Merge branch 'upstream-fixes' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[pandora-kernel.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/sched.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
32 /*
33  * dbs is used in this file as a shortform for demandbased switching
34  * It helps to keep variable names smaller, simpler
35  */
36
37 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
38 #define MIN_FREQUENCY_UP_THRESHOLD              (0)
39 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
40
41 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
42 #define MIN_FREQUENCY_DOWN_THRESHOLD            (0)
43 #define MAX_FREQUENCY_DOWN_THRESHOLD            (100)
44
45 /* 
46  * The polling frequency of this governor depends on the capability of 
47  * the processor. Default polling frequency is 1000 times the transition
48  * latency of the processor. The governor will work on any processor with 
49  * transition latency <= 10mS, using appropriate sampling 
50  * rate.
51  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
52  * this governor will not work.
53  * All times here are in uS.
54  */
55 static unsigned int                             def_sampling_rate;
56 #define MIN_SAMPLING_RATE                       (def_sampling_rate / 2)
57 #define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
58 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (100000)
59 #define DEF_SAMPLING_DOWN_FACTOR                (5)
60 #define TRANSITION_LATENCY_LIMIT                (10 * 1000)
61
62 static void do_dbs_timer(void *data);
63
64 struct cpu_dbs_info_s {
65         struct cpufreq_policy   *cur_policy;
66         unsigned int            prev_cpu_idle_up;
67         unsigned int            prev_cpu_idle_down;
68         unsigned int            enable;
69 };
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71
72 static unsigned int dbs_enable; /* number of CPUs using this policy */
73
74 static DEFINE_MUTEX     (dbs_mutex);
75 static DECLARE_WORK     (dbs_work, do_dbs_timer, NULL);
76
77 struct dbs_tuners {
78         unsigned int            sampling_rate;
79         unsigned int            sampling_down_factor;
80         unsigned int            up_threshold;
81         unsigned int            down_threshold;
82         unsigned int            ignore_nice;
83         unsigned int            freq_step;
84 };
85
86 static struct dbs_tuners dbs_tuners_ins = {
87         .up_threshold           = DEF_FREQUENCY_UP_THRESHOLD,
88         .down_threshold         = DEF_FREQUENCY_DOWN_THRESHOLD,
89         .sampling_down_factor   = DEF_SAMPLING_DOWN_FACTOR,
90 };
91
92 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
93 {
94         return  kstat_cpu(cpu).cpustat.idle +
95                 kstat_cpu(cpu).cpustat.iowait +
96                 ( dbs_tuners_ins.ignore_nice ?
97                   kstat_cpu(cpu).cpustat.nice :
98                   0);
99 }
100
101 /************************** sysfs interface ************************/
102 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
103 {
104         return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
105 }
106
107 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
108 {
109         return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
110 }
111
112 #define define_one_ro(_name)                                    \
113 static struct freq_attr _name =                                 \
114 __ATTR(_name, 0444, show_##_name, NULL)
115
116 define_one_ro(sampling_rate_max);
117 define_one_ro(sampling_rate_min);
118
119 /* cpufreq_conservative Governor Tunables */
120 #define show_one(file_name, object)                                     \
121 static ssize_t show_##file_name                                         \
122 (struct cpufreq_policy *unused, char *buf)                              \
123 {                                                                       \
124         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
125 }
126 show_one(sampling_rate, sampling_rate);
127 show_one(sampling_down_factor, sampling_down_factor);
128 show_one(up_threshold, up_threshold);
129 show_one(down_threshold, down_threshold);
130 show_one(ignore_nice_load, ignore_nice);
131 show_one(freq_step, freq_step);
132
133 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, 
134                 const char *buf, size_t count)
135 {
136         unsigned int input;
137         int ret;
138         ret = sscanf (buf, "%u", &input);
139         if (ret != 1 )
140                 return -EINVAL;
141
142         mutex_lock(&dbs_mutex);
143         dbs_tuners_ins.sampling_down_factor = input;
144         mutex_unlock(&dbs_mutex);
145
146         return count;
147 }
148
149 static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 
150                 const char *buf, size_t count)
151 {
152         unsigned int input;
153         int ret;
154         ret = sscanf (buf, "%u", &input);
155
156         mutex_lock(&dbs_mutex);
157         if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
158                 mutex_unlock(&dbs_mutex);
159                 return -EINVAL;
160         }
161
162         dbs_tuners_ins.sampling_rate = input;
163         mutex_unlock(&dbs_mutex);
164
165         return count;
166 }
167
168 static ssize_t store_up_threshold(struct cpufreq_policy *unused, 
169                 const char *buf, size_t count)
170 {
171         unsigned int input;
172         int ret;
173         ret = sscanf (buf, "%u", &input);
174
175         mutex_lock(&dbs_mutex);
176         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 
177                         input < MIN_FREQUENCY_UP_THRESHOLD ||
178                         input <= dbs_tuners_ins.down_threshold) {
179                 mutex_unlock(&dbs_mutex);
180                 return -EINVAL;
181         }
182
183         dbs_tuners_ins.up_threshold = input;
184         mutex_unlock(&dbs_mutex);
185
186         return count;
187 }
188
189 static ssize_t store_down_threshold(struct cpufreq_policy *unused, 
190                 const char *buf, size_t count)
191 {
192         unsigned int input;
193         int ret;
194         ret = sscanf (buf, "%u", &input);
195
196         mutex_lock(&dbs_mutex);
197         if (ret != 1 || input > MAX_FREQUENCY_DOWN_THRESHOLD || 
198                         input < MIN_FREQUENCY_DOWN_THRESHOLD ||
199                         input >= dbs_tuners_ins.up_threshold) {
200                 mutex_unlock(&dbs_mutex);
201                 return -EINVAL;
202         }
203
204         dbs_tuners_ins.down_threshold = input;
205         mutex_unlock(&dbs_mutex);
206
207         return count;
208 }
209
210 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
211                 const char *buf, size_t count)
212 {
213         unsigned int input;
214         int ret;
215
216         unsigned int j;
217         
218         ret = sscanf (buf, "%u", &input);
219         if ( ret != 1 )
220                 return -EINVAL;
221
222         if ( input > 1 )
223                 input = 1;
224         
225         mutex_lock(&dbs_mutex);
226         if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
227                 mutex_unlock(&dbs_mutex);
228                 return count;
229         }
230         dbs_tuners_ins.ignore_nice = input;
231
232         /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
233         for_each_online_cpu(j) {
234                 struct cpu_dbs_info_s *j_dbs_info;
235                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
236                 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
237                 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
238         }
239         mutex_unlock(&dbs_mutex);
240
241         return count;
242 }
243
244 static ssize_t store_freq_step(struct cpufreq_policy *policy,
245                 const char *buf, size_t count)
246 {
247         unsigned int input;
248         int ret;
249
250         ret = sscanf (buf, "%u", &input);
251
252         if ( ret != 1 )
253                 return -EINVAL;
254
255         if ( input > 100 )
256                 input = 100;
257         
258         /* no need to test here if freq_step is zero as the user might actually
259          * want this, they would be crazy though :) */
260         mutex_lock(&dbs_mutex);
261         dbs_tuners_ins.freq_step = input;
262         mutex_unlock(&dbs_mutex);
263
264         return count;
265 }
266
267 #define define_one_rw(_name) \
268 static struct freq_attr _name = \
269 __ATTR(_name, 0644, show_##_name, store_##_name)
270
271 define_one_rw(sampling_rate);
272 define_one_rw(sampling_down_factor);
273 define_one_rw(up_threshold);
274 define_one_rw(down_threshold);
275 define_one_rw(ignore_nice_load);
276 define_one_rw(freq_step);
277
278 static struct attribute * dbs_attributes[] = {
279         &sampling_rate_max.attr,
280         &sampling_rate_min.attr,
281         &sampling_rate.attr,
282         &sampling_down_factor.attr,
283         &up_threshold.attr,
284         &down_threshold.attr,
285         &ignore_nice_load.attr,
286         &freq_step.attr,
287         NULL
288 };
289
290 static struct attribute_group dbs_attr_group = {
291         .attrs = dbs_attributes,
292         .name = "conservative",
293 };
294
295 /************************** sysfs end ************************/
296
297 static void dbs_check_cpu(int cpu)
298 {
299         unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
300         unsigned int freq_step;
301         unsigned int freq_down_sampling_rate;
302         static int down_skip[NR_CPUS];
303         static int requested_freq[NR_CPUS];
304         static unsigned short init_flag = 0;
305         struct cpu_dbs_info_s *this_dbs_info;
306         struct cpu_dbs_info_s *dbs_info;
307
308         struct cpufreq_policy *policy;
309         unsigned int j;
310
311         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
312         if (!this_dbs_info->enable)
313                 return;
314
315         policy = this_dbs_info->cur_policy;
316
317         if ( init_flag == 0 ) {
318                 for_each_online_cpu(j) {
319                         dbs_info = &per_cpu(cpu_dbs_info, j);
320                         requested_freq[j] = dbs_info->cur_policy->cur;
321                 }
322                 init_flag = 1;
323         }
324         
325         /* 
326          * The default safe range is 20% to 80% 
327          * Every sampling_rate, we check
328          *      - If current idle time is less than 20%, then we try to 
329          *        increase frequency
330          * Every sampling_rate*sampling_down_factor, we check
331          *      - If current idle time is more than 80%, then we try to
332          *        decrease frequency
333          *
334          * Any frequency increase takes it to the maximum frequency. 
335          * Frequency reduction happens at minimum steps of 
336          * 5% (default) of max_frequency 
337          */
338
339         /* Check for frequency increase */
340
341         idle_ticks = UINT_MAX;
342         for_each_cpu_mask(j, policy->cpus) {
343                 unsigned int tmp_idle_ticks, total_idle_ticks;
344                 struct cpu_dbs_info_s *j_dbs_info;
345
346                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
347                 /* Check for frequency increase */
348                 total_idle_ticks = get_cpu_idle_time(j);
349                 tmp_idle_ticks = total_idle_ticks -
350                         j_dbs_info->prev_cpu_idle_up;
351                 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
352
353                 if (tmp_idle_ticks < idle_ticks)
354                         idle_ticks = tmp_idle_ticks;
355         }
356
357         /* Scale idle ticks by 100 and compare with up and down ticks */
358         idle_ticks *= 100;
359         up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
360                 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
361
362         if (idle_ticks < up_idle_ticks) {
363                 down_skip[cpu] = 0;
364                 for_each_cpu_mask(j, policy->cpus) {
365                         struct cpu_dbs_info_s *j_dbs_info;
366
367                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
368                         j_dbs_info->prev_cpu_idle_down = 
369                                         j_dbs_info->prev_cpu_idle_up;
370                 }
371                 /* if we are already at full speed then break out early */
372                 if (requested_freq[cpu] == policy->max)
373                         return;
374                 
375                 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
376
377                 /* max freq cannot be less than 100. But who knows.... */
378                 if (unlikely(freq_step == 0))
379                         freq_step = 5;
380                 
381                 requested_freq[cpu] += freq_step;
382                 if (requested_freq[cpu] > policy->max)
383                         requested_freq[cpu] = policy->max;
384
385                 __cpufreq_driver_target(policy, requested_freq[cpu], 
386                         CPUFREQ_RELATION_H);
387                 return;
388         }
389
390         /* Check for frequency decrease */
391         down_skip[cpu]++;
392         if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
393                 return;
394
395         idle_ticks = UINT_MAX;
396         for_each_cpu_mask(j, policy->cpus) {
397                 unsigned int tmp_idle_ticks, total_idle_ticks;
398                 struct cpu_dbs_info_s *j_dbs_info;
399
400                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
401                 total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
402                 tmp_idle_ticks = total_idle_ticks -
403                         j_dbs_info->prev_cpu_idle_down;
404                 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
405
406                 if (tmp_idle_ticks < idle_ticks)
407                         idle_ticks = tmp_idle_ticks;
408         }
409
410         /* Scale idle ticks by 100 and compare with up and down ticks */
411         idle_ticks *= 100;
412         down_skip[cpu] = 0;
413
414         freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
415                 dbs_tuners_ins.sampling_down_factor;
416         down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
417                         usecs_to_jiffies(freq_down_sampling_rate);
418
419         if (idle_ticks > down_idle_ticks) {
420                 /* if we are already at the lowest speed then break out early
421                  * or if we 'cannot' reduce the speed as the user might want
422                  * freq_step to be zero */
423                 if (requested_freq[cpu] == policy->min
424                                 || dbs_tuners_ins.freq_step == 0)
425                         return;
426
427                 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
428
429                 /* max freq cannot be less than 100. But who knows.... */
430                 if (unlikely(freq_step == 0))
431                         freq_step = 5;
432
433                 requested_freq[cpu] -= freq_step;
434                 if (requested_freq[cpu] < policy->min)
435                         requested_freq[cpu] = policy->min;
436
437                 __cpufreq_driver_target(policy,
438                         requested_freq[cpu],
439                         CPUFREQ_RELATION_H);
440                 return;
441         }
442 }
443
444 static void do_dbs_timer(void *data)
445
446         int i;
447         mutex_lock(&dbs_mutex);
448         for_each_online_cpu(i)
449                 dbs_check_cpu(i);
450         schedule_delayed_work(&dbs_work, 
451                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
452         mutex_unlock(&dbs_mutex);
453
454
455 static inline void dbs_timer_init(void)
456 {
457         INIT_WORK(&dbs_work, do_dbs_timer, NULL);
458         schedule_delayed_work(&dbs_work,
459                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
460         return;
461 }
462
463 static inline void dbs_timer_exit(void)
464 {
465         cancel_delayed_work(&dbs_work);
466         return;
467 }
468
469 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
470                                    unsigned int event)
471 {
472         unsigned int cpu = policy->cpu;
473         struct cpu_dbs_info_s *this_dbs_info;
474         unsigned int j;
475
476         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
477
478         switch (event) {
479         case CPUFREQ_GOV_START:
480                 if ((!cpu_online(cpu)) || 
481                     (!policy->cur))
482                         return -EINVAL;
483
484                 if (policy->cpuinfo.transition_latency >
485                                 (TRANSITION_LATENCY_LIMIT * 1000))
486                         return -EINVAL;
487                 if (this_dbs_info->enable) /* Already enabled */
488                         break;
489                  
490                 mutex_lock(&dbs_mutex);
491                 for_each_cpu_mask(j, policy->cpus) {
492                         struct cpu_dbs_info_s *j_dbs_info;
493                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
494                         j_dbs_info->cur_policy = policy;
495                 
496                         j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
497                         j_dbs_info->prev_cpu_idle_down
498                                 = j_dbs_info->prev_cpu_idle_up;
499                 }
500                 this_dbs_info->enable = 1;
501                 sysfs_create_group(&policy->kobj, &dbs_attr_group);
502                 dbs_enable++;
503                 /*
504                  * Start the timerschedule work, when this governor
505                  * is used for first time
506                  */
507                 if (dbs_enable == 1) {
508                         unsigned int latency;
509                         /* policy latency is in nS. Convert it to uS first */
510
511                         latency = policy->cpuinfo.transition_latency;
512                         if (latency < 1000)
513                                 latency = 1000;
514
515                         def_sampling_rate = (latency / 1000) *
516                                         DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
517                         dbs_tuners_ins.sampling_rate = def_sampling_rate;
518                         dbs_tuners_ins.ignore_nice = 0;
519                         dbs_tuners_ins.freq_step = 5;
520
521                         dbs_timer_init();
522                 }
523                 
524                 mutex_unlock(&dbs_mutex);
525                 break;
526
527         case CPUFREQ_GOV_STOP:
528                 mutex_lock(&dbs_mutex);
529                 this_dbs_info->enable = 0;
530                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
531                 dbs_enable--;
532                 /*
533                  * Stop the timerschedule work, when this governor
534                  * is used for first time
535                  */
536                 if (dbs_enable == 0) 
537                         dbs_timer_exit();
538                 
539                 mutex_unlock(&dbs_mutex);
540
541                 break;
542
543         case CPUFREQ_GOV_LIMITS:
544                 mutex_lock(&dbs_mutex);
545                 if (policy->max < this_dbs_info->cur_policy->cur)
546                         __cpufreq_driver_target(
547                                         this_dbs_info->cur_policy,
548                                         policy->max, CPUFREQ_RELATION_H);
549                 else if (policy->min > this_dbs_info->cur_policy->cur)
550                         __cpufreq_driver_target(
551                                         this_dbs_info->cur_policy,
552                                         policy->min, CPUFREQ_RELATION_L);
553                 mutex_unlock(&dbs_mutex);
554                 break;
555         }
556         return 0;
557 }
558
559 static struct cpufreq_governor cpufreq_gov_dbs = {
560         .name           = "conservative",
561         .governor       = cpufreq_governor_dbs,
562         .owner          = THIS_MODULE,
563 };
564
565 static int __init cpufreq_gov_dbs_init(void)
566 {
567         return cpufreq_register_governor(&cpufreq_gov_dbs);
568 }
569
570 static void __exit cpufreq_gov_dbs_exit(void)
571 {
572         /* Make sure that the scheduled work is indeed not running */
573         flush_scheduled_work();
574
575         cpufreq_unregister_governor(&cpufreq_gov_dbs);
576 }
577
578
579 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
580 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
581                 "Low Latency Frequency Transition capable processors "
582                 "optimised for use in a battery environment");
583 MODULE_LICENSE ("GPL");
584
585 module_init(cpufreq_gov_dbs_init);
586 module_exit(cpufreq_gov_dbs_exit);