Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[pandora-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43
44 /*
45  * Include the apic definitions for x86 to have the APIC timer related defines
46  * available also for UP (on SMP it gets magically included via linux/smp.h).
47  * asm/acpi.h is not an option, as it would require more include magic. Also
48  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
49  */
50 #ifdef CONFIG_X86
51 #include <asm/apic.h>
52 #endif
53
54 /*
55  * Include the apic definitions for x86 to have the APIC timer related defines
56  * available also for UP (on SMP it gets magically included via linux/smp.h).
57  */
58 #ifdef CONFIG_X86
59 #include <asm/apic.h>
60 #endif
61
62 #include <asm/io.h>
63 #include <asm/uaccess.h>
64
65 #include <acpi/acpi_bus.h>
66 #include <acpi/processor.h>
67
68 #define ACPI_PROCESSOR_COMPONENT        0x01000000
69 #define ACPI_PROCESSOR_CLASS            "processor"
70 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
71 ACPI_MODULE_NAME("processor_idle");
72 #define ACPI_PROCESSOR_FILE_POWER       "power"
73 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
74 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
75 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
76 static void (*pm_idle_save) (void) __read_mostly;
77 module_param(max_cstate, uint, 0644);
78
79 static unsigned int nocst __read_mostly;
80 module_param(nocst, uint, 0000);
81
82 /*
83  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
84  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
85  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
86  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
87  * reduce history for more aggressive entry into C3
88  */
89 static unsigned int bm_history __read_mostly =
90     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
91 module_param(bm_history, uint, 0644);
92
93 static unsigned use_ipi = 2;
94 module_param(use_ipi, uint, 0644);
95 MODULE_PARM_DESC(use_ipi, "IPI (vs. LAPIC) irqs for not waking up from C2/C3"
96                  " machines. 0=apic, 1=ipi, 2=auto\n");
97
98 /* --------------------------------------------------------------------------
99                                 Power Management
100    -------------------------------------------------------------------------- */
101
102 /*
103  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
104  * For now disable this. Probably a bug somewhere else.
105  *
106  * To skip this limit, boot/load with a large max_cstate limit.
107  */
108 static int set_max_cstate(struct dmi_system_id *id)
109 {
110         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
111                 return 0;
112
113         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
114                " Override with \"processor.max_cstate=%d\"\n", id->ident,
115                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
116
117         max_cstate = (long)id->driver_data;
118
119         return 0;
120 }
121
122 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
123    callers to only run once -AK */
124 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
125         { set_max_cstate, "IBM ThinkPad R40e", {
126           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127           DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
128         { set_max_cstate, "IBM ThinkPad R40e", {
129           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
131         { set_max_cstate, "IBM ThinkPad R40e", {
132           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133           DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
134         { set_max_cstate, "IBM ThinkPad R40e", {
135           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136           DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
137         { set_max_cstate, "IBM ThinkPad R40e", {
138           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139           DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
140         { set_max_cstate, "IBM ThinkPad R40e", {
141           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142           DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
143         { set_max_cstate, "IBM ThinkPad R40e", {
144           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145           DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
146         { set_max_cstate, "IBM ThinkPad R40e", {
147           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148           DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
149         { set_max_cstate, "IBM ThinkPad R40e", {
150           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151           DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
152         { set_max_cstate, "IBM ThinkPad R40e", {
153           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154           DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
155         { set_max_cstate, "IBM ThinkPad R40e", {
156           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
158         { set_max_cstate, "IBM ThinkPad R40e", {
159           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160           DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
161         { set_max_cstate, "IBM ThinkPad R40e", {
162           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163           DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
164         { set_max_cstate, "IBM ThinkPad R40e", {
165           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166           DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
167         { set_max_cstate, "IBM ThinkPad R40e", {
168           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
169           DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
170         { set_max_cstate, "IBM ThinkPad R40e", {
171           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
172           DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
173         { set_max_cstate, "Medion 41700", {
174           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
175           DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
176         { set_max_cstate, "Clevo 5600D", {
177           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
178           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
179          (void *)2},
180         {},
181 };
182
183 static inline u32 ticks_elapsed(u32 t1, u32 t2)
184 {
185         if (t2 >= t1)
186                 return (t2 - t1);
187         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
188                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
189         else
190                 return ((0xFFFFFFFF - t1) + t2);
191 }
192
193 static void
194 acpi_processor_power_activate(struct acpi_processor *pr,
195                               struct acpi_processor_cx *new)
196 {
197         struct acpi_processor_cx *old;
198
199         if (!pr || !new)
200                 return;
201
202         old = pr->power.state;
203
204         if (old)
205                 old->promotion.count = 0;
206         new->demotion.count = 0;
207
208         /* Cleanup from old state. */
209         if (old) {
210                 switch (old->type) {
211                 case ACPI_STATE_C3:
212                         /* Disable bus master reload */
213                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
214                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
215                         break;
216                 }
217         }
218
219         /* Prepare to use new state. */
220         switch (new->type) {
221         case ACPI_STATE_C3:
222                 /* Enable bus master reload */
223                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
224                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
225                 break;
226         }
227
228         pr->power.state = new;
229
230         return;
231 }
232
233 static void acpi_safe_halt(void)
234 {
235         current_thread_info()->status &= ~TS_POLLING;
236         /*
237          * TS_POLLING-cleared state must be visible before we
238          * test NEED_RESCHED:
239          */
240         smp_mb();
241         if (!need_resched())
242                 safe_halt();
243         current_thread_info()->status |= TS_POLLING;
244 }
245
246 static atomic_t c3_cpu_count;
247
248 /* Common C-state entry for C2, C3, .. */
249 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
250 {
251         if (cstate->space_id == ACPI_CSTATE_FFH) {
252                 /* Call into architectural FFH based C-state */
253                 acpi_processor_ffh_cstate_enter(cstate);
254         } else {
255                 int unused;
256                 /* IO port based C-state */
257                 inb(cstate->address);
258                 /* Dummy wait op - must do something useless after P_LVL2 read
259                    because chipsets cannot guarantee that STPCLK# signal
260                    gets asserted in time to freeze execution properly. */
261                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
262         }
263 }
264
265 #ifdef ARCH_APICTIMER_STOPS_ON_C3
266
267 /*
268  * Some BIOS implementations switch to C3 in the published C2 state.
269  * This seems to be a common problem on AMD boxen and Intel Dothan/Banias
270  * Pentium M machines.
271  */
272 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
273                                    struct acpi_processor_cx *cx)
274 {
275         struct acpi_processor_power *pwr = &pr->power;
276
277         /*
278          * Check, if one of the previous states already marked the lapic
279          * unstable
280          */
281         if (pwr->timer_broadcast_on_state < state)
282                 return;
283
284         if (cx->type >= ACPI_STATE_C2) {
285                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
286                         pr->power.timer_broadcast_on_state = state;
287                 else if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
288                           boot_cpu_data.x86 == 6) &&
289                          (boot_cpu_data.x86_model == 13 ||
290                           boot_cpu_data.x86_model == 9))
291                 {
292                         pr->power.timer_broadcast_on_state = state;
293                 }
294         }
295 }
296
297 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
298 {
299 #ifdef CONFIG_GENERIC_CLOCKEVENTS
300         unsigned long reason;
301
302         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
303                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
304
305         clockevents_notify(reason, &pr->id);
306 #else
307         cpumask_t mask = cpumask_of_cpu(pr->id);
308
309         if (use_ipi == 0)
310                 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
311         else if (use_ipi == 1)
312                 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
313         else {
314                 if (pr->power.timer_broadcast_on_state < INT_MAX)
315                         on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
316                 else
317                         on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
318         }
319 #endif
320 }
321
322 /* Power(C) State timer broadcast control */
323 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
324                                        struct acpi_processor_cx *cx,
325                                        int broadcast)
326 {
327 #ifdef CONFIG_GENERIC_CLOCKEVENTS
328
329         int state = cx - pr->power.states;
330
331         if (state >= pr->power.timer_broadcast_on_state) {
332                 unsigned long reason;
333
334                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
335                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
336                 clockevents_notify(reason, &pr->id);
337         }
338 #endif
339 }
340
341 #else
342
343 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
344                                    struct acpi_processor_cx *cstate) { }
345 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
346 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
347                                        struct acpi_processor_cx *cx,
348                                        int broadcast)
349 {
350 }
351
352 #endif
353
354 static void acpi_processor_idle(void)
355 {
356         struct acpi_processor *pr = NULL;
357         struct acpi_processor_cx *cx = NULL;
358         struct acpi_processor_cx *next_state = NULL;
359         int sleep_ticks = 0;
360         u32 t1, t2 = 0;
361
362         pr = processors[smp_processor_id()];
363         if (!pr)
364                 return;
365
366         /*
367          * Interrupts must be disabled during bus mastering calculations and
368          * for C2/C3 transitions.
369          */
370         local_irq_disable();
371
372         /*
373          * Check whether we truly need to go idle, or should
374          * reschedule:
375          */
376         if (unlikely(need_resched())) {
377                 local_irq_enable();
378                 return;
379         }
380
381         cx = pr->power.state;
382         if (!cx) {
383                 if (pm_idle_save)
384                         pm_idle_save();
385                 else
386                         acpi_safe_halt();
387                 return;
388         }
389
390         /*
391          * Check BM Activity
392          * -----------------
393          * Check for bus mastering activity (if required), record, and check
394          * for demotion.
395          */
396         if (pr->flags.bm_check) {
397                 u32 bm_status = 0;
398                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
399
400                 if (diff > 31)
401                         diff = 31;
402
403                 pr->power.bm_activity <<= diff;
404
405                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
406                 if (bm_status) {
407                         pr->power.bm_activity |= 0x1;
408                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
409                 }
410                 /*
411                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
412                  * the true state of bus mastering activity; forcing us to
413                  * manually check the BMIDEA bit of each IDE channel.
414                  */
415                 else if (errata.piix4.bmisx) {
416                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
417                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
418                                 pr->power.bm_activity |= 0x1;
419                 }
420
421                 pr->power.bm_check_timestamp = jiffies;
422
423                 /*
424                  * If bus mastering is or was active this jiffy, demote
425                  * to avoid a faulty transition.  Note that the processor
426                  * won't enter a low-power state during this call (to this
427                  * function) but should upon the next.
428                  *
429                  * TBD: A better policy might be to fallback to the demotion
430                  *      state (use it for this quantum only) istead of
431                  *      demoting -- and rely on duration as our sole demotion
432                  *      qualification.  This may, however, introduce DMA
433                  *      issues (e.g. floppy DMA transfer overrun/underrun).
434                  */
435                 if ((pr->power.bm_activity & 0x1) &&
436                     cx->demotion.threshold.bm) {
437                         local_irq_enable();
438                         next_state = cx->demotion.state;
439                         goto end;
440                 }
441         }
442
443 #ifdef CONFIG_HOTPLUG_CPU
444         /*
445          * Check for P_LVL2_UP flag before entering C2 and above on
446          * an SMP system. We do it here instead of doing it at _CST/P_LVL
447          * detection phase, to work cleanly with logical CPU hotplug.
448          */
449         if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 
450             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
451                 cx = &pr->power.states[ACPI_STATE_C1];
452 #endif
453
454         /*
455          * Sleep:
456          * ------
457          * Invoke the current Cx state to put the processor to sleep.
458          */
459         if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
460                 current_thread_info()->status &= ~TS_POLLING;
461                 /*
462                  * TS_POLLING-cleared state must be visible before we
463                  * test NEED_RESCHED:
464                  */
465                 smp_mb();
466                 if (need_resched()) {
467                         current_thread_info()->status |= TS_POLLING;
468                         local_irq_enable();
469                         return;
470                 }
471         }
472
473         switch (cx->type) {
474
475         case ACPI_STATE_C1:
476                 /*
477                  * Invoke C1.
478                  * Use the appropriate idle routine, the one that would
479                  * be used without acpi C-states.
480                  */
481                 if (pm_idle_save)
482                         pm_idle_save();
483                 else
484                         acpi_safe_halt();
485
486                 /*
487                  * TBD: Can't get time duration while in C1, as resumes
488                  *      go to an ISR rather than here.  Need to instrument
489                  *      base interrupt handler.
490                  */
491                 sleep_ticks = 0xFFFFFFFF;
492                 break;
493
494         case ACPI_STATE_C2:
495                 /* Get start time (ticks) */
496                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
497                 /* Invoke C2 */
498                 acpi_state_timer_broadcast(pr, cx, 1);
499                 acpi_cstate_enter(cx);
500                 /* Get end time (ticks) */
501                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
502
503 #ifdef CONFIG_GENERIC_TIME
504                 /* TSC halts in C2, so notify users */
505                 mark_tsc_unstable();
506 #endif
507                 /* Re-enable interrupts */
508                 local_irq_enable();
509                 current_thread_info()->status |= TS_POLLING;
510                 /* Compute time (ticks) that we were actually asleep */
511                 sleep_ticks =
512                     ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
513                 acpi_state_timer_broadcast(pr, cx, 0);
514                 break;
515
516         case ACPI_STATE_C3:
517
518                 if (pr->flags.bm_check) {
519                         if (atomic_inc_return(&c3_cpu_count) ==
520                             num_online_cpus()) {
521                                 /*
522                                  * All CPUs are trying to go to C3
523                                  * Disable bus master arbitration
524                                  */
525                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
526                         }
527                 } else {
528                         /* SMP with no shared cache... Invalidate cache  */
529                         ACPI_FLUSH_CPU_CACHE();
530                 }
531
532                 /* Get start time (ticks) */
533                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
534                 /* Invoke C3 */
535                 acpi_state_timer_broadcast(pr, cx, 1);
536                 acpi_cstate_enter(cx);
537                 /* Get end time (ticks) */
538                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
539                 if (pr->flags.bm_check) {
540                         /* Enable bus master arbitration */
541                         atomic_dec(&c3_cpu_count);
542                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
543                 }
544
545 #ifdef CONFIG_GENERIC_TIME
546                 /* TSC halts in C3, so notify users */
547                 mark_tsc_unstable();
548 #endif
549                 /* Re-enable interrupts */
550                 local_irq_enable();
551                 current_thread_info()->status |= TS_POLLING;
552                 /* Compute time (ticks) that we were actually asleep */
553                 sleep_ticks =
554                     ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
555                 acpi_state_timer_broadcast(pr, cx, 0);
556                 break;
557
558         default:
559                 local_irq_enable();
560                 return;
561         }
562         cx->usage++;
563         if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
564                 cx->time += sleep_ticks;
565
566         next_state = pr->power.state;
567
568 #ifdef CONFIG_HOTPLUG_CPU
569         /* Don't do promotion/demotion */
570         if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
571             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
572                 next_state = cx;
573                 goto end;
574         }
575 #endif
576
577         /*
578          * Promotion?
579          * ----------
580          * Track the number of longs (time asleep is greater than threshold)
581          * and promote when the count threshold is reached.  Note that bus
582          * mastering activity may prevent promotions.
583          * Do not promote above max_cstate.
584          */
585         if (cx->promotion.state &&
586             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
587                 if (sleep_ticks > cx->promotion.threshold.ticks &&
588                   cx->promotion.state->latency <= system_latency_constraint()) {
589                         cx->promotion.count++;
590                         cx->demotion.count = 0;
591                         if (cx->promotion.count >=
592                             cx->promotion.threshold.count) {
593                                 if (pr->flags.bm_check) {
594                                         if (!
595                                             (pr->power.bm_activity & cx->
596                                              promotion.threshold.bm)) {
597                                                 next_state =
598                                                     cx->promotion.state;
599                                                 goto end;
600                                         }
601                                 } else {
602                                         next_state = cx->promotion.state;
603                                         goto end;
604                                 }
605                         }
606                 }
607         }
608
609         /*
610          * Demotion?
611          * ---------
612          * Track the number of shorts (time asleep is less than time threshold)
613          * and demote when the usage threshold is reached.
614          */
615         if (cx->demotion.state) {
616                 if (sleep_ticks < cx->demotion.threshold.ticks) {
617                         cx->demotion.count++;
618                         cx->promotion.count = 0;
619                         if (cx->demotion.count >= cx->demotion.threshold.count) {
620                                 next_state = cx->demotion.state;
621                                 goto end;
622                         }
623                 }
624         }
625
626       end:
627         /*
628          * Demote if current state exceeds max_cstate
629          * or if the latency of the current state is unacceptable
630          */
631         if ((pr->power.state - pr->power.states) > max_cstate ||
632                 pr->power.state->latency > system_latency_constraint()) {
633                 if (cx->demotion.state)
634                         next_state = cx->demotion.state;
635         }
636
637         /*
638          * New Cx State?
639          * -------------
640          * If we're going to start using a new Cx state we must clean up
641          * from the previous and prepare to use the new.
642          */
643         if (next_state != pr->power.state)
644                 acpi_processor_power_activate(pr, next_state);
645 }
646
647 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
648 {
649         unsigned int i;
650         unsigned int state_is_set = 0;
651         struct acpi_processor_cx *lower = NULL;
652         struct acpi_processor_cx *higher = NULL;
653         struct acpi_processor_cx *cx;
654
655
656         if (!pr)
657                 return -EINVAL;
658
659         /*
660          * This function sets the default Cx state policy (OS idle handler).
661          * Our scheme is to promote quickly to C2 but more conservatively
662          * to C3.  We're favoring C2  for its characteristics of low latency
663          * (quick response), good power savings, and ability to allow bus
664          * mastering activity.  Note that the Cx state policy is completely
665          * customizable and can be altered dynamically.
666          */
667
668         /* startup state */
669         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
670                 cx = &pr->power.states[i];
671                 if (!cx->valid)
672                         continue;
673
674                 if (!state_is_set)
675                         pr->power.state = cx;
676                 state_is_set++;
677                 break;
678         }
679
680         if (!state_is_set)
681                 return -ENODEV;
682
683         /* demotion */
684         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
685                 cx = &pr->power.states[i];
686                 if (!cx->valid)
687                         continue;
688
689                 if (lower) {
690                         cx->demotion.state = lower;
691                         cx->demotion.threshold.ticks = cx->latency_ticks;
692                         cx->demotion.threshold.count = 1;
693                         if (cx->type == ACPI_STATE_C3)
694                                 cx->demotion.threshold.bm = bm_history;
695                 }
696
697                 lower = cx;
698         }
699
700         /* promotion */
701         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
702                 cx = &pr->power.states[i];
703                 if (!cx->valid)
704                         continue;
705
706                 if (higher) {
707                         cx->promotion.state = higher;
708                         cx->promotion.threshold.ticks = cx->latency_ticks;
709                         if (cx->type >= ACPI_STATE_C2)
710                                 cx->promotion.threshold.count = 4;
711                         else
712                                 cx->promotion.threshold.count = 10;
713                         if (higher->type == ACPI_STATE_C3)
714                                 cx->promotion.threshold.bm = bm_history;
715                 }
716
717                 higher = cx;
718         }
719
720         return 0;
721 }
722
723 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
724 {
725
726         if (!pr)
727                 return -EINVAL;
728
729         if (!pr->pblk)
730                 return -ENODEV;
731
732         /* if info is obtained from pblk/fadt, type equals state */
733         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
734         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
735
736 #ifndef CONFIG_HOTPLUG_CPU
737         /*
738          * Check for P_LVL2_UP flag before entering C2 and above on
739          * an SMP system. 
740          */
741         if ((num_online_cpus() > 1) &&
742             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
743                 return -ENODEV;
744 #endif
745
746         /* determine C2 and C3 address from pblk */
747         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
748         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
749
750         /* determine latencies from FADT */
751         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
752         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
753
754         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
755                           "lvl2[0x%08x] lvl3[0x%08x]\n",
756                           pr->power.states[ACPI_STATE_C2].address,
757                           pr->power.states[ACPI_STATE_C3].address));
758
759         return 0;
760 }
761
762 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
763 {
764         if (!pr->power.states[ACPI_STATE_C1].valid) {
765                 /* set the first C-State to C1 */
766                 /* all processors need to support C1 */
767                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
768                 pr->power.states[ACPI_STATE_C1].valid = 1;
769         }
770         /* the C0 state only exists as a filler in our array */
771         pr->power.states[ACPI_STATE_C0].valid = 1;
772         return 0;
773 }
774
775 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
776 {
777         acpi_status status = 0;
778         acpi_integer count;
779         int current_count;
780         int i;
781         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
782         union acpi_object *cst;
783
784
785         if (nocst)
786                 return -ENODEV;
787
788         current_count = 0;
789
790         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
791         if (ACPI_FAILURE(status)) {
792                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
793                 return -ENODEV;
794         }
795
796         cst = buffer.pointer;
797
798         /* There must be at least 2 elements */
799         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
800                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
801                 status = -EFAULT;
802                 goto end;
803         }
804
805         count = cst->package.elements[0].integer.value;
806
807         /* Validate number of power states. */
808         if (count < 1 || count != cst->package.count - 1) {
809                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
810                 status = -EFAULT;
811                 goto end;
812         }
813
814         /* Tell driver that at least _CST is supported. */
815         pr->flags.has_cst = 1;
816
817         for (i = 1; i <= count; i++) {
818                 union acpi_object *element;
819                 union acpi_object *obj;
820                 struct acpi_power_register *reg;
821                 struct acpi_processor_cx cx;
822
823                 memset(&cx, 0, sizeof(cx));
824
825                 element = &(cst->package.elements[i]);
826                 if (element->type != ACPI_TYPE_PACKAGE)
827                         continue;
828
829                 if (element->package.count != 4)
830                         continue;
831
832                 obj = &(element->package.elements[0]);
833
834                 if (obj->type != ACPI_TYPE_BUFFER)
835                         continue;
836
837                 reg = (struct acpi_power_register *)obj->buffer.pointer;
838
839                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
840                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
841                         continue;
842
843                 /* There should be an easy way to extract an integer... */
844                 obj = &(element->package.elements[1]);
845                 if (obj->type != ACPI_TYPE_INTEGER)
846                         continue;
847
848                 cx.type = obj->integer.value;
849                 /*
850                  * Some buggy BIOSes won't list C1 in _CST -
851                  * Let acpi_processor_get_power_info_default() handle them later
852                  */
853                 if (i == 1 && cx.type != ACPI_STATE_C1)
854                         current_count++;
855
856                 cx.address = reg->address;
857                 cx.index = current_count + 1;
858
859                 cx.space_id = ACPI_CSTATE_SYSTEMIO;
860                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
861                         if (acpi_processor_ffh_cstate_probe
862                                         (pr->id, &cx, reg) == 0) {
863                                 cx.space_id = ACPI_CSTATE_FFH;
864                         } else if (cx.type != ACPI_STATE_C1) {
865                                 /*
866                                  * C1 is a special case where FIXED_HARDWARE
867                                  * can be handled in non-MWAIT way as well.
868                                  * In that case, save this _CST entry info.
869                                  * That is, we retain space_id of SYSTEM_IO for
870                                  * halt based C1.
871                                  * Otherwise, ignore this info and continue.
872                                  */
873                                 continue;
874                         }
875                 }
876
877                 obj = &(element->package.elements[2]);
878                 if (obj->type != ACPI_TYPE_INTEGER)
879                         continue;
880
881                 cx.latency = obj->integer.value;
882
883                 obj = &(element->package.elements[3]);
884                 if (obj->type != ACPI_TYPE_INTEGER)
885                         continue;
886
887                 cx.power = obj->integer.value;
888
889                 current_count++;
890                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
891
892                 /*
893                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
894                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
895                  */
896                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
897                         printk(KERN_WARNING
898                                "Limiting number of power states to max (%d)\n",
899                                ACPI_PROCESSOR_MAX_POWER);
900                         printk(KERN_WARNING
901                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
902                         break;
903                 }
904         }
905
906         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
907                           current_count));
908
909         /* Validate number of power states discovered */
910         if (current_count < 2)
911                 status = -EFAULT;
912
913       end:
914         kfree(buffer.pointer);
915
916         return status;
917 }
918
919 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
920 {
921
922         if (!cx->address)
923                 return;
924
925         /*
926          * C2 latency must be less than or equal to 100
927          * microseconds.
928          */
929         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
930                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
931                                   "latency too large [%d]\n", cx->latency));
932                 return;
933         }
934
935         /*
936          * Otherwise we've met all of our C2 requirements.
937          * Normalize the C2 latency to expidite policy
938          */
939         cx->valid = 1;
940         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
941
942         return;
943 }
944
945 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
946                                            struct acpi_processor_cx *cx)
947 {
948         static int bm_check_flag;
949
950
951         if (!cx->address)
952                 return;
953
954         /*
955          * C3 latency must be less than or equal to 1000
956          * microseconds.
957          */
958         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
959                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
960                                   "latency too large [%d]\n", cx->latency));
961                 return;
962         }
963
964         /*
965          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
966          * DMA transfers are used by any ISA device to avoid livelock.
967          * Note that we could disable Type-F DMA (as recommended by
968          * the erratum), but this is known to disrupt certain ISA
969          * devices thus we take the conservative approach.
970          */
971         else if (errata.piix4.fdma) {
972                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
973                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
974                 return;
975         }
976
977         /* All the logic here assumes flags.bm_check is same across all CPUs */
978         if (!bm_check_flag) {
979                 /* Determine whether bm_check is needed based on CPU  */
980                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
981                 bm_check_flag = pr->flags.bm_check;
982         } else {
983                 pr->flags.bm_check = bm_check_flag;
984         }
985
986         if (pr->flags.bm_check) {
987                 /* bus mastering control is necessary */
988                 if (!pr->flags.bm_control) {
989                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
990                                           "C3 support requires bus mastering control\n"));
991                         return;
992                 }
993         } else {
994                 /*
995                  * WBINVD should be set in fadt, for C3 state to be
996                  * supported on when bm_check is not required.
997                  */
998                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
999                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1000                                           "Cache invalidation should work properly"
1001                                           " for C3 to be enabled on SMP systems\n"));
1002                         return;
1003                 }
1004                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1005         }
1006
1007         /*
1008          * Otherwise we've met all of our C3 requirements.
1009          * Normalize the C3 latency to expidite policy.  Enable
1010          * checking of bus mastering status (bm_check) so we can
1011          * use this in our C3 policy
1012          */
1013         cx->valid = 1;
1014         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1015
1016         return;
1017 }
1018
1019 static int acpi_processor_power_verify(struct acpi_processor *pr)
1020 {
1021         unsigned int i;
1022         unsigned int working = 0;
1023
1024         pr->power.timer_broadcast_on_state = INT_MAX;
1025
1026         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1027                 struct acpi_processor_cx *cx = &pr->power.states[i];
1028
1029                 switch (cx->type) {
1030                 case ACPI_STATE_C1:
1031                         cx->valid = 1;
1032                         break;
1033
1034                 case ACPI_STATE_C2:
1035                         acpi_processor_power_verify_c2(cx);
1036                         if (cx->valid && use_ipi != 0 && use_ipi != 1)
1037                                 acpi_timer_check_state(i, pr, cx);
1038                         break;
1039
1040                 case ACPI_STATE_C3:
1041                         acpi_processor_power_verify_c3(pr, cx);
1042                         if (cx->valid && use_ipi != 0 && use_ipi != 1)
1043                                 acpi_timer_check_state(i, pr, cx);
1044                         break;
1045                 }
1046
1047                 if (cx->valid)
1048                         working++;
1049         }
1050
1051         acpi_propagate_timer_broadcast(pr);
1052
1053         return (working);
1054 }
1055
1056 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1057 {
1058         unsigned int i;
1059         int result;
1060
1061
1062         /* NOTE: the idle thread may not be running while calling
1063          * this function */
1064
1065         /* Zero initialize all the C-states info. */
1066         memset(pr->power.states, 0, sizeof(pr->power.states));
1067
1068         result = acpi_processor_get_power_info_cst(pr);
1069         if (result == -ENODEV)
1070                 result = acpi_processor_get_power_info_fadt(pr);
1071
1072         if (result)
1073                 return result;
1074
1075         acpi_processor_get_power_info_default(pr);
1076
1077         pr->power.count = acpi_processor_power_verify(pr);
1078
1079         /*
1080          * Set Default Policy
1081          * ------------------
1082          * Now that we know which states are supported, set the default
1083          * policy.  Note that this policy can be changed dynamically
1084          * (e.g. encourage deeper sleeps to conserve battery life when
1085          * not on AC).
1086          */
1087         result = acpi_processor_set_power_policy(pr);
1088         if (result)
1089                 return result;
1090
1091         /*
1092          * if one state of type C2 or C3 is available, mark this
1093          * CPU as being "idle manageable"
1094          */
1095         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1096                 if (pr->power.states[i].valid) {
1097                         pr->power.count = i;
1098                         if (pr->power.states[i].type >= ACPI_STATE_C2)
1099                                 pr->flags.power = 1;
1100                 }
1101         }
1102
1103         return 0;
1104 }
1105
1106 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1107 {
1108         int result = 0;
1109
1110
1111         if (!pr)
1112                 return -EINVAL;
1113
1114         if (nocst) {
1115                 return -ENODEV;
1116         }
1117
1118         if (!pr->flags.power_setup_done)
1119                 return -ENODEV;
1120
1121         /* Fall back to the default idle loop */
1122         pm_idle = pm_idle_save;
1123         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
1124
1125         pr->flags.power = 0;
1126         result = acpi_processor_get_power_info(pr);
1127         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1128                 pm_idle = acpi_processor_idle;
1129
1130         return result;
1131 }
1132
1133 /* proc interface */
1134
1135 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1136 {
1137         struct acpi_processor *pr = seq->private;
1138         unsigned int i;
1139
1140
1141         if (!pr)
1142                 goto end;
1143
1144         seq_printf(seq, "active state:            C%zd\n"
1145                    "max_cstate:              C%d\n"
1146                    "bus master activity:     %08x\n"
1147                    "maximum allowed latency: %d usec\n",
1148                    pr->power.state ? pr->power.state - pr->power.states : 0,
1149                    max_cstate, (unsigned)pr->power.bm_activity,
1150                    system_latency_constraint());
1151
1152         seq_puts(seq, "states:\n");
1153
1154         for (i = 1; i <= pr->power.count; i++) {
1155                 seq_printf(seq, "   %cC%d:                  ",
1156                            (&pr->power.states[i] ==
1157                             pr->power.state ? '*' : ' '), i);
1158
1159                 if (!pr->power.states[i].valid) {
1160                         seq_puts(seq, "<not supported>\n");
1161                         continue;
1162                 }
1163
1164                 switch (pr->power.states[i].type) {
1165                 case ACPI_STATE_C1:
1166                         seq_printf(seq, "type[C1] ");
1167                         break;
1168                 case ACPI_STATE_C2:
1169                         seq_printf(seq, "type[C2] ");
1170                         break;
1171                 case ACPI_STATE_C3:
1172                         seq_printf(seq, "type[C3] ");
1173                         break;
1174                 default:
1175                         seq_printf(seq, "type[--] ");
1176                         break;
1177                 }
1178
1179                 if (pr->power.states[i].promotion.state)
1180                         seq_printf(seq, "promotion[C%zd] ",
1181                                    (pr->power.states[i].promotion.state -
1182                                     pr->power.states));
1183                 else
1184                         seq_puts(seq, "promotion[--] ");
1185
1186                 if (pr->power.states[i].demotion.state)
1187                         seq_printf(seq, "demotion[C%zd] ",
1188                                    (pr->power.states[i].demotion.state -
1189                                     pr->power.states));
1190                 else
1191                         seq_puts(seq, "demotion[--] ");
1192
1193                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1194                            pr->power.states[i].latency,
1195                            pr->power.states[i].usage,
1196                            (unsigned long long)pr->power.states[i].time);
1197         }
1198
1199       end:
1200         return 0;
1201 }
1202
1203 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1204 {
1205         return single_open(file, acpi_processor_power_seq_show,
1206                            PDE(inode)->data);
1207 }
1208
1209 static const struct file_operations acpi_processor_power_fops = {
1210         .open = acpi_processor_power_open_fs,
1211         .read = seq_read,
1212         .llseek = seq_lseek,
1213         .release = single_release,
1214 };
1215
1216 #ifdef CONFIG_SMP
1217 static void smp_callback(void *v)
1218 {
1219         /* we already woke the CPU up, nothing more to do */
1220 }
1221
1222 /*
1223  * This function gets called when a part of the kernel has a new latency
1224  * requirement.  This means we need to get all processors out of their C-state,
1225  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1226  * wakes them all right up.
1227  */
1228 static int acpi_processor_latency_notify(struct notifier_block *b,
1229                 unsigned long l, void *v)
1230 {
1231         smp_call_function(smp_callback, NULL, 0, 1);
1232         return NOTIFY_OK;
1233 }
1234
1235 static struct notifier_block acpi_processor_latency_notifier = {
1236         .notifier_call = acpi_processor_latency_notify,
1237 };
1238 #endif
1239
1240 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1241                               struct acpi_device *device)
1242 {
1243         acpi_status status = 0;
1244         static int first_run;
1245         struct proc_dir_entry *entry = NULL;
1246         unsigned int i;
1247
1248
1249         if (!first_run) {
1250                 dmi_check_system(processor_power_dmi_table);
1251                 if (max_cstate < ACPI_C_STATES_MAX)
1252                         printk(KERN_NOTICE
1253                                "ACPI: processor limited to max C-state %d\n",
1254                                max_cstate);
1255                 first_run++;
1256 #ifdef CONFIG_SMP
1257                 register_latency_notifier(&acpi_processor_latency_notifier);
1258 #endif
1259         }
1260
1261         if (!pr)
1262                 return -EINVAL;
1263
1264         if (acpi_gbl_FADT.cst_control && !nocst) {
1265                 status =
1266                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1267                 if (ACPI_FAILURE(status)) {
1268                         ACPI_EXCEPTION((AE_INFO, status,
1269                                         "Notifying BIOS of _CST ability failed"));
1270                 }
1271         }
1272
1273         acpi_processor_get_power_info(pr);
1274
1275         /*
1276          * Install the idle handler if processor power management is supported.
1277          * Note that we use previously set idle handler will be used on
1278          * platforms that only support C1.
1279          */
1280         if ((pr->flags.power) && (!boot_option_idle_override)) {
1281                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1282                 for (i = 1; i <= pr->power.count; i++)
1283                         if (pr->power.states[i].valid)
1284                                 printk(" C%d[C%d]", i,
1285                                        pr->power.states[i].type);
1286                 printk(")\n");
1287
1288                 if (pr->id == 0) {
1289                         pm_idle_save = pm_idle;
1290                         pm_idle = acpi_processor_idle;
1291                 }
1292         }
1293
1294         /* 'power' [R] */
1295         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1296                                   S_IRUGO, acpi_device_dir(device));
1297         if (!entry)
1298                 return -EIO;
1299         else {
1300                 entry->proc_fops = &acpi_processor_power_fops;
1301                 entry->data = acpi_driver_data(device);
1302                 entry->owner = THIS_MODULE;
1303         }
1304
1305         pr->flags.power_setup_done = 1;
1306
1307         return 0;
1308 }
1309
1310 int acpi_processor_power_exit(struct acpi_processor *pr,
1311                               struct acpi_device *device)
1312 {
1313
1314         pr->flags.power_setup_done = 0;
1315
1316         if (acpi_device_dir(device))
1317                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1318                                   acpi_device_dir(device));
1319
1320         /* Unregister the idle handler when processor #0 is removed. */
1321         if (pr->id == 0) {
1322                 pm_idle = pm_idle_save;
1323
1324                 /*
1325                  * We are about to unload the current idle thread pm callback
1326                  * (pm_idle), Wait for all processors to update cached/local
1327                  * copies of pm_idle before proceeding.
1328                  */
1329                 cpu_idle_wait();
1330 #ifdef CONFIG_SMP
1331                 unregister_latency_notifier(&acpi_processor_latency_notifier);
1332 #endif
1333         }
1334
1335         return 0;
1336 }