Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[pandora-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69
70 #ifdef CONFIG_PPC_OF
71 #include <linux/of_device.h>
72 #include <linux/of_platform.h>
73 #include <linux/of_address.h>
74 #include <linux/of_irq.h>
75 #endif
76
77 #define PFX "ipmi_si: "
78
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC    10000
84 #define SI_USEC_PER_JIFFY       (1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
87                                       short timeout */
88
89 enum si_intf_state {
90         SI_NORMAL,
91         SI_GETTING_FLAGS,
92         SI_GETTING_EVENTS,
93         SI_CLEARING_FLAGS,
94         SI_CLEARING_FLAGS_THEN_SET_IRQ,
95         SI_GETTING_MESSAGES,
96         SI_ENABLE_INTERRUPTS1,
97         SI_ENABLE_INTERRUPTS2,
98         SI_DISABLE_INTERRUPTS1,
99         SI_DISABLE_INTERRUPTS2
100         /* FIXME - add watchdog stuff. */
101 };
102
103 /* Some BT-specific defines we need here. */
104 #define IPMI_BT_INTMASK_REG             2
105 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
106 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
107
108 enum si_type {
109     SI_KCS, SI_SMIC, SI_BT
110 };
111 static char *si_to_str[] = { "kcs", "smic", "bt" };
112
113 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
114                                         "ACPI", "SMBIOS", "PCI",
115                                         "device-tree", "default" };
116
117 #define DEVICE_NAME "ipmi_si"
118
119 static struct platform_driver ipmi_driver = {
120         .driver = {
121                 .name = DEVICE_NAME,
122                 .bus = &platform_bus_type
123         }
124 };
125
126
127 /*
128  * Indexes into stats[] in smi_info below.
129  */
130 enum si_stat_indexes {
131         /*
132          * Number of times the driver requested a timer while an operation
133          * was in progress.
134          */
135         SI_STAT_short_timeouts = 0,
136
137         /*
138          * Number of times the driver requested a timer while nothing was in
139          * progress.
140          */
141         SI_STAT_long_timeouts,
142
143         /* Number of times the interface was idle while being polled. */
144         SI_STAT_idles,
145
146         /* Number of interrupts the driver handled. */
147         SI_STAT_interrupts,
148
149         /* Number of time the driver got an ATTN from the hardware. */
150         SI_STAT_attentions,
151
152         /* Number of times the driver requested flags from the hardware. */
153         SI_STAT_flag_fetches,
154
155         /* Number of times the hardware didn't follow the state machine. */
156         SI_STAT_hosed_count,
157
158         /* Number of completed messages. */
159         SI_STAT_complete_transactions,
160
161         /* Number of IPMI events received from the hardware. */
162         SI_STAT_events,
163
164         /* Number of watchdog pretimeouts. */
165         SI_STAT_watchdog_pretimeouts,
166
167         /* Number of asyncronous messages received. */
168         SI_STAT_incoming_messages,
169
170
171         /* This *must* remain last, add new values above this. */
172         SI_NUM_STATS
173 };
174
175 struct smi_info {
176         int                    intf_num;
177         ipmi_smi_t             intf;
178         struct si_sm_data      *si_sm;
179         struct si_sm_handlers  *handlers;
180         enum si_type           si_type;
181         spinlock_t             si_lock;
182         spinlock_t             msg_lock;
183         struct list_head       xmit_msgs;
184         struct list_head       hp_xmit_msgs;
185         struct ipmi_smi_msg    *curr_msg;
186         enum si_intf_state     si_state;
187
188         /*
189          * Used to handle the various types of I/O that can occur with
190          * IPMI
191          */
192         struct si_sm_io io;
193         int (*io_setup)(struct smi_info *info);
194         void (*io_cleanup)(struct smi_info *info);
195         int (*irq_setup)(struct smi_info *info);
196         void (*irq_cleanup)(struct smi_info *info);
197         unsigned int io_size;
198         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
199         void (*addr_source_cleanup)(struct smi_info *info);
200         void *addr_source_data;
201
202         /*
203          * Per-OEM handler, called from handle_flags().  Returns 1
204          * when handle_flags() needs to be re-run or 0 indicating it
205          * set si_state itself.
206          */
207         int (*oem_data_avail_handler)(struct smi_info *smi_info);
208
209         /*
210          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
211          * is set to hold the flags until we are done handling everything
212          * from the flags.
213          */
214 #define RECEIVE_MSG_AVAIL       0x01
215 #define EVENT_MSG_BUFFER_FULL   0x02
216 #define WDT_PRE_TIMEOUT_INT     0x08
217 #define OEM0_DATA_AVAIL     0x20
218 #define OEM1_DATA_AVAIL     0x40
219 #define OEM2_DATA_AVAIL     0x80
220 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
221                              OEM1_DATA_AVAIL | \
222                              OEM2_DATA_AVAIL)
223         unsigned char       msg_flags;
224
225         /* Does the BMC have an event buffer? */
226         char                has_event_buffer;
227
228         /*
229          * If set to true, this will request events the next time the
230          * state machine is idle.
231          */
232         atomic_t            req_events;
233
234         /*
235          * If true, run the state machine to completion on every send
236          * call.  Generally used after a panic to make sure stuff goes
237          * out.
238          */
239         int                 run_to_completion;
240
241         /* The I/O port of an SI interface. */
242         int                 port;
243
244         /*
245          * The space between start addresses of the two ports.  For
246          * instance, if the first port is 0xca2 and the spacing is 4, then
247          * the second port is 0xca6.
248          */
249         unsigned int        spacing;
250
251         /* zero if no irq; */
252         int                 irq;
253
254         /* The timer for this si. */
255         struct timer_list   si_timer;
256
257         /* The time (in jiffies) the last timeout occurred at. */
258         unsigned long       last_timeout_jiffies;
259
260         /* Used to gracefully stop the timer without race conditions. */
261         atomic_t            stop_operation;
262
263         /*
264          * The driver will disable interrupts when it gets into a
265          * situation where it cannot handle messages due to lack of
266          * memory.  Once that situation clears up, it will re-enable
267          * interrupts.
268          */
269         int interrupt_disabled;
270
271         /* From the get device id response... */
272         struct ipmi_device_id device_id;
273
274         /* Driver model stuff. */
275         struct device *dev;
276         struct platform_device *pdev;
277
278         /*
279          * True if we allocated the device, false if it came from
280          * someplace else (like PCI).
281          */
282         int dev_registered;
283
284         /* Slave address, could be reported from DMI. */
285         unsigned char slave_addr;
286
287         /* Counters and things for the proc filesystem. */
288         atomic_t stats[SI_NUM_STATS];
289
290         struct task_struct *thread;
291
292         struct list_head link;
293         union ipmi_smi_info_union addr_info;
294 };
295
296 #define smi_inc_stat(smi, stat) \
297         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
301 #define SI_MAX_PARMS 4
302
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static int pci_registered;
307 #endif
308 #ifdef CONFIG_ACPI
309 static int pnp_registered;
310 #endif
311 #ifdef CONFIG_PPC_OF
312 static int of_registered;
313 #endif
314
315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316 static int num_max_busy_us;
317
318 static int unload_when_empty = 1;
319
320 static int add_smi(struct smi_info *smi);
321 static int try_smi_init(struct smi_info *smi);
322 static void cleanup_one_si(struct smi_info *to_clean);
323
324 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
325 static int register_xaction_notifier(struct notifier_block *nb)
326 {
327         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
328 }
329
330 static void deliver_recv_msg(struct smi_info *smi_info,
331                              struct ipmi_smi_msg *msg)
332 {
333         /* Deliver the message to the upper layer with the lock
334            released. */
335
336         if (smi_info->run_to_completion) {
337                 ipmi_smi_msg_received(smi_info->intf, msg);
338         } else {
339                 spin_unlock(&(smi_info->si_lock));
340                 ipmi_smi_msg_received(smi_info->intf, msg);
341                 spin_lock(&(smi_info->si_lock));
342         }
343 }
344
345 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
346 {
347         struct ipmi_smi_msg *msg = smi_info->curr_msg;
348
349         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
350                 cCode = IPMI_ERR_UNSPECIFIED;
351         /* else use it as is */
352
353         /* Make it a reponse */
354         msg->rsp[0] = msg->data[0] | 4;
355         msg->rsp[1] = msg->data[1];
356         msg->rsp[2] = cCode;
357         msg->rsp_size = 3;
358
359         smi_info->curr_msg = NULL;
360         deliver_recv_msg(smi_info, msg);
361 }
362
363 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
364 {
365         int              rv;
366         struct list_head *entry = NULL;
367 #ifdef DEBUG_TIMING
368         struct timeval t;
369 #endif
370
371         /*
372          * No need to save flags, we aleady have interrupts off and we
373          * already hold the SMI lock.
374          */
375         if (!smi_info->run_to_completion)
376                 spin_lock(&(smi_info->msg_lock));
377
378         /* Pick the high priority queue first. */
379         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
380                 entry = smi_info->hp_xmit_msgs.next;
381         } else if (!list_empty(&(smi_info->xmit_msgs))) {
382                 entry = smi_info->xmit_msgs.next;
383         }
384
385         if (!entry) {
386                 smi_info->curr_msg = NULL;
387                 rv = SI_SM_IDLE;
388         } else {
389                 int err;
390
391                 list_del(entry);
392                 smi_info->curr_msg = list_entry(entry,
393                                                 struct ipmi_smi_msg,
394                                                 link);
395 #ifdef DEBUG_TIMING
396                 do_gettimeofday(&t);
397                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
398 #endif
399                 err = atomic_notifier_call_chain(&xaction_notifier_list,
400                                 0, smi_info);
401                 if (err & NOTIFY_STOP_MASK) {
402                         rv = SI_SM_CALL_WITHOUT_DELAY;
403                         goto out;
404                 }
405                 err = smi_info->handlers->start_transaction(
406                         smi_info->si_sm,
407                         smi_info->curr_msg->data,
408                         smi_info->curr_msg->data_size);
409                 if (err)
410                         return_hosed_msg(smi_info, err);
411
412                 rv = SI_SM_CALL_WITHOUT_DELAY;
413         }
414  out:
415         if (!smi_info->run_to_completion)
416                 spin_unlock(&(smi_info->msg_lock));
417
418         return rv;
419 }
420
421 static void start_enable_irq(struct smi_info *smi_info)
422 {
423         unsigned char msg[2];
424
425         /*
426          * If we are enabling interrupts, we have to tell the
427          * BMC to use them.
428          */
429         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
431
432         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
433         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
434 }
435
436 static void start_disable_irq(struct smi_info *smi_info)
437 {
438         unsigned char msg[2];
439
440         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
441         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
442
443         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
444         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
445 }
446
447 static void start_clear_flags(struct smi_info *smi_info)
448 {
449         unsigned char msg[3];
450
451         /* Make sure the watchdog pre-timeout flag is not set at startup. */
452         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
453         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
454         msg[2] = WDT_PRE_TIMEOUT_INT;
455
456         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
457         smi_info->si_state = SI_CLEARING_FLAGS;
458 }
459
460 /*
461  * When we have a situtaion where we run out of memory and cannot
462  * allocate messages, we just leave them in the BMC and run the system
463  * polled until we can allocate some memory.  Once we have some
464  * memory, we will re-enable the interrupt.
465  */
466 static inline void disable_si_irq(struct smi_info *smi_info)
467 {
468         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
469                 start_disable_irq(smi_info);
470                 smi_info->interrupt_disabled = 1;
471                 if (!atomic_read(&smi_info->stop_operation))
472                         mod_timer(&smi_info->si_timer,
473                                   jiffies + SI_TIMEOUT_JIFFIES);
474         }
475 }
476
477 static inline void enable_si_irq(struct smi_info *smi_info)
478 {
479         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
480                 start_enable_irq(smi_info);
481                 smi_info->interrupt_disabled = 0;
482         }
483 }
484
485 static void handle_flags(struct smi_info *smi_info)
486 {
487  retry:
488         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
489                 /* Watchdog pre-timeout */
490                 smi_inc_stat(smi_info, watchdog_pretimeouts);
491
492                 start_clear_flags(smi_info);
493                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
494                 spin_unlock(&(smi_info->si_lock));
495                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
496                 spin_lock(&(smi_info->si_lock));
497         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
498                 /* Messages available. */
499                 smi_info->curr_msg = ipmi_alloc_smi_msg();
500                 if (!smi_info->curr_msg) {
501                         disable_si_irq(smi_info);
502                         smi_info->si_state = SI_NORMAL;
503                         return;
504                 }
505                 enable_si_irq(smi_info);
506
507                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
508                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
509                 smi_info->curr_msg->data_size = 2;
510
511                 smi_info->handlers->start_transaction(
512                         smi_info->si_sm,
513                         smi_info->curr_msg->data,
514                         smi_info->curr_msg->data_size);
515                 smi_info->si_state = SI_GETTING_MESSAGES;
516         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
517                 /* Events available. */
518                 smi_info->curr_msg = ipmi_alloc_smi_msg();
519                 if (!smi_info->curr_msg) {
520                         disable_si_irq(smi_info);
521                         smi_info->si_state = SI_NORMAL;
522                         return;
523                 }
524                 enable_si_irq(smi_info);
525
526                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
527                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
528                 smi_info->curr_msg->data_size = 2;
529
530                 smi_info->handlers->start_transaction(
531                         smi_info->si_sm,
532                         smi_info->curr_msg->data,
533                         smi_info->curr_msg->data_size);
534                 smi_info->si_state = SI_GETTING_EVENTS;
535         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
536                    smi_info->oem_data_avail_handler) {
537                 if (smi_info->oem_data_avail_handler(smi_info))
538                         goto retry;
539         } else
540                 smi_info->si_state = SI_NORMAL;
541 }
542
543 static void handle_transaction_done(struct smi_info *smi_info)
544 {
545         struct ipmi_smi_msg *msg;
546 #ifdef DEBUG_TIMING
547         struct timeval t;
548
549         do_gettimeofday(&t);
550         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
551 #endif
552         switch (smi_info->si_state) {
553         case SI_NORMAL:
554                 if (!smi_info->curr_msg)
555                         break;
556
557                 smi_info->curr_msg->rsp_size
558                         = smi_info->handlers->get_result(
559                                 smi_info->si_sm,
560                                 smi_info->curr_msg->rsp,
561                                 IPMI_MAX_MSG_LENGTH);
562
563                 /*
564                  * Do this here becase deliver_recv_msg() releases the
565                  * lock, and a new message can be put in during the
566                  * time the lock is released.
567                  */
568                 msg = smi_info->curr_msg;
569                 smi_info->curr_msg = NULL;
570                 deliver_recv_msg(smi_info, msg);
571                 break;
572
573         case SI_GETTING_FLAGS:
574         {
575                 unsigned char msg[4];
576                 unsigned int  len;
577
578                 /* We got the flags from the SMI, now handle them. */
579                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
580                 if (msg[2] != 0) {
581                         /* Error fetching flags, just give up for now. */
582                         smi_info->si_state = SI_NORMAL;
583                 } else if (len < 4) {
584                         /*
585                          * Hmm, no flags.  That's technically illegal, but
586                          * don't use uninitialized data.
587                          */
588                         smi_info->si_state = SI_NORMAL;
589                 } else {
590                         smi_info->msg_flags = msg[3];
591                         handle_flags(smi_info);
592                 }
593                 break;
594         }
595
596         case SI_CLEARING_FLAGS:
597         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
598         {
599                 unsigned char msg[3];
600
601                 /* We cleared the flags. */
602                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
603                 if (msg[2] != 0) {
604                         /* Error clearing flags */
605                         dev_warn(smi_info->dev,
606                                  "Error clearing flags: %2.2x\n", msg[2]);
607                 }
608                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
609                         start_enable_irq(smi_info);
610                 else
611                         smi_info->si_state = SI_NORMAL;
612                 break;
613         }
614
615         case SI_GETTING_EVENTS:
616         {
617                 smi_info->curr_msg->rsp_size
618                         = smi_info->handlers->get_result(
619                                 smi_info->si_sm,
620                                 smi_info->curr_msg->rsp,
621                                 IPMI_MAX_MSG_LENGTH);
622
623                 /*
624                  * Do this here becase deliver_recv_msg() releases the
625                  * lock, and a new message can be put in during the
626                  * time the lock is released.
627                  */
628                 msg = smi_info->curr_msg;
629                 smi_info->curr_msg = NULL;
630                 if (msg->rsp[2] != 0) {
631                         /* Error getting event, probably done. */
632                         msg->done(msg);
633
634                         /* Take off the event flag. */
635                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
636                         handle_flags(smi_info);
637                 } else {
638                         smi_inc_stat(smi_info, events);
639
640                         /*
641                          * Do this before we deliver the message
642                          * because delivering the message releases the
643                          * lock and something else can mess with the
644                          * state.
645                          */
646                         handle_flags(smi_info);
647
648                         deliver_recv_msg(smi_info, msg);
649                 }
650                 break;
651         }
652
653         case SI_GETTING_MESSAGES:
654         {
655                 smi_info->curr_msg->rsp_size
656                         = smi_info->handlers->get_result(
657                                 smi_info->si_sm,
658                                 smi_info->curr_msg->rsp,
659                                 IPMI_MAX_MSG_LENGTH);
660
661                 /*
662                  * Do this here becase deliver_recv_msg() releases the
663                  * lock, and a new message can be put in during the
664                  * time the lock is released.
665                  */
666                 msg = smi_info->curr_msg;
667                 smi_info->curr_msg = NULL;
668                 if (msg->rsp[2] != 0) {
669                         /* Error getting event, probably done. */
670                         msg->done(msg);
671
672                         /* Take off the msg flag. */
673                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
674                         handle_flags(smi_info);
675                 } else {
676                         smi_inc_stat(smi_info, incoming_messages);
677
678                         /*
679                          * Do this before we deliver the message
680                          * because delivering the message releases the
681                          * lock and something else can mess with the
682                          * state.
683                          */
684                         handle_flags(smi_info);
685
686                         deliver_recv_msg(smi_info, msg);
687                 }
688                 break;
689         }
690
691         case SI_ENABLE_INTERRUPTS1:
692         {
693                 unsigned char msg[4];
694
695                 /* We got the flags from the SMI, now handle them. */
696                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
697                 if (msg[2] != 0) {
698                         dev_warn(smi_info->dev, "Could not enable interrupts"
699                                  ", failed get, using polled mode.\n");
700                         smi_info->si_state = SI_NORMAL;
701                 } else {
702                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
703                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
704                         msg[2] = (msg[3] |
705                                   IPMI_BMC_RCV_MSG_INTR |
706                                   IPMI_BMC_EVT_MSG_INTR);
707                         smi_info->handlers->start_transaction(
708                                 smi_info->si_sm, msg, 3);
709                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
710                 }
711                 break;
712         }
713
714         case SI_ENABLE_INTERRUPTS2:
715         {
716                 unsigned char msg[4];
717
718                 /* We got the flags from the SMI, now handle them. */
719                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
720                 if (msg[2] != 0)
721                         dev_warn(smi_info->dev, "Could not enable interrupts"
722                                  ", failed set, using polled mode.\n");
723                 else
724                         smi_info->interrupt_disabled = 0;
725                 smi_info->si_state = SI_NORMAL;
726                 break;
727         }
728
729         case SI_DISABLE_INTERRUPTS1:
730         {
731                 unsigned char msg[4];
732
733                 /* We got the flags from the SMI, now handle them. */
734                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
735                 if (msg[2] != 0) {
736                         dev_warn(smi_info->dev, "Could not disable interrupts"
737                                  ", failed get.\n");
738                         smi_info->si_state = SI_NORMAL;
739                 } else {
740                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
741                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
742                         msg[2] = (msg[3] &
743                                   ~(IPMI_BMC_RCV_MSG_INTR |
744                                     IPMI_BMC_EVT_MSG_INTR));
745                         smi_info->handlers->start_transaction(
746                                 smi_info->si_sm, msg, 3);
747                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
748                 }
749                 break;
750         }
751
752         case SI_DISABLE_INTERRUPTS2:
753         {
754                 unsigned char msg[4];
755
756                 /* We got the flags from the SMI, now handle them. */
757                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
758                 if (msg[2] != 0) {
759                         dev_warn(smi_info->dev, "Could not disable interrupts"
760                                  ", failed set.\n");
761                 }
762                 smi_info->si_state = SI_NORMAL;
763                 break;
764         }
765         }
766 }
767
768 /*
769  * Called on timeouts and events.  Timeouts should pass the elapsed
770  * time, interrupts should pass in zero.  Must be called with
771  * si_lock held and interrupts disabled.
772  */
773 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
774                                            int time)
775 {
776         enum si_sm_result si_sm_result;
777
778  restart:
779         /*
780          * There used to be a loop here that waited a little while
781          * (around 25us) before giving up.  That turned out to be
782          * pointless, the minimum delays I was seeing were in the 300us
783          * range, which is far too long to wait in an interrupt.  So
784          * we just run until the state machine tells us something
785          * happened or it needs a delay.
786          */
787         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
788         time = 0;
789         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
790                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
791
792         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
793                 smi_inc_stat(smi_info, complete_transactions);
794
795                 handle_transaction_done(smi_info);
796                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
797         } else if (si_sm_result == SI_SM_HOSED) {
798                 smi_inc_stat(smi_info, hosed_count);
799
800                 /*
801                  * Do the before return_hosed_msg, because that
802                  * releases the lock.
803                  */
804                 smi_info->si_state = SI_NORMAL;
805                 if (smi_info->curr_msg != NULL) {
806                         /*
807                          * If we were handling a user message, format
808                          * a response to send to the upper layer to
809                          * tell it about the error.
810                          */
811                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
812                 }
813                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
814         }
815
816         /*
817          * We prefer handling attn over new messages.  But don't do
818          * this if there is not yet an upper layer to handle anything.
819          */
820         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
821                 unsigned char msg[2];
822
823                 smi_inc_stat(smi_info, attentions);
824
825                 /*
826                  * Got a attn, send down a get message flags to see
827                  * what's causing it.  It would be better to handle
828                  * this in the upper layer, but due to the way
829                  * interrupts work with the SMI, that's not really
830                  * possible.
831                  */
832                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
833                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
834
835                 smi_info->handlers->start_transaction(
836                         smi_info->si_sm, msg, 2);
837                 smi_info->si_state = SI_GETTING_FLAGS;
838                 goto restart;
839         }
840
841         /* If we are currently idle, try to start the next message. */
842         if (si_sm_result == SI_SM_IDLE) {
843                 smi_inc_stat(smi_info, idles);
844
845                 si_sm_result = start_next_msg(smi_info);
846                 if (si_sm_result != SI_SM_IDLE)
847                         goto restart;
848         }
849
850         if ((si_sm_result == SI_SM_IDLE)
851             && (atomic_read(&smi_info->req_events))) {
852                 /*
853                  * We are idle and the upper layer requested that I fetch
854                  * events, so do so.
855                  */
856                 atomic_set(&smi_info->req_events, 0);
857
858                 smi_info->curr_msg = ipmi_alloc_smi_msg();
859                 if (!smi_info->curr_msg)
860                         goto out;
861
862                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
863                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
864                 smi_info->curr_msg->data_size = 2;
865
866                 smi_info->handlers->start_transaction(
867                         smi_info->si_sm,
868                         smi_info->curr_msg->data,
869                         smi_info->curr_msg->data_size);
870                 smi_info->si_state = SI_GETTING_EVENTS;
871                 goto restart;
872         }
873  out:
874         return si_sm_result;
875 }
876
877 static void sender(void                *send_info,
878                    struct ipmi_smi_msg *msg,
879                    int                 priority)
880 {
881         struct smi_info   *smi_info = send_info;
882         enum si_sm_result result;
883         unsigned long     flags;
884 #ifdef DEBUG_TIMING
885         struct timeval    t;
886 #endif
887
888         if (atomic_read(&smi_info->stop_operation)) {
889                 msg->rsp[0] = msg->data[0] | 4;
890                 msg->rsp[1] = msg->data[1];
891                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
892                 msg->rsp_size = 3;
893                 deliver_recv_msg(smi_info, msg);
894                 return;
895         }
896
897 #ifdef DEBUG_TIMING
898         do_gettimeofday(&t);
899         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
900 #endif
901
902         mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
903
904         if (smi_info->thread)
905                 wake_up_process(smi_info->thread);
906
907         if (smi_info->run_to_completion) {
908                 /*
909                  * If we are running to completion, then throw it in
910                  * the list and run transactions until everything is
911                  * clear.  Priority doesn't matter here.
912                  */
913
914                 /*
915                  * Run to completion means we are single-threaded, no
916                  * need for locks.
917                  */
918                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
919
920                 result = smi_event_handler(smi_info, 0);
921                 while (result != SI_SM_IDLE) {
922                         udelay(SI_SHORT_TIMEOUT_USEC);
923                         result = smi_event_handler(smi_info,
924                                                    SI_SHORT_TIMEOUT_USEC);
925                 }
926                 return;
927         }
928
929         spin_lock_irqsave(&smi_info->msg_lock, flags);
930         if (priority > 0)
931                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
932         else
933                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
934         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
935
936         spin_lock_irqsave(&smi_info->si_lock, flags);
937         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
938                 start_next_msg(smi_info);
939         spin_unlock_irqrestore(&smi_info->si_lock, flags);
940 }
941
942 static void set_run_to_completion(void *send_info, int i_run_to_completion)
943 {
944         struct smi_info   *smi_info = send_info;
945         enum si_sm_result result;
946
947         smi_info->run_to_completion = i_run_to_completion;
948         if (i_run_to_completion) {
949                 result = smi_event_handler(smi_info, 0);
950                 while (result != SI_SM_IDLE) {
951                         udelay(SI_SHORT_TIMEOUT_USEC);
952                         result = smi_event_handler(smi_info,
953                                                    SI_SHORT_TIMEOUT_USEC);
954                 }
955         }
956 }
957
958 /*
959  * Use -1 in the nsec value of the busy waiting timespec to tell that
960  * we are spinning in kipmid looking for something and not delaying
961  * between checks
962  */
963 static inline void ipmi_si_set_not_busy(struct timespec *ts)
964 {
965         ts->tv_nsec = -1;
966 }
967 static inline int ipmi_si_is_busy(struct timespec *ts)
968 {
969         return ts->tv_nsec != -1;
970 }
971
972 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
973                                  const struct smi_info *smi_info,
974                                  struct timespec *busy_until)
975 {
976         unsigned int max_busy_us = 0;
977
978         if (smi_info->intf_num < num_max_busy_us)
979                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
980         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
981                 ipmi_si_set_not_busy(busy_until);
982         else if (!ipmi_si_is_busy(busy_until)) {
983                 getnstimeofday(busy_until);
984                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
985         } else {
986                 struct timespec now;
987                 getnstimeofday(&now);
988                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
989                         ipmi_si_set_not_busy(busy_until);
990                         return 0;
991                 }
992         }
993         return 1;
994 }
995
996
997 /*
998  * A busy-waiting loop for speeding up IPMI operation.
999  *
1000  * Lousy hardware makes this hard.  This is only enabled for systems
1001  * that are not BT and do not have interrupts.  It starts spinning
1002  * when an operation is complete or until max_busy tells it to stop
1003  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1004  * Documentation/IPMI.txt for details.
1005  */
1006 static int ipmi_thread(void *data)
1007 {
1008         struct smi_info *smi_info = data;
1009         unsigned long flags;
1010         enum si_sm_result smi_result;
1011         struct timespec busy_until;
1012
1013         ipmi_si_set_not_busy(&busy_until);
1014         set_user_nice(current, 19);
1015         while (!kthread_should_stop()) {
1016                 int busy_wait;
1017
1018                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1019                 smi_result = smi_event_handler(smi_info, 0);
1020                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1021                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1022                                                   &busy_until);
1023                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1024                         ; /* do nothing */
1025                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1026                         schedule();
1027                 else if (smi_result == SI_SM_IDLE)
1028                         schedule_timeout_interruptible(100);
1029                 else
1030                         schedule_timeout_interruptible(1);
1031         }
1032         return 0;
1033 }
1034
1035
1036 static void poll(void *send_info)
1037 {
1038         struct smi_info *smi_info = send_info;
1039         unsigned long flags;
1040
1041         /*
1042          * Make sure there is some delay in the poll loop so we can
1043          * drive time forward and timeout things.
1044          */
1045         udelay(10);
1046         spin_lock_irqsave(&smi_info->si_lock, flags);
1047         smi_event_handler(smi_info, 10);
1048         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1049 }
1050
1051 static void request_events(void *send_info)
1052 {
1053         struct smi_info *smi_info = send_info;
1054
1055         if (atomic_read(&smi_info->stop_operation) ||
1056                                 !smi_info->has_event_buffer)
1057                 return;
1058
1059         atomic_set(&smi_info->req_events, 1);
1060 }
1061
1062 static int initialized;
1063
1064 static void smi_timeout(unsigned long data)
1065 {
1066         struct smi_info   *smi_info = (struct smi_info *) data;
1067         enum si_sm_result smi_result;
1068         unsigned long     flags;
1069         unsigned long     jiffies_now;
1070         long              time_diff;
1071         long              timeout;
1072 #ifdef DEBUG_TIMING
1073         struct timeval    t;
1074 #endif
1075
1076         spin_lock_irqsave(&(smi_info->si_lock), flags);
1077 #ifdef DEBUG_TIMING
1078         do_gettimeofday(&t);
1079         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1080 #endif
1081         jiffies_now = jiffies;
1082         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1083                      * SI_USEC_PER_JIFFY);
1084         smi_result = smi_event_handler(smi_info, time_diff);
1085
1086         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1087
1088         smi_info->last_timeout_jiffies = jiffies_now;
1089
1090         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1091                 /* Running with interrupts, only do long timeouts. */
1092                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093                 smi_inc_stat(smi_info, long_timeouts);
1094                 goto do_mod_timer;
1095         }
1096
1097         /*
1098          * If the state machine asks for a short delay, then shorten
1099          * the timer timeout.
1100          */
1101         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1102                 smi_inc_stat(smi_info, short_timeouts);
1103                 timeout = jiffies + 1;
1104         } else {
1105                 smi_inc_stat(smi_info, long_timeouts);
1106                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1107         }
1108
1109  do_mod_timer:
1110         if (smi_result != SI_SM_IDLE)
1111                 mod_timer(&(smi_info->si_timer), timeout);
1112 }
1113
1114 static irqreturn_t si_irq_handler(int irq, void *data)
1115 {
1116         struct smi_info *smi_info = data;
1117         unsigned long   flags;
1118 #ifdef DEBUG_TIMING
1119         struct timeval  t;
1120 #endif
1121
1122         spin_lock_irqsave(&(smi_info->si_lock), flags);
1123
1124         smi_inc_stat(smi_info, interrupts);
1125
1126 #ifdef DEBUG_TIMING
1127         do_gettimeofday(&t);
1128         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1129 #endif
1130         smi_event_handler(smi_info, 0);
1131         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1132         return IRQ_HANDLED;
1133 }
1134
1135 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1136 {
1137         struct smi_info *smi_info = data;
1138         /* We need to clear the IRQ flag for the BT interface. */
1139         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1140                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1141                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1142         return si_irq_handler(irq, data);
1143 }
1144
1145 static int smi_start_processing(void       *send_info,
1146                                 ipmi_smi_t intf)
1147 {
1148         struct smi_info *new_smi = send_info;
1149         int             enable = 0;
1150
1151         new_smi->intf = intf;
1152
1153         /* Try to claim any interrupts. */
1154         if (new_smi->irq_setup)
1155                 new_smi->irq_setup(new_smi);
1156
1157         /* Set up the timer that drives the interface. */
1158         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1159         new_smi->last_timeout_jiffies = jiffies;
1160         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1161
1162         /*
1163          * Check if the user forcefully enabled the daemon.
1164          */
1165         if (new_smi->intf_num < num_force_kipmid)
1166                 enable = force_kipmid[new_smi->intf_num];
1167         /*
1168          * The BT interface is efficient enough to not need a thread,
1169          * and there is no need for a thread if we have interrupts.
1170          */
1171         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1172                 enable = 1;
1173
1174         if (enable) {
1175                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1176                                               "kipmi%d", new_smi->intf_num);
1177                 if (IS_ERR(new_smi->thread)) {
1178                         dev_notice(new_smi->dev, "Could not start"
1179                                    " kernel thread due to error %ld, only using"
1180                                    " timers to drive the interface\n",
1181                                    PTR_ERR(new_smi->thread));
1182                         new_smi->thread = NULL;
1183                 }
1184         }
1185
1186         return 0;
1187 }
1188
1189 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1190 {
1191         struct smi_info *smi = send_info;
1192
1193         data->addr_src = smi->addr_source;
1194         data->dev = smi->dev;
1195         data->addr_info = smi->addr_info;
1196         get_device(smi->dev);
1197
1198         return 0;
1199 }
1200
1201 static void set_maintenance_mode(void *send_info, int enable)
1202 {
1203         struct smi_info   *smi_info = send_info;
1204
1205         if (!enable)
1206                 atomic_set(&smi_info->req_events, 0);
1207 }
1208
1209 static struct ipmi_smi_handlers handlers = {
1210         .owner                  = THIS_MODULE,
1211         .start_processing       = smi_start_processing,
1212         .get_smi_info           = get_smi_info,
1213         .sender                 = sender,
1214         .request_events         = request_events,
1215         .set_maintenance_mode   = set_maintenance_mode,
1216         .set_run_to_completion  = set_run_to_completion,
1217         .poll                   = poll,
1218 };
1219
1220 /*
1221  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1222  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1223  */
1224
1225 static LIST_HEAD(smi_infos);
1226 static DEFINE_MUTEX(smi_infos_lock);
1227 static int smi_num; /* Used to sequence the SMIs */
1228
1229 #define DEFAULT_REGSPACING      1
1230 #define DEFAULT_REGSIZE         1
1231
1232 static int           si_trydefaults = 1;
1233 static char          *si_type[SI_MAX_PARMS];
1234 #define MAX_SI_TYPE_STR 30
1235 static char          si_type_str[MAX_SI_TYPE_STR];
1236 static unsigned long addrs[SI_MAX_PARMS];
1237 static unsigned int num_addrs;
1238 static unsigned int  ports[SI_MAX_PARMS];
1239 static unsigned int num_ports;
1240 static int           irqs[SI_MAX_PARMS];
1241 static unsigned int num_irqs;
1242 static int           regspacings[SI_MAX_PARMS];
1243 static unsigned int num_regspacings;
1244 static int           regsizes[SI_MAX_PARMS];
1245 static unsigned int num_regsizes;
1246 static int           regshifts[SI_MAX_PARMS];
1247 static unsigned int num_regshifts;
1248 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1249 static unsigned int num_slave_addrs;
1250
1251 #define IPMI_IO_ADDR_SPACE  0
1252 #define IPMI_MEM_ADDR_SPACE 1
1253 static char *addr_space_to_str[] = { "i/o", "mem" };
1254
1255 static int hotmod_handler(const char *val, struct kernel_param *kp);
1256
1257 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1258 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1259                  " Documentation/IPMI.txt in the kernel sources for the"
1260                  " gory details.");
1261
1262 module_param_named(trydefaults, si_trydefaults, bool, 0);
1263 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1264                  " default scan of the KCS and SMIC interface at the standard"
1265                  " address");
1266 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1267 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1268                  " interface separated by commas.  The types are 'kcs',"
1269                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1270                  " the first interface to kcs and the second to bt");
1271 module_param_array(addrs, ulong, &num_addrs, 0);
1272 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1273                  " addresses separated by commas.  Only use if an interface"
1274                  " is in memory.  Otherwise, set it to zero or leave"
1275                  " it blank.");
1276 module_param_array(ports, uint, &num_ports, 0);
1277 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1278                  " addresses separated by commas.  Only use if an interface"
1279                  " is a port.  Otherwise, set it to zero or leave"
1280                  " it blank.");
1281 module_param_array(irqs, int, &num_irqs, 0);
1282 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1283                  " addresses separated by commas.  Only use if an interface"
1284                  " has an interrupt.  Otherwise, set it to zero or leave"
1285                  " it blank.");
1286 module_param_array(regspacings, int, &num_regspacings, 0);
1287 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1288                  " and each successive register used by the interface.  For"
1289                  " instance, if the start address is 0xca2 and the spacing"
1290                  " is 2, then the second address is at 0xca4.  Defaults"
1291                  " to 1.");
1292 module_param_array(regsizes, int, &num_regsizes, 0);
1293 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1294                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1295                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1296                  " the 8-bit IPMI register has to be read from a larger"
1297                  " register.");
1298 module_param_array(regshifts, int, &num_regshifts, 0);
1299 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1300                  " IPMI register, in bits.  For instance, if the data"
1301                  " is read from a 32-bit word and the IPMI data is in"
1302                  " bit 8-15, then the shift would be 8");
1303 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1304 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1305                  " the controller.  Normally this is 0x20, but can be"
1306                  " overridden by this parm.  This is an array indexed"
1307                  " by interface number.");
1308 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1309 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1310                  " disabled(0).  Normally the IPMI driver auto-detects"
1311                  " this, but the value may be overridden by this parm.");
1312 module_param(unload_when_empty, int, 0);
1313 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1314                  " specified or found, default is 1.  Setting to 0"
1315                  " is useful for hot add of devices using hotmod.");
1316 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1317 MODULE_PARM_DESC(kipmid_max_busy_us,
1318                  "Max time (in microseconds) to busy-wait for IPMI data before"
1319                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1320                  " if kipmid is using up a lot of CPU time.");
1321
1322
1323 static void std_irq_cleanup(struct smi_info *info)
1324 {
1325         if (info->si_type == SI_BT)
1326                 /* Disable the interrupt in the BT interface. */
1327                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1328         free_irq(info->irq, info);
1329 }
1330
1331 static int std_irq_setup(struct smi_info *info)
1332 {
1333         int rv;
1334
1335         if (!info->irq)
1336                 return 0;
1337
1338         if (info->si_type == SI_BT) {
1339                 rv = request_irq(info->irq,
1340                                  si_bt_irq_handler,
1341                                  IRQF_SHARED | IRQF_DISABLED,
1342                                  DEVICE_NAME,
1343                                  info);
1344                 if (!rv)
1345                         /* Enable the interrupt in the BT interface. */
1346                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1347                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1348         } else
1349                 rv = request_irq(info->irq,
1350                                  si_irq_handler,
1351                                  IRQF_SHARED | IRQF_DISABLED,
1352                                  DEVICE_NAME,
1353                                  info);
1354         if (rv) {
1355                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1356                          " running polled\n",
1357                          DEVICE_NAME, info->irq);
1358                 info->irq = 0;
1359         } else {
1360                 info->irq_cleanup = std_irq_cleanup;
1361                 dev_info(info->dev, "Using irq %d\n", info->irq);
1362         }
1363
1364         return rv;
1365 }
1366
1367 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1368 {
1369         unsigned int addr = io->addr_data;
1370
1371         return inb(addr + (offset * io->regspacing));
1372 }
1373
1374 static void port_outb(struct si_sm_io *io, unsigned int offset,
1375                       unsigned char b)
1376 {
1377         unsigned int addr = io->addr_data;
1378
1379         outb(b, addr + (offset * io->regspacing));
1380 }
1381
1382 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1383 {
1384         unsigned int addr = io->addr_data;
1385
1386         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1387 }
1388
1389 static void port_outw(struct si_sm_io *io, unsigned int offset,
1390                       unsigned char b)
1391 {
1392         unsigned int addr = io->addr_data;
1393
1394         outw(b << io->regshift, addr + (offset * io->regspacing));
1395 }
1396
1397 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1398 {
1399         unsigned int addr = io->addr_data;
1400
1401         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1402 }
1403
1404 static void port_outl(struct si_sm_io *io, unsigned int offset,
1405                       unsigned char b)
1406 {
1407         unsigned int addr = io->addr_data;
1408
1409         outl(b << io->regshift, addr+(offset * io->regspacing));
1410 }
1411
1412 static void port_cleanup(struct smi_info *info)
1413 {
1414         unsigned int addr = info->io.addr_data;
1415         int          idx;
1416
1417         if (addr) {
1418                 for (idx = 0; idx < info->io_size; idx++)
1419                         release_region(addr + idx * info->io.regspacing,
1420                                        info->io.regsize);
1421         }
1422 }
1423
1424 static int port_setup(struct smi_info *info)
1425 {
1426         unsigned int addr = info->io.addr_data;
1427         int          idx;
1428
1429         if (!addr)
1430                 return -ENODEV;
1431
1432         info->io_cleanup = port_cleanup;
1433
1434         /*
1435          * Figure out the actual inb/inw/inl/etc routine to use based
1436          * upon the register size.
1437          */
1438         switch (info->io.regsize) {
1439         case 1:
1440                 info->io.inputb = port_inb;
1441                 info->io.outputb = port_outb;
1442                 break;
1443         case 2:
1444                 info->io.inputb = port_inw;
1445                 info->io.outputb = port_outw;
1446                 break;
1447         case 4:
1448                 info->io.inputb = port_inl;
1449                 info->io.outputb = port_outl;
1450                 break;
1451         default:
1452                 dev_warn(info->dev, "Invalid register size: %d\n",
1453                          info->io.regsize);
1454                 return -EINVAL;
1455         }
1456
1457         /*
1458          * Some BIOSes reserve disjoint I/O regions in their ACPI
1459          * tables.  This causes problems when trying to register the
1460          * entire I/O region.  Therefore we must register each I/O
1461          * port separately.
1462          */
1463         for (idx = 0; idx < info->io_size; idx++) {
1464                 if (request_region(addr + idx * info->io.regspacing,
1465                                    info->io.regsize, DEVICE_NAME) == NULL) {
1466                         /* Undo allocations */
1467                         while (idx--) {
1468                                 release_region(addr + idx * info->io.regspacing,
1469                                                info->io.regsize);
1470                         }
1471                         return -EIO;
1472                 }
1473         }
1474         return 0;
1475 }
1476
1477 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1478 {
1479         return readb((io->addr)+(offset * io->regspacing));
1480 }
1481
1482 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1483                      unsigned char b)
1484 {
1485         writeb(b, (io->addr)+(offset * io->regspacing));
1486 }
1487
1488 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1489 {
1490         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1491                 & 0xff;
1492 }
1493
1494 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1495                      unsigned char b)
1496 {
1497         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1498 }
1499
1500 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1501 {
1502         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1503                 & 0xff;
1504 }
1505
1506 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1507                      unsigned char b)
1508 {
1509         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1510 }
1511
1512 #ifdef readq
1513 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1514 {
1515         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1516                 & 0xff;
1517 }
1518
1519 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1520                      unsigned char b)
1521 {
1522         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1523 }
1524 #endif
1525
1526 static void mem_cleanup(struct smi_info *info)
1527 {
1528         unsigned long addr = info->io.addr_data;
1529         int           mapsize;
1530
1531         if (info->io.addr) {
1532                 iounmap(info->io.addr);
1533
1534                 mapsize = ((info->io_size * info->io.regspacing)
1535                            - (info->io.regspacing - info->io.regsize));
1536
1537                 release_mem_region(addr, mapsize);
1538         }
1539 }
1540
1541 static int mem_setup(struct smi_info *info)
1542 {
1543         unsigned long addr = info->io.addr_data;
1544         int           mapsize;
1545
1546         if (!addr)
1547                 return -ENODEV;
1548
1549         info->io_cleanup = mem_cleanup;
1550
1551         /*
1552          * Figure out the actual readb/readw/readl/etc routine to use based
1553          * upon the register size.
1554          */
1555         switch (info->io.regsize) {
1556         case 1:
1557                 info->io.inputb = intf_mem_inb;
1558                 info->io.outputb = intf_mem_outb;
1559                 break;
1560         case 2:
1561                 info->io.inputb = intf_mem_inw;
1562                 info->io.outputb = intf_mem_outw;
1563                 break;
1564         case 4:
1565                 info->io.inputb = intf_mem_inl;
1566                 info->io.outputb = intf_mem_outl;
1567                 break;
1568 #ifdef readq
1569         case 8:
1570                 info->io.inputb = mem_inq;
1571                 info->io.outputb = mem_outq;
1572                 break;
1573 #endif
1574         default:
1575                 dev_warn(info->dev, "Invalid register size: %d\n",
1576                          info->io.regsize);
1577                 return -EINVAL;
1578         }
1579
1580         /*
1581          * Calculate the total amount of memory to claim.  This is an
1582          * unusual looking calculation, but it avoids claiming any
1583          * more memory than it has to.  It will claim everything
1584          * between the first address to the end of the last full
1585          * register.
1586          */
1587         mapsize = ((info->io_size * info->io.regspacing)
1588                    - (info->io.regspacing - info->io.regsize));
1589
1590         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1591                 return -EIO;
1592
1593         info->io.addr = ioremap(addr, mapsize);
1594         if (info->io.addr == NULL) {
1595                 release_mem_region(addr, mapsize);
1596                 return -EIO;
1597         }
1598         return 0;
1599 }
1600
1601 /*
1602  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1603  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1604  * Options are:
1605  *   rsp=<regspacing>
1606  *   rsi=<regsize>
1607  *   rsh=<regshift>
1608  *   irq=<irq>
1609  *   ipmb=<ipmb addr>
1610  */
1611 enum hotmod_op { HM_ADD, HM_REMOVE };
1612 struct hotmod_vals {
1613         char *name;
1614         int  val;
1615 };
1616 static struct hotmod_vals hotmod_ops[] = {
1617         { "add",        HM_ADD },
1618         { "remove",     HM_REMOVE },
1619         { NULL }
1620 };
1621 static struct hotmod_vals hotmod_si[] = {
1622         { "kcs",        SI_KCS },
1623         { "smic",       SI_SMIC },
1624         { "bt",         SI_BT },
1625         { NULL }
1626 };
1627 static struct hotmod_vals hotmod_as[] = {
1628         { "mem",        IPMI_MEM_ADDR_SPACE },
1629         { "i/o",        IPMI_IO_ADDR_SPACE },
1630         { NULL }
1631 };
1632
1633 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1634 {
1635         char *s;
1636         int  i;
1637
1638         s = strchr(*curr, ',');
1639         if (!s) {
1640                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1641                 return -EINVAL;
1642         }
1643         *s = '\0';
1644         s++;
1645         for (i = 0; hotmod_ops[i].name; i++) {
1646                 if (strcmp(*curr, v[i].name) == 0) {
1647                         *val = v[i].val;
1648                         *curr = s;
1649                         return 0;
1650                 }
1651         }
1652
1653         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1654         return -EINVAL;
1655 }
1656
1657 static int check_hotmod_int_op(const char *curr, const char *option,
1658                                const char *name, int *val)
1659 {
1660         char *n;
1661
1662         if (strcmp(curr, name) == 0) {
1663                 if (!option) {
1664                         printk(KERN_WARNING PFX
1665                                "No option given for '%s'\n",
1666                                curr);
1667                         return -EINVAL;
1668                 }
1669                 *val = simple_strtoul(option, &n, 0);
1670                 if ((*n != '\0') || (*option == '\0')) {
1671                         printk(KERN_WARNING PFX
1672                                "Bad option given for '%s'\n",
1673                                curr);
1674                         return -EINVAL;
1675                 }
1676                 return 1;
1677         }
1678         return 0;
1679 }
1680
1681 static struct smi_info *smi_info_alloc(void)
1682 {
1683         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1684
1685         if (info) {
1686                 spin_lock_init(&info->si_lock);
1687                 spin_lock_init(&info->msg_lock);
1688         }
1689         return info;
1690 }
1691
1692 static int hotmod_handler(const char *val, struct kernel_param *kp)
1693 {
1694         char *str = kstrdup(val, GFP_KERNEL);
1695         int  rv;
1696         char *next, *curr, *s, *n, *o;
1697         enum hotmod_op op;
1698         enum si_type si_type;
1699         int  addr_space;
1700         unsigned long addr;
1701         int regspacing;
1702         int regsize;
1703         int regshift;
1704         int irq;
1705         int ipmb;
1706         int ival;
1707         int len;
1708         struct smi_info *info;
1709
1710         if (!str)
1711                 return -ENOMEM;
1712
1713         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1714         len = strlen(str);
1715         ival = len - 1;
1716         while ((ival >= 0) && isspace(str[ival])) {
1717                 str[ival] = '\0';
1718                 ival--;
1719         }
1720
1721         for (curr = str; curr; curr = next) {
1722                 regspacing = 1;
1723                 regsize = 1;
1724                 regshift = 0;
1725                 irq = 0;
1726                 ipmb = 0; /* Choose the default if not specified */
1727
1728                 next = strchr(curr, ':');
1729                 if (next) {
1730                         *next = '\0';
1731                         next++;
1732                 }
1733
1734                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1735                 if (rv)
1736                         break;
1737                 op = ival;
1738
1739                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1740                 if (rv)
1741                         break;
1742                 si_type = ival;
1743
1744                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1745                 if (rv)
1746                         break;
1747
1748                 s = strchr(curr, ',');
1749                 if (s) {
1750                         *s = '\0';
1751                         s++;
1752                 }
1753                 addr = simple_strtoul(curr, &n, 0);
1754                 if ((*n != '\0') || (*curr == '\0')) {
1755                         printk(KERN_WARNING PFX "Invalid hotmod address"
1756                                " '%s'\n", curr);
1757                         break;
1758                 }
1759
1760                 while (s) {
1761                         curr = s;
1762                         s = strchr(curr, ',');
1763                         if (s) {
1764                                 *s = '\0';
1765                                 s++;
1766                         }
1767                         o = strchr(curr, '=');
1768                         if (o) {
1769                                 *o = '\0';
1770                                 o++;
1771                         }
1772                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1773                         if (rv < 0)
1774                                 goto out;
1775                         else if (rv)
1776                                 continue;
1777                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1778                         if (rv < 0)
1779                                 goto out;
1780                         else if (rv)
1781                                 continue;
1782                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1783                         if (rv < 0)
1784                                 goto out;
1785                         else if (rv)
1786                                 continue;
1787                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1788                         if (rv < 0)
1789                                 goto out;
1790                         else if (rv)
1791                                 continue;
1792                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1793                         if (rv < 0)
1794                                 goto out;
1795                         else if (rv)
1796                                 continue;
1797
1798                         rv = -EINVAL;
1799                         printk(KERN_WARNING PFX
1800                                "Invalid hotmod option '%s'\n",
1801                                curr);
1802                         goto out;
1803                 }
1804
1805                 if (op == HM_ADD) {
1806                         info = smi_info_alloc();
1807                         if (!info) {
1808                                 rv = -ENOMEM;
1809                                 goto out;
1810                         }
1811
1812                         info->addr_source = SI_HOTMOD;
1813                         info->si_type = si_type;
1814                         info->io.addr_data = addr;
1815                         info->io.addr_type = addr_space;
1816                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1817                                 info->io_setup = mem_setup;
1818                         else
1819                                 info->io_setup = port_setup;
1820
1821                         info->io.addr = NULL;
1822                         info->io.regspacing = regspacing;
1823                         if (!info->io.regspacing)
1824                                 info->io.regspacing = DEFAULT_REGSPACING;
1825                         info->io.regsize = regsize;
1826                         if (!info->io.regsize)
1827                                 info->io.regsize = DEFAULT_REGSPACING;
1828                         info->io.regshift = regshift;
1829                         info->irq = irq;
1830                         if (info->irq)
1831                                 info->irq_setup = std_irq_setup;
1832                         info->slave_addr = ipmb;
1833
1834                         if (!add_smi(info)) {
1835                                 if (try_smi_init(info))
1836                                         cleanup_one_si(info);
1837                         } else {
1838                                 kfree(info);
1839                         }
1840                 } else {
1841                         /* remove */
1842                         struct smi_info *e, *tmp_e;
1843
1844                         mutex_lock(&smi_infos_lock);
1845                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1846                                 if (e->io.addr_type != addr_space)
1847                                         continue;
1848                                 if (e->si_type != si_type)
1849                                         continue;
1850                                 if (e->io.addr_data == addr)
1851                                         cleanup_one_si(e);
1852                         }
1853                         mutex_unlock(&smi_infos_lock);
1854                 }
1855         }
1856         rv = len;
1857  out:
1858         kfree(str);
1859         return rv;
1860 }
1861
1862 static void __devinit hardcode_find_bmc(void)
1863 {
1864         int             i;
1865         struct smi_info *info;
1866
1867         for (i = 0; i < SI_MAX_PARMS; i++) {
1868                 if (!ports[i] && !addrs[i])
1869                         continue;
1870
1871                 info = smi_info_alloc();
1872                 if (!info)
1873                         return;
1874
1875                 info->addr_source = SI_HARDCODED;
1876                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1877
1878                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1879                         info->si_type = SI_KCS;
1880                 } else if (strcmp(si_type[i], "smic") == 0) {
1881                         info->si_type = SI_SMIC;
1882                 } else if (strcmp(si_type[i], "bt") == 0) {
1883                         info->si_type = SI_BT;
1884                 } else {
1885                         printk(KERN_WARNING PFX "Interface type specified "
1886                                "for interface %d, was invalid: %s\n",
1887                                i, si_type[i]);
1888                         kfree(info);
1889                         continue;
1890                 }
1891
1892                 if (ports[i]) {
1893                         /* An I/O port */
1894                         info->io_setup = port_setup;
1895                         info->io.addr_data = ports[i];
1896                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1897                 } else if (addrs[i]) {
1898                         /* A memory port */
1899                         info->io_setup = mem_setup;
1900                         info->io.addr_data = addrs[i];
1901                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1902                 } else {
1903                         printk(KERN_WARNING PFX "Interface type specified "
1904                                "for interface %d, but port and address were "
1905                                "not set or set to zero.\n", i);
1906                         kfree(info);
1907                         continue;
1908                 }
1909
1910                 info->io.addr = NULL;
1911                 info->io.regspacing = regspacings[i];
1912                 if (!info->io.regspacing)
1913                         info->io.regspacing = DEFAULT_REGSPACING;
1914                 info->io.regsize = regsizes[i];
1915                 if (!info->io.regsize)
1916                         info->io.regsize = DEFAULT_REGSPACING;
1917                 info->io.regshift = regshifts[i];
1918                 info->irq = irqs[i];
1919                 if (info->irq)
1920                         info->irq_setup = std_irq_setup;
1921                 info->slave_addr = slave_addrs[i];
1922
1923                 if (!add_smi(info)) {
1924                         if (try_smi_init(info))
1925                                 cleanup_one_si(info);
1926                 } else {
1927                         kfree(info);
1928                 }
1929         }
1930 }
1931
1932 #ifdef CONFIG_ACPI
1933
1934 #include <linux/acpi.h>
1935
1936 /*
1937  * Once we get an ACPI failure, we don't try any more, because we go
1938  * through the tables sequentially.  Once we don't find a table, there
1939  * are no more.
1940  */
1941 static int acpi_failure;
1942
1943 /* For GPE-type interrupts. */
1944 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1945         u32 gpe_number, void *context)
1946 {
1947         struct smi_info *smi_info = context;
1948         unsigned long   flags;
1949 #ifdef DEBUG_TIMING
1950         struct timeval t;
1951 #endif
1952
1953         spin_lock_irqsave(&(smi_info->si_lock), flags);
1954
1955         smi_inc_stat(smi_info, interrupts);
1956
1957 #ifdef DEBUG_TIMING
1958         do_gettimeofday(&t);
1959         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1960 #endif
1961         smi_event_handler(smi_info, 0);
1962         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1963
1964         return ACPI_INTERRUPT_HANDLED;
1965 }
1966
1967 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1968 {
1969         if (!info->irq)
1970                 return;
1971
1972         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1973 }
1974
1975 static int acpi_gpe_irq_setup(struct smi_info *info)
1976 {
1977         acpi_status status;
1978
1979         if (!info->irq)
1980                 return 0;
1981
1982         /* FIXME - is level triggered right? */
1983         status = acpi_install_gpe_handler(NULL,
1984                                           info->irq,
1985                                           ACPI_GPE_LEVEL_TRIGGERED,
1986                                           &ipmi_acpi_gpe,
1987                                           info);
1988         if (status != AE_OK) {
1989                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1990                          " running polled\n", DEVICE_NAME, info->irq);
1991                 info->irq = 0;
1992                 return -EINVAL;
1993         } else {
1994                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1995                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1996                 return 0;
1997         }
1998 }
1999
2000 /*
2001  * Defined at
2002  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2003  */
2004 struct SPMITable {
2005         s8      Signature[4];
2006         u32     Length;
2007         u8      Revision;
2008         u8      Checksum;
2009         s8      OEMID[6];
2010         s8      OEMTableID[8];
2011         s8      OEMRevision[4];
2012         s8      CreatorID[4];
2013         s8      CreatorRevision[4];
2014         u8      InterfaceType;
2015         u8      IPMIlegacy;
2016         s16     SpecificationRevision;
2017
2018         /*
2019          * Bit 0 - SCI interrupt supported
2020          * Bit 1 - I/O APIC/SAPIC
2021          */
2022         u8      InterruptType;
2023
2024         /*
2025          * If bit 0 of InterruptType is set, then this is the SCI
2026          * interrupt in the GPEx_STS register.
2027          */
2028         u8      GPE;
2029
2030         s16     Reserved;
2031
2032         /*
2033          * If bit 1 of InterruptType is set, then this is the I/O
2034          * APIC/SAPIC interrupt.
2035          */
2036         u32     GlobalSystemInterrupt;
2037
2038         /* The actual register address. */
2039         struct acpi_generic_address addr;
2040
2041         u8      UID[4];
2042
2043         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2044 };
2045
2046 static int __devinit try_init_spmi(struct SPMITable *spmi)
2047 {
2048         struct smi_info  *info;
2049
2050         if (spmi->IPMIlegacy != 1) {
2051                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2052                 return -ENODEV;
2053         }
2054
2055         info = smi_info_alloc();
2056         if (!info) {
2057                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2058                 return -ENOMEM;
2059         }
2060
2061         info->addr_source = SI_SPMI;
2062         printk(KERN_INFO PFX "probing via SPMI\n");
2063
2064         /* Figure out the interface type. */
2065         switch (spmi->InterfaceType) {
2066         case 1: /* KCS */
2067                 info->si_type = SI_KCS;
2068                 break;
2069         case 2: /* SMIC */
2070                 info->si_type = SI_SMIC;
2071                 break;
2072         case 3: /* BT */
2073                 info->si_type = SI_BT;
2074                 break;
2075         default:
2076                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2077                        spmi->InterfaceType);
2078                 kfree(info);
2079                 return -EIO;
2080         }
2081
2082         if (spmi->InterruptType & 1) {
2083                 /* We've got a GPE interrupt. */
2084                 info->irq = spmi->GPE;
2085                 info->irq_setup = acpi_gpe_irq_setup;
2086         } else if (spmi->InterruptType & 2) {
2087                 /* We've got an APIC/SAPIC interrupt. */
2088                 info->irq = spmi->GlobalSystemInterrupt;
2089                 info->irq_setup = std_irq_setup;
2090         } else {
2091                 /* Use the default interrupt setting. */
2092                 info->irq = 0;
2093                 info->irq_setup = NULL;
2094         }
2095
2096         if (spmi->addr.bit_width) {
2097                 /* A (hopefully) properly formed register bit width. */
2098                 info->io.regspacing = spmi->addr.bit_width / 8;
2099         } else {
2100                 info->io.regspacing = DEFAULT_REGSPACING;
2101         }
2102         info->io.regsize = info->io.regspacing;
2103         info->io.regshift = spmi->addr.bit_offset;
2104
2105         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2106                 info->io_setup = mem_setup;
2107                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2108         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2109                 info->io_setup = port_setup;
2110                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2111         } else {
2112                 kfree(info);
2113                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2114                 return -EIO;
2115         }
2116         info->io.addr_data = spmi->addr.address;
2117
2118         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2119                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2120                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2121                  info->irq);
2122
2123         if (add_smi(info))
2124                 kfree(info);
2125
2126         return 0;
2127 }
2128
2129 static void __devinit spmi_find_bmc(void)
2130 {
2131         acpi_status      status;
2132         struct SPMITable *spmi;
2133         int              i;
2134
2135         if (acpi_disabled)
2136                 return;
2137
2138         if (acpi_failure)
2139                 return;
2140
2141         for (i = 0; ; i++) {
2142                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2143                                         (struct acpi_table_header **)&spmi);
2144                 if (status != AE_OK)
2145                         return;
2146
2147                 try_init_spmi(spmi);
2148         }
2149 }
2150
2151 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2152                                     const struct pnp_device_id *dev_id)
2153 {
2154         struct acpi_device *acpi_dev;
2155         struct smi_info *info;
2156         struct resource *res, *res_second;
2157         acpi_handle handle;
2158         acpi_status status;
2159         unsigned long long tmp;
2160
2161         acpi_dev = pnp_acpi_device(dev);
2162         if (!acpi_dev)
2163                 return -ENODEV;
2164
2165         info = smi_info_alloc();
2166         if (!info)
2167                 return -ENOMEM;
2168
2169         info->addr_source = SI_ACPI;
2170         printk(KERN_INFO PFX "probing via ACPI\n");
2171
2172         handle = acpi_dev->handle;
2173         info->addr_info.acpi_info.acpi_handle = handle;
2174
2175         /* _IFT tells us the interface type: KCS, BT, etc */
2176         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2177         if (ACPI_FAILURE(status))
2178                 goto err_free;
2179
2180         switch (tmp) {
2181         case 1:
2182                 info->si_type = SI_KCS;
2183                 break;
2184         case 2:
2185                 info->si_type = SI_SMIC;
2186                 break;
2187         case 3:
2188                 info->si_type = SI_BT;
2189                 break;
2190         default:
2191                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2192                 goto err_free;
2193         }
2194
2195         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2196         if (res) {
2197                 info->io_setup = port_setup;
2198                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2199         } else {
2200                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2201                 if (res) {
2202                         info->io_setup = mem_setup;
2203                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2204                 }
2205         }
2206         if (!res) {
2207                 dev_err(&dev->dev, "no I/O or memory address\n");
2208                 goto err_free;
2209         }
2210         info->io.addr_data = res->start;
2211
2212         info->io.regspacing = DEFAULT_REGSPACING;
2213         res_second = pnp_get_resource(dev,
2214                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2215                                         IORESOURCE_IO : IORESOURCE_MEM,
2216                                1);
2217         if (res_second) {
2218                 if (res_second->start > info->io.addr_data)
2219                         info->io.regspacing = res_second->start - info->io.addr_data;
2220         }
2221         info->io.regsize = DEFAULT_REGSPACING;
2222         info->io.regshift = 0;
2223
2224         /* If _GPE exists, use it; otherwise use standard interrupts */
2225         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2226         if (ACPI_SUCCESS(status)) {
2227                 info->irq = tmp;
2228                 info->irq_setup = acpi_gpe_irq_setup;
2229         } else if (pnp_irq_valid(dev, 0)) {
2230                 info->irq = pnp_irq(dev, 0);
2231                 info->irq_setup = std_irq_setup;
2232         }
2233
2234         info->dev = &dev->dev;
2235         pnp_set_drvdata(dev, info);
2236
2237         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2238                  res, info->io.regsize, info->io.regspacing,
2239                  info->irq);
2240
2241         if (add_smi(info))
2242                 goto err_free;
2243
2244         return 0;
2245
2246 err_free:
2247         kfree(info);
2248         return -EINVAL;
2249 }
2250
2251 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2252 {
2253         struct smi_info *info = pnp_get_drvdata(dev);
2254
2255         cleanup_one_si(info);
2256 }
2257
2258 static const struct pnp_device_id pnp_dev_table[] = {
2259         {"IPI0001", 0},
2260         {"", 0},
2261 };
2262
2263 static struct pnp_driver ipmi_pnp_driver = {
2264         .name           = DEVICE_NAME,
2265         .probe          = ipmi_pnp_probe,
2266         .remove         = __devexit_p(ipmi_pnp_remove),
2267         .id_table       = pnp_dev_table,
2268 };
2269 #endif
2270
2271 #ifdef CONFIG_DMI
2272 struct dmi_ipmi_data {
2273         u8              type;
2274         u8              addr_space;
2275         unsigned long   base_addr;
2276         u8              irq;
2277         u8              offset;
2278         u8              slave_addr;
2279 };
2280
2281 static int __devinit decode_dmi(const struct dmi_header *dm,
2282                                 struct dmi_ipmi_data *dmi)
2283 {
2284         const u8        *data = (const u8 *)dm;
2285         unsigned long   base_addr;
2286         u8              reg_spacing;
2287         u8              len = dm->length;
2288
2289         dmi->type = data[4];
2290
2291         memcpy(&base_addr, data+8, sizeof(unsigned long));
2292         if (len >= 0x11) {
2293                 if (base_addr & 1) {
2294                         /* I/O */
2295                         base_addr &= 0xFFFE;
2296                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2297                 } else
2298                         /* Memory */
2299                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2300
2301                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2302                    is odd. */
2303                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2304
2305                 dmi->irq = data[0x11];
2306
2307                 /* The top two bits of byte 0x10 hold the register spacing. */
2308                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2309                 switch (reg_spacing) {
2310                 case 0x00: /* Byte boundaries */
2311                     dmi->offset = 1;
2312                     break;
2313                 case 0x01: /* 32-bit boundaries */
2314                     dmi->offset = 4;
2315                     break;
2316                 case 0x02: /* 16-byte boundaries */
2317                     dmi->offset = 16;
2318                     break;
2319                 default:
2320                     /* Some other interface, just ignore it. */
2321                     return -EIO;
2322                 }
2323         } else {
2324                 /* Old DMI spec. */
2325                 /*
2326                  * Note that technically, the lower bit of the base
2327                  * address should be 1 if the address is I/O and 0 if
2328                  * the address is in memory.  So many systems get that
2329                  * wrong (and all that I have seen are I/O) so we just
2330                  * ignore that bit and assume I/O.  Systems that use
2331                  * memory should use the newer spec, anyway.
2332                  */
2333                 dmi->base_addr = base_addr & 0xfffe;
2334                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2335                 dmi->offset = 1;
2336         }
2337
2338         dmi->slave_addr = data[6];
2339
2340         return 0;
2341 }
2342
2343 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2344 {
2345         struct smi_info *info;
2346
2347         info = smi_info_alloc();
2348         if (!info) {
2349                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2350                 return;
2351         }
2352
2353         info->addr_source = SI_SMBIOS;
2354         printk(KERN_INFO PFX "probing via SMBIOS\n");
2355
2356         switch (ipmi_data->type) {
2357         case 0x01: /* KCS */
2358                 info->si_type = SI_KCS;
2359                 break;
2360         case 0x02: /* SMIC */
2361                 info->si_type = SI_SMIC;
2362                 break;
2363         case 0x03: /* BT */
2364                 info->si_type = SI_BT;
2365                 break;
2366         default:
2367                 kfree(info);
2368                 return;
2369         }
2370
2371         switch (ipmi_data->addr_space) {
2372         case IPMI_MEM_ADDR_SPACE:
2373                 info->io_setup = mem_setup;
2374                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2375                 break;
2376
2377         case IPMI_IO_ADDR_SPACE:
2378                 info->io_setup = port_setup;
2379                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2380                 break;
2381
2382         default:
2383                 kfree(info);
2384                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2385                        ipmi_data->addr_space);
2386                 return;
2387         }
2388         info->io.addr_data = ipmi_data->base_addr;
2389
2390         info->io.regspacing = ipmi_data->offset;
2391         if (!info->io.regspacing)
2392                 info->io.regspacing = DEFAULT_REGSPACING;
2393         info->io.regsize = DEFAULT_REGSPACING;
2394         info->io.regshift = 0;
2395
2396         info->slave_addr = ipmi_data->slave_addr;
2397
2398         info->irq = ipmi_data->irq;
2399         if (info->irq)
2400                 info->irq_setup = std_irq_setup;
2401
2402         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2403                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2404                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2405                  info->irq);
2406
2407         if (add_smi(info))
2408                 kfree(info);
2409 }
2410
2411 static void __devinit dmi_find_bmc(void)
2412 {
2413         const struct dmi_device *dev = NULL;
2414         struct dmi_ipmi_data data;
2415         int                  rv;
2416
2417         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2418                 memset(&data, 0, sizeof(data));
2419                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2420                                 &data);
2421                 if (!rv)
2422                         try_init_dmi(&data);
2423         }
2424 }
2425 #endif /* CONFIG_DMI */
2426
2427 #ifdef CONFIG_PCI
2428
2429 #define PCI_ERMC_CLASSCODE              0x0C0700
2430 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2431 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2432 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2433 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2434 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2435
2436 #define PCI_HP_VENDOR_ID    0x103C
2437 #define PCI_MMC_DEVICE_ID   0x121A
2438 #define PCI_MMC_ADDR_CW     0x10
2439
2440 static void ipmi_pci_cleanup(struct smi_info *info)
2441 {
2442         struct pci_dev *pdev = info->addr_source_data;
2443
2444         pci_disable_device(pdev);
2445 }
2446
2447 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2448                                     const struct pci_device_id *ent)
2449 {
2450         int rv;
2451         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2452         struct smi_info *info;
2453
2454         info = smi_info_alloc();
2455         if (!info)
2456                 return -ENOMEM;
2457
2458         info->addr_source = SI_PCI;
2459         dev_info(&pdev->dev, "probing via PCI");
2460
2461         switch (class_type) {
2462         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2463                 info->si_type = SI_SMIC;
2464                 break;
2465
2466         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2467                 info->si_type = SI_KCS;
2468                 break;
2469
2470         case PCI_ERMC_CLASSCODE_TYPE_BT:
2471                 info->si_type = SI_BT;
2472                 break;
2473
2474         default:
2475                 kfree(info);
2476                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2477                 return -ENOMEM;
2478         }
2479
2480         rv = pci_enable_device(pdev);
2481         if (rv) {
2482                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2483                 kfree(info);
2484                 return rv;
2485         }
2486
2487         info->addr_source_cleanup = ipmi_pci_cleanup;
2488         info->addr_source_data = pdev;
2489
2490         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2491                 info->io_setup = port_setup;
2492                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2493         } else {
2494                 info->io_setup = mem_setup;
2495                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2496         }
2497         info->io.addr_data = pci_resource_start(pdev, 0);
2498
2499         info->io.regspacing = DEFAULT_REGSPACING;
2500         info->io.regsize = DEFAULT_REGSPACING;
2501         info->io.regshift = 0;
2502
2503         info->irq = pdev->irq;
2504         if (info->irq)
2505                 info->irq_setup = std_irq_setup;
2506
2507         info->dev = &pdev->dev;
2508         pci_set_drvdata(pdev, info);
2509
2510         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2511                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2512                 info->irq);
2513
2514         if (add_smi(info))
2515                 kfree(info);
2516
2517         return 0;
2518 }
2519
2520 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2521 {
2522         struct smi_info *info = pci_get_drvdata(pdev);
2523         cleanup_one_si(info);
2524 }
2525
2526 #ifdef CONFIG_PM
2527 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2528 {
2529         return 0;
2530 }
2531
2532 static int ipmi_pci_resume(struct pci_dev *pdev)
2533 {
2534         return 0;
2535 }
2536 #endif
2537
2538 static struct pci_device_id ipmi_pci_devices[] = {
2539         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2540         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2541         { 0, }
2542 };
2543 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2544
2545 static struct pci_driver ipmi_pci_driver = {
2546         .name =         DEVICE_NAME,
2547         .id_table =     ipmi_pci_devices,
2548         .probe =        ipmi_pci_probe,
2549         .remove =       __devexit_p(ipmi_pci_remove),
2550 #ifdef CONFIG_PM
2551         .suspend =      ipmi_pci_suspend,
2552         .resume =       ipmi_pci_resume,
2553 #endif
2554 };
2555 #endif /* CONFIG_PCI */
2556
2557
2558 #ifdef CONFIG_PPC_OF
2559 static int __devinit ipmi_of_probe(struct platform_device *dev,
2560                          const struct of_device_id *match)
2561 {
2562         struct smi_info *info;
2563         struct resource resource;
2564         const __be32 *regsize, *regspacing, *regshift;
2565         struct device_node *np = dev->dev.of_node;
2566         int ret;
2567         int proplen;
2568
2569         dev_info(&dev->dev, "probing via device tree\n");
2570
2571         ret = of_address_to_resource(np, 0, &resource);
2572         if (ret) {
2573                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2574                 return ret;
2575         }
2576
2577         regsize = of_get_property(np, "reg-size", &proplen);
2578         if (regsize && proplen != 4) {
2579                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2580                 return -EINVAL;
2581         }
2582
2583         regspacing = of_get_property(np, "reg-spacing", &proplen);
2584         if (regspacing && proplen != 4) {
2585                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2586                 return -EINVAL;
2587         }
2588
2589         regshift = of_get_property(np, "reg-shift", &proplen);
2590         if (regshift && proplen != 4) {
2591                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2592                 return -EINVAL;
2593         }
2594
2595         info = smi_info_alloc();
2596
2597         if (!info) {
2598                 dev_err(&dev->dev,
2599                         "could not allocate memory for OF probe\n");
2600                 return -ENOMEM;
2601         }
2602
2603         info->si_type           = (enum si_type) match->data;
2604         info->addr_source       = SI_DEVICETREE;
2605         info->irq_setup         = std_irq_setup;
2606
2607         if (resource.flags & IORESOURCE_IO) {
2608                 info->io_setup          = port_setup;
2609                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2610         } else {
2611                 info->io_setup          = mem_setup;
2612                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2613         }
2614
2615         info->io.addr_data      = resource.start;
2616
2617         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2618         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2619         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2620
2621         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2622         info->dev               = &dev->dev;
2623
2624         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2625                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2626                 info->irq);
2627
2628         dev_set_drvdata(&dev->dev, info);
2629
2630         if (add_smi(info)) {
2631                 kfree(info);
2632                 return -EBUSY;
2633         }
2634
2635         return 0;
2636 }
2637
2638 static int __devexit ipmi_of_remove(struct platform_device *dev)
2639 {
2640         cleanup_one_si(dev_get_drvdata(&dev->dev));
2641         return 0;
2642 }
2643
2644 static struct of_device_id ipmi_match[] =
2645 {
2646         { .type = "ipmi", .compatible = "ipmi-kcs",
2647           .data = (void *)(unsigned long) SI_KCS },
2648         { .type = "ipmi", .compatible = "ipmi-smic",
2649           .data = (void *)(unsigned long) SI_SMIC },
2650         { .type = "ipmi", .compatible = "ipmi-bt",
2651           .data = (void *)(unsigned long) SI_BT },
2652         {},
2653 };
2654
2655 static struct of_platform_driver ipmi_of_platform_driver = {
2656         .driver = {
2657                 .name = "ipmi",
2658                 .owner = THIS_MODULE,
2659                 .of_match_table = ipmi_match,
2660         },
2661         .probe          = ipmi_of_probe,
2662         .remove         = __devexit_p(ipmi_of_remove),
2663 };
2664 #endif /* CONFIG_PPC_OF */
2665
2666 static int wait_for_msg_done(struct smi_info *smi_info)
2667 {
2668         enum si_sm_result     smi_result;
2669
2670         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2671         for (;;) {
2672                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2673                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2674                         schedule_timeout_uninterruptible(1);
2675                         smi_result = smi_info->handlers->event(
2676                                 smi_info->si_sm, 100);
2677                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2678                         smi_result = smi_info->handlers->event(
2679                                 smi_info->si_sm, 0);
2680                 } else
2681                         break;
2682         }
2683         if (smi_result == SI_SM_HOSED)
2684                 /*
2685                  * We couldn't get the state machine to run, so whatever's at
2686                  * the port is probably not an IPMI SMI interface.
2687                  */
2688                 return -ENODEV;
2689
2690         return 0;
2691 }
2692
2693 static int try_get_dev_id(struct smi_info *smi_info)
2694 {
2695         unsigned char         msg[2];
2696         unsigned char         *resp;
2697         unsigned long         resp_len;
2698         int                   rv = 0;
2699
2700         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2701         if (!resp)
2702                 return -ENOMEM;
2703
2704         /*
2705          * Do a Get Device ID command, since it comes back with some
2706          * useful info.
2707          */
2708         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2709         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2710         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2711
2712         rv = wait_for_msg_done(smi_info);
2713         if (rv)
2714                 goto out;
2715
2716         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2717                                                   resp, IPMI_MAX_MSG_LENGTH);
2718
2719         /* Check and record info from the get device id, in case we need it. */
2720         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2721
2722  out:
2723         kfree(resp);
2724         return rv;
2725 }
2726
2727 static int try_enable_event_buffer(struct smi_info *smi_info)
2728 {
2729         unsigned char         msg[3];
2730         unsigned char         *resp;
2731         unsigned long         resp_len;
2732         int                   rv = 0;
2733
2734         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2735         if (!resp)
2736                 return -ENOMEM;
2737
2738         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2739         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2740         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2741
2742         rv = wait_for_msg_done(smi_info);
2743         if (rv) {
2744                 printk(KERN_WARNING PFX "Error getting response from get"
2745                        " global enables command, the event buffer is not"
2746                        " enabled.\n");
2747                 goto out;
2748         }
2749
2750         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2751                                                   resp, IPMI_MAX_MSG_LENGTH);
2752
2753         if (resp_len < 4 ||
2754                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2755                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2756                         resp[2] != 0) {
2757                 printk(KERN_WARNING PFX "Invalid return from get global"
2758                        " enables command, cannot enable the event buffer.\n");
2759                 rv = -EINVAL;
2760                 goto out;
2761         }
2762
2763         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2764                 /* buffer is already enabled, nothing to do. */
2765                 goto out;
2766
2767         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2768         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2769         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2770         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2771
2772         rv = wait_for_msg_done(smi_info);
2773         if (rv) {
2774                 printk(KERN_WARNING PFX "Error getting response from set"
2775                        " global, enables command, the event buffer is not"
2776                        " enabled.\n");
2777                 goto out;
2778         }
2779
2780         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2781                                                   resp, IPMI_MAX_MSG_LENGTH);
2782
2783         if (resp_len < 3 ||
2784                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2785                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2786                 printk(KERN_WARNING PFX "Invalid return from get global,"
2787                        "enables command, not enable the event buffer.\n");
2788                 rv = -EINVAL;
2789                 goto out;
2790         }
2791
2792         if (resp[2] != 0)
2793                 /*
2794                  * An error when setting the event buffer bit means
2795                  * that the event buffer is not supported.
2796                  */
2797                 rv = -ENOENT;
2798  out:
2799         kfree(resp);
2800         return rv;
2801 }
2802
2803 static int type_file_read_proc(char *page, char **start, off_t off,
2804                                int count, int *eof, void *data)
2805 {
2806         struct smi_info *smi = data;
2807
2808         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2809 }
2810
2811 static int stat_file_read_proc(char *page, char **start, off_t off,
2812                                int count, int *eof, void *data)
2813 {
2814         char            *out = (char *) page;
2815         struct smi_info *smi = data;
2816
2817         out += sprintf(out, "interrupts_enabled:    %d\n",
2818                        smi->irq && !smi->interrupt_disabled);
2819         out += sprintf(out, "short_timeouts:        %u\n",
2820                        smi_get_stat(smi, short_timeouts));
2821         out += sprintf(out, "long_timeouts:         %u\n",
2822                        smi_get_stat(smi, long_timeouts));
2823         out += sprintf(out, "idles:                 %u\n",
2824                        smi_get_stat(smi, idles));
2825         out += sprintf(out, "interrupts:            %u\n",
2826                        smi_get_stat(smi, interrupts));
2827         out += sprintf(out, "attentions:            %u\n",
2828                        smi_get_stat(smi, attentions));
2829         out += sprintf(out, "flag_fetches:          %u\n",
2830                        smi_get_stat(smi, flag_fetches));
2831         out += sprintf(out, "hosed_count:           %u\n",
2832                        smi_get_stat(smi, hosed_count));
2833         out += sprintf(out, "complete_transactions: %u\n",
2834                        smi_get_stat(smi, complete_transactions));
2835         out += sprintf(out, "events:                %u\n",
2836                        smi_get_stat(smi, events));
2837         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2838                        smi_get_stat(smi, watchdog_pretimeouts));
2839         out += sprintf(out, "incoming_messages:     %u\n",
2840                        smi_get_stat(smi, incoming_messages));
2841
2842         return out - page;
2843 }
2844
2845 static int param_read_proc(char *page, char **start, off_t off,
2846                            int count, int *eof, void *data)
2847 {
2848         struct smi_info *smi = data;
2849
2850         return sprintf(page,
2851                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2852                        si_to_str[smi->si_type],
2853                        addr_space_to_str[smi->io.addr_type],
2854                        smi->io.addr_data,
2855                        smi->io.regspacing,
2856                        smi->io.regsize,
2857                        smi->io.regshift,
2858                        smi->irq,
2859                        smi->slave_addr);
2860 }
2861
2862 /*
2863  * oem_data_avail_to_receive_msg_avail
2864  * @info - smi_info structure with msg_flags set
2865  *
2866  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2867  * Returns 1 indicating need to re-run handle_flags().
2868  */
2869 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2870 {
2871         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2872                                RECEIVE_MSG_AVAIL);
2873         return 1;
2874 }
2875
2876 /*
2877  * setup_dell_poweredge_oem_data_handler
2878  * @info - smi_info.device_id must be populated
2879  *
2880  * Systems that match, but have firmware version < 1.40 may assert
2881  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2882  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2883  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2884  * as RECEIVE_MSG_AVAIL instead.
2885  *
2886  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2887  * assert the OEM[012] bits, and if it did, the driver would have to
2888  * change to handle that properly, we don't actually check for the
2889  * firmware version.
2890  * Device ID = 0x20                BMC on PowerEdge 8G servers
2891  * Device Revision = 0x80
2892  * Firmware Revision1 = 0x01       BMC version 1.40
2893  * Firmware Revision2 = 0x40       BCD encoded
2894  * IPMI Version = 0x51             IPMI 1.5
2895  * Manufacturer ID = A2 02 00      Dell IANA
2896  *
2897  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2898  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2899  *
2900  */
2901 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2902 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2903 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2904 #define DELL_IANA_MFR_ID 0x0002a2
2905 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2906 {
2907         struct ipmi_device_id *id = &smi_info->device_id;
2908         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2909                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2910                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2911                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2912                         smi_info->oem_data_avail_handler =
2913                                 oem_data_avail_to_receive_msg_avail;
2914                 } else if (ipmi_version_major(id) < 1 ||
2915                            (ipmi_version_major(id) == 1 &&
2916                             ipmi_version_minor(id) < 5)) {
2917                         smi_info->oem_data_avail_handler =
2918                                 oem_data_avail_to_receive_msg_avail;
2919                 }
2920         }
2921 }
2922
2923 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2924 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2925 {
2926         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2927
2928         /* Make it a reponse */
2929         msg->rsp[0] = msg->data[0] | 4;
2930         msg->rsp[1] = msg->data[1];
2931         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2932         msg->rsp_size = 3;
2933         smi_info->curr_msg = NULL;
2934         deliver_recv_msg(smi_info, msg);
2935 }
2936
2937 /*
2938  * dell_poweredge_bt_xaction_handler
2939  * @info - smi_info.device_id must be populated
2940  *
2941  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2942  * not respond to a Get SDR command if the length of the data
2943  * requested is exactly 0x3A, which leads to command timeouts and no
2944  * data returned.  This intercepts such commands, and causes userspace
2945  * callers to try again with a different-sized buffer, which succeeds.
2946  */
2947
2948 #define STORAGE_NETFN 0x0A
2949 #define STORAGE_CMD_GET_SDR 0x23
2950 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2951                                              unsigned long unused,
2952                                              void *in)
2953 {
2954         struct smi_info *smi_info = in;
2955         unsigned char *data = smi_info->curr_msg->data;
2956         unsigned int size   = smi_info->curr_msg->data_size;
2957         if (size >= 8 &&
2958             (data[0]>>2) == STORAGE_NETFN &&
2959             data[1] == STORAGE_CMD_GET_SDR &&
2960             data[7] == 0x3A) {
2961                 return_hosed_msg_badsize(smi_info);
2962                 return NOTIFY_STOP;
2963         }
2964         return NOTIFY_DONE;
2965 }
2966
2967 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2968         .notifier_call  = dell_poweredge_bt_xaction_handler,
2969 };
2970
2971 /*
2972  * setup_dell_poweredge_bt_xaction_handler
2973  * @info - smi_info.device_id must be filled in already
2974  *
2975  * Fills in smi_info.device_id.start_transaction_pre_hook
2976  * when we know what function to use there.
2977  */
2978 static void
2979 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2980 {
2981         struct ipmi_device_id *id = &smi_info->device_id;
2982         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2983             smi_info->si_type == SI_BT)
2984                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2985 }
2986
2987 /*
2988  * setup_oem_data_handler
2989  * @info - smi_info.device_id must be filled in already
2990  *
2991  * Fills in smi_info.device_id.oem_data_available_handler
2992  * when we know what function to use there.
2993  */
2994
2995 static void setup_oem_data_handler(struct smi_info *smi_info)
2996 {
2997         setup_dell_poweredge_oem_data_handler(smi_info);
2998 }
2999
3000 static void setup_xaction_handlers(struct smi_info *smi_info)
3001 {
3002         setup_dell_poweredge_bt_xaction_handler(smi_info);
3003 }
3004
3005 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3006 {
3007         if (smi_info->intf) {
3008                 /*
3009                  * The timer and thread are only running if the
3010                  * interface has been started up and registered.
3011                  */
3012                 if (smi_info->thread != NULL)
3013                         kthread_stop(smi_info->thread);
3014                 del_timer_sync(&smi_info->si_timer);
3015         }
3016 }
3017
3018 static __devinitdata struct ipmi_default_vals
3019 {
3020         int type;
3021         int port;
3022 } ipmi_defaults[] =
3023 {
3024         { .type = SI_KCS, .port = 0xca2 },
3025         { .type = SI_SMIC, .port = 0xca9 },
3026         { .type = SI_BT, .port = 0xe4 },
3027         { .port = 0 }
3028 };
3029
3030 static void __devinit default_find_bmc(void)
3031 {
3032         struct smi_info *info;
3033         int             i;
3034
3035         for (i = 0; ; i++) {
3036                 if (!ipmi_defaults[i].port)
3037                         break;
3038 #ifdef CONFIG_PPC
3039                 if (check_legacy_ioport(ipmi_defaults[i].port))
3040                         continue;
3041 #endif
3042                 info = smi_info_alloc();
3043                 if (!info)
3044                         return;
3045
3046                 info->addr_source = SI_DEFAULT;
3047
3048                 info->si_type = ipmi_defaults[i].type;
3049                 info->io_setup = port_setup;
3050                 info->io.addr_data = ipmi_defaults[i].port;
3051                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3052
3053                 info->io.addr = NULL;
3054                 info->io.regspacing = DEFAULT_REGSPACING;
3055                 info->io.regsize = DEFAULT_REGSPACING;
3056                 info->io.regshift = 0;
3057
3058                 if (add_smi(info) == 0) {
3059                         if ((try_smi_init(info)) == 0) {
3060                                 /* Found one... */
3061                                 printk(KERN_INFO PFX "Found default %s"
3062                                 " state machine at %s address 0x%lx\n",
3063                                 si_to_str[info->si_type],
3064                                 addr_space_to_str[info->io.addr_type],
3065                                 info->io.addr_data);
3066                         } else
3067                                 cleanup_one_si(info);
3068                 } else {
3069                         kfree(info);
3070                 }
3071         }
3072 }
3073
3074 static int is_new_interface(struct smi_info *info)
3075 {
3076         struct smi_info *e;
3077
3078         list_for_each_entry(e, &smi_infos, link) {
3079                 if (e->io.addr_type != info->io.addr_type)
3080                         continue;
3081                 if (e->io.addr_data == info->io.addr_data)
3082                         return 0;
3083         }
3084
3085         return 1;
3086 }
3087
3088 static int add_smi(struct smi_info *new_smi)
3089 {
3090         int rv = 0;
3091
3092         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3093                         ipmi_addr_src_to_str[new_smi->addr_source],
3094                         si_to_str[new_smi->si_type]);
3095         mutex_lock(&smi_infos_lock);
3096         if (!is_new_interface(new_smi)) {
3097                 printk(KERN_CONT " duplicate interface\n");
3098                 rv = -EBUSY;
3099                 goto out_err;
3100         }
3101
3102         printk(KERN_CONT "\n");
3103
3104         /* So we know not to free it unless we have allocated one. */
3105         new_smi->intf = NULL;
3106         new_smi->si_sm = NULL;
3107         new_smi->handlers = NULL;
3108
3109         list_add_tail(&new_smi->link, &smi_infos);
3110
3111 out_err:
3112         mutex_unlock(&smi_infos_lock);
3113         return rv;
3114 }
3115
3116 static int try_smi_init(struct smi_info *new_smi)
3117 {
3118         int rv = 0;
3119         int i;
3120
3121         printk(KERN_INFO PFX "Trying %s-specified %s state"
3122                " machine at %s address 0x%lx, slave address 0x%x,"
3123                " irq %d\n",
3124                ipmi_addr_src_to_str[new_smi->addr_source],
3125                si_to_str[new_smi->si_type],
3126                addr_space_to_str[new_smi->io.addr_type],
3127                new_smi->io.addr_data,
3128                new_smi->slave_addr, new_smi->irq);
3129
3130         switch (new_smi->si_type) {
3131         case SI_KCS:
3132                 new_smi->handlers = &kcs_smi_handlers;
3133                 break;
3134
3135         case SI_SMIC:
3136                 new_smi->handlers = &smic_smi_handlers;
3137                 break;
3138
3139         case SI_BT:
3140                 new_smi->handlers = &bt_smi_handlers;
3141                 break;
3142
3143         default:
3144                 /* No support for anything else yet. */
3145                 rv = -EIO;
3146                 goto out_err;
3147         }
3148
3149         /* Allocate the state machine's data and initialize it. */
3150         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3151         if (!new_smi->si_sm) {
3152                 printk(KERN_ERR PFX
3153                        "Could not allocate state machine memory\n");
3154                 rv = -ENOMEM;
3155                 goto out_err;
3156         }
3157         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3158                                                         &new_smi->io);
3159
3160         /* Now that we know the I/O size, we can set up the I/O. */
3161         rv = new_smi->io_setup(new_smi);
3162         if (rv) {
3163                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3164                 goto out_err;
3165         }
3166
3167         /* Do low-level detection first. */
3168         if (new_smi->handlers->detect(new_smi->si_sm)) {
3169                 if (new_smi->addr_source)
3170                         printk(KERN_INFO PFX "Interface detection failed\n");
3171                 rv = -ENODEV;
3172                 goto out_err;
3173         }
3174
3175         /*
3176          * Attempt a get device id command.  If it fails, we probably
3177          * don't have a BMC here.
3178          */
3179         rv = try_get_dev_id(new_smi);
3180         if (rv) {
3181                 if (new_smi->addr_source)
3182                         printk(KERN_INFO PFX "There appears to be no BMC"
3183                                " at this location\n");
3184                 goto out_err;
3185         }
3186
3187         setup_oem_data_handler(new_smi);
3188         setup_xaction_handlers(new_smi);
3189
3190         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3191         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3192         new_smi->curr_msg = NULL;
3193         atomic_set(&new_smi->req_events, 0);
3194         new_smi->run_to_completion = 0;
3195         for (i = 0; i < SI_NUM_STATS; i++)
3196                 atomic_set(&new_smi->stats[i], 0);
3197
3198         new_smi->interrupt_disabled = 1;
3199         atomic_set(&new_smi->stop_operation, 0);
3200         new_smi->intf_num = smi_num;
3201         smi_num++;
3202
3203         rv = try_enable_event_buffer(new_smi);
3204         if (rv == 0)
3205                 new_smi->has_event_buffer = 1;
3206
3207         /*
3208          * Start clearing the flags before we enable interrupts or the
3209          * timer to avoid racing with the timer.
3210          */
3211         start_clear_flags(new_smi);
3212         /* IRQ is defined to be set when non-zero. */
3213         if (new_smi->irq)
3214                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3215
3216         if (!new_smi->dev) {
3217                 /*
3218                  * If we don't already have a device from something
3219                  * else (like PCI), then register a new one.
3220                  */
3221                 new_smi->pdev = platform_device_alloc("ipmi_si",
3222                                                       new_smi->intf_num);
3223                 if (!new_smi->pdev) {
3224                         printk(KERN_ERR PFX
3225                                "Unable to allocate platform device\n");
3226                         goto out_err;
3227                 }
3228                 new_smi->dev = &new_smi->pdev->dev;
3229                 new_smi->dev->driver = &ipmi_driver.driver;
3230
3231                 rv = platform_device_add(new_smi->pdev);
3232                 if (rv) {
3233                         printk(KERN_ERR PFX
3234                                "Unable to register system interface device:"
3235                                " %d\n",
3236                                rv);
3237                         goto out_err;
3238                 }
3239                 new_smi->dev_registered = 1;
3240         }
3241
3242         rv = ipmi_register_smi(&handlers,
3243                                new_smi,
3244                                &new_smi->device_id,
3245                                new_smi->dev,
3246                                "bmc",
3247                                new_smi->slave_addr);
3248         if (rv) {
3249                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3250                         rv);
3251                 goto out_err_stop_timer;
3252         }
3253
3254         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3255                                      type_file_read_proc,
3256                                      new_smi);
3257         if (rv) {
3258                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3259                 goto out_err_stop_timer;
3260         }
3261
3262         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3263                                      stat_file_read_proc,
3264                                      new_smi);
3265         if (rv) {
3266                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3267                 goto out_err_stop_timer;
3268         }
3269
3270         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3271                                      param_read_proc,
3272                                      new_smi);
3273         if (rv) {
3274                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3275                 goto out_err_stop_timer;
3276         }
3277
3278         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3279                  si_to_str[new_smi->si_type]);
3280
3281         return 0;
3282
3283  out_err_stop_timer:
3284         atomic_inc(&new_smi->stop_operation);
3285         wait_for_timer_and_thread(new_smi);
3286
3287  out_err:
3288         new_smi->interrupt_disabled = 1;
3289
3290         if (new_smi->intf) {
3291                 ipmi_unregister_smi(new_smi->intf);
3292                 new_smi->intf = NULL;
3293         }
3294
3295         if (new_smi->irq_cleanup) {
3296                 new_smi->irq_cleanup(new_smi);
3297                 new_smi->irq_cleanup = NULL;
3298         }
3299
3300         /*
3301          * Wait until we know that we are out of any interrupt
3302          * handlers might have been running before we freed the
3303          * interrupt.
3304          */
3305         synchronize_sched();
3306
3307         if (new_smi->si_sm) {
3308                 if (new_smi->handlers)
3309                         new_smi->handlers->cleanup(new_smi->si_sm);
3310                 kfree(new_smi->si_sm);
3311                 new_smi->si_sm = NULL;
3312         }
3313         if (new_smi->addr_source_cleanup) {
3314                 new_smi->addr_source_cleanup(new_smi);
3315                 new_smi->addr_source_cleanup = NULL;
3316         }
3317         if (new_smi->io_cleanup) {
3318                 new_smi->io_cleanup(new_smi);
3319                 new_smi->io_cleanup = NULL;
3320         }
3321
3322         if (new_smi->dev_registered) {
3323                 platform_device_unregister(new_smi->pdev);
3324                 new_smi->dev_registered = 0;
3325         }
3326
3327         return rv;
3328 }
3329
3330 static int __devinit init_ipmi_si(void)
3331 {
3332         int  i;
3333         char *str;
3334         int  rv;
3335         struct smi_info *e;
3336         enum ipmi_addr_src type = SI_INVALID;
3337
3338         if (initialized)
3339                 return 0;
3340         initialized = 1;
3341
3342         /* Register the device drivers. */
3343         rv = driver_register(&ipmi_driver.driver);
3344         if (rv) {
3345                 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3346                 return rv;
3347         }
3348
3349
3350         /* Parse out the si_type string into its components. */
3351         str = si_type_str;
3352         if (*str != '\0') {
3353                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3354                         si_type[i] = str;
3355                         str = strchr(str, ',');
3356                         if (str) {
3357                                 *str = '\0';
3358                                 str++;
3359                         } else {
3360                                 break;
3361                         }
3362                 }
3363         }
3364
3365         printk(KERN_INFO "IPMI System Interface driver.\n");
3366
3367         hardcode_find_bmc();
3368
3369         /* If the user gave us a device, they presumably want us to use it */
3370         mutex_lock(&smi_infos_lock);
3371         if (!list_empty(&smi_infos)) {
3372                 mutex_unlock(&smi_infos_lock);
3373                 return 0;
3374         }
3375         mutex_unlock(&smi_infos_lock);
3376
3377 #ifdef CONFIG_PCI
3378         rv = pci_register_driver(&ipmi_pci_driver);
3379         if (rv)
3380                 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3381         else
3382                 pci_registered = 1;
3383 #endif
3384
3385 #ifdef CONFIG_ACPI
3386         pnp_register_driver(&ipmi_pnp_driver);
3387         pnp_registered = 1;
3388 #endif
3389
3390 #ifdef CONFIG_DMI
3391         dmi_find_bmc();
3392 #endif
3393
3394 #ifdef CONFIG_ACPI
3395         spmi_find_bmc();
3396 #endif
3397
3398 #ifdef CONFIG_PPC_OF
3399         of_register_platform_driver(&ipmi_of_platform_driver);
3400         of_registered = 1;
3401 #endif
3402
3403         /* We prefer devices with interrupts, but in the case of a machine
3404            with multiple BMCs we assume that there will be several instances
3405            of a given type so if we succeed in registering a type then also
3406            try to register everything else of the same type */
3407
3408         mutex_lock(&smi_infos_lock);
3409         list_for_each_entry(e, &smi_infos, link) {
3410                 /* Try to register a device if it has an IRQ and we either
3411                    haven't successfully registered a device yet or this
3412                    device has the same type as one we successfully registered */
3413                 if (e->irq && (!type || e->addr_source == type)) {
3414                         if (!try_smi_init(e)) {
3415                                 type = e->addr_source;
3416                         }
3417                 }
3418         }
3419
3420         /* type will only have been set if we successfully registered an si */
3421         if (type) {
3422                 mutex_unlock(&smi_infos_lock);
3423                 return 0;
3424         }
3425
3426         /* Fall back to the preferred device */
3427
3428         list_for_each_entry(e, &smi_infos, link) {
3429                 if (!e->irq && (!type || e->addr_source == type)) {
3430                         if (!try_smi_init(e)) {
3431                                 type = e->addr_source;
3432                         }
3433                 }
3434         }
3435         mutex_unlock(&smi_infos_lock);
3436
3437         if (type)
3438                 return 0;
3439
3440         if (si_trydefaults) {
3441                 mutex_lock(&smi_infos_lock);
3442                 if (list_empty(&smi_infos)) {
3443                         /* No BMC was found, try defaults. */
3444                         mutex_unlock(&smi_infos_lock);
3445                         default_find_bmc();
3446                 } else
3447                         mutex_unlock(&smi_infos_lock);
3448         }
3449
3450         mutex_lock(&smi_infos_lock);
3451         if (unload_when_empty && list_empty(&smi_infos)) {
3452                 mutex_unlock(&smi_infos_lock);
3453 #ifdef CONFIG_PCI
3454                 if (pci_registered)
3455                         pci_unregister_driver(&ipmi_pci_driver);
3456 #endif
3457
3458 #ifdef CONFIG_PPC_OF
3459                 if (of_registered)
3460                         of_unregister_platform_driver(&ipmi_of_platform_driver);
3461 #endif
3462                 driver_unregister(&ipmi_driver.driver);
3463                 printk(KERN_WARNING PFX
3464                        "Unable to find any System Interface(s)\n");
3465                 return -ENODEV;
3466         } else {
3467                 mutex_unlock(&smi_infos_lock);
3468                 return 0;
3469         }
3470 }
3471 module_init(init_ipmi_si);
3472
3473 static void cleanup_one_si(struct smi_info *to_clean)
3474 {
3475         int           rv = 0;
3476         unsigned long flags;
3477
3478         if (!to_clean)
3479                 return;
3480
3481         list_del(&to_clean->link);
3482
3483         /* Tell the driver that we are shutting down. */
3484         atomic_inc(&to_clean->stop_operation);
3485
3486         /*
3487          * Make sure the timer and thread are stopped and will not run
3488          * again.
3489          */
3490         wait_for_timer_and_thread(to_clean);
3491
3492         /*
3493          * Timeouts are stopped, now make sure the interrupts are off
3494          * for the device.  A little tricky with locks to make sure
3495          * there are no races.
3496          */
3497         spin_lock_irqsave(&to_clean->si_lock, flags);
3498         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3499                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3500                 poll(to_clean);
3501                 schedule_timeout_uninterruptible(1);
3502                 spin_lock_irqsave(&to_clean->si_lock, flags);
3503         }
3504         disable_si_irq(to_clean);
3505         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3506         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3507                 poll(to_clean);
3508                 schedule_timeout_uninterruptible(1);
3509         }
3510
3511         /* Clean up interrupts and make sure that everything is done. */
3512         if (to_clean->irq_cleanup)
3513                 to_clean->irq_cleanup(to_clean);
3514         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3515                 poll(to_clean);
3516                 schedule_timeout_uninterruptible(1);
3517         }
3518
3519         if (to_clean->intf)
3520                 rv = ipmi_unregister_smi(to_clean->intf);
3521
3522         if (rv) {
3523                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3524                        rv);
3525         }
3526
3527         if (to_clean->handlers)
3528                 to_clean->handlers->cleanup(to_clean->si_sm);
3529
3530         kfree(to_clean->si_sm);
3531
3532         if (to_clean->addr_source_cleanup)
3533                 to_clean->addr_source_cleanup(to_clean);
3534         if (to_clean->io_cleanup)
3535                 to_clean->io_cleanup(to_clean);
3536
3537         if (to_clean->dev_registered)
3538                 platform_device_unregister(to_clean->pdev);
3539
3540         kfree(to_clean);
3541 }
3542
3543 static void __exit cleanup_ipmi_si(void)
3544 {
3545         struct smi_info *e, *tmp_e;
3546
3547         if (!initialized)
3548                 return;
3549
3550 #ifdef CONFIG_PCI
3551         if (pci_registered)
3552                 pci_unregister_driver(&ipmi_pci_driver);
3553 #endif
3554 #ifdef CONFIG_ACPI
3555         if (pnp_registered)
3556                 pnp_unregister_driver(&ipmi_pnp_driver);
3557 #endif
3558
3559 #ifdef CONFIG_PPC_OF
3560         if (of_registered)
3561                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3562 #endif
3563
3564         mutex_lock(&smi_infos_lock);
3565         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3566                 cleanup_one_si(e);
3567         mutex_unlock(&smi_infos_lock);
3568
3569         driver_unregister(&ipmi_driver.driver);
3570 }
3571 module_exit(cleanup_ipmi_si);
3572
3573 MODULE_LICENSE("GPL");
3574 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3575 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3576                    " system interfaces.");