crypto: mv_cesa - fill inner/outer IV fields only in HMAC case
[pandora-kernel.git] / drivers / crypto / mv_cesa.c
1 /*
2  * Support for Marvell's crypto engine which can be found on some Orion5X
3  * boards.
4  *
5  * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6  * License: GPLv2
7  *
8  */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <crypto/internal/hash.h>
19 #include <crypto/sha.h>
20
21 #include "mv_cesa.h"
22
23 #define MV_CESA "MV-CESA:"
24 #define MAX_HW_HASH_SIZE        0xFFFF
25
26 /*
27  * STM:
28  *   /---------------------------------------\
29  *   |                                       | request complete
30  *  \./                                      |
31  * IDLE -> new request -> BUSY -> done -> DEQUEUE
32  *                         /°\               |
33  *                          |                | more scatter entries
34  *                          \________________/
35  */
36 enum engine_status {
37         ENGINE_IDLE,
38         ENGINE_BUSY,
39         ENGINE_W_DEQUEUE,
40 };
41
42 /**
43  * struct req_progress - used for every crypt request
44  * @src_sg_it:          sg iterator for src
45  * @dst_sg_it:          sg iterator for dst
46  * @sg_src_left:        bytes left in src to process (scatter list)
47  * @src_start:          offset to add to src start position (scatter list)
48  * @crypt_len:          length of current hw crypt/hash process
49  * @hw_nbytes:          total bytes to process in hw for this request
50  * @copy_back:          whether to copy data back (crypt) or not (hash)
51  * @sg_dst_left:        bytes left dst to process in this scatter list
52  * @dst_start:          offset to add to dst start position (scatter list)
53  * @hw_processed_bytes: number of bytes processed by hw (request).
54  *
55  * sg helper are used to iterate over the scatterlist. Since the size of the
56  * SRAM may be less than the scatter size, this struct struct is used to keep
57  * track of progress within current scatterlist.
58  */
59 struct req_progress {
60         struct sg_mapping_iter src_sg_it;
61         struct sg_mapping_iter dst_sg_it;
62         void (*complete) (void);
63         void (*process) (int is_first);
64
65         /* src mostly */
66         int sg_src_left;
67         int src_start;
68         int crypt_len;
69         int hw_nbytes;
70         /* dst mostly */
71         int copy_back;
72         int sg_dst_left;
73         int dst_start;
74         int hw_processed_bytes;
75 };
76
77 struct crypto_priv {
78         void __iomem *reg;
79         void __iomem *sram;
80         int irq;
81         struct task_struct *queue_th;
82
83         /* the lock protects queue and eng_st */
84         spinlock_t lock;
85         struct crypto_queue queue;
86         enum engine_status eng_st;
87         struct crypto_async_request *cur_req;
88         struct req_progress p;
89         int max_req_size;
90         int sram_size;
91         int has_sha1;
92         int has_hmac_sha1;
93 };
94
95 static struct crypto_priv *cpg;
96
97 struct mv_ctx {
98         u8 aes_enc_key[AES_KEY_LEN];
99         u32 aes_dec_key[8];
100         int key_len;
101         u32 need_calc_aes_dkey;
102 };
103
104 enum crypto_op {
105         COP_AES_ECB,
106         COP_AES_CBC,
107 };
108
109 struct mv_req_ctx {
110         enum crypto_op op;
111         int decrypt;
112 };
113
114 enum hash_op {
115         COP_SHA1,
116         COP_HMAC_SHA1
117 };
118
119 struct mv_tfm_hash_ctx {
120         struct crypto_shash *fallback;
121         struct crypto_shash *base_hash;
122         u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
123         int count_add;
124         enum hash_op op;
125 };
126
127 struct mv_req_hash_ctx {
128         u64 count;
129         u32 state[SHA1_DIGEST_SIZE / 4];
130         u8 buffer[SHA1_BLOCK_SIZE];
131         int first_hash;         /* marks that we don't have previous state */
132         int last_chunk;         /* marks that this is the 'final' request */
133         int extra_bytes;        /* unprocessed bytes in buffer */
134         enum hash_op op;
135         int count_add;
136         struct scatterlist dummysg;
137 };
138
139 static void compute_aes_dec_key(struct mv_ctx *ctx)
140 {
141         struct crypto_aes_ctx gen_aes_key;
142         int key_pos;
143
144         if (!ctx->need_calc_aes_dkey)
145                 return;
146
147         crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
148
149         key_pos = ctx->key_len + 24;
150         memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
151         switch (ctx->key_len) {
152         case AES_KEYSIZE_256:
153                 key_pos -= 2;
154                 /* fall */
155         case AES_KEYSIZE_192:
156                 key_pos -= 2;
157                 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
158                                 4 * 4);
159                 break;
160         }
161         ctx->need_calc_aes_dkey = 0;
162 }
163
164 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
165                 unsigned int len)
166 {
167         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
168         struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
169
170         switch (len) {
171         case AES_KEYSIZE_128:
172         case AES_KEYSIZE_192:
173         case AES_KEYSIZE_256:
174                 break;
175         default:
176                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
177                 return -EINVAL;
178         }
179         ctx->key_len = len;
180         ctx->need_calc_aes_dkey = 1;
181
182         memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
183         return 0;
184 }
185
186 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
187 {
188         int ret;
189         void *sbuf;
190         int copy_len;
191
192         while (len) {
193                 if (!p->sg_src_left) {
194                         ret = sg_miter_next(&p->src_sg_it);
195                         BUG_ON(!ret);
196                         p->sg_src_left = p->src_sg_it.length;
197                         p->src_start = 0;
198                 }
199
200                 sbuf = p->src_sg_it.addr + p->src_start;
201
202                 copy_len = min(p->sg_src_left, len);
203                 memcpy(dbuf, sbuf, copy_len);
204
205                 p->src_start += copy_len;
206                 p->sg_src_left -= copy_len;
207
208                 len -= copy_len;
209                 dbuf += copy_len;
210         }
211 }
212
213 static void setup_data_in(void)
214 {
215         struct req_progress *p = &cpg->p;
216         int data_in_sram =
217             min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
218         copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
219                         data_in_sram - p->crypt_len);
220         p->crypt_len = data_in_sram;
221 }
222
223 static void mv_process_current_q(int first_block)
224 {
225         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
226         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
227         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
228         struct sec_accel_config op;
229
230         switch (req_ctx->op) {
231         case COP_AES_ECB:
232                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
233                 break;
234         case COP_AES_CBC:
235         default:
236                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
237                 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
238                         ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
239                 if (first_block)
240                         memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
241                 break;
242         }
243         if (req_ctx->decrypt) {
244                 op.config |= CFG_DIR_DEC;
245                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
246                                 AES_KEY_LEN);
247         } else {
248                 op.config |= CFG_DIR_ENC;
249                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
250                                 AES_KEY_LEN);
251         }
252
253         switch (ctx->key_len) {
254         case AES_KEYSIZE_128:
255                 op.config |= CFG_AES_LEN_128;
256                 break;
257         case AES_KEYSIZE_192:
258                 op.config |= CFG_AES_LEN_192;
259                 break;
260         case AES_KEYSIZE_256:
261                 op.config |= CFG_AES_LEN_256;
262                 break;
263         }
264         op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
265                 ENC_P_DST(SRAM_DATA_OUT_START);
266         op.enc_key_p = SRAM_DATA_KEY_P;
267
268         setup_data_in();
269         op.enc_len = cpg->p.crypt_len;
270         memcpy(cpg->sram + SRAM_CONFIG, &op,
271                         sizeof(struct sec_accel_config));
272
273         /* GO */
274         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
275
276         /*
277          * XXX: add timer if the interrupt does not occur for some mystery
278          * reason
279          */
280 }
281
282 static void mv_crypto_algo_completion(void)
283 {
284         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
285         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
286
287         sg_miter_stop(&cpg->p.src_sg_it);
288         sg_miter_stop(&cpg->p.dst_sg_it);
289
290         if (req_ctx->op != COP_AES_CBC)
291                 return ;
292
293         memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
294 }
295
296 static void mv_process_hash_current(int first_block)
297 {
298         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
299         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
300         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
301         struct req_progress *p = &cpg->p;
302         struct sec_accel_config op = { 0 };
303         int is_last;
304
305         switch (req_ctx->op) {
306         case COP_SHA1:
307         default:
308                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
309                 break;
310         case COP_HMAC_SHA1:
311                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
312                 memcpy(cpg->sram + SRAM_HMAC_IV_IN,
313                                 tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
314                 break;
315         }
316
317         op.mac_src_p =
318                 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
319                 req_ctx->
320                 count);
321
322         setup_data_in();
323
324         op.mac_digest =
325                 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
326         op.mac_iv =
327                 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
328                 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
329
330         is_last = req_ctx->last_chunk
331                 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
332                 && (req_ctx->count <= MAX_HW_HASH_SIZE);
333         if (req_ctx->first_hash) {
334                 if (is_last)
335                         op.config |= CFG_NOT_FRAG;
336                 else
337                         op.config |= CFG_FIRST_FRAG;
338
339                 req_ctx->first_hash = 0;
340         } else {
341                 if (is_last)
342                         op.config |= CFG_LAST_FRAG;
343                 else
344                         op.config |= CFG_MID_FRAG;
345         }
346
347         memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
348
349         /* GO */
350         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
351
352         /*
353         * XXX: add timer if the interrupt does not occur for some mystery
354         * reason
355         */
356 }
357
358 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
359                                           struct shash_desc *desc)
360 {
361         int i;
362         struct sha1_state shash_state;
363
364         shash_state.count = ctx->count + ctx->count_add;
365         for (i = 0; i < 5; i++)
366                 shash_state.state[i] = ctx->state[i];
367         memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
368         return crypto_shash_import(desc, &shash_state);
369 }
370
371 static int mv_hash_final_fallback(struct ahash_request *req)
372 {
373         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
374         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
375         struct {
376                 struct shash_desc shash;
377                 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
378         } desc;
379         int rc;
380
381         desc.shash.tfm = tfm_ctx->fallback;
382         desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
383         if (unlikely(req_ctx->first_hash)) {
384                 crypto_shash_init(&desc.shash);
385                 crypto_shash_update(&desc.shash, req_ctx->buffer,
386                                     req_ctx->extra_bytes);
387         } else {
388                 /* only SHA1 for now....
389                  */
390                 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
391                 if (rc)
392                         goto out;
393         }
394         rc = crypto_shash_final(&desc.shash, req->result);
395 out:
396         return rc;
397 }
398
399 static void mv_hash_algo_completion(void)
400 {
401         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
402         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
403
404         if (ctx->extra_bytes)
405                 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
406         sg_miter_stop(&cpg->p.src_sg_it);
407
408         if (likely(ctx->last_chunk)) {
409                 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
410                         memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
411                                crypto_ahash_digestsize(crypto_ahash_reqtfm
412                                                        (req)));
413                 } else
414                         mv_hash_final_fallback(req);
415         } else {
416                 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
417                 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
418                 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
419                 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
420                 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
421         }
422 }
423
424 static void dequeue_complete_req(void)
425 {
426         struct crypto_async_request *req = cpg->cur_req;
427         void *buf;
428         int ret;
429         cpg->p.hw_processed_bytes += cpg->p.crypt_len;
430         if (cpg->p.copy_back) {
431                 int need_copy_len = cpg->p.crypt_len;
432                 int sram_offset = 0;
433                 do {
434                         int dst_copy;
435
436                         if (!cpg->p.sg_dst_left) {
437                                 ret = sg_miter_next(&cpg->p.dst_sg_it);
438                                 BUG_ON(!ret);
439                                 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
440                                 cpg->p.dst_start = 0;
441                         }
442
443                         buf = cpg->p.dst_sg_it.addr;
444                         buf += cpg->p.dst_start;
445
446                         dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
447
448                         memcpy(buf,
449                                cpg->sram + SRAM_DATA_OUT_START + sram_offset,
450                                dst_copy);
451                         sram_offset += dst_copy;
452                         cpg->p.sg_dst_left -= dst_copy;
453                         need_copy_len -= dst_copy;
454                         cpg->p.dst_start += dst_copy;
455                 } while (need_copy_len > 0);
456         }
457
458         cpg->p.crypt_len = 0;
459
460         BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
461         if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
462                 /* process next scatter list entry */
463                 cpg->eng_st = ENGINE_BUSY;
464                 cpg->p.process(0);
465         } else {
466                 cpg->p.complete();
467                 cpg->eng_st = ENGINE_IDLE;
468                 local_bh_disable();
469                 req->complete(req, 0);
470                 local_bh_enable();
471         }
472 }
473
474 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
475 {
476         int i = 0;
477         size_t cur_len;
478
479         while (1) {
480                 cur_len = sl[i].length;
481                 ++i;
482                 if (total_bytes > cur_len)
483                         total_bytes -= cur_len;
484                 else
485                         break;
486         }
487
488         return i;
489 }
490
491 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
492 {
493         struct req_progress *p = &cpg->p;
494         int num_sgs;
495
496         cpg->cur_req = &req->base;
497         memset(p, 0, sizeof(struct req_progress));
498         p->hw_nbytes = req->nbytes;
499         p->complete = mv_crypto_algo_completion;
500         p->process = mv_process_current_q;
501         p->copy_back = 1;
502
503         num_sgs = count_sgs(req->src, req->nbytes);
504         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
505
506         num_sgs = count_sgs(req->dst, req->nbytes);
507         sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
508
509         mv_process_current_q(1);
510 }
511
512 static void mv_start_new_hash_req(struct ahash_request *req)
513 {
514         struct req_progress *p = &cpg->p;
515         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
516         int num_sgs, hw_bytes, old_extra_bytes, rc;
517         cpg->cur_req = &req->base;
518         memset(p, 0, sizeof(struct req_progress));
519         hw_bytes = req->nbytes + ctx->extra_bytes;
520         old_extra_bytes = ctx->extra_bytes;
521
522         if (unlikely(ctx->extra_bytes)) {
523                 memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
524                        ctx->extra_bytes);
525                 p->crypt_len = ctx->extra_bytes;
526         }
527
528         if (unlikely(!ctx->first_hash)) {
529                 writel(ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
530                 writel(ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
531                 writel(ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
532                 writel(ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
533                 writel(ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
534         }
535
536         ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
537         if (ctx->extra_bytes != 0
538             && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
539                 hw_bytes -= ctx->extra_bytes;
540         else
541                 ctx->extra_bytes = 0;
542
543         num_sgs = count_sgs(req->src, req->nbytes);
544         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
545
546         if (hw_bytes) {
547                 p->hw_nbytes = hw_bytes;
548                 p->complete = mv_hash_algo_completion;
549                 p->process = mv_process_hash_current;
550
551                 mv_process_hash_current(1);
552         } else {
553                 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
554                                 ctx->extra_bytes - old_extra_bytes);
555                 sg_miter_stop(&p->src_sg_it);
556                 if (ctx->last_chunk)
557                         rc = mv_hash_final_fallback(req);
558                 else
559                         rc = 0;
560                 cpg->eng_st = ENGINE_IDLE;
561                 local_bh_disable();
562                 req->base.complete(&req->base, rc);
563                 local_bh_enable();
564         }
565 }
566
567 static int queue_manag(void *data)
568 {
569         cpg->eng_st = ENGINE_IDLE;
570         do {
571                 struct crypto_async_request *async_req = NULL;
572                 struct crypto_async_request *backlog;
573
574                 __set_current_state(TASK_INTERRUPTIBLE);
575
576                 if (cpg->eng_st == ENGINE_W_DEQUEUE)
577                         dequeue_complete_req();
578
579                 spin_lock_irq(&cpg->lock);
580                 if (cpg->eng_st == ENGINE_IDLE) {
581                         backlog = crypto_get_backlog(&cpg->queue);
582                         async_req = crypto_dequeue_request(&cpg->queue);
583                         if (async_req) {
584                                 BUG_ON(cpg->eng_st != ENGINE_IDLE);
585                                 cpg->eng_st = ENGINE_BUSY;
586                         }
587                 }
588                 spin_unlock_irq(&cpg->lock);
589
590                 if (backlog) {
591                         backlog->complete(backlog, -EINPROGRESS);
592                         backlog = NULL;
593                 }
594
595                 if (async_req) {
596                         if (async_req->tfm->__crt_alg->cra_type !=
597                             &crypto_ahash_type) {
598                                 struct ablkcipher_request *req =
599                                     ablkcipher_request_cast(async_req);
600                                 mv_start_new_crypt_req(req);
601                         } else {
602                                 struct ahash_request *req =
603                                     ahash_request_cast(async_req);
604                                 mv_start_new_hash_req(req);
605                         }
606                         async_req = NULL;
607                 }
608
609                 schedule();
610
611         } while (!kthread_should_stop());
612         return 0;
613 }
614
615 static int mv_handle_req(struct crypto_async_request *req)
616 {
617         unsigned long flags;
618         int ret;
619
620         spin_lock_irqsave(&cpg->lock, flags);
621         ret = crypto_enqueue_request(&cpg->queue, req);
622         spin_unlock_irqrestore(&cpg->lock, flags);
623         wake_up_process(cpg->queue_th);
624         return ret;
625 }
626
627 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
628 {
629         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
630
631         req_ctx->op = COP_AES_ECB;
632         req_ctx->decrypt = 0;
633
634         return mv_handle_req(&req->base);
635 }
636
637 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
638 {
639         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
640         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
641
642         req_ctx->op = COP_AES_ECB;
643         req_ctx->decrypt = 1;
644
645         compute_aes_dec_key(ctx);
646         return mv_handle_req(&req->base);
647 }
648
649 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
650 {
651         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
652
653         req_ctx->op = COP_AES_CBC;
654         req_ctx->decrypt = 0;
655
656         return mv_handle_req(&req->base);
657 }
658
659 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
660 {
661         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
662         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
663
664         req_ctx->op = COP_AES_CBC;
665         req_ctx->decrypt = 1;
666
667         compute_aes_dec_key(ctx);
668         return mv_handle_req(&req->base);
669 }
670
671 static int mv_cra_init(struct crypto_tfm *tfm)
672 {
673         tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
674         return 0;
675 }
676
677 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
678                                  int is_last, unsigned int req_len,
679                                  int count_add)
680 {
681         memset(ctx, 0, sizeof(*ctx));
682         ctx->op = op;
683         ctx->count = req_len;
684         ctx->first_hash = 1;
685         ctx->last_chunk = is_last;
686         ctx->count_add = count_add;
687 }
688
689 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
690                                    unsigned req_len)
691 {
692         ctx->last_chunk = is_last;
693         ctx->count += req_len;
694 }
695
696 static int mv_hash_init(struct ahash_request *req)
697 {
698         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
699         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
700                              tfm_ctx->count_add);
701         return 0;
702 }
703
704 static int mv_hash_update(struct ahash_request *req)
705 {
706         if (!req->nbytes)
707                 return 0;
708
709         mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
710         return mv_handle_req(&req->base);
711 }
712
713 static int mv_hash_final(struct ahash_request *req)
714 {
715         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
716         /* dummy buffer of 4 bytes */
717         sg_init_one(&ctx->dummysg, ctx->buffer, 4);
718         /* I think I'm allowed to do that... */
719         ahash_request_set_crypt(req, &ctx->dummysg, req->result, 0);
720         mv_update_hash_req_ctx(ctx, 1, 0);
721         return mv_handle_req(&req->base);
722 }
723
724 static int mv_hash_finup(struct ahash_request *req)
725 {
726         mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
727         return mv_handle_req(&req->base);
728 }
729
730 static int mv_hash_digest(struct ahash_request *req)
731 {
732         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
733         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
734                              req->nbytes, tfm_ctx->count_add);
735         return mv_handle_req(&req->base);
736 }
737
738 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
739                              const void *ostate)
740 {
741         const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
742         int i;
743         for (i = 0; i < 5; i++) {
744                 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
745                 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
746         }
747 }
748
749 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
750                           unsigned int keylen)
751 {
752         int rc;
753         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
754         int bs, ds, ss;
755
756         if (!ctx->base_hash)
757                 return 0;
758
759         rc = crypto_shash_setkey(ctx->fallback, key, keylen);
760         if (rc)
761                 return rc;
762
763         /* Can't see a way to extract the ipad/opad from the fallback tfm
764            so I'm basically copying code from the hmac module */
765         bs = crypto_shash_blocksize(ctx->base_hash);
766         ds = crypto_shash_digestsize(ctx->base_hash);
767         ss = crypto_shash_statesize(ctx->base_hash);
768
769         {
770                 struct {
771                         struct shash_desc shash;
772                         char ctx[crypto_shash_descsize(ctx->base_hash)];
773                 } desc;
774                 unsigned int i;
775                 char ipad[ss];
776                 char opad[ss];
777
778                 desc.shash.tfm = ctx->base_hash;
779                 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
780                     CRYPTO_TFM_REQ_MAY_SLEEP;
781
782                 if (keylen > bs) {
783                         int err;
784
785                         err =
786                             crypto_shash_digest(&desc.shash, key, keylen, ipad);
787                         if (err)
788                                 return err;
789
790                         keylen = ds;
791                 } else
792                         memcpy(ipad, key, keylen);
793
794                 memset(ipad + keylen, 0, bs - keylen);
795                 memcpy(opad, ipad, bs);
796
797                 for (i = 0; i < bs; i++) {
798                         ipad[i] ^= 0x36;
799                         opad[i] ^= 0x5c;
800                 }
801
802                 rc = crypto_shash_init(&desc.shash) ? :
803                     crypto_shash_update(&desc.shash, ipad, bs) ? :
804                     crypto_shash_export(&desc.shash, ipad) ? :
805                     crypto_shash_init(&desc.shash) ? :
806                     crypto_shash_update(&desc.shash, opad, bs) ? :
807                     crypto_shash_export(&desc.shash, opad);
808
809                 if (rc == 0)
810                         mv_hash_init_ivs(ctx, ipad, opad);
811
812                 return rc;
813         }
814 }
815
816 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
817                             enum hash_op op, int count_add)
818 {
819         const char *fallback_driver_name = tfm->__crt_alg->cra_name;
820         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
821         struct crypto_shash *fallback_tfm = NULL;
822         struct crypto_shash *base_hash = NULL;
823         int err = -ENOMEM;
824
825         ctx->op = op;
826         ctx->count_add = count_add;
827
828         /* Allocate a fallback and abort if it failed. */
829         fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
830                                           CRYPTO_ALG_NEED_FALLBACK);
831         if (IS_ERR(fallback_tfm)) {
832                 printk(KERN_WARNING MV_CESA
833                        "Fallback driver '%s' could not be loaded!\n",
834                        fallback_driver_name);
835                 err = PTR_ERR(fallback_tfm);
836                 goto out;
837         }
838         ctx->fallback = fallback_tfm;
839
840         if (base_hash_name) {
841                 /* Allocate a hash to compute the ipad/opad of hmac. */
842                 base_hash = crypto_alloc_shash(base_hash_name, 0,
843                                                CRYPTO_ALG_NEED_FALLBACK);
844                 if (IS_ERR(base_hash)) {
845                         printk(KERN_WARNING MV_CESA
846                                "Base driver '%s' could not be loaded!\n",
847                                base_hash_name);
848                         err = PTR_ERR(base_hash);
849                         goto err_bad_base;
850                 }
851         }
852         ctx->base_hash = base_hash;
853
854         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
855                                  sizeof(struct mv_req_hash_ctx) +
856                                  crypto_shash_descsize(ctx->fallback));
857         return 0;
858 err_bad_base:
859         crypto_free_shash(fallback_tfm);
860 out:
861         return err;
862 }
863
864 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
865 {
866         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
867
868         crypto_free_shash(ctx->fallback);
869         if (ctx->base_hash)
870                 crypto_free_shash(ctx->base_hash);
871 }
872
873 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
874 {
875         return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
876 }
877
878 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
879 {
880         return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
881 }
882
883 irqreturn_t crypto_int(int irq, void *priv)
884 {
885         u32 val;
886
887         val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
888         if (!(val & SEC_INT_ACCEL0_DONE))
889                 return IRQ_NONE;
890
891         val &= ~SEC_INT_ACCEL0_DONE;
892         writel(val, cpg->reg + FPGA_INT_STATUS);
893         writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
894         BUG_ON(cpg->eng_st != ENGINE_BUSY);
895         cpg->eng_st = ENGINE_W_DEQUEUE;
896         wake_up_process(cpg->queue_th);
897         return IRQ_HANDLED;
898 }
899
900 struct crypto_alg mv_aes_alg_ecb = {
901         .cra_name               = "ecb(aes)",
902         .cra_driver_name        = "mv-ecb-aes",
903         .cra_priority   = 300,
904         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
905         .cra_blocksize  = 16,
906         .cra_ctxsize    = sizeof(struct mv_ctx),
907         .cra_alignmask  = 0,
908         .cra_type       = &crypto_ablkcipher_type,
909         .cra_module     = THIS_MODULE,
910         .cra_init       = mv_cra_init,
911         .cra_u          = {
912                 .ablkcipher = {
913                         .min_keysize    =       AES_MIN_KEY_SIZE,
914                         .max_keysize    =       AES_MAX_KEY_SIZE,
915                         .setkey         =       mv_setkey_aes,
916                         .encrypt        =       mv_enc_aes_ecb,
917                         .decrypt        =       mv_dec_aes_ecb,
918                 },
919         },
920 };
921
922 struct crypto_alg mv_aes_alg_cbc = {
923         .cra_name               = "cbc(aes)",
924         .cra_driver_name        = "mv-cbc-aes",
925         .cra_priority   = 300,
926         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
927         .cra_blocksize  = AES_BLOCK_SIZE,
928         .cra_ctxsize    = sizeof(struct mv_ctx),
929         .cra_alignmask  = 0,
930         .cra_type       = &crypto_ablkcipher_type,
931         .cra_module     = THIS_MODULE,
932         .cra_init       = mv_cra_init,
933         .cra_u          = {
934                 .ablkcipher = {
935                         .ivsize         =       AES_BLOCK_SIZE,
936                         .min_keysize    =       AES_MIN_KEY_SIZE,
937                         .max_keysize    =       AES_MAX_KEY_SIZE,
938                         .setkey         =       mv_setkey_aes,
939                         .encrypt        =       mv_enc_aes_cbc,
940                         .decrypt        =       mv_dec_aes_cbc,
941                 },
942         },
943 };
944
945 struct ahash_alg mv_sha1_alg = {
946         .init = mv_hash_init,
947         .update = mv_hash_update,
948         .final = mv_hash_final,
949         .finup = mv_hash_finup,
950         .digest = mv_hash_digest,
951         .halg = {
952                  .digestsize = SHA1_DIGEST_SIZE,
953                  .base = {
954                           .cra_name = "sha1",
955                           .cra_driver_name = "mv-sha1",
956                           .cra_priority = 300,
957                           .cra_flags =
958                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
959                           .cra_blocksize = SHA1_BLOCK_SIZE,
960                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
961                           .cra_init = mv_cra_hash_sha1_init,
962                           .cra_exit = mv_cra_hash_exit,
963                           .cra_module = THIS_MODULE,
964                           }
965                  }
966 };
967
968 struct ahash_alg mv_hmac_sha1_alg = {
969         .init = mv_hash_init,
970         .update = mv_hash_update,
971         .final = mv_hash_final,
972         .finup = mv_hash_finup,
973         .digest = mv_hash_digest,
974         .setkey = mv_hash_setkey,
975         .halg = {
976                  .digestsize = SHA1_DIGEST_SIZE,
977                  .base = {
978                           .cra_name = "hmac(sha1)",
979                           .cra_driver_name = "mv-hmac-sha1",
980                           .cra_priority = 300,
981                           .cra_flags =
982                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
983                           .cra_blocksize = SHA1_BLOCK_SIZE,
984                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
985                           .cra_init = mv_cra_hash_hmac_sha1_init,
986                           .cra_exit = mv_cra_hash_exit,
987                           .cra_module = THIS_MODULE,
988                           }
989                  }
990 };
991
992 static int mv_probe(struct platform_device *pdev)
993 {
994         struct crypto_priv *cp;
995         struct resource *res;
996         int irq;
997         int ret;
998
999         if (cpg) {
1000                 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1001                 return -EEXIST;
1002         }
1003
1004         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1005         if (!res)
1006                 return -ENXIO;
1007
1008         cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1009         if (!cp)
1010                 return -ENOMEM;
1011
1012         spin_lock_init(&cp->lock);
1013         crypto_init_queue(&cp->queue, 50);
1014         cp->reg = ioremap(res->start, resource_size(res));
1015         if (!cp->reg) {
1016                 ret = -ENOMEM;
1017                 goto err;
1018         }
1019
1020         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1021         if (!res) {
1022                 ret = -ENXIO;
1023                 goto err_unmap_reg;
1024         }
1025         cp->sram_size = resource_size(res);
1026         cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1027         cp->sram = ioremap(res->start, cp->sram_size);
1028         if (!cp->sram) {
1029                 ret = -ENOMEM;
1030                 goto err_unmap_reg;
1031         }
1032
1033         irq = platform_get_irq(pdev, 0);
1034         if (irq < 0 || irq == NO_IRQ) {
1035                 ret = irq;
1036                 goto err_unmap_sram;
1037         }
1038         cp->irq = irq;
1039
1040         platform_set_drvdata(pdev, cp);
1041         cpg = cp;
1042
1043         cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1044         if (IS_ERR(cp->queue_th)) {
1045                 ret = PTR_ERR(cp->queue_th);
1046                 goto err_unmap_sram;
1047         }
1048
1049         ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1050                         cp);
1051         if (ret)
1052                 goto err_thread;
1053
1054         writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1055         writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1056         writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1057
1058         ret = crypto_register_alg(&mv_aes_alg_ecb);
1059         if (ret) {
1060                 printk(KERN_WARNING MV_CESA
1061                        "Could not register aes-ecb driver\n");
1062                 goto err_irq;
1063         }
1064
1065         ret = crypto_register_alg(&mv_aes_alg_cbc);
1066         if (ret) {
1067                 printk(KERN_WARNING MV_CESA
1068                        "Could not register aes-cbc driver\n");
1069                 goto err_unreg_ecb;
1070         }
1071
1072         ret = crypto_register_ahash(&mv_sha1_alg);
1073         if (ret == 0)
1074                 cpg->has_sha1 = 1;
1075         else
1076                 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1077
1078         ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1079         if (ret == 0) {
1080                 cpg->has_hmac_sha1 = 1;
1081         } else {
1082                 printk(KERN_WARNING MV_CESA
1083                        "Could not register hmac-sha1 driver\n");
1084         }
1085
1086         return 0;
1087 err_unreg_ecb:
1088         crypto_unregister_alg(&mv_aes_alg_ecb);
1089 err_irq:
1090         free_irq(irq, cp);
1091 err_thread:
1092         kthread_stop(cp->queue_th);
1093 err_unmap_sram:
1094         iounmap(cp->sram);
1095 err_unmap_reg:
1096         iounmap(cp->reg);
1097 err:
1098         kfree(cp);
1099         cpg = NULL;
1100         platform_set_drvdata(pdev, NULL);
1101         return ret;
1102 }
1103
1104 static int mv_remove(struct platform_device *pdev)
1105 {
1106         struct crypto_priv *cp = platform_get_drvdata(pdev);
1107
1108         crypto_unregister_alg(&mv_aes_alg_ecb);
1109         crypto_unregister_alg(&mv_aes_alg_cbc);
1110         if (cp->has_sha1)
1111                 crypto_unregister_ahash(&mv_sha1_alg);
1112         if (cp->has_hmac_sha1)
1113                 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1114         kthread_stop(cp->queue_th);
1115         free_irq(cp->irq, cp);
1116         memset(cp->sram, 0, cp->sram_size);
1117         iounmap(cp->sram);
1118         iounmap(cp->reg);
1119         kfree(cp);
1120         cpg = NULL;
1121         return 0;
1122 }
1123
1124 static struct platform_driver marvell_crypto = {
1125         .probe          = mv_probe,
1126         .remove         = mv_remove,
1127         .driver         = {
1128                 .owner  = THIS_MODULE,
1129                 .name   = "mv_crypto",
1130         },
1131 };
1132 MODULE_ALIAS("platform:mv_crypto");
1133
1134 static int __init mv_crypto_init(void)
1135 {
1136         return platform_driver_register(&marvell_crypto);
1137 }
1138 module_init(mv_crypto_init);
1139
1140 static void __exit mv_crypto_exit(void)
1141 {
1142         platform_driver_unregister(&marvell_crypto);
1143 }
1144 module_exit(mv_crypto_exit);
1145
1146 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1147 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1148 MODULE_LICENSE("GPL");