powernow-k8: Fix indexing issue
[pandora-kernel.git] / drivers / cpufreq / powernow-k8.c
1 /*
2  *   (c) 2003-2010 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Support : mark.langsdorf@amd.com
8  *
9  *  Based on the powernow-k7.c module written by Dave Jones.
10  *  (C) 2003 Dave Jones on behalf of SuSE Labs
11  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
12  *  (C) 2004 Pavel Machek <pavel@ucw.cz>
13  *  Licensed under the terms of the GNU GPL License version 2.
14  *  Based upon datasheets & sample CPUs kindly provided by AMD.
15  *
16  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
17  *  Dominik Brodowski, Jacob Shin, and others.
18  *  Originally developed by Paul Devriendt.
19  *  Processor information obtained from Chapter 9 (Power and Thermal Management)
20  *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21  *  Opteron Processors" available for download from www.amd.com
22  *
23  *  Tables for specific CPUs can be inferred from
24  *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h>        /* for current / set_cpus_allowed() */
36 #include <linux/io.h>
37 #include <linux/delay.h>
38
39 #include <asm/msr.h>
40
41 #include <linux/acpi.h>
42 #include <linux/mutex.h>
43 #include <acpi/processor.h>
44
45 #define PFX "powernow-k8: "
46 #define VERSION "version 2.20.00"
47 #include "powernow-k8.h"
48 #include "mperf.h"
49
50 /* serialize freq changes  */
51 static DEFINE_MUTEX(fidvid_mutex);
52
53 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
54
55 static int cpu_family = CPU_OPTERON;
56
57 /* array to map SW pstate number to acpi state */
58 static u32 ps_to_as[8];
59
60 /* core performance boost */
61 static bool cpb_capable, cpb_enabled;
62 static struct msr __percpu *msrs;
63
64 static struct cpufreq_driver cpufreq_amd64_driver;
65
66 #ifndef CONFIG_SMP
67 static inline const struct cpumask *cpu_core_mask(int cpu)
68 {
69         return cpumask_of(0);
70 }
71 #endif
72
73 /* Return a frequency in MHz, given an input fid */
74 static u32 find_freq_from_fid(u32 fid)
75 {
76         return 800 + (fid * 100);
77 }
78
79 /* Return a frequency in KHz, given an input fid */
80 static u32 find_khz_freq_from_fid(u32 fid)
81 {
82         return 1000 * find_freq_from_fid(fid);
83 }
84
85 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
86                                      u32 pstate)
87 {
88         return data[ps_to_as[pstate]].frequency;
89 }
90
91 /* Return the vco fid for an input fid
92  *
93  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
94  * only from corresponding high fids. This returns "high" fid corresponding to
95  * "low" one.
96  */
97 static u32 convert_fid_to_vco_fid(u32 fid)
98 {
99         if (fid < HI_FID_TABLE_BOTTOM)
100                 return 8 + (2 * fid);
101         else
102                 return fid;
103 }
104
105 /*
106  * Return 1 if the pending bit is set. Unless we just instructed the processor
107  * to transition to a new state, seeing this bit set is really bad news.
108  */
109 static int pending_bit_stuck(void)
110 {
111         u32 lo, hi;
112
113         if (cpu_family == CPU_HW_PSTATE)
114                 return 0;
115
116         rdmsr(MSR_FIDVID_STATUS, lo, hi);
117         return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
118 }
119
120 /*
121  * Update the global current fid / vid values from the status msr.
122  * Returns 1 on error.
123  */
124 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
125 {
126         u32 lo, hi;
127         u32 i = 0;
128
129         if (cpu_family == CPU_HW_PSTATE) {
130                 rdmsr(MSR_PSTATE_STATUS, lo, hi);
131                 i = lo & HW_PSTATE_MASK;
132                 data->currpstate = i;
133
134                 /*
135                  * a workaround for family 11h erratum 311 might cause
136                  * an "out-of-range Pstate if the core is in Pstate-0
137                  */
138                 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
139                         data->currpstate = HW_PSTATE_0;
140
141                 return 0;
142         }
143         do {
144                 if (i++ > 10000) {
145                         pr_debug("detected change pending stuck\n");
146                         return 1;
147                 }
148                 rdmsr(MSR_FIDVID_STATUS, lo, hi);
149         } while (lo & MSR_S_LO_CHANGE_PENDING);
150
151         data->currvid = hi & MSR_S_HI_CURRENT_VID;
152         data->currfid = lo & MSR_S_LO_CURRENT_FID;
153
154         return 0;
155 }
156
157 /* the isochronous relief time */
158 static void count_off_irt(struct powernow_k8_data *data)
159 {
160         udelay((1 << data->irt) * 10);
161         return;
162 }
163
164 /* the voltage stabilization time */
165 static void count_off_vst(struct powernow_k8_data *data)
166 {
167         udelay(data->vstable * VST_UNITS_20US);
168         return;
169 }
170
171 /* need to init the control msr to a safe value (for each cpu) */
172 static void fidvid_msr_init(void)
173 {
174         u32 lo, hi;
175         u8 fid, vid;
176
177         rdmsr(MSR_FIDVID_STATUS, lo, hi);
178         vid = hi & MSR_S_HI_CURRENT_VID;
179         fid = lo & MSR_S_LO_CURRENT_FID;
180         lo = fid | (vid << MSR_C_LO_VID_SHIFT);
181         hi = MSR_C_HI_STP_GNT_BENIGN;
182         pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
183         wrmsr(MSR_FIDVID_CTL, lo, hi);
184 }
185
186 /* write the new fid value along with the other control fields to the msr */
187 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
188 {
189         u32 lo;
190         u32 savevid = data->currvid;
191         u32 i = 0;
192
193         if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
194                 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
195                 return 1;
196         }
197
198         lo = fid;
199         lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
200         lo |= MSR_C_LO_INIT_FID_VID;
201
202         pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
203                 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
204
205         do {
206                 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
207                 if (i++ > 100) {
208                         printk(KERN_ERR PFX
209                                 "Hardware error - pending bit very stuck - "
210                                 "no further pstate changes possible\n");
211                         return 1;
212                 }
213         } while (query_current_values_with_pending_wait(data));
214
215         count_off_irt(data);
216
217         if (savevid != data->currvid) {
218                 printk(KERN_ERR PFX
219                         "vid change on fid trans, old 0x%x, new 0x%x\n",
220                         savevid, data->currvid);
221                 return 1;
222         }
223
224         if (fid != data->currfid) {
225                 printk(KERN_ERR PFX
226                         "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
227                         data->currfid);
228                 return 1;
229         }
230
231         return 0;
232 }
233
234 /* Write a new vid to the hardware */
235 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
236 {
237         u32 lo;
238         u32 savefid = data->currfid;
239         int i = 0;
240
241         if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
242                 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
243                 return 1;
244         }
245
246         lo = data->currfid;
247         lo |= (vid << MSR_C_LO_VID_SHIFT);
248         lo |= MSR_C_LO_INIT_FID_VID;
249
250         pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
251                 vid, lo, STOP_GRANT_5NS);
252
253         do {
254                 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
255                 if (i++ > 100) {
256                         printk(KERN_ERR PFX "internal error - pending bit "
257                                         "very stuck - no further pstate "
258                                         "changes possible\n");
259                         return 1;
260                 }
261         } while (query_current_values_with_pending_wait(data));
262
263         if (savefid != data->currfid) {
264                 printk(KERN_ERR PFX "fid changed on vid trans, old "
265                         "0x%x new 0x%x\n",
266                        savefid, data->currfid);
267                 return 1;
268         }
269
270         if (vid != data->currvid) {
271                 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
272                                 "curr 0x%x\n",
273                                 vid, data->currvid);
274                 return 1;
275         }
276
277         return 0;
278 }
279
280 /*
281  * Reduce the vid by the max of step or reqvid.
282  * Decreasing vid codes represent increasing voltages:
283  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
284  */
285 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
286                 u32 reqvid, u32 step)
287 {
288         if ((data->currvid - reqvid) > step)
289                 reqvid = data->currvid - step;
290
291         if (write_new_vid(data, reqvid))
292                 return 1;
293
294         count_off_vst(data);
295
296         return 0;
297 }
298
299 /* Change hardware pstate by single MSR write */
300 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
301 {
302         wrmsr(MSR_PSTATE_CTRL, pstate, 0);
303         data->currpstate = pstate;
304         return 0;
305 }
306
307 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
308 static int transition_fid_vid(struct powernow_k8_data *data,
309                 u32 reqfid, u32 reqvid)
310 {
311         if (core_voltage_pre_transition(data, reqvid, reqfid))
312                 return 1;
313
314         if (core_frequency_transition(data, reqfid))
315                 return 1;
316
317         if (core_voltage_post_transition(data, reqvid))
318                 return 1;
319
320         if (query_current_values_with_pending_wait(data))
321                 return 1;
322
323         if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
324                 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
325                                 "curr 0x%x 0x%x\n",
326                                 smp_processor_id(),
327                                 reqfid, reqvid, data->currfid, data->currvid);
328                 return 1;
329         }
330
331         pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
332                 smp_processor_id(), data->currfid, data->currvid);
333
334         return 0;
335 }
336
337 /* Phase 1 - core voltage transition ... setup voltage */
338 static int core_voltage_pre_transition(struct powernow_k8_data *data,
339                 u32 reqvid, u32 reqfid)
340 {
341         u32 rvosteps = data->rvo;
342         u32 savefid = data->currfid;
343         u32 maxvid, lo, rvomult = 1;
344
345         pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
346                 "reqvid 0x%x, rvo 0x%x\n",
347                 smp_processor_id(),
348                 data->currfid, data->currvid, reqvid, data->rvo);
349
350         if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
351                 rvomult = 2;
352         rvosteps *= rvomult;
353         rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
354         maxvid = 0x1f & (maxvid >> 16);
355         pr_debug("ph1 maxvid=0x%x\n", maxvid);
356         if (reqvid < maxvid) /* lower numbers are higher voltages */
357                 reqvid = maxvid;
358
359         while (data->currvid > reqvid) {
360                 pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
361                         data->currvid, reqvid);
362                 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
363                         return 1;
364         }
365
366         while ((rvosteps > 0) &&
367                         ((rvomult * data->rvo + data->currvid) > reqvid)) {
368                 if (data->currvid == maxvid) {
369                         rvosteps = 0;
370                 } else {
371                         pr_debug("ph1: changing vid for rvo, req 0x%x\n",
372                                 data->currvid - 1);
373                         if (decrease_vid_code_by_step(data, data->currvid-1, 1))
374                                 return 1;
375                         rvosteps--;
376                 }
377         }
378
379         if (query_current_values_with_pending_wait(data))
380                 return 1;
381
382         if (savefid != data->currfid) {
383                 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
384                                 data->currfid);
385                 return 1;
386         }
387
388         pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
389                 data->currfid, data->currvid);
390
391         return 0;
392 }
393
394 /* Phase 2 - core frequency transition */
395 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
396 {
397         u32 vcoreqfid, vcocurrfid, vcofiddiff;
398         u32 fid_interval, savevid = data->currvid;
399
400         if (data->currfid == reqfid) {
401                 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
402                                 data->currfid);
403                 return 0;
404         }
405
406         pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
407                 "reqfid 0x%x\n",
408                 smp_processor_id(),
409                 data->currfid, data->currvid, reqfid);
410
411         vcoreqfid = convert_fid_to_vco_fid(reqfid);
412         vcocurrfid = convert_fid_to_vco_fid(data->currfid);
413         vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
414             : vcoreqfid - vcocurrfid;
415
416         if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
417                 vcofiddiff = 0;
418
419         while (vcofiddiff > 2) {
420                 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
421
422                 if (reqfid > data->currfid) {
423                         if (data->currfid > LO_FID_TABLE_TOP) {
424                                 if (write_new_fid(data,
425                                                 data->currfid + fid_interval))
426                                         return 1;
427                         } else {
428                                 if (write_new_fid
429                                     (data,
430                                      2 + convert_fid_to_vco_fid(data->currfid)))
431                                         return 1;
432                         }
433                 } else {
434                         if (write_new_fid(data, data->currfid - fid_interval))
435                                 return 1;
436                 }
437
438                 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
439                 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
440                     : vcoreqfid - vcocurrfid;
441         }
442
443         if (write_new_fid(data, reqfid))
444                 return 1;
445
446         if (query_current_values_with_pending_wait(data))
447                 return 1;
448
449         if (data->currfid != reqfid) {
450                 printk(KERN_ERR PFX
451                         "ph2: mismatch, failed fid transition, "
452                         "curr 0x%x, req 0x%x\n",
453                         data->currfid, reqfid);
454                 return 1;
455         }
456
457         if (savevid != data->currvid) {
458                 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
459                         savevid, data->currvid);
460                 return 1;
461         }
462
463         pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
464                 data->currfid, data->currvid);
465
466         return 0;
467 }
468
469 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
470 static int core_voltage_post_transition(struct powernow_k8_data *data,
471                 u32 reqvid)
472 {
473         u32 savefid = data->currfid;
474         u32 savereqvid = reqvid;
475
476         pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
477                 smp_processor_id(),
478                 data->currfid, data->currvid);
479
480         if (reqvid != data->currvid) {
481                 if (write_new_vid(data, reqvid))
482                         return 1;
483
484                 if (savefid != data->currfid) {
485                         printk(KERN_ERR PFX
486                                "ph3: bad fid change, save 0x%x, curr 0x%x\n",
487                                savefid, data->currfid);
488                         return 1;
489                 }
490
491                 if (data->currvid != reqvid) {
492                         printk(KERN_ERR PFX
493                                "ph3: failed vid transition\n, "
494                                "req 0x%x, curr 0x%x",
495                                reqvid, data->currvid);
496                         return 1;
497                 }
498         }
499
500         if (query_current_values_with_pending_wait(data))
501                 return 1;
502
503         if (savereqvid != data->currvid) {
504                 pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
505                 return 1;
506         }
507
508         if (savefid != data->currfid) {
509                 pr_debug("ph3 failed, currfid changed 0x%x\n",
510                         data->currfid);
511                 return 1;
512         }
513
514         pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
515                 data->currfid, data->currvid);
516
517         return 0;
518 }
519
520 static void check_supported_cpu(void *_rc)
521 {
522         u32 eax, ebx, ecx, edx;
523         int *rc = _rc;
524
525         *rc = -ENODEV;
526
527         if (__this_cpu_read(cpu_info.x86_vendor) != X86_VENDOR_AMD)
528                 return;
529
530         eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
531         if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
532             ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
533                 return;
534
535         if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
536                 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
537                     ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
538                         printk(KERN_INFO PFX
539                                 "Processor cpuid %x not supported\n", eax);
540                         return;
541                 }
542
543                 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
544                 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
545                         printk(KERN_INFO PFX
546                                "No frequency change capabilities detected\n");
547                         return;
548                 }
549
550                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
551                 if ((edx & P_STATE_TRANSITION_CAPABLE)
552                         != P_STATE_TRANSITION_CAPABLE) {
553                         printk(KERN_INFO PFX
554                                 "Power state transitions not supported\n");
555                         return;
556                 }
557         } else { /* must be a HW Pstate capable processor */
558                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
559                 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
560                         cpu_family = CPU_HW_PSTATE;
561                 else
562                         return;
563         }
564
565         *rc = 0;
566 }
567
568 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
569                 u8 maxvid)
570 {
571         unsigned int j;
572         u8 lastfid = 0xff;
573
574         for (j = 0; j < data->numps; j++) {
575                 if (pst[j].vid > LEAST_VID) {
576                         printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
577                                j, pst[j].vid);
578                         return -EINVAL;
579                 }
580                 if (pst[j].vid < data->rvo) {
581                         /* vid + rvo >= 0 */
582                         printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
583                                " %d\n", j);
584                         return -ENODEV;
585                 }
586                 if (pst[j].vid < maxvid + data->rvo) {
587                         /* vid + rvo >= maxvid */
588                         printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
589                                " %d\n", j);
590                         return -ENODEV;
591                 }
592                 if (pst[j].fid > MAX_FID) {
593                         printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
594                                " %d\n", j);
595                         return -ENODEV;
596                 }
597                 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
598                         /* Only first fid is allowed to be in "low" range */
599                         printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
600                                "0x%x\n", j, pst[j].fid);
601                         return -EINVAL;
602                 }
603                 if (pst[j].fid < lastfid)
604                         lastfid = pst[j].fid;
605         }
606         if (lastfid & 1) {
607                 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
608                 return -EINVAL;
609         }
610         if (lastfid > LO_FID_TABLE_TOP)
611                 printk(KERN_INFO FW_BUG PFX
612                         "first fid not from lo freq table\n");
613
614         return 0;
615 }
616
617 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
618                 unsigned int entry)
619 {
620         powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
621 }
622
623 static void print_basics(struct powernow_k8_data *data)
624 {
625         int j;
626         for (j = 0; j < data->numps; j++) {
627                 if (data->powernow_table[j].frequency !=
628                                 CPUFREQ_ENTRY_INVALID) {
629                         if (cpu_family == CPU_HW_PSTATE) {
630                                 printk(KERN_INFO PFX
631                                         "   %d : pstate %d (%d MHz)\n", j,
632                                         data->powernow_table[j].index,
633                                         data->powernow_table[j].frequency/1000);
634                         } else {
635                                 printk(KERN_INFO PFX
636                                         "fid 0x%x (%d MHz), vid 0x%x\n",
637                                         data->powernow_table[j].index & 0xff,
638                                         data->powernow_table[j].frequency/1000,
639                                         data->powernow_table[j].index >> 8);
640                         }
641                 }
642         }
643         if (data->batps)
644                 printk(KERN_INFO PFX "Only %d pstates on battery\n",
645                                 data->batps);
646 }
647
648 static u32 freq_from_fid_did(u32 fid, u32 did)
649 {
650         u32 mhz = 0;
651
652         if (boot_cpu_data.x86 == 0x10)
653                 mhz = (100 * (fid + 0x10)) >> did;
654         else if (boot_cpu_data.x86 == 0x11)
655                 mhz = (100 * (fid + 8)) >> did;
656         else
657                 BUG();
658
659         return mhz * 1000;
660 }
661
662 static int fill_powernow_table(struct powernow_k8_data *data,
663                 struct pst_s *pst, u8 maxvid)
664 {
665         struct cpufreq_frequency_table *powernow_table;
666         unsigned int j;
667
668         if (data->batps) {
669                 /* use ACPI support to get full speed on mains power */
670                 printk(KERN_WARNING PFX
671                         "Only %d pstates usable (use ACPI driver for full "
672                         "range\n", data->batps);
673                 data->numps = data->batps;
674         }
675
676         for (j = 1; j < data->numps; j++) {
677                 if (pst[j-1].fid >= pst[j].fid) {
678                         printk(KERN_ERR PFX "PST out of sequence\n");
679                         return -EINVAL;
680                 }
681         }
682
683         if (data->numps < 2) {
684                 printk(KERN_ERR PFX "no p states to transition\n");
685                 return -ENODEV;
686         }
687
688         if (check_pst_table(data, pst, maxvid))
689                 return -EINVAL;
690
691         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
692                 * (data->numps + 1)), GFP_KERNEL);
693         if (!powernow_table) {
694                 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
695                 return -ENOMEM;
696         }
697
698         for (j = 0; j < data->numps; j++) {
699                 int freq;
700                 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
701                 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
702                 freq = find_khz_freq_from_fid(pst[j].fid);
703                 powernow_table[j].frequency = freq;
704         }
705         powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
706         powernow_table[data->numps].index = 0;
707
708         if (query_current_values_with_pending_wait(data)) {
709                 kfree(powernow_table);
710                 return -EIO;
711         }
712
713         pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
714         data->powernow_table = powernow_table;
715         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
716                 print_basics(data);
717
718         for (j = 0; j < data->numps; j++)
719                 if ((pst[j].fid == data->currfid) &&
720                     (pst[j].vid == data->currvid))
721                         return 0;
722
723         pr_debug("currfid/vid do not match PST, ignoring\n");
724         return 0;
725 }
726
727 /* Find and validate the PSB/PST table in BIOS. */
728 static int find_psb_table(struct powernow_k8_data *data)
729 {
730         struct psb_s *psb;
731         unsigned int i;
732         u32 mvs;
733         u8 maxvid;
734         u32 cpst = 0;
735         u32 thiscpuid;
736
737         for (i = 0xc0000; i < 0xffff0; i += 0x10) {
738                 /* Scan BIOS looking for the signature. */
739                 /* It can not be at ffff0 - it is too big. */
740
741                 psb = phys_to_virt(i);
742                 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
743                         continue;
744
745                 pr_debug("found PSB header at 0x%p\n", psb);
746
747                 pr_debug("table vers: 0x%x\n", psb->tableversion);
748                 if (psb->tableversion != PSB_VERSION_1_4) {
749                         printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
750                         return -ENODEV;
751                 }
752
753                 pr_debug("flags: 0x%x\n", psb->flags1);
754                 if (psb->flags1) {
755                         printk(KERN_ERR FW_BUG PFX "unknown flags\n");
756                         return -ENODEV;
757                 }
758
759                 data->vstable = psb->vstable;
760                 pr_debug("voltage stabilization time: %d(*20us)\n",
761                                 data->vstable);
762
763                 pr_debug("flags2: 0x%x\n", psb->flags2);
764                 data->rvo = psb->flags2 & 3;
765                 data->irt = ((psb->flags2) >> 2) & 3;
766                 mvs = ((psb->flags2) >> 4) & 3;
767                 data->vidmvs = 1 << mvs;
768                 data->batps = ((psb->flags2) >> 6) & 3;
769
770                 pr_debug("ramp voltage offset: %d\n", data->rvo);
771                 pr_debug("isochronous relief time: %d\n", data->irt);
772                 pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
773
774                 pr_debug("numpst: 0x%x\n", psb->num_tables);
775                 cpst = psb->num_tables;
776                 if ((psb->cpuid == 0x00000fc0) ||
777                     (psb->cpuid == 0x00000fe0)) {
778                         thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
779                         if ((thiscpuid == 0x00000fc0) ||
780                             (thiscpuid == 0x00000fe0))
781                                 cpst = 1;
782                 }
783                 if (cpst != 1) {
784                         printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
785                         return -ENODEV;
786                 }
787
788                 data->plllock = psb->plllocktime;
789                 pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
790                 pr_debug("maxfid: 0x%x\n", psb->maxfid);
791                 pr_debug("maxvid: 0x%x\n", psb->maxvid);
792                 maxvid = psb->maxvid;
793
794                 data->numps = psb->numps;
795                 pr_debug("numpstates: 0x%x\n", data->numps);
796                 return fill_powernow_table(data,
797                                 (struct pst_s *)(psb+1), maxvid);
798         }
799         /*
800          * If you see this message, complain to BIOS manufacturer. If
801          * he tells you "we do not support Linux" or some similar
802          * nonsense, remember that Windows 2000 uses the same legacy
803          * mechanism that the old Linux PSB driver uses. Tell them it
804          * is broken with Windows 2000.
805          *
806          * The reference to the AMD documentation is chapter 9 in the
807          * BIOS and Kernel Developer's Guide, which is available on
808          * www.amd.com
809          */
810         printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
811         printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
812                 " and Cool'N'Quiet support is enabled in BIOS setup\n");
813         return -ENODEV;
814 }
815
816 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
817                 unsigned int index)
818 {
819         u64 control;
820
821         if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
822                 return;
823
824         control = data->acpi_data.states[index].control;
825         data->irt = (control >> IRT_SHIFT) & IRT_MASK;
826         data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
827         data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
828         data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
829         data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
830         data->vstable = (control >> VST_SHIFT) & VST_MASK;
831 }
832
833 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
834 {
835         struct cpufreq_frequency_table *powernow_table;
836         int ret_val = -ENODEV;
837         u64 control, status;
838
839         if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
840                 pr_debug("register performance failed: bad ACPI data\n");
841                 return -EIO;
842         }
843
844         /* verify the data contained in the ACPI structures */
845         if (data->acpi_data.state_count <= 1) {
846                 pr_debug("No ACPI P-States\n");
847                 goto err_out;
848         }
849
850         control = data->acpi_data.control_register.space_id;
851         status = data->acpi_data.status_register.space_id;
852
853         if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
854             (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
855                 pr_debug("Invalid control/status registers (%llx - %llx)\n",
856                         control, status);
857                 goto err_out;
858         }
859
860         /* fill in data->powernow_table */
861         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
862                 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
863         if (!powernow_table) {
864                 pr_debug("powernow_table memory alloc failure\n");
865                 goto err_out;
866         }
867
868         /* fill in data */
869         data->numps = data->acpi_data.state_count;
870         powernow_k8_acpi_pst_values(data, 0);
871
872         if (cpu_family == CPU_HW_PSTATE)
873                 ret_val = fill_powernow_table_pstate(data, powernow_table);
874         else
875                 ret_val = fill_powernow_table_fidvid(data, powernow_table);
876         if (ret_val)
877                 goto err_out_mem;
878
879         powernow_table[data->acpi_data.state_count].frequency =
880                 CPUFREQ_TABLE_END;
881         powernow_table[data->acpi_data.state_count].index = 0;
882         data->powernow_table = powernow_table;
883
884         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
885                 print_basics(data);
886
887         /* notify BIOS that we exist */
888         acpi_processor_notify_smm(THIS_MODULE);
889
890         if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
891                 printk(KERN_ERR PFX
892                                 "unable to alloc powernow_k8_data cpumask\n");
893                 ret_val = -ENOMEM;
894                 goto err_out_mem;
895         }
896
897         return 0;
898
899 err_out_mem:
900         kfree(powernow_table);
901
902 err_out:
903         acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
904
905         /* data->acpi_data.state_count informs us at ->exit()
906          * whether ACPI was used */
907         data->acpi_data.state_count = 0;
908
909         return ret_val;
910 }
911
912 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
913                 struct cpufreq_frequency_table *powernow_table)
914 {
915         int i;
916         u32 hi = 0, lo = 0;
917         rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
918         data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
919
920         for (i = 0; i < data->acpi_data.state_count; i++) {
921                 u32 index;
922
923                 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
924                 if (index > data->max_hw_pstate) {
925                         printk(KERN_ERR PFX "invalid pstate %d - "
926                                         "bad value %d.\n", i, index);
927                         printk(KERN_ERR PFX "Please report to BIOS "
928                                         "manufacturer\n");
929                         invalidate_entry(powernow_table, i);
930                         continue;
931                 }
932
933                 ps_to_as[index] = i;
934
935                 /* Frequency may be rounded for these */
936                 if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
937                                  || boot_cpu_data.x86 == 0x11) {
938
939                         rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
940                         if (!(hi & HW_PSTATE_VALID_MASK)) {
941                                 pr_debug("invalid pstate %d, ignoring\n", index);
942                                 invalidate_entry(powernow_table, i);
943                                 continue;
944                         }
945
946                         powernow_table[i].frequency =
947                                 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
948                 } else
949                         powernow_table[i].frequency =
950                                 data->acpi_data.states[i].core_frequency * 1000;
951
952                 powernow_table[i].index = index;
953         }
954         return 0;
955 }
956
957 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
958                 struct cpufreq_frequency_table *powernow_table)
959 {
960         int i;
961
962         for (i = 0; i < data->acpi_data.state_count; i++) {
963                 u32 fid;
964                 u32 vid;
965                 u32 freq, index;
966                 u64 status, control;
967
968                 if (data->exttype) {
969                         status =  data->acpi_data.states[i].status;
970                         fid = status & EXT_FID_MASK;
971                         vid = (status >> VID_SHIFT) & EXT_VID_MASK;
972                 } else {
973                         control =  data->acpi_data.states[i].control;
974                         fid = control & FID_MASK;
975                         vid = (control >> VID_SHIFT) & VID_MASK;
976                 }
977
978                 pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
979
980                 index = fid | (vid<<8);
981                 powernow_table[i].index = index;
982
983                 freq = find_khz_freq_from_fid(fid);
984                 powernow_table[i].frequency = freq;
985
986                 /* verify frequency is OK */
987                 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
988                         pr_debug("invalid freq %u kHz, ignoring\n", freq);
989                         invalidate_entry(powernow_table, i);
990                         continue;
991                 }
992
993                 /* verify voltage is OK -
994                  * BIOSs are using "off" to indicate invalid */
995                 if (vid == VID_OFF) {
996                         pr_debug("invalid vid %u, ignoring\n", vid);
997                         invalidate_entry(powernow_table, i);
998                         continue;
999                 }
1000
1001                 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1002                         printk(KERN_INFO PFX "invalid freq entries "
1003                                 "%u kHz vs. %u kHz\n", freq,
1004                                 (unsigned int)
1005                                 (data->acpi_data.states[i].core_frequency
1006                                  * 1000));
1007                         invalidate_entry(powernow_table, i);
1008                         continue;
1009                 }
1010         }
1011         return 0;
1012 }
1013
1014 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1015 {
1016         if (data->acpi_data.state_count)
1017                 acpi_processor_unregister_performance(&data->acpi_data,
1018                                 data->cpu);
1019         free_cpumask_var(data->acpi_data.shared_cpu_map);
1020 }
1021
1022 static int get_transition_latency(struct powernow_k8_data *data)
1023 {
1024         int max_latency = 0;
1025         int i;
1026         for (i = 0; i < data->acpi_data.state_count; i++) {
1027                 int cur_latency = data->acpi_data.states[i].transition_latency
1028                         + data->acpi_data.states[i].bus_master_latency;
1029                 if (cur_latency > max_latency)
1030                         max_latency = cur_latency;
1031         }
1032         if (max_latency == 0) {
1033                 /*
1034                  * Fam 11h and later may return 0 as transition latency. This
1035                  * is intended and means "very fast". While cpufreq core and
1036                  * governors currently can handle that gracefully, better set it
1037                  * to 1 to avoid problems in the future.
1038                  */
1039                 if (boot_cpu_data.x86 < 0x11)
1040                         printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1041                                 "latency\n");
1042                 max_latency = 1;
1043         }
1044         /* value in usecs, needs to be in nanoseconds */
1045         return 1000 * max_latency;
1046 }
1047
1048 /* Take a frequency, and issue the fid/vid transition command */
1049 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1050                 unsigned int index)
1051 {
1052         u32 fid = 0;
1053         u32 vid = 0;
1054         int res, i;
1055         struct cpufreq_freqs freqs;
1056
1057         pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1058
1059         /* fid/vid correctness check for k8 */
1060         /* fid are the lower 8 bits of the index we stored into
1061          * the cpufreq frequency table in find_psb_table, vid
1062          * are the upper 8 bits.
1063          */
1064         fid = data->powernow_table[index].index & 0xFF;
1065         vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1066
1067         pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1068
1069         if (query_current_values_with_pending_wait(data))
1070                 return 1;
1071
1072         if ((data->currvid == vid) && (data->currfid == fid)) {
1073                 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1074                         fid, vid);
1075                 return 0;
1076         }
1077
1078         pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1079                 smp_processor_id(), fid, vid);
1080         freqs.old = find_khz_freq_from_fid(data->currfid);
1081         freqs.new = find_khz_freq_from_fid(fid);
1082
1083         for_each_cpu(i, data->available_cores) {
1084                 freqs.cpu = i;
1085                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1086         }
1087
1088         res = transition_fid_vid(data, fid, vid);
1089         if (res)
1090                 return res;
1091
1092         freqs.new = find_khz_freq_from_fid(data->currfid);
1093
1094         for_each_cpu(i, data->available_cores) {
1095                 freqs.cpu = i;
1096                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1097         }
1098         return res;
1099 }
1100
1101 /* Take a frequency, and issue the hardware pstate transition command */
1102 static int transition_frequency_pstate(struct powernow_k8_data *data,
1103                 unsigned int index)
1104 {
1105         u32 pstate = 0;
1106         int res, i;
1107         struct cpufreq_freqs freqs;
1108
1109         pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1110
1111         /* get MSR index for hardware pstate transition */
1112         pstate = index & HW_PSTATE_MASK;
1113         if (pstate > data->max_hw_pstate)
1114                 return -EINVAL;
1115
1116         freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1117                         data->currpstate);
1118         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1119
1120         for_each_cpu(i, data->available_cores) {
1121                 freqs.cpu = i;
1122                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1123         }
1124
1125         res = transition_pstate(data, pstate);
1126         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1127
1128         for_each_cpu(i, data->available_cores) {
1129                 freqs.cpu = i;
1130                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1131         }
1132         return res;
1133 }
1134
1135 /* Driver entry point to switch to the target frequency */
1136 static int powernowk8_target(struct cpufreq_policy *pol,
1137                 unsigned targfreq, unsigned relation)
1138 {
1139         cpumask_var_t oldmask;
1140         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1141         u32 checkfid;
1142         u32 checkvid;
1143         unsigned int newstate;
1144         int ret = -EIO;
1145
1146         if (!data)
1147                 return -EINVAL;
1148
1149         checkfid = data->currfid;
1150         checkvid = data->currvid;
1151
1152         /* only run on specific CPU from here on. */
1153         /* This is poor form: use a workqueue or smp_call_function_single */
1154         if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1155                 return -ENOMEM;
1156
1157         cpumask_copy(oldmask, tsk_cpus_allowed(current));
1158         set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1159
1160         if (smp_processor_id() != pol->cpu) {
1161                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1162                 goto err_out;
1163         }
1164
1165         if (pending_bit_stuck()) {
1166                 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1167                 goto err_out;
1168         }
1169
1170         pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1171                 pol->cpu, targfreq, pol->min, pol->max, relation);
1172
1173         if (query_current_values_with_pending_wait(data))
1174                 goto err_out;
1175
1176         if (cpu_family != CPU_HW_PSTATE) {
1177                 pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1178                 data->currfid, data->currvid);
1179
1180                 if ((checkvid != data->currvid) ||
1181                     (checkfid != data->currfid)) {
1182                         printk(KERN_INFO PFX
1183                                 "error - out of sync, fix 0x%x 0x%x, "
1184                                 "vid 0x%x 0x%x\n",
1185                                 checkfid, data->currfid,
1186                                 checkvid, data->currvid);
1187                 }
1188         }
1189
1190         if (cpufreq_frequency_table_target(pol, data->powernow_table,
1191                                 targfreq, relation, &newstate))
1192                 goto err_out;
1193
1194         mutex_lock(&fidvid_mutex);
1195
1196         powernow_k8_acpi_pst_values(data, newstate);
1197
1198         if (cpu_family == CPU_HW_PSTATE)
1199                 ret = transition_frequency_pstate(data,
1200                         data->powernow_table[newstate].index);
1201         else
1202                 ret = transition_frequency_fidvid(data, newstate);
1203         if (ret) {
1204                 printk(KERN_ERR PFX "transition frequency failed\n");
1205                 ret = 1;
1206                 mutex_unlock(&fidvid_mutex);
1207                 goto err_out;
1208         }
1209         mutex_unlock(&fidvid_mutex);
1210
1211         if (cpu_family == CPU_HW_PSTATE)
1212                 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1213                                 data->powernow_table[newstate].index);
1214         else
1215                 pol->cur = find_khz_freq_from_fid(data->currfid);
1216         ret = 0;
1217
1218 err_out:
1219         set_cpus_allowed_ptr(current, oldmask);
1220         free_cpumask_var(oldmask);
1221         return ret;
1222 }
1223
1224 /* Driver entry point to verify the policy and range of frequencies */
1225 static int powernowk8_verify(struct cpufreq_policy *pol)
1226 {
1227         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1228
1229         if (!data)
1230                 return -EINVAL;
1231
1232         return cpufreq_frequency_table_verify(pol, data->powernow_table);
1233 }
1234
1235 struct init_on_cpu {
1236         struct powernow_k8_data *data;
1237         int rc;
1238 };
1239
1240 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1241 {
1242         struct init_on_cpu *init_on_cpu = _init_on_cpu;
1243
1244         if (pending_bit_stuck()) {
1245                 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1246                 init_on_cpu->rc = -ENODEV;
1247                 return;
1248         }
1249
1250         if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1251                 init_on_cpu->rc = -ENODEV;
1252                 return;
1253         }
1254
1255         if (cpu_family == CPU_OPTERON)
1256                 fidvid_msr_init();
1257
1258         init_on_cpu->rc = 0;
1259 }
1260
1261 /* per CPU init entry point to the driver */
1262 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1263 {
1264         static const char ACPI_PSS_BIOS_BUG_MSG[] =
1265                 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1266                 FW_BUG PFX "Try again with latest BIOS.\n";
1267         struct powernow_k8_data *data;
1268         struct init_on_cpu init_on_cpu;
1269         int rc;
1270         struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1271
1272         if (!cpu_online(pol->cpu))
1273                 return -ENODEV;
1274
1275         smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1276         if (rc)
1277                 return -ENODEV;
1278
1279         data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1280         if (!data) {
1281                 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1282                 return -ENOMEM;
1283         }
1284
1285         data->cpu = pol->cpu;
1286         data->currpstate = HW_PSTATE_INVALID;
1287
1288         if (powernow_k8_cpu_init_acpi(data)) {
1289                 /*
1290                  * Use the PSB BIOS structure. This is only available on
1291                  * an UP version, and is deprecated by AMD.
1292                  */
1293                 if (num_online_cpus() != 1) {
1294                         printk_once(ACPI_PSS_BIOS_BUG_MSG);
1295                         goto err_out;
1296                 }
1297                 if (pol->cpu != 0) {
1298                         printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1299                                "CPU other than CPU0. Complain to your BIOS "
1300                                "vendor.\n");
1301                         goto err_out;
1302                 }
1303                 rc = find_psb_table(data);
1304                 if (rc)
1305                         goto err_out;
1306
1307                 /* Take a crude guess here.
1308                  * That guess was in microseconds, so multiply with 1000 */
1309                 pol->cpuinfo.transition_latency = (
1310                          ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1311                          ((1 << data->irt) * 30)) * 1000;
1312         } else /* ACPI _PSS objects available */
1313                 pol->cpuinfo.transition_latency = get_transition_latency(data);
1314
1315         /* only run on specific CPU from here on */
1316         init_on_cpu.data = data;
1317         smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1318                                  &init_on_cpu, 1);
1319         rc = init_on_cpu.rc;
1320         if (rc != 0)
1321                 goto err_out_exit_acpi;
1322
1323         if (cpu_family == CPU_HW_PSTATE)
1324                 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1325         else
1326                 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1327         data->available_cores = pol->cpus;
1328
1329         if (cpu_family == CPU_HW_PSTATE)
1330                 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1331                                 data->currpstate);
1332         else
1333                 pol->cur = find_khz_freq_from_fid(data->currfid);
1334         pr_debug("policy current frequency %d kHz\n", pol->cur);
1335
1336         /* min/max the cpu is capable of */
1337         if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1338                 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1339                 powernow_k8_cpu_exit_acpi(data);
1340                 kfree(data->powernow_table);
1341                 kfree(data);
1342                 return -EINVAL;
1343         }
1344
1345         /* Check for APERF/MPERF support in hardware */
1346         if (cpu_has(c, X86_FEATURE_APERFMPERF))
1347                 cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1348
1349         cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1350
1351         if (cpu_family == CPU_HW_PSTATE)
1352                 pr_debug("cpu_init done, current pstate 0x%x\n",
1353                                 data->currpstate);
1354         else
1355                 pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1356                         data->currfid, data->currvid);
1357
1358         per_cpu(powernow_data, pol->cpu) = data;
1359
1360         return 0;
1361
1362 err_out_exit_acpi:
1363         powernow_k8_cpu_exit_acpi(data);
1364
1365 err_out:
1366         kfree(data);
1367         return -ENODEV;
1368 }
1369
1370 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1371 {
1372         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1373
1374         if (!data)
1375                 return -EINVAL;
1376
1377         powernow_k8_cpu_exit_acpi(data);
1378
1379         cpufreq_frequency_table_put_attr(pol->cpu);
1380
1381         kfree(data->powernow_table);
1382         kfree(data);
1383         per_cpu(powernow_data, pol->cpu) = NULL;
1384
1385         return 0;
1386 }
1387
1388 static void query_values_on_cpu(void *_err)
1389 {
1390         int *err = _err;
1391         struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1392
1393         *err = query_current_values_with_pending_wait(data);
1394 }
1395
1396 static unsigned int powernowk8_get(unsigned int cpu)
1397 {
1398         struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1399         unsigned int khz = 0;
1400         int err;
1401
1402         if (!data)
1403                 return 0;
1404
1405         smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1406         if (err)
1407                 goto out;
1408
1409         if (cpu_family == CPU_HW_PSTATE)
1410                 khz = find_khz_freq_from_pstate(data->powernow_table,
1411                                                 data->currpstate);
1412         else
1413                 khz = find_khz_freq_from_fid(data->currfid);
1414
1415
1416 out:
1417         return khz;
1418 }
1419
1420 static void _cpb_toggle_msrs(bool t)
1421 {
1422         int cpu;
1423
1424         get_online_cpus();
1425
1426         rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1427
1428         for_each_cpu(cpu, cpu_online_mask) {
1429                 struct msr *reg = per_cpu_ptr(msrs, cpu);
1430                 if (t)
1431                         reg->l &= ~BIT(25);
1432                 else
1433                         reg->l |= BIT(25);
1434         }
1435         wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1436
1437         put_online_cpus();
1438 }
1439
1440 /*
1441  * Switch on/off core performance boosting.
1442  *
1443  * 0=disable
1444  * 1=enable.
1445  */
1446 static void cpb_toggle(bool t)
1447 {
1448         if (!cpb_capable)
1449                 return;
1450
1451         if (t && !cpb_enabled) {
1452                 cpb_enabled = true;
1453                 _cpb_toggle_msrs(t);
1454                 printk(KERN_INFO PFX "Core Boosting enabled.\n");
1455         } else if (!t && cpb_enabled) {
1456                 cpb_enabled = false;
1457                 _cpb_toggle_msrs(t);
1458                 printk(KERN_INFO PFX "Core Boosting disabled.\n");
1459         }
1460 }
1461
1462 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1463                                  size_t count)
1464 {
1465         int ret = -EINVAL;
1466         unsigned long val = 0;
1467
1468         ret = strict_strtoul(buf, 10, &val);
1469         if (!ret && (val == 0 || val == 1) && cpb_capable)
1470                 cpb_toggle(val);
1471         else
1472                 return -EINVAL;
1473
1474         return count;
1475 }
1476
1477 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1478 {
1479         return sprintf(buf, "%u\n", cpb_enabled);
1480 }
1481
1482 #define define_one_rw(_name) \
1483 static struct freq_attr _name = \
1484 __ATTR(_name, 0644, show_##_name, store_##_name)
1485
1486 define_one_rw(cpb);
1487
1488 static struct freq_attr *powernow_k8_attr[] = {
1489         &cpufreq_freq_attr_scaling_available_freqs,
1490         &cpb,
1491         NULL,
1492 };
1493
1494 static struct cpufreq_driver cpufreq_amd64_driver = {
1495         .verify         = powernowk8_verify,
1496         .target         = powernowk8_target,
1497         .bios_limit     = acpi_processor_get_bios_limit,
1498         .init           = powernowk8_cpu_init,
1499         .exit           = __devexit_p(powernowk8_cpu_exit),
1500         .get            = powernowk8_get,
1501         .name           = "powernow-k8",
1502         .owner          = THIS_MODULE,
1503         .attr           = powernow_k8_attr,
1504 };
1505
1506 /*
1507  * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1508  * cannot block the remaining ones from boosting. On the CPU_UP path we
1509  * simply keep the boost-disable flag in sync with the current global
1510  * state.
1511  */
1512 static int cpb_notify(struct notifier_block *nb, unsigned long action,
1513                       void *hcpu)
1514 {
1515         unsigned cpu = (long)hcpu;
1516         u32 lo, hi;
1517
1518         switch (action) {
1519         case CPU_UP_PREPARE:
1520         case CPU_UP_PREPARE_FROZEN:
1521
1522                 if (!cpb_enabled) {
1523                         rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1524                         lo |= BIT(25);
1525                         wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1526                 }
1527                 break;
1528
1529         case CPU_DOWN_PREPARE:
1530         case CPU_DOWN_PREPARE_FROZEN:
1531                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1532                 lo &= ~BIT(25);
1533                 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1534                 break;
1535
1536         default:
1537                 break;
1538         }
1539
1540         return NOTIFY_OK;
1541 }
1542
1543 static struct notifier_block cpb_nb = {
1544         .notifier_call          = cpb_notify,
1545 };
1546
1547 /* driver entry point for init */
1548 static int __cpuinit powernowk8_init(void)
1549 {
1550         unsigned int i, supported_cpus = 0, cpu;
1551         int rv;
1552
1553         for_each_online_cpu(i) {
1554                 int rc;
1555                 smp_call_function_single(i, check_supported_cpu, &rc, 1);
1556                 if (rc == 0)
1557                         supported_cpus++;
1558         }
1559
1560         if (supported_cpus != num_online_cpus())
1561                 return -ENODEV;
1562
1563         printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1564                 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1565
1566         if (boot_cpu_has(X86_FEATURE_CPB)) {
1567
1568                 cpb_capable = true;
1569
1570                 msrs = msrs_alloc();
1571                 if (!msrs) {
1572                         printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1573                         return -ENOMEM;
1574                 }
1575
1576                 register_cpu_notifier(&cpb_nb);
1577
1578                 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1579
1580                 for_each_cpu(cpu, cpu_online_mask) {
1581                         struct msr *reg = per_cpu_ptr(msrs, cpu);
1582                         cpb_enabled |= !(!!(reg->l & BIT(25)));
1583                 }
1584
1585                 printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1586                         (cpb_enabled ? "on" : "off"));
1587         }
1588
1589         rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1590         if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1591                 unregister_cpu_notifier(&cpb_nb);
1592                 msrs_free(msrs);
1593                 msrs = NULL;
1594         }
1595         return rv;
1596 }
1597
1598 /* driver entry point for term */
1599 static void __exit powernowk8_exit(void)
1600 {
1601         pr_debug("exit\n");
1602
1603         if (boot_cpu_has(X86_FEATURE_CPB)) {
1604                 msrs_free(msrs);
1605                 msrs = NULL;
1606
1607                 unregister_cpu_notifier(&cpb_nb);
1608         }
1609
1610         cpufreq_unregister_driver(&cpufreq_amd64_driver);
1611 }
1612
1613 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1614                 "Mark Langsdorf <mark.langsdorf@amd.com>");
1615 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1616 MODULE_LICENSE("GPL");
1617
1618 late_initcall(powernowk8_init);
1619 module_exit(powernowk8_exit);