/home/lenb/src/to-akpm branch 'acpi-2.6.12'
[pandora-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  *
13  *  This program is free software; you can redistribute it and/or modify it
14  *  under the terms of the GNU General Public License as published by the
15  *  Free Software Foundation; either version 2 of the License, or (at your
16  *  option) any later version.
17  *
18  *
19  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  *  You should have received a copy of the GNU General Public License along
31  *  with this program; if not, write to the Free Software Foundation, Inc.,
32  *  675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34
35 /*
36  * This file holds the "policy" for the interface to the SMI state
37  * machine.  It does the configuration, handles timers and interrupts,
38  * and drives the real SMI state machine.
39  */
40
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <asm/irq.h>
55 #ifdef CONFIG_HIGH_RES_TIMERS
56 #include <linux/hrtime.h>
57 # if defined(schedule_next_int)
58 /* Old high-res timer code, do translations. */
59 #  define get_arch_cycles(a) quick_update_jiffies_sub(a)
60 #  define arch_cycles_per_jiffy cycles_per_jiffies
61 # endif
62 static inline void add_usec_to_timer(struct timer_list *t, long v)
63 {
64         t->sub_expires += nsec_to_arch_cycle(v * 1000);
65         while (t->sub_expires >= arch_cycles_per_jiffy)
66         {
67                 t->expires++;
68                 t->sub_expires -= arch_cycles_per_jiffy;
69         }
70 }
71 #endif
72 #include <linux/interrupt.h>
73 #include <linux/rcupdate.h>
74 #include <linux/ipmi_smi.h>
75 #include <asm/io.h>
76 #include "ipmi_si_sm.h"
77 #include <linux/init.h>
78
79 #define IPMI_SI_VERSION "v33"
80
81 /* Measure times between events in the driver. */
82 #undef DEBUG_TIMING
83
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC    10000
86 #define SI_USEC_PER_JIFFY       (1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
89                                        short timeout */
90
91 enum si_intf_state {
92         SI_NORMAL,
93         SI_GETTING_FLAGS,
94         SI_GETTING_EVENTS,
95         SI_CLEARING_FLAGS,
96         SI_CLEARING_FLAGS_THEN_SET_IRQ,
97         SI_GETTING_MESSAGES,
98         SI_ENABLE_INTERRUPTS1,
99         SI_ENABLE_INTERRUPTS2
100         /* FIXME - add watchdog stuff. */
101 };
102
103 /* Some BT-specific defines we need here. */
104 #define IPMI_BT_INTMASK_REG             2
105 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
106 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
107
108 enum si_type {
109     SI_KCS, SI_SMIC, SI_BT
110 };
111
112 struct smi_info
113 {
114         ipmi_smi_t             intf;
115         struct si_sm_data      *si_sm;
116         struct si_sm_handlers  *handlers;
117         enum si_type           si_type;
118         spinlock_t             si_lock;
119         spinlock_t             msg_lock;
120         struct list_head       xmit_msgs;
121         struct list_head       hp_xmit_msgs;
122         struct ipmi_smi_msg    *curr_msg;
123         enum si_intf_state     si_state;
124
125         /* Used to handle the various types of I/O that can occur with
126            IPMI */
127         struct si_sm_io io;
128         int (*io_setup)(struct smi_info *info);
129         void (*io_cleanup)(struct smi_info *info);
130         int (*irq_setup)(struct smi_info *info);
131         void (*irq_cleanup)(struct smi_info *info);
132         unsigned int io_size;
133
134         /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
135            is set to hold the flags until we are done handling everything
136            from the flags. */
137 #define RECEIVE_MSG_AVAIL       0x01
138 #define EVENT_MSG_BUFFER_FULL   0x02
139 #define WDT_PRE_TIMEOUT_INT     0x08
140         unsigned char       msg_flags;
141
142         /* If set to true, this will request events the next time the
143            state machine is idle. */
144         atomic_t            req_events;
145
146         /* If true, run the state machine to completion on every send
147            call.  Generally used after a panic to make sure stuff goes
148            out. */
149         int                 run_to_completion;
150
151         /* The I/O port of an SI interface. */
152         int                 port;
153
154         /* The space between start addresses of the two ports.  For
155            instance, if the first port is 0xca2 and the spacing is 4, then
156            the second port is 0xca6. */
157         unsigned int        spacing;
158
159         /* zero if no irq; */
160         int                 irq;
161
162         /* The timer for this si. */
163         struct timer_list   si_timer;
164
165         /* The time (in jiffies) the last timeout occurred at. */
166         unsigned long       last_timeout_jiffies;
167
168         /* Used to gracefully stop the timer without race conditions. */
169         volatile int        stop_operation;
170         volatile int        timer_stopped;
171
172         /* The driver will disable interrupts when it gets into a
173            situation where it cannot handle messages due to lack of
174            memory.  Once that situation clears up, it will re-enable
175            interrupts. */
176         int interrupt_disabled;
177
178         unsigned char ipmi_si_dev_rev;
179         unsigned char ipmi_si_fw_rev_major;
180         unsigned char ipmi_si_fw_rev_minor;
181         unsigned char ipmi_version_major;
182         unsigned char ipmi_version_minor;
183
184         /* Slave address, could be reported from DMI. */
185         unsigned char slave_addr;
186
187         /* Counters and things for the proc filesystem. */
188         spinlock_t count_lock;
189         unsigned long short_timeouts;
190         unsigned long long_timeouts;
191         unsigned long timeout_restarts;
192         unsigned long idles;
193         unsigned long interrupts;
194         unsigned long attentions;
195         unsigned long flag_fetches;
196         unsigned long hosed_count;
197         unsigned long complete_transactions;
198         unsigned long events;
199         unsigned long watchdog_pretimeouts;
200         unsigned long incoming_messages;
201 };
202
203 static void si_restart_short_timer(struct smi_info *smi_info);
204
205 static void deliver_recv_msg(struct smi_info *smi_info,
206                              struct ipmi_smi_msg *msg)
207 {
208         /* Deliver the message to the upper layer with the lock
209            released. */
210         spin_unlock(&(smi_info->si_lock));
211         ipmi_smi_msg_received(smi_info->intf, msg);
212         spin_lock(&(smi_info->si_lock));
213 }
214
215 static void return_hosed_msg(struct smi_info *smi_info)
216 {
217         struct ipmi_smi_msg *msg = smi_info->curr_msg;
218
219         /* Make it a reponse */
220         msg->rsp[0] = msg->data[0] | 4;
221         msg->rsp[1] = msg->data[1];
222         msg->rsp[2] = 0xFF; /* Unknown error. */
223         msg->rsp_size = 3;
224
225         smi_info->curr_msg = NULL;
226         deliver_recv_msg(smi_info, msg);
227 }
228
229 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
230 {
231         int              rv;
232         struct list_head *entry = NULL;
233 #ifdef DEBUG_TIMING
234         struct timeval t;
235 #endif
236
237         /* No need to save flags, we aleady have interrupts off and we
238            already hold the SMI lock. */
239         spin_lock(&(smi_info->msg_lock));
240
241         /* Pick the high priority queue first. */
242         if (! list_empty(&(smi_info->hp_xmit_msgs))) {
243                 entry = smi_info->hp_xmit_msgs.next;
244         } else if (! list_empty(&(smi_info->xmit_msgs))) {
245                 entry = smi_info->xmit_msgs.next;
246         }
247
248         if (!entry) {
249                 smi_info->curr_msg = NULL;
250                 rv = SI_SM_IDLE;
251         } else {
252                 int err;
253
254                 list_del(entry);
255                 smi_info->curr_msg = list_entry(entry,
256                                                 struct ipmi_smi_msg,
257                                                 link);
258 #ifdef DEBUG_TIMING
259                 do_gettimeofday(&t);
260                 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
261 #endif
262                 err = smi_info->handlers->start_transaction(
263                         smi_info->si_sm,
264                         smi_info->curr_msg->data,
265                         smi_info->curr_msg->data_size);
266                 if (err) {
267                         return_hosed_msg(smi_info);
268                 }
269
270                 rv = SI_SM_CALL_WITHOUT_DELAY;
271         }
272         spin_unlock(&(smi_info->msg_lock));
273
274         return rv;
275 }
276
277 static void start_enable_irq(struct smi_info *smi_info)
278 {
279         unsigned char msg[2];
280
281         /* If we are enabling interrupts, we have to tell the
282            BMC to use them. */
283         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
284         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
285
286         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
287         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
288 }
289
290 static void start_clear_flags(struct smi_info *smi_info)
291 {
292         unsigned char msg[3];
293
294         /* Make sure the watchdog pre-timeout flag is not set at startup. */
295         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
296         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
297         msg[2] = WDT_PRE_TIMEOUT_INT;
298
299         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
300         smi_info->si_state = SI_CLEARING_FLAGS;
301 }
302
303 /* When we have a situtaion where we run out of memory and cannot
304    allocate messages, we just leave them in the BMC and run the system
305    polled until we can allocate some memory.  Once we have some
306    memory, we will re-enable the interrupt. */
307 static inline void disable_si_irq(struct smi_info *smi_info)
308 {
309         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
310                 disable_irq_nosync(smi_info->irq);
311                 smi_info->interrupt_disabled = 1;
312         }
313 }
314
315 static inline void enable_si_irq(struct smi_info *smi_info)
316 {
317         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
318                 enable_irq(smi_info->irq);
319                 smi_info->interrupt_disabled = 0;
320         }
321 }
322
323 static void handle_flags(struct smi_info *smi_info)
324 {
325         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
326                 /* Watchdog pre-timeout */
327                 spin_lock(&smi_info->count_lock);
328                 smi_info->watchdog_pretimeouts++;
329                 spin_unlock(&smi_info->count_lock);
330
331                 start_clear_flags(smi_info);
332                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
333                 spin_unlock(&(smi_info->si_lock));
334                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
335                 spin_lock(&(smi_info->si_lock));
336         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
337                 /* Messages available. */
338                 smi_info->curr_msg = ipmi_alloc_smi_msg();
339                 if (!smi_info->curr_msg) {
340                         disable_si_irq(smi_info);
341                         smi_info->si_state = SI_NORMAL;
342                         return;
343                 }
344                 enable_si_irq(smi_info);
345
346                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
347                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
348                 smi_info->curr_msg->data_size = 2;
349
350                 smi_info->handlers->start_transaction(
351                         smi_info->si_sm,
352                         smi_info->curr_msg->data,
353                         smi_info->curr_msg->data_size);
354                 smi_info->si_state = SI_GETTING_MESSAGES;
355         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
356                 /* Events available. */
357                 smi_info->curr_msg = ipmi_alloc_smi_msg();
358                 if (!smi_info->curr_msg) {
359                         disable_si_irq(smi_info);
360                         smi_info->si_state = SI_NORMAL;
361                         return;
362                 }
363                 enable_si_irq(smi_info);
364
365                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
366                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
367                 smi_info->curr_msg->data_size = 2;
368
369                 smi_info->handlers->start_transaction(
370                         smi_info->si_sm,
371                         smi_info->curr_msg->data,
372                         smi_info->curr_msg->data_size);
373                 smi_info->si_state = SI_GETTING_EVENTS;
374         } else {
375                 smi_info->si_state = SI_NORMAL;
376         }
377 }
378
379 static void handle_transaction_done(struct smi_info *smi_info)
380 {
381         struct ipmi_smi_msg *msg;
382 #ifdef DEBUG_TIMING
383         struct timeval t;
384
385         do_gettimeofday(&t);
386         printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
387 #endif
388         switch (smi_info->si_state) {
389         case SI_NORMAL:
390                 if (!smi_info->curr_msg)
391                         break;
392
393                 smi_info->curr_msg->rsp_size
394                         = smi_info->handlers->get_result(
395                                 smi_info->si_sm,
396                                 smi_info->curr_msg->rsp,
397                                 IPMI_MAX_MSG_LENGTH);
398
399                 /* Do this here becase deliver_recv_msg() releases the
400                    lock, and a new message can be put in during the
401                    time the lock is released. */
402                 msg = smi_info->curr_msg;
403                 smi_info->curr_msg = NULL;
404                 deliver_recv_msg(smi_info, msg);
405                 break;
406
407         case SI_GETTING_FLAGS:
408         {
409                 unsigned char msg[4];
410                 unsigned int  len;
411
412                 /* We got the flags from the SMI, now handle them. */
413                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
414                 if (msg[2] != 0) {
415                         /* Error fetching flags, just give up for
416                            now. */
417                         smi_info->si_state = SI_NORMAL;
418                 } else if (len < 4) {
419                         /* Hmm, no flags.  That's technically illegal, but
420                            don't use uninitialized data. */
421                         smi_info->si_state = SI_NORMAL;
422                 } else {
423                         smi_info->msg_flags = msg[3];
424                         handle_flags(smi_info);
425                 }
426                 break;
427         }
428
429         case SI_CLEARING_FLAGS:
430         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
431         {
432                 unsigned char msg[3];
433
434                 /* We cleared the flags. */
435                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
436                 if (msg[2] != 0) {
437                         /* Error clearing flags */
438                         printk(KERN_WARNING
439                                "ipmi_si: Error clearing flags: %2.2x\n",
440                                msg[2]);
441                 }
442                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
443                         start_enable_irq(smi_info);
444                 else
445                         smi_info->si_state = SI_NORMAL;
446                 break;
447         }
448
449         case SI_GETTING_EVENTS:
450         {
451                 smi_info->curr_msg->rsp_size
452                         = smi_info->handlers->get_result(
453                                 smi_info->si_sm,
454                                 smi_info->curr_msg->rsp,
455                                 IPMI_MAX_MSG_LENGTH);
456
457                 /* Do this here becase deliver_recv_msg() releases the
458                    lock, and a new message can be put in during the
459                    time the lock is released. */
460                 msg = smi_info->curr_msg;
461                 smi_info->curr_msg = NULL;
462                 if (msg->rsp[2] != 0) {
463                         /* Error getting event, probably done. */
464                         msg->done(msg);
465
466                         /* Take off the event flag. */
467                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
468                         handle_flags(smi_info);
469                 } else {
470                         spin_lock(&smi_info->count_lock);
471                         smi_info->events++;
472                         spin_unlock(&smi_info->count_lock);
473
474                         /* Do this before we deliver the message
475                            because delivering the message releases the
476                            lock and something else can mess with the
477                            state. */
478                         handle_flags(smi_info);
479
480                         deliver_recv_msg(smi_info, msg);
481                 }
482                 break;
483         }
484
485         case SI_GETTING_MESSAGES:
486         {
487                 smi_info->curr_msg->rsp_size
488                         = smi_info->handlers->get_result(
489                                 smi_info->si_sm,
490                                 smi_info->curr_msg->rsp,
491                                 IPMI_MAX_MSG_LENGTH);
492
493                 /* Do this here becase deliver_recv_msg() releases the
494                    lock, and a new message can be put in during the
495                    time the lock is released. */
496                 msg = smi_info->curr_msg;
497                 smi_info->curr_msg = NULL;
498                 if (msg->rsp[2] != 0) {
499                         /* Error getting event, probably done. */
500                         msg->done(msg);
501
502                         /* Take off the msg flag. */
503                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
504                         handle_flags(smi_info);
505                 } else {
506                         spin_lock(&smi_info->count_lock);
507                         smi_info->incoming_messages++;
508                         spin_unlock(&smi_info->count_lock);
509
510                         /* Do this before we deliver the message
511                            because delivering the message releases the
512                            lock and something else can mess with the
513                            state. */
514                         handle_flags(smi_info);
515
516                         deliver_recv_msg(smi_info, msg);
517                 }
518                 break;
519         }
520
521         case SI_ENABLE_INTERRUPTS1:
522         {
523                 unsigned char msg[4];
524
525                 /* We got the flags from the SMI, now handle them. */
526                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
527                 if (msg[2] != 0) {
528                         printk(KERN_WARNING
529                                "ipmi_si: Could not enable interrupts"
530                                ", failed get, using polled mode.\n");
531                         smi_info->si_state = SI_NORMAL;
532                 } else {
533                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
534                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
535                         msg[2] = msg[3] | 1; /* enable msg queue int */
536                         smi_info->handlers->start_transaction(
537                                 smi_info->si_sm, msg, 3);
538                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
539                 }
540                 break;
541         }
542
543         case SI_ENABLE_INTERRUPTS2:
544         {
545                 unsigned char msg[4];
546
547                 /* We got the flags from the SMI, now handle them. */
548                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
549                 if (msg[2] != 0) {
550                         printk(KERN_WARNING
551                                "ipmi_si: Could not enable interrupts"
552                                ", failed set, using polled mode.\n");
553                 }
554                 smi_info->si_state = SI_NORMAL;
555                 break;
556         }
557         }
558 }
559
560 /* Called on timeouts and events.  Timeouts should pass the elapsed
561    time, interrupts should pass in zero. */
562 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
563                                            int time)
564 {
565         enum si_sm_result si_sm_result;
566
567  restart:
568         /* There used to be a loop here that waited a little while
569            (around 25us) before giving up.  That turned out to be
570            pointless, the minimum delays I was seeing were in the 300us
571            range, which is far too long to wait in an interrupt.  So
572            we just run until the state machine tells us something
573            happened or it needs a delay. */
574         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
575         time = 0;
576         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
577         {
578                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
579         }
580
581         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
582         {
583                 spin_lock(&smi_info->count_lock);
584                 smi_info->complete_transactions++;
585                 spin_unlock(&smi_info->count_lock);
586
587                 handle_transaction_done(smi_info);
588                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
589         }
590         else if (si_sm_result == SI_SM_HOSED)
591         {
592                 spin_lock(&smi_info->count_lock);
593                 smi_info->hosed_count++;
594                 spin_unlock(&smi_info->count_lock);
595
596                 /* Do the before return_hosed_msg, because that
597                    releases the lock. */
598                 smi_info->si_state = SI_NORMAL;
599                 if (smi_info->curr_msg != NULL) {
600                         /* If we were handling a user message, format
601                            a response to send to the upper layer to
602                            tell it about the error. */
603                         return_hosed_msg(smi_info);
604                 }
605                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
606         }
607
608         /* We prefer handling attn over new messages. */
609         if (si_sm_result == SI_SM_ATTN)
610         {
611                 unsigned char msg[2];
612
613                 spin_lock(&smi_info->count_lock);
614                 smi_info->attentions++;
615                 spin_unlock(&smi_info->count_lock);
616
617                 /* Got a attn, send down a get message flags to see
618                    what's causing it.  It would be better to handle
619                    this in the upper layer, but due to the way
620                    interrupts work with the SMI, that's not really
621                    possible. */
622                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
623                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
624
625                 smi_info->handlers->start_transaction(
626                         smi_info->si_sm, msg, 2);
627                 smi_info->si_state = SI_GETTING_FLAGS;
628                 goto restart;
629         }
630
631         /* If we are currently idle, try to start the next message. */
632         if (si_sm_result == SI_SM_IDLE) {
633                 spin_lock(&smi_info->count_lock);
634                 smi_info->idles++;
635                 spin_unlock(&smi_info->count_lock);
636
637                 si_sm_result = start_next_msg(smi_info);
638                 if (si_sm_result != SI_SM_IDLE)
639                         goto restart;
640         }
641
642         if ((si_sm_result == SI_SM_IDLE)
643             && (atomic_read(&smi_info->req_events)))
644         {
645                 /* We are idle and the upper layer requested that I fetch
646                    events, so do so. */
647                 unsigned char msg[2];
648
649                 spin_lock(&smi_info->count_lock);
650                 smi_info->flag_fetches++;
651                 spin_unlock(&smi_info->count_lock);
652
653                 atomic_set(&smi_info->req_events, 0);
654                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
655                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
656
657                 smi_info->handlers->start_transaction(
658                         smi_info->si_sm, msg, 2);
659                 smi_info->si_state = SI_GETTING_FLAGS;
660                 goto restart;
661         }
662
663         return si_sm_result;
664 }
665
666 static void sender(void                *send_info,
667                    struct ipmi_smi_msg *msg,
668                    int                 priority)
669 {
670         struct smi_info   *smi_info = send_info;
671         enum si_sm_result result;
672         unsigned long     flags;
673 #ifdef DEBUG_TIMING
674         struct timeval    t;
675 #endif
676
677         spin_lock_irqsave(&(smi_info->msg_lock), flags);
678 #ifdef DEBUG_TIMING
679         do_gettimeofday(&t);
680         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
681 #endif
682
683         if (smi_info->run_to_completion) {
684                 /* If we are running to completion, then throw it in
685                    the list and run transactions until everything is
686                    clear.  Priority doesn't matter here. */
687                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
688
689                 /* We have to release the msg lock and claim the smi
690                    lock in this case, because of race conditions. */
691                 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
692
693                 spin_lock_irqsave(&(smi_info->si_lock), flags);
694                 result = smi_event_handler(smi_info, 0);
695                 while (result != SI_SM_IDLE) {
696                         udelay(SI_SHORT_TIMEOUT_USEC);
697                         result = smi_event_handler(smi_info,
698                                                    SI_SHORT_TIMEOUT_USEC);
699                 }
700                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
701                 return;
702         } else {
703                 if (priority > 0) {
704                         list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
705                 } else {
706                         list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
707                 }
708         }
709         spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
710
711         spin_lock_irqsave(&(smi_info->si_lock), flags);
712         if ((smi_info->si_state == SI_NORMAL)
713             && (smi_info->curr_msg == NULL))
714         {
715                 start_next_msg(smi_info);
716                 si_restart_short_timer(smi_info);
717         }
718         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
719 }
720
721 static void set_run_to_completion(void *send_info, int i_run_to_completion)
722 {
723         struct smi_info   *smi_info = send_info;
724         enum si_sm_result result;
725         unsigned long     flags;
726
727         spin_lock_irqsave(&(smi_info->si_lock), flags);
728
729         smi_info->run_to_completion = i_run_to_completion;
730         if (i_run_to_completion) {
731                 result = smi_event_handler(smi_info, 0);
732                 while (result != SI_SM_IDLE) {
733                         udelay(SI_SHORT_TIMEOUT_USEC);
734                         result = smi_event_handler(smi_info,
735                                                    SI_SHORT_TIMEOUT_USEC);
736                 }
737         }
738
739         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
740 }
741
742 static void poll(void *send_info)
743 {
744         struct smi_info *smi_info = send_info;
745
746         smi_event_handler(smi_info, 0);
747 }
748
749 static void request_events(void *send_info)
750 {
751         struct smi_info *smi_info = send_info;
752
753         atomic_set(&smi_info->req_events, 1);
754 }
755
756 static int initialized = 0;
757
758 /* Must be called with interrupts off and with the si_lock held. */
759 static void si_restart_short_timer(struct smi_info *smi_info)
760 {
761 #if defined(CONFIG_HIGH_RES_TIMERS)
762         unsigned long flags;
763         unsigned long jiffies_now;
764
765         if (del_timer(&(smi_info->si_timer))) {
766                 /* If we don't delete the timer, then it will go off
767                    immediately, anyway.  So we only process if we
768                    actually delete the timer. */
769
770                 /* We already have irqsave on, so no need for it
771                    here. */
772                 read_lock(&xtime_lock);
773                 jiffies_now = jiffies;
774                 smi_info->si_timer.expires = jiffies_now;
775                 smi_info->si_timer.sub_expires = get_arch_cycles(jiffies_now);
776
777                 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
778
779                 add_timer(&(smi_info->si_timer));
780                 spin_lock_irqsave(&smi_info->count_lock, flags);
781                 smi_info->timeout_restarts++;
782                 spin_unlock_irqrestore(&smi_info->count_lock, flags);
783         }
784 #endif
785 }
786
787 static void smi_timeout(unsigned long data)
788 {
789         struct smi_info   *smi_info = (struct smi_info *) data;
790         enum si_sm_result smi_result;
791         unsigned long     flags;
792         unsigned long     jiffies_now;
793         unsigned long     time_diff;
794 #ifdef DEBUG_TIMING
795         struct timeval    t;
796 #endif
797
798         if (smi_info->stop_operation) {
799                 smi_info->timer_stopped = 1;
800                 return;
801         }
802
803         spin_lock_irqsave(&(smi_info->si_lock), flags);
804 #ifdef DEBUG_TIMING
805         do_gettimeofday(&t);
806         printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
807 #endif
808         jiffies_now = jiffies;
809         time_diff = ((jiffies_now - smi_info->last_timeout_jiffies)
810                      * SI_USEC_PER_JIFFY);
811         smi_result = smi_event_handler(smi_info, time_diff);
812
813         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
814
815         smi_info->last_timeout_jiffies = jiffies_now;
816
817         if ((smi_info->irq) && (! smi_info->interrupt_disabled)) {
818                 /* Running with interrupts, only do long timeouts. */
819                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
820                 spin_lock_irqsave(&smi_info->count_lock, flags);
821                 smi_info->long_timeouts++;
822                 spin_unlock_irqrestore(&smi_info->count_lock, flags);
823                 goto do_add_timer;
824         }
825
826         /* If the state machine asks for a short delay, then shorten
827            the timer timeout. */
828         if (smi_result == SI_SM_CALL_WITH_DELAY) {
829                 spin_lock_irqsave(&smi_info->count_lock, flags);
830                 smi_info->short_timeouts++;
831                 spin_unlock_irqrestore(&smi_info->count_lock, flags);
832 #if defined(CONFIG_HIGH_RES_TIMERS)
833                 read_lock(&xtime_lock);
834                 smi_info->si_timer.expires = jiffies;
835                 smi_info->si_timer.sub_expires
836                         = get_arch_cycles(smi_info->si_timer.expires);
837                 read_unlock(&xtime_lock);
838                 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
839 #else
840                 smi_info->si_timer.expires = jiffies + 1;
841 #endif
842         } else {
843                 spin_lock_irqsave(&smi_info->count_lock, flags);
844                 smi_info->long_timeouts++;
845                 spin_unlock_irqrestore(&smi_info->count_lock, flags);
846                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
847 #if defined(CONFIG_HIGH_RES_TIMERS)
848                 smi_info->si_timer.sub_expires = 0;
849 #endif
850         }
851
852  do_add_timer:
853         add_timer(&(smi_info->si_timer));
854 }
855
856 static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
857 {
858         struct smi_info *smi_info = data;
859         unsigned long   flags;
860 #ifdef DEBUG_TIMING
861         struct timeval  t;
862 #endif
863
864         spin_lock_irqsave(&(smi_info->si_lock), flags);
865
866         spin_lock(&smi_info->count_lock);
867         smi_info->interrupts++;
868         spin_unlock(&smi_info->count_lock);
869
870         if (smi_info->stop_operation)
871                 goto out;
872
873 #ifdef DEBUG_TIMING
874         do_gettimeofday(&t);
875         printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
876 #endif
877         smi_event_handler(smi_info, 0);
878  out:
879         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
880         return IRQ_HANDLED;
881 }
882
883 static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs)
884 {
885         struct smi_info *smi_info = data;
886         /* We need to clear the IRQ flag for the BT interface. */
887         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
888                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
889                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
890         return si_irq_handler(irq, data, regs);
891 }
892
893
894 static struct ipmi_smi_handlers handlers =
895 {
896         .owner                  = THIS_MODULE,
897         .sender                 = sender,
898         .request_events         = request_events,
899         .set_run_to_completion  = set_run_to_completion,
900         .poll                   = poll,
901 };
902
903 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
904    a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS */
905
906 #define SI_MAX_PARMS 4
907 #define SI_MAX_DRIVERS ((SI_MAX_PARMS * 2) + 2)
908 static struct smi_info *smi_infos[SI_MAX_DRIVERS] =
909 { NULL, NULL, NULL, NULL };
910
911 #define DEVICE_NAME "ipmi_si"
912
913 #define DEFAULT_KCS_IO_PORT     0xca2
914 #define DEFAULT_SMIC_IO_PORT    0xca9
915 #define DEFAULT_BT_IO_PORT      0xe4
916 #define DEFAULT_REGSPACING      1
917
918 static int           si_trydefaults = 1;
919 static char          *si_type[SI_MAX_PARMS];
920 #define MAX_SI_TYPE_STR 30
921 static char          si_type_str[MAX_SI_TYPE_STR];
922 static unsigned long addrs[SI_MAX_PARMS];
923 static int num_addrs;
924 static unsigned int  ports[SI_MAX_PARMS];
925 static int num_ports;
926 static int           irqs[SI_MAX_PARMS];
927 static int num_irqs;
928 static int           regspacings[SI_MAX_PARMS];
929 static int num_regspacings = 0;
930 static int           regsizes[SI_MAX_PARMS];
931 static int num_regsizes = 0;
932 static int           regshifts[SI_MAX_PARMS];
933 static int num_regshifts = 0;
934 static int slave_addrs[SI_MAX_PARMS];
935 static int num_slave_addrs = 0;
936
937
938 module_param_named(trydefaults, si_trydefaults, bool, 0);
939 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
940                  " default scan of the KCS and SMIC interface at the standard"
941                  " address");
942 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
943 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
944                  " interface separated by commas.  The types are 'kcs',"
945                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
946                  " the first interface to kcs and the second to bt");
947 module_param_array(addrs, long, &num_addrs, 0);
948 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
949                  " addresses separated by commas.  Only use if an interface"
950                  " is in memory.  Otherwise, set it to zero or leave"
951                  " it blank.");
952 module_param_array(ports, int, &num_ports, 0);
953 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
954                  " addresses separated by commas.  Only use if an interface"
955                  " is a port.  Otherwise, set it to zero or leave"
956                  " it blank.");
957 module_param_array(irqs, int, &num_irqs, 0);
958 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
959                  " addresses separated by commas.  Only use if an interface"
960                  " has an interrupt.  Otherwise, set it to zero or leave"
961                  " it blank.");
962 module_param_array(regspacings, int, &num_regspacings, 0);
963 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
964                  " and each successive register used by the interface.  For"
965                  " instance, if the start address is 0xca2 and the spacing"
966                  " is 2, then the second address is at 0xca4.  Defaults"
967                  " to 1.");
968 module_param_array(regsizes, int, &num_regsizes, 0);
969 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
970                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
971                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
972                  " the 8-bit IPMI register has to be read from a larger"
973                  " register.");
974 module_param_array(regshifts, int, &num_regshifts, 0);
975 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
976                  " IPMI register, in bits.  For instance, if the data"
977                  " is read from a 32-bit word and the IPMI data is in"
978                  " bit 8-15, then the shift would be 8");
979 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
980 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
981                  " the controller.  Normally this is 0x20, but can be"
982                  " overridden by this parm.  This is an array indexed"
983                  " by interface number.");
984
985
986 #define IPMI_MEM_ADDR_SPACE 1
987 #define IPMI_IO_ADDR_SPACE  2
988
989 #if defined(CONFIG_ACPI_INTERPRETER) || defined(CONFIG_X86) || defined(CONFIG_PCI)
990 static int is_new_interface(int intf, u8 addr_space, unsigned long base_addr)
991 {
992         int i;
993
994         for (i = 0; i < SI_MAX_PARMS; ++i) {
995                 /* Don't check our address. */
996                 if (i == intf)
997                         continue;
998                 if (si_type[i] != NULL) {
999                         if ((addr_space == IPMI_MEM_ADDR_SPACE &&
1000                              base_addr == addrs[i]) ||
1001                             (addr_space == IPMI_IO_ADDR_SPACE &&
1002                              base_addr == ports[i]))
1003                                 return 0;
1004                 }
1005                 else
1006                         break;
1007         }
1008
1009         return 1;
1010 }
1011 #endif
1012
1013 static int std_irq_setup(struct smi_info *info)
1014 {
1015         int rv;
1016
1017         if (!info->irq)
1018                 return 0;
1019
1020         if (info->si_type == SI_BT) {
1021                 rv = request_irq(info->irq,
1022                                  si_bt_irq_handler,
1023                                  SA_INTERRUPT,
1024                                  DEVICE_NAME,
1025                                  info);
1026                 if (!rv)
1027                         /* Enable the interrupt in the BT interface. */
1028                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1029                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1030         } else
1031                 rv = request_irq(info->irq,
1032                                  si_irq_handler,
1033                                  SA_INTERRUPT,
1034                                  DEVICE_NAME,
1035                                  info);
1036         if (rv) {
1037                 printk(KERN_WARNING
1038                        "ipmi_si: %s unable to claim interrupt %d,"
1039                        " running polled\n",
1040                        DEVICE_NAME, info->irq);
1041                 info->irq = 0;
1042         } else {
1043                 printk("  Using irq %d\n", info->irq);
1044         }
1045
1046         return rv;
1047 }
1048
1049 static void std_irq_cleanup(struct smi_info *info)
1050 {
1051         if (!info->irq)
1052                 return;
1053
1054         if (info->si_type == SI_BT)
1055                 /* Disable the interrupt in the BT interface. */
1056                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1057         free_irq(info->irq, info);
1058 }
1059
1060 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1061 {
1062         unsigned int *addr = io->info;
1063
1064         return inb((*addr)+(offset*io->regspacing));
1065 }
1066
1067 static void port_outb(struct si_sm_io *io, unsigned int offset,
1068                       unsigned char b)
1069 {
1070         unsigned int *addr = io->info;
1071
1072         outb(b, (*addr)+(offset * io->regspacing));
1073 }
1074
1075 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1076 {
1077         unsigned int *addr = io->info;
1078
1079         return (inw((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff;
1080 }
1081
1082 static void port_outw(struct si_sm_io *io, unsigned int offset,
1083                       unsigned char b)
1084 {
1085         unsigned int *addr = io->info;
1086
1087         outw(b << io->regshift, (*addr)+(offset * io->regspacing));
1088 }
1089
1090 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1091 {
1092         unsigned int *addr = io->info;
1093
1094         return (inl((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff;
1095 }
1096
1097 static void port_outl(struct si_sm_io *io, unsigned int offset,
1098                       unsigned char b)
1099 {
1100         unsigned int *addr = io->info;
1101
1102         outl(b << io->regshift, (*addr)+(offset * io->regspacing));
1103 }
1104
1105 static void port_cleanup(struct smi_info *info)
1106 {
1107         unsigned int *addr = info->io.info;
1108         int           mapsize;
1109
1110         if (addr && (*addr)) {
1111                 mapsize = ((info->io_size * info->io.regspacing)
1112                            - (info->io.regspacing - info->io.regsize));
1113
1114                 release_region (*addr, mapsize);
1115         }
1116         kfree(info);
1117 }
1118
1119 static int port_setup(struct smi_info *info)
1120 {
1121         unsigned int *addr = info->io.info;
1122         int           mapsize;
1123
1124         if (!addr || (!*addr))
1125                 return -ENODEV;
1126
1127         info->io_cleanup = port_cleanup;
1128
1129         /* Figure out the actual inb/inw/inl/etc routine to use based
1130            upon the register size. */
1131         switch (info->io.regsize) {
1132         case 1:
1133                 info->io.inputb = port_inb;
1134                 info->io.outputb = port_outb;
1135                 break;
1136         case 2:
1137                 info->io.inputb = port_inw;
1138                 info->io.outputb = port_outw;
1139                 break;
1140         case 4:
1141                 info->io.inputb = port_inl;
1142                 info->io.outputb = port_outl;
1143                 break;
1144         default:
1145                 printk("ipmi_si: Invalid register size: %d\n",
1146                        info->io.regsize);
1147                 return -EINVAL;
1148         }
1149
1150         /* Calculate the total amount of memory to claim.  This is an
1151          * unusual looking calculation, but it avoids claiming any
1152          * more memory than it has to.  It will claim everything
1153          * between the first address to the end of the last full
1154          * register. */
1155         mapsize = ((info->io_size * info->io.regspacing)
1156                    - (info->io.regspacing - info->io.regsize));
1157
1158         if (request_region(*addr, mapsize, DEVICE_NAME) == NULL)
1159                 return -EIO;
1160         return 0;
1161 }
1162
1163 static int try_init_port(int intf_num, struct smi_info **new_info)
1164 {
1165         struct smi_info *info;
1166
1167         if (!ports[intf_num])
1168                 return -ENODEV;
1169
1170         if (!is_new_interface(intf_num, IPMI_IO_ADDR_SPACE,
1171                               ports[intf_num]))
1172                 return -ENODEV;
1173
1174         info = kmalloc(sizeof(*info), GFP_KERNEL);
1175         if (!info) {
1176                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (1)\n");
1177                 return -ENOMEM;
1178         }
1179         memset(info, 0, sizeof(*info));
1180
1181         info->io_setup = port_setup;
1182         info->io.info = &(ports[intf_num]);
1183         info->io.addr = NULL;
1184         info->io.regspacing = regspacings[intf_num];
1185         if (!info->io.regspacing)
1186                 info->io.regspacing = DEFAULT_REGSPACING;
1187         info->io.regsize = regsizes[intf_num];
1188         if (!info->io.regsize)
1189                 info->io.regsize = DEFAULT_REGSPACING;
1190         info->io.regshift = regshifts[intf_num];
1191         info->irq = 0;
1192         info->irq_setup = NULL;
1193         *new_info = info;
1194
1195         if (si_type[intf_num] == NULL)
1196                 si_type[intf_num] = "kcs";
1197
1198         printk("ipmi_si: Trying \"%s\" at I/O port 0x%x\n",
1199                si_type[intf_num], ports[intf_num]);
1200         return 0;
1201 }
1202
1203 static unsigned char mem_inb(struct si_sm_io *io, unsigned int offset)
1204 {
1205         return readb((io->addr)+(offset * io->regspacing));
1206 }
1207
1208 static void mem_outb(struct si_sm_io *io, unsigned int offset,
1209                      unsigned char b)
1210 {
1211         writeb(b, (io->addr)+(offset * io->regspacing));
1212 }
1213
1214 static unsigned char mem_inw(struct si_sm_io *io, unsigned int offset)
1215 {
1216         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1217                 && 0xff;
1218 }
1219
1220 static void mem_outw(struct si_sm_io *io, unsigned int offset,
1221                      unsigned char b)
1222 {
1223         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1224 }
1225
1226 static unsigned char mem_inl(struct si_sm_io *io, unsigned int offset)
1227 {
1228         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1229                 && 0xff;
1230 }
1231
1232 static void mem_outl(struct si_sm_io *io, unsigned int offset,
1233                      unsigned char b)
1234 {
1235         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1236 }
1237
1238 #ifdef readq
1239 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1240 {
1241         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1242                 && 0xff;
1243 }
1244
1245 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1246                      unsigned char b)
1247 {
1248         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1249 }
1250 #endif
1251
1252 static void mem_cleanup(struct smi_info *info)
1253 {
1254         unsigned long *addr = info->io.info;
1255         int           mapsize;
1256
1257         if (info->io.addr) {
1258                 iounmap(info->io.addr);
1259
1260                 mapsize = ((info->io_size * info->io.regspacing)
1261                            - (info->io.regspacing - info->io.regsize));
1262
1263                 release_mem_region(*addr, mapsize);
1264         }
1265         kfree(info);
1266 }
1267
1268 static int mem_setup(struct smi_info *info)
1269 {
1270         unsigned long *addr = info->io.info;
1271         int           mapsize;
1272
1273         if (!addr || (!*addr))
1274                 return -ENODEV;
1275
1276         info->io_cleanup = mem_cleanup;
1277
1278         /* Figure out the actual readb/readw/readl/etc routine to use based
1279            upon the register size. */
1280         switch (info->io.regsize) {
1281         case 1:
1282                 info->io.inputb = mem_inb;
1283                 info->io.outputb = mem_outb;
1284                 break;
1285         case 2:
1286                 info->io.inputb = mem_inw;
1287                 info->io.outputb = mem_outw;
1288                 break;
1289         case 4:
1290                 info->io.inputb = mem_inl;
1291                 info->io.outputb = mem_outl;
1292                 break;
1293 #ifdef readq
1294         case 8:
1295                 info->io.inputb = mem_inq;
1296                 info->io.outputb = mem_outq;
1297                 break;
1298 #endif
1299         default:
1300                 printk("ipmi_si: Invalid register size: %d\n",
1301                        info->io.regsize);
1302                 return -EINVAL;
1303         }
1304
1305         /* Calculate the total amount of memory to claim.  This is an
1306          * unusual looking calculation, but it avoids claiming any
1307          * more memory than it has to.  It will claim everything
1308          * between the first address to the end of the last full
1309          * register. */
1310         mapsize = ((info->io_size * info->io.regspacing)
1311                    - (info->io.regspacing - info->io.regsize));
1312
1313         if (request_mem_region(*addr, mapsize, DEVICE_NAME) == NULL)
1314                 return -EIO;
1315
1316         info->io.addr = ioremap(*addr, mapsize);
1317         if (info->io.addr == NULL) {
1318                 release_mem_region(*addr, mapsize);
1319                 return -EIO;
1320         }
1321         return 0;
1322 }
1323
1324 static int try_init_mem(int intf_num, struct smi_info **new_info)
1325 {
1326         struct smi_info *info;
1327
1328         if (!addrs[intf_num])
1329                 return -ENODEV;
1330
1331         if (!is_new_interface(intf_num, IPMI_MEM_ADDR_SPACE,
1332                               addrs[intf_num]))
1333                 return -ENODEV;
1334
1335         info = kmalloc(sizeof(*info), GFP_KERNEL);
1336         if (!info) {
1337                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (2)\n");
1338                 return -ENOMEM;
1339         }
1340         memset(info, 0, sizeof(*info));
1341
1342         info->io_setup = mem_setup;
1343         info->io.info = &addrs[intf_num];
1344         info->io.addr = NULL;
1345         info->io.regspacing = regspacings[intf_num];
1346         if (!info->io.regspacing)
1347                 info->io.regspacing = DEFAULT_REGSPACING;
1348         info->io.regsize = regsizes[intf_num];
1349         if (!info->io.regsize)
1350                 info->io.regsize = DEFAULT_REGSPACING;
1351         info->io.regshift = regshifts[intf_num];
1352         info->irq = 0;
1353         info->irq_setup = NULL;
1354         *new_info = info;
1355
1356         if (si_type[intf_num] == NULL)
1357                 si_type[intf_num] = "kcs";
1358
1359         printk("ipmi_si: Trying \"%s\" at memory address 0x%lx\n",
1360                si_type[intf_num], addrs[intf_num]);
1361         return 0;
1362 }
1363
1364
1365 #ifdef CONFIG_ACPI_INTERPRETER
1366
1367 #include <linux/acpi.h>
1368
1369 /* Once we get an ACPI failure, we don't try any more, because we go
1370    through the tables sequentially.  Once we don't find a table, there
1371    are no more. */
1372 static int acpi_failure = 0;
1373
1374 /* For GPE-type interrupts. */
1375 static u32 ipmi_acpi_gpe(void *context)
1376 {
1377         struct smi_info *smi_info = context;
1378         unsigned long   flags;
1379 #ifdef DEBUG_TIMING
1380         struct timeval t;
1381 #endif
1382
1383         spin_lock_irqsave(&(smi_info->si_lock), flags);
1384
1385         spin_lock(&smi_info->count_lock);
1386         smi_info->interrupts++;
1387         spin_unlock(&smi_info->count_lock);
1388
1389         if (smi_info->stop_operation)
1390                 goto out;
1391
1392 #ifdef DEBUG_TIMING
1393         do_gettimeofday(&t);
1394         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1395 #endif
1396         smi_event_handler(smi_info, 0);
1397  out:
1398         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1399
1400         return ACPI_INTERRUPT_HANDLED;
1401 }
1402
1403 static int acpi_gpe_irq_setup(struct smi_info *info)
1404 {
1405         acpi_status status;
1406
1407         if (!info->irq)
1408                 return 0;
1409
1410         /* FIXME - is level triggered right? */
1411         status = acpi_install_gpe_handler(NULL,
1412                                           info->irq,
1413                                           ACPI_GPE_LEVEL_TRIGGERED,
1414                                           &ipmi_acpi_gpe,
1415                                           info);
1416         if (status != AE_OK) {
1417                 printk(KERN_WARNING
1418                        "ipmi_si: %s unable to claim ACPI GPE %d,"
1419                        " running polled\n",
1420                        DEVICE_NAME, info->irq);
1421                 info->irq = 0;
1422                 return -EINVAL;
1423         } else {
1424                 printk("  Using ACPI GPE %d\n", info->irq);
1425                 return 0;
1426         }
1427 }
1428
1429 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1430 {
1431         if (!info->irq)
1432                 return;
1433
1434         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1435 }
1436
1437 /*
1438  * Defined at
1439  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1440  */
1441 struct SPMITable {
1442         s8      Signature[4];
1443         u32     Length;
1444         u8      Revision;
1445         u8      Checksum;
1446         s8      OEMID[6];
1447         s8      OEMTableID[8];
1448         s8      OEMRevision[4];
1449         s8      CreatorID[4];
1450         s8      CreatorRevision[4];
1451         u8      InterfaceType;
1452         u8      IPMIlegacy;
1453         s16     SpecificationRevision;
1454
1455         /*
1456          * Bit 0 - SCI interrupt supported
1457          * Bit 1 - I/O APIC/SAPIC
1458          */
1459         u8      InterruptType;
1460
1461         /* If bit 0 of InterruptType is set, then this is the SCI
1462            interrupt in the GPEx_STS register. */
1463         u8      GPE;
1464
1465         s16     Reserved;
1466
1467         /* If bit 1 of InterruptType is set, then this is the I/O
1468            APIC/SAPIC interrupt. */
1469         u32     GlobalSystemInterrupt;
1470
1471         /* The actual register address. */
1472         struct acpi_generic_address addr;
1473
1474         u8      UID[4];
1475
1476         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1477 };
1478
1479 static int try_init_acpi(int intf_num, struct smi_info **new_info)
1480 {
1481         struct smi_info  *info;
1482         acpi_status      status;
1483         struct SPMITable *spmi;
1484         char             *io_type;
1485         u8               addr_space;
1486
1487         if (acpi_failure)
1488                 return -ENODEV;
1489
1490         status = acpi_get_firmware_table("SPMI", intf_num+1,
1491                                          ACPI_LOGICAL_ADDRESSING,
1492                                          (struct acpi_table_header **) &spmi);
1493         if (status != AE_OK) {
1494                 acpi_failure = 1;
1495                 return -ENODEV;
1496         }
1497
1498         if (spmi->IPMIlegacy != 1) {
1499             printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1500             return -ENODEV;
1501         }
1502
1503         if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1504                 addr_space = IPMI_MEM_ADDR_SPACE;
1505         else
1506                 addr_space = IPMI_IO_ADDR_SPACE;
1507         if (!is_new_interface(-1, addr_space, spmi->addr.address))
1508                 return -ENODEV;
1509
1510         if (!spmi->addr.register_bit_width) {
1511                 acpi_failure = 1;
1512                 return -ENODEV;
1513         }
1514
1515         /* Figure out the interface type. */
1516         switch (spmi->InterfaceType)
1517         {
1518         case 1: /* KCS */
1519                 si_type[intf_num] = "kcs";
1520                 break;
1521
1522         case 2: /* SMIC */
1523                 si_type[intf_num] = "smic";
1524                 break;
1525
1526         case 3: /* BT */
1527                 si_type[intf_num] = "bt";
1528                 break;
1529
1530         default:
1531                 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1532                         spmi->InterfaceType);
1533                 return -EIO;
1534         }
1535
1536         info = kmalloc(sizeof(*info), GFP_KERNEL);
1537         if (!info) {
1538                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1539                 return -ENOMEM;
1540         }
1541         memset(info, 0, sizeof(*info));
1542
1543         if (spmi->InterruptType & 1) {
1544                 /* We've got a GPE interrupt. */
1545                 info->irq = spmi->GPE;
1546                 info->irq_setup = acpi_gpe_irq_setup;
1547                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1548         } else if (spmi->InterruptType & 2) {
1549                 /* We've got an APIC/SAPIC interrupt. */
1550                 info->irq = spmi->GlobalSystemInterrupt;
1551                 info->irq_setup = std_irq_setup;
1552                 info->irq_cleanup = std_irq_cleanup;
1553         } else {
1554                 /* Use the default interrupt setting. */
1555                 info->irq = 0;
1556                 info->irq_setup = NULL;
1557         }
1558
1559         if (spmi->addr.register_bit_width) {
1560                 /* A (hopefully) properly formed register bit width. */
1561                 regspacings[intf_num] = spmi->addr.register_bit_width / 8;
1562                 info->io.regspacing = spmi->addr.register_bit_width / 8;
1563         } else {
1564                 /* Some broken systems get this wrong and set the value
1565                  * to zero.  Assume it is the default spacing.  If that
1566                  * is wrong, too bad, the vendor should fix the tables. */
1567                 regspacings[intf_num] = DEFAULT_REGSPACING;
1568                 info->io.regspacing = DEFAULT_REGSPACING;
1569         }
1570         regsizes[intf_num] = regspacings[intf_num];
1571         info->io.regsize = regsizes[intf_num];
1572         regshifts[intf_num] = spmi->addr.register_bit_offset;
1573         info->io.regshift = regshifts[intf_num];
1574
1575         if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1576                 io_type = "memory";
1577                 info->io_setup = mem_setup;
1578                 addrs[intf_num] = spmi->addr.address;
1579                 info->io.info = &(addrs[intf_num]);
1580         } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1581                 io_type = "I/O";
1582                 info->io_setup = port_setup;
1583                 ports[intf_num] = spmi->addr.address;
1584                 info->io.info = &(ports[intf_num]);
1585         } else {
1586                 kfree(info);
1587                 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1588                 return -EIO;
1589         }
1590
1591         *new_info = info;
1592
1593         printk("ipmi_si: ACPI/SPMI specifies \"%s\" %s SI @ 0x%lx\n",
1594                si_type[intf_num], io_type, (unsigned long) spmi->addr.address);
1595         return 0;
1596 }
1597 #endif
1598
1599 #ifdef CONFIG_X86
1600 typedef struct dmi_ipmi_data
1601 {
1602         u8              type;
1603         u8              addr_space;
1604         unsigned long   base_addr;
1605         u8              irq;
1606         u8              offset;
1607         u8              slave_addr;
1608 } dmi_ipmi_data_t;
1609
1610 static dmi_ipmi_data_t dmi_data[SI_MAX_DRIVERS];
1611 static int dmi_data_entries;
1612
1613 typedef struct dmi_header
1614 {
1615         u8      type;
1616         u8      length;
1617         u16     handle;
1618 } dmi_header_t;
1619
1620 static int decode_dmi(dmi_header_t __iomem *dm, int intf_num)
1621 {
1622         u8              __iomem *data = (u8 __iomem *)dm;
1623         unsigned long   base_addr;
1624         u8              reg_spacing;
1625         u8              len = readb(&dm->length);
1626         dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num;
1627
1628         ipmi_data->type = readb(&data[4]);
1629
1630         memcpy(&base_addr, data+8, sizeof(unsigned long));
1631         if (len >= 0x11) {
1632                 if (base_addr & 1) {
1633                         /* I/O */
1634                         base_addr &= 0xFFFE;
1635                         ipmi_data->addr_space = IPMI_IO_ADDR_SPACE;
1636                 }
1637                 else {
1638                         /* Memory */
1639                         ipmi_data->addr_space = IPMI_MEM_ADDR_SPACE;
1640                 }
1641                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1642                    is odd. */
1643                 ipmi_data->base_addr = base_addr | ((readb(&data[0x10]) & 0x10) >> 4);
1644
1645                 ipmi_data->irq = readb(&data[0x11]);
1646
1647                 /* The top two bits of byte 0x10 hold the register spacing. */
1648                 reg_spacing = (readb(&data[0x10]) & 0xC0) >> 6;
1649                 switch(reg_spacing){
1650                 case 0x00: /* Byte boundaries */
1651                     ipmi_data->offset = 1;
1652                     break;
1653                 case 0x01: /* 32-bit boundaries */
1654                     ipmi_data->offset = 4;
1655                     break;
1656                 case 0x02: /* 16-byte boundaries */
1657                     ipmi_data->offset = 16;
1658                     break;
1659                 default:
1660                     /* Some other interface, just ignore it. */
1661                     return -EIO;
1662                 }
1663         } else {
1664                 /* Old DMI spec. */
1665                 /* Note that technically, the lower bit of the base
1666                  * address should be 1 if the address is I/O and 0 if
1667                  * the address is in memory.  So many systems get that
1668                  * wrong (and all that I have seen are I/O) so we just
1669                  * ignore that bit and assume I/O.  Systems that use
1670                  * memory should use the newer spec, anyway. */
1671                 ipmi_data->base_addr = base_addr & 0xfffe;
1672                 ipmi_data->addr_space = IPMI_IO_ADDR_SPACE;
1673                 ipmi_data->offset = 1;
1674         }
1675
1676         ipmi_data->slave_addr = readb(&data[6]);
1677
1678         if (is_new_interface(-1, ipmi_data->addr_space,ipmi_data->base_addr)) {
1679                 dmi_data_entries++;
1680                 return 0;
1681         }
1682
1683         memset(ipmi_data, 0, sizeof(dmi_ipmi_data_t));
1684
1685         return -1;
1686 }
1687
1688 static int dmi_table(u32 base, int len, int num)
1689 {
1690         u8                __iomem *buf;
1691         struct dmi_header __iomem *dm;
1692         u8                __iomem *data;
1693         int               i=1;
1694         int               status=-1;
1695         int               intf_num = 0;
1696
1697         buf = ioremap(base, len);
1698         if(buf==NULL)
1699                 return -1;
1700
1701         data = buf;
1702
1703         while(i<num && (data - buf) < len)
1704         {
1705                 dm=(dmi_header_t __iomem *)data;
1706
1707                 if((data-buf+readb(&dm->length)) >= len)
1708                         break;
1709
1710                 if (readb(&dm->type) == 38) {
1711                         if (decode_dmi(dm, intf_num) == 0) {
1712                                 intf_num++;
1713                                 if (intf_num >= SI_MAX_DRIVERS)
1714                                         break;
1715                         }
1716                 }
1717
1718                 data+=readb(&dm->length);
1719                 while((data-buf) < len && (readb(data)||readb(data+1)))
1720                         data++;
1721                 data+=2;
1722                 i++;
1723         }
1724         iounmap(buf);
1725
1726         return status;
1727 }
1728
1729 static inline int dmi_checksum(u8 *buf)
1730 {
1731         u8   sum=0;
1732         int  a;
1733
1734         for(a=0; a<15; a++)
1735                 sum+=buf[a];
1736         return (sum==0);
1737 }
1738
1739 static int dmi_decode(void)
1740 {
1741         u8   buf[15];
1742         u32  fp=0xF0000;
1743
1744 #ifdef CONFIG_SIMNOW
1745         return -1;
1746 #endif
1747
1748         while(fp < 0xFFFFF)
1749         {
1750                 isa_memcpy_fromio(buf, fp, 15);
1751                 if(memcmp(buf, "_DMI_", 5)==0 && dmi_checksum(buf))
1752                 {
1753                         u16 num=buf[13]<<8|buf[12];
1754                         u16 len=buf[7]<<8|buf[6];
1755                         u32 base=buf[11]<<24|buf[10]<<16|buf[9]<<8|buf[8];
1756
1757                         if(dmi_table(base, len, num) == 0)
1758                                 return 0;
1759                 }
1760                 fp+=16;
1761         }
1762
1763         return -1;
1764 }
1765
1766 static int try_init_smbios(int intf_num, struct smi_info **new_info)
1767 {
1768         struct smi_info   *info;
1769         dmi_ipmi_data_t   *ipmi_data = dmi_data+intf_num;
1770         char              *io_type;
1771
1772         if (intf_num >= dmi_data_entries)
1773                 return -ENODEV;
1774
1775         switch(ipmi_data->type) {
1776                 case 0x01: /* KCS */
1777                         si_type[intf_num] = "kcs";
1778                         break;
1779                 case 0x02: /* SMIC */
1780                         si_type[intf_num] = "smic";
1781                         break;
1782                 case 0x03: /* BT */
1783                         si_type[intf_num] = "bt";
1784                         break;
1785                 default:
1786                         return -EIO;
1787         }
1788
1789         info = kmalloc(sizeof(*info), GFP_KERNEL);
1790         if (!info) {
1791                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (4)\n");
1792                 return -ENOMEM;
1793         }
1794         memset(info, 0, sizeof(*info));
1795
1796         if (ipmi_data->addr_space == 1) {
1797                 io_type = "memory";
1798                 info->io_setup = mem_setup;
1799                 addrs[intf_num] = ipmi_data->base_addr;
1800                 info->io.info = &(addrs[intf_num]);
1801         } else if (ipmi_data->addr_space == 2) {
1802                 io_type = "I/O";
1803                 info->io_setup = port_setup;
1804                 ports[intf_num] = ipmi_data->base_addr;
1805                 info->io.info = &(ports[intf_num]);
1806         } else {
1807                 kfree(info);
1808                 printk("ipmi_si: Unknown SMBIOS I/O Address type.\n");
1809                 return -EIO;
1810         }
1811
1812         regspacings[intf_num] = ipmi_data->offset;
1813         info->io.regspacing = regspacings[intf_num];
1814         if (!info->io.regspacing)
1815                 info->io.regspacing = DEFAULT_REGSPACING;
1816         info->io.regsize = DEFAULT_REGSPACING;
1817         info->io.regshift = regshifts[intf_num];
1818
1819         info->slave_addr = ipmi_data->slave_addr;
1820
1821         irqs[intf_num] = ipmi_data->irq;
1822
1823         *new_info = info;
1824
1825         printk("ipmi_si: Found SMBIOS-specified state machine at %s"
1826                " address 0x%lx, slave address 0x%x\n",
1827                io_type, (unsigned long)ipmi_data->base_addr,
1828                ipmi_data->slave_addr);
1829         return 0;
1830 }
1831 #endif /* CONFIG_X86 */
1832
1833 #ifdef CONFIG_PCI
1834
1835 #define PCI_ERMC_CLASSCODE  0x0C0700
1836 #define PCI_HP_VENDOR_ID    0x103C
1837 #define PCI_MMC_DEVICE_ID   0x121A
1838 #define PCI_MMC_ADDR_CW     0x10
1839
1840 /* Avoid more than one attempt to probe pci smic. */
1841 static int pci_smic_checked = 0;
1842
1843 static int find_pci_smic(int intf_num, struct smi_info **new_info)
1844 {
1845         struct smi_info  *info;
1846         int              error;
1847         struct pci_dev   *pci_dev = NULL;
1848         u16              base_addr;
1849         int              fe_rmc = 0;
1850
1851         if (pci_smic_checked)
1852                 return -ENODEV;
1853
1854         pci_smic_checked = 1;
1855
1856         if ((pci_dev = pci_get_device(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID,
1857                                        NULL)))
1858                 ;
1859         else if ((pci_dev = pci_get_class(PCI_ERMC_CLASSCODE, NULL)) &&
1860                  pci_dev->subsystem_vendor == PCI_HP_VENDOR_ID)
1861                 fe_rmc = 1;
1862         else
1863                 return -ENODEV;
1864
1865         error = pci_read_config_word(pci_dev, PCI_MMC_ADDR_CW, &base_addr);
1866         if (error)
1867         {
1868                 pci_dev_put(pci_dev);
1869                 printk(KERN_ERR
1870                        "ipmi_si: pci_read_config_word() failed (%d).\n",
1871                        error);
1872                 return -ENODEV;
1873         }
1874
1875         /* Bit 0: 1 specifies programmed I/O, 0 specifies memory mapped I/O */
1876         if (!(base_addr & 0x0001))
1877         {
1878                 pci_dev_put(pci_dev);
1879                 printk(KERN_ERR
1880                        "ipmi_si: memory mapped I/O not supported for PCI"
1881                        " smic.\n");
1882                 return -ENODEV;
1883         }
1884
1885         base_addr &= 0xFFFE;
1886         if (!fe_rmc)
1887                 /* Data register starts at base address + 1 in eRMC */
1888                 ++base_addr;
1889
1890         if (!is_new_interface(-1, IPMI_IO_ADDR_SPACE, base_addr)) {
1891                 pci_dev_put(pci_dev);
1892                 return -ENODEV;
1893         }
1894
1895         info = kmalloc(sizeof(*info), GFP_KERNEL);
1896         if (!info) {
1897                 pci_dev_put(pci_dev);
1898                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (5)\n");
1899                 return -ENOMEM;
1900         }
1901         memset(info, 0, sizeof(*info));
1902
1903         info->io_setup = port_setup;
1904         ports[intf_num] = base_addr;
1905         info->io.info = &(ports[intf_num]);
1906         info->io.regspacing = regspacings[intf_num];
1907         if (!info->io.regspacing)
1908                 info->io.regspacing = DEFAULT_REGSPACING;
1909         info->io.regsize = DEFAULT_REGSPACING;
1910         info->io.regshift = regshifts[intf_num];
1911
1912         *new_info = info;
1913
1914         irqs[intf_num] = pci_dev->irq;
1915         si_type[intf_num] = "smic";
1916
1917         printk("ipmi_si: Found PCI SMIC at I/O address 0x%lx\n",
1918                 (long unsigned int) base_addr);
1919
1920         pci_dev_put(pci_dev);
1921         return 0;
1922 }
1923 #endif /* CONFIG_PCI */
1924
1925 static int try_init_plug_and_play(int intf_num, struct smi_info **new_info)
1926 {
1927 #ifdef CONFIG_PCI
1928         if (find_pci_smic(intf_num, new_info)==0)
1929                 return 0;
1930 #endif
1931         /* Include other methods here. */
1932
1933         return -ENODEV;
1934 }
1935
1936
1937 static int try_get_dev_id(struct smi_info *smi_info)
1938 {
1939         unsigned char      msg[2];
1940         unsigned char      *resp;
1941         unsigned long      resp_len;
1942         enum si_sm_result smi_result;
1943         int               rv = 0;
1944
1945         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1946         if (!resp)
1947                 return -ENOMEM;
1948
1949         /* Do a Get Device ID command, since it comes back with some
1950            useful info. */
1951         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1952         msg[1] = IPMI_GET_DEVICE_ID_CMD;
1953         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1954
1955         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1956         for (;;)
1957         {
1958                 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1959                         set_current_state(TASK_UNINTERRUPTIBLE);
1960                         schedule_timeout(1);
1961                         smi_result = smi_info->handlers->event(
1962                                 smi_info->si_sm, 100);
1963                 }
1964                 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1965                 {
1966                         smi_result = smi_info->handlers->event(
1967                                 smi_info->si_sm, 0);
1968                 }
1969                 else
1970                         break;
1971         }
1972         if (smi_result == SI_SM_HOSED) {
1973                 /* We couldn't get the state machine to run, so whatever's at
1974                    the port is probably not an IPMI SMI interface. */
1975                 rv = -ENODEV;
1976                 goto out;
1977         }
1978
1979         /* Otherwise, we got some data. */
1980         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1981                                                   resp, IPMI_MAX_MSG_LENGTH);
1982         if (resp_len < 6) {
1983                 /* That's odd, it should be longer. */
1984                 rv = -EINVAL;
1985                 goto out;
1986         }
1987
1988         if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1989                 /* That's odd, it shouldn't be able to fail. */
1990                 rv = -EINVAL;
1991                 goto out;
1992         }
1993
1994         /* Record info from the get device id, in case we need it. */
1995         smi_info->ipmi_si_dev_rev = resp[4] & 0xf;
1996         smi_info->ipmi_si_fw_rev_major = resp[5] & 0x7f;
1997         smi_info->ipmi_si_fw_rev_minor = resp[6];
1998         smi_info->ipmi_version_major = resp[7] & 0xf;
1999         smi_info->ipmi_version_minor = resp[7] >> 4;
2000
2001  out:
2002         kfree(resp);
2003         return rv;
2004 }
2005
2006 static int type_file_read_proc(char *page, char **start, off_t off,
2007                                int count, int *eof, void *data)
2008 {
2009         char            *out = (char *) page;
2010         struct smi_info *smi = data;
2011
2012         switch (smi->si_type) {
2013             case SI_KCS:
2014                 return sprintf(out, "kcs\n");
2015             case SI_SMIC:
2016                 return sprintf(out, "smic\n");
2017             case SI_BT:
2018                 return sprintf(out, "bt\n");
2019             default:
2020                 return 0;
2021         }
2022 }
2023
2024 static int stat_file_read_proc(char *page, char **start, off_t off,
2025                                int count, int *eof, void *data)
2026 {
2027         char            *out = (char *) page;
2028         struct smi_info *smi = data;
2029
2030         out += sprintf(out, "interrupts_enabled:    %d\n",
2031                        smi->irq && !smi->interrupt_disabled);
2032         out += sprintf(out, "short_timeouts:        %ld\n",
2033                        smi->short_timeouts);
2034         out += sprintf(out, "long_timeouts:         %ld\n",
2035                        smi->long_timeouts);
2036         out += sprintf(out, "timeout_restarts:      %ld\n",
2037                        smi->timeout_restarts);
2038         out += sprintf(out, "idles:                 %ld\n",
2039                        smi->idles);
2040         out += sprintf(out, "interrupts:            %ld\n",
2041                        smi->interrupts);
2042         out += sprintf(out, "attentions:            %ld\n",
2043                        smi->attentions);
2044         out += sprintf(out, "flag_fetches:          %ld\n",
2045                        smi->flag_fetches);
2046         out += sprintf(out, "hosed_count:           %ld\n",
2047                        smi->hosed_count);
2048         out += sprintf(out, "complete_transactions: %ld\n",
2049                        smi->complete_transactions);
2050         out += sprintf(out, "events:                %ld\n",
2051                        smi->events);
2052         out += sprintf(out, "watchdog_pretimeouts:  %ld\n",
2053                        smi->watchdog_pretimeouts);
2054         out += sprintf(out, "incoming_messages:     %ld\n",
2055                        smi->incoming_messages);
2056
2057         return (out - ((char *) page));
2058 }
2059
2060 /* Returns 0 if initialized, or negative on an error. */
2061 static int init_one_smi(int intf_num, struct smi_info **smi)
2062 {
2063         int             rv;
2064         struct smi_info *new_smi;
2065
2066
2067         rv = try_init_mem(intf_num, &new_smi);
2068         if (rv)
2069                 rv = try_init_port(intf_num, &new_smi);
2070 #ifdef CONFIG_ACPI_INTERPRETER
2071         if ((rv) && (si_trydefaults)) {
2072                 rv = try_init_acpi(intf_num, &new_smi);
2073         }
2074 #endif
2075 #ifdef CONFIG_X86
2076         if ((rv) && (si_trydefaults)) {
2077                 rv = try_init_smbios(intf_num, &new_smi);
2078         }
2079 #endif
2080         if ((rv) && (si_trydefaults)) {
2081                 rv = try_init_plug_and_play(intf_num, &new_smi);
2082         }
2083
2084
2085         if (rv)
2086                 return rv;
2087
2088         /* So we know not to free it unless we have allocated one. */
2089         new_smi->intf = NULL;
2090         new_smi->si_sm = NULL;
2091         new_smi->handlers = NULL;
2092
2093         if (!new_smi->irq_setup) {
2094                 new_smi->irq = irqs[intf_num];
2095                 new_smi->irq_setup = std_irq_setup;
2096                 new_smi->irq_cleanup = std_irq_cleanup;
2097         }
2098
2099         /* Default to KCS if no type is specified. */
2100         if (si_type[intf_num] == NULL) {
2101                 if (si_trydefaults)
2102                         si_type[intf_num] = "kcs";
2103                 else {
2104                         rv = -EINVAL;
2105                         goto out_err;
2106                 }
2107         }
2108
2109         /* Set up the state machine to use. */
2110         if (strcmp(si_type[intf_num], "kcs") == 0) {
2111                 new_smi->handlers = &kcs_smi_handlers;
2112                 new_smi->si_type = SI_KCS;
2113         } else if (strcmp(si_type[intf_num], "smic") == 0) {
2114                 new_smi->handlers = &smic_smi_handlers;
2115                 new_smi->si_type = SI_SMIC;
2116         } else if (strcmp(si_type[intf_num], "bt") == 0) {
2117                 new_smi->handlers = &bt_smi_handlers;
2118                 new_smi->si_type = SI_BT;
2119         } else {
2120                 /* No support for anything else yet. */
2121                 rv = -EIO;
2122                 goto out_err;
2123         }
2124
2125         /* Allocate the state machine's data and initialize it. */
2126         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2127         if (!new_smi->si_sm) {
2128                 printk(" Could not allocate state machine memory\n");
2129                 rv = -ENOMEM;
2130                 goto out_err;
2131         }
2132         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2133                                                         &new_smi->io);
2134
2135         /* Now that we know the I/O size, we can set up the I/O. */
2136         rv = new_smi->io_setup(new_smi);
2137         if (rv) {
2138                 printk(" Could not set up I/O space\n");
2139                 goto out_err;
2140         }
2141
2142         spin_lock_init(&(new_smi->si_lock));
2143         spin_lock_init(&(new_smi->msg_lock));
2144         spin_lock_init(&(new_smi->count_lock));
2145
2146         /* Do low-level detection first. */
2147         if (new_smi->handlers->detect(new_smi->si_sm)) {
2148                 rv = -ENODEV;
2149                 goto out_err;
2150         }
2151
2152         /* Attempt a get device id command.  If it fails, we probably
2153            don't have a SMI here. */
2154         rv = try_get_dev_id(new_smi);
2155         if (rv)
2156                 goto out_err;
2157
2158         /* Try to claim any interrupts. */
2159         new_smi->irq_setup(new_smi);
2160
2161         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2162         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2163         new_smi->curr_msg = NULL;
2164         atomic_set(&new_smi->req_events, 0);
2165         new_smi->run_to_completion = 0;
2166
2167         new_smi->interrupt_disabled = 0;
2168         new_smi->timer_stopped = 0;
2169         new_smi->stop_operation = 0;
2170
2171         /* Start clearing the flags before we enable interrupts or the
2172            timer to avoid racing with the timer. */
2173         start_clear_flags(new_smi);
2174         /* IRQ is defined to be set when non-zero. */
2175         if (new_smi->irq)
2176                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2177
2178         /* The ipmi_register_smi() code does some operations to
2179            determine the channel information, so we must be ready to
2180            handle operations before it is called.  This means we have
2181            to stop the timer if we get an error after this point. */
2182         init_timer(&(new_smi->si_timer));
2183         new_smi->si_timer.data = (long) new_smi;
2184         new_smi->si_timer.function = smi_timeout;
2185         new_smi->last_timeout_jiffies = jiffies;
2186         new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
2187         add_timer(&(new_smi->si_timer));
2188
2189         rv = ipmi_register_smi(&handlers,
2190                                new_smi,
2191                                new_smi->ipmi_version_major,
2192                                new_smi->ipmi_version_minor,
2193                                new_smi->slave_addr,
2194                                &(new_smi->intf));
2195         if (rv) {
2196                 printk(KERN_ERR
2197                        "ipmi_si: Unable to register device: error %d\n",
2198                        rv);
2199                 goto out_err_stop_timer;
2200         }
2201
2202         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2203                                      type_file_read_proc, NULL,
2204                                      new_smi, THIS_MODULE);
2205         if (rv) {
2206                 printk(KERN_ERR
2207                        "ipmi_si: Unable to create proc entry: %d\n",
2208                        rv);
2209                 goto out_err_stop_timer;
2210         }
2211
2212         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2213                                      stat_file_read_proc, NULL,
2214                                      new_smi, THIS_MODULE);
2215         if (rv) {
2216                 printk(KERN_ERR
2217                        "ipmi_si: Unable to create proc entry: %d\n",
2218                        rv);
2219                 goto out_err_stop_timer;
2220         }
2221
2222         *smi = new_smi;
2223
2224         printk(" IPMI %s interface initialized\n", si_type[intf_num]);
2225
2226         return 0;
2227
2228  out_err_stop_timer:
2229         new_smi->stop_operation = 1;
2230
2231         /* Wait for the timer to stop.  This avoids problems with race
2232            conditions removing the timer here. */
2233         while (!new_smi->timer_stopped) {
2234                 set_current_state(TASK_UNINTERRUPTIBLE);
2235                 schedule_timeout(1);
2236         }
2237
2238  out_err:
2239         if (new_smi->intf)
2240                 ipmi_unregister_smi(new_smi->intf);
2241
2242         new_smi->irq_cleanup(new_smi);
2243
2244         /* Wait until we know that we are out of any interrupt
2245            handlers might have been running before we freed the
2246            interrupt. */
2247         synchronize_sched();
2248
2249         if (new_smi->si_sm) {
2250                 if (new_smi->handlers)
2251                         new_smi->handlers->cleanup(new_smi->si_sm);
2252                 kfree(new_smi->si_sm);
2253         }
2254         new_smi->io_cleanup(new_smi);
2255
2256         return rv;
2257 }
2258
2259 static __init int init_ipmi_si(void)
2260 {
2261         int  rv = 0;
2262         int  pos = 0;
2263         int  i;
2264         char *str;
2265
2266         if (initialized)
2267                 return 0;
2268         initialized = 1;
2269
2270         /* Parse out the si_type string into its components. */
2271         str = si_type_str;
2272         if (*str != '\0') {
2273                 for (i=0; (i<SI_MAX_PARMS) && (*str != '\0'); i++) {
2274                         si_type[i] = str;
2275                         str = strchr(str, ',');
2276                         if (str) {
2277                                 *str = '\0';
2278                                 str++;
2279                         } else {
2280                                 break;
2281                         }
2282                 }
2283         }
2284
2285         printk(KERN_INFO "IPMI System Interface driver version "
2286                IPMI_SI_VERSION);
2287         if (kcs_smi_handlers.version)
2288                 printk(", KCS version %s", kcs_smi_handlers.version);
2289         if (smic_smi_handlers.version)
2290                 printk(", SMIC version %s", smic_smi_handlers.version);
2291         if (bt_smi_handlers.version)
2292                 printk(", BT version %s", bt_smi_handlers.version);
2293         printk("\n");
2294
2295 #ifdef CONFIG_X86
2296         dmi_decode();
2297 #endif
2298
2299         rv = init_one_smi(0, &(smi_infos[pos]));
2300         if (rv && !ports[0] && si_trydefaults) {
2301                 /* If we are trying defaults and the initial port is
2302                    not set, then set it. */
2303                 si_type[0] = "kcs";
2304                 ports[0] = DEFAULT_KCS_IO_PORT;
2305                 rv = init_one_smi(0, &(smi_infos[pos]));
2306                 if (rv) {
2307                         /* No KCS - try SMIC */
2308                         si_type[0] = "smic";
2309                         ports[0] = DEFAULT_SMIC_IO_PORT;
2310                         rv = init_one_smi(0, &(smi_infos[pos]));
2311                 }
2312                 if (rv) {
2313                         /* No SMIC - try BT */
2314                         si_type[0] = "bt";
2315                         ports[0] = DEFAULT_BT_IO_PORT;
2316                         rv = init_one_smi(0, &(smi_infos[pos]));
2317                 }
2318         }
2319         if (rv == 0)
2320                 pos++;
2321
2322         for (i=1; i < SI_MAX_PARMS; i++) {
2323                 rv = init_one_smi(i, &(smi_infos[pos]));
2324                 if (rv == 0)
2325                         pos++;
2326         }
2327
2328         if (smi_infos[0] == NULL) {
2329                 printk("ipmi_si: Unable to find any System Interface(s)\n");
2330                 return -ENODEV;
2331         }
2332
2333         return 0;
2334 }
2335 module_init(init_ipmi_si);
2336
2337 static void __exit cleanup_one_si(struct smi_info *to_clean)
2338 {
2339         int           rv;
2340         unsigned long flags;
2341
2342         if (! to_clean)
2343                 return;
2344
2345         /* Tell the timer and interrupt handlers that we are shutting
2346            down. */
2347         spin_lock_irqsave(&(to_clean->si_lock), flags);
2348         spin_lock(&(to_clean->msg_lock));
2349
2350         to_clean->stop_operation = 1;
2351
2352         to_clean->irq_cleanup(to_clean);
2353
2354         spin_unlock(&(to_clean->msg_lock));
2355         spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2356
2357         /* Wait until we know that we are out of any interrupt
2358            handlers might have been running before we freed the
2359            interrupt. */
2360         synchronize_sched();
2361
2362         /* Wait for the timer to stop.  This avoids problems with race
2363            conditions removing the timer here. */
2364         while (!to_clean->timer_stopped) {
2365                 set_current_state(TASK_UNINTERRUPTIBLE);
2366                 schedule_timeout(1);
2367         }
2368
2369         /* Interrupts and timeouts are stopped, now make sure the
2370            interface is in a clean state. */
2371         while ((to_clean->curr_msg) || (to_clean->si_state != SI_NORMAL)) {
2372                 poll(to_clean);
2373                 set_current_state(TASK_UNINTERRUPTIBLE);
2374                 schedule_timeout(1);
2375         }
2376
2377         rv = ipmi_unregister_smi(to_clean->intf);
2378         if (rv) {
2379                 printk(KERN_ERR
2380                        "ipmi_si: Unable to unregister device: errno=%d\n",
2381                        rv);
2382         }
2383
2384         to_clean->handlers->cleanup(to_clean->si_sm);
2385
2386         kfree(to_clean->si_sm);
2387
2388         to_clean->io_cleanup(to_clean);
2389 }
2390
2391 static __exit void cleanup_ipmi_si(void)
2392 {
2393         int i;
2394
2395         if (!initialized)
2396                 return;
2397
2398         for (i=0; i<SI_MAX_DRIVERS; i++) {
2399                 cleanup_one_si(smi_infos[i]);
2400         }
2401 }
2402 module_exit(cleanup_ipmi_si);
2403
2404 MODULE_LICENSE("GPL");