LINK_PER_EVENT_GRP,
2707                                             GFP_KERNEL);
2708         if (!base->lcla_pool.alloc_map)
2709                 goto failure;
2710
2711         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2712                                             0, SLAB_HWCACHE_ALIGN,
2713                                             NULL);
2714         if (base->desc_slab == NULL)
2715                 goto failure;
2716
2717         return base;
2718
2719 failure:
2720         if (!IS_ERR(clk)) {
2721                 clk_disable(clk);
2722                 clk_put(clk);
2723         }
2724         if (virtbase)
2725                 iounmap(virtbase);
2726         if (res)
2727                 release_mem_region(res->start,
2728                                    resource_size(res));
2729         if (virtbase)
2730                 iounmap(virtbase);
2731
2732         if (base) {
2733                 kfree(base->lcla_pool.alloc_map);
2734                 kfree(base->lookup_log_chans);
2735                 kfree(base->lookup_phy_chans);
2736                 kfree(base->phy_res);
2737                 kfree(base);
2738         }
2739
2740         return NULL;
2741 }
2742
2743 static void __init d40_hw_init(struct d40_base *base)
2744 {
2745
2746         static const struct d40_reg_val dma_init_reg[] = {
2747                 /* Clock every part of the DMA block from start */
2748                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2749
2750                 /* Interrupts on all logical channels */
2751                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2752                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2753                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2754                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2755                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2756                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2757                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2758                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2759                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2760                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2761                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2762                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2763         };
2764         int i;
2765         u32 prmseo[2] = {0, 0};
2766         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2767         u32 pcmis = 0;
2768         u32 pcicr = 0;
2769
2770         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2771                 writel(dma_init_reg[i].val,
2772                        base->virtbase + dma_init_reg[i].reg);
2773
2774         /* Configure all our dma channels to default settings */
2775         for (i = 0; i < base->num_phy_chans; i++) {
2776
2777                 activeo[i % 2] = activeo[i % 2] << 2;
2778
2779                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2780                     == D40_ALLOC_PHY) {
2781                         activeo[i % 2] |= 3;
2782                         continue;
2783                 }
2784
2785                 /* Enable interrupt # */
2786                 pcmis = (pcmis << 1) | 1;
2787
2788                 /* Clear interrupt # */
2789                 pcicr = (pcicr << 1) | 1;
2790
2791                 /* Set channel to physical mode */
2792                 prmseo[i % 2] = prmseo[i % 2] << 2;
2793                 prmseo[i % 2] |= 1;
2794
2795         }
2796
2797         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2798         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2799         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2800         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2801
2802         /* Write which interrupt to enable */
2803         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2804
2805         /* Write which interrupt to clear */
2806         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2807
2808 }
2809
2810 static int __init d40_lcla_allocate(struct d40_base *base)
2811 {
2812         struct d40_lcla_pool *pool = &base->lcla_pool;
2813         unsigned long *page_list;
2814         int i, j;
2815         int ret = 0;
2816
2817         /*
2818          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2819          * To full fill this hardware requirement without wasting 256 kb
2820          * we allocate pages until we get an aligned one.
2821          */
2822         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2823                             GFP_KERNEL);
2824
2825         if (!page_list) {
2826                 ret = -ENOMEM;
2827                 goto failure;
2828         }
2829
2830         /* Calculating how many pages that are required */
2831         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2832
2833         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2834                 page_list[i] = __get_free_pages(GFP_KERNEL,
2835                                                 base->lcla_pool.pages);
2836                 if (!page_list[i]) {
2837
2838                         d40_err(base->dev, "Failed to allocate %d pages.\n",
2839                                 base->lcla_pool.pages);
2840
2841                         for (j = 0; j < i; j++)
2842                                 free_pages(page_list[j], base->lcla_pool.pages);
2843                         goto failure;
2844                 }
2845
2846                 if ((virt_to_phys((void *)page_list[i]) &
2847                      (LCLA_ALIGNMENT - 1)) == 0)
2848                         break;
2849         }
2850
2851         for (j = 0; j < i; j++)
2852                 free_pages(page_list[j], base->lcla_pool.pages);
2853
2854         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2855                 base->lcla_pool.base = (void *)page_list[i];
2856         } else {
2857                 /*
2858                  * After many attempts and no succees with finding the correct
2859                  * alignment, try with allocating a big buffer.
2860                  */
2861                 dev_warn(base->dev,
2862                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2863                          __func__, base->lcla_pool.pages);
2864                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2865                                                          base->num_phy_chans +
2866                                                          LCLA_ALIGNMENT,
2867                                                          GFP_KERNEL);
2868                 if (!base->lcla_pool.base_unaligned) {
2869                         ret = -ENOMEM;
2870                         goto failure;
2871                 }
2872
2873                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2874                                                  LCLA_ALIGNMENT);
2875         }
2876
2877         pool->dma_addr = dma_map_single(base->dev, pool->base,
2878                                         SZ_1K * base->num_phy_chans,
2879                                         DMA_TO_DEVICE);
2880         if (dma_mapping_error(base->dev, pool->dma_addr)) {
2881                 pool->dma_addr = 0;
2882                 ret = -ENOMEM;
2883                 goto failure;
2884         }
2885
2886         writel(virt_to_phys(base->lcla_pool.base),
2887                base->virtbase + D40_DREG_LCLA);
2888 failure:
2889         kfree(page_list);
2890         return ret;
2891 }
2892
2893 static int __init d40_probe(struct platform_device *pdev)
2894 {
2895         int err;
2896         int ret = -ENOENT;
2897         struct d40_base *base;
2898         struct resource *res = NULL;
2899         int num_reserved_chans;
2900         u32 val;
2901
2902         base = d40_hw_detect_init(pdev);
2903
2904         if (!base)
2905                 goto failure;
2906
2907         num_reserved_chans = d40_phy_res_init(base);
2908
2909         platform_set_drvdata(pdev, base);
2910
2911         spin_lock_init(&base->interrupt_lock);
2912         spin_lock_init(&base->execmd_lock);
2913
2914         /* Get IO for logical channel parameter address */
2915         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2916         if (!res) {
2917                 ret = -ENOENT;
2918                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2919                 goto failure;
2920         }
2921         base->lcpa_size = resource_size(res);
2922         base->phy_lcpa = res->start;
2923
2924         if (request_mem_region(res->start, resource_size(res),
2925                                D40_NAME " I/O lcpa") == NULL) {
2926                 ret = -EBUSY;
2927                 d40_err(&pdev->dev,
2928                         "Failed to request LCPA region 0x%x-0x%x\n",
2929                         res->start, res->end);
2930                 goto failure;
2931         }
2932
2933         /* We make use of ESRAM memory for this. */
2934         val = readl(base->virtbase + D40_DREG_LCPA);
2935         if (res->start != val && val != 0) {
2936                 dev_warn(&pdev->dev,
2937                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2938                          __func__, val, res->start);
2939         } else
2940                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2941
2942         base->lcpa_base = ioremap(res->start, resource_size(res));
2943         if (!base->lcpa_base) {
2944                 ret = -ENOMEM;
2945                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2946                 goto failure;
2947         }
2948
2949         ret = d40_lcla_allocate(base);
2950         if (ret) {
2951                 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2952                 goto failure;
2953         }
2954
2955         spin_lock_init(&base->lcla_pool.lock);
2956
2957         base->irq = platform_get_irq(pdev, 0);
2958
2959         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2960         if (ret) {
2961                 d40_err(&pdev->dev, "No IRQ defined\n");
2962                 goto failure;
2963         }
2964
2965         err = d40_dmaengine_init(base, num_reserved_chans);
2966         if (err)
2967                 goto failure;
2968
2969         d40_hw_init(base);
2970
2971         dev_info(base->dev, "initialized\n");
2972         return 0;
2973
2974 failure:
2975         if (base) {
2976                 if (base->desc_slab)
2977                         kmem_cache_destroy(base->desc_slab);
2978                 if (base->virtbase)
2979                         iounmap(base->virtbase);
2980
2981                 if (base->lcla_pool.dma_addr)
2982                         dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2983                                          SZ_1K * base->num_phy_chans,
2984                                          DMA_TO_DEVICE);
2985
2986                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2987                         free_pages((unsigned long)base->lcla_pool.base,
2988                                    base->lcla_pool.pages);
2989
2990                 kfree(base->lcla_pool.base_unaligned);
2991
2992                 if (base->phy_lcpa)
2993                         release_mem_region(base->phy_lcpa,
2994                                            base->lcpa_size);
2995                 if (base->phy_start)
2996                         release_mem_region(base->phy_start,
2997                                            base->phy_size);
2998                 if (base->clk) {
2999                         clk_disable(base->clk);
3000                         clk_put(base->clk);
3001                 }
3002
3003                 kfree(base->lcla_pool.alloc_map);
3004                 kfree(base->lookup_log_chans);
3005                 kfree(base->lookup_phy_chans);
3006                 kfree(base->phy_res);
3007                 kfree(base);
3008         }
3009
3010         d40_err(&pdev->dev, "probe failed\n");
3011         return ret;
3012 }
3013
3014 static struct platform_driver d40_driver = {
3015         .driver = {
3016                 .owner = THIS_MODULE,
3017                 .name  = D40_NAME,
3018         },
3019 };
3020
3021 static int __init stedma40_init(void)
3022 {
3023         return platform_driver_probe(&d40_driver, d40_probe);
3024 }
3025 subsys_initcall(stedma40_init);