Merge branch 'for-2.6.31' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[pandora-kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
37 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
38
39 /*
40  * The polling frequency of this governor depends on the capability of
41  * the processor. Default polling frequency is 1000 times the transition
42  * latency of the processor. The governor will work on any processor with
43  * transition latency <= 10mS, using appropriate sampling
44  * rate.
45  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46  * this governor will not work.
47  * All times here are in uS.
48  */
49 #define MIN_SAMPLING_RATE_RATIO                 (2)
50
51 static unsigned int min_sampling_rate;
52
53 #define LATENCY_MULTIPLIER                      (1000)
54 #define MIN_LATENCY_MULTIPLIER                  (100)
55 #define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
56
57 static void do_dbs_timer(struct work_struct *work);
58
59 /* Sampling types */
60 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
61
62 struct cpu_dbs_info_s {
63         cputime64_t prev_cpu_idle;
64         cputime64_t prev_cpu_wall;
65         cputime64_t prev_cpu_nice;
66         struct cpufreq_policy *cur_policy;
67         struct delayed_work work;
68         struct cpufreq_frequency_table *freq_table;
69         unsigned int freq_lo;
70         unsigned int freq_lo_jiffies;
71         unsigned int freq_hi_jiffies;
72         int cpu;
73         unsigned int enable:1,
74                 sample_type:1;
75 };
76 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
77
78 static unsigned int dbs_enable; /* number of CPUs using this policy */
79
80 /*
81  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
82  * lock and dbs_mutex. cpu_hotplug lock should always be held before
83  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
84  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
85  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
86  * is recursive for the same process. -Venki
87  * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
88  * would deadlock with cancel_delayed_work_sync(), which is needed for proper
89  * raceless workqueue teardown.
90  */
91 static DEFINE_MUTEX(dbs_mutex);
92
93 static struct workqueue_struct  *kondemand_wq;
94
95 static struct dbs_tuners {
96         unsigned int sampling_rate;
97         unsigned int up_threshold;
98         unsigned int down_differential;
99         unsigned int ignore_nice;
100         unsigned int powersave_bias;
101 } dbs_tuners_ins = {
102         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
103         .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
104         .ignore_nice = 0,
105         .powersave_bias = 0,
106 };
107
108 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
109                                                         cputime64_t *wall)
110 {
111         cputime64_t idle_time;
112         cputime64_t cur_wall_time;
113         cputime64_t busy_time;
114
115         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
116         busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
117                         kstat_cpu(cpu).cpustat.system);
118
119         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
120         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
121         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
122         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
123
124         idle_time = cputime64_sub(cur_wall_time, busy_time);
125         if (wall)
126                 *wall = cur_wall_time;
127
128         return idle_time;
129 }
130
131 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
132 {
133         u64 idle_time = get_cpu_idle_time_us(cpu, wall);
134
135         if (idle_time == -1ULL)
136                 return get_cpu_idle_time_jiffy(cpu, wall);
137
138         return idle_time;
139 }
140
141 /*
142  * Find right freq to be set now with powersave_bias on.
143  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
144  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
145  */
146 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
147                                           unsigned int freq_next,
148                                           unsigned int relation)
149 {
150         unsigned int freq_req, freq_reduc, freq_avg;
151         unsigned int freq_hi, freq_lo;
152         unsigned int index = 0;
153         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
154         struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
155
156         if (!dbs_info->freq_table) {
157                 dbs_info->freq_lo = 0;
158                 dbs_info->freq_lo_jiffies = 0;
159                 return freq_next;
160         }
161
162         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
163                         relation, &index);
164         freq_req = dbs_info->freq_table[index].frequency;
165         freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
166         freq_avg = freq_req - freq_reduc;
167
168         /* Find freq bounds for freq_avg in freq_table */
169         index = 0;
170         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
171                         CPUFREQ_RELATION_H, &index);
172         freq_lo = dbs_info->freq_table[index].frequency;
173         index = 0;
174         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
175                         CPUFREQ_RELATION_L, &index);
176         freq_hi = dbs_info->freq_table[index].frequency;
177
178         /* Find out how long we have to be in hi and lo freqs */
179         if (freq_hi == freq_lo) {
180                 dbs_info->freq_lo = 0;
181                 dbs_info->freq_lo_jiffies = 0;
182                 return freq_lo;
183         }
184         jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
185         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
186         jiffies_hi += ((freq_hi - freq_lo) / 2);
187         jiffies_hi /= (freq_hi - freq_lo);
188         jiffies_lo = jiffies_total - jiffies_hi;
189         dbs_info->freq_lo = freq_lo;
190         dbs_info->freq_lo_jiffies = jiffies_lo;
191         dbs_info->freq_hi_jiffies = jiffies_hi;
192         return freq_hi;
193 }
194
195 static void ondemand_powersave_bias_init(void)
196 {
197         int i;
198         for_each_online_cpu(i) {
199                 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
200                 dbs_info->freq_table = cpufreq_frequency_get_table(i);
201                 dbs_info->freq_lo = 0;
202         }
203 }
204
205 /************************** sysfs interface ************************/
206 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
207 {
208         printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
209                "sysfs file is deprecated - used by: %s\n", current->comm);
210         return sprintf(buf, "%u\n", -1U);
211 }
212
213 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
214 {
215         return sprintf(buf, "%u\n", min_sampling_rate);
216 }
217
218 #define define_one_ro(_name)            \
219 static struct freq_attr _name =         \
220 __ATTR(_name, 0444, show_##_name, NULL)
221
222 define_one_ro(sampling_rate_max);
223 define_one_ro(sampling_rate_min);
224
225 /* cpufreq_ondemand Governor Tunables */
226 #define show_one(file_name, object)                                     \
227 static ssize_t show_##file_name                                         \
228 (struct cpufreq_policy *unused, char *buf)                              \
229 {                                                                       \
230         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
231 }
232 show_one(sampling_rate, sampling_rate);
233 show_one(up_threshold, up_threshold);
234 show_one(ignore_nice_load, ignore_nice);
235 show_one(powersave_bias, powersave_bias);
236
237 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
238                 const char *buf, size_t count)
239 {
240         unsigned int input;
241         int ret;
242         ret = sscanf(buf, "%u", &input);
243
244         mutex_lock(&dbs_mutex);
245         if (ret != 1) {
246                 mutex_unlock(&dbs_mutex);
247                 return -EINVAL;
248         }
249         dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
250         mutex_unlock(&dbs_mutex);
251
252         return count;
253 }
254
255 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
256                 const char *buf, size_t count)
257 {
258         unsigned int input;
259         int ret;
260         ret = sscanf(buf, "%u", &input);
261
262         mutex_lock(&dbs_mutex);
263         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
264                         input < MIN_FREQUENCY_UP_THRESHOLD) {
265                 mutex_unlock(&dbs_mutex);
266                 return -EINVAL;
267         }
268
269         dbs_tuners_ins.up_threshold = input;
270         mutex_unlock(&dbs_mutex);
271
272         return count;
273 }
274
275 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
276                 const char *buf, size_t count)
277 {
278         unsigned int input;
279         int ret;
280
281         unsigned int j;
282
283         ret = sscanf(buf, "%u", &input);
284         if (ret != 1)
285                 return -EINVAL;
286
287         if (input > 1)
288                 input = 1;
289
290         mutex_lock(&dbs_mutex);
291         if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
292                 mutex_unlock(&dbs_mutex);
293                 return count;
294         }
295         dbs_tuners_ins.ignore_nice = input;
296
297         /* we need to re-evaluate prev_cpu_idle */
298         for_each_online_cpu(j) {
299                 struct cpu_dbs_info_s *dbs_info;
300                 dbs_info = &per_cpu(cpu_dbs_info, j);
301                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
302                                                 &dbs_info->prev_cpu_wall);
303                 if (dbs_tuners_ins.ignore_nice)
304                         dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
305
306         }
307         mutex_unlock(&dbs_mutex);
308
309         return count;
310 }
311
312 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
313                 const char *buf, size_t count)
314 {
315         unsigned int input;
316         int ret;
317         ret = sscanf(buf, "%u", &input);
318
319         if (ret != 1)
320                 return -EINVAL;
321
322         if (input > 1000)
323                 input = 1000;
324
325         mutex_lock(&dbs_mutex);
326         dbs_tuners_ins.powersave_bias = input;
327         ondemand_powersave_bias_init();
328         mutex_unlock(&dbs_mutex);
329
330         return count;
331 }
332
333 #define define_one_rw(_name) \
334 static struct freq_attr _name = \
335 __ATTR(_name, 0644, show_##_name, store_##_name)
336
337 define_one_rw(sampling_rate);
338 define_one_rw(up_threshold);
339 define_one_rw(ignore_nice_load);
340 define_one_rw(powersave_bias);
341
342 static struct attribute *dbs_attributes[] = {
343         &sampling_rate_max.attr,
344         &sampling_rate_min.attr,
345         &sampling_rate.attr,
346         &up_threshold.attr,
347         &ignore_nice_load.attr,
348         &powersave_bias.attr,
349         NULL
350 };
351
352 static struct attribute_group dbs_attr_group = {
353         .attrs = dbs_attributes,
354         .name = "ondemand",
355 };
356
357 /************************** sysfs end ************************/
358
359 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
360 {
361         unsigned int max_load_freq;
362
363         struct cpufreq_policy *policy;
364         unsigned int j;
365
366         if (!this_dbs_info->enable)
367                 return;
368
369         this_dbs_info->freq_lo = 0;
370         policy = this_dbs_info->cur_policy;
371
372         /*
373          * Every sampling_rate, we check, if current idle time is less
374          * than 20% (default), then we try to increase frequency
375          * Every sampling_rate, we look for a the lowest
376          * frequency which can sustain the load while keeping idle time over
377          * 30%. If such a frequency exist, we try to decrease to this frequency.
378          *
379          * Any frequency increase takes it to the maximum frequency.
380          * Frequency reduction happens at minimum steps of
381          * 5% (default) of current frequency
382          */
383
384         /* Get Absolute Load - in terms of freq */
385         max_load_freq = 0;
386
387         for_each_cpu(j, policy->cpus) {
388                 struct cpu_dbs_info_s *j_dbs_info;
389                 cputime64_t cur_wall_time, cur_idle_time;
390                 unsigned int idle_time, wall_time;
391                 unsigned int load, load_freq;
392                 int freq_avg;
393
394                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
395
396                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
397
398                 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
399                                 j_dbs_info->prev_cpu_wall);
400                 j_dbs_info->prev_cpu_wall = cur_wall_time;
401
402                 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
403                                 j_dbs_info->prev_cpu_idle);
404                 j_dbs_info->prev_cpu_idle = cur_idle_time;
405
406                 if (dbs_tuners_ins.ignore_nice) {
407                         cputime64_t cur_nice;
408                         unsigned long cur_nice_jiffies;
409
410                         cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
411                                          j_dbs_info->prev_cpu_nice);
412                         /*
413                          * Assumption: nice time between sampling periods will
414                          * be less than 2^32 jiffies for 32 bit sys
415                          */
416                         cur_nice_jiffies = (unsigned long)
417                                         cputime64_to_jiffies64(cur_nice);
418
419                         j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
420                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
421                 }
422
423                 if (unlikely(!wall_time || wall_time < idle_time))
424                         continue;
425
426                 load = 100 * (wall_time - idle_time) / wall_time;
427
428                 freq_avg = __cpufreq_driver_getavg(policy, j);
429                 if (freq_avg <= 0)
430                         freq_avg = policy->cur;
431
432                 load_freq = load * freq_avg;
433                 if (load_freq > max_load_freq)
434                         max_load_freq = load_freq;
435         }
436
437         /* Check for frequency increase */
438         if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
439                 /* if we are already at full speed then break out early */
440                 if (!dbs_tuners_ins.powersave_bias) {
441                         if (policy->cur == policy->max)
442                                 return;
443
444                         __cpufreq_driver_target(policy, policy->max,
445                                 CPUFREQ_RELATION_H);
446                 } else {
447                         int freq = powersave_bias_target(policy, policy->max,
448                                         CPUFREQ_RELATION_H);
449                         __cpufreq_driver_target(policy, freq,
450                                 CPUFREQ_RELATION_L);
451                 }
452                 return;
453         }
454
455         /* Check for frequency decrease */
456         /* if we cannot reduce the frequency anymore, break out early */
457         if (policy->cur == policy->min)
458                 return;
459
460         /*
461          * The optimal frequency is the frequency that is the lowest that
462          * can support the current CPU usage without triggering the up
463          * policy. To be safe, we focus 10 points under the threshold.
464          */
465         if (max_load_freq <
466             (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
467              policy->cur) {
468                 unsigned int freq_next;
469                 freq_next = max_load_freq /
470                                 (dbs_tuners_ins.up_threshold -
471                                  dbs_tuners_ins.down_differential);
472
473                 if (!dbs_tuners_ins.powersave_bias) {
474                         __cpufreq_driver_target(policy, freq_next,
475                                         CPUFREQ_RELATION_L);
476                 } else {
477                         int freq = powersave_bias_target(policy, freq_next,
478                                         CPUFREQ_RELATION_L);
479                         __cpufreq_driver_target(policy, freq,
480                                 CPUFREQ_RELATION_L);
481                 }
482         }
483 }
484
485 static void do_dbs_timer(struct work_struct *work)
486 {
487         struct cpu_dbs_info_s *dbs_info =
488                 container_of(work, struct cpu_dbs_info_s, work.work);
489         unsigned int cpu = dbs_info->cpu;
490         int sample_type = dbs_info->sample_type;
491
492         /* We want all CPUs to do sampling nearly on same jiffy */
493         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
494
495         delay -= jiffies % delay;
496
497         if (lock_policy_rwsem_write(cpu) < 0)
498                 return;
499
500         if (!dbs_info->enable) {
501                 unlock_policy_rwsem_write(cpu);
502                 return;
503         }
504
505         /* Common NORMAL_SAMPLE setup */
506         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
507         if (!dbs_tuners_ins.powersave_bias ||
508             sample_type == DBS_NORMAL_SAMPLE) {
509                 dbs_check_cpu(dbs_info);
510                 if (dbs_info->freq_lo) {
511                         /* Setup timer for SUB_SAMPLE */
512                         dbs_info->sample_type = DBS_SUB_SAMPLE;
513                         delay = dbs_info->freq_hi_jiffies;
514                 }
515         } else {
516                 __cpufreq_driver_target(dbs_info->cur_policy,
517                         dbs_info->freq_lo, CPUFREQ_RELATION_H);
518         }
519         queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
520         unlock_policy_rwsem_write(cpu);
521 }
522
523 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
524 {
525         /* We want all CPUs to do sampling nearly on same jiffy */
526         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
527         delay -= jiffies % delay;
528
529         dbs_info->enable = 1;
530         ondemand_powersave_bias_init();
531         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
532         INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
533         queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
534                 delay);
535 }
536
537 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
538 {
539         dbs_info->enable = 0;
540         cancel_delayed_work_sync(&dbs_info->work);
541 }
542
543 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
544                                    unsigned int event)
545 {
546         unsigned int cpu = policy->cpu;
547         struct cpu_dbs_info_s *this_dbs_info;
548         unsigned int j;
549         int rc;
550
551         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
552
553         switch (event) {
554         case CPUFREQ_GOV_START:
555                 if ((!cpu_online(cpu)) || (!policy->cur))
556                         return -EINVAL;
557
558                 if (this_dbs_info->enable) /* Already enabled */
559                         break;
560
561                 mutex_lock(&dbs_mutex);
562                 dbs_enable++;
563
564                 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
565                 if (rc) {
566                         dbs_enable--;
567                         mutex_unlock(&dbs_mutex);
568                         return rc;
569                 }
570
571                 for_each_cpu(j, policy->cpus) {
572                         struct cpu_dbs_info_s *j_dbs_info;
573                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
574                         j_dbs_info->cur_policy = policy;
575
576                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
577                                                 &j_dbs_info->prev_cpu_wall);
578                         if (dbs_tuners_ins.ignore_nice) {
579                                 j_dbs_info->prev_cpu_nice =
580                                                 kstat_cpu(j).cpustat.nice;
581                         }
582                 }
583                 this_dbs_info->cpu = cpu;
584                 /*
585                  * Start the timerschedule work, when this governor
586                  * is used for first time
587                  */
588                 if (dbs_enable == 1) {
589                         unsigned int latency;
590                         /* policy latency is in nS. Convert it to uS first */
591                         latency = policy->cpuinfo.transition_latency / 1000;
592                         if (latency == 0)
593                                 latency = 1;
594                         /* Bring kernel and HW constraints together */
595                         min_sampling_rate = max(min_sampling_rate,
596                                         MIN_LATENCY_MULTIPLIER * latency);
597                         dbs_tuners_ins.sampling_rate =
598                                 max(min_sampling_rate,
599                                     latency * LATENCY_MULTIPLIER);
600                 }
601                 dbs_timer_init(this_dbs_info);
602
603                 mutex_unlock(&dbs_mutex);
604                 break;
605
606         case CPUFREQ_GOV_STOP:
607                 mutex_lock(&dbs_mutex);
608                 dbs_timer_exit(this_dbs_info);
609                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
610                 dbs_enable--;
611                 mutex_unlock(&dbs_mutex);
612
613                 break;
614
615         case CPUFREQ_GOV_LIMITS:
616                 mutex_lock(&dbs_mutex);
617                 if (policy->max < this_dbs_info->cur_policy->cur)
618                         __cpufreq_driver_target(this_dbs_info->cur_policy,
619                                 policy->max, CPUFREQ_RELATION_H);
620                 else if (policy->min > this_dbs_info->cur_policy->cur)
621                         __cpufreq_driver_target(this_dbs_info->cur_policy,
622                                 policy->min, CPUFREQ_RELATION_L);
623                 mutex_unlock(&dbs_mutex);
624                 break;
625         }
626         return 0;
627 }
628
629 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
630 static
631 #endif
632 struct cpufreq_governor cpufreq_gov_ondemand = {
633         .name                   = "ondemand",
634         .governor               = cpufreq_governor_dbs,
635         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
636         .owner                  = THIS_MODULE,
637 };
638
639 static int __init cpufreq_gov_dbs_init(void)
640 {
641         int err;
642         cputime64_t wall;
643         u64 idle_time;
644         int cpu = get_cpu();
645
646         idle_time = get_cpu_idle_time_us(cpu, &wall);
647         put_cpu();
648         if (idle_time != -1ULL) {
649                 /* Idle micro accounting is supported. Use finer thresholds */
650                 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
651                 dbs_tuners_ins.down_differential =
652                                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
653                 /*
654                  * In no_hz/micro accounting case we set the minimum frequency
655                  * not depending on HZ, but fixed (very low). The deferred
656                  * timer might skip some samples if idle/sleeping as needed.
657                 */
658                 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
659         } else {
660                 /* For correct statistics, we need 10 ticks for each measure */
661                 min_sampling_rate =
662                         MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
663         }
664
665         kondemand_wq = create_workqueue("kondemand");
666         if (!kondemand_wq) {
667                 printk(KERN_ERR "Creation of kondemand failed\n");
668                 return -EFAULT;
669         }
670         err = cpufreq_register_governor(&cpufreq_gov_ondemand);
671         if (err)
672                 destroy_workqueue(kondemand_wq);
673
674         return err;
675 }
676
677 static void __exit cpufreq_gov_dbs_exit(void)
678 {
679         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
680         destroy_workqueue(kondemand_wq);
681 }
682
683
684 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
685 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
686 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
687         "Low Latency Frequency Transition capable processors");
688 MODULE_LICENSE("GPL");
689
690 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
691 fs_initcall(cpufreq_gov_dbs_init);
692 #else
693 module_init(cpufreq_gov_dbs_init);
694 #endif
695 module_exit(cpufreq_gov_dbs_exit);