gpiolib: Refactor gpio_export
[pandora-kernel.git] / drivers / block / umem.c
1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
22  *                       - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *                       - use spin_lock_bh instead of _irq
25  *                       - Never block on make_request.  queue
26  *                         bh's instead.
27  *                       - unregister umem from devfs at mod unload
28  *                       - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *                       - a sequence of writes that cover the card, and
34  *                       - set initialised bit then.
35  */
36
37 #undef DEBUG    /* #define DEBUG if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/gfp.h>
44 #include <linux/ioctl.h>
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/timer.h>
49 #include <linux/pci.h>
50 #include <linux/dma-mapping.h>
51
52 #include <linux/fcntl.h>        /* O_ACCMODE */
53 #include <linux/hdreg.h>  /* HDIO_GETGEO */
54
55 #include "umem.h"
56
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
59
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2      /* two sectors */
62 #define MM_BLKSIZE 1024  /* 1k blocks */
63 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
64 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65
66 /*
67  * Version Information
68  */
69
70 #define DRIVER_NAME     "umem"
71 #define DRIVER_VERSION  "v2.3"
72 #define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"
74
75 static int debug;
76 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
78
79 #define DEBUG_LED_ON_TRANSFER   0x01
80 #define DEBUG_BATTERY_POLLING   0x02
81
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
84
85 static int pci_read_cmd = 0x0C;         /* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88
89 static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92
93 static int pci_cmds;
94
95 static int major_nr;
96
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
99
100 struct cardinfo {
101         struct pci_dev  *dev;
102
103         unsigned char   __iomem *csr_remap;
104         unsigned int    mm_size;  /* size in kbytes */
105
106         unsigned int    init_size; /* initial segment, in sectors,
107                                     * that we know to
108                                     * have been written
109                                     */
110         struct bio      *bio, *currentbio, **biotail;
111         int             current_idx;
112         sector_t        current_sector;
113
114         struct request_queue *queue;
115
116         struct mm_page {
117                 dma_addr_t              page_dma;
118                 struct mm_dma_desc      *desc;
119                 int                     cnt, headcnt;
120                 struct bio              *bio, **biotail;
121                 int                     idx;
122         } mm_pages[2];
123 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
124
125         int  Active, Ready;
126
127         struct tasklet_struct   tasklet;
128         unsigned int dma_status;
129
130         struct {
131                 int             good;
132                 int             warned;
133                 unsigned long   last_change;
134         } battery[2];
135
136         spinlock_t      lock;
137         int             check_batteries;
138
139         int             flags;
140 };
141
142 static struct cardinfo cards[MM_MAXCARDS];
143 static struct timer_list battery_timer;
144
145 static int num_cards;
146
147 static struct gendisk *mm_gendisk[MM_MAXCARDS];
148
149 static void check_batteries(struct cardinfo *card);
150
151 static int get_userbit(struct cardinfo *card, int bit)
152 {
153         unsigned char led;
154
155         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
156         return led & bit;
157 }
158
159 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
160 {
161         unsigned char led;
162
163         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
164         if (state)
165                 led |= bit;
166         else
167                 led &= ~bit;
168         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
169
170         return 0;
171 }
172
173 /*
174  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
175  */
176 static void set_led(struct cardinfo *card, int shift, unsigned char state)
177 {
178         unsigned char led;
179
180         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
181         if (state == LED_FLIP)
182                 led ^= (1<<shift);
183         else {
184                 led &= ~(0x03 << shift);
185                 led |= (state << shift);
186         }
187         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
188
189 }
190
191 #ifdef MM_DIAG
192 static void dump_regs(struct cardinfo *card)
193 {
194         unsigned char *p;
195         int i, i1;
196
197         p = card->csr_remap;
198         for (i = 0; i < 8; i++) {
199                 printk(KERN_DEBUG "%p   ", p);
200
201                 for (i1 = 0; i1 < 16; i1++)
202                         printk("%02x ", *p++);
203
204                 printk("\n");
205         }
206 }
207 #endif
208
209 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
210 {
211         dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
212         if (dmastat & DMASCR_ANY_ERR)
213                 printk(KERN_CONT "ANY_ERR ");
214         if (dmastat & DMASCR_MBE_ERR)
215                 printk(KERN_CONT "MBE_ERR ");
216         if (dmastat & DMASCR_PARITY_ERR_REP)
217                 printk(KERN_CONT "PARITY_ERR_REP ");
218         if (dmastat & DMASCR_PARITY_ERR_DET)
219                 printk(KERN_CONT "PARITY_ERR_DET ");
220         if (dmastat & DMASCR_SYSTEM_ERR_SIG)
221                 printk(KERN_CONT "SYSTEM_ERR_SIG ");
222         if (dmastat & DMASCR_TARGET_ABT)
223                 printk(KERN_CONT "TARGET_ABT ");
224         if (dmastat & DMASCR_MASTER_ABT)
225                 printk(KERN_CONT "MASTER_ABT ");
226         if (dmastat & DMASCR_CHAIN_COMPLETE)
227                 printk(KERN_CONT "CHAIN_COMPLETE ");
228         if (dmastat & DMASCR_DMA_COMPLETE)
229                 printk(KERN_CONT "DMA_COMPLETE ");
230         printk("\n");
231 }
232
233 /*
234  * Theory of request handling
235  *
236  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
237  * We have two pages of mm_dma_desc, holding about 64 descriptors
238  * each.  These are allocated at init time.
239  * One page is "Ready" and is either full, or can have request added.
240  * The other page might be "Active", which DMA is happening on it.
241  *
242  * Whenever IO on the active page completes, the Ready page is activated
243  * and the ex-Active page is clean out and made Ready.
244  * Otherwise the Ready page is only activated when it becomes full.
245  *
246  * If a request arrives while both pages a full, it is queued, and b_rdev is
247  * overloaded to record whether it was a read or a write.
248  *
249  * The interrupt handler only polls the device to clear the interrupt.
250  * The processing of the result is done in a tasklet.
251  */
252
253 static void mm_start_io(struct cardinfo *card)
254 {
255         /* we have the lock, we know there is
256          * no IO active, and we know that card->Active
257          * is set
258          */
259         struct mm_dma_desc *desc;
260         struct mm_page *page;
261         int offset;
262
263         /* make the last descriptor end the chain */
264         page = &card->mm_pages[card->Active];
265         pr_debug("start_io: %d %d->%d\n",
266                 card->Active, page->headcnt, page->cnt - 1);
267         desc = &page->desc[page->cnt-1];
268
269         desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
270         desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
271         desc->sem_control_bits = desc->control_bits;
272
273
274         if (debug & DEBUG_LED_ON_TRANSFER)
275                 set_led(card, LED_REMOVE, LED_ON);
276
277         desc = &page->desc[page->headcnt];
278         writel(0, card->csr_remap + DMA_PCI_ADDR);
279         writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
280
281         writel(0, card->csr_remap + DMA_LOCAL_ADDR);
282         writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
283
284         writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
285         writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
286
287         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
288         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
289
290         offset = ((char *)desc) - ((char *)page->desc);
291         writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
292                card->csr_remap + DMA_DESCRIPTOR_ADDR);
293         /* Force the value to u64 before shifting otherwise >> 32 is undefined C
294          * and on some ports will do nothing ! */
295         writel(cpu_to_le32(((u64)page->page_dma)>>32),
296                card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
297
298         /* Go, go, go */
299         writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
300                card->csr_remap + DMA_STATUS_CTRL);
301 }
302
303 static int add_bio(struct cardinfo *card);
304
305 static void activate(struct cardinfo *card)
306 {
307         /* if No page is Active, and Ready is
308          * not empty, then switch Ready page
309          * to active and start IO.
310          * Then add any bh's that are available to Ready
311          */
312
313         do {
314                 while (add_bio(card))
315                         ;
316
317                 if (card->Active == -1 &&
318                     card->mm_pages[card->Ready].cnt > 0) {
319                         card->Active = card->Ready;
320                         card->Ready = 1-card->Ready;
321                         mm_start_io(card);
322                 }
323
324         } while (card->Active == -1 && add_bio(card));
325 }
326
327 static inline void reset_page(struct mm_page *page)
328 {
329         page->cnt = 0;
330         page->headcnt = 0;
331         page->bio = NULL;
332         page->biotail = &page->bio;
333 }
334
335 /*
336  * If there is room on Ready page, take
337  * one bh off list and add it.
338  * return 1 if there was room, else 0.
339  */
340 static int add_bio(struct cardinfo *card)
341 {
342         struct mm_page *p;
343         struct mm_dma_desc *desc;
344         dma_addr_t dma_handle;
345         int offset;
346         struct bio *bio;
347         struct bio_vec *vec;
348         int idx;
349         int rw;
350         int len;
351
352         bio = card->currentbio;
353         if (!bio && card->bio) {
354                 card->currentbio = card->bio;
355                 card->current_idx = card->bio->bi_idx;
356                 card->current_sector = card->bio->bi_sector;
357                 card->bio = card->bio->bi_next;
358                 if (card->bio == NULL)
359                         card->biotail = &card->bio;
360                 card->currentbio->bi_next = NULL;
361                 return 1;
362         }
363         if (!bio)
364                 return 0;
365         idx = card->current_idx;
366
367         rw = bio_rw(bio);
368         if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
369                 return 0;
370
371         vec = bio_iovec_idx(bio, idx);
372         len = vec->bv_len;
373         dma_handle = pci_map_page(card->dev,
374                                   vec->bv_page,
375                                   vec->bv_offset,
376                                   len,
377                                   (rw == READ) ?
378                                   PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
379
380         p = &card->mm_pages[card->Ready];
381         desc = &p->desc[p->cnt];
382         p->cnt++;
383         if (p->bio == NULL)
384                 p->idx = idx;
385         if ((p->biotail) != &bio->bi_next) {
386                 *(p->biotail) = bio;
387                 p->biotail = &(bio->bi_next);
388                 bio->bi_next = NULL;
389         }
390
391         desc->data_dma_handle = dma_handle;
392
393         desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
394         desc->local_addr = cpu_to_le64(card->current_sector << 9);
395         desc->transfer_size = cpu_to_le32(len);
396         offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
397         desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
398         desc->zero1 = desc->zero2 = 0;
399         offset = (((char *)(desc+1)) - ((char *)p->desc));
400         desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
401         desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
402                                          DMASCR_PARITY_INT_EN|
403                                          DMASCR_CHAIN_EN |
404                                          DMASCR_SEM_EN |
405                                          pci_cmds);
406         if (rw == WRITE)
407                 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
408         desc->sem_control_bits = desc->control_bits;
409
410         card->current_sector += (len >> 9);
411         idx++;
412         card->current_idx = idx;
413         if (idx >= bio->bi_vcnt)
414                 card->currentbio = NULL;
415
416         return 1;
417 }
418
419 static void process_page(unsigned long data)
420 {
421         /* check if any of the requests in the page are DMA_COMPLETE,
422          * and deal with them appropriately.
423          * If we find a descriptor without DMA_COMPLETE in the semaphore, then
424          * dma must have hit an error on that descriptor, so use dma_status
425          * instead and assume that all following descriptors must be re-tried.
426          */
427         struct mm_page *page;
428         struct bio *return_bio = NULL;
429         struct cardinfo *card = (struct cardinfo *)data;
430         unsigned int dma_status = card->dma_status;
431
432         spin_lock_bh(&card->lock);
433         if (card->Active < 0)
434                 goto out_unlock;
435         page = &card->mm_pages[card->Active];
436
437         while (page->headcnt < page->cnt) {
438                 struct bio *bio = page->bio;
439                 struct mm_dma_desc *desc = &page->desc[page->headcnt];
440                 int control = le32_to_cpu(desc->sem_control_bits);
441                 int last = 0;
442                 int idx;
443
444                 if (!(control & DMASCR_DMA_COMPLETE)) {
445                         control = dma_status;
446                         last = 1;
447                 }
448                 page->headcnt++;
449                 idx = page->idx;
450                 page->idx++;
451                 if (page->idx >= bio->bi_vcnt) {
452                         page->bio = bio->bi_next;
453                         if (page->bio)
454                                 page->idx = page->bio->bi_idx;
455                 }
456
457                 pci_unmap_page(card->dev, desc->data_dma_handle,
458                                bio_iovec_idx(bio, idx)->bv_len,
459                                  (control & DMASCR_TRANSFER_READ) ?
460                                 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
461                 if (control & DMASCR_HARD_ERROR) {
462                         /* error */
463                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
464                         dev_printk(KERN_WARNING, &card->dev->dev,
465                                 "I/O error on sector %d/%d\n",
466                                 le32_to_cpu(desc->local_addr)>>9,
467                                 le32_to_cpu(desc->transfer_size));
468                         dump_dmastat(card, control);
469                 } else if ((bio->bi_rw & REQ_WRITE) &&
470                            le32_to_cpu(desc->local_addr) >> 9 ==
471                                 card->init_size) {
472                         card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
473                         if (card->init_size >> 1 >= card->mm_size) {
474                                 dev_printk(KERN_INFO, &card->dev->dev,
475                                         "memory now initialised\n");
476                                 set_userbit(card, MEMORY_INITIALIZED, 1);
477                         }
478                 }
479                 if (bio != page->bio) {
480                         bio->bi_next = return_bio;
481                         return_bio = bio;
482                 }
483
484                 if (last)
485                         break;
486         }
487
488         if (debug & DEBUG_LED_ON_TRANSFER)
489                 set_led(card, LED_REMOVE, LED_OFF);
490
491         if (card->check_batteries) {
492                 card->check_batteries = 0;
493                 check_batteries(card);
494         }
495         if (page->headcnt >= page->cnt) {
496                 reset_page(page);
497                 card->Active = -1;
498                 activate(card);
499         } else {
500                 /* haven't finished with this one yet */
501                 pr_debug("do some more\n");
502                 mm_start_io(card);
503         }
504  out_unlock:
505         spin_unlock_bh(&card->lock);
506
507         while (return_bio) {
508                 struct bio *bio = return_bio;
509
510                 return_bio = bio->bi_next;
511                 bio->bi_next = NULL;
512                 bio_endio(bio, 0);
513         }
514 }
515
516 static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
517 {
518         struct cardinfo *card = cb->data;
519
520         spin_lock_irq(&card->lock);
521         activate(card);
522         spin_unlock_irq(&card->lock);
523         kfree(cb);
524 }
525
526 static int mm_check_plugged(struct cardinfo *card)
527 {
528         return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
529 }
530
531 static void mm_make_request(struct request_queue *q, struct bio *bio)
532 {
533         struct cardinfo *card = q->queuedata;
534         pr_debug("mm_make_request %llu %u\n",
535                  (unsigned long long)bio->bi_sector, bio->bi_size);
536
537         spin_lock_irq(&card->lock);
538         *card->biotail = bio;
539         bio->bi_next = NULL;
540         card->biotail = &bio->bi_next;
541         if (bio->bi_rw & REQ_SYNC || !mm_check_plugged(card))
542                 activate(card);
543         spin_unlock_irq(&card->lock);
544
545         return;
546 }
547
548 static irqreturn_t mm_interrupt(int irq, void *__card)
549 {
550         struct cardinfo *card = (struct cardinfo *) __card;
551         unsigned int dma_status;
552         unsigned short cfg_status;
553
554 HW_TRACE(0x30);
555
556         dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
557
558         if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
559                 /* interrupt wasn't for me ... */
560                 return IRQ_NONE;
561         }
562
563         /* clear COMPLETION interrupts */
564         if (card->flags & UM_FLAG_NO_BYTE_STATUS)
565                 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
566                        card->csr_remap + DMA_STATUS_CTRL);
567         else
568                 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
569                        card->csr_remap + DMA_STATUS_CTRL + 2);
570
571         /* log errors and clear interrupt status */
572         if (dma_status & DMASCR_ANY_ERR) {
573                 unsigned int    data_log1, data_log2;
574                 unsigned int    addr_log1, addr_log2;
575                 unsigned char   stat, count, syndrome, check;
576
577                 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
578
579                 data_log1 = le32_to_cpu(readl(card->csr_remap +
580                                                 ERROR_DATA_LOG));
581                 data_log2 = le32_to_cpu(readl(card->csr_remap +
582                                                 ERROR_DATA_LOG + 4));
583                 addr_log1 = le32_to_cpu(readl(card->csr_remap +
584                                                 ERROR_ADDR_LOG));
585                 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
586
587                 count = readb(card->csr_remap + ERROR_COUNT);
588                 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
589                 check = readb(card->csr_remap + ERROR_CHECK);
590
591                 dump_dmastat(card, dma_status);
592
593                 if (stat & 0x01)
594                         dev_printk(KERN_ERR, &card->dev->dev,
595                                 "Memory access error detected (err count %d)\n",
596                                 count);
597                 if (stat & 0x02)
598                         dev_printk(KERN_ERR, &card->dev->dev,
599                                 "Multi-bit EDC error\n");
600
601                 dev_printk(KERN_ERR, &card->dev->dev,
602                         "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
603                         addr_log2, addr_log1, data_log2, data_log1);
604                 dev_printk(KERN_ERR, &card->dev->dev,
605                         "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
606                         check, syndrome);
607
608                 writeb(0, card->csr_remap + ERROR_COUNT);
609         }
610
611         if (dma_status & DMASCR_PARITY_ERR_REP) {
612                 dev_printk(KERN_ERR, &card->dev->dev,
613                         "PARITY ERROR REPORTED\n");
614                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
615                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
616         }
617
618         if (dma_status & DMASCR_PARITY_ERR_DET) {
619                 dev_printk(KERN_ERR, &card->dev->dev,
620                         "PARITY ERROR DETECTED\n");
621                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
622                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
623         }
624
625         if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
626                 dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
627                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
628                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
629         }
630
631         if (dma_status & DMASCR_TARGET_ABT) {
632                 dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
633                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
634                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
635         }
636
637         if (dma_status & DMASCR_MASTER_ABT) {
638                 dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
639                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
640                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
641         }
642
643         /* and process the DMA descriptors */
644         card->dma_status = dma_status;
645         tasklet_schedule(&card->tasklet);
646
647 HW_TRACE(0x36);
648
649         return IRQ_HANDLED;
650 }
651
652 /*
653  * If both batteries are good, no LED
654  * If either battery has been warned, solid LED
655  * If both batteries are bad, flash the LED quickly
656  * If either battery is bad, flash the LED semi quickly
657  */
658 static void set_fault_to_battery_status(struct cardinfo *card)
659 {
660         if (card->battery[0].good && card->battery[1].good)
661                 set_led(card, LED_FAULT, LED_OFF);
662         else if (card->battery[0].warned || card->battery[1].warned)
663                 set_led(card, LED_FAULT, LED_ON);
664         else if (!card->battery[0].good && !card->battery[1].good)
665                 set_led(card, LED_FAULT, LED_FLASH_7_0);
666         else
667                 set_led(card, LED_FAULT, LED_FLASH_3_5);
668 }
669
670 static void init_battery_timer(void);
671
672 static int check_battery(struct cardinfo *card, int battery, int status)
673 {
674         if (status != card->battery[battery].good) {
675                 card->battery[battery].good = !card->battery[battery].good;
676                 card->battery[battery].last_change = jiffies;
677
678                 if (card->battery[battery].good) {
679                         dev_printk(KERN_ERR, &card->dev->dev,
680                                 "Battery %d now good\n", battery + 1);
681                         card->battery[battery].warned = 0;
682                 } else
683                         dev_printk(KERN_ERR, &card->dev->dev,
684                                 "Battery %d now FAILED\n", battery + 1);
685
686                 return 1;
687         } else if (!card->battery[battery].good &&
688                    !card->battery[battery].warned &&
689                    time_after_eq(jiffies, card->battery[battery].last_change +
690                                  (HZ * 60 * 60 * 5))) {
691                 dev_printk(KERN_ERR, &card->dev->dev,
692                         "Battery %d still FAILED after 5 hours\n", battery + 1);
693                 card->battery[battery].warned = 1;
694
695                 return 1;
696         }
697
698         return 0;
699 }
700
701 static void check_batteries(struct cardinfo *card)
702 {
703         /* NOTE: this must *never* be called while the card
704          * is doing (bus-to-card) DMA, or you will need the
705          * reset switch
706          */
707         unsigned char status;
708         int ret1, ret2;
709
710         status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
711         if (debug & DEBUG_BATTERY_POLLING)
712                 dev_printk(KERN_DEBUG, &card->dev->dev,
713                         "checking battery status, 1 = %s, 2 = %s\n",
714                        (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
715                        (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
716
717         ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
718         ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
719
720         if (ret1 || ret2)
721                 set_fault_to_battery_status(card);
722 }
723
724 static void check_all_batteries(unsigned long ptr)
725 {
726         int i;
727
728         for (i = 0; i < num_cards; i++)
729                 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
730                         struct cardinfo *card = &cards[i];
731                         spin_lock_bh(&card->lock);
732                         if (card->Active >= 0)
733                                 card->check_batteries = 1;
734                         else
735                                 check_batteries(card);
736                         spin_unlock_bh(&card->lock);
737                 }
738
739         init_battery_timer();
740 }
741
742 static void init_battery_timer(void)
743 {
744         init_timer(&battery_timer);
745         battery_timer.function = check_all_batteries;
746         battery_timer.expires = jiffies + (HZ * 60);
747         add_timer(&battery_timer);
748 }
749
750 static void del_battery_timer(void)
751 {
752         del_timer(&battery_timer);
753 }
754
755 /*
756  * Note no locks taken out here.  In a worst case scenario, we could drop
757  * a chunk of system memory.  But that should never happen, since validation
758  * happens at open or mount time, when locks are held.
759  *
760  *      That's crap, since doing that while some partitions are opened
761  * or mounted will give you really nasty results.
762  */
763 static int mm_revalidate(struct gendisk *disk)
764 {
765         struct cardinfo *card = disk->private_data;
766         set_capacity(disk, card->mm_size << 1);
767         return 0;
768 }
769
770 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
771 {
772         struct cardinfo *card = bdev->bd_disk->private_data;
773         int size = card->mm_size * (1024 / MM_HARDSECT);
774
775         /*
776          * get geometry: we have to fake one...  trim the size to a
777          * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
778          * whatever cylinders.
779          */
780         geo->heads     = 64;
781         geo->sectors   = 32;
782         geo->cylinders = size / (geo->heads * geo->sectors);
783         return 0;
784 }
785
786 static const struct block_device_operations mm_fops = {
787         .owner          = THIS_MODULE,
788         .getgeo         = mm_getgeo,
789         .revalidate_disk = mm_revalidate,
790 };
791
792 static int __devinit mm_pci_probe(struct pci_dev *dev,
793                                 const struct pci_device_id *id)
794 {
795         int ret = -ENODEV;
796         struct cardinfo *card = &cards[num_cards];
797         unsigned char   mem_present;
798         unsigned char   batt_status;
799         unsigned int    saved_bar, data;
800         unsigned long   csr_base;
801         unsigned long   csr_len;
802         int             magic_number;
803         static int      printed_version;
804
805         if (!printed_version++)
806                 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
807
808         ret = pci_enable_device(dev);
809         if (ret)
810                 return ret;
811
812         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
813         pci_set_master(dev);
814
815         card->dev         = dev;
816
817         csr_base = pci_resource_start(dev, 0);
818         csr_len  = pci_resource_len(dev, 0);
819         if (!csr_base || !csr_len)
820                 return -ENODEV;
821
822         dev_printk(KERN_INFO, &dev->dev,
823           "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
824
825         if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
826             pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
827                 dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
828                 return  -ENOMEM;
829         }
830
831         ret = pci_request_regions(dev, DRIVER_NAME);
832         if (ret) {
833                 dev_printk(KERN_ERR, &card->dev->dev,
834                         "Unable to request memory region\n");
835                 goto failed_req_csr;
836         }
837
838         card->csr_remap = ioremap_nocache(csr_base, csr_len);
839         if (!card->csr_remap) {
840                 dev_printk(KERN_ERR, &card->dev->dev,
841                         "Unable to remap memory region\n");
842                 ret = -ENOMEM;
843
844                 goto failed_remap_csr;
845         }
846
847         dev_printk(KERN_INFO, &card->dev->dev,
848                 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
849                csr_base, card->csr_remap, csr_len);
850
851         switch (card->dev->device) {
852         case 0x5415:
853                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
854                 magic_number = 0x59;
855                 break;
856
857         case 0x5425:
858                 card->flags |= UM_FLAG_NO_BYTE_STATUS;
859                 magic_number = 0x5C;
860                 break;
861
862         case 0x6155:
863                 card->flags |= UM_FLAG_NO_BYTE_STATUS |
864                                 UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
865                 magic_number = 0x99;
866                 break;
867
868         default:
869                 magic_number = 0x100;
870                 break;
871         }
872
873         if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
874                 dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
875                 ret = -ENOMEM;
876                 goto failed_magic;
877         }
878
879         card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
880                                                 PAGE_SIZE * 2,
881                                                 &card->mm_pages[0].page_dma);
882         card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
883                                                 PAGE_SIZE * 2,
884                                                 &card->mm_pages[1].page_dma);
885         if (card->mm_pages[0].desc == NULL ||
886             card->mm_pages[1].desc == NULL) {
887                 dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
888                 goto failed_alloc;
889         }
890         reset_page(&card->mm_pages[0]);
891         reset_page(&card->mm_pages[1]);
892         card->Ready = 0;        /* page 0 is ready */
893         card->Active = -1;      /* no page is active */
894         card->bio = NULL;
895         card->biotail = &card->bio;
896
897         card->queue = blk_alloc_queue(GFP_KERNEL);
898         if (!card->queue)
899                 goto failed_alloc;
900
901         blk_queue_make_request(card->queue, mm_make_request);
902         card->queue->queue_lock = &card->lock;
903         card->queue->queuedata = card;
904
905         tasklet_init(&card->tasklet, process_page, (unsigned long)card);
906
907         card->check_batteries = 0;
908
909         mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
910         switch (mem_present) {
911         case MEM_128_MB:
912                 card->mm_size = 1024 * 128;
913                 break;
914         case MEM_256_MB:
915                 card->mm_size = 1024 * 256;
916                 break;
917         case MEM_512_MB:
918                 card->mm_size = 1024 * 512;
919                 break;
920         case MEM_1_GB:
921                 card->mm_size = 1024 * 1024;
922                 break;
923         case MEM_2_GB:
924                 card->mm_size = 1024 * 2048;
925                 break;
926         default:
927                 card->mm_size = 0;
928                 break;
929         }
930
931         /* Clear the LED's we control */
932         set_led(card, LED_REMOVE, LED_OFF);
933         set_led(card, LED_FAULT, LED_OFF);
934
935         batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
936
937         card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
938         card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
939         card->battery[0].last_change = card->battery[1].last_change = jiffies;
940
941         if (card->flags & UM_FLAG_NO_BATT)
942                 dev_printk(KERN_INFO, &card->dev->dev,
943                         "Size %d KB\n", card->mm_size);
944         else {
945                 dev_printk(KERN_INFO, &card->dev->dev,
946                         "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
947                        card->mm_size,
948                        batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
949                        card->battery[0].good ? "OK" : "FAILURE",
950                        batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
951                        card->battery[1].good ? "OK" : "FAILURE");
952
953                 set_fault_to_battery_status(card);
954         }
955
956         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
957         data = 0xffffffff;
958         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
959         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
960         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
961         data &= 0xfffffff0;
962         data = ~data;
963         data += 1;
964
965         if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
966                         card)) {
967                 dev_printk(KERN_ERR, &card->dev->dev,
968                         "Unable to allocate IRQ\n");
969                 ret = -ENODEV;
970                 goto failed_req_irq;
971         }
972
973         dev_printk(KERN_INFO, &card->dev->dev,
974                 "Window size %d bytes, IRQ %d\n", data, dev->irq);
975
976         spin_lock_init(&card->lock);
977
978         pci_set_drvdata(dev, card);
979
980         if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
981                 pci_write_cmd = 0x07;   /* then Memory Write command */
982
983         if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
984                 unsigned short cfg_command;
985                 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
986                 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
987                 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
988         }
989         pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
990
991         num_cards++;
992
993         if (!get_userbit(card, MEMORY_INITIALIZED)) {
994                 dev_printk(KERN_INFO, &card->dev->dev,
995                   "memory NOT initialized. Consider over-writing whole device.\n");
996                 card->init_size = 0;
997         } else {
998                 dev_printk(KERN_INFO, &card->dev->dev,
999                         "memory already initialized\n");
1000                 card->init_size = card->mm_size;
1001         }
1002
1003         /* Enable ECC */
1004         writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1005
1006         return 0;
1007
1008  failed_req_irq:
1009  failed_alloc:
1010         if (card->mm_pages[0].desc)
1011                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1012                                     card->mm_pages[0].desc,
1013                                     card->mm_pages[0].page_dma);
1014         if (card->mm_pages[1].desc)
1015                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1016                                     card->mm_pages[1].desc,
1017                                     card->mm_pages[1].page_dma);
1018  failed_magic:
1019         iounmap(card->csr_remap);
1020  failed_remap_csr:
1021         pci_release_regions(dev);
1022  failed_req_csr:
1023
1024         return ret;
1025 }
1026
1027 static void mm_pci_remove(struct pci_dev *dev)
1028 {
1029         struct cardinfo *card = pci_get_drvdata(dev);
1030
1031         tasklet_kill(&card->tasklet);
1032         free_irq(dev->irq, card);
1033         iounmap(card->csr_remap);
1034
1035         if (card->mm_pages[0].desc)
1036                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1037                                     card->mm_pages[0].desc,
1038                                     card->mm_pages[0].page_dma);
1039         if (card->mm_pages[1].desc)
1040                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1041                                     card->mm_pages[1].desc,
1042                                     card->mm_pages[1].page_dma);
1043         blk_cleanup_queue(card->queue);
1044
1045         pci_release_regions(dev);
1046         pci_disable_device(dev);
1047 }
1048
1049 static const struct pci_device_id mm_pci_ids[] = {
1050     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1051     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1052     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1053     {
1054         .vendor =       0x8086,
1055         .device =       0xB555,
1056         .subvendor =    0x1332,
1057         .subdevice =    0x5460,
1058         .class =        0x050000,
1059         .class_mask =   0,
1060     }, { /* end: all zeroes */ }
1061 };
1062
1063 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1064
1065 static struct pci_driver mm_pci_driver = {
1066         .name           = DRIVER_NAME,
1067         .id_table       = mm_pci_ids,
1068         .probe          = mm_pci_probe,
1069         .remove         = mm_pci_remove,
1070 };
1071
1072 static int __init mm_init(void)
1073 {
1074         int retval, i;
1075         int err;
1076
1077         retval = pci_register_driver(&mm_pci_driver);
1078         if (retval)
1079                 return -ENOMEM;
1080
1081         err = major_nr = register_blkdev(0, DRIVER_NAME);
1082         if (err < 0) {
1083                 pci_unregister_driver(&mm_pci_driver);
1084                 return -EIO;
1085         }
1086
1087         for (i = 0; i < num_cards; i++) {
1088                 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1089                 if (!mm_gendisk[i])
1090                         goto out;
1091         }
1092
1093         for (i = 0; i < num_cards; i++) {
1094                 struct gendisk *disk = mm_gendisk[i];
1095                 sprintf(disk->disk_name, "umem%c", 'a'+i);
1096                 spin_lock_init(&cards[i].lock);
1097                 disk->major = major_nr;
1098                 disk->first_minor  = i << MM_SHIFT;
1099                 disk->fops = &mm_fops;
1100                 disk->private_data = &cards[i];
1101                 disk->queue = cards[i].queue;
1102                 set_capacity(disk, cards[i].mm_size << 1);
1103                 add_disk(disk);
1104         }
1105
1106         init_battery_timer();
1107         printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1108 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1109         return 0;
1110
1111 out:
1112         pci_unregister_driver(&mm_pci_driver);
1113         unregister_blkdev(major_nr, DRIVER_NAME);
1114         while (i--)
1115                 put_disk(mm_gendisk[i]);
1116         return -ENOMEM;
1117 }
1118
1119 static void __exit mm_cleanup(void)
1120 {
1121         int i;
1122
1123         del_battery_timer();
1124
1125         for (i = 0; i < num_cards ; i++) {
1126                 del_gendisk(mm_gendisk[i]);
1127                 put_disk(mm_gendisk[i]);
1128         }
1129
1130         pci_unregister_driver(&mm_pci_driver);
1131
1132         unregister_blkdev(major_nr, DRIVER_NAME);
1133 }
1134
1135 module_init(mm_init);
1136 module_exit(mm_cleanup);
1137
1138 MODULE_AUTHOR(DRIVER_AUTHOR);
1139 MODULE_DESCRIPTION(DRIVER_DESC);
1140 MODULE_LICENSE("GPL");