ipmi: reduce polling
[pandora-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 enum ipmi_addr_src {
111         SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112         SI_PCI, SI_DEVICETREE, SI_DEFAULT
113 };
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115                                         "ACPI", "SMBIOS", "PCI",
116                                         "device-tree", "default" };
117
118 #define DEVICE_NAME "ipmi_si"
119
120 static struct platform_driver ipmi_driver = {
121         .driver = {
122                 .name = DEVICE_NAME,
123                 .bus = &platform_bus_type
124         }
125 };
126
127
128 /*
129  * Indexes into stats[] in smi_info below.
130  */
131 enum si_stat_indexes {
132         /*
133          * Number of times the driver requested a timer while an operation
134          * was in progress.
135          */
136         SI_STAT_short_timeouts = 0,
137
138         /*
139          * Number of times the driver requested a timer while nothing was in
140          * progress.
141          */
142         SI_STAT_long_timeouts,
143
144         /* Number of times the interface was idle while being polled. */
145         SI_STAT_idles,
146
147         /* Number of interrupts the driver handled. */
148         SI_STAT_interrupts,
149
150         /* Number of time the driver got an ATTN from the hardware. */
151         SI_STAT_attentions,
152
153         /* Number of times the driver requested flags from the hardware. */
154         SI_STAT_flag_fetches,
155
156         /* Number of times the hardware didn't follow the state machine. */
157         SI_STAT_hosed_count,
158
159         /* Number of completed messages. */
160         SI_STAT_complete_transactions,
161
162         /* Number of IPMI events received from the hardware. */
163         SI_STAT_events,
164
165         /* Number of watchdog pretimeouts. */
166         SI_STAT_watchdog_pretimeouts,
167
168         /* Number of asyncronous messages received. */
169         SI_STAT_incoming_messages,
170
171
172         /* This *must* remain last, add new values above this. */
173         SI_NUM_STATS
174 };
175
176 struct smi_info {
177         int                    intf_num;
178         ipmi_smi_t             intf;
179         struct si_sm_data      *si_sm;
180         struct si_sm_handlers  *handlers;
181         enum si_type           si_type;
182         spinlock_t             si_lock;
183         spinlock_t             msg_lock;
184         struct list_head       xmit_msgs;
185         struct list_head       hp_xmit_msgs;
186         struct ipmi_smi_msg    *curr_msg;
187         enum si_intf_state     si_state;
188
189         /*
190          * Used to handle the various types of I/O that can occur with
191          * IPMI
192          */
193         struct si_sm_io io;
194         int (*io_setup)(struct smi_info *info);
195         void (*io_cleanup)(struct smi_info *info);
196         int (*irq_setup)(struct smi_info *info);
197         void (*irq_cleanup)(struct smi_info *info);
198         unsigned int io_size;
199         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
200         void (*addr_source_cleanup)(struct smi_info *info);
201         void *addr_source_data;
202
203         /*
204          * Per-OEM handler, called from handle_flags().  Returns 1
205          * when handle_flags() needs to be re-run or 0 indicating it
206          * set si_state itself.
207          */
208         int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
210         /*
211          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212          * is set to hold the flags until we are done handling everything
213          * from the flags.
214          */
215 #define RECEIVE_MSG_AVAIL       0x01
216 #define EVENT_MSG_BUFFER_FULL   0x02
217 #define WDT_PRE_TIMEOUT_INT     0x08
218 #define OEM0_DATA_AVAIL     0x20
219 #define OEM1_DATA_AVAIL     0x40
220 #define OEM2_DATA_AVAIL     0x80
221 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
222                              OEM1_DATA_AVAIL | \
223                              OEM2_DATA_AVAIL)
224         unsigned char       msg_flags;
225
226         /* Does the BMC have an event buffer? */
227         char                has_event_buffer;
228
229         /*
230          * If set to true, this will request events the next time the
231          * state machine is idle.
232          */
233         atomic_t            req_events;
234
235         /*
236          * If true, run the state machine to completion on every send
237          * call.  Generally used after a panic to make sure stuff goes
238          * out.
239          */
240         int                 run_to_completion;
241
242         /* The I/O port of an SI interface. */
243         int                 port;
244
245         /*
246          * The space between start addresses of the two ports.  For
247          * instance, if the first port is 0xca2 and the spacing is 4, then
248          * the second port is 0xca6.
249          */
250         unsigned int        spacing;
251
252         /* zero if no irq; */
253         int                 irq;
254
255         /* The timer for this si. */
256         struct timer_list   si_timer;
257
258         /* The time (in jiffies) the last timeout occurred at. */
259         unsigned long       last_timeout_jiffies;
260
261         /* Used to gracefully stop the timer without race conditions. */
262         atomic_t            stop_operation;
263
264         /*
265          * The driver will disable interrupts when it gets into a
266          * situation where it cannot handle messages due to lack of
267          * memory.  Once that situation clears up, it will re-enable
268          * interrupts.
269          */
270         int interrupt_disabled;
271
272         /* From the get device id response... */
273         struct ipmi_device_id device_id;
274
275         /* Driver model stuff. */
276         struct device *dev;
277         struct platform_device *pdev;
278
279         /*
280          * True if we allocated the device, false if it came from
281          * someplace else (like PCI).
282          */
283         int dev_registered;
284
285         /* Slave address, could be reported from DMI. */
286         unsigned char slave_addr;
287
288         /* Counters and things for the proc filesystem. */
289         atomic_t stats[SI_NUM_STATS];
290
291         struct task_struct *thread;
292
293         struct list_head link;
294 };
295
296 #define smi_inc_stat(smi, stat) \
297         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
301 #define SI_MAX_PARMS 4
302
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305
306 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
307 static int num_max_busy_us;
308
309 static int unload_when_empty = 1;
310
311 static int add_smi(struct smi_info *smi);
312 static int try_smi_init(struct smi_info *smi);
313 static void cleanup_one_si(struct smi_info *to_clean);
314
315 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
316 static int register_xaction_notifier(struct notifier_block *nb)
317 {
318         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
319 }
320
321 static void deliver_recv_msg(struct smi_info *smi_info,
322                              struct ipmi_smi_msg *msg)
323 {
324         /* Deliver the message to the upper layer with the lock
325            released. */
326         spin_unlock(&(smi_info->si_lock));
327         ipmi_smi_msg_received(smi_info->intf, msg);
328         spin_lock(&(smi_info->si_lock));
329 }
330
331 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
332 {
333         struct ipmi_smi_msg *msg = smi_info->curr_msg;
334
335         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
336                 cCode = IPMI_ERR_UNSPECIFIED;
337         /* else use it as is */
338
339         /* Make it a reponse */
340         msg->rsp[0] = msg->data[0] | 4;
341         msg->rsp[1] = msg->data[1];
342         msg->rsp[2] = cCode;
343         msg->rsp_size = 3;
344
345         smi_info->curr_msg = NULL;
346         deliver_recv_msg(smi_info, msg);
347 }
348
349 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
350 {
351         int              rv;
352         struct list_head *entry = NULL;
353 #ifdef DEBUG_TIMING
354         struct timeval t;
355 #endif
356
357         /*
358          * No need to save flags, we aleady have interrupts off and we
359          * already hold the SMI lock.
360          */
361         if (!smi_info->run_to_completion)
362                 spin_lock(&(smi_info->msg_lock));
363
364         /* Pick the high priority queue first. */
365         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
366                 entry = smi_info->hp_xmit_msgs.next;
367         } else if (!list_empty(&(smi_info->xmit_msgs))) {
368                 entry = smi_info->xmit_msgs.next;
369         }
370
371         if (!entry) {
372                 smi_info->curr_msg = NULL;
373                 rv = SI_SM_IDLE;
374         } else {
375                 int err;
376
377                 list_del(entry);
378                 smi_info->curr_msg = list_entry(entry,
379                                                 struct ipmi_smi_msg,
380                                                 link);
381 #ifdef DEBUG_TIMING
382                 do_gettimeofday(&t);
383                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
384 #endif
385                 err = atomic_notifier_call_chain(&xaction_notifier_list,
386                                 0, smi_info);
387                 if (err & NOTIFY_STOP_MASK) {
388                         rv = SI_SM_CALL_WITHOUT_DELAY;
389                         goto out;
390                 }
391                 err = smi_info->handlers->start_transaction(
392                         smi_info->si_sm,
393                         smi_info->curr_msg->data,
394                         smi_info->curr_msg->data_size);
395                 if (err)
396                         return_hosed_msg(smi_info, err);
397
398                 rv = SI_SM_CALL_WITHOUT_DELAY;
399         }
400  out:
401         if (!smi_info->run_to_completion)
402                 spin_unlock(&(smi_info->msg_lock));
403
404         return rv;
405 }
406
407 static void start_enable_irq(struct smi_info *smi_info)
408 {
409         unsigned char msg[2];
410
411         /*
412          * If we are enabling interrupts, we have to tell the
413          * BMC to use them.
414          */
415         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
416         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
417
418         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
419         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
420 }
421
422 static void start_disable_irq(struct smi_info *smi_info)
423 {
424         unsigned char msg[2];
425
426         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
428
429         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
430         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
431 }
432
433 static void start_clear_flags(struct smi_info *smi_info)
434 {
435         unsigned char msg[3];
436
437         /* Make sure the watchdog pre-timeout flag is not set at startup. */
438         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
439         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
440         msg[2] = WDT_PRE_TIMEOUT_INT;
441
442         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
443         smi_info->si_state = SI_CLEARING_FLAGS;
444 }
445
446 /*
447  * When we have a situtaion where we run out of memory and cannot
448  * allocate messages, we just leave them in the BMC and run the system
449  * polled until we can allocate some memory.  Once we have some
450  * memory, we will re-enable the interrupt.
451  */
452 static inline void disable_si_irq(struct smi_info *smi_info)
453 {
454         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
455                 start_disable_irq(smi_info);
456                 smi_info->interrupt_disabled = 1;
457                 if (!atomic_read(&smi_info->stop_operation))
458                         mod_timer(&smi_info->si_timer,
459                                   jiffies + SI_TIMEOUT_JIFFIES);
460         }
461 }
462
463 static inline void enable_si_irq(struct smi_info *smi_info)
464 {
465         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
466                 start_enable_irq(smi_info);
467                 smi_info->interrupt_disabled = 0;
468         }
469 }
470
471 static void handle_flags(struct smi_info *smi_info)
472 {
473  retry:
474         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
475                 /* Watchdog pre-timeout */
476                 smi_inc_stat(smi_info, watchdog_pretimeouts);
477
478                 start_clear_flags(smi_info);
479                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
480                 spin_unlock(&(smi_info->si_lock));
481                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
482                 spin_lock(&(smi_info->si_lock));
483         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
484                 /* Messages available. */
485                 smi_info->curr_msg = ipmi_alloc_smi_msg();
486                 if (!smi_info->curr_msg) {
487                         disable_si_irq(smi_info);
488                         smi_info->si_state = SI_NORMAL;
489                         return;
490                 }
491                 enable_si_irq(smi_info);
492
493                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
494                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
495                 smi_info->curr_msg->data_size = 2;
496
497                 smi_info->handlers->start_transaction(
498                         smi_info->si_sm,
499                         smi_info->curr_msg->data,
500                         smi_info->curr_msg->data_size);
501                 smi_info->si_state = SI_GETTING_MESSAGES;
502         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
503                 /* Events available. */
504                 smi_info->curr_msg = ipmi_alloc_smi_msg();
505                 if (!smi_info->curr_msg) {
506                         disable_si_irq(smi_info);
507                         smi_info->si_state = SI_NORMAL;
508                         return;
509                 }
510                 enable_si_irq(smi_info);
511
512                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
513                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
514                 smi_info->curr_msg->data_size = 2;
515
516                 smi_info->handlers->start_transaction(
517                         smi_info->si_sm,
518                         smi_info->curr_msg->data,
519                         smi_info->curr_msg->data_size);
520                 smi_info->si_state = SI_GETTING_EVENTS;
521         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
522                    smi_info->oem_data_avail_handler) {
523                 if (smi_info->oem_data_avail_handler(smi_info))
524                         goto retry;
525         } else
526                 smi_info->si_state = SI_NORMAL;
527 }
528
529 static void handle_transaction_done(struct smi_info *smi_info)
530 {
531         struct ipmi_smi_msg *msg;
532 #ifdef DEBUG_TIMING
533         struct timeval t;
534
535         do_gettimeofday(&t);
536         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
537 #endif
538         switch (smi_info->si_state) {
539         case SI_NORMAL:
540                 if (!smi_info->curr_msg)
541                         break;
542
543                 smi_info->curr_msg->rsp_size
544                         = smi_info->handlers->get_result(
545                                 smi_info->si_sm,
546                                 smi_info->curr_msg->rsp,
547                                 IPMI_MAX_MSG_LENGTH);
548
549                 /*
550                  * Do this here becase deliver_recv_msg() releases the
551                  * lock, and a new message can be put in during the
552                  * time the lock is released.
553                  */
554                 msg = smi_info->curr_msg;
555                 smi_info->curr_msg = NULL;
556                 deliver_recv_msg(smi_info, msg);
557                 break;
558
559         case SI_GETTING_FLAGS:
560         {
561                 unsigned char msg[4];
562                 unsigned int  len;
563
564                 /* We got the flags from the SMI, now handle them. */
565                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
566                 if (msg[2] != 0) {
567                         /* Error fetching flags, just give up for now. */
568                         smi_info->si_state = SI_NORMAL;
569                 } else if (len < 4) {
570                         /*
571                          * Hmm, no flags.  That's technically illegal, but
572                          * don't use uninitialized data.
573                          */
574                         smi_info->si_state = SI_NORMAL;
575                 } else {
576                         smi_info->msg_flags = msg[3];
577                         handle_flags(smi_info);
578                 }
579                 break;
580         }
581
582         case SI_CLEARING_FLAGS:
583         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
584         {
585                 unsigned char msg[3];
586
587                 /* We cleared the flags. */
588                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
589                 if (msg[2] != 0) {
590                         /* Error clearing flags */
591                         printk(KERN_WARNING
592                                "ipmi_si: Error clearing flags: %2.2x\n",
593                                msg[2]);
594                 }
595                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
596                         start_enable_irq(smi_info);
597                 else
598                         smi_info->si_state = SI_NORMAL;
599                 break;
600         }
601
602         case SI_GETTING_EVENTS:
603         {
604                 smi_info->curr_msg->rsp_size
605                         = smi_info->handlers->get_result(
606                                 smi_info->si_sm,
607                                 smi_info->curr_msg->rsp,
608                                 IPMI_MAX_MSG_LENGTH);
609
610                 /*
611                  * Do this here becase deliver_recv_msg() releases the
612                  * lock, and a new message can be put in during the
613                  * time the lock is released.
614                  */
615                 msg = smi_info->curr_msg;
616                 smi_info->curr_msg = NULL;
617                 if (msg->rsp[2] != 0) {
618                         /* Error getting event, probably done. */
619                         msg->done(msg);
620
621                         /* Take off the event flag. */
622                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
623                         handle_flags(smi_info);
624                 } else {
625                         smi_inc_stat(smi_info, events);
626
627                         /*
628                          * Do this before we deliver the message
629                          * because delivering the message releases the
630                          * lock and something else can mess with the
631                          * state.
632                          */
633                         handle_flags(smi_info);
634
635                         deliver_recv_msg(smi_info, msg);
636                 }
637                 break;
638         }
639
640         case SI_GETTING_MESSAGES:
641         {
642                 smi_info->curr_msg->rsp_size
643                         = smi_info->handlers->get_result(
644                                 smi_info->si_sm,
645                                 smi_info->curr_msg->rsp,
646                                 IPMI_MAX_MSG_LENGTH);
647
648                 /*
649                  * Do this here becase deliver_recv_msg() releases the
650                  * lock, and a new message can be put in during the
651                  * time the lock is released.
652                  */
653                 msg = smi_info->curr_msg;
654                 smi_info->curr_msg = NULL;
655                 if (msg->rsp[2] != 0) {
656                         /* Error getting event, probably done. */
657                         msg->done(msg);
658
659                         /* Take off the msg flag. */
660                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
661                         handle_flags(smi_info);
662                 } else {
663                         smi_inc_stat(smi_info, incoming_messages);
664
665                         /*
666                          * Do this before we deliver the message
667                          * because delivering the message releases the
668                          * lock and something else can mess with the
669                          * state.
670                          */
671                         handle_flags(smi_info);
672
673                         deliver_recv_msg(smi_info, msg);
674                 }
675                 break;
676         }
677
678         case SI_ENABLE_INTERRUPTS1:
679         {
680                 unsigned char msg[4];
681
682                 /* We got the flags from the SMI, now handle them. */
683                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
684                 if (msg[2] != 0) {
685                         printk(KERN_WARNING
686                                "ipmi_si: Could not enable interrupts"
687                                ", failed get, using polled mode.\n");
688                         smi_info->si_state = SI_NORMAL;
689                 } else {
690                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
691                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
692                         msg[2] = (msg[3] |
693                                   IPMI_BMC_RCV_MSG_INTR |
694                                   IPMI_BMC_EVT_MSG_INTR);
695                         smi_info->handlers->start_transaction(
696                                 smi_info->si_sm, msg, 3);
697                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
698                 }
699                 break;
700         }
701
702         case SI_ENABLE_INTERRUPTS2:
703         {
704                 unsigned char msg[4];
705
706                 /* We got the flags from the SMI, now handle them. */
707                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
708                 if (msg[2] != 0) {
709                         printk(KERN_WARNING
710                                "ipmi_si: Could not enable interrupts"
711                                ", failed set, using polled mode.\n");
712                 } else {
713                         smi_info->interrupt_disabled = 0;
714                 }
715                 smi_info->si_state = SI_NORMAL;
716                 break;
717         }
718
719         case SI_DISABLE_INTERRUPTS1:
720         {
721                 unsigned char msg[4];
722
723                 /* We got the flags from the SMI, now handle them. */
724                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
725                 if (msg[2] != 0) {
726                         printk(KERN_WARNING
727                                "ipmi_si: Could not disable interrupts"
728                                ", failed get.\n");
729                         smi_info->si_state = SI_NORMAL;
730                 } else {
731                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
732                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
733                         msg[2] = (msg[3] &
734                                   ~(IPMI_BMC_RCV_MSG_INTR |
735                                     IPMI_BMC_EVT_MSG_INTR));
736                         smi_info->handlers->start_transaction(
737                                 smi_info->si_sm, msg, 3);
738                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
739                 }
740                 break;
741         }
742
743         case SI_DISABLE_INTERRUPTS2:
744         {
745                 unsigned char msg[4];
746
747                 /* We got the flags from the SMI, now handle them. */
748                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
749                 if (msg[2] != 0) {
750                         printk(KERN_WARNING
751                                "ipmi_si: Could not disable interrupts"
752                                ", failed set.\n");
753                 }
754                 smi_info->si_state = SI_NORMAL;
755                 break;
756         }
757         }
758 }
759
760 /*
761  * Called on timeouts and events.  Timeouts should pass the elapsed
762  * time, interrupts should pass in zero.  Must be called with
763  * si_lock held and interrupts disabled.
764  */
765 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
766                                            int time)
767 {
768         enum si_sm_result si_sm_result;
769
770  restart:
771         /*
772          * There used to be a loop here that waited a little while
773          * (around 25us) before giving up.  That turned out to be
774          * pointless, the minimum delays I was seeing were in the 300us
775          * range, which is far too long to wait in an interrupt.  So
776          * we just run until the state machine tells us something
777          * happened or it needs a delay.
778          */
779         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
780         time = 0;
781         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
782                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
783
784         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
785                 smi_inc_stat(smi_info, complete_transactions);
786
787                 handle_transaction_done(smi_info);
788                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
789         } else if (si_sm_result == SI_SM_HOSED) {
790                 smi_inc_stat(smi_info, hosed_count);
791
792                 /*
793                  * Do the before return_hosed_msg, because that
794                  * releases the lock.
795                  */
796                 smi_info->si_state = SI_NORMAL;
797                 if (smi_info->curr_msg != NULL) {
798                         /*
799                          * If we were handling a user message, format
800                          * a response to send to the upper layer to
801                          * tell it about the error.
802                          */
803                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
804                 }
805                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
806         }
807
808         /*
809          * We prefer handling attn over new messages.  But don't do
810          * this if there is not yet an upper layer to handle anything.
811          */
812         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
813                 unsigned char msg[2];
814
815                 smi_inc_stat(smi_info, attentions);
816
817                 /*
818                  * Got a attn, send down a get message flags to see
819                  * what's causing it.  It would be better to handle
820                  * this in the upper layer, but due to the way
821                  * interrupts work with the SMI, that's not really
822                  * possible.
823                  */
824                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
825                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
826
827                 smi_info->handlers->start_transaction(
828                         smi_info->si_sm, msg, 2);
829                 smi_info->si_state = SI_GETTING_FLAGS;
830                 goto restart;
831         }
832
833         /* If we are currently idle, try to start the next message. */
834         if (si_sm_result == SI_SM_IDLE) {
835                 smi_inc_stat(smi_info, idles);
836
837                 si_sm_result = start_next_msg(smi_info);
838                 if (si_sm_result != SI_SM_IDLE)
839                         goto restart;
840         }
841
842         if ((si_sm_result == SI_SM_IDLE)
843             && (atomic_read(&smi_info->req_events))) {
844                 /*
845                  * We are idle and the upper layer requested that I fetch
846                  * events, so do so.
847                  */
848                 atomic_set(&smi_info->req_events, 0);
849
850                 smi_info->curr_msg = ipmi_alloc_smi_msg();
851                 if (!smi_info->curr_msg)
852                         goto out;
853
854                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
855                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
856                 smi_info->curr_msg->data_size = 2;
857
858                 smi_info->handlers->start_transaction(
859                         smi_info->si_sm,
860                         smi_info->curr_msg->data,
861                         smi_info->curr_msg->data_size);
862                 smi_info->si_state = SI_GETTING_EVENTS;
863                 goto restart;
864         }
865  out:
866         return si_sm_result;
867 }
868
869 static void sender(void                *send_info,
870                    struct ipmi_smi_msg *msg,
871                    int                 priority)
872 {
873         struct smi_info   *smi_info = send_info;
874         enum si_sm_result result;
875         unsigned long     flags;
876 #ifdef DEBUG_TIMING
877         struct timeval    t;
878 #endif
879
880         if (atomic_read(&smi_info->stop_operation)) {
881                 msg->rsp[0] = msg->data[0] | 4;
882                 msg->rsp[1] = msg->data[1];
883                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
884                 msg->rsp_size = 3;
885                 deliver_recv_msg(smi_info, msg);
886                 return;
887         }
888
889 #ifdef DEBUG_TIMING
890         do_gettimeofday(&t);
891         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
892 #endif
893
894         mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
895
896         if (smi_info->thread)
897                 wake_up_process(smi_info->thread);
898
899         if (smi_info->run_to_completion) {
900                 /*
901                  * If we are running to completion, then throw it in
902                  * the list and run transactions until everything is
903                  * clear.  Priority doesn't matter here.
904                  */
905
906                 /*
907                  * Run to completion means we are single-threaded, no
908                  * need for locks.
909                  */
910                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
911
912                 result = smi_event_handler(smi_info, 0);
913                 while (result != SI_SM_IDLE) {
914                         udelay(SI_SHORT_TIMEOUT_USEC);
915                         result = smi_event_handler(smi_info,
916                                                    SI_SHORT_TIMEOUT_USEC);
917                 }
918                 return;
919         }
920
921         spin_lock_irqsave(&smi_info->msg_lock, flags);
922         if (priority > 0)
923                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
924         else
925                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
926         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
927
928         spin_lock_irqsave(&smi_info->si_lock, flags);
929         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
930                 start_next_msg(smi_info);
931         spin_unlock_irqrestore(&smi_info->si_lock, flags);
932 }
933
934 static void set_run_to_completion(void *send_info, int i_run_to_completion)
935 {
936         struct smi_info   *smi_info = send_info;
937         enum si_sm_result result;
938
939         smi_info->run_to_completion = i_run_to_completion;
940         if (i_run_to_completion) {
941                 result = smi_event_handler(smi_info, 0);
942                 while (result != SI_SM_IDLE) {
943                         udelay(SI_SHORT_TIMEOUT_USEC);
944                         result = smi_event_handler(smi_info,
945                                                    SI_SHORT_TIMEOUT_USEC);
946                 }
947         }
948 }
949
950 /*
951  * Use -1 in the nsec value of the busy waiting timespec to tell that
952  * we are spinning in kipmid looking for something and not delaying
953  * between checks
954  */
955 static inline void ipmi_si_set_not_busy(struct timespec *ts)
956 {
957         ts->tv_nsec = -1;
958 }
959 static inline int ipmi_si_is_busy(struct timespec *ts)
960 {
961         return ts->tv_nsec != -1;
962 }
963
964 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
965                                  const struct smi_info *smi_info,
966                                  struct timespec *busy_until)
967 {
968         unsigned int max_busy_us = 0;
969
970         if (smi_info->intf_num < num_max_busy_us)
971                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
972         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
973                 ipmi_si_set_not_busy(busy_until);
974         else if (!ipmi_si_is_busy(busy_until)) {
975                 getnstimeofday(busy_until);
976                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
977         } else {
978                 struct timespec now;
979                 getnstimeofday(&now);
980                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
981                         ipmi_si_set_not_busy(busy_until);
982                         return 0;
983                 }
984         }
985         return 1;
986 }
987
988
989 /*
990  * A busy-waiting loop for speeding up IPMI operation.
991  *
992  * Lousy hardware makes this hard.  This is only enabled for systems
993  * that are not BT and do not have interrupts.  It starts spinning
994  * when an operation is complete or until max_busy tells it to stop
995  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
996  * Documentation/IPMI.txt for details.
997  */
998 static int ipmi_thread(void *data)
999 {
1000         struct smi_info *smi_info = data;
1001         unsigned long flags;
1002         enum si_sm_result smi_result;
1003         struct timespec busy_until;
1004
1005         ipmi_si_set_not_busy(&busy_until);
1006         set_user_nice(current, 19);
1007         while (!kthread_should_stop()) {
1008                 int busy_wait;
1009
1010                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1011                 smi_result = smi_event_handler(smi_info, 0);
1012                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1013                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1014                                                   &busy_until);
1015                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1016                         ; /* do nothing */
1017                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1018                         schedule();
1019                 else if (smi_result == SI_SM_IDLE)
1020                         schedule_timeout_interruptible(100);
1021                 else
1022                         schedule_timeout_interruptible(0);
1023         }
1024         return 0;
1025 }
1026
1027
1028 static void poll(void *send_info)
1029 {
1030         struct smi_info *smi_info = send_info;
1031         unsigned long flags;
1032
1033         /*
1034          * Make sure there is some delay in the poll loop so we can
1035          * drive time forward and timeout things.
1036          */
1037         udelay(10);
1038         spin_lock_irqsave(&smi_info->si_lock, flags);
1039         smi_event_handler(smi_info, 10);
1040         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1041 }
1042
1043 static void request_events(void *send_info)
1044 {
1045         struct smi_info *smi_info = send_info;
1046
1047         if (atomic_read(&smi_info->stop_operation) ||
1048                                 !smi_info->has_event_buffer)
1049                 return;
1050
1051         atomic_set(&smi_info->req_events, 1);
1052 }
1053
1054 static int initialized;
1055
1056 static void smi_timeout(unsigned long data)
1057 {
1058         struct smi_info   *smi_info = (struct smi_info *) data;
1059         enum si_sm_result smi_result;
1060         unsigned long     flags;
1061         unsigned long     jiffies_now;
1062         long              time_diff;
1063         long              timeout;
1064 #ifdef DEBUG_TIMING
1065         struct timeval    t;
1066 #endif
1067
1068         spin_lock_irqsave(&(smi_info->si_lock), flags);
1069 #ifdef DEBUG_TIMING
1070         do_gettimeofday(&t);
1071         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1072 #endif
1073         jiffies_now = jiffies;
1074         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1075                      * SI_USEC_PER_JIFFY);
1076         smi_result = smi_event_handler(smi_info, time_diff);
1077
1078         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1079
1080         smi_info->last_timeout_jiffies = jiffies_now;
1081
1082         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1083                 /* Running with interrupts, only do long timeouts. */
1084                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1085                 smi_inc_stat(smi_info, long_timeouts);
1086                 goto do_mod_timer;
1087         }
1088
1089         /*
1090          * If the state machine asks for a short delay, then shorten
1091          * the timer timeout.
1092          */
1093         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1094                 smi_inc_stat(smi_info, short_timeouts);
1095                 timeout = jiffies + 1;
1096         } else {
1097                 smi_inc_stat(smi_info, long_timeouts);
1098                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1099         }
1100
1101  do_mod_timer:
1102         if (smi_result != SI_SM_IDLE)
1103                 mod_timer(&(smi_info->si_timer), timeout);
1104 }
1105
1106 static irqreturn_t si_irq_handler(int irq, void *data)
1107 {
1108         struct smi_info *smi_info = data;
1109         unsigned long   flags;
1110 #ifdef DEBUG_TIMING
1111         struct timeval  t;
1112 #endif
1113
1114         spin_lock_irqsave(&(smi_info->si_lock), flags);
1115
1116         smi_inc_stat(smi_info, interrupts);
1117
1118 #ifdef DEBUG_TIMING
1119         do_gettimeofday(&t);
1120         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1121 #endif
1122         smi_event_handler(smi_info, 0);
1123         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1124         return IRQ_HANDLED;
1125 }
1126
1127 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1128 {
1129         struct smi_info *smi_info = data;
1130         /* We need to clear the IRQ flag for the BT interface. */
1131         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1132                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1133                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1134         return si_irq_handler(irq, data);
1135 }
1136
1137 static int smi_start_processing(void       *send_info,
1138                                 ipmi_smi_t intf)
1139 {
1140         struct smi_info *new_smi = send_info;
1141         int             enable = 0;
1142
1143         new_smi->intf = intf;
1144
1145         /* Try to claim any interrupts. */
1146         if (new_smi->irq_setup)
1147                 new_smi->irq_setup(new_smi);
1148
1149         /* Set up the timer that drives the interface. */
1150         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1151         new_smi->last_timeout_jiffies = jiffies;
1152         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1153
1154         /*
1155          * Check if the user forcefully enabled the daemon.
1156          */
1157         if (new_smi->intf_num < num_force_kipmid)
1158                 enable = force_kipmid[new_smi->intf_num];
1159         /*
1160          * The BT interface is efficient enough to not need a thread,
1161          * and there is no need for a thread if we have interrupts.
1162          */
1163         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1164                 enable = 1;
1165
1166         if (enable) {
1167                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1168                                               "kipmi%d", new_smi->intf_num);
1169                 if (IS_ERR(new_smi->thread)) {
1170                         printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1171                                " kernel thread due to error %ld, only using"
1172                                " timers to drive the interface\n",
1173                                PTR_ERR(new_smi->thread));
1174                         new_smi->thread = NULL;
1175                 }
1176         }
1177
1178         return 0;
1179 }
1180
1181 static void set_maintenance_mode(void *send_info, int enable)
1182 {
1183         struct smi_info   *smi_info = send_info;
1184
1185         if (!enable)
1186                 atomic_set(&smi_info->req_events, 0);
1187 }
1188
1189 static struct ipmi_smi_handlers handlers = {
1190         .owner                  = THIS_MODULE,
1191         .start_processing       = smi_start_processing,
1192         .sender                 = sender,
1193         .request_events         = request_events,
1194         .set_maintenance_mode   = set_maintenance_mode,
1195         .set_run_to_completion  = set_run_to_completion,
1196         .poll                   = poll,
1197 };
1198
1199 /*
1200  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1202  */
1203
1204 static LIST_HEAD(smi_infos);
1205 static DEFINE_MUTEX(smi_infos_lock);
1206 static int smi_num; /* Used to sequence the SMIs */
1207
1208 #define DEFAULT_REGSPACING      1
1209 #define DEFAULT_REGSIZE         1
1210
1211 static int           si_trydefaults = 1;
1212 static char          *si_type[SI_MAX_PARMS];
1213 #define MAX_SI_TYPE_STR 30
1214 static char          si_type_str[MAX_SI_TYPE_STR];
1215 static unsigned long addrs[SI_MAX_PARMS];
1216 static unsigned int num_addrs;
1217 static unsigned int  ports[SI_MAX_PARMS];
1218 static unsigned int num_ports;
1219 static int           irqs[SI_MAX_PARMS];
1220 static unsigned int num_irqs;
1221 static int           regspacings[SI_MAX_PARMS];
1222 static unsigned int num_regspacings;
1223 static int           regsizes[SI_MAX_PARMS];
1224 static unsigned int num_regsizes;
1225 static int           regshifts[SI_MAX_PARMS];
1226 static unsigned int num_regshifts;
1227 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1228 static unsigned int num_slave_addrs;
1229
1230 #define IPMI_IO_ADDR_SPACE  0
1231 #define IPMI_MEM_ADDR_SPACE 1
1232 static char *addr_space_to_str[] = { "i/o", "mem" };
1233
1234 static int hotmod_handler(const char *val, struct kernel_param *kp);
1235
1236 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1237 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1238                  " Documentation/IPMI.txt in the kernel sources for the"
1239                  " gory details.");
1240
1241 module_param_named(trydefaults, si_trydefaults, bool, 0);
1242 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1243                  " default scan of the KCS and SMIC interface at the standard"
1244                  " address");
1245 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1246 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1247                  " interface separated by commas.  The types are 'kcs',"
1248                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1249                  " the first interface to kcs and the second to bt");
1250 module_param_array(addrs, ulong, &num_addrs, 0);
1251 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1252                  " addresses separated by commas.  Only use if an interface"
1253                  " is in memory.  Otherwise, set it to zero or leave"
1254                  " it blank.");
1255 module_param_array(ports, uint, &num_ports, 0);
1256 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1257                  " addresses separated by commas.  Only use if an interface"
1258                  " is a port.  Otherwise, set it to zero or leave"
1259                  " it blank.");
1260 module_param_array(irqs, int, &num_irqs, 0);
1261 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1262                  " addresses separated by commas.  Only use if an interface"
1263                  " has an interrupt.  Otherwise, set it to zero or leave"
1264                  " it blank.");
1265 module_param_array(regspacings, int, &num_regspacings, 0);
1266 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1267                  " and each successive register used by the interface.  For"
1268                  " instance, if the start address is 0xca2 and the spacing"
1269                  " is 2, then the second address is at 0xca4.  Defaults"
1270                  " to 1.");
1271 module_param_array(regsizes, int, &num_regsizes, 0);
1272 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1273                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1274                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1275                  " the 8-bit IPMI register has to be read from a larger"
1276                  " register.");
1277 module_param_array(regshifts, int, &num_regshifts, 0);
1278 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1279                  " IPMI register, in bits.  For instance, if the data"
1280                  " is read from a 32-bit word and the IPMI data is in"
1281                  " bit 8-15, then the shift would be 8");
1282 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1283 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1284                  " the controller.  Normally this is 0x20, but can be"
1285                  " overridden by this parm.  This is an array indexed"
1286                  " by interface number.");
1287 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1288 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1289                  " disabled(0).  Normally the IPMI driver auto-detects"
1290                  " this, but the value may be overridden by this parm.");
1291 module_param(unload_when_empty, int, 0);
1292 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1293                  " specified or found, default is 1.  Setting to 0"
1294                  " is useful for hot add of devices using hotmod.");
1295 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1296 MODULE_PARM_DESC(kipmid_max_busy_us,
1297                  "Max time (in microseconds) to busy-wait for IPMI data before"
1298                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1299                  " if kipmid is using up a lot of CPU time.");
1300
1301
1302 static void std_irq_cleanup(struct smi_info *info)
1303 {
1304         if (info->si_type == SI_BT)
1305                 /* Disable the interrupt in the BT interface. */
1306                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1307         free_irq(info->irq, info);
1308 }
1309
1310 static int std_irq_setup(struct smi_info *info)
1311 {
1312         int rv;
1313
1314         if (!info->irq)
1315                 return 0;
1316
1317         if (info->si_type == SI_BT) {
1318                 rv = request_irq(info->irq,
1319                                  si_bt_irq_handler,
1320                                  IRQF_SHARED | IRQF_DISABLED,
1321                                  DEVICE_NAME,
1322                                  info);
1323                 if (!rv)
1324                         /* Enable the interrupt in the BT interface. */
1325                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1326                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1327         } else
1328                 rv = request_irq(info->irq,
1329                                  si_irq_handler,
1330                                  IRQF_SHARED | IRQF_DISABLED,
1331                                  DEVICE_NAME,
1332                                  info);
1333         if (rv) {
1334                 printk(KERN_WARNING
1335                        "ipmi_si: %s unable to claim interrupt %d,"
1336                        " running polled\n",
1337                        DEVICE_NAME, info->irq);
1338                 info->irq = 0;
1339         } else {
1340                 info->irq_cleanup = std_irq_cleanup;
1341                 printk("  Using irq %d\n", info->irq);
1342         }
1343
1344         return rv;
1345 }
1346
1347 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1348 {
1349         unsigned int addr = io->addr_data;
1350
1351         return inb(addr + (offset * io->regspacing));
1352 }
1353
1354 static void port_outb(struct si_sm_io *io, unsigned int offset,
1355                       unsigned char b)
1356 {
1357         unsigned int addr = io->addr_data;
1358
1359         outb(b, addr + (offset * io->regspacing));
1360 }
1361
1362 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1363 {
1364         unsigned int addr = io->addr_data;
1365
1366         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1367 }
1368
1369 static void port_outw(struct si_sm_io *io, unsigned int offset,
1370                       unsigned char b)
1371 {
1372         unsigned int addr = io->addr_data;
1373
1374         outw(b << io->regshift, addr + (offset * io->regspacing));
1375 }
1376
1377 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1378 {
1379         unsigned int addr = io->addr_data;
1380
1381         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1382 }
1383
1384 static void port_outl(struct si_sm_io *io, unsigned int offset,
1385                       unsigned char b)
1386 {
1387         unsigned int addr = io->addr_data;
1388
1389         outl(b << io->regshift, addr+(offset * io->regspacing));
1390 }
1391
1392 static void port_cleanup(struct smi_info *info)
1393 {
1394         unsigned int addr = info->io.addr_data;
1395         int          idx;
1396
1397         if (addr) {
1398                 for (idx = 0; idx < info->io_size; idx++)
1399                         release_region(addr + idx * info->io.regspacing,
1400                                        info->io.regsize);
1401         }
1402 }
1403
1404 static int port_setup(struct smi_info *info)
1405 {
1406         unsigned int addr = info->io.addr_data;
1407         int          idx;
1408
1409         if (!addr)
1410                 return -ENODEV;
1411
1412         info->io_cleanup = port_cleanup;
1413
1414         /*
1415          * Figure out the actual inb/inw/inl/etc routine to use based
1416          * upon the register size.
1417          */
1418         switch (info->io.regsize) {
1419         case 1:
1420                 info->io.inputb = port_inb;
1421                 info->io.outputb = port_outb;
1422                 break;
1423         case 2:
1424                 info->io.inputb = port_inw;
1425                 info->io.outputb = port_outw;
1426                 break;
1427         case 4:
1428                 info->io.inputb = port_inl;
1429                 info->io.outputb = port_outl;
1430                 break;
1431         default:
1432                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1433                        info->io.regsize);
1434                 return -EINVAL;
1435         }
1436
1437         /*
1438          * Some BIOSes reserve disjoint I/O regions in their ACPI
1439          * tables.  This causes problems when trying to register the
1440          * entire I/O region.  Therefore we must register each I/O
1441          * port separately.
1442          */
1443         for (idx = 0; idx < info->io_size; idx++) {
1444                 if (request_region(addr + idx * info->io.regspacing,
1445                                    info->io.regsize, DEVICE_NAME) == NULL) {
1446                         /* Undo allocations */
1447                         while (idx--) {
1448                                 release_region(addr + idx * info->io.regspacing,
1449                                                info->io.regsize);
1450                         }
1451                         return -EIO;
1452                 }
1453         }
1454         return 0;
1455 }
1456
1457 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1458 {
1459         return readb((io->addr)+(offset * io->regspacing));
1460 }
1461
1462 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1463                      unsigned char b)
1464 {
1465         writeb(b, (io->addr)+(offset * io->regspacing));
1466 }
1467
1468 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1469 {
1470         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1471                 & 0xff;
1472 }
1473
1474 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1475                      unsigned char b)
1476 {
1477         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1478 }
1479
1480 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1481 {
1482         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1483                 & 0xff;
1484 }
1485
1486 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1487                      unsigned char b)
1488 {
1489         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1490 }
1491
1492 #ifdef readq
1493 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1494 {
1495         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1496                 & 0xff;
1497 }
1498
1499 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1500                      unsigned char b)
1501 {
1502         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1503 }
1504 #endif
1505
1506 static void mem_cleanup(struct smi_info *info)
1507 {
1508         unsigned long addr = info->io.addr_data;
1509         int           mapsize;
1510
1511         if (info->io.addr) {
1512                 iounmap(info->io.addr);
1513
1514                 mapsize = ((info->io_size * info->io.regspacing)
1515                            - (info->io.regspacing - info->io.regsize));
1516
1517                 release_mem_region(addr, mapsize);
1518         }
1519 }
1520
1521 static int mem_setup(struct smi_info *info)
1522 {
1523         unsigned long addr = info->io.addr_data;
1524         int           mapsize;
1525
1526         if (!addr)
1527                 return -ENODEV;
1528
1529         info->io_cleanup = mem_cleanup;
1530
1531         /*
1532          * Figure out the actual readb/readw/readl/etc routine to use based
1533          * upon the register size.
1534          */
1535         switch (info->io.regsize) {
1536         case 1:
1537                 info->io.inputb = intf_mem_inb;
1538                 info->io.outputb = intf_mem_outb;
1539                 break;
1540         case 2:
1541                 info->io.inputb = intf_mem_inw;
1542                 info->io.outputb = intf_mem_outw;
1543                 break;
1544         case 4:
1545                 info->io.inputb = intf_mem_inl;
1546                 info->io.outputb = intf_mem_outl;
1547                 break;
1548 #ifdef readq
1549         case 8:
1550                 info->io.inputb = mem_inq;
1551                 info->io.outputb = mem_outq;
1552                 break;
1553 #endif
1554         default:
1555                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1556                        info->io.regsize);
1557                 return -EINVAL;
1558         }
1559
1560         /*
1561          * Calculate the total amount of memory to claim.  This is an
1562          * unusual looking calculation, but it avoids claiming any
1563          * more memory than it has to.  It will claim everything
1564          * between the first address to the end of the last full
1565          * register.
1566          */
1567         mapsize = ((info->io_size * info->io.regspacing)
1568                    - (info->io.regspacing - info->io.regsize));
1569
1570         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1571                 return -EIO;
1572
1573         info->io.addr = ioremap(addr, mapsize);
1574         if (info->io.addr == NULL) {
1575                 release_mem_region(addr, mapsize);
1576                 return -EIO;
1577         }
1578         return 0;
1579 }
1580
1581 /*
1582  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1583  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1584  * Options are:
1585  *   rsp=<regspacing>
1586  *   rsi=<regsize>
1587  *   rsh=<regshift>
1588  *   irq=<irq>
1589  *   ipmb=<ipmb addr>
1590  */
1591 enum hotmod_op { HM_ADD, HM_REMOVE };
1592 struct hotmod_vals {
1593         char *name;
1594         int  val;
1595 };
1596 static struct hotmod_vals hotmod_ops[] = {
1597         { "add",        HM_ADD },
1598         { "remove",     HM_REMOVE },
1599         { NULL }
1600 };
1601 static struct hotmod_vals hotmod_si[] = {
1602         { "kcs",        SI_KCS },
1603         { "smic",       SI_SMIC },
1604         { "bt",         SI_BT },
1605         { NULL }
1606 };
1607 static struct hotmod_vals hotmod_as[] = {
1608         { "mem",        IPMI_MEM_ADDR_SPACE },
1609         { "i/o",        IPMI_IO_ADDR_SPACE },
1610         { NULL }
1611 };
1612
1613 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1614 {
1615         char *s;
1616         int  i;
1617
1618         s = strchr(*curr, ',');
1619         if (!s) {
1620                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1621                 return -EINVAL;
1622         }
1623         *s = '\0';
1624         s++;
1625         for (i = 0; hotmod_ops[i].name; i++) {
1626                 if (strcmp(*curr, v[i].name) == 0) {
1627                         *val = v[i].val;
1628                         *curr = s;
1629                         return 0;
1630                 }
1631         }
1632
1633         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1634         return -EINVAL;
1635 }
1636
1637 static int check_hotmod_int_op(const char *curr, const char *option,
1638                                const char *name, int *val)
1639 {
1640         char *n;
1641
1642         if (strcmp(curr, name) == 0) {
1643                 if (!option) {
1644                         printk(KERN_WARNING PFX
1645                                "No option given for '%s'\n",
1646                                curr);
1647                         return -EINVAL;
1648                 }
1649                 *val = simple_strtoul(option, &n, 0);
1650                 if ((*n != '\0') || (*option == '\0')) {
1651                         printk(KERN_WARNING PFX
1652                                "Bad option given for '%s'\n",
1653                                curr);
1654                         return -EINVAL;
1655                 }
1656                 return 1;
1657         }
1658         return 0;
1659 }
1660
1661 static int hotmod_handler(const char *val, struct kernel_param *kp)
1662 {
1663         char *str = kstrdup(val, GFP_KERNEL);
1664         int  rv;
1665         char *next, *curr, *s, *n, *o;
1666         enum hotmod_op op;
1667         enum si_type si_type;
1668         int  addr_space;
1669         unsigned long addr;
1670         int regspacing;
1671         int regsize;
1672         int regshift;
1673         int irq;
1674         int ipmb;
1675         int ival;
1676         int len;
1677         struct smi_info *info;
1678
1679         if (!str)
1680                 return -ENOMEM;
1681
1682         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1683         len = strlen(str);
1684         ival = len - 1;
1685         while ((ival >= 0) && isspace(str[ival])) {
1686                 str[ival] = '\0';
1687                 ival--;
1688         }
1689
1690         for (curr = str; curr; curr = next) {
1691                 regspacing = 1;
1692                 regsize = 1;
1693                 regshift = 0;
1694                 irq = 0;
1695                 ipmb = 0; /* Choose the default if not specified */
1696
1697                 next = strchr(curr, ':');
1698                 if (next) {
1699                         *next = '\0';
1700                         next++;
1701                 }
1702
1703                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1704                 if (rv)
1705                         break;
1706                 op = ival;
1707
1708                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1709                 if (rv)
1710                         break;
1711                 si_type = ival;
1712
1713                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1714                 if (rv)
1715                         break;
1716
1717                 s = strchr(curr, ',');
1718                 if (s) {
1719                         *s = '\0';
1720                         s++;
1721                 }
1722                 addr = simple_strtoul(curr, &n, 0);
1723                 if ((*n != '\0') || (*curr == '\0')) {
1724                         printk(KERN_WARNING PFX "Invalid hotmod address"
1725                                " '%s'\n", curr);
1726                         break;
1727                 }
1728
1729                 while (s) {
1730                         curr = s;
1731                         s = strchr(curr, ',');
1732                         if (s) {
1733                                 *s = '\0';
1734                                 s++;
1735                         }
1736                         o = strchr(curr, '=');
1737                         if (o) {
1738                                 *o = '\0';
1739                                 o++;
1740                         }
1741                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1742                         if (rv < 0)
1743                                 goto out;
1744                         else if (rv)
1745                                 continue;
1746                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1747                         if (rv < 0)
1748                                 goto out;
1749                         else if (rv)
1750                                 continue;
1751                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1752                         if (rv < 0)
1753                                 goto out;
1754                         else if (rv)
1755                                 continue;
1756                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1757                         if (rv < 0)
1758                                 goto out;
1759                         else if (rv)
1760                                 continue;
1761                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1762                         if (rv < 0)
1763                                 goto out;
1764                         else if (rv)
1765                                 continue;
1766
1767                         rv = -EINVAL;
1768                         printk(KERN_WARNING PFX
1769                                "Invalid hotmod option '%s'\n",
1770                                curr);
1771                         goto out;
1772                 }
1773
1774                 if (op == HM_ADD) {
1775                         info = kzalloc(sizeof(*info), GFP_KERNEL);
1776                         if (!info) {
1777                                 rv = -ENOMEM;
1778                                 goto out;
1779                         }
1780
1781                         info->addr_source = SI_HOTMOD;
1782                         info->si_type = si_type;
1783                         info->io.addr_data = addr;
1784                         info->io.addr_type = addr_space;
1785                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1786                                 info->io_setup = mem_setup;
1787                         else
1788                                 info->io_setup = port_setup;
1789
1790                         info->io.addr = NULL;
1791                         info->io.regspacing = regspacing;
1792                         if (!info->io.regspacing)
1793                                 info->io.regspacing = DEFAULT_REGSPACING;
1794                         info->io.regsize = regsize;
1795                         if (!info->io.regsize)
1796                                 info->io.regsize = DEFAULT_REGSPACING;
1797                         info->io.regshift = regshift;
1798                         info->irq = irq;
1799                         if (info->irq)
1800                                 info->irq_setup = std_irq_setup;
1801                         info->slave_addr = ipmb;
1802
1803                         if (!add_smi(info))
1804                                 if (try_smi_init(info))
1805                                         cleanup_one_si(info);
1806                 } else {
1807                         /* remove */
1808                         struct smi_info *e, *tmp_e;
1809
1810                         mutex_lock(&smi_infos_lock);
1811                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1812                                 if (e->io.addr_type != addr_space)
1813                                         continue;
1814                                 if (e->si_type != si_type)
1815                                         continue;
1816                                 if (e->io.addr_data == addr)
1817                                         cleanup_one_si(e);
1818                         }
1819                         mutex_unlock(&smi_infos_lock);
1820                 }
1821         }
1822         rv = len;
1823  out:
1824         kfree(str);
1825         return rv;
1826 }
1827
1828 static __devinit void hardcode_find_bmc(void)
1829 {
1830         int             i;
1831         struct smi_info *info;
1832
1833         for (i = 0; i < SI_MAX_PARMS; i++) {
1834                 if (!ports[i] && !addrs[i])
1835                         continue;
1836
1837                 info = kzalloc(sizeof(*info), GFP_KERNEL);
1838                 if (!info)
1839                         return;
1840
1841                 info->addr_source = SI_HARDCODED;
1842
1843                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1844                         info->si_type = SI_KCS;
1845                 } else if (strcmp(si_type[i], "smic") == 0) {
1846                         info->si_type = SI_SMIC;
1847                 } else if (strcmp(si_type[i], "bt") == 0) {
1848                         info->si_type = SI_BT;
1849                 } else {
1850                         printk(KERN_WARNING
1851                                "ipmi_si: Interface type specified "
1852                                "for interface %d, was invalid: %s\n",
1853                                i, si_type[i]);
1854                         kfree(info);
1855                         continue;
1856                 }
1857
1858                 if (ports[i]) {
1859                         /* An I/O port */
1860                         info->io_setup = port_setup;
1861                         info->io.addr_data = ports[i];
1862                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1863                 } else if (addrs[i]) {
1864                         /* A memory port */
1865                         info->io_setup = mem_setup;
1866                         info->io.addr_data = addrs[i];
1867                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1868                 } else {
1869                         printk(KERN_WARNING
1870                                "ipmi_si: Interface type specified "
1871                                "for interface %d, "
1872                                "but port and address were not set or "
1873                                "set to zero.\n", i);
1874                         kfree(info);
1875                         continue;
1876                 }
1877
1878                 info->io.addr = NULL;
1879                 info->io.regspacing = regspacings[i];
1880                 if (!info->io.regspacing)
1881                         info->io.regspacing = DEFAULT_REGSPACING;
1882                 info->io.regsize = regsizes[i];
1883                 if (!info->io.regsize)
1884                         info->io.regsize = DEFAULT_REGSPACING;
1885                 info->io.regshift = regshifts[i];
1886                 info->irq = irqs[i];
1887                 if (info->irq)
1888                         info->irq_setup = std_irq_setup;
1889                 info->slave_addr = slave_addrs[i];
1890
1891                 if (!add_smi(info))
1892                         if (try_smi_init(info))
1893                                 cleanup_one_si(info);
1894         }
1895 }
1896
1897 #ifdef CONFIG_ACPI
1898
1899 #include <linux/acpi.h>
1900
1901 /*
1902  * Once we get an ACPI failure, we don't try any more, because we go
1903  * through the tables sequentially.  Once we don't find a table, there
1904  * are no more.
1905  */
1906 static int acpi_failure;
1907
1908 /* For GPE-type interrupts. */
1909 static u32 ipmi_acpi_gpe(void *context)
1910 {
1911         struct smi_info *smi_info = context;
1912         unsigned long   flags;
1913 #ifdef DEBUG_TIMING
1914         struct timeval t;
1915 #endif
1916
1917         spin_lock_irqsave(&(smi_info->si_lock), flags);
1918
1919         smi_inc_stat(smi_info, interrupts);
1920
1921 #ifdef DEBUG_TIMING
1922         do_gettimeofday(&t);
1923         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1924 #endif
1925         smi_event_handler(smi_info, 0);
1926         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1927
1928         return ACPI_INTERRUPT_HANDLED;
1929 }
1930
1931 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1932 {
1933         if (!info->irq)
1934                 return;
1935
1936         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1937 }
1938
1939 static int acpi_gpe_irq_setup(struct smi_info *info)
1940 {
1941         acpi_status status;
1942
1943         if (!info->irq)
1944                 return 0;
1945
1946         /* FIXME - is level triggered right? */
1947         status = acpi_install_gpe_handler(NULL,
1948                                           info->irq,
1949                                           ACPI_GPE_LEVEL_TRIGGERED,
1950                                           &ipmi_acpi_gpe,
1951                                           info);
1952         if (status != AE_OK) {
1953                 printk(KERN_WARNING
1954                        "ipmi_si: %s unable to claim ACPI GPE %d,"
1955                        " running polled\n",
1956                        DEVICE_NAME, info->irq);
1957                 info->irq = 0;
1958                 return -EINVAL;
1959         } else {
1960                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1961                 printk("  Using ACPI GPE %d\n", info->irq);
1962                 return 0;
1963         }
1964 }
1965
1966 /*
1967  * Defined at
1968  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1969  * Docs/TechPapers/IA64/hpspmi.pdf
1970  */
1971 struct SPMITable {
1972         s8      Signature[4];
1973         u32     Length;
1974         u8      Revision;
1975         u8      Checksum;
1976         s8      OEMID[6];
1977         s8      OEMTableID[8];
1978         s8      OEMRevision[4];
1979         s8      CreatorID[4];
1980         s8      CreatorRevision[4];
1981         u8      InterfaceType;
1982         u8      IPMIlegacy;
1983         s16     SpecificationRevision;
1984
1985         /*
1986          * Bit 0 - SCI interrupt supported
1987          * Bit 1 - I/O APIC/SAPIC
1988          */
1989         u8      InterruptType;
1990
1991         /*
1992          * If bit 0 of InterruptType is set, then this is the SCI
1993          * interrupt in the GPEx_STS register.
1994          */
1995         u8      GPE;
1996
1997         s16     Reserved;
1998
1999         /*
2000          * If bit 1 of InterruptType is set, then this is the I/O
2001          * APIC/SAPIC interrupt.
2002          */
2003         u32     GlobalSystemInterrupt;
2004
2005         /* The actual register address. */
2006         struct acpi_generic_address addr;
2007
2008         u8      UID[4];
2009
2010         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2011 };
2012
2013 static __devinit int try_init_spmi(struct SPMITable *spmi)
2014 {
2015         struct smi_info  *info;
2016         u8               addr_space;
2017
2018         if (spmi->IPMIlegacy != 1) {
2019             printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2020             return -ENODEV;
2021         }
2022
2023         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
2024                 addr_space = IPMI_MEM_ADDR_SPACE;
2025         else
2026                 addr_space = IPMI_IO_ADDR_SPACE;
2027
2028         info = kzalloc(sizeof(*info), GFP_KERNEL);
2029         if (!info) {
2030                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
2031                 return -ENOMEM;
2032         }
2033
2034         info->addr_source = SI_SPMI;
2035
2036         /* Figure out the interface type. */
2037         switch (spmi->InterfaceType) {
2038         case 1: /* KCS */
2039                 info->si_type = SI_KCS;
2040                 break;
2041         case 2: /* SMIC */
2042                 info->si_type = SI_SMIC;
2043                 break;
2044         case 3: /* BT */
2045                 info->si_type = SI_BT;
2046                 break;
2047         default:
2048                 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
2049                         spmi->InterfaceType);
2050                 kfree(info);
2051                 return -EIO;
2052         }
2053
2054         if (spmi->InterruptType & 1) {
2055                 /* We've got a GPE interrupt. */
2056                 info->irq = spmi->GPE;
2057                 info->irq_setup = acpi_gpe_irq_setup;
2058         } else if (spmi->InterruptType & 2) {
2059                 /* We've got an APIC/SAPIC interrupt. */
2060                 info->irq = spmi->GlobalSystemInterrupt;
2061                 info->irq_setup = std_irq_setup;
2062         } else {
2063                 /* Use the default interrupt setting. */
2064                 info->irq = 0;
2065                 info->irq_setup = NULL;
2066         }
2067
2068         if (spmi->addr.bit_width) {
2069                 /* A (hopefully) properly formed register bit width. */
2070                 info->io.regspacing = spmi->addr.bit_width / 8;
2071         } else {
2072                 info->io.regspacing = DEFAULT_REGSPACING;
2073         }
2074         info->io.regsize = info->io.regspacing;
2075         info->io.regshift = spmi->addr.bit_offset;
2076
2077         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2078                 info->io_setup = mem_setup;
2079                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2080         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2081                 info->io_setup = port_setup;
2082                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2083         } else {
2084                 kfree(info);
2085                 printk(KERN_WARNING
2086                        "ipmi_si: Unknown ACPI I/O Address type\n");
2087                 return -EIO;
2088         }
2089         info->io.addr_data = spmi->addr.address;
2090
2091         add_smi(info);
2092
2093         return 0;
2094 }
2095
2096 static __devinit void spmi_find_bmc(void)
2097 {
2098         acpi_status      status;
2099         struct SPMITable *spmi;
2100         int              i;
2101
2102         if (acpi_disabled)
2103                 return;
2104
2105         if (acpi_failure)
2106                 return;
2107
2108         for (i = 0; ; i++) {
2109                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2110                                         (struct acpi_table_header **)&spmi);
2111                 if (status != AE_OK)
2112                         return;
2113
2114                 try_init_spmi(spmi);
2115         }
2116 }
2117
2118 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2119                                     const struct pnp_device_id *dev_id)
2120 {
2121         struct acpi_device *acpi_dev;
2122         struct smi_info *info;
2123         acpi_handle handle;
2124         acpi_status status;
2125         unsigned long long tmp;
2126
2127         acpi_dev = pnp_acpi_device(dev);
2128         if (!acpi_dev)
2129                 return -ENODEV;
2130
2131         info = kzalloc(sizeof(*info), GFP_KERNEL);
2132         if (!info)
2133                 return -ENOMEM;
2134
2135         info->addr_source = SI_ACPI;
2136
2137         handle = acpi_dev->handle;
2138
2139         /* _IFT tells us the interface type: KCS, BT, etc */
2140         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2141         if (ACPI_FAILURE(status))
2142                 goto err_free;
2143
2144         switch (tmp) {
2145         case 1:
2146                 info->si_type = SI_KCS;
2147                 break;
2148         case 2:
2149                 info->si_type = SI_SMIC;
2150                 break;
2151         case 3:
2152                 info->si_type = SI_BT;
2153                 break;
2154         default:
2155                 dev_info(&dev->dev, "unknown interface type %lld\n", tmp);
2156                 goto err_free;
2157         }
2158
2159         if (pnp_port_valid(dev, 0)) {
2160                 info->io_setup = port_setup;
2161                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2162                 info->io.addr_data = pnp_port_start(dev, 0);
2163         } else if (pnp_mem_valid(dev, 0)) {
2164                 info->io_setup = mem_setup;
2165                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2166                 info->io.addr_data = pnp_mem_start(dev, 0);
2167         } else {
2168                 dev_err(&dev->dev, "no I/O or memory address\n");
2169                 goto err_free;
2170         }
2171
2172         info->io.regspacing = DEFAULT_REGSPACING;
2173         info->io.regsize = DEFAULT_REGSPACING;
2174         info->io.regshift = 0;
2175
2176         /* If _GPE exists, use it; otherwise use standard interrupts */
2177         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2178         if (ACPI_SUCCESS(status)) {
2179                 info->irq = tmp;
2180                 info->irq_setup = acpi_gpe_irq_setup;
2181         } else if (pnp_irq_valid(dev, 0)) {
2182                 info->irq = pnp_irq(dev, 0);
2183                 info->irq_setup = std_irq_setup;
2184         }
2185
2186         info->dev = &acpi_dev->dev;
2187         pnp_set_drvdata(dev, info);
2188
2189         return add_smi(info);
2190
2191 err_free:
2192         kfree(info);
2193         return -EINVAL;
2194 }
2195
2196 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2197 {
2198         struct smi_info *info = pnp_get_drvdata(dev);
2199
2200         cleanup_one_si(info);
2201 }
2202
2203 static const struct pnp_device_id pnp_dev_table[] = {
2204         {"IPI0001", 0},
2205         {"", 0},
2206 };
2207
2208 static struct pnp_driver ipmi_pnp_driver = {
2209         .name           = DEVICE_NAME,
2210         .probe          = ipmi_pnp_probe,
2211         .remove         = __devexit_p(ipmi_pnp_remove),
2212         .id_table       = pnp_dev_table,
2213 };
2214 #endif
2215
2216 #ifdef CONFIG_DMI
2217 struct dmi_ipmi_data {
2218         u8              type;
2219         u8              addr_space;
2220         unsigned long   base_addr;
2221         u8              irq;
2222         u8              offset;
2223         u8              slave_addr;
2224 };
2225
2226 static int __devinit decode_dmi(const struct dmi_header *dm,
2227                                 struct dmi_ipmi_data *dmi)
2228 {
2229         const u8        *data = (const u8 *)dm;
2230         unsigned long   base_addr;
2231         u8              reg_spacing;
2232         u8              len = dm->length;
2233
2234         dmi->type = data[4];
2235
2236         memcpy(&base_addr, data+8, sizeof(unsigned long));
2237         if (len >= 0x11) {
2238                 if (base_addr & 1) {
2239                         /* I/O */
2240                         base_addr &= 0xFFFE;
2241                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2242                 } else
2243                         /* Memory */
2244                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2245
2246                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2247                    is odd. */
2248                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2249
2250                 dmi->irq = data[0x11];
2251
2252                 /* The top two bits of byte 0x10 hold the register spacing. */
2253                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2254                 switch (reg_spacing) {
2255                 case 0x00: /* Byte boundaries */
2256                     dmi->offset = 1;
2257                     break;
2258                 case 0x01: /* 32-bit boundaries */
2259                     dmi->offset = 4;
2260                     break;
2261                 case 0x02: /* 16-byte boundaries */
2262                     dmi->offset = 16;
2263                     break;
2264                 default:
2265                     /* Some other interface, just ignore it. */
2266                     return -EIO;
2267                 }
2268         } else {
2269                 /* Old DMI spec. */
2270                 /*
2271                  * Note that technically, the lower bit of the base
2272                  * address should be 1 if the address is I/O and 0 if
2273                  * the address is in memory.  So many systems get that
2274                  * wrong (and all that I have seen are I/O) so we just
2275                  * ignore that bit and assume I/O.  Systems that use
2276                  * memory should use the newer spec, anyway.
2277                  */
2278                 dmi->base_addr = base_addr & 0xfffe;
2279                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2280                 dmi->offset = 1;
2281         }
2282
2283         dmi->slave_addr = data[6];
2284
2285         return 0;
2286 }
2287
2288 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2289 {
2290         struct smi_info *info;
2291
2292         info = kzalloc(sizeof(*info), GFP_KERNEL);
2293         if (!info) {
2294                 printk(KERN_ERR
2295                        "ipmi_si: Could not allocate SI data\n");
2296                 return;
2297         }
2298
2299         info->addr_source = SI_SMBIOS;
2300
2301         switch (ipmi_data->type) {
2302         case 0x01: /* KCS */
2303                 info->si_type = SI_KCS;
2304                 break;
2305         case 0x02: /* SMIC */
2306                 info->si_type = SI_SMIC;
2307                 break;
2308         case 0x03: /* BT */
2309                 info->si_type = SI_BT;
2310                 break;
2311         default:
2312                 kfree(info);
2313                 return;
2314         }
2315
2316         switch (ipmi_data->addr_space) {
2317         case IPMI_MEM_ADDR_SPACE:
2318                 info->io_setup = mem_setup;
2319                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2320                 break;
2321
2322         case IPMI_IO_ADDR_SPACE:
2323                 info->io_setup = port_setup;
2324                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2325                 break;
2326
2327         default:
2328                 kfree(info);
2329                 printk(KERN_WARNING
2330                        "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2331                        ipmi_data->addr_space);
2332                 return;
2333         }
2334         info->io.addr_data = ipmi_data->base_addr;
2335
2336         info->io.regspacing = ipmi_data->offset;
2337         if (!info->io.regspacing)
2338                 info->io.regspacing = DEFAULT_REGSPACING;
2339         info->io.regsize = DEFAULT_REGSPACING;
2340         info->io.regshift = 0;
2341
2342         info->slave_addr = ipmi_data->slave_addr;
2343
2344         info->irq = ipmi_data->irq;
2345         if (info->irq)
2346                 info->irq_setup = std_irq_setup;
2347
2348         add_smi(info);
2349 }
2350
2351 static void __devinit dmi_find_bmc(void)
2352 {
2353         const struct dmi_device *dev = NULL;
2354         struct dmi_ipmi_data data;
2355         int                  rv;
2356
2357         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2358                 memset(&data, 0, sizeof(data));
2359                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2360                                 &data);
2361                 if (!rv)
2362                         try_init_dmi(&data);
2363         }
2364 }
2365 #endif /* CONFIG_DMI */
2366
2367 #ifdef CONFIG_PCI
2368
2369 #define PCI_ERMC_CLASSCODE              0x0C0700
2370 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2371 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2372 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2373 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2374 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2375
2376 #define PCI_HP_VENDOR_ID    0x103C
2377 #define PCI_MMC_DEVICE_ID   0x121A
2378 #define PCI_MMC_ADDR_CW     0x10
2379
2380 static void ipmi_pci_cleanup(struct smi_info *info)
2381 {
2382         struct pci_dev *pdev = info->addr_source_data;
2383
2384         pci_disable_device(pdev);
2385 }
2386
2387 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2388                                     const struct pci_device_id *ent)
2389 {
2390         int rv;
2391         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2392         struct smi_info *info;
2393
2394         info = kzalloc(sizeof(*info), GFP_KERNEL);
2395         if (!info)
2396                 return -ENOMEM;
2397
2398         info->addr_source = SI_PCI;
2399
2400         switch (class_type) {
2401         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2402                 info->si_type = SI_SMIC;
2403                 break;
2404
2405         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2406                 info->si_type = SI_KCS;
2407                 break;
2408
2409         case PCI_ERMC_CLASSCODE_TYPE_BT:
2410                 info->si_type = SI_BT;
2411                 break;
2412
2413         default:
2414                 kfree(info);
2415                 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2416                        pci_name(pdev), class_type);
2417                 return -ENOMEM;
2418         }
2419
2420         rv = pci_enable_device(pdev);
2421         if (rv) {
2422                 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2423                        pci_name(pdev));
2424                 kfree(info);
2425                 return rv;
2426         }
2427
2428         info->addr_source_cleanup = ipmi_pci_cleanup;
2429         info->addr_source_data = pdev;
2430
2431         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2432                 info->io_setup = port_setup;
2433                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2434         } else {
2435                 info->io_setup = mem_setup;
2436                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2437         }
2438         info->io.addr_data = pci_resource_start(pdev, 0);
2439
2440         info->io.regspacing = DEFAULT_REGSPACING;
2441         info->io.regsize = DEFAULT_REGSPACING;
2442         info->io.regshift = 0;
2443
2444         info->irq = pdev->irq;
2445         if (info->irq)
2446                 info->irq_setup = std_irq_setup;
2447
2448         info->dev = &pdev->dev;
2449         pci_set_drvdata(pdev, info);
2450
2451         return add_smi(info);
2452 }
2453
2454 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2455 {
2456         struct smi_info *info = pci_get_drvdata(pdev);
2457         cleanup_one_si(info);
2458 }
2459
2460 #ifdef CONFIG_PM
2461 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2462 {
2463         return 0;
2464 }
2465
2466 static int ipmi_pci_resume(struct pci_dev *pdev)
2467 {
2468         return 0;
2469 }
2470 #endif
2471
2472 static struct pci_device_id ipmi_pci_devices[] = {
2473         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2474         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2475         { 0, }
2476 };
2477 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2478
2479 static struct pci_driver ipmi_pci_driver = {
2480         .name =         DEVICE_NAME,
2481         .id_table =     ipmi_pci_devices,
2482         .probe =        ipmi_pci_probe,
2483         .remove =       __devexit_p(ipmi_pci_remove),
2484 #ifdef CONFIG_PM
2485         .suspend =      ipmi_pci_suspend,
2486         .resume =       ipmi_pci_resume,
2487 #endif
2488 };
2489 #endif /* CONFIG_PCI */
2490
2491
2492 #ifdef CONFIG_PPC_OF
2493 static int __devinit ipmi_of_probe(struct of_device *dev,
2494                          const struct of_device_id *match)
2495 {
2496         struct smi_info *info;
2497         struct resource resource;
2498         const int *regsize, *regspacing, *regshift;
2499         struct device_node *np = dev->dev.of_node;
2500         int ret;
2501         int proplen;
2502
2503         dev_info(&dev->dev, PFX "probing via device tree\n");
2504
2505         ret = of_address_to_resource(np, 0, &resource);
2506         if (ret) {
2507                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2508                 return ret;
2509         }
2510
2511         regsize = of_get_property(np, "reg-size", &proplen);
2512         if (regsize && proplen != 4) {
2513                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2514                 return -EINVAL;
2515         }
2516
2517         regspacing = of_get_property(np, "reg-spacing", &proplen);
2518         if (regspacing && proplen != 4) {
2519                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2520                 return -EINVAL;
2521         }
2522
2523         regshift = of_get_property(np, "reg-shift", &proplen);
2524         if (regshift && proplen != 4) {
2525                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2526                 return -EINVAL;
2527         }
2528
2529         info = kzalloc(sizeof(*info), GFP_KERNEL);
2530
2531         if (!info) {
2532                 dev_err(&dev->dev,
2533                         PFX "could not allocate memory for OF probe\n");
2534                 return -ENOMEM;
2535         }
2536
2537         info->si_type           = (enum si_type) match->data;
2538         info->addr_source       = SI_DEVICETREE;
2539         info->irq_setup         = std_irq_setup;
2540
2541         if (resource.flags & IORESOURCE_IO) {
2542                 info->io_setup          = port_setup;
2543                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2544         } else {
2545                 info->io_setup          = mem_setup;
2546                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2547         }
2548
2549         info->io.addr_data      = resource.start;
2550
2551         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2552         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2553         info->io.regshift       = regshift ? *regshift : 0;
2554
2555         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2556         info->dev               = &dev->dev;
2557
2558         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2559                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2560                 info->irq);
2561
2562         dev_set_drvdata(&dev->dev, info);
2563
2564         return add_smi(info);
2565 }
2566
2567 static int __devexit ipmi_of_remove(struct of_device *dev)
2568 {
2569         cleanup_one_si(dev_get_drvdata(&dev->dev));
2570         return 0;
2571 }
2572
2573 static struct of_device_id ipmi_match[] =
2574 {
2575         { .type = "ipmi", .compatible = "ipmi-kcs",
2576           .data = (void *)(unsigned long) SI_KCS },
2577         { .type = "ipmi", .compatible = "ipmi-smic",
2578           .data = (void *)(unsigned long) SI_SMIC },
2579         { .type = "ipmi", .compatible = "ipmi-bt",
2580           .data = (void *)(unsigned long) SI_BT },
2581         {},
2582 };
2583
2584 static struct of_platform_driver ipmi_of_platform_driver = {
2585         .driver = {
2586                 .name = "ipmi",
2587                 .owner = THIS_MODULE,
2588                 .of_match_table = ipmi_match,
2589         },
2590         .probe          = ipmi_of_probe,
2591         .remove         = __devexit_p(ipmi_of_remove),
2592 };
2593 #endif /* CONFIG_PPC_OF */
2594
2595 static int wait_for_msg_done(struct smi_info *smi_info)
2596 {
2597         enum si_sm_result     smi_result;
2598
2599         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2600         for (;;) {
2601                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2602                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2603                         schedule_timeout_uninterruptible(1);
2604                         smi_result = smi_info->handlers->event(
2605                                 smi_info->si_sm, 100);
2606                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2607                         smi_result = smi_info->handlers->event(
2608                                 smi_info->si_sm, 0);
2609                 } else
2610                         break;
2611         }
2612         if (smi_result == SI_SM_HOSED)
2613                 /*
2614                  * We couldn't get the state machine to run, so whatever's at
2615                  * the port is probably not an IPMI SMI interface.
2616                  */
2617                 return -ENODEV;
2618
2619         return 0;
2620 }
2621
2622 static int try_get_dev_id(struct smi_info *smi_info)
2623 {
2624         unsigned char         msg[2];
2625         unsigned char         *resp;
2626         unsigned long         resp_len;
2627         int                   rv = 0;
2628
2629         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2630         if (!resp)
2631                 return -ENOMEM;
2632
2633         /*
2634          * Do a Get Device ID command, since it comes back with some
2635          * useful info.
2636          */
2637         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2638         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2639         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2640
2641         rv = wait_for_msg_done(smi_info);
2642         if (rv)
2643                 goto out;
2644
2645         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2646                                                   resp, IPMI_MAX_MSG_LENGTH);
2647
2648         /* Check and record info from the get device id, in case we need it. */
2649         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2650
2651  out:
2652         kfree(resp);
2653         return rv;
2654 }
2655
2656 static int try_enable_event_buffer(struct smi_info *smi_info)
2657 {
2658         unsigned char         msg[3];
2659         unsigned char         *resp;
2660         unsigned long         resp_len;
2661         int                   rv = 0;
2662
2663         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2664         if (!resp)
2665                 return -ENOMEM;
2666
2667         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2668         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2669         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2670
2671         rv = wait_for_msg_done(smi_info);
2672         if (rv) {
2673                 printk(KERN_WARNING
2674                        "ipmi_si: Error getting response from get global,"
2675                        " enables command, the event buffer is not"
2676                        " enabled.\n");
2677                 goto out;
2678         }
2679
2680         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2681                                                   resp, IPMI_MAX_MSG_LENGTH);
2682
2683         if (resp_len < 4 ||
2684                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2685                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2686                         resp[2] != 0) {
2687                 printk(KERN_WARNING
2688                        "ipmi_si: Invalid return from get global"
2689                        " enables command, cannot enable the event"
2690                        " buffer.\n");
2691                 rv = -EINVAL;
2692                 goto out;
2693         }
2694
2695         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2696                 /* buffer is already enabled, nothing to do. */
2697                 goto out;
2698
2699         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2700         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2701         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2702         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2703
2704         rv = wait_for_msg_done(smi_info);
2705         if (rv) {
2706                 printk(KERN_WARNING
2707                        "ipmi_si: Error getting response from set global,"
2708                        " enables command, the event buffer is not"
2709                        " enabled.\n");
2710                 goto out;
2711         }
2712
2713         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2714                                                   resp, IPMI_MAX_MSG_LENGTH);
2715
2716         if (resp_len < 3 ||
2717                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2718                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2719                 printk(KERN_WARNING
2720                        "ipmi_si: Invalid return from get global,"
2721                        "enables command, not enable the event"
2722                        " buffer.\n");
2723                 rv = -EINVAL;
2724                 goto out;
2725         }
2726
2727         if (resp[2] != 0)
2728                 /*
2729                  * An error when setting the event buffer bit means
2730                  * that the event buffer is not supported.
2731                  */
2732                 rv = -ENOENT;
2733  out:
2734         kfree(resp);
2735         return rv;
2736 }
2737
2738 static int type_file_read_proc(char *page, char **start, off_t off,
2739                                int count, int *eof, void *data)
2740 {
2741         struct smi_info *smi = data;
2742
2743         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2744 }
2745
2746 static int stat_file_read_proc(char *page, char **start, off_t off,
2747                                int count, int *eof, void *data)
2748 {
2749         char            *out = (char *) page;
2750         struct smi_info *smi = data;
2751
2752         out += sprintf(out, "interrupts_enabled:    %d\n",
2753                        smi->irq && !smi->interrupt_disabled);
2754         out += sprintf(out, "short_timeouts:        %u\n",
2755                        smi_get_stat(smi, short_timeouts));
2756         out += sprintf(out, "long_timeouts:         %u\n",
2757                        smi_get_stat(smi, long_timeouts));
2758         out += sprintf(out, "idles:                 %u\n",
2759                        smi_get_stat(smi, idles));
2760         out += sprintf(out, "interrupts:            %u\n",
2761                        smi_get_stat(smi, interrupts));
2762         out += sprintf(out, "attentions:            %u\n",
2763                        smi_get_stat(smi, attentions));
2764         out += sprintf(out, "flag_fetches:          %u\n",
2765                        smi_get_stat(smi, flag_fetches));
2766         out += sprintf(out, "hosed_count:           %u\n",
2767                        smi_get_stat(smi, hosed_count));
2768         out += sprintf(out, "complete_transactions: %u\n",
2769                        smi_get_stat(smi, complete_transactions));
2770         out += sprintf(out, "events:                %u\n",
2771                        smi_get_stat(smi, events));
2772         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2773                        smi_get_stat(smi, watchdog_pretimeouts));
2774         out += sprintf(out, "incoming_messages:     %u\n",
2775                        smi_get_stat(smi, incoming_messages));
2776
2777         return out - page;
2778 }
2779
2780 static int param_read_proc(char *page, char **start, off_t off,
2781                            int count, int *eof, void *data)
2782 {
2783         struct smi_info *smi = data;
2784
2785         return sprintf(page,
2786                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2787                        si_to_str[smi->si_type],
2788                        addr_space_to_str[smi->io.addr_type],
2789                        smi->io.addr_data,
2790                        smi->io.regspacing,
2791                        smi->io.regsize,
2792                        smi->io.regshift,
2793                        smi->irq,
2794                        smi->slave_addr);
2795 }
2796
2797 /*
2798  * oem_data_avail_to_receive_msg_avail
2799  * @info - smi_info structure with msg_flags set
2800  *
2801  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2802  * Returns 1 indicating need to re-run handle_flags().
2803  */
2804 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2805 {
2806         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2807                                RECEIVE_MSG_AVAIL);
2808         return 1;
2809 }
2810
2811 /*
2812  * setup_dell_poweredge_oem_data_handler
2813  * @info - smi_info.device_id must be populated
2814  *
2815  * Systems that match, but have firmware version < 1.40 may assert
2816  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2817  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2818  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2819  * as RECEIVE_MSG_AVAIL instead.
2820  *
2821  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2822  * assert the OEM[012] bits, and if it did, the driver would have to
2823  * change to handle that properly, we don't actually check for the
2824  * firmware version.
2825  * Device ID = 0x20                BMC on PowerEdge 8G servers
2826  * Device Revision = 0x80
2827  * Firmware Revision1 = 0x01       BMC version 1.40
2828  * Firmware Revision2 = 0x40       BCD encoded
2829  * IPMI Version = 0x51             IPMI 1.5
2830  * Manufacturer ID = A2 02 00      Dell IANA
2831  *
2832  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2833  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2834  *
2835  */
2836 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2837 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2838 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2839 #define DELL_IANA_MFR_ID 0x0002a2
2840 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2841 {
2842         struct ipmi_device_id *id = &smi_info->device_id;
2843         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2844                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2845                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2846                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2847                         smi_info->oem_data_avail_handler =
2848                                 oem_data_avail_to_receive_msg_avail;
2849                 } else if (ipmi_version_major(id) < 1 ||
2850                            (ipmi_version_major(id) == 1 &&
2851                             ipmi_version_minor(id) < 5)) {
2852                         smi_info->oem_data_avail_handler =
2853                                 oem_data_avail_to_receive_msg_avail;
2854                 }
2855         }
2856 }
2857
2858 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2859 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2860 {
2861         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2862
2863         /* Make it a reponse */
2864         msg->rsp[0] = msg->data[0] | 4;
2865         msg->rsp[1] = msg->data[1];
2866         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2867         msg->rsp_size = 3;
2868         smi_info->curr_msg = NULL;
2869         deliver_recv_msg(smi_info, msg);
2870 }
2871
2872 /*
2873  * dell_poweredge_bt_xaction_handler
2874  * @info - smi_info.device_id must be populated
2875  *
2876  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2877  * not respond to a Get SDR command if the length of the data
2878  * requested is exactly 0x3A, which leads to command timeouts and no
2879  * data returned.  This intercepts such commands, and causes userspace
2880  * callers to try again with a different-sized buffer, which succeeds.
2881  */
2882
2883 #define STORAGE_NETFN 0x0A
2884 #define STORAGE_CMD_GET_SDR 0x23
2885 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2886                                              unsigned long unused,
2887                                              void *in)
2888 {
2889         struct smi_info *smi_info = in;
2890         unsigned char *data = smi_info->curr_msg->data;
2891         unsigned int size   = smi_info->curr_msg->data_size;
2892         if (size >= 8 &&
2893             (data[0]>>2) == STORAGE_NETFN &&
2894             data[1] == STORAGE_CMD_GET_SDR &&
2895             data[7] == 0x3A) {
2896                 return_hosed_msg_badsize(smi_info);
2897                 return NOTIFY_STOP;
2898         }
2899         return NOTIFY_DONE;
2900 }
2901
2902 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2903         .notifier_call  = dell_poweredge_bt_xaction_handler,
2904 };
2905
2906 /*
2907  * setup_dell_poweredge_bt_xaction_handler
2908  * @info - smi_info.device_id must be filled in already
2909  *
2910  * Fills in smi_info.device_id.start_transaction_pre_hook
2911  * when we know what function to use there.
2912  */
2913 static void
2914 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2915 {
2916         struct ipmi_device_id *id = &smi_info->device_id;
2917         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2918             smi_info->si_type == SI_BT)
2919                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2920 }
2921
2922 /*
2923  * setup_oem_data_handler
2924  * @info - smi_info.device_id must be filled in already
2925  *
2926  * Fills in smi_info.device_id.oem_data_available_handler
2927  * when we know what function to use there.
2928  */
2929
2930 static void setup_oem_data_handler(struct smi_info *smi_info)
2931 {
2932         setup_dell_poweredge_oem_data_handler(smi_info);
2933 }
2934
2935 static void setup_xaction_handlers(struct smi_info *smi_info)
2936 {
2937         setup_dell_poweredge_bt_xaction_handler(smi_info);
2938 }
2939
2940 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2941 {
2942         if (smi_info->intf) {
2943                 /*
2944                  * The timer and thread are only running if the
2945                  * interface has been started up and registered.
2946                  */
2947                 if (smi_info->thread != NULL)
2948                         kthread_stop(smi_info->thread);
2949                 del_timer_sync(&smi_info->si_timer);
2950         }
2951 }
2952
2953 static __devinitdata struct ipmi_default_vals
2954 {
2955         int type;
2956         int port;
2957 } ipmi_defaults[] =
2958 {
2959         { .type = SI_KCS, .port = 0xca2 },
2960         { .type = SI_SMIC, .port = 0xca9 },
2961         { .type = SI_BT, .port = 0xe4 },
2962         { .port = 0 }
2963 };
2964
2965 static __devinit void default_find_bmc(void)
2966 {
2967         struct smi_info *info;
2968         int             i;
2969
2970         for (i = 0; ; i++) {
2971                 if (!ipmi_defaults[i].port)
2972                         break;
2973 #ifdef CONFIG_PPC
2974                 if (check_legacy_ioport(ipmi_defaults[i].port))
2975                         continue;
2976 #endif
2977                 info = kzalloc(sizeof(*info), GFP_KERNEL);
2978                 if (!info)
2979                         return;
2980
2981                 info->addr_source = SI_DEFAULT;
2982
2983                 info->si_type = ipmi_defaults[i].type;
2984                 info->io_setup = port_setup;
2985                 info->io.addr_data = ipmi_defaults[i].port;
2986                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2987
2988                 info->io.addr = NULL;
2989                 info->io.regspacing = DEFAULT_REGSPACING;
2990                 info->io.regsize = DEFAULT_REGSPACING;
2991                 info->io.regshift = 0;
2992
2993                 if (add_smi(info) == 0) {
2994                         if ((try_smi_init(info)) == 0) {
2995                                 /* Found one... */
2996                                 printk(KERN_INFO "ipmi_si: Found default %s"
2997                                 " state machine at %s address 0x%lx\n",
2998                                 si_to_str[info->si_type],
2999                                 addr_space_to_str[info->io.addr_type],
3000                                 info->io.addr_data);
3001                         } else
3002                                 cleanup_one_si(info);
3003                 }
3004         }
3005 }
3006
3007 static int is_new_interface(struct smi_info *info)
3008 {
3009         struct smi_info *e;
3010
3011         list_for_each_entry(e, &smi_infos, link) {
3012                 if (e->io.addr_type != info->io.addr_type)
3013                         continue;
3014                 if (e->io.addr_data == info->io.addr_data)
3015                         return 0;
3016         }
3017
3018         return 1;
3019 }
3020
3021 static int add_smi(struct smi_info *new_smi)
3022 {
3023         int rv = 0;
3024
3025         printk(KERN_INFO "ipmi_si: Adding %s-specified %s state machine",
3026                         ipmi_addr_src_to_str[new_smi->addr_source],
3027                         si_to_str[new_smi->si_type]);
3028         mutex_lock(&smi_infos_lock);
3029         if (!is_new_interface(new_smi)) {
3030                 printk(KERN_CONT ": duplicate interface\n");
3031                 rv = -EBUSY;
3032                 goto out_err;
3033         }
3034
3035         printk(KERN_CONT "\n");
3036
3037         /* So we know not to free it unless we have allocated one. */
3038         new_smi->intf = NULL;
3039         new_smi->si_sm = NULL;
3040         new_smi->handlers = NULL;
3041
3042         list_add_tail(&new_smi->link, &smi_infos);
3043
3044 out_err:
3045         mutex_unlock(&smi_infos_lock);
3046         return rv;
3047 }
3048
3049 static int try_smi_init(struct smi_info *new_smi)
3050 {
3051         int rv = 0;
3052         int i;
3053
3054         printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
3055                " machine at %s address 0x%lx, slave address 0x%x,"
3056                " irq %d\n",
3057                ipmi_addr_src_to_str[new_smi->addr_source],
3058                si_to_str[new_smi->si_type],
3059                addr_space_to_str[new_smi->io.addr_type],
3060                new_smi->io.addr_data,
3061                new_smi->slave_addr, new_smi->irq);
3062
3063         switch (new_smi->si_type) {
3064         case SI_KCS:
3065                 new_smi->handlers = &kcs_smi_handlers;
3066                 break;
3067
3068         case SI_SMIC:
3069                 new_smi->handlers = &smic_smi_handlers;
3070                 break;
3071
3072         case SI_BT:
3073                 new_smi->handlers = &bt_smi_handlers;
3074                 break;
3075
3076         default:
3077                 /* No support for anything else yet. */
3078                 rv = -EIO;
3079                 goto out_err;
3080         }
3081
3082         /* Allocate the state machine's data and initialize it. */
3083         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3084         if (!new_smi->si_sm) {
3085                 printk(KERN_ERR "Could not allocate state machine memory\n");
3086                 rv = -ENOMEM;
3087                 goto out_err;
3088         }
3089         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3090                                                         &new_smi->io);
3091
3092         /* Now that we know the I/O size, we can set up the I/O. */
3093         rv = new_smi->io_setup(new_smi);
3094         if (rv) {
3095                 printk(KERN_ERR "Could not set up I/O space\n");
3096                 goto out_err;
3097         }
3098
3099         spin_lock_init(&(new_smi->si_lock));
3100         spin_lock_init(&(new_smi->msg_lock));
3101
3102         /* Do low-level detection first. */
3103         if (new_smi->handlers->detect(new_smi->si_sm)) {
3104                 if (new_smi->addr_source)
3105                         printk(KERN_INFO "ipmi_si: Interface detection"
3106                                " failed\n");
3107                 rv = -ENODEV;
3108                 goto out_err;
3109         }
3110
3111         /*
3112          * Attempt a get device id command.  If it fails, we probably
3113          * don't have a BMC here.
3114          */
3115         rv = try_get_dev_id(new_smi);
3116         if (rv) {
3117                 if (new_smi->addr_source)
3118                         printk(KERN_INFO "ipmi_si: There appears to be no BMC"
3119                                " at this location\n");
3120                 goto out_err;
3121         }
3122
3123         setup_oem_data_handler(new_smi);
3124         setup_xaction_handlers(new_smi);
3125
3126         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3127         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3128         new_smi->curr_msg = NULL;
3129         atomic_set(&new_smi->req_events, 0);
3130         new_smi->run_to_completion = 0;
3131         for (i = 0; i < SI_NUM_STATS; i++)
3132                 atomic_set(&new_smi->stats[i], 0);
3133
3134         new_smi->interrupt_disabled = 1;
3135         atomic_set(&new_smi->stop_operation, 0);
3136         new_smi->intf_num = smi_num;
3137         smi_num++;
3138
3139         rv = try_enable_event_buffer(new_smi);
3140         if (rv == 0)
3141                 new_smi->has_event_buffer = 1;
3142
3143         /*
3144          * Start clearing the flags before we enable interrupts or the
3145          * timer to avoid racing with the timer.
3146          */
3147         start_clear_flags(new_smi);
3148         /* IRQ is defined to be set when non-zero. */
3149         if (new_smi->irq)
3150                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3151
3152         if (!new_smi->dev) {
3153                 /*
3154                  * If we don't already have a device from something
3155                  * else (like PCI), then register a new one.
3156                  */
3157                 new_smi->pdev = platform_device_alloc("ipmi_si",
3158                                                       new_smi->intf_num);
3159                 if (!new_smi->pdev) {
3160                         printk(KERN_ERR
3161                                "ipmi_si_intf:"
3162                                " Unable to allocate platform device\n");
3163                         goto out_err;
3164                 }
3165                 new_smi->dev = &new_smi->pdev->dev;
3166                 new_smi->dev->driver = &ipmi_driver.driver;
3167
3168                 rv = platform_device_add(new_smi->pdev);
3169                 if (rv) {
3170                         printk(KERN_ERR
3171                                "ipmi_si_intf:"
3172                                " Unable to register system interface device:"
3173                                " %d\n",
3174                                rv);
3175                         goto out_err;
3176                 }
3177                 new_smi->dev_registered = 1;
3178         }
3179
3180         rv = ipmi_register_smi(&handlers,
3181                                new_smi,
3182                                &new_smi->device_id,
3183                                new_smi->dev,
3184                                "bmc",
3185                                new_smi->slave_addr);
3186         if (rv) {
3187                 printk(KERN_ERR
3188                        "ipmi_si: Unable to register device: error %d\n",
3189                        rv);
3190                 goto out_err_stop_timer;
3191         }
3192
3193         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3194                                      type_file_read_proc,
3195                                      new_smi);
3196         if (rv) {
3197                 printk(KERN_ERR
3198                        "ipmi_si: Unable to create proc entry: %d\n",
3199                        rv);
3200                 goto out_err_stop_timer;
3201         }
3202
3203         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3204                                      stat_file_read_proc,
3205                                      new_smi);
3206         if (rv) {
3207                 printk(KERN_ERR
3208                        "ipmi_si: Unable to create proc entry: %d\n",
3209                        rv);
3210                 goto out_err_stop_timer;
3211         }
3212
3213         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3214                                      param_read_proc,
3215                                      new_smi);
3216         if (rv) {
3217                 printk(KERN_ERR
3218                        "ipmi_si: Unable to create proc entry: %d\n",
3219                        rv);
3220                 goto out_err_stop_timer;
3221         }
3222
3223         printk(KERN_INFO "IPMI %s interface initialized\n",
3224                si_to_str[new_smi->si_type]);
3225
3226         return 0;
3227
3228  out_err_stop_timer:
3229         atomic_inc(&new_smi->stop_operation);
3230         wait_for_timer_and_thread(new_smi);
3231
3232  out_err:
3233         new_smi->interrupt_disabled = 1;
3234
3235         if (new_smi->intf) {
3236                 ipmi_unregister_smi(new_smi->intf);
3237                 new_smi->intf = NULL;
3238         }
3239
3240         if (new_smi->irq_cleanup) {
3241                 new_smi->irq_cleanup(new_smi);
3242                 new_smi->irq_cleanup = NULL;
3243         }
3244
3245         /*
3246          * Wait until we know that we are out of any interrupt
3247          * handlers might have been running before we freed the
3248          * interrupt.
3249          */
3250         synchronize_sched();
3251
3252         if (new_smi->si_sm) {
3253                 if (new_smi->handlers)
3254                         new_smi->handlers->cleanup(new_smi->si_sm);
3255                 kfree(new_smi->si_sm);
3256                 new_smi->si_sm = NULL;
3257         }
3258         if (new_smi->addr_source_cleanup) {
3259                 new_smi->addr_source_cleanup(new_smi);
3260                 new_smi->addr_source_cleanup = NULL;
3261         }
3262         if (new_smi->io_cleanup) {
3263                 new_smi->io_cleanup(new_smi);
3264                 new_smi->io_cleanup = NULL;
3265         }
3266
3267         if (new_smi->dev_registered) {
3268                 platform_device_unregister(new_smi->pdev);
3269                 new_smi->dev_registered = 0;
3270         }
3271
3272         return rv;
3273 }
3274
3275 static __devinit int init_ipmi_si(void)
3276 {
3277         int  i;
3278         char *str;
3279         int  rv;
3280         struct smi_info *e;
3281
3282         if (initialized)
3283                 return 0;
3284         initialized = 1;
3285
3286         /* Register the device drivers. */
3287         rv = driver_register(&ipmi_driver.driver);
3288         if (rv) {
3289                 printk(KERN_ERR
3290                        "init_ipmi_si: Unable to register driver: %d\n",
3291                        rv);
3292                 return rv;
3293         }
3294
3295
3296         /* Parse out the si_type string into its components. */
3297         str = si_type_str;
3298         if (*str != '\0') {
3299                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3300                         si_type[i] = str;
3301                         str = strchr(str, ',');
3302                         if (str) {
3303                                 *str = '\0';
3304                                 str++;
3305                         } else {
3306                                 break;
3307                         }
3308                 }
3309         }
3310
3311         printk(KERN_INFO "IPMI System Interface driver.\n");
3312
3313         hardcode_find_bmc();
3314
3315         /* If the user gave us a device, they presumably want us to use it */
3316         mutex_lock(&smi_infos_lock);
3317         if (!list_empty(&smi_infos)) {
3318                 mutex_unlock(&smi_infos_lock);
3319                 return 0;
3320         }
3321         mutex_unlock(&smi_infos_lock);
3322
3323 #ifdef CONFIG_PCI
3324         rv = pci_register_driver(&ipmi_pci_driver);
3325         if (rv)
3326                 printk(KERN_ERR
3327                        "init_ipmi_si: Unable to register PCI driver: %d\n",
3328                        rv);
3329 #endif
3330
3331 #ifdef CONFIG_ACPI
3332         pnp_register_driver(&ipmi_pnp_driver);
3333 #endif
3334
3335 #ifdef CONFIG_DMI
3336         dmi_find_bmc();
3337 #endif
3338
3339 #ifdef CONFIG_ACPI
3340         spmi_find_bmc();
3341 #endif
3342
3343 #ifdef CONFIG_PPC_OF
3344         of_register_platform_driver(&ipmi_of_platform_driver);
3345 #endif
3346
3347         /* Try to register something with interrupts first */
3348
3349         mutex_lock(&smi_infos_lock);
3350         list_for_each_entry(e, &smi_infos, link) {
3351                 if (e->irq) {
3352                         if (!try_smi_init(e)) {
3353                                 mutex_unlock(&smi_infos_lock);
3354                                 return 0;
3355                         }
3356                 }
3357         }
3358
3359         /* Fall back to the preferred device */
3360
3361         list_for_each_entry(e, &smi_infos, link) {
3362                 if (!e->irq) {
3363                         if (!try_smi_init(e)) {
3364                                 mutex_unlock(&smi_infos_lock);
3365                                 return 0;
3366                         }
3367                 }
3368         }
3369         mutex_unlock(&smi_infos_lock);
3370
3371         if (si_trydefaults) {
3372                 mutex_lock(&smi_infos_lock);
3373                 if (list_empty(&smi_infos)) {
3374                         /* No BMC was found, try defaults. */
3375                         mutex_unlock(&smi_infos_lock);
3376                         default_find_bmc();
3377                 } else
3378                         mutex_unlock(&smi_infos_lock);
3379         }
3380
3381         mutex_lock(&smi_infos_lock);
3382         if (unload_when_empty && list_empty(&smi_infos)) {
3383                 mutex_unlock(&smi_infos_lock);
3384 #ifdef CONFIG_PCI
3385                 pci_unregister_driver(&ipmi_pci_driver);
3386 #endif
3387
3388 #ifdef CONFIG_PPC_OF
3389                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3390 #endif
3391                 driver_unregister(&ipmi_driver.driver);
3392                 printk(KERN_WARNING
3393                        "ipmi_si: Unable to find any System Interface(s)\n");
3394                 return -ENODEV;
3395         } else {
3396                 mutex_unlock(&smi_infos_lock);
3397                 return 0;
3398         }
3399 }
3400 module_init(init_ipmi_si);
3401
3402 static void cleanup_one_si(struct smi_info *to_clean)
3403 {
3404         int           rv = 0;
3405         unsigned long flags;
3406
3407         if (!to_clean)
3408                 return;
3409
3410         list_del(&to_clean->link);
3411
3412         /* Tell the driver that we are shutting down. */
3413         atomic_inc(&to_clean->stop_operation);
3414
3415         /*
3416          * Make sure the timer and thread are stopped and will not run
3417          * again.
3418          */
3419         wait_for_timer_and_thread(to_clean);
3420
3421         /*
3422          * Timeouts are stopped, now make sure the interrupts are off
3423          * for the device.  A little tricky with locks to make sure
3424          * there are no races.
3425          */
3426         spin_lock_irqsave(&to_clean->si_lock, flags);
3427         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3428                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3429                 poll(to_clean);
3430                 schedule_timeout_uninterruptible(1);
3431                 spin_lock_irqsave(&to_clean->si_lock, flags);
3432         }
3433         disable_si_irq(to_clean);
3434         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3435         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3436                 poll(to_clean);
3437                 schedule_timeout_uninterruptible(1);
3438         }
3439
3440         /* Clean up interrupts and make sure that everything is done. */
3441         if (to_clean->irq_cleanup)
3442                 to_clean->irq_cleanup(to_clean);
3443         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3444                 poll(to_clean);
3445                 schedule_timeout_uninterruptible(1);
3446         }
3447
3448         if (to_clean->intf)
3449                 rv = ipmi_unregister_smi(to_clean->intf);
3450
3451         if (rv) {
3452                 printk(KERN_ERR
3453                        "ipmi_si: Unable to unregister device: errno=%d\n",
3454                        rv);
3455         }
3456
3457         if (to_clean->handlers)
3458                 to_clean->handlers->cleanup(to_clean->si_sm);
3459
3460         kfree(to_clean->si_sm);
3461
3462         if (to_clean->addr_source_cleanup)
3463                 to_clean->addr_source_cleanup(to_clean);
3464         if (to_clean->io_cleanup)
3465                 to_clean->io_cleanup(to_clean);
3466
3467         if (to_clean->dev_registered)
3468                 platform_device_unregister(to_clean->pdev);
3469
3470         kfree(to_clean);
3471 }
3472
3473 static __exit void cleanup_ipmi_si(void)
3474 {
3475         struct smi_info *e, *tmp_e;
3476
3477         if (!initialized)
3478                 return;
3479
3480 #ifdef CONFIG_PCI
3481         pci_unregister_driver(&ipmi_pci_driver);
3482 #endif
3483 #ifdef CONFIG_ACPI
3484         pnp_unregister_driver(&ipmi_pnp_driver);
3485 #endif
3486
3487 #ifdef CONFIG_PPC_OF
3488         of_unregister_platform_driver(&ipmi_of_platform_driver);
3489 #endif
3490
3491         mutex_lock(&smi_infos_lock);
3492         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3493                 cleanup_one_si(e);
3494         mutex_unlock(&smi_infos_lock);
3495
3496         driver_unregister(&ipmi_driver.driver);
3497 }
3498 module_exit(cleanup_ipmi_si);
3499
3500 MODULE_LICENSE("GPL");
3501 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3502 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3503                    " system interfaces.");