NVMe: Asynchronous controller probe
[pandora-kernel.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_MINORS             (1U << MINORBITS)
46 #define NVME_Q_DEPTH            1024
47 #define NVME_AQ_DEPTH           64
48 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
51 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
52 #define IOD_TIMEOUT             (retry_time * HZ)
53
54 static unsigned char admin_timeout = 60;
55 module_param(admin_timeout, byte, 0644);
56 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
57
58 unsigned char nvme_io_timeout = 30;
59 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
60 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
61
62 static unsigned char retry_time = 30;
63 module_param(retry_time, byte, 0644);
64 MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");
65
66 static unsigned char shutdown_timeout = 5;
67 module_param(shutdown_timeout, byte, 0644);
68 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
69
70 static int nvme_major;
71 module_param(nvme_major, int, 0);
72
73 static int nvme_char_major;
74 module_param(nvme_char_major, int, 0);
75
76 static int use_threaded_interrupts;
77 module_param(use_threaded_interrupts, int, 0);
78
79 static DEFINE_SPINLOCK(dev_list_lock);
80 static LIST_HEAD(dev_list);
81 static struct task_struct *nvme_thread;
82 static struct workqueue_struct *nvme_workq;
83 static wait_queue_head_t nvme_kthread_wait;
84 static struct notifier_block nvme_nb;
85
86 static struct class *nvme_class;
87
88 static void nvme_reset_failed_dev(struct work_struct *ws);
89 static int nvme_process_cq(struct nvme_queue *nvmeq);
90
91 struct async_cmd_info {
92         struct kthread_work work;
93         struct kthread_worker *worker;
94         struct request *req;
95         u32 result;
96         int status;
97         void *ctx;
98 };
99
100 /*
101  * An NVM Express queue.  Each device has at least two (one for admin
102  * commands and one for I/O commands).
103  */
104 struct nvme_queue {
105         struct llist_node node;
106         struct device *q_dmadev;
107         struct nvme_dev *dev;
108         char irqname[24];       /* nvme4294967295-65535\0 */
109         spinlock_t q_lock;
110         struct nvme_command *sq_cmds;
111         volatile struct nvme_completion *cqes;
112         dma_addr_t sq_dma_addr;
113         dma_addr_t cq_dma_addr;
114         u32 __iomem *q_db;
115         u16 q_depth;
116         s16 cq_vector;
117         u16 sq_head;
118         u16 sq_tail;
119         u16 cq_head;
120         u16 qid;
121         u8 cq_phase;
122         u8 cqe_seen;
123         struct async_cmd_info cmdinfo;
124         struct blk_mq_hw_ctx *hctx;
125 };
126
127 /*
128  * Check we didin't inadvertently grow the command struct
129  */
130 static inline void _nvme_check_size(void)
131 {
132         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
134         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
135         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
136         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
137         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
138         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
139         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
140         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
141         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
142         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
143         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
144 }
145
146 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
147                                                 struct nvme_completion *);
148
149 struct nvme_cmd_info {
150         nvme_completion_fn fn;
151         void *ctx;
152         int aborted;
153         struct nvme_queue *nvmeq;
154         struct nvme_iod iod[0];
155 };
156
157 /*
158  * Max size of iod being embedded in the request payload
159  */
160 #define NVME_INT_PAGES          2
161 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
162
163 /*
164  * Will slightly overestimate the number of pages needed.  This is OK
165  * as it only leads to a small amount of wasted memory for the lifetime of
166  * the I/O.
167  */
168 static int nvme_npages(unsigned size, struct nvme_dev *dev)
169 {
170         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
171         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
172 }
173
174 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
175 {
176         unsigned int ret = sizeof(struct nvme_cmd_info);
177
178         ret += sizeof(struct nvme_iod);
179         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
180         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
181
182         return ret;
183 }
184
185 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
186                                 unsigned int hctx_idx)
187 {
188         struct nvme_dev *dev = data;
189         struct nvme_queue *nvmeq = dev->queues[0];
190
191         WARN_ON(nvmeq->hctx);
192         nvmeq->hctx = hctx;
193         hctx->driver_data = nvmeq;
194         return 0;
195 }
196
197 static int nvme_admin_init_request(void *data, struct request *req,
198                                 unsigned int hctx_idx, unsigned int rq_idx,
199                                 unsigned int numa_node)
200 {
201         struct nvme_dev *dev = data;
202         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
203         struct nvme_queue *nvmeq = dev->queues[0];
204
205         BUG_ON(!nvmeq);
206         cmd->nvmeq = nvmeq;
207         return 0;
208 }
209
210 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
211 {
212         struct nvme_queue *nvmeq = hctx->driver_data;
213
214         nvmeq->hctx = NULL;
215 }
216
217 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
218                           unsigned int hctx_idx)
219 {
220         struct nvme_dev *dev = data;
221         struct nvme_queue *nvmeq = dev->queues[
222                                         (hctx_idx % dev->queue_count) + 1];
223
224         if (!nvmeq->hctx)
225                 nvmeq->hctx = hctx;
226
227         /* nvmeq queues are shared between namespaces. We assume here that
228          * blk-mq map the tags so they match up with the nvme queue tags. */
229         WARN_ON(nvmeq->hctx->tags != hctx->tags);
230
231         hctx->driver_data = nvmeq;
232         return 0;
233 }
234
235 static int nvme_init_request(void *data, struct request *req,
236                                 unsigned int hctx_idx, unsigned int rq_idx,
237                                 unsigned int numa_node)
238 {
239         struct nvme_dev *dev = data;
240         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
241         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
242
243         BUG_ON(!nvmeq);
244         cmd->nvmeq = nvmeq;
245         return 0;
246 }
247
248 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
249                                 nvme_completion_fn handler)
250 {
251         cmd->fn = handler;
252         cmd->ctx = ctx;
253         cmd->aborted = 0;
254         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
255 }
256
257 static void *iod_get_private(struct nvme_iod *iod)
258 {
259         return (void *) (iod->private & ~0x1UL);
260 }
261
262 /*
263  * If bit 0 is set, the iod is embedded in the request payload.
264  */
265 static bool iod_should_kfree(struct nvme_iod *iod)
266 {
267         return (iod->private & 0x01) == 0;
268 }
269
270 /* Special values must be less than 0x1000 */
271 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
272 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
273 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
274 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
275
276 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
277                                                 struct nvme_completion *cqe)
278 {
279         if (ctx == CMD_CTX_CANCELLED)
280                 return;
281         if (ctx == CMD_CTX_COMPLETED) {
282                 dev_warn(nvmeq->q_dmadev,
283                                 "completed id %d twice on queue %d\n",
284                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
285                 return;
286         }
287         if (ctx == CMD_CTX_INVALID) {
288                 dev_warn(nvmeq->q_dmadev,
289                                 "invalid id %d completed on queue %d\n",
290                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
291                 return;
292         }
293         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
294 }
295
296 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
297 {
298         void *ctx;
299
300         if (fn)
301                 *fn = cmd->fn;
302         ctx = cmd->ctx;
303         cmd->fn = special_completion;
304         cmd->ctx = CMD_CTX_CANCELLED;
305         return ctx;
306 }
307
308 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
309                                                 struct nvme_completion *cqe)
310 {
311         struct request *req = ctx;
312
313         u32 result = le32_to_cpup(&cqe->result);
314         u16 status = le16_to_cpup(&cqe->status) >> 1;
315
316         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
317                 ++nvmeq->dev->event_limit;
318         if (status == NVME_SC_SUCCESS)
319                 dev_warn(nvmeq->q_dmadev,
320                         "async event result %08x\n", result);
321
322         blk_mq_free_hctx_request(nvmeq->hctx, req);
323 }
324
325 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
326                                                 struct nvme_completion *cqe)
327 {
328         struct request *req = ctx;
329
330         u16 status = le16_to_cpup(&cqe->status) >> 1;
331         u32 result = le32_to_cpup(&cqe->result);
332
333         blk_mq_free_hctx_request(nvmeq->hctx, req);
334
335         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
336         ++nvmeq->dev->abort_limit;
337 }
338
339 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
340                                                 struct nvme_completion *cqe)
341 {
342         struct async_cmd_info *cmdinfo = ctx;
343         cmdinfo->result = le32_to_cpup(&cqe->result);
344         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
345         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
346         blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
347 }
348
349 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
350                                   unsigned int tag)
351 {
352         struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
353         struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
354
355         return blk_mq_rq_to_pdu(req);
356 }
357
358 /*
359  * Called with local interrupts disabled and the q_lock held.  May not sleep.
360  */
361 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
362                                                 nvme_completion_fn *fn)
363 {
364         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
365         void *ctx;
366         if (tag >= nvmeq->q_depth) {
367                 *fn = special_completion;
368                 return CMD_CTX_INVALID;
369         }
370         if (fn)
371                 *fn = cmd->fn;
372         ctx = cmd->ctx;
373         cmd->fn = special_completion;
374         cmd->ctx = CMD_CTX_COMPLETED;
375         return ctx;
376 }
377
378 /**
379  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
380  * @nvmeq: The queue to use
381  * @cmd: The command to send
382  *
383  * Safe to use from interrupt context
384  */
385 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
386 {
387         u16 tail = nvmeq->sq_tail;
388
389         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
390         if (++tail == nvmeq->q_depth)
391                 tail = 0;
392         writel(tail, nvmeq->q_db);
393         nvmeq->sq_tail = tail;
394
395         return 0;
396 }
397
398 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
399 {
400         unsigned long flags;
401         int ret;
402         spin_lock_irqsave(&nvmeq->q_lock, flags);
403         ret = __nvme_submit_cmd(nvmeq, cmd);
404         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
405         return ret;
406 }
407
408 static __le64 **iod_list(struct nvme_iod *iod)
409 {
410         return ((void *)iod) + iod->offset;
411 }
412
413 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
414                             unsigned nseg, unsigned long private)
415 {
416         iod->private = private;
417         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
418         iod->npages = -1;
419         iod->length = nbytes;
420         iod->nents = 0;
421 }
422
423 static struct nvme_iod *
424 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
425                  unsigned long priv, gfp_t gfp)
426 {
427         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
428                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
429                                 sizeof(struct scatterlist) * nseg, gfp);
430
431         if (iod)
432                 iod_init(iod, bytes, nseg, priv);
433
434         return iod;
435 }
436
437 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
438                                        gfp_t gfp)
439 {
440         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
441                                                 sizeof(struct nvme_dsm_range);
442         unsigned long mask = 0;
443         struct nvme_iod *iod;
444
445         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
446             size <= NVME_INT_BYTES(dev)) {
447                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
448
449                 iod = cmd->iod;
450                 mask = 0x01;
451                 iod_init(iod, size, rq->nr_phys_segments,
452                                 (unsigned long) rq | 0x01);
453                 return iod;
454         }
455
456         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
457                                 (unsigned long) rq, gfp);
458 }
459
460 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
461 {
462         const int last_prp = dev->page_size / 8 - 1;
463         int i;
464         __le64 **list = iod_list(iod);
465         dma_addr_t prp_dma = iod->first_dma;
466
467         if (iod->npages == 0)
468                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
469         for (i = 0; i < iod->npages; i++) {
470                 __le64 *prp_list = list[i];
471                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
472                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
473                 prp_dma = next_prp_dma;
474         }
475
476         if (iod_should_kfree(iod))
477                 kfree(iod);
478 }
479
480 static int nvme_error_status(u16 status)
481 {
482         switch (status & 0x7ff) {
483         case NVME_SC_SUCCESS:
484                 return 0;
485         case NVME_SC_CAP_EXCEEDED:
486                 return -ENOSPC;
487         default:
488                 return -EIO;
489         }
490 }
491
492 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
493 {
494         if (be32_to_cpu(pi->ref_tag) == v)
495                 pi->ref_tag = cpu_to_be32(p);
496 }
497
498 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
499 {
500         if (be32_to_cpu(pi->ref_tag) == p)
501                 pi->ref_tag = cpu_to_be32(v);
502 }
503
504 /**
505  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
506  *
507  * The virtual start sector is the one that was originally submitted by the
508  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
509  * start sector may be different. Remap protection information to match the
510  * physical LBA on writes, and back to the original seed on reads.
511  *
512  * Type 0 and 3 do not have a ref tag, so no remapping required.
513  */
514 static void nvme_dif_remap(struct request *req,
515                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
516 {
517         struct nvme_ns *ns = req->rq_disk->private_data;
518         struct bio_integrity_payload *bip;
519         struct t10_pi_tuple *pi;
520         void *p, *pmap;
521         u32 i, nlb, ts, phys, virt;
522
523         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
524                 return;
525
526         bip = bio_integrity(req->bio);
527         if (!bip)
528                 return;
529
530         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
531         if (!pmap)
532                 return;
533
534         p = pmap;
535         virt = bip_get_seed(bip);
536         phys = nvme_block_nr(ns, blk_rq_pos(req));
537         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
538         ts = ns->disk->integrity->tuple_size;
539
540         for (i = 0; i < nlb; i++, virt++, phys++) {
541                 pi = (struct t10_pi_tuple *)p;
542                 dif_swap(phys, virt, pi);
543                 p += ts;
544         }
545         kunmap_atomic(pmap);
546 }
547
548 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
549                                                 struct nvme_completion *cqe)
550 {
551         struct nvme_iod *iod = ctx;
552         struct request *req = iod_get_private(iod);
553         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
554
555         u16 status = le16_to_cpup(&cqe->status) >> 1;
556
557         if (unlikely(status)) {
558                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
559                     && (jiffies - req->start_time) < req->timeout) {
560                         unsigned long flags;
561
562                         blk_mq_requeue_request(req);
563                         spin_lock_irqsave(req->q->queue_lock, flags);
564                         if (!blk_queue_stopped(req->q))
565                                 blk_mq_kick_requeue_list(req->q);
566                         spin_unlock_irqrestore(req->q->queue_lock, flags);
567                         return;
568                 }
569                 req->errors = nvme_error_status(status);
570         } else
571                 req->errors = 0;
572
573         if (cmd_rq->aborted)
574                 dev_warn(&nvmeq->dev->pci_dev->dev,
575                         "completing aborted command with status:%04x\n",
576                         status);
577
578         if (iod->nents) {
579                 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
580                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
581                 if (blk_integrity_rq(req)) {
582                         if (!rq_data_dir(req))
583                                 nvme_dif_remap(req, nvme_dif_complete);
584                         dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
585                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
586                 }
587         }
588         nvme_free_iod(nvmeq->dev, iod);
589
590         blk_mq_complete_request(req);
591 }
592
593 /* length is in bytes.  gfp flags indicates whether we may sleep. */
594 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
595                                                                 gfp_t gfp)
596 {
597         struct dma_pool *pool;
598         int length = total_len;
599         struct scatterlist *sg = iod->sg;
600         int dma_len = sg_dma_len(sg);
601         u64 dma_addr = sg_dma_address(sg);
602         int offset = offset_in_page(dma_addr);
603         __le64 *prp_list;
604         __le64 **list = iod_list(iod);
605         dma_addr_t prp_dma;
606         int nprps, i;
607         u32 page_size = dev->page_size;
608
609         length -= (page_size - offset);
610         if (length <= 0)
611                 return total_len;
612
613         dma_len -= (page_size - offset);
614         if (dma_len) {
615                 dma_addr += (page_size - offset);
616         } else {
617                 sg = sg_next(sg);
618                 dma_addr = sg_dma_address(sg);
619                 dma_len = sg_dma_len(sg);
620         }
621
622         if (length <= page_size) {
623                 iod->first_dma = dma_addr;
624                 return total_len;
625         }
626
627         nprps = DIV_ROUND_UP(length, page_size);
628         if (nprps <= (256 / 8)) {
629                 pool = dev->prp_small_pool;
630                 iod->npages = 0;
631         } else {
632                 pool = dev->prp_page_pool;
633                 iod->npages = 1;
634         }
635
636         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
637         if (!prp_list) {
638                 iod->first_dma = dma_addr;
639                 iod->npages = -1;
640                 return (total_len - length) + page_size;
641         }
642         list[0] = prp_list;
643         iod->first_dma = prp_dma;
644         i = 0;
645         for (;;) {
646                 if (i == page_size >> 3) {
647                         __le64 *old_prp_list = prp_list;
648                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
649                         if (!prp_list)
650                                 return total_len - length;
651                         list[iod->npages++] = prp_list;
652                         prp_list[0] = old_prp_list[i - 1];
653                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
654                         i = 1;
655                 }
656                 prp_list[i++] = cpu_to_le64(dma_addr);
657                 dma_len -= page_size;
658                 dma_addr += page_size;
659                 length -= page_size;
660                 if (length <= 0)
661                         break;
662                 if (dma_len > 0)
663                         continue;
664                 BUG_ON(dma_len < 0);
665                 sg = sg_next(sg);
666                 dma_addr = sg_dma_address(sg);
667                 dma_len = sg_dma_len(sg);
668         }
669
670         return total_len;
671 }
672
673 /*
674  * We reuse the small pool to allocate the 16-byte range here as it is not
675  * worth having a special pool for these or additional cases to handle freeing
676  * the iod.
677  */
678 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
679                 struct request *req, struct nvme_iod *iod)
680 {
681         struct nvme_dsm_range *range =
682                                 (struct nvme_dsm_range *)iod_list(iod)[0];
683         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
684
685         range->cattr = cpu_to_le32(0);
686         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
687         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
688
689         memset(cmnd, 0, sizeof(*cmnd));
690         cmnd->dsm.opcode = nvme_cmd_dsm;
691         cmnd->dsm.command_id = req->tag;
692         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
693         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
694         cmnd->dsm.nr = 0;
695         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
696
697         if (++nvmeq->sq_tail == nvmeq->q_depth)
698                 nvmeq->sq_tail = 0;
699         writel(nvmeq->sq_tail, nvmeq->q_db);
700 }
701
702 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
703                                                                 int cmdid)
704 {
705         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
706
707         memset(cmnd, 0, sizeof(*cmnd));
708         cmnd->common.opcode = nvme_cmd_flush;
709         cmnd->common.command_id = cmdid;
710         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
711
712         if (++nvmeq->sq_tail == nvmeq->q_depth)
713                 nvmeq->sq_tail = 0;
714         writel(nvmeq->sq_tail, nvmeq->q_db);
715 }
716
717 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
718                                                         struct nvme_ns *ns)
719 {
720         struct request *req = iod_get_private(iod);
721         struct nvme_command *cmnd;
722         u16 control = 0;
723         u32 dsmgmt = 0;
724
725         if (req->cmd_flags & REQ_FUA)
726                 control |= NVME_RW_FUA;
727         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
728                 control |= NVME_RW_LR;
729
730         if (req->cmd_flags & REQ_RAHEAD)
731                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
732
733         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
734         memset(cmnd, 0, sizeof(*cmnd));
735
736         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
737         cmnd->rw.command_id = req->tag;
738         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
739         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
740         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
741         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
742         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
743
744         if (blk_integrity_rq(req)) {
745                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
746                 switch (ns->pi_type) {
747                 case NVME_NS_DPS_PI_TYPE3:
748                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
749                         break;
750                 case NVME_NS_DPS_PI_TYPE1:
751                 case NVME_NS_DPS_PI_TYPE2:
752                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
753                                         NVME_RW_PRINFO_PRCHK_REF;
754                         cmnd->rw.reftag = cpu_to_le32(
755                                         nvme_block_nr(ns, blk_rq_pos(req)));
756                         break;
757                 }
758         } else if (ns->ms)
759                 control |= NVME_RW_PRINFO_PRACT;
760
761         cmnd->rw.control = cpu_to_le16(control);
762         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
763
764         if (++nvmeq->sq_tail == nvmeq->q_depth)
765                 nvmeq->sq_tail = 0;
766         writel(nvmeq->sq_tail, nvmeq->q_db);
767
768         return 0;
769 }
770
771 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
772                          const struct blk_mq_queue_data *bd)
773 {
774         struct nvme_ns *ns = hctx->queue->queuedata;
775         struct nvme_queue *nvmeq = hctx->driver_data;
776         struct request *req = bd->rq;
777         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
778         struct nvme_iod *iod;
779         enum dma_data_direction dma_dir;
780
781         /*
782          * If formated with metadata, require the block layer provide a buffer
783          * unless this namespace is formated such that the metadata can be
784          * stripped/generated by the controller with PRACT=1.
785          */
786         if (ns->ms && !blk_integrity_rq(req)) {
787                 if (!(ns->pi_type && ns->ms == 8)) {
788                         req->errors = -EFAULT;
789                         blk_mq_complete_request(req);
790                         return BLK_MQ_RQ_QUEUE_OK;
791                 }
792         }
793
794         iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
795         if (!iod)
796                 return BLK_MQ_RQ_QUEUE_BUSY;
797
798         if (req->cmd_flags & REQ_DISCARD) {
799                 void *range;
800                 /*
801                  * We reuse the small pool to allocate the 16-byte range here
802                  * as it is not worth having a special pool for these or
803                  * additional cases to handle freeing the iod.
804                  */
805                 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
806                                                 GFP_ATOMIC,
807                                                 &iod->first_dma);
808                 if (!range)
809                         goto retry_cmd;
810                 iod_list(iod)[0] = (__le64 *)range;
811                 iod->npages = 0;
812         } else if (req->nr_phys_segments) {
813                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
814
815                 sg_init_table(iod->sg, req->nr_phys_segments);
816                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
817                 if (!iod->nents)
818                         goto error_cmd;
819
820                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
821                         goto retry_cmd;
822
823                 if (blk_rq_bytes(req) !=
824                     nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
825                         dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
826                                         iod->nents, dma_dir);
827                         goto retry_cmd;
828                 }
829                 if (blk_integrity_rq(req)) {
830                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
831                                 goto error_cmd;
832
833                         sg_init_table(iod->meta_sg, 1);
834                         if (blk_rq_map_integrity_sg(
835                                         req->q, req->bio, iod->meta_sg) != 1)
836                                 goto error_cmd;
837
838                         if (rq_data_dir(req))
839                                 nvme_dif_remap(req, nvme_dif_prep);
840
841                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
842                                 goto error_cmd;
843                 }
844         }
845
846         nvme_set_info(cmd, iod, req_completion);
847         spin_lock_irq(&nvmeq->q_lock);
848         if (req->cmd_flags & REQ_DISCARD)
849                 nvme_submit_discard(nvmeq, ns, req, iod);
850         else if (req->cmd_flags & REQ_FLUSH)
851                 nvme_submit_flush(nvmeq, ns, req->tag);
852         else
853                 nvme_submit_iod(nvmeq, iod, ns);
854
855         nvme_process_cq(nvmeq);
856         spin_unlock_irq(&nvmeq->q_lock);
857         return BLK_MQ_RQ_QUEUE_OK;
858
859  error_cmd:
860         nvme_free_iod(nvmeq->dev, iod);
861         return BLK_MQ_RQ_QUEUE_ERROR;
862  retry_cmd:
863         nvme_free_iod(nvmeq->dev, iod);
864         return BLK_MQ_RQ_QUEUE_BUSY;
865 }
866
867 static int nvme_process_cq(struct nvme_queue *nvmeq)
868 {
869         u16 head, phase;
870
871         head = nvmeq->cq_head;
872         phase = nvmeq->cq_phase;
873
874         for (;;) {
875                 void *ctx;
876                 nvme_completion_fn fn;
877                 struct nvme_completion cqe = nvmeq->cqes[head];
878                 if ((le16_to_cpu(cqe.status) & 1) != phase)
879                         break;
880                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
881                 if (++head == nvmeq->q_depth) {
882                         head = 0;
883                         phase = !phase;
884                 }
885                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
886                 fn(nvmeq, ctx, &cqe);
887         }
888
889         /* If the controller ignores the cq head doorbell and continuously
890          * writes to the queue, it is theoretically possible to wrap around
891          * the queue twice and mistakenly return IRQ_NONE.  Linux only
892          * requires that 0.1% of your interrupts are handled, so this isn't
893          * a big problem.
894          */
895         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
896                 return 0;
897
898         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
899         nvmeq->cq_head = head;
900         nvmeq->cq_phase = phase;
901
902         nvmeq->cqe_seen = 1;
903         return 1;
904 }
905
906 /* Admin queue isn't initialized as a request queue. If at some point this
907  * happens anyway, make sure to notify the user */
908 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
909                                const struct blk_mq_queue_data *bd)
910 {
911         WARN_ON_ONCE(1);
912         return BLK_MQ_RQ_QUEUE_ERROR;
913 }
914
915 static irqreturn_t nvme_irq(int irq, void *data)
916 {
917         irqreturn_t result;
918         struct nvme_queue *nvmeq = data;
919         spin_lock(&nvmeq->q_lock);
920         nvme_process_cq(nvmeq);
921         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
922         nvmeq->cqe_seen = 0;
923         spin_unlock(&nvmeq->q_lock);
924         return result;
925 }
926
927 static irqreturn_t nvme_irq_check(int irq, void *data)
928 {
929         struct nvme_queue *nvmeq = data;
930         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
931         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
932                 return IRQ_NONE;
933         return IRQ_WAKE_THREAD;
934 }
935
936 static void nvme_abort_cmd_info(struct nvme_queue *nvmeq, struct nvme_cmd_info *
937                                                                 cmd_info)
938 {
939         spin_lock_irq(&nvmeq->q_lock);
940         cancel_cmd_info(cmd_info, NULL);
941         spin_unlock_irq(&nvmeq->q_lock);
942 }
943
944 struct sync_cmd_info {
945         struct task_struct *task;
946         u32 result;
947         int status;
948 };
949
950 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
951                                                 struct nvme_completion *cqe)
952 {
953         struct sync_cmd_info *cmdinfo = ctx;
954         cmdinfo->result = le32_to_cpup(&cqe->result);
955         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
956         wake_up_process(cmdinfo->task);
957 }
958
959 /*
960  * Returns 0 on success.  If the result is negative, it's a Linux error code;
961  * if the result is positive, it's an NVM Express status code
962  */
963 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
964                                                 u32 *result, unsigned timeout)
965 {
966         int ret;
967         struct sync_cmd_info cmdinfo;
968         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
969         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
970
971         cmdinfo.task = current;
972         cmdinfo.status = -EINTR;
973
974         cmd->common.command_id = req->tag;
975
976         nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
977
978         set_current_state(TASK_KILLABLE);
979         ret = nvme_submit_cmd(nvmeq, cmd);
980         if (ret) {
981                 nvme_finish_cmd(nvmeq, req->tag, NULL);
982                 set_current_state(TASK_RUNNING);
983         }
984         ret = schedule_timeout(timeout);
985
986         /*
987          * Ensure that sync_completion has either run, or that it will
988          * never run.
989          */
990         nvme_abort_cmd_info(nvmeq, blk_mq_rq_to_pdu(req));
991
992         /*
993          * We never got the completion
994          */
995         if (cmdinfo.status == -EINTR)
996                 return -EINTR;
997
998         if (result)
999                 *result = cmdinfo.result;
1000
1001         return cmdinfo.status;
1002 }
1003
1004 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1005 {
1006         struct nvme_queue *nvmeq = dev->queues[0];
1007         struct nvme_command c;
1008         struct nvme_cmd_info *cmd_info;
1009         struct request *req;
1010
1011         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
1012         if (IS_ERR(req))
1013                 return PTR_ERR(req);
1014
1015         req->cmd_flags |= REQ_NO_TIMEOUT;
1016         cmd_info = blk_mq_rq_to_pdu(req);
1017         nvme_set_info(cmd_info, req, async_req_completion);
1018
1019         memset(&c, 0, sizeof(c));
1020         c.common.opcode = nvme_admin_async_event;
1021         c.common.command_id = req->tag;
1022
1023         return __nvme_submit_cmd(nvmeq, &c);
1024 }
1025
1026 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1027                         struct nvme_command *cmd,
1028                         struct async_cmd_info *cmdinfo, unsigned timeout)
1029 {
1030         struct nvme_queue *nvmeq = dev->queues[0];
1031         struct request *req;
1032         struct nvme_cmd_info *cmd_rq;
1033
1034         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1035         if (IS_ERR(req))
1036                 return PTR_ERR(req);
1037
1038         req->timeout = timeout;
1039         cmd_rq = blk_mq_rq_to_pdu(req);
1040         cmdinfo->req = req;
1041         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1042         cmdinfo->status = -EINTR;
1043
1044         cmd->common.command_id = req->tag;
1045
1046         return nvme_submit_cmd(nvmeq, cmd);
1047 }
1048
1049 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1050                                                 u32 *result, unsigned timeout)
1051 {
1052         int res;
1053         struct request *req;
1054
1055         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1056         if (IS_ERR(req))
1057                 return PTR_ERR(req);
1058         res = nvme_submit_sync_cmd(req, cmd, result, timeout);
1059         blk_mq_free_request(req);
1060         return res;
1061 }
1062
1063 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1064                                                                 u32 *result)
1065 {
1066         return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
1067 }
1068
1069 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1070                                         struct nvme_command *cmd, u32 *result)
1071 {
1072         int res;
1073         struct request *req;
1074
1075         req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1076                                                                         false);
1077         if (IS_ERR(req))
1078                 return PTR_ERR(req);
1079         res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
1080         blk_mq_free_request(req);
1081         return res;
1082 }
1083
1084 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1085 {
1086         struct nvme_command c;
1087
1088         memset(&c, 0, sizeof(c));
1089         c.delete_queue.opcode = opcode;
1090         c.delete_queue.qid = cpu_to_le16(id);
1091
1092         return nvme_submit_admin_cmd(dev, &c, NULL);
1093 }
1094
1095 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1096                                                 struct nvme_queue *nvmeq)
1097 {
1098         struct nvme_command c;
1099         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1100
1101         memset(&c, 0, sizeof(c));
1102         c.create_cq.opcode = nvme_admin_create_cq;
1103         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1104         c.create_cq.cqid = cpu_to_le16(qid);
1105         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1106         c.create_cq.cq_flags = cpu_to_le16(flags);
1107         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1108
1109         return nvme_submit_admin_cmd(dev, &c, NULL);
1110 }
1111
1112 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1113                                                 struct nvme_queue *nvmeq)
1114 {
1115         struct nvme_command c;
1116         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1117
1118         memset(&c, 0, sizeof(c));
1119         c.create_sq.opcode = nvme_admin_create_sq;
1120         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1121         c.create_sq.sqid = cpu_to_le16(qid);
1122         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1123         c.create_sq.sq_flags = cpu_to_le16(flags);
1124         c.create_sq.cqid = cpu_to_le16(qid);
1125
1126         return nvme_submit_admin_cmd(dev, &c, NULL);
1127 }
1128
1129 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1130 {
1131         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1132 }
1133
1134 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1135 {
1136         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1137 }
1138
1139 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1140                                                         dma_addr_t dma_addr)
1141 {
1142         struct nvme_command c;
1143
1144         memset(&c, 0, sizeof(c));
1145         c.identify.opcode = nvme_admin_identify;
1146         c.identify.nsid = cpu_to_le32(nsid);
1147         c.identify.prp1 = cpu_to_le64(dma_addr);
1148         c.identify.cns = cpu_to_le32(cns);
1149
1150         return nvme_submit_admin_cmd(dev, &c, NULL);
1151 }
1152
1153 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1154                                         dma_addr_t dma_addr, u32 *result)
1155 {
1156         struct nvme_command c;
1157
1158         memset(&c, 0, sizeof(c));
1159         c.features.opcode = nvme_admin_get_features;
1160         c.features.nsid = cpu_to_le32(nsid);
1161         c.features.prp1 = cpu_to_le64(dma_addr);
1162         c.features.fid = cpu_to_le32(fid);
1163
1164         return nvme_submit_admin_cmd(dev, &c, result);
1165 }
1166
1167 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1168                                         dma_addr_t dma_addr, u32 *result)
1169 {
1170         struct nvme_command c;
1171
1172         memset(&c, 0, sizeof(c));
1173         c.features.opcode = nvme_admin_set_features;
1174         c.features.prp1 = cpu_to_le64(dma_addr);
1175         c.features.fid = cpu_to_le32(fid);
1176         c.features.dword11 = cpu_to_le32(dword11);
1177
1178         return nvme_submit_admin_cmd(dev, &c, result);
1179 }
1180
1181 /**
1182  * nvme_abort_req - Attempt aborting a request
1183  *
1184  * Schedule controller reset if the command was already aborted once before and
1185  * still hasn't been returned to the driver, or if this is the admin queue.
1186  */
1187 static void nvme_abort_req(struct request *req)
1188 {
1189         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1190         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1191         struct nvme_dev *dev = nvmeq->dev;
1192         struct request *abort_req;
1193         struct nvme_cmd_info *abort_cmd;
1194         struct nvme_command cmd;
1195
1196         if (!nvmeq->qid || cmd_rq->aborted) {
1197                 unsigned long flags;
1198
1199                 spin_lock_irqsave(&dev_list_lock, flags);
1200                 if (work_busy(&dev->reset_work))
1201                         goto out;
1202                 list_del_init(&dev->node);
1203                 dev_warn(&dev->pci_dev->dev,
1204                         "I/O %d QID %d timeout, reset controller\n",
1205                                                         req->tag, nvmeq->qid);
1206                 dev->reset_workfn = nvme_reset_failed_dev;
1207                 queue_work(nvme_workq, &dev->reset_work);
1208  out:
1209                 spin_unlock_irqrestore(&dev_list_lock, flags);
1210                 return;
1211         }
1212
1213         if (!dev->abort_limit)
1214                 return;
1215
1216         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1217                                                                         false);
1218         if (IS_ERR(abort_req))
1219                 return;
1220
1221         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1222         nvme_set_info(abort_cmd, abort_req, abort_completion);
1223
1224         memset(&cmd, 0, sizeof(cmd));
1225         cmd.abort.opcode = nvme_admin_abort_cmd;
1226         cmd.abort.cid = req->tag;
1227         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1228         cmd.abort.command_id = abort_req->tag;
1229
1230         --dev->abort_limit;
1231         cmd_rq->aborted = 1;
1232
1233         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1234                                                         nvmeq->qid);
1235         if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1236                 dev_warn(nvmeq->q_dmadev,
1237                                 "Could not abort I/O %d QID %d",
1238                                 req->tag, nvmeq->qid);
1239                 blk_mq_free_request(abort_req);
1240         }
1241 }
1242
1243 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1244                                 struct request *req, void *data, bool reserved)
1245 {
1246         struct nvme_queue *nvmeq = data;
1247         void *ctx;
1248         nvme_completion_fn fn;
1249         struct nvme_cmd_info *cmd;
1250         struct nvme_completion cqe;
1251
1252         if (!blk_mq_request_started(req))
1253                 return;
1254
1255         cmd = blk_mq_rq_to_pdu(req);
1256
1257         if (cmd->ctx == CMD_CTX_CANCELLED)
1258                 return;
1259
1260         if (blk_queue_dying(req->q))
1261                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1262         else
1263                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1264
1265
1266         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1267                                                 req->tag, nvmeq->qid);
1268         ctx = cancel_cmd_info(cmd, &fn);
1269         fn(nvmeq, ctx, &cqe);
1270 }
1271
1272 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1273 {
1274         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1275         struct nvme_queue *nvmeq = cmd->nvmeq;
1276
1277         /*
1278          * The aborted req will be completed on receiving the abort req.
1279          * We enable the timer again. If hit twice, it'll cause a device reset,
1280          * as the device then is in a faulty state.
1281          */
1282         int ret = BLK_EH_RESET_TIMER;
1283
1284         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1285                                                         nvmeq->qid);
1286
1287         spin_lock_irq(&nvmeq->q_lock);
1288         if (!nvmeq->dev->initialized) {
1289                 /*
1290                  * Force cancelled command frees the request, which requires we
1291                  * return BLK_EH_NOT_HANDLED.
1292                  */
1293                 nvme_cancel_queue_ios(nvmeq->hctx, req, nvmeq, reserved);
1294                 ret = BLK_EH_NOT_HANDLED;
1295         } else
1296                 nvme_abort_req(req);
1297         spin_unlock_irq(&nvmeq->q_lock);
1298
1299         return ret;
1300 }
1301
1302 static void nvme_free_queue(struct nvme_queue *nvmeq)
1303 {
1304         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1305                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1306         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1307                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1308         kfree(nvmeq);
1309 }
1310
1311 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1312 {
1313         int i;
1314
1315         for (i = dev->queue_count - 1; i >= lowest; i--) {
1316                 struct nvme_queue *nvmeq = dev->queues[i];
1317                 dev->queue_count--;
1318                 dev->queues[i] = NULL;
1319                 nvme_free_queue(nvmeq);
1320         }
1321 }
1322
1323 /**
1324  * nvme_suspend_queue - put queue into suspended state
1325  * @nvmeq - queue to suspend
1326  */
1327 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1328 {
1329         int vector;
1330
1331         spin_lock_irq(&nvmeq->q_lock);
1332         if (nvmeq->cq_vector == -1) {
1333                 spin_unlock_irq(&nvmeq->q_lock);
1334                 return 1;
1335         }
1336         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1337         nvmeq->dev->online_queues--;
1338         nvmeq->cq_vector = -1;
1339         spin_unlock_irq(&nvmeq->q_lock);
1340
1341         irq_set_affinity_hint(vector, NULL);
1342         free_irq(vector, nvmeq);
1343
1344         return 0;
1345 }
1346
1347 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1348 {
1349         struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1350
1351         spin_lock_irq(&nvmeq->q_lock);
1352         nvme_process_cq(nvmeq);
1353         if (hctx && hctx->tags)
1354                 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1355         spin_unlock_irq(&nvmeq->q_lock);
1356 }
1357
1358 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1359 {
1360         struct nvme_queue *nvmeq = dev->queues[qid];
1361
1362         if (!nvmeq)
1363                 return;
1364         if (nvme_suspend_queue(nvmeq))
1365                 return;
1366
1367         /* Don't tell the adapter to delete the admin queue.
1368          * Don't tell a removed adapter to delete IO queues. */
1369         if (qid && readl(&dev->bar->csts) != -1) {
1370                 adapter_delete_sq(dev, qid);
1371                 adapter_delete_cq(dev, qid);
1372         }
1373         if (!qid && dev->admin_q)
1374                 blk_mq_freeze_queue_start(dev->admin_q);
1375         nvme_clear_queue(nvmeq);
1376 }
1377
1378 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1379                                                         int depth)
1380 {
1381         struct device *dmadev = &dev->pci_dev->dev;
1382         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1383         if (!nvmeq)
1384                 return NULL;
1385
1386         nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1387                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1388         if (!nvmeq->cqes)
1389                 goto free_nvmeq;
1390
1391         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1392                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1393         if (!nvmeq->sq_cmds)
1394                 goto free_cqdma;
1395
1396         nvmeq->q_dmadev = dmadev;
1397         nvmeq->dev = dev;
1398         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1399                         dev->instance, qid);
1400         spin_lock_init(&nvmeq->q_lock);
1401         nvmeq->cq_head = 0;
1402         nvmeq->cq_phase = 1;
1403         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1404         nvmeq->q_depth = depth;
1405         nvmeq->qid = qid;
1406         dev->queue_count++;
1407         dev->queues[qid] = nvmeq;
1408
1409         return nvmeq;
1410
1411  free_cqdma:
1412         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1413                                                         nvmeq->cq_dma_addr);
1414  free_nvmeq:
1415         kfree(nvmeq);
1416         return NULL;
1417 }
1418
1419 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1420                                                         const char *name)
1421 {
1422         if (use_threaded_interrupts)
1423                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1424                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1425                                         name, nvmeq);
1426         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1427                                 IRQF_SHARED, name, nvmeq);
1428 }
1429
1430 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1431 {
1432         struct nvme_dev *dev = nvmeq->dev;
1433
1434         spin_lock_irq(&nvmeq->q_lock);
1435         nvmeq->sq_tail = 0;
1436         nvmeq->cq_head = 0;
1437         nvmeq->cq_phase = 1;
1438         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1439         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1440         dev->online_queues++;
1441         spin_unlock_irq(&nvmeq->q_lock);
1442 }
1443
1444 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1445 {
1446         struct nvme_dev *dev = nvmeq->dev;
1447         int result;
1448
1449         nvmeq->cq_vector = qid - 1;
1450         result = adapter_alloc_cq(dev, qid, nvmeq);
1451         if (result < 0)
1452                 return result;
1453
1454         result = adapter_alloc_sq(dev, qid, nvmeq);
1455         if (result < 0)
1456                 goto release_cq;
1457
1458         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1459         if (result < 0)
1460                 goto release_sq;
1461
1462         nvme_init_queue(nvmeq, qid);
1463         return result;
1464
1465  release_sq:
1466         adapter_delete_sq(dev, qid);
1467  release_cq:
1468         adapter_delete_cq(dev, qid);
1469         return result;
1470 }
1471
1472 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1473 {
1474         unsigned long timeout;
1475         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1476
1477         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1478
1479         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1480                 msleep(100);
1481                 if (fatal_signal_pending(current))
1482                         return -EINTR;
1483                 if (time_after(jiffies, timeout)) {
1484                         dev_err(&dev->pci_dev->dev,
1485                                 "Device not ready; aborting %s\n", enabled ?
1486                                                 "initialisation" : "reset");
1487                         return -ENODEV;
1488                 }
1489         }
1490
1491         return 0;
1492 }
1493
1494 /*
1495  * If the device has been passed off to us in an enabled state, just clear
1496  * the enabled bit.  The spec says we should set the 'shutdown notification
1497  * bits', but doing so may cause the device to complete commands to the
1498  * admin queue ... and we don't know what memory that might be pointing at!
1499  */
1500 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1501 {
1502         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1503         dev->ctrl_config &= ~NVME_CC_ENABLE;
1504         writel(dev->ctrl_config, &dev->bar->cc);
1505
1506         return nvme_wait_ready(dev, cap, false);
1507 }
1508
1509 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1510 {
1511         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1512         dev->ctrl_config |= NVME_CC_ENABLE;
1513         writel(dev->ctrl_config, &dev->bar->cc);
1514
1515         return nvme_wait_ready(dev, cap, true);
1516 }
1517
1518 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1519 {
1520         unsigned long timeout;
1521
1522         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1523         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1524
1525         writel(dev->ctrl_config, &dev->bar->cc);
1526
1527         timeout = SHUTDOWN_TIMEOUT + jiffies;
1528         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1529                                                         NVME_CSTS_SHST_CMPLT) {
1530                 msleep(100);
1531                 if (fatal_signal_pending(current))
1532                         return -EINTR;
1533                 if (time_after(jiffies, timeout)) {
1534                         dev_err(&dev->pci_dev->dev,
1535                                 "Device shutdown incomplete; abort shutdown\n");
1536                         return -ENODEV;
1537                 }
1538         }
1539
1540         return 0;
1541 }
1542
1543 static struct blk_mq_ops nvme_mq_admin_ops = {
1544         .queue_rq       = nvme_admin_queue_rq,
1545         .map_queue      = blk_mq_map_queue,
1546         .init_hctx      = nvme_admin_init_hctx,
1547         .exit_hctx      = nvme_exit_hctx,
1548         .init_request   = nvme_admin_init_request,
1549         .timeout        = nvme_timeout,
1550 };
1551
1552 static struct blk_mq_ops nvme_mq_ops = {
1553         .queue_rq       = nvme_queue_rq,
1554         .map_queue      = blk_mq_map_queue,
1555         .init_hctx      = nvme_init_hctx,
1556         .exit_hctx      = nvme_exit_hctx,
1557         .init_request   = nvme_init_request,
1558         .timeout        = nvme_timeout,
1559 };
1560
1561 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1562 {
1563         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1564                 blk_cleanup_queue(dev->admin_q);
1565                 blk_mq_free_tag_set(&dev->admin_tagset);
1566         }
1567 }
1568
1569 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1570 {
1571         if (!dev->admin_q) {
1572                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1573                 dev->admin_tagset.nr_hw_queues = 1;
1574                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1575                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1576                 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1577                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1578                 dev->admin_tagset.driver_data = dev;
1579
1580                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1581                         return -ENOMEM;
1582
1583                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1584                 if (IS_ERR(dev->admin_q)) {
1585                         blk_mq_free_tag_set(&dev->admin_tagset);
1586                         return -ENOMEM;
1587                 }
1588                 if (!blk_get_queue(dev->admin_q)) {
1589                         nvme_dev_remove_admin(dev);
1590                         return -ENODEV;
1591                 }
1592         } else
1593                 blk_mq_unfreeze_queue(dev->admin_q);
1594
1595         return 0;
1596 }
1597
1598 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1599 {
1600         int result;
1601         u32 aqa;
1602         u64 cap = readq(&dev->bar->cap);
1603         struct nvme_queue *nvmeq;
1604         unsigned page_shift = PAGE_SHIFT;
1605         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1606         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1607
1608         if (page_shift < dev_page_min) {
1609                 dev_err(&dev->pci_dev->dev,
1610                                 "Minimum device page size (%u) too large for "
1611                                 "host (%u)\n", 1 << dev_page_min,
1612                                 1 << page_shift);
1613                 return -ENODEV;
1614         }
1615         if (page_shift > dev_page_max) {
1616                 dev_info(&dev->pci_dev->dev,
1617                                 "Device maximum page size (%u) smaller than "
1618                                 "host (%u); enabling work-around\n",
1619                                 1 << dev_page_max, 1 << page_shift);
1620                 page_shift = dev_page_max;
1621         }
1622
1623         result = nvme_disable_ctrl(dev, cap);
1624         if (result < 0)
1625                 return result;
1626
1627         nvmeq = dev->queues[0];
1628         if (!nvmeq) {
1629                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1630                 if (!nvmeq)
1631                         return -ENOMEM;
1632         }
1633
1634         aqa = nvmeq->q_depth - 1;
1635         aqa |= aqa << 16;
1636
1637         dev->page_size = 1 << page_shift;
1638
1639         dev->ctrl_config = NVME_CC_CSS_NVM;
1640         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1641         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1642         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1643
1644         writel(aqa, &dev->bar->aqa);
1645         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1646         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1647
1648         result = nvme_enable_ctrl(dev, cap);
1649         if (result)
1650                 goto free_nvmeq;
1651
1652         nvmeq->cq_vector = 0;
1653         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1654         if (result)
1655                 goto free_nvmeq;
1656
1657         return result;
1658
1659  free_nvmeq:
1660         nvme_free_queues(dev, 0);
1661         return result;
1662 }
1663
1664 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1665                                 unsigned long addr, unsigned length)
1666 {
1667         int i, err, count, nents, offset;
1668         struct scatterlist *sg;
1669         struct page **pages;
1670         struct nvme_iod *iod;
1671
1672         if (addr & 3)
1673                 return ERR_PTR(-EINVAL);
1674         if (!length || length > INT_MAX - PAGE_SIZE)
1675                 return ERR_PTR(-EINVAL);
1676
1677         offset = offset_in_page(addr);
1678         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1679         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1680         if (!pages)
1681                 return ERR_PTR(-ENOMEM);
1682
1683         err = get_user_pages_fast(addr, count, 1, pages);
1684         if (err < count) {
1685                 count = err;
1686                 err = -EFAULT;
1687                 goto put_pages;
1688         }
1689
1690         err = -ENOMEM;
1691         iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1692         if (!iod)
1693                 goto put_pages;
1694
1695         sg = iod->sg;
1696         sg_init_table(sg, count);
1697         for (i = 0; i < count; i++) {
1698                 sg_set_page(&sg[i], pages[i],
1699                             min_t(unsigned, length, PAGE_SIZE - offset),
1700                             offset);
1701                 length -= (PAGE_SIZE - offset);
1702                 offset = 0;
1703         }
1704         sg_mark_end(&sg[i - 1]);
1705         iod->nents = count;
1706
1707         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1708                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1709         if (!nents)
1710                 goto free_iod;
1711
1712         kfree(pages);
1713         return iod;
1714
1715  free_iod:
1716         kfree(iod);
1717  put_pages:
1718         for (i = 0; i < count; i++)
1719                 put_page(pages[i]);
1720         kfree(pages);
1721         return ERR_PTR(err);
1722 }
1723
1724 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1725                         struct nvme_iod *iod)
1726 {
1727         int i;
1728
1729         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1730                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1731
1732         for (i = 0; i < iod->nents; i++)
1733                 put_page(sg_page(&iod->sg[i]));
1734 }
1735
1736 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1737 {
1738         struct nvme_dev *dev = ns->dev;
1739         struct nvme_user_io io;
1740         struct nvme_command c;
1741         unsigned length, meta_len;
1742         int status, i;
1743         struct nvme_iod *iod, *meta_iod = NULL;
1744         dma_addr_t meta_dma_addr;
1745         void *meta, *uninitialized_var(meta_mem);
1746
1747         if (copy_from_user(&io, uio, sizeof(io)))
1748                 return -EFAULT;
1749         length = (io.nblocks + 1) << ns->lba_shift;
1750         meta_len = (io.nblocks + 1) * ns->ms;
1751
1752         if (meta_len && ((io.metadata & 3) || !io.metadata))
1753                 return -EINVAL;
1754
1755         switch (io.opcode) {
1756         case nvme_cmd_write:
1757         case nvme_cmd_read:
1758         case nvme_cmd_compare:
1759                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1760                 break;
1761         default:
1762                 return -EINVAL;
1763         }
1764
1765         if (IS_ERR(iod))
1766                 return PTR_ERR(iod);
1767
1768         memset(&c, 0, sizeof(c));
1769         c.rw.opcode = io.opcode;
1770         c.rw.flags = io.flags;
1771         c.rw.nsid = cpu_to_le32(ns->ns_id);
1772         c.rw.slba = cpu_to_le64(io.slba);
1773         c.rw.length = cpu_to_le16(io.nblocks);
1774         c.rw.control = cpu_to_le16(io.control);
1775         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1776         c.rw.reftag = cpu_to_le32(io.reftag);
1777         c.rw.apptag = cpu_to_le16(io.apptag);
1778         c.rw.appmask = cpu_to_le16(io.appmask);
1779
1780         if (meta_len) {
1781                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1782                                                                 meta_len);
1783                 if (IS_ERR(meta_iod)) {
1784                         status = PTR_ERR(meta_iod);
1785                         meta_iod = NULL;
1786                         goto unmap;
1787                 }
1788
1789                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1790                                                 &meta_dma_addr, GFP_KERNEL);
1791                 if (!meta_mem) {
1792                         status = -ENOMEM;
1793                         goto unmap;
1794                 }
1795
1796                 if (io.opcode & 1) {
1797                         int meta_offset = 0;
1798
1799                         for (i = 0; i < meta_iod->nents; i++) {
1800                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1801                                                 meta_iod->sg[i].offset;
1802                                 memcpy(meta_mem + meta_offset, meta,
1803                                                 meta_iod->sg[i].length);
1804                                 kunmap_atomic(meta);
1805                                 meta_offset += meta_iod->sg[i].length;
1806                         }
1807                 }
1808
1809                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1810         }
1811
1812         length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1813         c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1814         c.rw.prp2 = cpu_to_le64(iod->first_dma);
1815
1816         if (length != (io.nblocks + 1) << ns->lba_shift)
1817                 status = -ENOMEM;
1818         else
1819                 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1820
1821         if (meta_len) {
1822                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1823                         int meta_offset = 0;
1824
1825                         for (i = 0; i < meta_iod->nents; i++) {
1826                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1827                                                 meta_iod->sg[i].offset;
1828                                 memcpy(meta, meta_mem + meta_offset,
1829                                                 meta_iod->sg[i].length);
1830                                 kunmap_atomic(meta);
1831                                 meta_offset += meta_iod->sg[i].length;
1832                         }
1833                 }
1834
1835                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1836                                                                 meta_dma_addr);
1837         }
1838
1839  unmap:
1840         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1841         nvme_free_iod(dev, iod);
1842
1843         if (meta_iod) {
1844                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1845                 nvme_free_iod(dev, meta_iod);
1846         }
1847
1848         return status;
1849 }
1850
1851 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1852                         struct nvme_passthru_cmd __user *ucmd)
1853 {
1854         struct nvme_passthru_cmd cmd;
1855         struct nvme_command c;
1856         int status, length;
1857         struct nvme_iod *uninitialized_var(iod);
1858         unsigned timeout;
1859
1860         if (!capable(CAP_SYS_ADMIN))
1861                 return -EACCES;
1862         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1863                 return -EFAULT;
1864
1865         memset(&c, 0, sizeof(c));
1866         c.common.opcode = cmd.opcode;
1867         c.common.flags = cmd.flags;
1868         c.common.nsid = cpu_to_le32(cmd.nsid);
1869         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1870         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1871         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1872         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1873         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1874         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1875         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1876         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1877
1878         length = cmd.data_len;
1879         if (cmd.data_len) {
1880                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1881                                                                 length);
1882                 if (IS_ERR(iod))
1883                         return PTR_ERR(iod);
1884                 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1885                 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1886                 c.common.prp2 = cpu_to_le64(iod->first_dma);
1887         }
1888
1889         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1890                                                                 ADMIN_TIMEOUT;
1891
1892         if (length != cmd.data_len)
1893                 status = -ENOMEM;
1894         else if (ns) {
1895                 struct request *req;
1896
1897                 req = blk_mq_alloc_request(ns->queue, WRITE,
1898                                                 (GFP_KERNEL|__GFP_WAIT), false);
1899                 if (IS_ERR(req))
1900                         status = PTR_ERR(req);
1901                 else {
1902                         status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1903                                                                 timeout);
1904                         blk_mq_free_request(req);
1905                 }
1906         } else
1907                 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1908
1909         if (cmd.data_len) {
1910                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1911                 nvme_free_iod(dev, iod);
1912         }
1913
1914         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1915                                                         sizeof(cmd.result)))
1916                 status = -EFAULT;
1917
1918         return status;
1919 }
1920
1921 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1922                                                         unsigned long arg)
1923 {
1924         struct nvme_ns *ns = bdev->bd_disk->private_data;
1925
1926         switch (cmd) {
1927         case NVME_IOCTL_ID:
1928                 force_successful_syscall_return();
1929                 return ns->ns_id;
1930         case NVME_IOCTL_ADMIN_CMD:
1931                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1932         case NVME_IOCTL_IO_CMD:
1933                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1934         case NVME_IOCTL_SUBMIT_IO:
1935                 return nvme_submit_io(ns, (void __user *)arg);
1936         case SG_GET_VERSION_NUM:
1937                 return nvme_sg_get_version_num((void __user *)arg);
1938         case SG_IO:
1939                 return nvme_sg_io(ns, (void __user *)arg);
1940         default:
1941                 return -ENOTTY;
1942         }
1943 }
1944
1945 #ifdef CONFIG_COMPAT
1946 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1947                                         unsigned int cmd, unsigned long arg)
1948 {
1949         switch (cmd) {
1950         case SG_IO:
1951                 return -ENOIOCTLCMD;
1952         }
1953         return nvme_ioctl(bdev, mode, cmd, arg);
1954 }
1955 #else
1956 #define nvme_compat_ioctl       NULL
1957 #endif
1958
1959 static int nvme_open(struct block_device *bdev, fmode_t mode)
1960 {
1961         int ret = 0;
1962         struct nvme_ns *ns;
1963
1964         spin_lock(&dev_list_lock);
1965         ns = bdev->bd_disk->private_data;
1966         if (!ns)
1967                 ret = -ENXIO;
1968         else if (!kref_get_unless_zero(&ns->dev->kref))
1969                 ret = -ENXIO;
1970         spin_unlock(&dev_list_lock);
1971
1972         return ret;
1973 }
1974
1975 static void nvme_free_dev(struct kref *kref);
1976
1977 static void nvme_release(struct gendisk *disk, fmode_t mode)
1978 {
1979         struct nvme_ns *ns = disk->private_data;
1980         struct nvme_dev *dev = ns->dev;
1981
1982         kref_put(&dev->kref, nvme_free_dev);
1983 }
1984
1985 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1986 {
1987         /* some standard values */
1988         geo->heads = 1 << 6;
1989         geo->sectors = 1 << 5;
1990         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1991         return 0;
1992 }
1993
1994 static void nvme_config_discard(struct nvme_ns *ns)
1995 {
1996         u32 logical_block_size = queue_logical_block_size(ns->queue);
1997         ns->queue->limits.discard_zeroes_data = 0;
1998         ns->queue->limits.discard_alignment = logical_block_size;
1999         ns->queue->limits.discard_granularity = logical_block_size;
2000         ns->queue->limits.max_discard_sectors = 0xffffffff;
2001         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
2002 }
2003
2004 static int nvme_noop_verify(struct blk_integrity_iter *iter)
2005 {
2006         return 0;
2007 }
2008
2009 static int nvme_noop_generate(struct blk_integrity_iter *iter)
2010 {
2011         return 0;
2012 }
2013
2014 struct blk_integrity nvme_meta_noop = {
2015         .name                   = "NVME_META_NOOP",
2016         .generate_fn            = nvme_noop_generate,
2017         .verify_fn              = nvme_noop_verify,
2018 };
2019
2020 static void nvme_init_integrity(struct nvme_ns *ns)
2021 {
2022         struct blk_integrity integrity;
2023
2024         switch (ns->pi_type) {
2025         case NVME_NS_DPS_PI_TYPE3:
2026                 integrity = t10_pi_type3_crc;
2027                 break;
2028         case NVME_NS_DPS_PI_TYPE1:
2029         case NVME_NS_DPS_PI_TYPE2:
2030                 integrity = t10_pi_type1_crc;
2031                 break;
2032         default:
2033                 integrity = nvme_meta_noop;
2034                 break;
2035         }
2036         integrity.tuple_size = ns->ms;
2037         blk_integrity_register(ns->disk, &integrity);
2038         blk_queue_max_integrity_segments(ns->queue, 1);
2039 }
2040
2041 static int nvme_revalidate_disk(struct gendisk *disk)
2042 {
2043         struct nvme_ns *ns = disk->private_data;
2044         struct nvme_dev *dev = ns->dev;
2045         struct nvme_id_ns *id;
2046         dma_addr_t dma_addr;
2047         int lbaf, pi_type, old_ms;
2048         unsigned short bs;
2049
2050         id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
2051                                                                 GFP_KERNEL);
2052         if (!id) {
2053                 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
2054                                                                 __func__);
2055                 return 0;
2056         }
2057         if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2058                 dev_warn(&dev->pci_dev->dev,
2059                         "identify failed ns:%d, setting capacity to 0\n",
2060                         ns->ns_id);
2061                 memset(id, 0, sizeof(*id));
2062         }
2063
2064         old_ms = ns->ms;
2065         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2066         ns->lba_shift = id->lbaf[lbaf].ds;
2067         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2068
2069         /*
2070          * If identify namespace failed, use default 512 byte block size so
2071          * block layer can use before failing read/write for 0 capacity.
2072          */
2073         if (ns->lba_shift == 0)
2074                 ns->lba_shift = 9;
2075         bs = 1 << ns->lba_shift;
2076
2077         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2078         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2079                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
2080
2081         if (disk->integrity && (ns->pi_type != pi_type || ns->ms != old_ms ||
2082                                 bs != queue_logical_block_size(disk->queue) ||
2083                                 (ns->ms && id->flbas & NVME_NS_FLBAS_META_EXT)))
2084                 blk_integrity_unregister(disk);
2085
2086         ns->pi_type = pi_type;
2087         blk_queue_logical_block_size(ns->queue, bs);
2088
2089         if (ns->ms && !disk->integrity && (disk->flags & GENHD_FL_UP) &&
2090                                 !(id->flbas & NVME_NS_FLBAS_META_EXT))
2091                 nvme_init_integrity(ns);
2092
2093         if (id->ncap == 0 || (ns->ms && !disk->integrity))
2094                 set_capacity(disk, 0);
2095         else
2096                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2097
2098         if (dev->oncs & NVME_CTRL_ONCS_DSM)
2099                 nvme_config_discard(ns);
2100
2101         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2102         return 0;
2103 }
2104
2105 static const struct block_device_operations nvme_fops = {
2106         .owner          = THIS_MODULE,
2107         .ioctl          = nvme_ioctl,
2108         .compat_ioctl   = nvme_compat_ioctl,
2109         .open           = nvme_open,
2110         .release        = nvme_release,
2111         .getgeo         = nvme_getgeo,
2112         .revalidate_disk= nvme_revalidate_disk,
2113 };
2114
2115 static int nvme_kthread(void *data)
2116 {
2117         struct nvme_dev *dev, *next;
2118
2119         while (!kthread_should_stop()) {
2120                 set_current_state(TASK_INTERRUPTIBLE);
2121                 spin_lock(&dev_list_lock);
2122                 list_for_each_entry_safe(dev, next, &dev_list, node) {
2123                         int i;
2124                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
2125                                                         dev->initialized) {
2126                                 if (work_busy(&dev->reset_work))
2127                                         continue;
2128                                 list_del_init(&dev->node);
2129                                 dev_warn(&dev->pci_dev->dev,
2130                                         "Failed status: %x, reset controller\n",
2131                                         readl(&dev->bar->csts));
2132                                 dev->reset_workfn = nvme_reset_failed_dev;
2133                                 queue_work(nvme_workq, &dev->reset_work);
2134                                 continue;
2135                         }
2136                         for (i = 0; i < dev->queue_count; i++) {
2137                                 struct nvme_queue *nvmeq = dev->queues[i];
2138                                 if (!nvmeq)
2139                                         continue;
2140                                 spin_lock_irq(&nvmeq->q_lock);
2141                                 nvme_process_cq(nvmeq);
2142
2143                                 while ((i == 0) && (dev->event_limit > 0)) {
2144                                         if (nvme_submit_async_admin_req(dev))
2145                                                 break;
2146                                         dev->event_limit--;
2147                                 }
2148                                 spin_unlock_irq(&nvmeq->q_lock);
2149                         }
2150                 }
2151                 spin_unlock(&dev_list_lock);
2152                 schedule_timeout(round_jiffies_relative(HZ));
2153         }
2154         return 0;
2155 }
2156
2157 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2158 {
2159         struct nvme_ns *ns;
2160         struct gendisk *disk;
2161         int node = dev_to_node(&dev->pci_dev->dev);
2162
2163         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2164         if (!ns)
2165                 return;
2166
2167         ns->queue = blk_mq_init_queue(&dev->tagset);
2168         if (IS_ERR(ns->queue))
2169                 goto out_free_ns;
2170         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2171         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2172         queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2173         ns->dev = dev;
2174         ns->queue->queuedata = ns;
2175
2176         disk = alloc_disk_node(0, node);
2177         if (!disk)
2178                 goto out_free_queue;
2179
2180         ns->ns_id = nsid;
2181         ns->disk = disk;
2182         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2183         list_add_tail(&ns->list, &dev->namespaces);
2184
2185         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2186         if (dev->max_hw_sectors)
2187                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2188         if (dev->stripe_size)
2189                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2190         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2191                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2192
2193         disk->major = nvme_major;
2194         disk->first_minor = 0;
2195         disk->fops = &nvme_fops;
2196         disk->private_data = ns;
2197         disk->queue = ns->queue;
2198         disk->driverfs_dev = dev->device;
2199         disk->flags = GENHD_FL_EXT_DEVT;
2200         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2201
2202         /*
2203          * Initialize capacity to 0 until we establish the namespace format and
2204          * setup integrity extentions if necessary. The revalidate_disk after
2205          * add_disk allows the driver to register with integrity if the format
2206          * requires it.
2207          */
2208         set_capacity(disk, 0);
2209         nvme_revalidate_disk(ns->disk);
2210         add_disk(ns->disk);
2211         if (ns->ms)
2212                 revalidate_disk(ns->disk);
2213         return;
2214  out_free_queue:
2215         blk_cleanup_queue(ns->queue);
2216  out_free_ns:
2217         kfree(ns);
2218 }
2219
2220 static void nvme_create_io_queues(struct nvme_dev *dev)
2221 {
2222         unsigned i;
2223
2224         for (i = dev->queue_count; i <= dev->max_qid; i++)
2225                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2226                         break;
2227
2228         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2229                 if (nvme_create_queue(dev->queues[i], i))
2230                         break;
2231 }
2232
2233 static int set_queue_count(struct nvme_dev *dev, int count)
2234 {
2235         int status;
2236         u32 result;
2237         u32 q_count = (count - 1) | ((count - 1) << 16);
2238
2239         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2240                                                                 &result);
2241         if (status < 0)
2242                 return status;
2243         if (status > 0) {
2244                 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2245                                                                         status);
2246                 return 0;
2247         }
2248         return min(result & 0xffff, result >> 16) + 1;
2249 }
2250
2251 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2252 {
2253         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2254 }
2255
2256 static int nvme_setup_io_queues(struct nvme_dev *dev)
2257 {
2258         struct nvme_queue *adminq = dev->queues[0];
2259         struct pci_dev *pdev = dev->pci_dev;
2260         int result, i, vecs, nr_io_queues, size;
2261
2262         nr_io_queues = num_possible_cpus();
2263         result = set_queue_count(dev, nr_io_queues);
2264         if (result <= 0)
2265                 return result;
2266         if (result < nr_io_queues)
2267                 nr_io_queues = result;
2268
2269         size = db_bar_size(dev, nr_io_queues);
2270         if (size > 8192) {
2271                 iounmap(dev->bar);
2272                 do {
2273                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2274                         if (dev->bar)
2275                                 break;
2276                         if (!--nr_io_queues)
2277                                 return -ENOMEM;
2278                         size = db_bar_size(dev, nr_io_queues);
2279                 } while (1);
2280                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2281                 adminq->q_db = dev->dbs;
2282         }
2283
2284         /* Deregister the admin queue's interrupt */
2285         free_irq(dev->entry[0].vector, adminq);
2286
2287         /*
2288          * If we enable msix early due to not intx, disable it again before
2289          * setting up the full range we need.
2290          */
2291         if (!pdev->irq)
2292                 pci_disable_msix(pdev);
2293
2294         for (i = 0; i < nr_io_queues; i++)
2295                 dev->entry[i].entry = i;
2296         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2297         if (vecs < 0) {
2298                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2299                 if (vecs < 0) {
2300                         vecs = 1;
2301                 } else {
2302                         for (i = 0; i < vecs; i++)
2303                                 dev->entry[i].vector = i + pdev->irq;
2304                 }
2305         }
2306
2307         /*
2308          * Should investigate if there's a performance win from allocating
2309          * more queues than interrupt vectors; it might allow the submission
2310          * path to scale better, even if the receive path is limited by the
2311          * number of interrupts.
2312          */
2313         nr_io_queues = vecs;
2314         dev->max_qid = nr_io_queues;
2315
2316         result = queue_request_irq(dev, adminq, adminq->irqname);
2317         if (result)
2318                 goto free_queues;
2319
2320         /* Free previously allocated queues that are no longer usable */
2321         nvme_free_queues(dev, nr_io_queues + 1);
2322         nvme_create_io_queues(dev);
2323
2324         return 0;
2325
2326  free_queues:
2327         nvme_free_queues(dev, 1);
2328         return result;
2329 }
2330
2331 /*
2332  * Return: error value if an error occurred setting up the queues or calling
2333  * Identify Device.  0 if these succeeded, even if adding some of the
2334  * namespaces failed.  At the moment, these failures are silent.  TBD which
2335  * failures should be reported.
2336  */
2337 static int nvme_dev_add(struct nvme_dev *dev)
2338 {
2339         struct pci_dev *pdev = dev->pci_dev;
2340         int res;
2341         unsigned nn, i;
2342         struct nvme_id_ctrl *ctrl;
2343         void *mem;
2344         dma_addr_t dma_addr;
2345         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2346
2347         mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
2348         if (!mem)
2349                 return -ENOMEM;
2350
2351         res = nvme_identify(dev, 0, 1, dma_addr);
2352         if (res) {
2353                 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2354                 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2355                 return -EIO;
2356         }
2357
2358         ctrl = mem;
2359         nn = le32_to_cpup(&ctrl->nn);
2360         dev->oncs = le16_to_cpup(&ctrl->oncs);
2361         dev->abort_limit = ctrl->acl + 1;
2362         dev->vwc = ctrl->vwc;
2363         dev->event_limit = min(ctrl->aerl + 1, 8);
2364         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2365         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2366         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2367         if (ctrl->mdts)
2368                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2369         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2370                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2371                 unsigned int max_hw_sectors;
2372
2373                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2374                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2375                 if (dev->max_hw_sectors) {
2376                         dev->max_hw_sectors = min(max_hw_sectors,
2377                                                         dev->max_hw_sectors);
2378                 } else
2379                         dev->max_hw_sectors = max_hw_sectors;
2380         }
2381         dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2382
2383         dev->tagset.ops = &nvme_mq_ops;
2384         dev->tagset.nr_hw_queues = dev->online_queues - 1;
2385         dev->tagset.timeout = NVME_IO_TIMEOUT;
2386         dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2387         dev->tagset.queue_depth =
2388                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2389         dev->tagset.cmd_size = nvme_cmd_size(dev);
2390         dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2391         dev->tagset.driver_data = dev;
2392
2393         if (blk_mq_alloc_tag_set(&dev->tagset))
2394                 return 0;
2395
2396         for (i = 1; i <= nn; i++)
2397                 nvme_alloc_ns(dev, i);
2398
2399         return 0;
2400 }
2401
2402 static int nvme_dev_map(struct nvme_dev *dev)
2403 {
2404         u64 cap;
2405         int bars, result = -ENOMEM;
2406         struct pci_dev *pdev = dev->pci_dev;
2407
2408         if (pci_enable_device_mem(pdev))
2409                 return result;
2410
2411         dev->entry[0].vector = pdev->irq;
2412         pci_set_master(pdev);
2413         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2414         if (!bars)
2415                 goto disable_pci;
2416
2417         if (pci_request_selected_regions(pdev, bars, "nvme"))
2418                 goto disable_pci;
2419
2420         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2421             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2422                 goto disable;
2423
2424         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2425         if (!dev->bar)
2426                 goto disable;
2427
2428         if (readl(&dev->bar->csts) == -1) {
2429                 result = -ENODEV;
2430                 goto unmap;
2431         }
2432
2433         /*
2434          * Some devices don't advertse INTx interrupts, pre-enable a single
2435          * MSIX vec for setup. We'll adjust this later.
2436          */
2437         if (!pdev->irq) {
2438                 result = pci_enable_msix(pdev, dev->entry, 1);
2439                 if (result < 0)
2440                         goto unmap;
2441         }
2442
2443         cap = readq(&dev->bar->cap);
2444         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2445         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2446         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2447
2448         return 0;
2449
2450  unmap:
2451         iounmap(dev->bar);
2452         dev->bar = NULL;
2453  disable:
2454         pci_release_regions(pdev);
2455  disable_pci:
2456         pci_disable_device(pdev);
2457         return result;
2458 }
2459
2460 static void nvme_dev_unmap(struct nvme_dev *dev)
2461 {
2462         if (dev->pci_dev->msi_enabled)
2463                 pci_disable_msi(dev->pci_dev);
2464         else if (dev->pci_dev->msix_enabled)
2465                 pci_disable_msix(dev->pci_dev);
2466
2467         if (dev->bar) {
2468                 iounmap(dev->bar);
2469                 dev->bar = NULL;
2470                 pci_release_regions(dev->pci_dev);
2471         }
2472
2473         if (pci_is_enabled(dev->pci_dev))
2474                 pci_disable_device(dev->pci_dev);
2475 }
2476
2477 struct nvme_delq_ctx {
2478         struct task_struct *waiter;
2479         struct kthread_worker *worker;
2480         atomic_t refcount;
2481 };
2482
2483 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2484 {
2485         dq->waiter = current;
2486         mb();
2487
2488         for (;;) {
2489                 set_current_state(TASK_KILLABLE);
2490                 if (!atomic_read(&dq->refcount))
2491                         break;
2492                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2493                                         fatal_signal_pending(current)) {
2494                         /*
2495                          * Disable the controller first since we can't trust it
2496                          * at this point, but leave the admin queue enabled
2497                          * until all queue deletion requests are flushed.
2498                          * FIXME: This may take a while if there are more h/w
2499                          * queues than admin tags.
2500                          */
2501                         set_current_state(TASK_RUNNING);
2502                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2503                         nvme_clear_queue(dev->queues[0]);
2504                         flush_kthread_worker(dq->worker);
2505                         nvme_disable_queue(dev, 0);
2506                         return;
2507                 }
2508         }
2509         set_current_state(TASK_RUNNING);
2510 }
2511
2512 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2513 {
2514         atomic_dec(&dq->refcount);
2515         if (dq->waiter)
2516                 wake_up_process(dq->waiter);
2517 }
2518
2519 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2520 {
2521         atomic_inc(&dq->refcount);
2522         return dq;
2523 }
2524
2525 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2526 {
2527         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2528
2529         nvme_clear_queue(nvmeq);
2530         nvme_put_dq(dq);
2531 }
2532
2533 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2534                                                 kthread_work_func_t fn)
2535 {
2536         struct nvme_command c;
2537
2538         memset(&c, 0, sizeof(c));
2539         c.delete_queue.opcode = opcode;
2540         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2541
2542         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2543         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2544                                                                 ADMIN_TIMEOUT);
2545 }
2546
2547 static void nvme_del_cq_work_handler(struct kthread_work *work)
2548 {
2549         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2550                                                         cmdinfo.work);
2551         nvme_del_queue_end(nvmeq);
2552 }
2553
2554 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2555 {
2556         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2557                                                 nvme_del_cq_work_handler);
2558 }
2559
2560 static void nvme_del_sq_work_handler(struct kthread_work *work)
2561 {
2562         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2563                                                         cmdinfo.work);
2564         int status = nvmeq->cmdinfo.status;
2565
2566         if (!status)
2567                 status = nvme_delete_cq(nvmeq);
2568         if (status)
2569                 nvme_del_queue_end(nvmeq);
2570 }
2571
2572 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2573 {
2574         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2575                                                 nvme_del_sq_work_handler);
2576 }
2577
2578 static void nvme_del_queue_start(struct kthread_work *work)
2579 {
2580         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2581                                                         cmdinfo.work);
2582         if (nvme_delete_sq(nvmeq))
2583                 nvme_del_queue_end(nvmeq);
2584 }
2585
2586 static void nvme_disable_io_queues(struct nvme_dev *dev)
2587 {
2588         int i;
2589         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2590         struct nvme_delq_ctx dq;
2591         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2592                                         &worker, "nvme%d", dev->instance);
2593
2594         if (IS_ERR(kworker_task)) {
2595                 dev_err(&dev->pci_dev->dev,
2596                         "Failed to create queue del task\n");
2597                 for (i = dev->queue_count - 1; i > 0; i--)
2598                         nvme_disable_queue(dev, i);
2599                 return;
2600         }
2601
2602         dq.waiter = NULL;
2603         atomic_set(&dq.refcount, 0);
2604         dq.worker = &worker;
2605         for (i = dev->queue_count - 1; i > 0; i--) {
2606                 struct nvme_queue *nvmeq = dev->queues[i];
2607
2608                 if (nvme_suspend_queue(nvmeq))
2609                         continue;
2610                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2611                 nvmeq->cmdinfo.worker = dq.worker;
2612                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2613                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2614         }
2615         nvme_wait_dq(&dq, dev);
2616         kthread_stop(kworker_task);
2617 }
2618
2619 /*
2620 * Remove the node from the device list and check
2621 * for whether or not we need to stop the nvme_thread.
2622 */
2623 static void nvme_dev_list_remove(struct nvme_dev *dev)
2624 {
2625         struct task_struct *tmp = NULL;
2626
2627         spin_lock(&dev_list_lock);
2628         list_del_init(&dev->node);
2629         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2630                 tmp = nvme_thread;
2631                 nvme_thread = NULL;
2632         }
2633         spin_unlock(&dev_list_lock);
2634
2635         if (tmp)
2636                 kthread_stop(tmp);
2637 }
2638
2639 static void nvme_freeze_queues(struct nvme_dev *dev)
2640 {
2641         struct nvme_ns *ns;
2642
2643         list_for_each_entry(ns, &dev->namespaces, list) {
2644                 blk_mq_freeze_queue_start(ns->queue);
2645
2646                 spin_lock(ns->queue->queue_lock);
2647                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2648                 spin_unlock(ns->queue->queue_lock);
2649
2650                 blk_mq_cancel_requeue_work(ns->queue);
2651                 blk_mq_stop_hw_queues(ns->queue);
2652         }
2653 }
2654
2655 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2656 {
2657         struct nvme_ns *ns;
2658
2659         list_for_each_entry(ns, &dev->namespaces, list) {
2660                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2661                 blk_mq_unfreeze_queue(ns->queue);
2662                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2663                 blk_mq_kick_requeue_list(ns->queue);
2664         }
2665 }
2666
2667 static void nvme_dev_shutdown(struct nvme_dev *dev)
2668 {
2669         int i;
2670         u32 csts = -1;
2671
2672         dev->initialized = 0;
2673         nvme_dev_list_remove(dev);
2674
2675         if (dev->bar) {
2676                 nvme_freeze_queues(dev);
2677                 csts = readl(&dev->bar->csts);
2678         }
2679         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2680                 for (i = dev->queue_count - 1; i >= 0; i--) {
2681                         struct nvme_queue *nvmeq = dev->queues[i];
2682                         nvme_suspend_queue(nvmeq);
2683                         nvme_clear_queue(nvmeq);
2684                 }
2685         } else {
2686                 nvme_disable_io_queues(dev);
2687                 nvme_shutdown_ctrl(dev);
2688                 nvme_disable_queue(dev, 0);
2689         }
2690         nvme_dev_unmap(dev);
2691 }
2692
2693 static void nvme_dev_remove(struct nvme_dev *dev)
2694 {
2695         struct nvme_ns *ns;
2696
2697         list_for_each_entry(ns, &dev->namespaces, list) {
2698                 if (ns->disk->flags & GENHD_FL_UP) {
2699                         if (ns->disk->integrity)
2700                                 blk_integrity_unregister(ns->disk);
2701                         del_gendisk(ns->disk);
2702                 }
2703                 if (!blk_queue_dying(ns->queue)) {
2704                         blk_mq_abort_requeue_list(ns->queue);
2705                         blk_cleanup_queue(ns->queue);
2706                 }
2707         }
2708 }
2709
2710 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2711 {
2712         struct device *dmadev = &dev->pci_dev->dev;
2713         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2714                                                 PAGE_SIZE, PAGE_SIZE, 0);
2715         if (!dev->prp_page_pool)
2716                 return -ENOMEM;
2717
2718         /* Optimisation for I/Os between 4k and 128k */
2719         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2720                                                 256, 256, 0);
2721         if (!dev->prp_small_pool) {
2722                 dma_pool_destroy(dev->prp_page_pool);
2723                 return -ENOMEM;
2724         }
2725         return 0;
2726 }
2727
2728 static void nvme_release_prp_pools(struct nvme_dev *dev)
2729 {
2730         dma_pool_destroy(dev->prp_page_pool);
2731         dma_pool_destroy(dev->prp_small_pool);
2732 }
2733
2734 static DEFINE_IDA(nvme_instance_ida);
2735
2736 static int nvme_set_instance(struct nvme_dev *dev)
2737 {
2738         int instance, error;
2739
2740         do {
2741                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2742                         return -ENODEV;
2743
2744                 spin_lock(&dev_list_lock);
2745                 error = ida_get_new(&nvme_instance_ida, &instance);
2746                 spin_unlock(&dev_list_lock);
2747         } while (error == -EAGAIN);
2748
2749         if (error)
2750                 return -ENODEV;
2751
2752         dev->instance = instance;
2753         return 0;
2754 }
2755
2756 static void nvme_release_instance(struct nvme_dev *dev)
2757 {
2758         spin_lock(&dev_list_lock);
2759         ida_remove(&nvme_instance_ida, dev->instance);
2760         spin_unlock(&dev_list_lock);
2761 }
2762
2763 static void nvme_free_namespaces(struct nvme_dev *dev)
2764 {
2765         struct nvme_ns *ns, *next;
2766
2767         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2768                 list_del(&ns->list);
2769
2770                 spin_lock(&dev_list_lock);
2771                 ns->disk->private_data = NULL;
2772                 spin_unlock(&dev_list_lock);
2773
2774                 put_disk(ns->disk);
2775                 kfree(ns);
2776         }
2777 }
2778
2779 static void nvme_free_dev(struct kref *kref)
2780 {
2781         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2782
2783         pci_dev_put(dev->pci_dev);
2784         put_device(dev->device);
2785         nvme_free_namespaces(dev);
2786         nvme_release_instance(dev);
2787         blk_mq_free_tag_set(&dev->tagset);
2788         blk_put_queue(dev->admin_q);
2789         kfree(dev->queues);
2790         kfree(dev->entry);
2791         kfree(dev);
2792 }
2793
2794 static int nvme_dev_open(struct inode *inode, struct file *f)
2795 {
2796         struct nvme_dev *dev;
2797         int instance = iminor(inode);
2798         int ret = -ENODEV;
2799
2800         spin_lock(&dev_list_lock);
2801         list_for_each_entry(dev, &dev_list, node) {
2802                 if (dev->instance == instance) {
2803                         if (!dev->admin_q) {
2804                                 ret = -EWOULDBLOCK;
2805                                 break;
2806                         }
2807                         if (!kref_get_unless_zero(&dev->kref))
2808                                 break;
2809                         f->private_data = dev;
2810                         ret = 0;
2811                         break;
2812                 }
2813         }
2814         spin_unlock(&dev_list_lock);
2815
2816         return ret;
2817 }
2818
2819 static int nvme_dev_release(struct inode *inode, struct file *f)
2820 {
2821         struct nvme_dev *dev = f->private_data;
2822         kref_put(&dev->kref, nvme_free_dev);
2823         return 0;
2824 }
2825
2826 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2827 {
2828         struct nvme_dev *dev = f->private_data;
2829         struct nvme_ns *ns;
2830
2831         switch (cmd) {
2832         case NVME_IOCTL_ADMIN_CMD:
2833                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2834         case NVME_IOCTL_IO_CMD:
2835                 if (list_empty(&dev->namespaces))
2836                         return -ENOTTY;
2837                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2838                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2839         default:
2840                 return -ENOTTY;
2841         }
2842 }
2843
2844 static const struct file_operations nvme_dev_fops = {
2845         .owner          = THIS_MODULE,
2846         .open           = nvme_dev_open,
2847         .release        = nvme_dev_release,
2848         .unlocked_ioctl = nvme_dev_ioctl,
2849         .compat_ioctl   = nvme_dev_ioctl,
2850 };
2851
2852 static void nvme_set_irq_hints(struct nvme_dev *dev)
2853 {
2854         struct nvme_queue *nvmeq;
2855         int i;
2856
2857         for (i = 0; i < dev->online_queues; i++) {
2858                 nvmeq = dev->queues[i];
2859
2860                 if (!nvmeq->hctx)
2861                         continue;
2862
2863                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2864                                                         nvmeq->hctx->cpumask);
2865         }
2866 }
2867
2868 static int nvme_dev_start(struct nvme_dev *dev)
2869 {
2870         int result;
2871         bool start_thread = false;
2872
2873         result = nvme_dev_map(dev);
2874         if (result)
2875                 return result;
2876
2877         result = nvme_configure_admin_queue(dev);
2878         if (result)
2879                 goto unmap;
2880
2881         spin_lock(&dev_list_lock);
2882         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2883                 start_thread = true;
2884                 nvme_thread = NULL;
2885         }
2886         list_add(&dev->node, &dev_list);
2887         spin_unlock(&dev_list_lock);
2888
2889         if (start_thread) {
2890                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2891                 wake_up_all(&nvme_kthread_wait);
2892         } else
2893                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2894
2895         if (IS_ERR_OR_NULL(nvme_thread)) {
2896                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2897                 goto disable;
2898         }
2899
2900         nvme_init_queue(dev->queues[0], 0);
2901         result = nvme_alloc_admin_tags(dev);
2902         if (result)
2903                 goto disable;
2904
2905         result = nvme_setup_io_queues(dev);
2906         if (result)
2907                 goto free_tags;
2908
2909         nvme_set_irq_hints(dev);
2910
2911         return result;
2912
2913  free_tags:
2914         nvme_dev_remove_admin(dev);
2915  disable:
2916         nvme_disable_queue(dev, 0);
2917         nvme_dev_list_remove(dev);
2918  unmap:
2919         nvme_dev_unmap(dev);
2920         return result;
2921 }
2922
2923 static int nvme_remove_dead_ctrl(void *arg)
2924 {
2925         struct nvme_dev *dev = (struct nvme_dev *)arg;
2926         struct pci_dev *pdev = dev->pci_dev;
2927
2928         if (pci_get_drvdata(pdev))
2929                 pci_stop_and_remove_bus_device_locked(pdev);
2930         kref_put(&dev->kref, nvme_free_dev);
2931         return 0;
2932 }
2933
2934 static void nvme_remove_disks(struct work_struct *ws)
2935 {
2936         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2937
2938         nvme_free_queues(dev, 1);
2939         nvme_dev_remove(dev);
2940 }
2941
2942 static int nvme_dev_resume(struct nvme_dev *dev)
2943 {
2944         int ret;
2945
2946         ret = nvme_dev_start(dev);
2947         if (ret)
2948                 return ret;
2949         if (dev->online_queues < 2) {
2950                 spin_lock(&dev_list_lock);
2951                 dev->reset_workfn = nvme_remove_disks;
2952                 queue_work(nvme_workq, &dev->reset_work);
2953                 spin_unlock(&dev_list_lock);
2954         } else {
2955                 nvme_unfreeze_queues(dev);
2956                 nvme_set_irq_hints(dev);
2957         }
2958         dev->initialized = 1;
2959         return 0;
2960 }
2961
2962 static void nvme_dev_reset(struct nvme_dev *dev)
2963 {
2964         nvme_dev_shutdown(dev);
2965         if (nvme_dev_resume(dev)) {
2966                 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2967                 kref_get(&dev->kref);
2968                 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2969                                                         dev->instance))) {
2970                         dev_err(&dev->pci_dev->dev,
2971                                 "Failed to start controller remove task\n");
2972                         kref_put(&dev->kref, nvme_free_dev);
2973                 }
2974         }
2975 }
2976
2977 static void nvme_reset_failed_dev(struct work_struct *ws)
2978 {
2979         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2980         nvme_dev_reset(dev);
2981 }
2982
2983 static void nvme_reset_workfn(struct work_struct *work)
2984 {
2985         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2986         dev->reset_workfn(work);
2987 }
2988
2989 static void nvme_async_probe(struct work_struct *work);
2990 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2991 {
2992         int node, result = -ENOMEM;
2993         struct nvme_dev *dev;
2994
2995         node = dev_to_node(&pdev->dev);
2996         if (node == NUMA_NO_NODE)
2997                 set_dev_node(&pdev->dev, 0);
2998
2999         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3000         if (!dev)
3001                 return -ENOMEM;
3002         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3003                                                         GFP_KERNEL, node);
3004         if (!dev->entry)
3005                 goto free;
3006         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3007                                                         GFP_KERNEL, node);
3008         if (!dev->queues)
3009                 goto free;
3010
3011         INIT_LIST_HEAD(&dev->namespaces);
3012         dev->reset_workfn = nvme_reset_failed_dev;
3013         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
3014         dev->pci_dev = pci_dev_get(pdev);
3015         pci_set_drvdata(pdev, dev);
3016         result = nvme_set_instance(dev);
3017         if (result)
3018                 goto put_pci;
3019
3020         result = nvme_setup_prp_pools(dev);
3021         if (result)
3022                 goto release;
3023
3024         kref_init(&dev->kref);
3025         dev->device = device_create(nvme_class, &pdev->dev,
3026                                 MKDEV(nvme_char_major, dev->instance),
3027                                 dev, "nvme%d", dev->instance);
3028         if (IS_ERR(dev->device)) {
3029                 result = PTR_ERR(dev->device);
3030                 goto release_pools;
3031         }
3032         get_device(dev->device);
3033
3034         INIT_WORK(&dev->probe_work, nvme_async_probe);
3035         schedule_work(&dev->probe_work);
3036         return 0;
3037
3038  release_pools:
3039         nvme_release_prp_pools(dev);
3040  release:
3041         nvme_release_instance(dev);
3042  put_pci:
3043         pci_dev_put(dev->pci_dev);
3044  free:
3045         kfree(dev->queues);
3046         kfree(dev->entry);
3047         kfree(dev);
3048         return result;
3049 }
3050
3051 static void nvme_async_probe(struct work_struct *work)
3052 {
3053         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3054         int result;
3055
3056         result = nvme_dev_start(dev);
3057         if (result)
3058                 goto reset;
3059
3060         if (dev->online_queues > 1)
3061                 result = nvme_dev_add(dev);
3062         if (result)
3063                 goto reset;
3064
3065         nvme_set_irq_hints(dev);
3066         dev->initialized = 1;
3067         return;
3068  reset:
3069         dev->reset_workfn = nvme_reset_failed_dev;
3070         queue_work(nvme_workq, &dev->reset_work);
3071 }
3072
3073 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3074 {
3075         struct nvme_dev *dev = pci_get_drvdata(pdev);
3076
3077         if (prepare)
3078                 nvme_dev_shutdown(dev);
3079         else
3080                 nvme_dev_resume(dev);
3081 }
3082
3083 static void nvme_shutdown(struct pci_dev *pdev)
3084 {
3085         struct nvme_dev *dev = pci_get_drvdata(pdev);
3086         nvme_dev_shutdown(dev);
3087 }
3088
3089 static void nvme_remove(struct pci_dev *pdev)
3090 {
3091         struct nvme_dev *dev = pci_get_drvdata(pdev);
3092
3093         spin_lock(&dev_list_lock);
3094         list_del_init(&dev->node);
3095         spin_unlock(&dev_list_lock);
3096
3097         pci_set_drvdata(pdev, NULL);
3098         flush_work(&dev->probe_work);
3099         flush_work(&dev->reset_work);
3100         nvme_dev_shutdown(dev);
3101         nvme_dev_remove(dev);
3102         nvme_dev_remove_admin(dev);
3103         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3104         nvme_free_queues(dev, 0);
3105         nvme_release_prp_pools(dev);
3106         kref_put(&dev->kref, nvme_free_dev);
3107 }
3108
3109 /* These functions are yet to be implemented */
3110 #define nvme_error_detected NULL
3111 #define nvme_dump_registers NULL
3112 #define nvme_link_reset NULL
3113 #define nvme_slot_reset NULL
3114 #define nvme_error_resume NULL
3115
3116 #ifdef CONFIG_PM_SLEEP
3117 static int nvme_suspend(struct device *dev)
3118 {
3119         struct pci_dev *pdev = to_pci_dev(dev);
3120         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3121
3122         nvme_dev_shutdown(ndev);
3123         return 0;
3124 }
3125
3126 static int nvme_resume(struct device *dev)
3127 {
3128         struct pci_dev *pdev = to_pci_dev(dev);
3129         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3130
3131         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3132                 ndev->reset_workfn = nvme_reset_failed_dev;
3133                 queue_work(nvme_workq, &ndev->reset_work);
3134         }
3135         return 0;
3136 }
3137 #endif
3138
3139 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3140
3141 static const struct pci_error_handlers nvme_err_handler = {
3142         .error_detected = nvme_error_detected,
3143         .mmio_enabled   = nvme_dump_registers,
3144         .link_reset     = nvme_link_reset,
3145         .slot_reset     = nvme_slot_reset,
3146         .resume         = nvme_error_resume,
3147         .reset_notify   = nvme_reset_notify,
3148 };
3149
3150 /* Move to pci_ids.h later */
3151 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3152
3153 static const struct pci_device_id nvme_id_table[] = {
3154         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3155         { 0, }
3156 };
3157 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3158
3159 static struct pci_driver nvme_driver = {
3160         .name           = "nvme",
3161         .id_table       = nvme_id_table,
3162         .probe          = nvme_probe,
3163         .remove         = nvme_remove,
3164         .shutdown       = nvme_shutdown,
3165         .driver         = {
3166                 .pm     = &nvme_dev_pm_ops,
3167         },
3168         .err_handler    = &nvme_err_handler,
3169 };
3170
3171 static int __init nvme_init(void)
3172 {
3173         int result;
3174
3175         init_waitqueue_head(&nvme_kthread_wait);
3176
3177         nvme_workq = create_singlethread_workqueue("nvme");
3178         if (!nvme_workq)
3179                 return -ENOMEM;
3180
3181         result = register_blkdev(nvme_major, "nvme");
3182         if (result < 0)
3183                 goto kill_workq;
3184         else if (result > 0)
3185                 nvme_major = result;
3186
3187         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3188                                                         &nvme_dev_fops);
3189         if (result < 0)
3190                 goto unregister_blkdev;
3191         else if (result > 0)
3192                 nvme_char_major = result;
3193
3194         nvme_class = class_create(THIS_MODULE, "nvme");
3195         if (!nvme_class)
3196                 goto unregister_chrdev;
3197
3198         result = pci_register_driver(&nvme_driver);
3199         if (result)
3200                 goto destroy_class;
3201         return 0;
3202
3203  destroy_class:
3204         class_destroy(nvme_class);
3205  unregister_chrdev:
3206         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3207  unregister_blkdev:
3208         unregister_blkdev(nvme_major, "nvme");
3209  kill_workq:
3210         destroy_workqueue(nvme_workq);
3211         return result;
3212 }
3213
3214 static void __exit nvme_exit(void)
3215 {
3216         pci_unregister_driver(&nvme_driver);
3217         unregister_hotcpu_notifier(&nvme_nb);
3218         unregister_blkdev(nvme_major, "nvme");
3219         destroy_workqueue(nvme_workq);
3220         class_destroy(nvme_class);
3221         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3222         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3223         _nvme_check_size();
3224 }
3225
3226 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3227 MODULE_LICENSE("GPL");
3228 MODULE_VERSION("1.0");
3229 module_init(nvme_init);
3230 module_exit(nvme_exit);