Merge git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-x86
[pandora-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60
61 #define ACPI_PROCESSOR_COMPONENT        0x01000000
62 #define ACPI_PROCESSOR_CLASS            "processor"
63 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER       "power"
66 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS                (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD                     1       /* 1us */
74 #define C3_OVERHEAD                     1       /* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p)         (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 module_param(max_cstate, uint, 0000);
80 static unsigned int nocst __read_mostly;
81 module_param(nocst, uint, 0000);
82
83 #ifndef CONFIG_CPU_IDLE
84 /*
85  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
86  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
87  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
88  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
89  * reduce history for more aggressive entry into C3
90  */
91 static unsigned int bm_history __read_mostly =
92     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
93 module_param(bm_history, uint, 0644);
94
95 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
96
97 #endif
98
99 /*
100  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
101  * For now disable this. Probably a bug somewhere else.
102  *
103  * To skip this limit, boot/load with a large max_cstate limit.
104  */
105 static int set_max_cstate(const struct dmi_system_id *id)
106 {
107         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
108                 return 0;
109
110         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
111                " Override with \"processor.max_cstate=%d\"\n", id->ident,
112                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
113
114         max_cstate = (long)id->driver_data;
115
116         return 0;
117 }
118
119 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
120    callers to only run once -AK */
121 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
122         { set_max_cstate, "IBM ThinkPad R40e", {
123           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124           DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
125         { set_max_cstate, "IBM ThinkPad R40e", {
126           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
128         { set_max_cstate, "IBM ThinkPad R40e", {
129           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130           DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
131         { set_max_cstate, "IBM ThinkPad R40e", {
132           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133           DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
134         { set_max_cstate, "IBM ThinkPad R40e", {
135           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136           DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
137         { set_max_cstate, "IBM ThinkPad R40e", {
138           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139           DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
140         { set_max_cstate, "IBM ThinkPad R40e", {
141           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142           DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
143         { set_max_cstate, "IBM ThinkPad R40e", {
144           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145           DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
146         { set_max_cstate, "IBM ThinkPad R40e", {
147           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148           DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
149         { set_max_cstate, "IBM ThinkPad R40e", {
150           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151           DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
152         { set_max_cstate, "IBM ThinkPad R40e", {
153           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
155         { set_max_cstate, "IBM ThinkPad R40e", {
156           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157           DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
158         { set_max_cstate, "IBM ThinkPad R40e", {
159           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160           DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
161         { set_max_cstate, "IBM ThinkPad R40e", {
162           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163           DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
164         { set_max_cstate, "IBM ThinkPad R40e", {
165           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166           DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
167         { set_max_cstate, "IBM ThinkPad R40e", {
168           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
169           DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
170         { set_max_cstate, "Medion 41700", {
171           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
172           DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
173         { set_max_cstate, "Clevo 5600D", {
174           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
175           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
176          (void *)2},
177         {},
178 };
179
180 static inline u32 ticks_elapsed(u32 t1, u32 t2)
181 {
182         if (t2 >= t1)
183                 return (t2 - t1);
184         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
185                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
186         else
187                 return ((0xFFFFFFFF - t1) + t2);
188 }
189
190 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
191 {
192         if (t2 >= t1)
193                 return PM_TIMER_TICKS_TO_US(t2 - t1);
194         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
195                 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
196         else
197                 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
198 }
199
200 static void acpi_safe_halt(void)
201 {
202         current_thread_info()->status &= ~TS_POLLING;
203         /*
204          * TS_POLLING-cleared state must be visible before we
205          * test NEED_RESCHED:
206          */
207         smp_mb();
208         if (!need_resched())
209                 safe_halt();
210         current_thread_info()->status |= TS_POLLING;
211 }
212
213 #ifndef CONFIG_CPU_IDLE
214
215 static void
216 acpi_processor_power_activate(struct acpi_processor *pr,
217                               struct acpi_processor_cx *new)
218 {
219         struct acpi_processor_cx *old;
220
221         if (!pr || !new)
222                 return;
223
224         old = pr->power.state;
225
226         if (old)
227                 old->promotion.count = 0;
228         new->demotion.count = 0;
229
230         /* Cleanup from old state. */
231         if (old) {
232                 switch (old->type) {
233                 case ACPI_STATE_C3:
234                         /* Disable bus master reload */
235                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
236                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
237                         break;
238                 }
239         }
240
241         /* Prepare to use new state. */
242         switch (new->type) {
243         case ACPI_STATE_C3:
244                 /* Enable bus master reload */
245                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
246                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
247                 break;
248         }
249
250         pr->power.state = new;
251
252         return;
253 }
254
255 static atomic_t c3_cpu_count;
256
257 /* Common C-state entry for C2, C3, .. */
258 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
259 {
260         if (cstate->space_id == ACPI_CSTATE_FFH) {
261                 /* Call into architectural FFH based C-state */
262                 acpi_processor_ffh_cstate_enter(cstate);
263         } else {
264                 int unused;
265                 /* IO port based C-state */
266                 inb(cstate->address);
267                 /* Dummy wait op - must do something useless after P_LVL2 read
268                    because chipsets cannot guarantee that STPCLK# signal
269                    gets asserted in time to freeze execution properly. */
270                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
271         }
272 }
273 #endif /* !CONFIG_CPU_IDLE */
274
275 #ifdef ARCH_APICTIMER_STOPS_ON_C3
276
277 /*
278  * Some BIOS implementations switch to C3 in the published C2 state.
279  * This seems to be a common problem on AMD boxen, but other vendors
280  * are affected too. We pick the most conservative approach: we assume
281  * that the local APIC stops in both C2 and C3.
282  */
283 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
284                                    struct acpi_processor_cx *cx)
285 {
286         struct acpi_processor_power *pwr = &pr->power;
287         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
288
289         /*
290          * Check, if one of the previous states already marked the lapic
291          * unstable
292          */
293         if (pwr->timer_broadcast_on_state < state)
294                 return;
295
296         if (cx->type >= type)
297                 pr->power.timer_broadcast_on_state = state;
298 }
299
300 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
301 {
302         unsigned long reason;
303
304         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
305                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
306
307         clockevents_notify(reason, &pr->id);
308 }
309
310 /* Power(C) State timer broadcast control */
311 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
312                                        struct acpi_processor_cx *cx,
313                                        int broadcast)
314 {
315         int state = cx - pr->power.states;
316
317         if (state >= pr->power.timer_broadcast_on_state) {
318                 unsigned long reason;
319
320                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
321                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
322                 clockevents_notify(reason, &pr->id);
323         }
324 }
325
326 #else
327
328 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
329                                    struct acpi_processor_cx *cstate) { }
330 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
331 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
332                                        struct acpi_processor_cx *cx,
333                                        int broadcast)
334 {
335 }
336
337 #endif
338
339 /*
340  * Suspend / resume control
341  */
342 static int acpi_idle_suspend;
343
344 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
345 {
346         acpi_idle_suspend = 1;
347         return 0;
348 }
349
350 int acpi_processor_resume(struct acpi_device * device)
351 {
352         acpi_idle_suspend = 0;
353         return 0;
354 }
355
356 #ifndef CONFIG_CPU_IDLE
357 static void acpi_processor_idle(void)
358 {
359         struct acpi_processor *pr = NULL;
360         struct acpi_processor_cx *cx = NULL;
361         struct acpi_processor_cx *next_state = NULL;
362         int sleep_ticks = 0;
363         u32 t1, t2 = 0;
364
365         /*
366          * Interrupts must be disabled during bus mastering calculations and
367          * for C2/C3 transitions.
368          */
369         local_irq_disable();
370
371         pr = processors[smp_processor_id()];
372         if (!pr) {
373                 local_irq_enable();
374                 return;
375         }
376
377         /*
378          * Check whether we truly need to go idle, or should
379          * reschedule:
380          */
381         if (unlikely(need_resched())) {
382                 local_irq_enable();
383                 return;
384         }
385
386         cx = pr->power.state;
387         if (!cx || acpi_idle_suspend) {
388                 if (pm_idle_save)
389                         pm_idle_save();
390                 else
391                         acpi_safe_halt();
392                 return;
393         }
394
395         /*
396          * Check BM Activity
397          * -----------------
398          * Check for bus mastering activity (if required), record, and check
399          * for demotion.
400          */
401         if (pr->flags.bm_check) {
402                 u32 bm_status = 0;
403                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
404
405                 if (diff > 31)
406                         diff = 31;
407
408                 pr->power.bm_activity <<= diff;
409
410                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
411                 if (bm_status) {
412                         pr->power.bm_activity |= 0x1;
413                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
414                 }
415                 /*
416                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
417                  * the true state of bus mastering activity; forcing us to
418                  * manually check the BMIDEA bit of each IDE channel.
419                  */
420                 else if (errata.piix4.bmisx) {
421                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
422                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
423                                 pr->power.bm_activity |= 0x1;
424                 }
425
426                 pr->power.bm_check_timestamp = jiffies;
427
428                 /*
429                  * If bus mastering is or was active this jiffy, demote
430                  * to avoid a faulty transition.  Note that the processor
431                  * won't enter a low-power state during this call (to this
432                  * function) but should upon the next.
433                  *
434                  * TBD: A better policy might be to fallback to the demotion
435                  *      state (use it for this quantum only) istead of
436                  *      demoting -- and rely on duration as our sole demotion
437                  *      qualification.  This may, however, introduce DMA
438                  *      issues (e.g. floppy DMA transfer overrun/underrun).
439                  */
440                 if ((pr->power.bm_activity & 0x1) &&
441                     cx->demotion.threshold.bm) {
442                         local_irq_enable();
443                         next_state = cx->demotion.state;
444                         goto end;
445                 }
446         }
447
448 #ifdef CONFIG_HOTPLUG_CPU
449         /*
450          * Check for P_LVL2_UP flag before entering C2 and above on
451          * an SMP system. We do it here instead of doing it at _CST/P_LVL
452          * detection phase, to work cleanly with logical CPU hotplug.
453          */
454         if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
455             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
456                 cx = &pr->power.states[ACPI_STATE_C1];
457 #endif
458
459         /*
460          * Sleep:
461          * ------
462          * Invoke the current Cx state to put the processor to sleep.
463          */
464         if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
465                 current_thread_info()->status &= ~TS_POLLING;
466                 /*
467                  * TS_POLLING-cleared state must be visible before we
468                  * test NEED_RESCHED:
469                  */
470                 smp_mb();
471                 if (need_resched()) {
472                         current_thread_info()->status |= TS_POLLING;
473                         local_irq_enable();
474                         return;
475                 }
476         }
477
478         switch (cx->type) {
479
480         case ACPI_STATE_C1:
481                 /*
482                  * Invoke C1.
483                  * Use the appropriate idle routine, the one that would
484                  * be used without acpi C-states.
485                  */
486                 if (pm_idle_save)
487                         pm_idle_save();
488                 else
489                         acpi_safe_halt();
490
491                 /*
492                  * TBD: Can't get time duration while in C1, as resumes
493                  *      go to an ISR rather than here.  Need to instrument
494                  *      base interrupt handler.
495                  *
496                  * Note: the TSC better not stop in C1, sched_clock() will
497                  *       skew otherwise.
498                  */
499                 sleep_ticks = 0xFFFFFFFF;
500                 break;
501
502         case ACPI_STATE_C2:
503                 /* Get start time (ticks) */
504                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
505                 /* Tell the scheduler that we are going deep-idle: */
506                 sched_clock_idle_sleep_event();
507                 /* Invoke C2 */
508                 acpi_state_timer_broadcast(pr, cx, 1);
509                 acpi_cstate_enter(cx);
510                 /* Get end time (ticks) */
511                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
512
513 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
514                 /* TSC halts in C2, so notify users */
515                 mark_tsc_unstable("possible TSC halt in C2");
516 #endif
517                 /* Compute time (ticks) that we were actually asleep */
518                 sleep_ticks = ticks_elapsed(t1, t2);
519
520                 /* Tell the scheduler how much we idled: */
521                 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
522
523                 /* Re-enable interrupts */
524                 local_irq_enable();
525                 /* Do not account our idle-switching overhead: */
526                 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
527
528                 current_thread_info()->status |= TS_POLLING;
529                 acpi_state_timer_broadcast(pr, cx, 0);
530                 break;
531
532         case ACPI_STATE_C3:
533                 /*
534                  * Must be done before busmaster disable as we might
535                  * need to access HPET !
536                  */
537                 acpi_state_timer_broadcast(pr, cx, 1);
538                 /*
539                  * disable bus master
540                  * bm_check implies we need ARB_DIS
541                  * !bm_check implies we need cache flush
542                  * bm_control implies whether we can do ARB_DIS
543                  *
544                  * That leaves a case where bm_check is set and bm_control is
545                  * not set. In that case we cannot do much, we enter C3
546                  * without doing anything.
547                  */
548                 if (pr->flags.bm_check && pr->flags.bm_control) {
549                         if (atomic_inc_return(&c3_cpu_count) ==
550                             num_online_cpus()) {
551                                 /*
552                                  * All CPUs are trying to go to C3
553                                  * Disable bus master arbitration
554                                  */
555                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
556                         }
557                 } else if (!pr->flags.bm_check) {
558                         /* SMP with no shared cache... Invalidate cache  */
559                         ACPI_FLUSH_CPU_CACHE();
560                 }
561
562                 /* Get start time (ticks) */
563                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
564                 /* Invoke C3 */
565                 /* Tell the scheduler that we are going deep-idle: */
566                 sched_clock_idle_sleep_event();
567                 acpi_cstate_enter(cx);
568                 /* Get end time (ticks) */
569                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
570                 if (pr->flags.bm_check && pr->flags.bm_control) {
571                         /* Enable bus master arbitration */
572                         atomic_dec(&c3_cpu_count);
573                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
574                 }
575
576 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
577                 /* TSC halts in C3, so notify users */
578                 mark_tsc_unstable("TSC halts in C3");
579 #endif
580                 /* Compute time (ticks) that we were actually asleep */
581                 sleep_ticks = ticks_elapsed(t1, t2);
582                 /* Tell the scheduler how much we idled: */
583                 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
584
585                 /* Re-enable interrupts */
586                 local_irq_enable();
587                 /* Do not account our idle-switching overhead: */
588                 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
589
590                 current_thread_info()->status |= TS_POLLING;
591                 acpi_state_timer_broadcast(pr, cx, 0);
592                 break;
593
594         default:
595                 local_irq_enable();
596                 return;
597         }
598         cx->usage++;
599         if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
600                 cx->time += sleep_ticks;
601
602         next_state = pr->power.state;
603
604 #ifdef CONFIG_HOTPLUG_CPU
605         /* Don't do promotion/demotion */
606         if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
607             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
608                 next_state = cx;
609                 goto end;
610         }
611 #endif
612
613         /*
614          * Promotion?
615          * ----------
616          * Track the number of longs (time asleep is greater than threshold)
617          * and promote when the count threshold is reached.  Note that bus
618          * mastering activity may prevent promotions.
619          * Do not promote above max_cstate.
620          */
621         if (cx->promotion.state &&
622             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
623                 if (sleep_ticks > cx->promotion.threshold.ticks &&
624                   cx->promotion.state->latency <= system_latency_constraint()) {
625                         cx->promotion.count++;
626                         cx->demotion.count = 0;
627                         if (cx->promotion.count >=
628                             cx->promotion.threshold.count) {
629                                 if (pr->flags.bm_check) {
630                                         if (!
631                                             (pr->power.bm_activity & cx->
632                                              promotion.threshold.bm)) {
633                                                 next_state =
634                                                     cx->promotion.state;
635                                                 goto end;
636                                         }
637                                 } else {
638                                         next_state = cx->promotion.state;
639                                         goto end;
640                                 }
641                         }
642                 }
643         }
644
645         /*
646          * Demotion?
647          * ---------
648          * Track the number of shorts (time asleep is less than time threshold)
649          * and demote when the usage threshold is reached.
650          */
651         if (cx->demotion.state) {
652                 if (sleep_ticks < cx->demotion.threshold.ticks) {
653                         cx->demotion.count++;
654                         cx->promotion.count = 0;
655                         if (cx->demotion.count >= cx->demotion.threshold.count) {
656                                 next_state = cx->demotion.state;
657                                 goto end;
658                         }
659                 }
660         }
661
662       end:
663         /*
664          * Demote if current state exceeds max_cstate
665          * or if the latency of the current state is unacceptable
666          */
667         if ((pr->power.state - pr->power.states) > max_cstate ||
668                 pr->power.state->latency > system_latency_constraint()) {
669                 if (cx->demotion.state)
670                         next_state = cx->demotion.state;
671         }
672
673         /*
674          * New Cx State?
675          * -------------
676          * If we're going to start using a new Cx state we must clean up
677          * from the previous and prepare to use the new.
678          */
679         if (next_state != pr->power.state)
680                 acpi_processor_power_activate(pr, next_state);
681 }
682
683 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
684 {
685         unsigned int i;
686         unsigned int state_is_set = 0;
687         struct acpi_processor_cx *lower = NULL;
688         struct acpi_processor_cx *higher = NULL;
689         struct acpi_processor_cx *cx;
690
691
692         if (!pr)
693                 return -EINVAL;
694
695         /*
696          * This function sets the default Cx state policy (OS idle handler).
697          * Our scheme is to promote quickly to C2 but more conservatively
698          * to C3.  We're favoring C2  for its characteristics of low latency
699          * (quick response), good power savings, and ability to allow bus
700          * mastering activity.  Note that the Cx state policy is completely
701          * customizable and can be altered dynamically.
702          */
703
704         /* startup state */
705         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
706                 cx = &pr->power.states[i];
707                 if (!cx->valid)
708                         continue;
709
710                 if (!state_is_set)
711                         pr->power.state = cx;
712                 state_is_set++;
713                 break;
714         }
715
716         if (!state_is_set)
717                 return -ENODEV;
718
719         /* demotion */
720         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
721                 cx = &pr->power.states[i];
722                 if (!cx->valid)
723                         continue;
724
725                 if (lower) {
726                         cx->demotion.state = lower;
727                         cx->demotion.threshold.ticks = cx->latency_ticks;
728                         cx->demotion.threshold.count = 1;
729                         if (cx->type == ACPI_STATE_C3)
730                                 cx->demotion.threshold.bm = bm_history;
731                 }
732
733                 lower = cx;
734         }
735
736         /* promotion */
737         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
738                 cx = &pr->power.states[i];
739                 if (!cx->valid)
740                         continue;
741
742                 if (higher) {
743                         cx->promotion.state = higher;
744                         cx->promotion.threshold.ticks = cx->latency_ticks;
745                         if (cx->type >= ACPI_STATE_C2)
746                                 cx->promotion.threshold.count = 4;
747                         else
748                                 cx->promotion.threshold.count = 10;
749                         if (higher->type == ACPI_STATE_C3)
750                                 cx->promotion.threshold.bm = bm_history;
751                 }
752
753                 higher = cx;
754         }
755
756         return 0;
757 }
758 #endif /* !CONFIG_CPU_IDLE */
759
760 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
761 {
762
763         if (!pr)
764                 return -EINVAL;
765
766         if (!pr->pblk)
767                 return -ENODEV;
768
769         /* if info is obtained from pblk/fadt, type equals state */
770         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
771         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
772
773 #ifndef CONFIG_HOTPLUG_CPU
774         /*
775          * Check for P_LVL2_UP flag before entering C2 and above on
776          * an SMP system.
777          */
778         if ((num_online_cpus() > 1) &&
779             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
780                 return -ENODEV;
781 #endif
782
783         /* determine C2 and C3 address from pblk */
784         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
785         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
786
787         /* determine latencies from FADT */
788         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
789         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
790
791         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
792                           "lvl2[0x%08x] lvl3[0x%08x]\n",
793                           pr->power.states[ACPI_STATE_C2].address,
794                           pr->power.states[ACPI_STATE_C3].address));
795
796         return 0;
797 }
798
799 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
800 {
801         if (!pr->power.states[ACPI_STATE_C1].valid) {
802                 /* set the first C-State to C1 */
803                 /* all processors need to support C1 */
804                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
805                 pr->power.states[ACPI_STATE_C1].valid = 1;
806         }
807         /* the C0 state only exists as a filler in our array */
808         pr->power.states[ACPI_STATE_C0].valid = 1;
809         return 0;
810 }
811
812 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
813 {
814         acpi_status status = 0;
815         acpi_integer count;
816         int current_count;
817         int i;
818         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
819         union acpi_object *cst;
820
821
822         if (nocst)
823                 return -ENODEV;
824
825         current_count = 0;
826
827         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
828         if (ACPI_FAILURE(status)) {
829                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
830                 return -ENODEV;
831         }
832
833         cst = buffer.pointer;
834
835         /* There must be at least 2 elements */
836         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
837                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
838                 status = -EFAULT;
839                 goto end;
840         }
841
842         count = cst->package.elements[0].integer.value;
843
844         /* Validate number of power states. */
845         if (count < 1 || count != cst->package.count - 1) {
846                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
847                 status = -EFAULT;
848                 goto end;
849         }
850
851         /* Tell driver that at least _CST is supported. */
852         pr->flags.has_cst = 1;
853
854         for (i = 1; i <= count; i++) {
855                 union acpi_object *element;
856                 union acpi_object *obj;
857                 struct acpi_power_register *reg;
858                 struct acpi_processor_cx cx;
859
860                 memset(&cx, 0, sizeof(cx));
861
862                 element = &(cst->package.elements[i]);
863                 if (element->type != ACPI_TYPE_PACKAGE)
864                         continue;
865
866                 if (element->package.count != 4)
867                         continue;
868
869                 obj = &(element->package.elements[0]);
870
871                 if (obj->type != ACPI_TYPE_BUFFER)
872                         continue;
873
874                 reg = (struct acpi_power_register *)obj->buffer.pointer;
875
876                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
877                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
878                         continue;
879
880                 /* There should be an easy way to extract an integer... */
881                 obj = &(element->package.elements[1]);
882                 if (obj->type != ACPI_TYPE_INTEGER)
883                         continue;
884
885                 cx.type = obj->integer.value;
886                 /*
887                  * Some buggy BIOSes won't list C1 in _CST -
888                  * Let acpi_processor_get_power_info_default() handle them later
889                  */
890                 if (i == 1 && cx.type != ACPI_STATE_C1)
891                         current_count++;
892
893                 cx.address = reg->address;
894                 cx.index = current_count + 1;
895
896                 cx.space_id = ACPI_CSTATE_SYSTEMIO;
897                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
898                         if (acpi_processor_ffh_cstate_probe
899                                         (pr->id, &cx, reg) == 0) {
900                                 cx.space_id = ACPI_CSTATE_FFH;
901                         } else if (cx.type != ACPI_STATE_C1) {
902                                 /*
903                                  * C1 is a special case where FIXED_HARDWARE
904                                  * can be handled in non-MWAIT way as well.
905                                  * In that case, save this _CST entry info.
906                                  * That is, we retain space_id of SYSTEM_IO for
907                                  * halt based C1.
908                                  * Otherwise, ignore this info and continue.
909                                  */
910                                 continue;
911                         }
912                 }
913
914                 obj = &(element->package.elements[2]);
915                 if (obj->type != ACPI_TYPE_INTEGER)
916                         continue;
917
918                 cx.latency = obj->integer.value;
919
920                 obj = &(element->package.elements[3]);
921                 if (obj->type != ACPI_TYPE_INTEGER)
922                         continue;
923
924                 cx.power = obj->integer.value;
925
926                 current_count++;
927                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
928
929                 /*
930                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
931                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
932                  */
933                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
934                         printk(KERN_WARNING
935                                "Limiting number of power states to max (%d)\n",
936                                ACPI_PROCESSOR_MAX_POWER);
937                         printk(KERN_WARNING
938                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
939                         break;
940                 }
941         }
942
943         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
944                           current_count));
945
946         /* Validate number of power states discovered */
947         if (current_count < 2)
948                 status = -EFAULT;
949
950       end:
951         kfree(buffer.pointer);
952
953         return status;
954 }
955
956 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
957 {
958
959         if (!cx->address)
960                 return;
961
962         /*
963          * C2 latency must be less than or equal to 100
964          * microseconds.
965          */
966         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
967                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
968                                   "latency too large [%d]\n", cx->latency));
969                 return;
970         }
971
972         /*
973          * Otherwise we've met all of our C2 requirements.
974          * Normalize the C2 latency to expidite policy
975          */
976         cx->valid = 1;
977
978 #ifndef CONFIG_CPU_IDLE
979         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
980 #else
981         cx->latency_ticks = cx->latency;
982 #endif
983
984         return;
985 }
986
987 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
988                                            struct acpi_processor_cx *cx)
989 {
990         static int bm_check_flag;
991
992
993         if (!cx->address)
994                 return;
995
996         /*
997          * C3 latency must be less than or equal to 1000
998          * microseconds.
999          */
1000         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1001                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1002                                   "latency too large [%d]\n", cx->latency));
1003                 return;
1004         }
1005
1006         /*
1007          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1008          * DMA transfers are used by any ISA device to avoid livelock.
1009          * Note that we could disable Type-F DMA (as recommended by
1010          * the erratum), but this is known to disrupt certain ISA
1011          * devices thus we take the conservative approach.
1012          */
1013         else if (errata.piix4.fdma) {
1014                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1015                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
1016                 return;
1017         }
1018
1019         /* All the logic here assumes flags.bm_check is same across all CPUs */
1020         if (!bm_check_flag) {
1021                 /* Determine whether bm_check is needed based on CPU  */
1022                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1023                 bm_check_flag = pr->flags.bm_check;
1024         } else {
1025                 pr->flags.bm_check = bm_check_flag;
1026         }
1027
1028         if (pr->flags.bm_check) {
1029                 if (!pr->flags.bm_control) {
1030                         if (pr->flags.has_cst != 1) {
1031                                 /* bus mastering control is necessary */
1032                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1033                                         "C3 support requires BM control\n"));
1034                                 return;
1035                         } else {
1036                                 /* Here we enter C3 without bus mastering */
1037                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1038                                         "C3 support without BM control\n"));
1039                         }
1040                 }
1041         } else {
1042                 /*
1043                  * WBINVD should be set in fadt, for C3 state to be
1044                  * supported on when bm_check is not required.
1045                  */
1046                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1047                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1048                                           "Cache invalidation should work properly"
1049                                           " for C3 to be enabled on SMP systems\n"));
1050                         return;
1051                 }
1052                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1053         }
1054
1055         /*
1056          * Otherwise we've met all of our C3 requirements.
1057          * Normalize the C3 latency to expidite policy.  Enable
1058          * checking of bus mastering status (bm_check) so we can
1059          * use this in our C3 policy
1060          */
1061         cx->valid = 1;
1062
1063 #ifndef CONFIG_CPU_IDLE
1064         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1065 #else
1066         cx->latency_ticks = cx->latency;
1067 #endif
1068
1069         return;
1070 }
1071
1072 static int acpi_processor_power_verify(struct acpi_processor *pr)
1073 {
1074         unsigned int i;
1075         unsigned int working = 0;
1076
1077         pr->power.timer_broadcast_on_state = INT_MAX;
1078
1079         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1080                 struct acpi_processor_cx *cx = &pr->power.states[i];
1081
1082                 switch (cx->type) {
1083                 case ACPI_STATE_C1:
1084                         cx->valid = 1;
1085                         break;
1086
1087                 case ACPI_STATE_C2:
1088                         acpi_processor_power_verify_c2(cx);
1089                         if (cx->valid)
1090                                 acpi_timer_check_state(i, pr, cx);
1091                         break;
1092
1093                 case ACPI_STATE_C3:
1094                         acpi_processor_power_verify_c3(pr, cx);
1095                         if (cx->valid)
1096                                 acpi_timer_check_state(i, pr, cx);
1097                         break;
1098                 }
1099
1100                 if (cx->valid)
1101                         working++;
1102         }
1103
1104         acpi_propagate_timer_broadcast(pr);
1105
1106         return (working);
1107 }
1108
1109 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1110 {
1111         unsigned int i;
1112         int result;
1113
1114
1115         /* NOTE: the idle thread may not be running while calling
1116          * this function */
1117
1118         /* Zero initialize all the C-states info. */
1119         memset(pr->power.states, 0, sizeof(pr->power.states));
1120
1121         result = acpi_processor_get_power_info_cst(pr);
1122         if (result == -ENODEV)
1123                 result = acpi_processor_get_power_info_fadt(pr);
1124
1125         if (result)
1126                 return result;
1127
1128         acpi_processor_get_power_info_default(pr);
1129
1130         pr->power.count = acpi_processor_power_verify(pr);
1131
1132 #ifndef CONFIG_CPU_IDLE
1133         /*
1134          * Set Default Policy
1135          * ------------------
1136          * Now that we know which states are supported, set the default
1137          * policy.  Note that this policy can be changed dynamically
1138          * (e.g. encourage deeper sleeps to conserve battery life when
1139          * not on AC).
1140          */
1141         result = acpi_processor_set_power_policy(pr);
1142         if (result)
1143                 return result;
1144 #endif
1145
1146         /*
1147          * if one state of type C2 or C3 is available, mark this
1148          * CPU as being "idle manageable"
1149          */
1150         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1151                 if (pr->power.states[i].valid) {
1152                         pr->power.count = i;
1153                         if (pr->power.states[i].type >= ACPI_STATE_C2)
1154                                 pr->flags.power = 1;
1155                 }
1156         }
1157
1158         return 0;
1159 }
1160
1161 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1162 {
1163         struct acpi_processor *pr = seq->private;
1164         unsigned int i;
1165
1166
1167         if (!pr)
1168                 goto end;
1169
1170         seq_printf(seq, "active state:            C%zd\n"
1171                    "max_cstate:              C%d\n"
1172                    "bus master activity:     %08x\n"
1173                    "maximum allowed latency: %d usec\n",
1174                    pr->power.state ? pr->power.state - pr->power.states : 0,
1175                    max_cstate, (unsigned)pr->power.bm_activity,
1176                    system_latency_constraint());
1177
1178         seq_puts(seq, "states:\n");
1179
1180         for (i = 1; i <= pr->power.count; i++) {
1181                 seq_printf(seq, "   %cC%d:                  ",
1182                            (&pr->power.states[i] ==
1183                             pr->power.state ? '*' : ' '), i);
1184
1185                 if (!pr->power.states[i].valid) {
1186                         seq_puts(seq, "<not supported>\n");
1187                         continue;
1188                 }
1189
1190                 switch (pr->power.states[i].type) {
1191                 case ACPI_STATE_C1:
1192                         seq_printf(seq, "type[C1] ");
1193                         break;
1194                 case ACPI_STATE_C2:
1195                         seq_printf(seq, "type[C2] ");
1196                         break;
1197                 case ACPI_STATE_C3:
1198                         seq_printf(seq, "type[C3] ");
1199                         break;
1200                 default:
1201                         seq_printf(seq, "type[--] ");
1202                         break;
1203                 }
1204
1205                 if (pr->power.states[i].promotion.state)
1206                         seq_printf(seq, "promotion[C%zd] ",
1207                                    (pr->power.states[i].promotion.state -
1208                                     pr->power.states));
1209                 else
1210                         seq_puts(seq, "promotion[--] ");
1211
1212                 if (pr->power.states[i].demotion.state)
1213                         seq_printf(seq, "demotion[C%zd] ",
1214                                    (pr->power.states[i].demotion.state -
1215                                     pr->power.states));
1216                 else
1217                         seq_puts(seq, "demotion[--] ");
1218
1219                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1220                            pr->power.states[i].latency,
1221                            pr->power.states[i].usage,
1222                            (unsigned long long)pr->power.states[i].time);
1223         }
1224
1225       end:
1226         return 0;
1227 }
1228
1229 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1230 {
1231         return single_open(file, acpi_processor_power_seq_show,
1232                            PDE(inode)->data);
1233 }
1234
1235 static const struct file_operations acpi_processor_power_fops = {
1236         .open = acpi_processor_power_open_fs,
1237         .read = seq_read,
1238         .llseek = seq_lseek,
1239         .release = single_release,
1240 };
1241
1242 #ifndef CONFIG_CPU_IDLE
1243
1244 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1245 {
1246         int result = 0;
1247
1248
1249         if (!pr)
1250                 return -EINVAL;
1251
1252         if (nocst) {
1253                 return -ENODEV;
1254         }
1255
1256         if (!pr->flags.power_setup_done)
1257                 return -ENODEV;
1258
1259         /* Fall back to the default idle loop */
1260         pm_idle = pm_idle_save;
1261         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
1262
1263         pr->flags.power = 0;
1264         result = acpi_processor_get_power_info(pr);
1265         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1266                 pm_idle = acpi_processor_idle;
1267
1268         return result;
1269 }
1270
1271 #ifdef CONFIG_SMP
1272 static void smp_callback(void *v)
1273 {
1274         /* we already woke the CPU up, nothing more to do */
1275 }
1276
1277 /*
1278  * This function gets called when a part of the kernel has a new latency
1279  * requirement.  This means we need to get all processors out of their C-state,
1280  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1281  * wakes them all right up.
1282  */
1283 static int acpi_processor_latency_notify(struct notifier_block *b,
1284                 unsigned long l, void *v)
1285 {
1286         smp_call_function(smp_callback, NULL, 0, 1);
1287         return NOTIFY_OK;
1288 }
1289
1290 static struct notifier_block acpi_processor_latency_notifier = {
1291         .notifier_call = acpi_processor_latency_notify,
1292 };
1293
1294 #endif
1295
1296 #else /* CONFIG_CPU_IDLE */
1297
1298 /**
1299  * acpi_idle_bm_check - checks if bus master activity was detected
1300  */
1301 static int acpi_idle_bm_check(void)
1302 {
1303         u32 bm_status = 0;
1304
1305         acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1306         if (bm_status)
1307                 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1308         /*
1309          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1310          * the true state of bus mastering activity; forcing us to
1311          * manually check the BMIDEA bit of each IDE channel.
1312          */
1313         else if (errata.piix4.bmisx) {
1314                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1315                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1316                         bm_status = 1;
1317         }
1318         return bm_status;
1319 }
1320
1321 /**
1322  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1323  * @pr: the processor
1324  * @target: the new target state
1325  */
1326 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1327                                            struct acpi_processor_cx *target)
1328 {
1329         if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1330                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1331                 pr->flags.bm_rld_set = 0;
1332         }
1333
1334         if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1335                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1336                 pr->flags.bm_rld_set = 1;
1337         }
1338 }
1339
1340 /**
1341  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1342  * @cx: cstate data
1343  */
1344 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1345 {
1346         if (cx->space_id == ACPI_CSTATE_FFH) {
1347                 /* Call into architectural FFH based C-state */
1348                 acpi_processor_ffh_cstate_enter(cx);
1349         } else {
1350                 int unused;
1351                 /* IO port based C-state */
1352                 inb(cx->address);
1353                 /* Dummy wait op - must do something useless after P_LVL2 read
1354                    because chipsets cannot guarantee that STPCLK# signal
1355                    gets asserted in time to freeze execution properly. */
1356                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1357         }
1358 }
1359
1360 /**
1361  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1362  * @dev: the target CPU
1363  * @state: the state data
1364  *
1365  * This is equivalent to the HALT instruction.
1366  */
1367 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1368                               struct cpuidle_state *state)
1369 {
1370         struct acpi_processor *pr;
1371         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1372         pr = processors[smp_processor_id()];
1373
1374         if (unlikely(!pr))
1375                 return 0;
1376
1377         if (pr->flags.bm_check)
1378                 acpi_idle_update_bm_rld(pr, cx);
1379
1380         acpi_safe_halt();
1381
1382         cx->usage++;
1383
1384         return 0;
1385 }
1386
1387 /**
1388  * acpi_idle_enter_simple - enters an ACPI state without BM handling
1389  * @dev: the target CPU
1390  * @state: the state data
1391  */
1392 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1393                                   struct cpuidle_state *state)
1394 {
1395         struct acpi_processor *pr;
1396         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1397         u32 t1, t2;
1398         int sleep_ticks = 0;
1399
1400         pr = processors[smp_processor_id()];
1401
1402         if (unlikely(!pr))
1403                 return 0;
1404
1405         if (acpi_idle_suspend)
1406                 return(acpi_idle_enter_c1(dev, state));
1407
1408         local_irq_disable();
1409         current_thread_info()->status &= ~TS_POLLING;
1410         /*
1411          * TS_POLLING-cleared state must be visible before we test
1412          * NEED_RESCHED:
1413          */
1414         smp_mb();
1415
1416         if (unlikely(need_resched())) {
1417                 current_thread_info()->status |= TS_POLLING;
1418                 local_irq_enable();
1419                 return 0;
1420         }
1421
1422         /*
1423          * Must be done before busmaster disable as we might need to
1424          * access HPET !
1425          */
1426         acpi_state_timer_broadcast(pr, cx, 1);
1427
1428         if (pr->flags.bm_check)
1429                 acpi_idle_update_bm_rld(pr, cx);
1430
1431         if (cx->type == ACPI_STATE_C3)
1432                 ACPI_FLUSH_CPU_CACHE();
1433
1434         t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1435         /* Tell the scheduler that we are going deep-idle: */
1436         sched_clock_idle_sleep_event();
1437         acpi_idle_do_entry(cx);
1438         t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1439
1440 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1441         /* TSC could halt in idle, so notify users */
1442         mark_tsc_unstable("TSC halts in idle");;
1443 #endif
1444         sleep_ticks = ticks_elapsed(t1, t2);
1445
1446         /* Tell the scheduler how much we idled: */
1447         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1448
1449         local_irq_enable();
1450         current_thread_info()->status |= TS_POLLING;
1451
1452         cx->usage++;
1453
1454         acpi_state_timer_broadcast(pr, cx, 0);
1455         cx->time += sleep_ticks;
1456         return ticks_elapsed_in_us(t1, t2);
1457 }
1458
1459 static int c3_cpu_count;
1460 static DEFINE_SPINLOCK(c3_lock);
1461
1462 /**
1463  * acpi_idle_enter_bm - enters C3 with proper BM handling
1464  * @dev: the target CPU
1465  * @state: the state data
1466  *
1467  * If BM is detected, the deepest non-C3 idle state is entered instead.
1468  */
1469 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1470                               struct cpuidle_state *state)
1471 {
1472         struct acpi_processor *pr;
1473         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1474         u32 t1, t2;
1475         int sleep_ticks = 0;
1476
1477         pr = processors[smp_processor_id()];
1478
1479         if (unlikely(!pr))
1480                 return 0;
1481
1482         if (acpi_idle_suspend)
1483                 return(acpi_idle_enter_c1(dev, state));
1484
1485         if (acpi_idle_bm_check()) {
1486                 if (dev->safe_state) {
1487                         return dev->safe_state->enter(dev, dev->safe_state);
1488                 } else {
1489                         acpi_safe_halt();
1490                         return 0;
1491                 }
1492         }
1493
1494         local_irq_disable();
1495         current_thread_info()->status &= ~TS_POLLING;
1496         /*
1497          * TS_POLLING-cleared state must be visible before we test
1498          * NEED_RESCHED:
1499          */
1500         smp_mb();
1501
1502         if (unlikely(need_resched())) {
1503                 current_thread_info()->status |= TS_POLLING;
1504                 local_irq_enable();
1505                 return 0;
1506         }
1507
1508         /* Tell the scheduler that we are going deep-idle: */
1509         sched_clock_idle_sleep_event();
1510         /*
1511          * Must be done before busmaster disable as we might need to
1512          * access HPET !
1513          */
1514         acpi_state_timer_broadcast(pr, cx, 1);
1515
1516         acpi_idle_update_bm_rld(pr, cx);
1517
1518         /*
1519          * disable bus master
1520          * bm_check implies we need ARB_DIS
1521          * !bm_check implies we need cache flush
1522          * bm_control implies whether we can do ARB_DIS
1523          *
1524          * That leaves a case where bm_check is set and bm_control is
1525          * not set. In that case we cannot do much, we enter C3
1526          * without doing anything.
1527          */
1528         if (pr->flags.bm_check && pr->flags.bm_control) {
1529                 spin_lock(&c3_lock);
1530                 c3_cpu_count++;
1531                 /* Disable bus master arbitration when all CPUs are in C3 */
1532                 if (c3_cpu_count == num_online_cpus())
1533                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1534                 spin_unlock(&c3_lock);
1535         } else if (!pr->flags.bm_check) {
1536                 ACPI_FLUSH_CPU_CACHE();
1537         }
1538
1539         t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1540         acpi_idle_do_entry(cx);
1541         t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1542
1543         /* Re-enable bus master arbitration */
1544         if (pr->flags.bm_check && pr->flags.bm_control) {
1545                 spin_lock(&c3_lock);
1546                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1547                 c3_cpu_count--;
1548                 spin_unlock(&c3_lock);
1549         }
1550
1551 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1552         /* TSC could halt in idle, so notify users */
1553         mark_tsc_unstable("TSC halts in idle");
1554 #endif
1555         sleep_ticks = ticks_elapsed(t1, t2);
1556         /* Tell the scheduler how much we idled: */
1557         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1558
1559         local_irq_enable();
1560         current_thread_info()->status |= TS_POLLING;
1561
1562         cx->usage++;
1563
1564         acpi_state_timer_broadcast(pr, cx, 0);
1565         cx->time += sleep_ticks;
1566         return ticks_elapsed_in_us(t1, t2);
1567 }
1568
1569 struct cpuidle_driver acpi_idle_driver = {
1570         .name =         "acpi_idle",
1571         .owner =        THIS_MODULE,
1572 };
1573
1574 /**
1575  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1576  * @pr: the ACPI processor
1577  */
1578 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1579 {
1580         int i, count = 0;
1581         struct acpi_processor_cx *cx;
1582         struct cpuidle_state *state;
1583         struct cpuidle_device *dev = &pr->power.dev;
1584
1585         if (!pr->flags.power_setup_done)
1586                 return -EINVAL;
1587
1588         if (pr->flags.power == 0) {
1589                 return -EINVAL;
1590         }
1591
1592         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1593                 cx = &pr->power.states[i];
1594                 state = &dev->states[count];
1595
1596                 if (!cx->valid)
1597                         continue;
1598
1599 #ifdef CONFIG_HOTPLUG_CPU
1600                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1601                     !pr->flags.has_cst &&
1602                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1603                         continue;
1604 #endif
1605                 cpuidle_set_statedata(state, cx);
1606
1607                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1608                 state->exit_latency = cx->latency;
1609                 state->target_residency = cx->latency * 6;
1610                 state->power_usage = cx->power;
1611
1612                 state->flags = 0;
1613                 switch (cx->type) {
1614                         case ACPI_STATE_C1:
1615                         state->flags |= CPUIDLE_FLAG_SHALLOW;
1616                         state->enter = acpi_idle_enter_c1;
1617                         dev->safe_state = state;
1618                         break;
1619
1620                         case ACPI_STATE_C2:
1621                         state->flags |= CPUIDLE_FLAG_BALANCED;
1622                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1623                         state->enter = acpi_idle_enter_simple;
1624                         dev->safe_state = state;
1625                         break;
1626
1627                         case ACPI_STATE_C3:
1628                         state->flags |= CPUIDLE_FLAG_DEEP;
1629                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1630                         state->flags |= CPUIDLE_FLAG_CHECK_BM;
1631                         state->enter = pr->flags.bm_check ?
1632                                         acpi_idle_enter_bm :
1633                                         acpi_idle_enter_simple;
1634                         break;
1635                 }
1636
1637                 count++;
1638         }
1639
1640         dev->state_count = count;
1641
1642         if (!count)
1643                 return -EINVAL;
1644
1645         return 0;
1646 }
1647
1648 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1649 {
1650         int ret;
1651
1652         if (!pr)
1653                 return -EINVAL;
1654
1655         if (nocst) {
1656                 return -ENODEV;
1657         }
1658
1659         if (!pr->flags.power_setup_done)
1660                 return -ENODEV;
1661
1662         cpuidle_pause_and_lock();
1663         cpuidle_disable_device(&pr->power.dev);
1664         acpi_processor_get_power_info(pr);
1665         acpi_processor_setup_cpuidle(pr);
1666         ret = cpuidle_enable_device(&pr->power.dev);
1667         cpuidle_resume_and_unlock();
1668
1669         return ret;
1670 }
1671
1672 #endif /* CONFIG_CPU_IDLE */
1673
1674 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1675                               struct acpi_device *device)
1676 {
1677         acpi_status status = 0;
1678         static int first_run;
1679         struct proc_dir_entry *entry = NULL;
1680         unsigned int i;
1681
1682
1683         if (!first_run) {
1684                 dmi_check_system(processor_power_dmi_table);
1685                 max_cstate = acpi_processor_cstate_check(max_cstate);
1686                 if (max_cstate < ACPI_C_STATES_MAX)
1687                         printk(KERN_NOTICE
1688                                "ACPI: processor limited to max C-state %d\n",
1689                                max_cstate);
1690                 first_run++;
1691 #if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
1692                 register_latency_notifier(&acpi_processor_latency_notifier);
1693 #endif
1694         }
1695
1696         if (!pr)
1697                 return -EINVAL;
1698
1699         if (acpi_gbl_FADT.cst_control && !nocst) {
1700                 status =
1701                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1702                 if (ACPI_FAILURE(status)) {
1703                         ACPI_EXCEPTION((AE_INFO, status,
1704                                         "Notifying BIOS of _CST ability failed"));
1705                 }
1706         }
1707
1708         acpi_processor_get_power_info(pr);
1709         pr->flags.power_setup_done = 1;
1710
1711         /*
1712          * Install the idle handler if processor power management is supported.
1713          * Note that we use previously set idle handler will be used on
1714          * platforms that only support C1.
1715          */
1716         if ((pr->flags.power) && (!boot_option_idle_override)) {
1717 #ifdef CONFIG_CPU_IDLE
1718                 acpi_processor_setup_cpuidle(pr);
1719                 pr->power.dev.cpu = pr->id;
1720                 if (cpuidle_register_device(&pr->power.dev))
1721                         return -EIO;
1722 #endif
1723
1724                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1725                 for (i = 1; i <= pr->power.count; i++)
1726                         if (pr->power.states[i].valid)
1727                                 printk(" C%d[C%d]", i,
1728                                        pr->power.states[i].type);
1729                 printk(")\n");
1730
1731 #ifndef CONFIG_CPU_IDLE
1732                 if (pr->id == 0) {
1733                         pm_idle_save = pm_idle;
1734                         pm_idle = acpi_processor_idle;
1735                 }
1736 #endif
1737         }
1738
1739         /* 'power' [R] */
1740         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1741                                   S_IRUGO, acpi_device_dir(device));
1742         if (!entry)
1743                 return -EIO;
1744         else {
1745                 entry->proc_fops = &acpi_processor_power_fops;
1746                 entry->data = acpi_driver_data(device);
1747                 entry->owner = THIS_MODULE;
1748         }
1749
1750         return 0;
1751 }
1752
1753 int acpi_processor_power_exit(struct acpi_processor *pr,
1754                               struct acpi_device *device)
1755 {
1756 #ifdef CONFIG_CPU_IDLE
1757         if ((pr->flags.power) && (!boot_option_idle_override))
1758                 cpuidle_unregister_device(&pr->power.dev);
1759 #endif
1760         pr->flags.power_setup_done = 0;
1761
1762         if (acpi_device_dir(device))
1763                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1764                                   acpi_device_dir(device));
1765
1766 #ifndef CONFIG_CPU_IDLE
1767
1768         /* Unregister the idle handler when processor #0 is removed. */
1769         if (pr->id == 0) {
1770                 pm_idle = pm_idle_save;
1771
1772                 /*
1773                  * We are about to unload the current idle thread pm callback
1774                  * (pm_idle), Wait for all processors to update cached/local
1775                  * copies of pm_idle before proceeding.
1776                  */
1777                 cpu_idle_wait();
1778 #ifdef CONFIG_SMP
1779                 unregister_latency_notifier(&acpi_processor_latency_notifier);
1780 #endif
1781         }
1782 #endif
1783
1784         return 0;
1785 }