[CPUFREQ] ondemand: Uncouple minimal sampling rate from HZ in NO_HZ case
[pandora-kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
37 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
38
39 /*
40  * The polling frequency of this governor depends on the capability of
41  * the processor. Default polling frequency is 1000 times the transition
42  * latency of the processor. The governor will work on any processor with
43  * transition latency <= 10mS, using appropriate sampling
44  * rate.
45  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46  * this governor will not work.
47  * All times here are in uS.
48  */
49 #define MIN_SAMPLING_RATE_RATIO                 (2)
50
51 static unsigned int min_sampling_rate;
52
53 #define LATENCY_MULTIPLIER                      (1000)
54 #define MIN_LATENCY_MULTIPLIER                  (100)
55 #define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
56
57 static void do_dbs_timer(struct work_struct *work);
58
59 /* Sampling types */
60 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
61
62 struct cpu_dbs_info_s {
63         cputime64_t prev_cpu_idle;
64         cputime64_t prev_cpu_wall;
65         cputime64_t prev_cpu_nice;
66         struct cpufreq_policy *cur_policy;
67         struct delayed_work work;
68         struct cpufreq_frequency_table *freq_table;
69         unsigned int freq_lo;
70         unsigned int freq_lo_jiffies;
71         unsigned int freq_hi_jiffies;
72         int cpu;
73         unsigned int enable:1,
74                 sample_type:1;
75 };
76 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
77
78 static unsigned int dbs_enable; /* number of CPUs using this policy */
79
80 /*
81  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
82  * lock and dbs_mutex. cpu_hotplug lock should always be held before
83  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
84  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
85  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
86  * is recursive for the same process. -Venki
87  * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
88  * would deadlock with cancel_delayed_work_sync(), which is needed for proper
89  * raceless workqueue teardown.
90  */
91 static DEFINE_MUTEX(dbs_mutex);
92
93 static struct workqueue_struct  *kondemand_wq;
94
95 static struct dbs_tuners {
96         unsigned int sampling_rate;
97         unsigned int up_threshold;
98         unsigned int down_differential;
99         unsigned int ignore_nice;
100         unsigned int powersave_bias;
101 } dbs_tuners_ins = {
102         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
103         .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
104         .ignore_nice = 0,
105         .powersave_bias = 0,
106 };
107
108 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
109                                                         cputime64_t *wall)
110 {
111         cputime64_t idle_time;
112         cputime64_t cur_wall_time;
113         cputime64_t busy_time;
114
115         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
116         busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
117                         kstat_cpu(cpu).cpustat.system);
118
119         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
120         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
121         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
122         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
123
124         idle_time = cputime64_sub(cur_wall_time, busy_time);
125         if (wall)
126                 *wall = cur_wall_time;
127
128         return idle_time;
129 }
130
131 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
132 {
133         u64 idle_time = get_cpu_idle_time_us(cpu, wall);
134
135         if (idle_time == -1ULL)
136                 return get_cpu_idle_time_jiffy(cpu, wall);
137
138         return idle_time;
139 }
140
141 /*
142  * Find right freq to be set now with powersave_bias on.
143  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
144  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
145  */
146 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
147                                           unsigned int freq_next,
148                                           unsigned int relation)
149 {
150         unsigned int freq_req, freq_reduc, freq_avg;
151         unsigned int freq_hi, freq_lo;
152         unsigned int index = 0;
153         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
154         struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
155
156         if (!dbs_info->freq_table) {
157                 dbs_info->freq_lo = 0;
158                 dbs_info->freq_lo_jiffies = 0;
159                 return freq_next;
160         }
161
162         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
163                         relation, &index);
164         freq_req = dbs_info->freq_table[index].frequency;
165         freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
166         freq_avg = freq_req - freq_reduc;
167
168         /* Find freq bounds for freq_avg in freq_table */
169         index = 0;
170         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
171                         CPUFREQ_RELATION_H, &index);
172         freq_lo = dbs_info->freq_table[index].frequency;
173         index = 0;
174         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
175                         CPUFREQ_RELATION_L, &index);
176         freq_hi = dbs_info->freq_table[index].frequency;
177
178         /* Find out how long we have to be in hi and lo freqs */
179         if (freq_hi == freq_lo) {
180                 dbs_info->freq_lo = 0;
181                 dbs_info->freq_lo_jiffies = 0;
182                 return freq_lo;
183         }
184         jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
185         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
186         jiffies_hi += ((freq_hi - freq_lo) / 2);
187         jiffies_hi /= (freq_hi - freq_lo);
188         jiffies_lo = jiffies_total - jiffies_hi;
189         dbs_info->freq_lo = freq_lo;
190         dbs_info->freq_lo_jiffies = jiffies_lo;
191         dbs_info->freq_hi_jiffies = jiffies_hi;
192         return freq_hi;
193 }
194
195 static void ondemand_powersave_bias_init(void)
196 {
197         int i;
198         for_each_online_cpu(i) {
199                 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
200                 dbs_info->freq_table = cpufreq_frequency_get_table(i);
201                 dbs_info->freq_lo = 0;
202         }
203 }
204
205 /************************** sysfs interface ************************/
206 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
207 {
208         static int print_once;
209
210         if (!print_once) {
211                 printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
212                        "sysfs file is deprecated - used by: %s\n",
213                        current->comm);
214                 print_once = 1;
215         }
216         return sprintf(buf, "%u\n", -1U);
217 }
218
219 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
220 {
221         static int print_once;
222
223         if (!print_once) {
224                 printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_min "
225                        "sysfs file is deprecated - used by: %s\n",
226                        current->comm);
227                 print_once = 1;
228         }
229         return sprintf(buf, "%u\n", min_sampling_rate);
230 }
231
232 #define define_one_ro(_name)            \
233 static struct freq_attr _name =         \
234 __ATTR(_name, 0444, show_##_name, NULL)
235
236 define_one_ro(sampling_rate_max);
237 define_one_ro(sampling_rate_min);
238
239 /* cpufreq_ondemand Governor Tunables */
240 #define show_one(file_name, object)                                     \
241 static ssize_t show_##file_name                                         \
242 (struct cpufreq_policy *unused, char *buf)                              \
243 {                                                                       \
244         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
245 }
246 show_one(sampling_rate, sampling_rate);
247 show_one(up_threshold, up_threshold);
248 show_one(ignore_nice_load, ignore_nice);
249 show_one(powersave_bias, powersave_bias);
250
251 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
252                 const char *buf, size_t count)
253 {
254         unsigned int input;
255         int ret;
256         ret = sscanf(buf, "%u", &input);
257
258         mutex_lock(&dbs_mutex);
259         if (ret != 1) {
260                 mutex_unlock(&dbs_mutex);
261                 return -EINVAL;
262         }
263         dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
264         mutex_unlock(&dbs_mutex);
265
266         return count;
267 }
268
269 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
270                 const char *buf, size_t count)
271 {
272         unsigned int input;
273         int ret;
274         ret = sscanf(buf, "%u", &input);
275
276         mutex_lock(&dbs_mutex);
277         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
278                         input < MIN_FREQUENCY_UP_THRESHOLD) {
279                 mutex_unlock(&dbs_mutex);
280                 return -EINVAL;
281         }
282
283         dbs_tuners_ins.up_threshold = input;
284         mutex_unlock(&dbs_mutex);
285
286         return count;
287 }
288
289 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
290                 const char *buf, size_t count)
291 {
292         unsigned int input;
293         int ret;
294
295         unsigned int j;
296
297         ret = sscanf(buf, "%u", &input);
298         if (ret != 1)
299                 return -EINVAL;
300
301         if (input > 1)
302                 input = 1;
303
304         mutex_lock(&dbs_mutex);
305         if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
306                 mutex_unlock(&dbs_mutex);
307                 return count;
308         }
309         dbs_tuners_ins.ignore_nice = input;
310
311         /* we need to re-evaluate prev_cpu_idle */
312         for_each_online_cpu(j) {
313                 struct cpu_dbs_info_s *dbs_info;
314                 dbs_info = &per_cpu(cpu_dbs_info, j);
315                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
316                                                 &dbs_info->prev_cpu_wall);
317                 if (dbs_tuners_ins.ignore_nice)
318                         dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
319
320         }
321         mutex_unlock(&dbs_mutex);
322
323         return count;
324 }
325
326 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
327                 const char *buf, size_t count)
328 {
329         unsigned int input;
330         int ret;
331         ret = sscanf(buf, "%u", &input);
332
333         if (ret != 1)
334                 return -EINVAL;
335
336         if (input > 1000)
337                 input = 1000;
338
339         mutex_lock(&dbs_mutex);
340         dbs_tuners_ins.powersave_bias = input;
341         ondemand_powersave_bias_init();
342         mutex_unlock(&dbs_mutex);
343
344         return count;
345 }
346
347 #define define_one_rw(_name) \
348 static struct freq_attr _name = \
349 __ATTR(_name, 0644, show_##_name, store_##_name)
350
351 define_one_rw(sampling_rate);
352 define_one_rw(up_threshold);
353 define_one_rw(ignore_nice_load);
354 define_one_rw(powersave_bias);
355
356 static struct attribute *dbs_attributes[] = {
357         &sampling_rate_max.attr,
358         &sampling_rate_min.attr,
359         &sampling_rate.attr,
360         &up_threshold.attr,
361         &ignore_nice_load.attr,
362         &powersave_bias.attr,
363         NULL
364 };
365
366 static struct attribute_group dbs_attr_group = {
367         .attrs = dbs_attributes,
368         .name = "ondemand",
369 };
370
371 /************************** sysfs end ************************/
372
373 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
374 {
375         unsigned int max_load_freq;
376
377         struct cpufreq_policy *policy;
378         unsigned int j;
379
380         if (!this_dbs_info->enable)
381                 return;
382
383         this_dbs_info->freq_lo = 0;
384         policy = this_dbs_info->cur_policy;
385
386         /*
387          * Every sampling_rate, we check, if current idle time is less
388          * than 20% (default), then we try to increase frequency
389          * Every sampling_rate, we look for a the lowest
390          * frequency which can sustain the load while keeping idle time over
391          * 30%. If such a frequency exist, we try to decrease to this frequency.
392          *
393          * Any frequency increase takes it to the maximum frequency.
394          * Frequency reduction happens at minimum steps of
395          * 5% (default) of current frequency
396          */
397
398         /* Get Absolute Load - in terms of freq */
399         max_load_freq = 0;
400
401         for_each_cpu(j, policy->cpus) {
402                 struct cpu_dbs_info_s *j_dbs_info;
403                 cputime64_t cur_wall_time, cur_idle_time;
404                 unsigned int idle_time, wall_time;
405                 unsigned int load, load_freq;
406                 int freq_avg;
407
408                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
409
410                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
411
412                 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
413                                 j_dbs_info->prev_cpu_wall);
414                 j_dbs_info->prev_cpu_wall = cur_wall_time;
415
416                 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
417                                 j_dbs_info->prev_cpu_idle);
418                 j_dbs_info->prev_cpu_idle = cur_idle_time;
419
420                 if (dbs_tuners_ins.ignore_nice) {
421                         cputime64_t cur_nice;
422                         unsigned long cur_nice_jiffies;
423
424                         cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
425                                          j_dbs_info->prev_cpu_nice);
426                         /*
427                          * Assumption: nice time between sampling periods will
428                          * be less than 2^32 jiffies for 32 bit sys
429                          */
430                         cur_nice_jiffies = (unsigned long)
431                                         cputime64_to_jiffies64(cur_nice);
432
433                         j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
434                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
435                 }
436
437                 if (unlikely(!wall_time || wall_time < idle_time))
438                         continue;
439
440                 load = 100 * (wall_time - idle_time) / wall_time;
441
442                 freq_avg = __cpufreq_driver_getavg(policy, j);
443                 if (freq_avg <= 0)
444                         freq_avg = policy->cur;
445
446                 load_freq = load * freq_avg;
447                 if (load_freq > max_load_freq)
448                         max_load_freq = load_freq;
449         }
450
451         /* Check for frequency increase */
452         if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
453                 /* if we are already at full speed then break out early */
454                 if (!dbs_tuners_ins.powersave_bias) {
455                         if (policy->cur == policy->max)
456                                 return;
457
458                         __cpufreq_driver_target(policy, policy->max,
459                                 CPUFREQ_RELATION_H);
460                 } else {
461                         int freq = powersave_bias_target(policy, policy->max,
462                                         CPUFREQ_RELATION_H);
463                         __cpufreq_driver_target(policy, freq,
464                                 CPUFREQ_RELATION_L);
465                 }
466                 return;
467         }
468
469         /* Check for frequency decrease */
470         /* if we cannot reduce the frequency anymore, break out early */
471         if (policy->cur == policy->min)
472                 return;
473
474         /*
475          * The optimal frequency is the frequency that is the lowest that
476          * can support the current CPU usage without triggering the up
477          * policy. To be safe, we focus 10 points under the threshold.
478          */
479         if (max_load_freq <
480             (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
481              policy->cur) {
482                 unsigned int freq_next;
483                 freq_next = max_load_freq /
484                                 (dbs_tuners_ins.up_threshold -
485                                  dbs_tuners_ins.down_differential);
486
487                 if (!dbs_tuners_ins.powersave_bias) {
488                         __cpufreq_driver_target(policy, freq_next,
489                                         CPUFREQ_RELATION_L);
490                 } else {
491                         int freq = powersave_bias_target(policy, freq_next,
492                                         CPUFREQ_RELATION_L);
493                         __cpufreq_driver_target(policy, freq,
494                                 CPUFREQ_RELATION_L);
495                 }
496         }
497 }
498
499 static void do_dbs_timer(struct work_struct *work)
500 {
501         struct cpu_dbs_info_s *dbs_info =
502                 container_of(work, struct cpu_dbs_info_s, work.work);
503         unsigned int cpu = dbs_info->cpu;
504         int sample_type = dbs_info->sample_type;
505
506         /* We want all CPUs to do sampling nearly on same jiffy */
507         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
508
509         delay -= jiffies % delay;
510
511         if (lock_policy_rwsem_write(cpu) < 0)
512                 return;
513
514         if (!dbs_info->enable) {
515                 unlock_policy_rwsem_write(cpu);
516                 return;
517         }
518
519         /* Common NORMAL_SAMPLE setup */
520         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
521         if (!dbs_tuners_ins.powersave_bias ||
522             sample_type == DBS_NORMAL_SAMPLE) {
523                 dbs_check_cpu(dbs_info);
524                 if (dbs_info->freq_lo) {
525                         /* Setup timer for SUB_SAMPLE */
526                         dbs_info->sample_type = DBS_SUB_SAMPLE;
527                         delay = dbs_info->freq_hi_jiffies;
528                 }
529         } else {
530                 __cpufreq_driver_target(dbs_info->cur_policy,
531                         dbs_info->freq_lo, CPUFREQ_RELATION_H);
532         }
533         queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
534         unlock_policy_rwsem_write(cpu);
535 }
536
537 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
538 {
539         /* We want all CPUs to do sampling nearly on same jiffy */
540         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
541         delay -= jiffies % delay;
542
543         dbs_info->enable = 1;
544         ondemand_powersave_bias_init();
545         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
546         INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
547         queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
548                 delay);
549 }
550
551 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
552 {
553         dbs_info->enable = 0;
554         cancel_delayed_work_sync(&dbs_info->work);
555 }
556
557 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
558                                    unsigned int event)
559 {
560         unsigned int cpu = policy->cpu;
561         struct cpu_dbs_info_s *this_dbs_info;
562         unsigned int j;
563         int rc;
564
565         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
566
567         switch (event) {
568         case CPUFREQ_GOV_START:
569                 if ((!cpu_online(cpu)) || (!policy->cur))
570                         return -EINVAL;
571
572                 if (this_dbs_info->enable) /* Already enabled */
573                         break;
574
575                 mutex_lock(&dbs_mutex);
576                 dbs_enable++;
577
578                 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
579                 if (rc) {
580                         dbs_enable--;
581                         mutex_unlock(&dbs_mutex);
582                         return rc;
583                 }
584
585                 for_each_cpu(j, policy->cpus) {
586                         struct cpu_dbs_info_s *j_dbs_info;
587                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
588                         j_dbs_info->cur_policy = policy;
589
590                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
591                                                 &j_dbs_info->prev_cpu_wall);
592                         if (dbs_tuners_ins.ignore_nice) {
593                                 j_dbs_info->prev_cpu_nice =
594                                                 kstat_cpu(j).cpustat.nice;
595                         }
596                 }
597                 this_dbs_info->cpu = cpu;
598                 /*
599                  * Start the timerschedule work, when this governor
600                  * is used for first time
601                  */
602                 if (dbs_enable == 1) {
603                         unsigned int latency;
604                         /* policy latency is in nS. Convert it to uS first */
605                         latency = policy->cpuinfo.transition_latency / 1000;
606                         if (latency == 0)
607                                 latency = 1;
608                         /* Bring kernel and HW constraints together */
609                         min_sampling_rate = max(min_sampling_rate,
610                                         MIN_LATENCY_MULTIPLIER * latency);
611                         dbs_tuners_ins.sampling_rate =
612                                 max(min_sampling_rate,
613                                     latency * LATENCY_MULTIPLIER);
614                 }
615                 dbs_timer_init(this_dbs_info);
616
617                 mutex_unlock(&dbs_mutex);
618                 break;
619
620         case CPUFREQ_GOV_STOP:
621                 mutex_lock(&dbs_mutex);
622                 dbs_timer_exit(this_dbs_info);
623                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
624                 dbs_enable--;
625                 mutex_unlock(&dbs_mutex);
626
627                 break;
628
629         case CPUFREQ_GOV_LIMITS:
630                 mutex_lock(&dbs_mutex);
631                 if (policy->max < this_dbs_info->cur_policy->cur)
632                         __cpufreq_driver_target(this_dbs_info->cur_policy,
633                                 policy->max, CPUFREQ_RELATION_H);
634                 else if (policy->min > this_dbs_info->cur_policy->cur)
635                         __cpufreq_driver_target(this_dbs_info->cur_policy,
636                                 policy->min, CPUFREQ_RELATION_L);
637                 mutex_unlock(&dbs_mutex);
638                 break;
639         }
640         return 0;
641 }
642
643 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
644 static
645 #endif
646 struct cpufreq_governor cpufreq_gov_ondemand = {
647         .name                   = "ondemand",
648         .governor               = cpufreq_governor_dbs,
649         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
650         .owner                  = THIS_MODULE,
651 };
652
653 static int __init cpufreq_gov_dbs_init(void)
654 {
655         int err;
656         cputime64_t wall;
657         u64 idle_time;
658         int cpu = get_cpu();
659
660         idle_time = get_cpu_idle_time_us(cpu, &wall);
661         put_cpu();
662         if (idle_time != -1ULL) {
663                 /* Idle micro accounting is supported. Use finer thresholds */
664                 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
665                 dbs_tuners_ins.down_differential =
666                                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
667                 /*
668                  * In no_hz/micro accounting case we set the minimum frequency
669                  * not depending on HZ, but fixed (very low). The deferred
670                  * timer might skip some samples if idle/sleeping as needed.
671                 */
672                 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
673         } else {
674                 /* For correct statistics, we need 10 ticks for each measure */
675                 min_sampling_rate =
676                         MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
677         }
678
679         kondemand_wq = create_workqueue("kondemand");
680         if (!kondemand_wq) {
681                 printk(KERN_ERR "Creation of kondemand failed\n");
682                 return -EFAULT;
683         }
684         err = cpufreq_register_governor(&cpufreq_gov_ondemand);
685         if (err)
686                 destroy_workqueue(kondemand_wq);
687
688         return err;
689 }
690
691 static void __exit cpufreq_gov_dbs_exit(void)
692 {
693         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
694         destroy_workqueue(kondemand_wq);
695 }
696
697
698 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
699 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
700 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
701         "Low Latency Frequency Transition capable processors");
702 MODULE_LICENSE("GPL");
703
704 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
705 fs_initcall(cpufreq_gov_dbs_init);
706 #else
707 module_init(cpufreq_gov_dbs_init);
708 #endif
709 module_exit(cpufreq_gov_dbs_exit);