Merge ../linux-2.6
[pandora-kernel.git] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *
7  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8  *                      Added handling for CPU hotplug
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  */
15
16 #include <linux/config.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/notifier.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/interrupt.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/completion.h>
29 #include <linux/mutex.h>
30
31 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, "cpufreq-core", msg)
32
33 /**
34  * The "cpufreq driver" - the arch- or hardware-dependend low
35  * level driver of CPUFreq support, and its spinlock. This lock
36  * also protects the cpufreq_cpu_data array.
37  */
38 static struct cpufreq_driver    *cpufreq_driver;
39 static struct cpufreq_policy    *cpufreq_cpu_data[NR_CPUS];
40 static DEFINE_SPINLOCK(cpufreq_driver_lock);
41
42 /* internal prototypes */
43 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
44 static void handle_update(void *data);
45
46 /**
47  * Two notifier lists: the "policy" list is involved in the 
48  * validation process for a new CPU frequency policy; the 
49  * "transition" list for kernel code that needs to handle
50  * changes to devices when the CPU clock speed changes.
51  * The mutex locks both lists.
52  */
53 static struct notifier_block    *cpufreq_policy_notifier_list;
54 static struct notifier_block    *cpufreq_transition_notifier_list;
55 static DECLARE_RWSEM            (cpufreq_notifier_rwsem);
56
57
58 static LIST_HEAD(cpufreq_governor_list);
59 static DEFINE_MUTEX             (cpufreq_governor_mutex);
60
61 struct cpufreq_policy * cpufreq_cpu_get(unsigned int cpu)
62 {
63         struct cpufreq_policy *data;
64         unsigned long flags;
65
66         if (cpu >= NR_CPUS)
67                 goto err_out;
68
69         /* get the cpufreq driver */
70         spin_lock_irqsave(&cpufreq_driver_lock, flags);
71
72         if (!cpufreq_driver)
73                 goto err_out_unlock;
74
75         if (!try_module_get(cpufreq_driver->owner))
76                 goto err_out_unlock;
77
78
79         /* get the CPU */
80         data = cpufreq_cpu_data[cpu];
81
82         if (!data)
83                 goto err_out_put_module;
84
85         if (!kobject_get(&data->kobj))
86                 goto err_out_put_module;
87
88
89         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
90
91         return data;
92
93  err_out_put_module:
94         module_put(cpufreq_driver->owner);
95  err_out_unlock:
96         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
97  err_out:
98         return NULL;
99 }
100 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
101
102 void cpufreq_cpu_put(struct cpufreq_policy *data)
103 {
104         kobject_put(&data->kobj);
105         module_put(cpufreq_driver->owner);
106 }
107 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
108
109
110 /*********************************************************************
111  *                     UNIFIED DEBUG HELPERS                         *
112  *********************************************************************/
113 #ifdef CONFIG_CPU_FREQ_DEBUG
114
115 /* what part(s) of the CPUfreq subsystem are debugged? */
116 static unsigned int debug;
117
118 /* is the debug output ratelimit'ed using printk_ratelimit? User can
119  * set or modify this value.
120  */
121 static unsigned int debug_ratelimit = 1;
122
123 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
124  * loading of a cpufreq driver, temporarily disabled when a new policy
125  * is set, and disabled upon cpufreq driver removal
126  */
127 static unsigned int disable_ratelimit = 1;
128 static DEFINE_SPINLOCK(disable_ratelimit_lock);
129
130 static void cpufreq_debug_enable_ratelimit(void)
131 {
132         unsigned long flags;
133
134         spin_lock_irqsave(&disable_ratelimit_lock, flags);
135         if (disable_ratelimit)
136                 disable_ratelimit--;
137         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
138 }
139
140 static void cpufreq_debug_disable_ratelimit(void)
141 {
142         unsigned long flags;
143
144         spin_lock_irqsave(&disable_ratelimit_lock, flags);
145         disable_ratelimit++;
146         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
147 }
148
149 void cpufreq_debug_printk(unsigned int type, const char *prefix, const char *fmt, ...)
150 {
151         char s[256];
152         va_list args;
153         unsigned int len;
154         unsigned long flags;
155         
156         WARN_ON(!prefix);
157         if (type & debug) {
158                 spin_lock_irqsave(&disable_ratelimit_lock, flags);
159                 if (!disable_ratelimit && debug_ratelimit && !printk_ratelimit()) {
160                         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
161                         return;
162                 }
163                 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
164
165                 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
166
167                 va_start(args, fmt);
168                 len += vsnprintf(&s[len], (256 - len), fmt, args);
169                 va_end(args);
170
171                 printk(s);
172
173                 WARN_ON(len < 5);
174         }
175 }
176 EXPORT_SYMBOL(cpufreq_debug_printk);
177
178
179 module_param(debug, uint, 0644);
180 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core, 2 to debug drivers, and 4 to debug governors.");
181
182 module_param(debug_ratelimit, uint, 0644);
183 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging: set to 0 to disable ratelimiting.");
184
185 #else /* !CONFIG_CPU_FREQ_DEBUG */
186
187 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
188 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
189
190 #endif /* CONFIG_CPU_FREQ_DEBUG */
191
192
193 /*********************************************************************
194  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
195  *********************************************************************/
196
197 /**
198  * adjust_jiffies - adjust the system "loops_per_jiffy"
199  *
200  * This function alters the system "loops_per_jiffy" for the clock
201  * speed change. Note that loops_per_jiffy cannot be updated on SMP
202  * systems as each CPU might be scaled differently. So, use the arch 
203  * per-CPU loops_per_jiffy value wherever possible.
204  */
205 #ifndef CONFIG_SMP
206 static unsigned long l_p_j_ref;
207 static unsigned int  l_p_j_ref_freq;
208
209 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
210 {
211         if (ci->flags & CPUFREQ_CONST_LOOPS)
212                 return;
213
214         if (!l_p_j_ref_freq) {
215                 l_p_j_ref = loops_per_jiffy;
216                 l_p_j_ref_freq = ci->old;
217                 dprintk("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
218         }
219         if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
220             (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
221             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
222                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, ci->new);
223                 dprintk("scaling loops_per_jiffy to %lu for frequency %u kHz\n", loops_per_jiffy, ci->new);
224         }
225 }
226 #else
227 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) { return; }
228 #endif
229
230
231 /**
232  * cpufreq_notify_transition - call notifier chain and adjust_jiffies on frequency transition
233  *
234  * This function calls the transition notifiers and the "adjust_jiffies" function. It is called
235  * twice on all CPU frequency changes that have external effects. 
236  */
237 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
238 {
239         BUG_ON(irqs_disabled());
240
241         freqs->flags = cpufreq_driver->flags;
242         dprintk("notification %u of frequency transition to %u kHz\n", state, freqs->new);
243
244         down_read(&cpufreq_notifier_rwsem);
245         switch (state) {
246         case CPUFREQ_PRECHANGE:
247                 /* detect if the driver reported a value as "old frequency" which
248                  * is not equal to what the cpufreq core thinks is "old frequency".
249                  */
250                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
251                         if ((likely(cpufreq_cpu_data[freqs->cpu])) &&
252                             (likely(cpufreq_cpu_data[freqs->cpu]->cpu == freqs->cpu)) &&
253                             (likely(cpufreq_cpu_data[freqs->cpu]->cur)) &&
254                             (unlikely(freqs->old != cpufreq_cpu_data[freqs->cpu]->cur)))
255                         {
256                                 dprintk(KERN_WARNING "Warning: CPU frequency is %u, "
257                                        "cpufreq assumed %u kHz.\n", freqs->old, cpufreq_cpu_data[freqs->cpu]->cur);
258                                 freqs->old = cpufreq_cpu_data[freqs->cpu]->cur;
259                         }
260                 }
261                 notifier_call_chain(&cpufreq_transition_notifier_list, CPUFREQ_PRECHANGE, freqs);
262                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
263                 break;
264         case CPUFREQ_POSTCHANGE:
265                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
266                 notifier_call_chain(&cpufreq_transition_notifier_list, CPUFREQ_POSTCHANGE, freqs);
267                 if ((likely(cpufreq_cpu_data[freqs->cpu])) && 
268                     (likely(cpufreq_cpu_data[freqs->cpu]->cpu == freqs->cpu)))
269                         cpufreq_cpu_data[freqs->cpu]->cur = freqs->new;
270                 break;
271         }
272         up_read(&cpufreq_notifier_rwsem);
273 }
274 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
275
276
277
278 /*********************************************************************
279  *                          SYSFS INTERFACE                          *
280  *********************************************************************/
281
282 /**
283  * cpufreq_parse_governor - parse a governor string
284  */
285 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy,
286                                 struct cpufreq_governor **governor)
287 {
288         if (!cpufreq_driver)
289                 return -EINVAL;
290         if (cpufreq_driver->setpolicy) {
291                 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
292                         *policy = CPUFREQ_POLICY_PERFORMANCE;
293                         return 0;
294                 } else if (!strnicmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
295                         *policy = CPUFREQ_POLICY_POWERSAVE;
296                         return 0;
297                 }
298                 return -EINVAL;
299         } else {
300                 struct cpufreq_governor *t;
301                 mutex_lock(&cpufreq_governor_mutex);
302                 if (!cpufreq_driver || !cpufreq_driver->target)
303                         goto out;
304                 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
305                         if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN)) {
306                                 *governor = t;
307                                 mutex_unlock(&cpufreq_governor_mutex);
308                                 return 0;
309                         }
310                 }
311         out:
312                 mutex_unlock(&cpufreq_governor_mutex);
313         }
314         return -EINVAL;
315 }
316 EXPORT_SYMBOL_GPL(cpufreq_parse_governor);
317
318
319 /* drivers/base/cpu.c */
320 extern struct sysdev_class cpu_sysdev_class;
321
322
323 /**
324  * cpufreq_per_cpu_attr_read() / show_##file_name() - print out cpufreq information
325  *
326  * Write out information from cpufreq_driver->policy[cpu]; object must be
327  * "unsigned int".
328  */
329
330 #define show_one(file_name, object)                                     \
331 static ssize_t show_##file_name                                         \
332 (struct cpufreq_policy * policy, char *buf)                             \
333 {                                                                       \
334         return sprintf (buf, "%u\n", policy->object);                   \
335 }
336
337 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
338 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
339 show_one(scaling_min_freq, min);
340 show_one(scaling_max_freq, max);
341 show_one(scaling_cur_freq, cur);
342
343 /**
344  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
345  */
346 #define store_one(file_name, object)                    \
347 static ssize_t store_##file_name                                        \
348 (struct cpufreq_policy * policy, const char *buf, size_t count)         \
349 {                                                                       \
350         unsigned int ret = -EINVAL;                                     \
351         struct cpufreq_policy new_policy;                               \
352                                                                         \
353         ret = cpufreq_get_policy(&new_policy, policy->cpu);             \
354         if (ret)                                                        \
355                 return -EINVAL;                                         \
356                                                                         \
357         ret = sscanf (buf, "%u", &new_policy.object);                   \
358         if (ret != 1)                                                   \
359                 return -EINVAL;                                         \
360                                                                         \
361         ret = cpufreq_set_policy(&new_policy);                          \
362                                                                         \
363         return ret ? ret : count;                                       \
364 }
365
366 store_one(scaling_min_freq,min);
367 store_one(scaling_max_freq,max);
368
369 /**
370  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
371  */
372 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy, char *buf)
373 {
374         unsigned int cur_freq = cpufreq_get(policy->cpu);
375         if (!cur_freq)
376                 return sprintf(buf, "<unknown>");
377         return sprintf(buf, "%u\n", cur_freq);
378 }
379
380
381 /**
382  * show_scaling_governor - show the current policy for the specified CPU
383  */
384 static ssize_t show_scaling_governor (struct cpufreq_policy * policy, char *buf)
385 {
386         if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
387                 return sprintf(buf, "powersave\n");
388         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
389                 return sprintf(buf, "performance\n");
390         else if (policy->governor)
391                 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
392         return -EINVAL;
393 }
394
395
396 /**
397  * store_scaling_governor - store policy for the specified CPU
398  */
399 static ssize_t store_scaling_governor (struct cpufreq_policy * policy, 
400                                        const char *buf, size_t count) 
401 {
402         unsigned int ret = -EINVAL;
403         char    str_governor[16];
404         struct cpufreq_policy new_policy;
405
406         ret = cpufreq_get_policy(&new_policy, policy->cpu);
407         if (ret)
408                 return ret;
409
410         ret = sscanf (buf, "%15s", str_governor);
411         if (ret != 1)
412                 return -EINVAL;
413
414         if (cpufreq_parse_governor(str_governor, &new_policy.policy, &new_policy.governor))
415                 return -EINVAL;
416
417         ret = cpufreq_set_policy(&new_policy);
418
419         return ret ? ret : count;
420 }
421
422 /**
423  * show_scaling_driver - show the cpufreq driver currently loaded
424  */
425 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf)
426 {
427         return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
428 }
429
430 /**
431  * show_scaling_available_governors - show the available CPUfreq governors
432  */
433 static ssize_t show_scaling_available_governors (struct cpufreq_policy * policy,
434                                 char *buf)
435 {
436         ssize_t i = 0;
437         struct cpufreq_governor *t;
438
439         if (!cpufreq_driver->target) {
440                 i += sprintf(buf, "performance powersave");
441                 goto out;
442         }
443
444         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
445                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
446                         goto out;
447                 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
448         }
449  out:
450         i += sprintf(&buf[i], "\n");
451         return i;
452 }
453 /**
454  * show_affected_cpus - show the CPUs affected by each transition
455  */
456 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf)
457 {
458         ssize_t i = 0;
459         unsigned int cpu;
460
461         for_each_cpu_mask(cpu, policy->cpus) {
462                 if (i)
463                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
464                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
465                 if (i >= (PAGE_SIZE - 5))
466                     break;
467         }
468         i += sprintf(&buf[i], "\n");
469         return i;
470 }
471
472
473 #define define_one_ro(_name) \
474 static struct freq_attr _name = \
475 __ATTR(_name, 0444, show_##_name, NULL)
476
477 #define define_one_ro0400(_name) \
478 static struct freq_attr _name = \
479 __ATTR(_name, 0400, show_##_name, NULL)
480
481 #define define_one_rw(_name) \
482 static struct freq_attr _name = \
483 __ATTR(_name, 0644, show_##_name, store_##_name)
484
485 define_one_ro0400(cpuinfo_cur_freq);
486 define_one_ro(cpuinfo_min_freq);
487 define_one_ro(cpuinfo_max_freq);
488 define_one_ro(scaling_available_governors);
489 define_one_ro(scaling_driver);
490 define_one_ro(scaling_cur_freq);
491 define_one_ro(affected_cpus);
492 define_one_rw(scaling_min_freq);
493 define_one_rw(scaling_max_freq);
494 define_one_rw(scaling_governor);
495
496 static struct attribute * default_attrs[] = {
497         &cpuinfo_min_freq.attr,
498         &cpuinfo_max_freq.attr,
499         &scaling_min_freq.attr,
500         &scaling_max_freq.attr,
501         &affected_cpus.attr,
502         &scaling_governor.attr,
503         &scaling_driver.attr,
504         &scaling_available_governors.attr,
505         NULL
506 };
507
508 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
509 #define to_attr(a) container_of(a,struct freq_attr,attr)
510
511 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf)
512 {
513         struct cpufreq_policy * policy = to_policy(kobj);
514         struct freq_attr * fattr = to_attr(attr);
515         ssize_t ret;
516         policy = cpufreq_cpu_get(policy->cpu);
517         if (!policy)
518                 return -EINVAL;
519         ret = fattr->show ? fattr->show(policy,buf) : -EIO;
520         cpufreq_cpu_put(policy);
521         return ret;
522 }
523
524 static ssize_t store(struct kobject * kobj, struct attribute * attr, 
525                      const char * buf, size_t count)
526 {
527         struct cpufreq_policy * policy = to_policy(kobj);
528         struct freq_attr * fattr = to_attr(attr);
529         ssize_t ret;
530         policy = cpufreq_cpu_get(policy->cpu);
531         if (!policy)
532                 return -EINVAL;
533         ret = fattr->store ? fattr->store(policy,buf,count) : -EIO;
534         cpufreq_cpu_put(policy);
535         return ret;
536 }
537
538 static void cpufreq_sysfs_release(struct kobject * kobj)
539 {
540         struct cpufreq_policy * policy = to_policy(kobj);
541         dprintk("last reference is dropped\n");
542         complete(&policy->kobj_unregister);
543 }
544
545 static struct sysfs_ops sysfs_ops = {
546         .show   = show,
547         .store  = store,
548 };
549
550 static struct kobj_type ktype_cpufreq = {
551         .sysfs_ops      = &sysfs_ops,
552         .default_attrs  = default_attrs,
553         .release        = cpufreq_sysfs_release,
554 };
555
556
557 /**
558  * cpufreq_add_dev - add a CPU device
559  *
560  * Adds the cpufreq interface for a CPU device. 
561  */
562 static int cpufreq_add_dev (struct sys_device * sys_dev)
563 {
564         unsigned int cpu = sys_dev->id;
565         int ret = 0;
566         struct cpufreq_policy new_policy;
567         struct cpufreq_policy *policy;
568         struct freq_attr **drv_attr;
569         unsigned long flags;
570         unsigned int j;
571
572         if (cpu_is_offline(cpu))
573                 return 0;
574
575         cpufreq_debug_disable_ratelimit();
576         dprintk("adding CPU %u\n", cpu);
577
578 #ifdef CONFIG_SMP
579         /* check whether a different CPU already registered this
580          * CPU because it is in the same boat. */
581         policy = cpufreq_cpu_get(cpu);
582         if (unlikely(policy)) {
583                 dprintk("CPU already managed, adding link\n");
584                 sysfs_create_link(&sys_dev->kobj, &policy->kobj, "cpufreq");
585                 cpufreq_debug_enable_ratelimit();
586                 return 0;
587         }
588 #endif
589
590         if (!try_module_get(cpufreq_driver->owner)) {
591                 ret = -EINVAL;
592                 goto module_out;
593         }
594
595         policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
596         if (!policy) {
597                 ret = -ENOMEM;
598                 goto nomem_out;
599         }
600
601         policy->cpu = cpu;
602         policy->cpus = cpumask_of_cpu(cpu);
603
604         mutex_init(&policy->lock);
605         mutex_lock(&policy->lock);
606         init_completion(&policy->kobj_unregister);
607         INIT_WORK(&policy->update, handle_update, (void *)(long)cpu);
608
609         /* call driver. From then on the cpufreq must be able
610          * to accept all calls to ->verify and ->setpolicy for this CPU
611          */
612         ret = cpufreq_driver->init(policy);
613         if (ret) {
614                 dprintk("initialization failed\n");
615                 mutex_unlock(&policy->lock);
616                 goto err_out;
617         }
618
619         memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
620
621         /* prepare interface data */
622         policy->kobj.parent = &sys_dev->kobj;
623         policy->kobj.ktype = &ktype_cpufreq;
624         strlcpy(policy->kobj.name, "cpufreq", KOBJ_NAME_LEN);
625
626         ret = kobject_register(&policy->kobj);
627         if (ret) {
628                 mutex_unlock(&policy->lock);
629                 goto err_out_driver_exit;
630         }
631         /* set up files for this cpu device */
632         drv_attr = cpufreq_driver->attr;
633         while ((drv_attr) && (*drv_attr)) {
634                 sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
635                 drv_attr++;
636         }
637         if (cpufreq_driver->get)
638                 sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
639         if (cpufreq_driver->target)
640                 sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
641
642         spin_lock_irqsave(&cpufreq_driver_lock, flags);
643         for_each_cpu_mask(j, policy->cpus)
644                 cpufreq_cpu_data[j] = policy;
645         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
646         policy->governor = NULL; /* to assure that the starting sequence is
647                                   * run in cpufreq_set_policy */
648         mutex_unlock(&policy->lock);
649         
650         /* set default policy */
651         
652         ret = cpufreq_set_policy(&new_policy);
653         if (ret) {
654                 dprintk("setting policy failed\n");
655                 goto err_out_unregister;
656         }
657
658         module_put(cpufreq_driver->owner);
659         dprintk("initialization complete\n");
660         cpufreq_debug_enable_ratelimit();
661         
662         return 0;
663
664
665 err_out_unregister:
666         spin_lock_irqsave(&cpufreq_driver_lock, flags);
667         for_each_cpu_mask(j, policy->cpus)
668                 cpufreq_cpu_data[j] = NULL;
669         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
670
671         kobject_unregister(&policy->kobj);
672         wait_for_completion(&policy->kobj_unregister);
673
674 err_out_driver_exit:
675         if (cpufreq_driver->exit)
676                 cpufreq_driver->exit(policy);
677
678 err_out:
679         kfree(policy);
680
681 nomem_out:
682         module_put(cpufreq_driver->owner);
683 module_out:
684         cpufreq_debug_enable_ratelimit();
685         return ret;
686 }
687
688
689 /**
690  * cpufreq_remove_dev - remove a CPU device
691  *
692  * Removes the cpufreq interface for a CPU device.
693  */
694 static int cpufreq_remove_dev (struct sys_device * sys_dev)
695 {
696         unsigned int cpu = sys_dev->id;
697         unsigned long flags;
698         struct cpufreq_policy *data;
699 #ifdef CONFIG_SMP
700         struct sys_device *cpu_sys_dev;
701         unsigned int j;
702 #endif
703
704         cpufreq_debug_disable_ratelimit();
705         dprintk("unregistering CPU %u\n", cpu);
706
707         spin_lock_irqsave(&cpufreq_driver_lock, flags);
708         data = cpufreq_cpu_data[cpu];
709
710         if (!data) {
711                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
712                 cpufreq_debug_enable_ratelimit();
713                 return -EINVAL;
714         }
715         cpufreq_cpu_data[cpu] = NULL;
716
717
718 #ifdef CONFIG_SMP
719         /* if this isn't the CPU which is the parent of the kobj, we
720          * only need to unlink, put and exit 
721          */
722         if (unlikely(cpu != data->cpu)) {
723                 dprintk("removing link\n");
724                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
725                 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
726                 cpufreq_cpu_put(data);
727                 cpufreq_debug_enable_ratelimit();
728                 return 0;
729         }
730 #endif
731
732
733         if (!kobject_get(&data->kobj)) {
734                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
735                 cpufreq_debug_enable_ratelimit();
736                 return -EFAULT;
737         }
738
739 #ifdef CONFIG_SMP
740         /* if we have other CPUs still registered, we need to unlink them,
741          * or else wait_for_completion below will lock up. Clean the
742          * cpufreq_cpu_data[] while holding the lock, and remove the sysfs
743          * links afterwards.
744          */
745         if (unlikely(cpus_weight(data->cpus) > 1)) {
746                 for_each_cpu_mask(j, data->cpus) {
747                         if (j == cpu)
748                                 continue;
749                         cpufreq_cpu_data[j] = NULL;
750                 }
751         }
752
753         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
754
755         if (unlikely(cpus_weight(data->cpus) > 1)) {
756                 for_each_cpu_mask(j, data->cpus) {
757                         if (j == cpu)
758                                 continue;
759                         dprintk("removing link for cpu %u\n", j);
760                         cpu_sys_dev = get_cpu_sysdev(j);
761                         sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
762                         cpufreq_cpu_put(data);
763                 }
764         }
765 #else
766         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
767 #endif
768
769         mutex_lock(&data->lock);
770         if (cpufreq_driver->target)
771                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
772         mutex_unlock(&data->lock);
773
774         kobject_unregister(&data->kobj);
775
776         kobject_put(&data->kobj);
777
778         /* we need to make sure that the underlying kobj is actually
779          * not referenced anymore by anybody before we proceed with 
780          * unloading.
781          */
782         dprintk("waiting for dropping of refcount\n");
783         wait_for_completion(&data->kobj_unregister);
784         dprintk("wait complete\n");
785
786         if (cpufreq_driver->exit)
787                 cpufreq_driver->exit(data);
788
789         kfree(data);
790
791         cpufreq_debug_enable_ratelimit();
792
793         return 0;
794 }
795
796
797 static void handle_update(void *data)
798 {
799         unsigned int cpu = (unsigned int)(long)data;
800         dprintk("handle_update for cpu %u called\n", cpu);
801         cpufreq_update_policy(cpu);
802 }
803
804 /**
805  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
806  *      @cpu: cpu number
807  *      @old_freq: CPU frequency the kernel thinks the CPU runs at
808  *      @new_freq: CPU frequency the CPU actually runs at
809  *
810  *      We adjust to current frequency first, and need to clean up later. So either call
811  *      to cpufreq_update_policy() or schedule handle_update()).
812  */
813 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, unsigned int new_freq)
814 {
815         struct cpufreq_freqs freqs;
816
817         dprintk(KERN_WARNING "Warning: CPU frequency out of sync: cpufreq and timing "
818                "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
819
820         freqs.cpu = cpu;
821         freqs.old = old_freq;
822         freqs.new = new_freq;
823         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
824         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
825 }
826
827
828 /** 
829  * cpufreq_quick_get - get the CPU frequency (in kHz) frpm policy->cur
830  * @cpu: CPU number
831  *
832  * This is the last known freq, without actually getting it from the driver.
833  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
834  */
835 unsigned int cpufreq_quick_get(unsigned int cpu)
836 {
837         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
838         unsigned int ret = 0;
839
840         if (policy) {
841                 mutex_lock(&policy->lock);
842                 ret = policy->cur;
843                 mutex_unlock(&policy->lock);
844                 cpufreq_cpu_put(policy);
845         }
846
847         return (ret);
848 }
849 EXPORT_SYMBOL(cpufreq_quick_get);
850
851
852 /** 
853  * cpufreq_get - get the current CPU frequency (in kHz)
854  * @cpu: CPU number
855  *
856  * Get the CPU current (static) CPU frequency
857  */
858 unsigned int cpufreq_get(unsigned int cpu)
859 {
860         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
861         unsigned int ret = 0;
862
863         if (!policy)
864                 return 0;
865
866         if (!cpufreq_driver->get)
867                 goto out;
868
869         mutex_lock(&policy->lock);
870
871         ret = cpufreq_driver->get(cpu);
872
873         if (ret && policy->cur && !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) 
874         {
875                 /* verify no discrepancy between actual and saved value exists */
876                 if (unlikely(ret != policy->cur)) {
877                         cpufreq_out_of_sync(cpu, policy->cur, ret);
878                         schedule_work(&policy->update);
879                 }
880         }
881
882         mutex_unlock(&policy->lock);
883
884  out:
885         cpufreq_cpu_put(policy);
886
887         return (ret);
888 }
889 EXPORT_SYMBOL(cpufreq_get);
890
891
892 /**
893  *      cpufreq_suspend - let the low level driver prepare for suspend
894  */
895
896 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg)
897 {
898         int cpu = sysdev->id;
899         unsigned int ret = 0;
900         unsigned int cur_freq = 0;
901         struct cpufreq_policy *cpu_policy;
902
903         dprintk("resuming cpu %u\n", cpu);
904
905         if (!cpu_online(cpu))
906                 return 0;
907
908         /* we may be lax here as interrupts are off. Nonetheless
909          * we need to grab the correct cpu policy, as to check
910          * whether we really run on this CPU.
911          */
912
913         cpu_policy = cpufreq_cpu_get(cpu);
914         if (!cpu_policy)
915                 return -EINVAL;
916
917         /* only handle each CPU group once */
918         if (unlikely(cpu_policy->cpu != cpu)) {
919                 cpufreq_cpu_put(cpu_policy);
920                 return 0;
921         }
922
923         if (cpufreq_driver->suspend) {
924                 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
925                 if (ret) {
926                         printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
927                                         "step on CPU %u\n", cpu_policy->cpu);
928                         cpufreq_cpu_put(cpu_policy);
929                         return ret;
930                 }
931         }
932
933
934         if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
935                 goto out;
936
937         if (cpufreq_driver->get)
938                 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
939
940         if (!cur_freq || !cpu_policy->cur) {
941                 printk(KERN_ERR "cpufreq: suspend failed to assert current "
942                        "frequency is what timing core thinks it is.\n");
943                 goto out;
944         }
945
946         if (unlikely(cur_freq != cpu_policy->cur)) {
947                 struct cpufreq_freqs freqs;
948
949                 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
950                         dprintk(KERN_DEBUG "Warning: CPU frequency is %u, "
951                                "cpufreq assumed %u kHz.\n",
952                                cur_freq, cpu_policy->cur);
953
954                 freqs.cpu = cpu;
955                 freqs.old = cpu_policy->cur;
956                 freqs.new = cur_freq;
957
958                 notifier_call_chain(&cpufreq_transition_notifier_list,
959                                     CPUFREQ_SUSPENDCHANGE, &freqs);
960                 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
961
962                 cpu_policy->cur = cur_freq;
963         }
964
965  out:
966         cpufreq_cpu_put(cpu_policy);
967         return 0;
968 }
969
970 /**
971  *      cpufreq_resume -  restore proper CPU frequency handling after resume
972  *
973  *      1.) resume CPUfreq hardware support (cpufreq_driver->resume())
974  *      2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
975  *      3.) schedule call cpufreq_update_policy() ASAP as interrupts are
976  *          restored.
977  */
978 static int cpufreq_resume(struct sys_device * sysdev)
979 {
980         int cpu = sysdev->id;
981         unsigned int ret = 0;
982         struct cpufreq_policy *cpu_policy;
983
984         dprintk("resuming cpu %u\n", cpu);
985
986         if (!cpu_online(cpu))
987                 return 0;
988
989         /* we may be lax here as interrupts are off. Nonetheless
990          * we need to grab the correct cpu policy, as to check
991          * whether we really run on this CPU.
992          */
993
994         cpu_policy = cpufreq_cpu_get(cpu);
995         if (!cpu_policy)
996                 return -EINVAL;
997
998         /* only handle each CPU group once */
999         if (unlikely(cpu_policy->cpu != cpu)) {
1000                 cpufreq_cpu_put(cpu_policy);
1001                 return 0;
1002         }
1003
1004         if (cpufreq_driver->resume) {
1005                 ret = cpufreq_driver->resume(cpu_policy);
1006                 if (ret) {
1007                         printk(KERN_ERR "cpufreq: resume failed in ->resume "
1008                                         "step on CPU %u\n", cpu_policy->cpu);
1009                         cpufreq_cpu_put(cpu_policy);
1010                         return ret;
1011                 }
1012         }
1013
1014         if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1015                 unsigned int cur_freq = 0;
1016
1017                 if (cpufreq_driver->get)
1018                         cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1019
1020                 if (!cur_freq || !cpu_policy->cur) {
1021                         printk(KERN_ERR "cpufreq: resume failed to assert "
1022                                         "current frequency is what timing core "
1023                                         "thinks it is.\n");
1024                         goto out;
1025                 }
1026
1027                 if (unlikely(cur_freq != cpu_policy->cur)) {
1028                         struct cpufreq_freqs freqs;
1029
1030                         if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1031                                 dprintk(KERN_WARNING "Warning: CPU frequency"
1032                                        "is %u, cpufreq assumed %u kHz.\n",
1033                                        cur_freq, cpu_policy->cur);
1034
1035                         freqs.cpu = cpu;
1036                         freqs.old = cpu_policy->cur;
1037                         freqs.new = cur_freq;
1038
1039                         notifier_call_chain(&cpufreq_transition_notifier_list,
1040                                         CPUFREQ_RESUMECHANGE, &freqs);
1041                         adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1042
1043                         cpu_policy->cur = cur_freq;
1044                 }
1045         }
1046
1047 out:
1048         schedule_work(&cpu_policy->update);
1049         cpufreq_cpu_put(cpu_policy);
1050         return ret;
1051 }
1052
1053 static struct sysdev_driver cpufreq_sysdev_driver = {
1054         .add            = cpufreq_add_dev,
1055         .remove         = cpufreq_remove_dev,
1056         .suspend        = cpufreq_suspend,
1057         .resume         = cpufreq_resume,
1058 };
1059
1060
1061 /*********************************************************************
1062  *                     NOTIFIER LISTS INTERFACE                      *
1063  *********************************************************************/
1064
1065 /**
1066  *      cpufreq_register_notifier - register a driver with cpufreq
1067  *      @nb: notifier function to register
1068  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1069  *
1070  *      Add a driver to one of two lists: either a list of drivers that 
1071  *      are notified about clock rate changes (once before and once after
1072  *      the transition), or a list of drivers that are notified about
1073  *      changes in cpufreq policy.
1074  *
1075  *      This function may sleep, and has the same return conditions as
1076  *      notifier_chain_register.
1077  */
1078 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1079 {
1080         int ret;
1081
1082         down_write(&cpufreq_notifier_rwsem);
1083         switch (list) {
1084         case CPUFREQ_TRANSITION_NOTIFIER:
1085                 ret = notifier_chain_register(&cpufreq_transition_notifier_list, nb);
1086                 break;
1087         case CPUFREQ_POLICY_NOTIFIER:
1088                 ret = notifier_chain_register(&cpufreq_policy_notifier_list, nb);
1089                 break;
1090         default:
1091                 ret = -EINVAL;
1092         }
1093         up_write(&cpufreq_notifier_rwsem);
1094
1095         return ret;
1096 }
1097 EXPORT_SYMBOL(cpufreq_register_notifier);
1098
1099
1100 /**
1101  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1102  *      @nb: notifier block to be unregistered
1103  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1104  *
1105  *      Remove a driver from the CPU frequency notifier list.
1106  *
1107  *      This function may sleep, and has the same return conditions as
1108  *      notifier_chain_unregister.
1109  */
1110 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1111 {
1112         int ret;
1113
1114         down_write(&cpufreq_notifier_rwsem);
1115         switch (list) {
1116         case CPUFREQ_TRANSITION_NOTIFIER:
1117                 ret = notifier_chain_unregister(&cpufreq_transition_notifier_list, nb);
1118                 break;
1119         case CPUFREQ_POLICY_NOTIFIER:
1120                 ret = notifier_chain_unregister(&cpufreq_policy_notifier_list, nb);
1121                 break;
1122         default:
1123                 ret = -EINVAL;
1124         }
1125         up_write(&cpufreq_notifier_rwsem);
1126
1127         return ret;
1128 }
1129 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1130
1131
1132 /*********************************************************************
1133  *                              GOVERNORS                            *
1134  *********************************************************************/
1135
1136
1137 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1138                             unsigned int target_freq,
1139                             unsigned int relation)
1140 {
1141         int retval = -EINVAL;
1142
1143         lock_cpu_hotplug();
1144         dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1145                 target_freq, relation);
1146         if (cpu_online(policy->cpu) && cpufreq_driver->target)
1147                 retval = cpufreq_driver->target(policy, target_freq, relation);
1148
1149         unlock_cpu_hotplug();
1150
1151         return retval;
1152 }
1153 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1154
1155 int cpufreq_driver_target(struct cpufreq_policy *policy,
1156                           unsigned int target_freq,
1157                           unsigned int relation)
1158 {
1159         int ret;
1160
1161         policy = cpufreq_cpu_get(policy->cpu);
1162         if (!policy)
1163                 return -EINVAL;
1164
1165         mutex_lock(&policy->lock);
1166
1167         ret = __cpufreq_driver_target(policy, target_freq, relation);
1168
1169         mutex_unlock(&policy->lock);
1170
1171         cpufreq_cpu_put(policy);
1172
1173         return ret;
1174 }
1175 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1176
1177
1178 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event)
1179 {
1180         int ret;
1181
1182         if (!try_module_get(policy->governor->owner))
1183                 return -EINVAL;
1184
1185         dprintk("__cpufreq_governor for CPU %u, event %u\n", policy->cpu, event);
1186         ret = policy->governor->governor(policy, event);
1187
1188         /* we keep one module reference alive for each CPU governed by this CPU */
1189         if ((event != CPUFREQ_GOV_START) || ret)
1190                 module_put(policy->governor->owner);
1191         if ((event == CPUFREQ_GOV_STOP) && !ret)
1192                 module_put(policy->governor->owner);
1193
1194         return ret;
1195 }
1196
1197
1198 int cpufreq_governor(unsigned int cpu, unsigned int event)
1199 {
1200         int ret = 0;
1201         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1202
1203         if (!policy)
1204                 return -EINVAL;
1205
1206         mutex_lock(&policy->lock);
1207         ret = __cpufreq_governor(policy, event);
1208         mutex_unlock(&policy->lock);
1209
1210         cpufreq_cpu_put(policy);
1211
1212         return ret;
1213 }
1214 EXPORT_SYMBOL_GPL(cpufreq_governor);
1215
1216
1217 int cpufreq_register_governor(struct cpufreq_governor *governor)
1218 {
1219         struct cpufreq_governor *t;
1220
1221         if (!governor)
1222                 return -EINVAL;
1223
1224         mutex_lock(&cpufreq_governor_mutex);
1225         
1226         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
1227                 if (!strnicmp(governor->name,t->name,CPUFREQ_NAME_LEN)) {
1228                         mutex_unlock(&cpufreq_governor_mutex);
1229                         return -EBUSY;
1230                 }
1231         }
1232         list_add(&governor->governor_list, &cpufreq_governor_list);
1233
1234         mutex_unlock(&cpufreq_governor_mutex);
1235
1236         return 0;
1237 }
1238 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1239
1240
1241 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1242 {
1243         if (!governor)
1244                 return;
1245
1246         mutex_lock(&cpufreq_governor_mutex);
1247         list_del(&governor->governor_list);
1248         mutex_unlock(&cpufreq_governor_mutex);
1249         return;
1250 }
1251 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1252
1253
1254
1255 /*********************************************************************
1256  *                          POLICY INTERFACE                         *
1257  *********************************************************************/
1258
1259 /**
1260  * cpufreq_get_policy - get the current cpufreq_policy
1261  * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1262  *
1263  * Reads the current cpufreq policy.
1264  */
1265 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1266 {
1267         struct cpufreq_policy *cpu_policy;
1268         if (!policy)
1269                 return -EINVAL;
1270
1271         cpu_policy = cpufreq_cpu_get(cpu);
1272         if (!cpu_policy)
1273                 return -EINVAL;
1274
1275         mutex_lock(&cpu_policy->lock);
1276         memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1277         mutex_unlock(&cpu_policy->lock);
1278
1279         cpufreq_cpu_put(cpu_policy);
1280
1281         return 0;
1282 }
1283 EXPORT_SYMBOL(cpufreq_get_policy);
1284
1285
1286 static int __cpufreq_set_policy(struct cpufreq_policy *data, struct cpufreq_policy *policy)
1287 {
1288         int ret = 0;
1289
1290         cpufreq_debug_disable_ratelimit();
1291         dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1292                 policy->min, policy->max);
1293
1294         memcpy(&policy->cpuinfo, 
1295                &data->cpuinfo, 
1296                sizeof(struct cpufreq_cpuinfo));
1297
1298         /* verify the cpu speed can be set within this limit */
1299         ret = cpufreq_driver->verify(policy);
1300         if (ret)
1301                 goto error_out;
1302
1303         down_read(&cpufreq_notifier_rwsem);
1304
1305         /* adjust if necessary - all reasons */
1306         notifier_call_chain(&cpufreq_policy_notifier_list, CPUFREQ_ADJUST,
1307                             policy);
1308
1309         /* adjust if necessary - hardware incompatibility*/
1310         notifier_call_chain(&cpufreq_policy_notifier_list, CPUFREQ_INCOMPATIBLE,
1311                             policy);
1312
1313         /* verify the cpu speed can be set within this limit,
1314            which might be different to the first one */
1315         ret = cpufreq_driver->verify(policy);
1316         if (ret) {
1317                 up_read(&cpufreq_notifier_rwsem);
1318                 goto error_out;
1319         }
1320
1321         /* notification of the new policy */
1322         notifier_call_chain(&cpufreq_policy_notifier_list, CPUFREQ_NOTIFY,
1323                             policy);
1324
1325         up_read(&cpufreq_notifier_rwsem);
1326
1327         data->min    = policy->min;
1328         data->max    = policy->max;
1329
1330         dprintk("new min and max freqs are %u - %u kHz\n", data->min, data->max);
1331
1332         if (cpufreq_driver->setpolicy) {
1333                 data->policy = policy->policy;
1334                 dprintk("setting range\n");
1335                 ret = cpufreq_driver->setpolicy(policy);
1336         } else {
1337                 if (policy->governor != data->governor) {
1338                         /* save old, working values */
1339                         struct cpufreq_governor *old_gov = data->governor;
1340
1341                         dprintk("governor switch\n");
1342
1343                         /* end old governor */
1344                         if (data->governor)
1345                                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1346
1347                         /* start new governor */
1348                         data->governor = policy->governor;
1349                         if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1350                                 /* new governor failed, so re-start old one */
1351                                 dprintk("starting governor %s failed\n", data->governor->name);
1352                                 if (old_gov) {
1353                                         data->governor = old_gov;
1354                                         __cpufreq_governor(data, CPUFREQ_GOV_START);
1355                                 }
1356                                 ret = -EINVAL;
1357                                 goto error_out;
1358                         }
1359                         /* might be a policy change, too, so fall through */
1360                 }
1361                 dprintk("governor: change or update limits\n");
1362                 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1363         }
1364
1365  error_out:
1366         cpufreq_debug_enable_ratelimit();
1367         return ret;
1368 }
1369
1370 /**
1371  *      cpufreq_set_policy - set a new CPUFreq policy
1372  *      @policy: policy to be set.
1373  *
1374  *      Sets a new CPU frequency and voltage scaling policy.
1375  */
1376 int cpufreq_set_policy(struct cpufreq_policy *policy)
1377 {
1378         int ret = 0;
1379         struct cpufreq_policy *data;
1380
1381         if (!policy)
1382                 return -EINVAL;
1383
1384         data = cpufreq_cpu_get(policy->cpu);
1385         if (!data)
1386                 return -EINVAL;
1387
1388         /* lock this CPU */
1389         mutex_lock(&data->lock);
1390
1391         ret = __cpufreq_set_policy(data, policy);
1392         data->user_policy.min = data->min;
1393         data->user_policy.max = data->max;
1394         data->user_policy.policy = data->policy;
1395         data->user_policy.governor = data->governor;
1396
1397         mutex_unlock(&data->lock);
1398         cpufreq_cpu_put(data);
1399
1400         return ret;
1401 }
1402 EXPORT_SYMBOL(cpufreq_set_policy);
1403
1404
1405 /**
1406  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
1407  *      @cpu: CPU which shall be re-evaluated
1408  *
1409  *      Usefull for policy notifiers which have different necessities
1410  *      at different times.
1411  */
1412 int cpufreq_update_policy(unsigned int cpu)
1413 {
1414         struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1415         struct cpufreq_policy policy;
1416         int ret = 0;
1417
1418         if (!data)
1419                 return -ENODEV;
1420
1421         mutex_lock(&data->lock);
1422
1423         dprintk("updating policy for CPU %u\n", cpu);
1424         memcpy(&policy, 
1425                data,
1426                sizeof(struct cpufreq_policy));
1427         policy.min = data->user_policy.min;
1428         policy.max = data->user_policy.max;
1429         policy.policy = data->user_policy.policy;
1430         policy.governor = data->user_policy.governor;
1431
1432         /* BIOS might change freq behind our back
1433           -> ask driver for current freq and notify governors about a change */
1434         if (cpufreq_driver->get) {
1435                 policy.cur = cpufreq_driver->get(cpu);
1436                 if (data->cur != policy.cur)
1437                         cpufreq_out_of_sync(cpu, data->cur, policy.cur);
1438         }
1439
1440         ret = __cpufreq_set_policy(data, &policy);
1441
1442         mutex_unlock(&data->lock);
1443
1444         cpufreq_cpu_put(data);
1445         return ret;
1446 }
1447 EXPORT_SYMBOL(cpufreq_update_policy);
1448
1449 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1450                                         unsigned long action, void *hcpu)
1451 {
1452         unsigned int cpu = (unsigned long)hcpu;
1453         struct cpufreq_policy *policy;
1454         struct sys_device *sys_dev;
1455
1456         sys_dev = get_cpu_sysdev(cpu);
1457
1458         if (sys_dev) {
1459                 switch (action) {
1460                 case CPU_ONLINE:
1461                         cpufreq_add_dev(sys_dev);
1462                         break;
1463                 case CPU_DOWN_PREPARE:
1464                         /*
1465                          * We attempt to put this cpu in lowest frequency
1466                          * possible before going down. This will permit
1467                          * hardware-managed P-State to switch other related
1468                          * threads to min or higher speeds if possible.
1469                          */
1470                         policy = cpufreq_cpu_data[cpu];
1471                         if (policy) {
1472                                 cpufreq_driver_target(policy, policy->min,
1473                                                 CPUFREQ_RELATION_H);
1474                         }
1475                         break;
1476                 case CPU_DEAD:
1477                         cpufreq_remove_dev(sys_dev);
1478                         break;
1479                 }
1480         }
1481         return NOTIFY_OK;
1482 }
1483
1484 static struct notifier_block cpufreq_cpu_notifier =
1485 {
1486     .notifier_call = cpufreq_cpu_callback,
1487 };
1488
1489 /*********************************************************************
1490  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1491  *********************************************************************/
1492
1493 /**
1494  * cpufreq_register_driver - register a CPU Frequency driver
1495  * @driver_data: A struct cpufreq_driver containing the values#
1496  * submitted by the CPU Frequency driver.
1497  *
1498  *   Registers a CPU Frequency driver to this core code. This code 
1499  * returns zero on success, -EBUSY when another driver got here first
1500  * (and isn't unregistered in the meantime). 
1501  *
1502  */
1503 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1504 {
1505         unsigned long flags;
1506         int ret;
1507
1508         if (!driver_data || !driver_data->verify || !driver_data->init ||
1509             ((!driver_data->setpolicy) && (!driver_data->target)))
1510                 return -EINVAL;
1511
1512         dprintk("trying to register driver %s\n", driver_data->name);
1513
1514         if (driver_data->setpolicy)
1515                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1516
1517         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1518         if (cpufreq_driver) {
1519                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1520                 return -EBUSY;
1521         }
1522         cpufreq_driver = driver_data;
1523         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1524
1525         ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver);
1526
1527         if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1528                 int i;
1529                 ret = -ENODEV;
1530
1531                 /* check for at least one working CPU */
1532                 for (i=0; i<NR_CPUS; i++)
1533                         if (cpufreq_cpu_data[i])
1534                                 ret = 0;
1535
1536                 /* if all ->init() calls failed, unregister */
1537                 if (ret) {
1538                         dprintk("no CPU initialized for driver %s\n", driver_data->name);
1539                         sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1540
1541                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1542                         cpufreq_driver = NULL;
1543                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544                 }
1545         }
1546
1547         if (!ret) {
1548                 register_cpu_notifier(&cpufreq_cpu_notifier);
1549                 dprintk("driver %s up and running\n", driver_data->name);
1550                 cpufreq_debug_enable_ratelimit();
1551         }
1552
1553         return (ret);
1554 }
1555 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1556
1557
1558 /**
1559  * cpufreq_unregister_driver - unregister the current CPUFreq driver
1560  *
1561  *    Unregister the current CPUFreq driver. Only call this if you have 
1562  * the right to do so, i.e. if you have succeeded in initialising before!
1563  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1564  * currently not initialised.
1565  */
1566 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1567 {
1568         unsigned long flags;
1569
1570         cpufreq_debug_disable_ratelimit();
1571
1572         if (!cpufreq_driver || (driver != cpufreq_driver)) {
1573                 cpufreq_debug_enable_ratelimit();
1574                 return -EINVAL;
1575         }
1576
1577         dprintk("unregistering driver %s\n", driver->name);
1578
1579         sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1580         unregister_cpu_notifier(&cpufreq_cpu_notifier);
1581
1582         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1583         cpufreq_driver = NULL;
1584         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1585
1586         return 0;
1587 }
1588 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);