Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-2.6
[pandora-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60
61 #define ACPI_PROCESSOR_COMPONENT        0x01000000
62 #define ACPI_PROCESSOR_CLASS            "processor"
63 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER       "power"
66 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS                (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD                     1       /* 1us */
74 #define C3_OVERHEAD                     1       /* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p)         (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86
87 #ifndef CONFIG_CPU_IDLE
88 /*
89  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93  * reduce history for more aggressive entry into C3
94  */
95 static unsigned int bm_history __read_mostly =
96     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100
101 #endif
102
103 /*
104  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
105  * For now disable this. Probably a bug somewhere else.
106  *
107  * To skip this limit, boot/load with a large max_cstate limit.
108  */
109 static int set_max_cstate(const struct dmi_system_id *id)
110 {
111         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
112                 return 0;
113
114         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
115                " Override with \"processor.max_cstate=%d\"\n", id->ident,
116                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
117
118         max_cstate = (long)id->driver_data;
119
120         return 0;
121 }
122
123 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
124    callers to only run once -AK */
125 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
126         { set_max_cstate, "IBM ThinkPad R40e", {
127           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
128           DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
129         { set_max_cstate, "IBM ThinkPad R40e", {
130           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
132         { set_max_cstate, "IBM ThinkPad R40e", {
133           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134           DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
135         { set_max_cstate, "IBM ThinkPad R40e", {
136           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137           DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
138         { set_max_cstate, "IBM ThinkPad R40e", {
139           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140           DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
141         { set_max_cstate, "IBM ThinkPad R40e", {
142           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143           DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
144         { set_max_cstate, "IBM ThinkPad R40e", {
145           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146           DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
147         { set_max_cstate, "IBM ThinkPad R40e", {
148           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149           DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
150         { set_max_cstate, "IBM ThinkPad R40e", {
151           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152           DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
153         { set_max_cstate, "IBM ThinkPad R40e", {
154           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155           DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
156         { set_max_cstate, "IBM ThinkPad R40e", {
157           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
159         { set_max_cstate, "IBM ThinkPad R40e", {
160           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161           DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
162         { set_max_cstate, "IBM ThinkPad R40e", {
163           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164           DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
165         { set_max_cstate, "IBM ThinkPad R40e", {
166           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167           DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
168         { set_max_cstate, "IBM ThinkPad R40e", {
169           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170           DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
171         { set_max_cstate, "IBM ThinkPad R40e", {
172           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173           DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
174         { set_max_cstate, "Medion 41700", {
175           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
176           DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
177         { set_max_cstate, "Clevo 5600D", {
178           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
180          (void *)2},
181         {},
182 };
183
184 static inline u32 ticks_elapsed(u32 t1, u32 t2)
185 {
186         if (t2 >= t1)
187                 return (t2 - t1);
188         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
189                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
190         else
191                 return ((0xFFFFFFFF - t1) + t2);
192 }
193
194 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
195 {
196         if (t2 >= t1)
197                 return PM_TIMER_TICKS_TO_US(t2 - t1);
198         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
199                 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
200         else
201                 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
202 }
203
204 static void acpi_safe_halt(void)
205 {
206         current_thread_info()->status &= ~TS_POLLING;
207         /*
208          * TS_POLLING-cleared state must be visible before we
209          * test NEED_RESCHED:
210          */
211         smp_mb();
212         if (!need_resched())
213                 safe_halt();
214         current_thread_info()->status |= TS_POLLING;
215 }
216
217 #ifndef CONFIG_CPU_IDLE
218
219 static void
220 acpi_processor_power_activate(struct acpi_processor *pr,
221                               struct acpi_processor_cx *new)
222 {
223         struct acpi_processor_cx *old;
224
225         if (!pr || !new)
226                 return;
227
228         old = pr->power.state;
229
230         if (old)
231                 old->promotion.count = 0;
232         new->demotion.count = 0;
233
234         /* Cleanup from old state. */
235         if (old) {
236                 switch (old->type) {
237                 case ACPI_STATE_C3:
238                         /* Disable bus master reload */
239                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
240                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
241                         break;
242                 }
243         }
244
245         /* Prepare to use new state. */
246         switch (new->type) {
247         case ACPI_STATE_C3:
248                 /* Enable bus master reload */
249                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
250                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
251                 break;
252         }
253
254         pr->power.state = new;
255
256         return;
257 }
258
259 static atomic_t c3_cpu_count;
260
261 /* Common C-state entry for C2, C3, .. */
262 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
263 {
264         if (cstate->space_id == ACPI_CSTATE_FFH) {
265                 /* Call into architectural FFH based C-state */
266                 acpi_processor_ffh_cstate_enter(cstate);
267         } else {
268                 int unused;
269                 /* IO port based C-state */
270                 inb(cstate->address);
271                 /* Dummy wait op - must do something useless after P_LVL2 read
272                    because chipsets cannot guarantee that STPCLK# signal
273                    gets asserted in time to freeze execution properly. */
274                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
275         }
276 }
277 #endif /* !CONFIG_CPU_IDLE */
278
279 #ifdef ARCH_APICTIMER_STOPS_ON_C3
280
281 /*
282  * Some BIOS implementations switch to C3 in the published C2 state.
283  * This seems to be a common problem on AMD boxen, but other vendors
284  * are affected too. We pick the most conservative approach: we assume
285  * that the local APIC stops in both C2 and C3.
286  */
287 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
288                                    struct acpi_processor_cx *cx)
289 {
290         struct acpi_processor_power *pwr = &pr->power;
291         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
292
293         /*
294          * Check, if one of the previous states already marked the lapic
295          * unstable
296          */
297         if (pwr->timer_broadcast_on_state < state)
298                 return;
299
300         if (cx->type >= type)
301                 pr->power.timer_broadcast_on_state = state;
302 }
303
304 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
305 {
306         unsigned long reason;
307
308         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
309                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
310
311         clockevents_notify(reason, &pr->id);
312 }
313
314 /* Power(C) State timer broadcast control */
315 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
316                                        struct acpi_processor_cx *cx,
317                                        int broadcast)
318 {
319         int state = cx - pr->power.states;
320
321         if (state >= pr->power.timer_broadcast_on_state) {
322                 unsigned long reason;
323
324                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
325                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
326                 clockevents_notify(reason, &pr->id);
327         }
328 }
329
330 #else
331
332 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
333                                    struct acpi_processor_cx *cstate) { }
334 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
335 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
336                                        struct acpi_processor_cx *cx,
337                                        int broadcast)
338 {
339 }
340
341 #endif
342
343 /*
344  * Suspend / resume control
345  */
346 static int acpi_idle_suspend;
347
348 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
349 {
350         acpi_idle_suspend = 1;
351         return 0;
352 }
353
354 int acpi_processor_resume(struct acpi_device * device)
355 {
356         acpi_idle_suspend = 0;
357         return 0;
358 }
359
360 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
361 static int tsc_halts_in_c(int state)
362 {
363         switch (boot_cpu_data.x86_vendor) {
364         case X86_VENDOR_AMD:
365                 /*
366                  * AMD Fam10h TSC will tick in all
367                  * C/P/S0/S1 states when this bit is set.
368                  */
369                 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
370                         return 0;
371                 /*FALL THROUGH*/
372         case X86_VENDOR_INTEL:
373                 /* Several cases known where TSC halts in C2 too */
374         default:
375                 return state > ACPI_STATE_C1;
376         }
377 }
378 #endif
379
380 #ifndef CONFIG_CPU_IDLE
381 static void acpi_processor_idle(void)
382 {
383         struct acpi_processor *pr = NULL;
384         struct acpi_processor_cx *cx = NULL;
385         struct acpi_processor_cx *next_state = NULL;
386         int sleep_ticks = 0;
387         u32 t1, t2 = 0;
388
389         /*
390          * Interrupts must be disabled during bus mastering calculations and
391          * for C2/C3 transitions.
392          */
393         local_irq_disable();
394
395         pr = processors[smp_processor_id()];
396         if (!pr) {
397                 local_irq_enable();
398                 return;
399         }
400
401         /*
402          * Check whether we truly need to go idle, or should
403          * reschedule:
404          */
405         if (unlikely(need_resched())) {
406                 local_irq_enable();
407                 return;
408         }
409
410         cx = pr->power.state;
411         if (!cx || acpi_idle_suspend) {
412                 if (pm_idle_save)
413                         pm_idle_save();
414                 else
415                         acpi_safe_halt();
416                 return;
417         }
418
419         /*
420          * Check BM Activity
421          * -----------------
422          * Check for bus mastering activity (if required), record, and check
423          * for demotion.
424          */
425         if (pr->flags.bm_check) {
426                 u32 bm_status = 0;
427                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
428
429                 if (diff > 31)
430                         diff = 31;
431
432                 pr->power.bm_activity <<= diff;
433
434                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
435                 if (bm_status) {
436                         pr->power.bm_activity |= 0x1;
437                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
438                 }
439                 /*
440                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
441                  * the true state of bus mastering activity; forcing us to
442                  * manually check the BMIDEA bit of each IDE channel.
443                  */
444                 else if (errata.piix4.bmisx) {
445                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
446                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
447                                 pr->power.bm_activity |= 0x1;
448                 }
449
450                 pr->power.bm_check_timestamp = jiffies;
451
452                 /*
453                  * If bus mastering is or was active this jiffy, demote
454                  * to avoid a faulty transition.  Note that the processor
455                  * won't enter a low-power state during this call (to this
456                  * function) but should upon the next.
457                  *
458                  * TBD: A better policy might be to fallback to the demotion
459                  *      state (use it for this quantum only) istead of
460                  *      demoting -- and rely on duration as our sole demotion
461                  *      qualification.  This may, however, introduce DMA
462                  *      issues (e.g. floppy DMA transfer overrun/underrun).
463                  */
464                 if ((pr->power.bm_activity & 0x1) &&
465                     cx->demotion.threshold.bm) {
466                         local_irq_enable();
467                         next_state = cx->demotion.state;
468                         goto end;
469                 }
470         }
471
472 #ifdef CONFIG_HOTPLUG_CPU
473         /*
474          * Check for P_LVL2_UP flag before entering C2 and above on
475          * an SMP system. We do it here instead of doing it at _CST/P_LVL
476          * detection phase, to work cleanly with logical CPU hotplug.
477          */
478         if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
479             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
480                 cx = &pr->power.states[ACPI_STATE_C1];
481 #endif
482
483         /*
484          * Sleep:
485          * ------
486          * Invoke the current Cx state to put the processor to sleep.
487          */
488         if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
489                 current_thread_info()->status &= ~TS_POLLING;
490                 /*
491                  * TS_POLLING-cleared state must be visible before we
492                  * test NEED_RESCHED:
493                  */
494                 smp_mb();
495                 if (need_resched()) {
496                         current_thread_info()->status |= TS_POLLING;
497                         local_irq_enable();
498                         return;
499                 }
500         }
501
502         switch (cx->type) {
503
504         case ACPI_STATE_C1:
505                 /*
506                  * Invoke C1.
507                  * Use the appropriate idle routine, the one that would
508                  * be used without acpi C-states.
509                  */
510                 if (pm_idle_save)
511                         pm_idle_save();
512                 else
513                         acpi_safe_halt();
514
515                 /*
516                  * TBD: Can't get time duration while in C1, as resumes
517                  *      go to an ISR rather than here.  Need to instrument
518                  *      base interrupt handler.
519                  *
520                  * Note: the TSC better not stop in C1, sched_clock() will
521                  *       skew otherwise.
522                  */
523                 sleep_ticks = 0xFFFFFFFF;
524                 break;
525
526         case ACPI_STATE_C2:
527                 /* Get start time (ticks) */
528                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
529                 /* Tell the scheduler that we are going deep-idle: */
530                 sched_clock_idle_sleep_event();
531                 /* Invoke C2 */
532                 acpi_state_timer_broadcast(pr, cx, 1);
533                 acpi_cstate_enter(cx);
534                 /* Get end time (ticks) */
535                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
536
537 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
538                 /* TSC halts in C2, so notify users */
539                 if (tsc_halts_in_c(ACPI_STATE_C2))
540                         mark_tsc_unstable("possible TSC halt in C2");
541 #endif
542                 /* Compute time (ticks) that we were actually asleep */
543                 sleep_ticks = ticks_elapsed(t1, t2);
544
545                 /* Tell the scheduler how much we idled: */
546                 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
547
548                 /* Re-enable interrupts */
549                 local_irq_enable();
550                 /* Do not account our idle-switching overhead: */
551                 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
552
553                 current_thread_info()->status |= TS_POLLING;
554                 acpi_state_timer_broadcast(pr, cx, 0);
555                 break;
556
557         case ACPI_STATE_C3:
558                 acpi_unlazy_tlb(smp_processor_id());
559                 /*
560                  * Must be done before busmaster disable as we might
561                  * need to access HPET !
562                  */
563                 acpi_state_timer_broadcast(pr, cx, 1);
564                 /*
565                  * disable bus master
566                  * bm_check implies we need ARB_DIS
567                  * !bm_check implies we need cache flush
568                  * bm_control implies whether we can do ARB_DIS
569                  *
570                  * That leaves a case where bm_check is set and bm_control is
571                  * not set. In that case we cannot do much, we enter C3
572                  * without doing anything.
573                  */
574                 if (pr->flags.bm_check && pr->flags.bm_control) {
575                         if (atomic_inc_return(&c3_cpu_count) ==
576                             num_online_cpus()) {
577                                 /*
578                                  * All CPUs are trying to go to C3
579                                  * Disable bus master arbitration
580                                  */
581                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
582                         }
583                 } else if (!pr->flags.bm_check) {
584                         /* SMP with no shared cache... Invalidate cache  */
585                         ACPI_FLUSH_CPU_CACHE();
586                 }
587
588                 /* Get start time (ticks) */
589                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
590                 /* Invoke C3 */
591                 /* Tell the scheduler that we are going deep-idle: */
592                 sched_clock_idle_sleep_event();
593                 acpi_cstate_enter(cx);
594                 /* Get end time (ticks) */
595                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
596                 if (pr->flags.bm_check && pr->flags.bm_control) {
597                         /* Enable bus master arbitration */
598                         atomic_dec(&c3_cpu_count);
599                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
600                 }
601
602 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
603                 /* TSC halts in C3, so notify users */
604                 if (tsc_halts_in_c(ACPI_STATE_C3))
605                         mark_tsc_unstable("TSC halts in C3");
606 #endif
607                 /* Compute time (ticks) that we were actually asleep */
608                 sleep_ticks = ticks_elapsed(t1, t2);
609                 /* Tell the scheduler how much we idled: */
610                 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
611
612                 /* Re-enable interrupts */
613                 local_irq_enable();
614                 /* Do not account our idle-switching overhead: */
615                 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
616
617                 current_thread_info()->status |= TS_POLLING;
618                 acpi_state_timer_broadcast(pr, cx, 0);
619                 break;
620
621         default:
622                 local_irq_enable();
623                 return;
624         }
625         cx->usage++;
626         if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
627                 cx->time += sleep_ticks;
628
629         next_state = pr->power.state;
630
631 #ifdef CONFIG_HOTPLUG_CPU
632         /* Don't do promotion/demotion */
633         if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
634             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
635                 next_state = cx;
636                 goto end;
637         }
638 #endif
639
640         /*
641          * Promotion?
642          * ----------
643          * Track the number of longs (time asleep is greater than threshold)
644          * and promote when the count threshold is reached.  Note that bus
645          * mastering activity may prevent promotions.
646          * Do not promote above max_cstate.
647          */
648         if (cx->promotion.state &&
649             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
650                 if (sleep_ticks > cx->promotion.threshold.ticks &&
651                   cx->promotion.state->latency <= system_latency_constraint()) {
652                         cx->promotion.count++;
653                         cx->demotion.count = 0;
654                         if (cx->promotion.count >=
655                             cx->promotion.threshold.count) {
656                                 if (pr->flags.bm_check) {
657                                         if (!
658                                             (pr->power.bm_activity & cx->
659                                              promotion.threshold.bm)) {
660                                                 next_state =
661                                                     cx->promotion.state;
662                                                 goto end;
663                                         }
664                                 } else {
665                                         next_state = cx->promotion.state;
666                                         goto end;
667                                 }
668                         }
669                 }
670         }
671
672         /*
673          * Demotion?
674          * ---------
675          * Track the number of shorts (time asleep is less than time threshold)
676          * and demote when the usage threshold is reached.
677          */
678         if (cx->demotion.state) {
679                 if (sleep_ticks < cx->demotion.threshold.ticks) {
680                         cx->demotion.count++;
681                         cx->promotion.count = 0;
682                         if (cx->demotion.count >= cx->demotion.threshold.count) {
683                                 next_state = cx->demotion.state;
684                                 goto end;
685                         }
686                 }
687         }
688
689       end:
690         /*
691          * Demote if current state exceeds max_cstate
692          * or if the latency of the current state is unacceptable
693          */
694         if ((pr->power.state - pr->power.states) > max_cstate ||
695                 pr->power.state->latency > system_latency_constraint()) {
696                 if (cx->demotion.state)
697                         next_state = cx->demotion.state;
698         }
699
700         /*
701          * New Cx State?
702          * -------------
703          * If we're going to start using a new Cx state we must clean up
704          * from the previous and prepare to use the new.
705          */
706         if (next_state != pr->power.state)
707                 acpi_processor_power_activate(pr, next_state);
708 }
709
710 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
711 {
712         unsigned int i;
713         unsigned int state_is_set = 0;
714         struct acpi_processor_cx *lower = NULL;
715         struct acpi_processor_cx *higher = NULL;
716         struct acpi_processor_cx *cx;
717
718
719         if (!pr)
720                 return -EINVAL;
721
722         /*
723          * This function sets the default Cx state policy (OS idle handler).
724          * Our scheme is to promote quickly to C2 but more conservatively
725          * to C3.  We're favoring C2  for its characteristics of low latency
726          * (quick response), good power savings, and ability to allow bus
727          * mastering activity.  Note that the Cx state policy is completely
728          * customizable and can be altered dynamically.
729          */
730
731         /* startup state */
732         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
733                 cx = &pr->power.states[i];
734                 if (!cx->valid)
735                         continue;
736
737                 if (!state_is_set)
738                         pr->power.state = cx;
739                 state_is_set++;
740                 break;
741         }
742
743         if (!state_is_set)
744                 return -ENODEV;
745
746         /* demotion */
747         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
748                 cx = &pr->power.states[i];
749                 if (!cx->valid)
750                         continue;
751
752                 if (lower) {
753                         cx->demotion.state = lower;
754                         cx->demotion.threshold.ticks = cx->latency_ticks;
755                         cx->demotion.threshold.count = 1;
756                         if (cx->type == ACPI_STATE_C3)
757                                 cx->demotion.threshold.bm = bm_history;
758                 }
759
760                 lower = cx;
761         }
762
763         /* promotion */
764         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
765                 cx = &pr->power.states[i];
766                 if (!cx->valid)
767                         continue;
768
769                 if (higher) {
770                         cx->promotion.state = higher;
771                         cx->promotion.threshold.ticks = cx->latency_ticks;
772                         if (cx->type >= ACPI_STATE_C2)
773                                 cx->promotion.threshold.count = 4;
774                         else
775                                 cx->promotion.threshold.count = 10;
776                         if (higher->type == ACPI_STATE_C3)
777                                 cx->promotion.threshold.bm = bm_history;
778                 }
779
780                 higher = cx;
781         }
782
783         return 0;
784 }
785 #endif /* !CONFIG_CPU_IDLE */
786
787 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
788 {
789
790         if (!pr)
791                 return -EINVAL;
792
793         if (!pr->pblk)
794                 return -ENODEV;
795
796         /* if info is obtained from pblk/fadt, type equals state */
797         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
798         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
799
800 #ifndef CONFIG_HOTPLUG_CPU
801         /*
802          * Check for P_LVL2_UP flag before entering C2 and above on
803          * an SMP system.
804          */
805         if ((num_online_cpus() > 1) &&
806             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
807                 return -ENODEV;
808 #endif
809
810         /* determine C2 and C3 address from pblk */
811         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
812         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
813
814         /* determine latencies from FADT */
815         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
816         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
817
818         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
819                           "lvl2[0x%08x] lvl3[0x%08x]\n",
820                           pr->power.states[ACPI_STATE_C2].address,
821                           pr->power.states[ACPI_STATE_C3].address));
822
823         return 0;
824 }
825
826 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
827 {
828         if (!pr->power.states[ACPI_STATE_C1].valid) {
829                 /* set the first C-State to C1 */
830                 /* all processors need to support C1 */
831                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
832                 pr->power.states[ACPI_STATE_C1].valid = 1;
833         }
834         /* the C0 state only exists as a filler in our array */
835         pr->power.states[ACPI_STATE_C0].valid = 1;
836         return 0;
837 }
838
839 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
840 {
841         acpi_status status = 0;
842         acpi_integer count;
843         int current_count;
844         int i;
845         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
846         union acpi_object *cst;
847
848
849         if (nocst)
850                 return -ENODEV;
851
852         current_count = 0;
853
854         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
855         if (ACPI_FAILURE(status)) {
856                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
857                 return -ENODEV;
858         }
859
860         cst = buffer.pointer;
861
862         /* There must be at least 2 elements */
863         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
864                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
865                 status = -EFAULT;
866                 goto end;
867         }
868
869         count = cst->package.elements[0].integer.value;
870
871         /* Validate number of power states. */
872         if (count < 1 || count != cst->package.count - 1) {
873                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
874                 status = -EFAULT;
875                 goto end;
876         }
877
878         /* Tell driver that at least _CST is supported. */
879         pr->flags.has_cst = 1;
880
881         for (i = 1; i <= count; i++) {
882                 union acpi_object *element;
883                 union acpi_object *obj;
884                 struct acpi_power_register *reg;
885                 struct acpi_processor_cx cx;
886
887                 memset(&cx, 0, sizeof(cx));
888
889                 element = &(cst->package.elements[i]);
890                 if (element->type != ACPI_TYPE_PACKAGE)
891                         continue;
892
893                 if (element->package.count != 4)
894                         continue;
895
896                 obj = &(element->package.elements[0]);
897
898                 if (obj->type != ACPI_TYPE_BUFFER)
899                         continue;
900
901                 reg = (struct acpi_power_register *)obj->buffer.pointer;
902
903                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
904                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
905                         continue;
906
907                 /* There should be an easy way to extract an integer... */
908                 obj = &(element->package.elements[1]);
909                 if (obj->type != ACPI_TYPE_INTEGER)
910                         continue;
911
912                 cx.type = obj->integer.value;
913                 /*
914                  * Some buggy BIOSes won't list C1 in _CST -
915                  * Let acpi_processor_get_power_info_default() handle them later
916                  */
917                 if (i == 1 && cx.type != ACPI_STATE_C1)
918                         current_count++;
919
920                 cx.address = reg->address;
921                 cx.index = current_count + 1;
922
923                 cx.space_id = ACPI_CSTATE_SYSTEMIO;
924                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
925                         if (acpi_processor_ffh_cstate_probe
926                                         (pr->id, &cx, reg) == 0) {
927                                 cx.space_id = ACPI_CSTATE_FFH;
928                         } else if (cx.type != ACPI_STATE_C1) {
929                                 /*
930                                  * C1 is a special case where FIXED_HARDWARE
931                                  * can be handled in non-MWAIT way as well.
932                                  * In that case, save this _CST entry info.
933                                  * That is, we retain space_id of SYSTEM_IO for
934                                  * halt based C1.
935                                  * Otherwise, ignore this info and continue.
936                                  */
937                                 continue;
938                         }
939                 }
940
941                 obj = &(element->package.elements[2]);
942                 if (obj->type != ACPI_TYPE_INTEGER)
943                         continue;
944
945                 cx.latency = obj->integer.value;
946
947                 obj = &(element->package.elements[3]);
948                 if (obj->type != ACPI_TYPE_INTEGER)
949                         continue;
950
951                 cx.power = obj->integer.value;
952
953                 current_count++;
954                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
955
956                 /*
957                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
958                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
959                  */
960                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
961                         printk(KERN_WARNING
962                                "Limiting number of power states to max (%d)\n",
963                                ACPI_PROCESSOR_MAX_POWER);
964                         printk(KERN_WARNING
965                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
966                         break;
967                 }
968         }
969
970         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
971                           current_count));
972
973         /* Validate number of power states discovered */
974         if (current_count < 2)
975                 status = -EFAULT;
976
977       end:
978         kfree(buffer.pointer);
979
980         return status;
981 }
982
983 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
984 {
985
986         if (!cx->address)
987                 return;
988
989         /*
990          * C2 latency must be less than or equal to 100
991          * microseconds.
992          */
993         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
994                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
995                                   "latency too large [%d]\n", cx->latency));
996                 return;
997         }
998
999         /*
1000          * Otherwise we've met all of our C2 requirements.
1001          * Normalize the C2 latency to expidite policy
1002          */
1003         cx->valid = 1;
1004
1005 #ifndef CONFIG_CPU_IDLE
1006         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1007 #else
1008         cx->latency_ticks = cx->latency;
1009 #endif
1010
1011         return;
1012 }
1013
1014 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1015                                            struct acpi_processor_cx *cx)
1016 {
1017         static int bm_check_flag;
1018
1019
1020         if (!cx->address)
1021                 return;
1022
1023         /*
1024          * C3 latency must be less than or equal to 1000
1025          * microseconds.
1026          */
1027         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1028                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1029                                   "latency too large [%d]\n", cx->latency));
1030                 return;
1031         }
1032
1033         /*
1034          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1035          * DMA transfers are used by any ISA device to avoid livelock.
1036          * Note that we could disable Type-F DMA (as recommended by
1037          * the erratum), but this is known to disrupt certain ISA
1038          * devices thus we take the conservative approach.
1039          */
1040         else if (errata.piix4.fdma) {
1041                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1042                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
1043                 return;
1044         }
1045
1046         /* All the logic here assumes flags.bm_check is same across all CPUs */
1047         if (!bm_check_flag) {
1048                 /* Determine whether bm_check is needed based on CPU  */
1049                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1050                 bm_check_flag = pr->flags.bm_check;
1051         } else {
1052                 pr->flags.bm_check = bm_check_flag;
1053         }
1054
1055         if (pr->flags.bm_check) {
1056                 if (!pr->flags.bm_control) {
1057                         if (pr->flags.has_cst != 1) {
1058                                 /* bus mastering control is necessary */
1059                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1060                                         "C3 support requires BM control\n"));
1061                                 return;
1062                         } else {
1063                                 /* Here we enter C3 without bus mastering */
1064                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1065                                         "C3 support without BM control\n"));
1066                         }
1067                 }
1068         } else {
1069                 /*
1070                  * WBINVD should be set in fadt, for C3 state to be
1071                  * supported on when bm_check is not required.
1072                  */
1073                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1074                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1075                                           "Cache invalidation should work properly"
1076                                           " for C3 to be enabled on SMP systems\n"));
1077                         return;
1078                 }
1079                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1080         }
1081
1082         /*
1083          * Otherwise we've met all of our C3 requirements.
1084          * Normalize the C3 latency to expidite policy.  Enable
1085          * checking of bus mastering status (bm_check) so we can
1086          * use this in our C3 policy
1087          */
1088         cx->valid = 1;
1089
1090 #ifndef CONFIG_CPU_IDLE
1091         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1092 #else
1093         cx->latency_ticks = cx->latency;
1094 #endif
1095
1096         return;
1097 }
1098
1099 static int acpi_processor_power_verify(struct acpi_processor *pr)
1100 {
1101         unsigned int i;
1102         unsigned int working = 0;
1103
1104         pr->power.timer_broadcast_on_state = INT_MAX;
1105
1106         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1107                 struct acpi_processor_cx *cx = &pr->power.states[i];
1108
1109                 switch (cx->type) {
1110                 case ACPI_STATE_C1:
1111                         cx->valid = 1;
1112                         break;
1113
1114                 case ACPI_STATE_C2:
1115                         acpi_processor_power_verify_c2(cx);
1116                         if (cx->valid)
1117                                 acpi_timer_check_state(i, pr, cx);
1118                         break;
1119
1120                 case ACPI_STATE_C3:
1121                         acpi_processor_power_verify_c3(pr, cx);
1122                         if (cx->valid)
1123                                 acpi_timer_check_state(i, pr, cx);
1124                         break;
1125                 }
1126
1127                 if (cx->valid)
1128                         working++;
1129         }
1130
1131         acpi_propagate_timer_broadcast(pr);
1132
1133         return (working);
1134 }
1135
1136 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1137 {
1138         unsigned int i;
1139         int result;
1140
1141
1142         /* NOTE: the idle thread may not be running while calling
1143          * this function */
1144
1145         /* Zero initialize all the C-states info. */
1146         memset(pr->power.states, 0, sizeof(pr->power.states));
1147
1148         result = acpi_processor_get_power_info_cst(pr);
1149         if (result == -ENODEV)
1150                 result = acpi_processor_get_power_info_fadt(pr);
1151
1152         if (result)
1153                 return result;
1154
1155         acpi_processor_get_power_info_default(pr);
1156
1157         pr->power.count = acpi_processor_power_verify(pr);
1158
1159 #ifndef CONFIG_CPU_IDLE
1160         /*
1161          * Set Default Policy
1162          * ------------------
1163          * Now that we know which states are supported, set the default
1164          * policy.  Note that this policy can be changed dynamically
1165          * (e.g. encourage deeper sleeps to conserve battery life when
1166          * not on AC).
1167          */
1168         result = acpi_processor_set_power_policy(pr);
1169         if (result)
1170                 return result;
1171 #endif
1172
1173         /*
1174          * if one state of type C2 or C3 is available, mark this
1175          * CPU as being "idle manageable"
1176          */
1177         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1178                 if (pr->power.states[i].valid) {
1179                         pr->power.count = i;
1180                         if (pr->power.states[i].type >= ACPI_STATE_C2)
1181                                 pr->flags.power = 1;
1182                 }
1183         }
1184
1185         return 0;
1186 }
1187
1188 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1189 {
1190         struct acpi_processor *pr = seq->private;
1191         unsigned int i;
1192
1193
1194         if (!pr)
1195                 goto end;
1196
1197         seq_printf(seq, "active state:            C%zd\n"
1198                    "max_cstate:              C%d\n"
1199                    "bus master activity:     %08x\n"
1200                    "maximum allowed latency: %d usec\n",
1201                    pr->power.state ? pr->power.state - pr->power.states : 0,
1202                    max_cstate, (unsigned)pr->power.bm_activity,
1203                    system_latency_constraint());
1204
1205         seq_puts(seq, "states:\n");
1206
1207         for (i = 1; i <= pr->power.count; i++) {
1208                 seq_printf(seq, "   %cC%d:                  ",
1209                            (&pr->power.states[i] ==
1210                             pr->power.state ? '*' : ' '), i);
1211
1212                 if (!pr->power.states[i].valid) {
1213                         seq_puts(seq, "<not supported>\n");
1214                         continue;
1215                 }
1216
1217                 switch (pr->power.states[i].type) {
1218                 case ACPI_STATE_C1:
1219                         seq_printf(seq, "type[C1] ");
1220                         break;
1221                 case ACPI_STATE_C2:
1222                         seq_printf(seq, "type[C2] ");
1223                         break;
1224                 case ACPI_STATE_C3:
1225                         seq_printf(seq, "type[C3] ");
1226                         break;
1227                 default:
1228                         seq_printf(seq, "type[--] ");
1229                         break;
1230                 }
1231
1232                 if (pr->power.states[i].promotion.state)
1233                         seq_printf(seq, "promotion[C%zd] ",
1234                                    (pr->power.states[i].promotion.state -
1235                                     pr->power.states));
1236                 else
1237                         seq_puts(seq, "promotion[--] ");
1238
1239                 if (pr->power.states[i].demotion.state)
1240                         seq_printf(seq, "demotion[C%zd] ",
1241                                    (pr->power.states[i].demotion.state -
1242                                     pr->power.states));
1243                 else
1244                         seq_puts(seq, "demotion[--] ");
1245
1246                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1247                            pr->power.states[i].latency,
1248                            pr->power.states[i].usage,
1249                            (unsigned long long)pr->power.states[i].time);
1250         }
1251
1252       end:
1253         return 0;
1254 }
1255
1256 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1257 {
1258         return single_open(file, acpi_processor_power_seq_show,
1259                            PDE(inode)->data);
1260 }
1261
1262 static const struct file_operations acpi_processor_power_fops = {
1263         .open = acpi_processor_power_open_fs,
1264         .read = seq_read,
1265         .llseek = seq_lseek,
1266         .release = single_release,
1267 };
1268
1269 #ifndef CONFIG_CPU_IDLE
1270
1271 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1272 {
1273         int result = 0;
1274
1275
1276         if (!pr)
1277                 return -EINVAL;
1278
1279         if (nocst) {
1280                 return -ENODEV;
1281         }
1282
1283         if (!pr->flags.power_setup_done)
1284                 return -ENODEV;
1285
1286         /* Fall back to the default idle loop */
1287         pm_idle = pm_idle_save;
1288         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
1289
1290         pr->flags.power = 0;
1291         result = acpi_processor_get_power_info(pr);
1292         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1293                 pm_idle = acpi_processor_idle;
1294
1295         return result;
1296 }
1297
1298 #ifdef CONFIG_SMP
1299 static void smp_callback(void *v)
1300 {
1301         /* we already woke the CPU up, nothing more to do */
1302 }
1303
1304 /*
1305  * This function gets called when a part of the kernel has a new latency
1306  * requirement.  This means we need to get all processors out of their C-state,
1307  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1308  * wakes them all right up.
1309  */
1310 static int acpi_processor_latency_notify(struct notifier_block *b,
1311                 unsigned long l, void *v)
1312 {
1313         smp_call_function(smp_callback, NULL, 0, 1);
1314         return NOTIFY_OK;
1315 }
1316
1317 static struct notifier_block acpi_processor_latency_notifier = {
1318         .notifier_call = acpi_processor_latency_notify,
1319 };
1320
1321 #endif
1322
1323 #else /* CONFIG_CPU_IDLE */
1324
1325 /**
1326  * acpi_idle_bm_check - checks if bus master activity was detected
1327  */
1328 static int acpi_idle_bm_check(void)
1329 {
1330         u32 bm_status = 0;
1331
1332         acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1333         if (bm_status)
1334                 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1335         /*
1336          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1337          * the true state of bus mastering activity; forcing us to
1338          * manually check the BMIDEA bit of each IDE channel.
1339          */
1340         else if (errata.piix4.bmisx) {
1341                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1342                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1343                         bm_status = 1;
1344         }
1345         return bm_status;
1346 }
1347
1348 /**
1349  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1350  * @pr: the processor
1351  * @target: the new target state
1352  */
1353 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1354                                            struct acpi_processor_cx *target)
1355 {
1356         if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1357                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1358                 pr->flags.bm_rld_set = 0;
1359         }
1360
1361         if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1362                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1363                 pr->flags.bm_rld_set = 1;
1364         }
1365 }
1366
1367 /**
1368  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1369  * @cx: cstate data
1370  */
1371 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1372 {
1373         if (cx->space_id == ACPI_CSTATE_FFH) {
1374                 /* Call into architectural FFH based C-state */
1375                 acpi_processor_ffh_cstate_enter(cx);
1376         } else {
1377                 int unused;
1378                 /* IO port based C-state */
1379                 inb(cx->address);
1380                 /* Dummy wait op - must do something useless after P_LVL2 read
1381                    because chipsets cannot guarantee that STPCLK# signal
1382                    gets asserted in time to freeze execution properly. */
1383                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1384         }
1385 }
1386
1387 /**
1388  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1389  * @dev: the target CPU
1390  * @state: the state data
1391  *
1392  * This is equivalent to the HALT instruction.
1393  */
1394 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1395                               struct cpuidle_state *state)
1396 {
1397         struct acpi_processor *pr;
1398         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1399         pr = processors[smp_processor_id()];
1400
1401         if (unlikely(!pr))
1402                 return 0;
1403
1404         if (pr->flags.bm_check)
1405                 acpi_idle_update_bm_rld(pr, cx);
1406
1407         acpi_safe_halt();
1408
1409         cx->usage++;
1410
1411         return 0;
1412 }
1413
1414 /**
1415  * acpi_idle_enter_simple - enters an ACPI state without BM handling
1416  * @dev: the target CPU
1417  * @state: the state data
1418  */
1419 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1420                                   struct cpuidle_state *state)
1421 {
1422         struct acpi_processor *pr;
1423         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1424         u32 t1, t2;
1425         int sleep_ticks = 0;
1426
1427         pr = processors[smp_processor_id()];
1428
1429         if (unlikely(!pr))
1430                 return 0;
1431
1432         if (acpi_idle_suspend)
1433                 return(acpi_idle_enter_c1(dev, state));
1434
1435         local_irq_disable();
1436         current_thread_info()->status &= ~TS_POLLING;
1437         /*
1438          * TS_POLLING-cleared state must be visible before we test
1439          * NEED_RESCHED:
1440          */
1441         smp_mb();
1442
1443         if (unlikely(need_resched())) {
1444                 current_thread_info()->status |= TS_POLLING;
1445                 local_irq_enable();
1446                 return 0;
1447         }
1448
1449         acpi_unlazy_tlb(smp_processor_id());
1450         /*
1451          * Must be done before busmaster disable as we might need to
1452          * access HPET !
1453          */
1454         acpi_state_timer_broadcast(pr, cx, 1);
1455
1456         if (pr->flags.bm_check)
1457                 acpi_idle_update_bm_rld(pr, cx);
1458
1459         if (cx->type == ACPI_STATE_C3)
1460                 ACPI_FLUSH_CPU_CACHE();
1461
1462         t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1463         /* Tell the scheduler that we are going deep-idle: */
1464         sched_clock_idle_sleep_event();
1465         acpi_idle_do_entry(cx);
1466         t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1467
1468 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1469         /* TSC could halt in idle, so notify users */
1470         if (tsc_halts_in_c(cx->type))
1471                 mark_tsc_unstable("TSC halts in idle");;
1472 #endif
1473         sleep_ticks = ticks_elapsed(t1, t2);
1474
1475         /* Tell the scheduler how much we idled: */
1476         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1477
1478         local_irq_enable();
1479         current_thread_info()->status |= TS_POLLING;
1480
1481         cx->usage++;
1482
1483         acpi_state_timer_broadcast(pr, cx, 0);
1484         cx->time += sleep_ticks;
1485         return ticks_elapsed_in_us(t1, t2);
1486 }
1487
1488 static int c3_cpu_count;
1489 static DEFINE_SPINLOCK(c3_lock);
1490
1491 /**
1492  * acpi_idle_enter_bm - enters C3 with proper BM handling
1493  * @dev: the target CPU
1494  * @state: the state data
1495  *
1496  * If BM is detected, the deepest non-C3 idle state is entered instead.
1497  */
1498 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1499                               struct cpuidle_state *state)
1500 {
1501         struct acpi_processor *pr;
1502         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1503         u32 t1, t2;
1504         int sleep_ticks = 0;
1505
1506         pr = processors[smp_processor_id()];
1507
1508         if (unlikely(!pr))
1509                 return 0;
1510
1511         if (acpi_idle_suspend)
1512                 return(acpi_idle_enter_c1(dev, state));
1513
1514         if (acpi_idle_bm_check()) {
1515                 if (dev->safe_state) {
1516                         return dev->safe_state->enter(dev, dev->safe_state);
1517                 } else {
1518                         acpi_safe_halt();
1519                         return 0;
1520                 }
1521         }
1522
1523         local_irq_disable();
1524         current_thread_info()->status &= ~TS_POLLING;
1525         /*
1526          * TS_POLLING-cleared state must be visible before we test
1527          * NEED_RESCHED:
1528          */
1529         smp_mb();
1530
1531         if (unlikely(need_resched())) {
1532                 current_thread_info()->status |= TS_POLLING;
1533                 local_irq_enable();
1534                 return 0;
1535         }
1536
1537         /* Tell the scheduler that we are going deep-idle: */
1538         sched_clock_idle_sleep_event();
1539         /*
1540          * Must be done before busmaster disable as we might need to
1541          * access HPET !
1542          */
1543         acpi_state_timer_broadcast(pr, cx, 1);
1544
1545         acpi_idle_update_bm_rld(pr, cx);
1546
1547         /*
1548          * disable bus master
1549          * bm_check implies we need ARB_DIS
1550          * !bm_check implies we need cache flush
1551          * bm_control implies whether we can do ARB_DIS
1552          *
1553          * That leaves a case where bm_check is set and bm_control is
1554          * not set. In that case we cannot do much, we enter C3
1555          * without doing anything.
1556          */
1557         if (pr->flags.bm_check && pr->flags.bm_control) {
1558                 spin_lock(&c3_lock);
1559                 c3_cpu_count++;
1560                 /* Disable bus master arbitration when all CPUs are in C3 */
1561                 if (c3_cpu_count == num_online_cpus())
1562                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1563                 spin_unlock(&c3_lock);
1564         } else if (!pr->flags.bm_check) {
1565                 ACPI_FLUSH_CPU_CACHE();
1566         }
1567
1568         t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1569         acpi_idle_do_entry(cx);
1570         t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1571
1572         /* Re-enable bus master arbitration */
1573         if (pr->flags.bm_check && pr->flags.bm_control) {
1574                 spin_lock(&c3_lock);
1575                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1576                 c3_cpu_count--;
1577                 spin_unlock(&c3_lock);
1578         }
1579
1580 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1581         /* TSC could halt in idle, so notify users */
1582         if (tsc_halts_in_c(ACPI_STATE_C3))
1583                 mark_tsc_unstable("TSC halts in idle");
1584 #endif
1585         sleep_ticks = ticks_elapsed(t1, t2);
1586         /* Tell the scheduler how much we idled: */
1587         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1588
1589         local_irq_enable();
1590         current_thread_info()->status |= TS_POLLING;
1591
1592         cx->usage++;
1593
1594         acpi_state_timer_broadcast(pr, cx, 0);
1595         cx->time += sleep_ticks;
1596         return ticks_elapsed_in_us(t1, t2);
1597 }
1598
1599 struct cpuidle_driver acpi_idle_driver = {
1600         .name =         "acpi_idle",
1601         .owner =        THIS_MODULE,
1602 };
1603
1604 /**
1605  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1606  * @pr: the ACPI processor
1607  */
1608 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1609 {
1610         int i, count = 0;
1611         struct acpi_processor_cx *cx;
1612         struct cpuidle_state *state;
1613         struct cpuidle_device *dev = &pr->power.dev;
1614
1615         if (!pr->flags.power_setup_done)
1616                 return -EINVAL;
1617
1618         if (pr->flags.power == 0) {
1619                 return -EINVAL;
1620         }
1621
1622         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1623                 cx = &pr->power.states[i];
1624                 state = &dev->states[count];
1625
1626                 if (!cx->valid)
1627                         continue;
1628
1629 #ifdef CONFIG_HOTPLUG_CPU
1630                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1631                     !pr->flags.has_cst &&
1632                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1633                         continue;
1634 #endif
1635                 cpuidle_set_statedata(state, cx);
1636
1637                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1638                 state->exit_latency = cx->latency;
1639                 state->target_residency = cx->latency * 6;
1640                 state->power_usage = cx->power;
1641
1642                 state->flags = 0;
1643                 switch (cx->type) {
1644                         case ACPI_STATE_C1:
1645                         state->flags |= CPUIDLE_FLAG_SHALLOW;
1646                         state->enter = acpi_idle_enter_c1;
1647                         dev->safe_state = state;
1648                         break;
1649
1650                         case ACPI_STATE_C2:
1651                         state->flags |= CPUIDLE_FLAG_BALANCED;
1652                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1653                         state->enter = acpi_idle_enter_simple;
1654                         dev->safe_state = state;
1655                         break;
1656
1657                         case ACPI_STATE_C3:
1658                         state->flags |= CPUIDLE_FLAG_DEEP;
1659                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1660                         state->flags |= CPUIDLE_FLAG_CHECK_BM;
1661                         state->enter = pr->flags.bm_check ?
1662                                         acpi_idle_enter_bm :
1663                                         acpi_idle_enter_simple;
1664                         break;
1665                 }
1666
1667                 count++;
1668         }
1669
1670         dev->state_count = count;
1671
1672         if (!count)
1673                 return -EINVAL;
1674
1675         return 0;
1676 }
1677
1678 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1679 {
1680         int ret;
1681
1682         if (!pr)
1683                 return -EINVAL;
1684
1685         if (nocst) {
1686                 return -ENODEV;
1687         }
1688
1689         if (!pr->flags.power_setup_done)
1690                 return -ENODEV;
1691
1692         cpuidle_pause_and_lock();
1693         cpuidle_disable_device(&pr->power.dev);
1694         acpi_processor_get_power_info(pr);
1695         acpi_processor_setup_cpuidle(pr);
1696         ret = cpuidle_enable_device(&pr->power.dev);
1697         cpuidle_resume_and_unlock();
1698
1699         return ret;
1700 }
1701
1702 #endif /* CONFIG_CPU_IDLE */
1703
1704 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1705                               struct acpi_device *device)
1706 {
1707         acpi_status status = 0;
1708         static int first_run;
1709         struct proc_dir_entry *entry = NULL;
1710         unsigned int i;
1711
1712
1713         if (!first_run) {
1714                 dmi_check_system(processor_power_dmi_table);
1715                 max_cstate = acpi_processor_cstate_check(max_cstate);
1716                 if (max_cstate < ACPI_C_STATES_MAX)
1717                         printk(KERN_NOTICE
1718                                "ACPI: processor limited to max C-state %d\n",
1719                                max_cstate);
1720                 first_run++;
1721 #if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
1722                 register_latency_notifier(&acpi_processor_latency_notifier);
1723 #endif
1724         }
1725
1726         if (!pr)
1727                 return -EINVAL;
1728
1729         if (acpi_gbl_FADT.cst_control && !nocst) {
1730                 status =
1731                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1732                 if (ACPI_FAILURE(status)) {
1733                         ACPI_EXCEPTION((AE_INFO, status,
1734                                         "Notifying BIOS of _CST ability failed"));
1735                 }
1736         }
1737
1738         acpi_processor_get_power_info(pr);
1739         pr->flags.power_setup_done = 1;
1740
1741         /*
1742          * Install the idle handler if processor power management is supported.
1743          * Note that we use previously set idle handler will be used on
1744          * platforms that only support C1.
1745          */
1746         if ((pr->flags.power) && (!boot_option_idle_override)) {
1747 #ifdef CONFIG_CPU_IDLE
1748                 acpi_processor_setup_cpuidle(pr);
1749                 pr->power.dev.cpu = pr->id;
1750                 if (cpuidle_register_device(&pr->power.dev))
1751                         return -EIO;
1752 #endif
1753
1754                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1755                 for (i = 1; i <= pr->power.count; i++)
1756                         if (pr->power.states[i].valid)
1757                                 printk(" C%d[C%d]", i,
1758                                        pr->power.states[i].type);
1759                 printk(")\n");
1760
1761 #ifndef CONFIG_CPU_IDLE
1762                 if (pr->id == 0) {
1763                         pm_idle_save = pm_idle;
1764                         pm_idle = acpi_processor_idle;
1765                 }
1766 #endif
1767         }
1768
1769         /* 'power' [R] */
1770         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1771                                   S_IRUGO, acpi_device_dir(device));
1772         if (!entry)
1773                 return -EIO;
1774         else {
1775                 entry->proc_fops = &acpi_processor_power_fops;
1776                 entry->data = acpi_driver_data(device);
1777                 entry->owner = THIS_MODULE;
1778         }
1779
1780         return 0;
1781 }
1782
1783 int acpi_processor_power_exit(struct acpi_processor *pr,
1784                               struct acpi_device *device)
1785 {
1786 #ifdef CONFIG_CPU_IDLE
1787         if ((pr->flags.power) && (!boot_option_idle_override))
1788                 cpuidle_unregister_device(&pr->power.dev);
1789 #endif
1790         pr->flags.power_setup_done = 0;
1791
1792         if (acpi_device_dir(device))
1793                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1794                                   acpi_device_dir(device));
1795
1796 #ifndef CONFIG_CPU_IDLE
1797
1798         /* Unregister the idle handler when processor #0 is removed. */
1799         if (pr->id == 0) {
1800                 pm_idle = pm_idle_save;
1801
1802                 /*
1803                  * We are about to unload the current idle thread pm callback
1804                  * (pm_idle), Wait for all processors to update cached/local
1805                  * copies of pm_idle before proceeding.
1806                  */
1807                 cpu_idle_wait();
1808 #ifdef CONFIG_SMP
1809                 unregister_latency_notifier(&acpi_processor_latency_notifier);
1810 #endif
1811         }
1812 #endif
1813
1814         return 0;
1815 }