Remove obsolete #include <linux/config.h>
[pandora-kernel.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful,
16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *  GNU General Public License for more details.
19  *
20  *  You should have received a copy of the GNU General Public License
21  *  along with this program; if not, write to the Free Software
22  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  *
26  */
27
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/mm.h>
32 #include <linux/pci.h>
33 #include <linux/smp_lock.h>
34 #include <linux/interrupt.h>
35 #include <linux/kmod.h>
36 #include <linux/delay.h>
37 #include <linux/workqueue.h>
38 #include <linux/nmi.h>
39 #include <linux/kthread.h>
40 #include <acpi/acpi.h>
41 #include <asm/io.h>
42 #include <acpi/acpi_bus.h>
43 #include <acpi/processor.h>
44 #include <asm/uaccess.h>
45
46 #include <linux/efi.h>
47
48 #define _COMPONENT              ACPI_OS_SERVICES
49 ACPI_MODULE_NAME("osl")
50 #define PREFIX          "ACPI: "
51 struct acpi_os_dpc {
52         acpi_osd_exec_callback function;
53         void *context;
54 };
55
56 #ifdef CONFIG_ACPI_CUSTOM_DSDT
57 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
58 #endif
59
60 #ifdef ENABLE_DEBUGGER
61 #include <linux/kdb.h>
62
63 /* stuff for debugger support */
64 int acpi_in_debugger;
65 EXPORT_SYMBOL(acpi_in_debugger);
66
67 extern char line_buf[80];
68 #endif                          /*ENABLE_DEBUGGER */
69
70 int acpi_specific_hotkey_enabled = TRUE;
71 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
72
73 static unsigned int acpi_irq_irq;
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77
78 acpi_status acpi_os_initialize(void)
79 {
80         return AE_OK;
81 }
82
83 acpi_status acpi_os_initialize1(void)
84 {
85         /*
86          * Initialize PCI configuration space access, as we'll need to access
87          * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
88          */
89         if (!raw_pci_ops) {
90                 printk(KERN_ERR PREFIX
91                        "Access to PCI configuration space unavailable\n");
92                 return AE_NULL_ENTRY;
93         }
94         kacpid_wq = create_singlethread_workqueue("kacpid");
95         BUG_ON(!kacpid_wq);
96
97         return AE_OK;
98 }
99
100 acpi_status acpi_os_terminate(void)
101 {
102         if (acpi_irq_handler) {
103                 acpi_os_remove_interrupt_handler(acpi_irq_irq,
104                                                  acpi_irq_handler);
105         }
106
107         destroy_workqueue(kacpid_wq);
108
109         return AE_OK;
110 }
111
112 void acpi_os_printf(const char *fmt, ...)
113 {
114         va_list args;
115         va_start(args, fmt);
116         acpi_os_vprintf(fmt, args);
117         va_end(args);
118 }
119
120 EXPORT_SYMBOL(acpi_os_printf);
121
122 void acpi_os_vprintf(const char *fmt, va_list args)
123 {
124         static char buffer[512];
125
126         vsprintf(buffer, fmt, args);
127
128 #ifdef ENABLE_DEBUGGER
129         if (acpi_in_debugger) {
130                 kdb_printf("%s", buffer);
131         } else {
132                 printk("%s", buffer);
133         }
134 #else
135         printk("%s", buffer);
136 #endif
137 }
138
139 extern int acpi_in_resume;
140 void *acpi_os_allocate(acpi_size size)
141 {
142         if (acpi_in_resume)
143                 return kmalloc(size, GFP_ATOMIC);
144         else
145                 return kmalloc(size, GFP_KERNEL);
146 }
147
148 void acpi_os_free(void *ptr)
149 {
150         kfree(ptr);
151 }
152
153 EXPORT_SYMBOL(acpi_os_free);
154
155 acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
156 {
157         if (efi_enabled) {
158                 addr->pointer_type = ACPI_PHYSICAL_POINTER;
159                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
160                         addr->pointer.physical = efi.acpi20;
161                 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
162                         addr->pointer.physical = efi.acpi;
163                 else {
164                         printk(KERN_ERR PREFIX
165                                "System description tables not found\n");
166                         return AE_NOT_FOUND;
167                 }
168         } else {
169                 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
170                         printk(KERN_ERR PREFIX
171                                "System description tables not found\n");
172                         return AE_NOT_FOUND;
173                 }
174         }
175
176         return AE_OK;
177 }
178
179 acpi_status
180 acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
181                    void __iomem ** virt)
182 {
183         if (phys > ULONG_MAX) {
184                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
185                 return AE_BAD_PARAMETER;
186         }
187         /*
188          * ioremap checks to ensure this is in reserved space
189          */
190         *virt = ioremap((unsigned long)phys, size);
191
192         if (!*virt)
193                 return AE_NO_MEMORY;
194
195         return AE_OK;
196 }
197 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
198
199 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
200 {
201         iounmap(virt);
202 }
203 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
204
205 #ifdef ACPI_FUTURE_USAGE
206 acpi_status
207 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
208 {
209         if (!phys || !virt)
210                 return AE_BAD_PARAMETER;
211
212         *phys = virt_to_phys(virt);
213
214         return AE_OK;
215 }
216 #endif
217
218 #define ACPI_MAX_OVERRIDE_LEN 100
219
220 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
221
222 acpi_status
223 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
224                             acpi_string * new_val)
225 {
226         if (!init_val || !new_val)
227                 return AE_BAD_PARAMETER;
228
229         *new_val = NULL;
230         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
231                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
232                        acpi_os_name);
233                 *new_val = acpi_os_name;
234         }
235
236         return AE_OK;
237 }
238
239 acpi_status
240 acpi_os_table_override(struct acpi_table_header * existing_table,
241                        struct acpi_table_header ** new_table)
242 {
243         if (!existing_table || !new_table)
244                 return AE_BAD_PARAMETER;
245
246 #ifdef CONFIG_ACPI_CUSTOM_DSDT
247         if (strncmp(existing_table->signature, "DSDT", 4) == 0)
248                 *new_table = (struct acpi_table_header *)AmlCode;
249         else
250                 *new_table = NULL;
251 #else
252         *new_table = NULL;
253 #endif
254         return AE_OK;
255 }
256
257 static irqreturn_t acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
258 {
259         return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
260 }
261
262 acpi_status
263 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
264                                   void *context)
265 {
266         unsigned int irq;
267
268         /*
269          * Ignore the GSI from the core, and use the value in our copy of the
270          * FADT. It may not be the same if an interrupt source override exists
271          * for the SCI.
272          */
273         gsi = acpi_fadt.sci_int;
274         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
275                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
276                        gsi);
277                 return AE_OK;
278         }
279
280         acpi_irq_handler = handler;
281         acpi_irq_context = context;
282         if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) {
283                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
284                 return AE_NOT_ACQUIRED;
285         }
286         acpi_irq_irq = irq;
287
288         return AE_OK;
289 }
290
291 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
292 {
293         if (irq) {
294                 free_irq(irq, acpi_irq);
295                 acpi_irq_handler = NULL;
296                 acpi_irq_irq = 0;
297         }
298
299         return AE_OK;
300 }
301
302 /*
303  * Running in interpreter thread context, safe to sleep
304  */
305
306 void acpi_os_sleep(acpi_integer ms)
307 {
308         schedule_timeout_interruptible(msecs_to_jiffies(ms));
309 }
310
311 EXPORT_SYMBOL(acpi_os_sleep);
312
313 void acpi_os_stall(u32 us)
314 {
315         while (us) {
316                 u32 delay = 1000;
317
318                 if (delay > us)
319                         delay = us;
320                 udelay(delay);
321                 touch_nmi_watchdog();
322                 us -= delay;
323         }
324 }
325
326 EXPORT_SYMBOL(acpi_os_stall);
327
328 /*
329  * Support ACPI 3.0 AML Timer operand
330  * Returns 64-bit free-running, monotonically increasing timer
331  * with 100ns granularity
332  */
333 u64 acpi_os_get_timer(void)
334 {
335         static u64 t;
336
337 #ifdef  CONFIG_HPET
338         /* TBD: use HPET if available */
339 #endif
340
341 #ifdef  CONFIG_X86_PM_TIMER
342         /* TBD: default to PM timer if HPET was not available */
343 #endif
344         if (!t)
345                 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
346
347         return ++t;
348 }
349
350 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
351 {
352         u32 dummy;
353
354         if (!value)
355                 value = &dummy;
356
357         switch (width) {
358         case 8:
359                 *(u8 *) value = inb(port);
360                 break;
361         case 16:
362                 *(u16 *) value = inw(port);
363                 break;
364         case 32:
365                 *(u32 *) value = inl(port);
366                 break;
367         default:
368                 BUG();
369         }
370
371         return AE_OK;
372 }
373
374 EXPORT_SYMBOL(acpi_os_read_port);
375
376 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
377 {
378         switch (width) {
379         case 8:
380                 outb(value, port);
381                 break;
382         case 16:
383                 outw(value, port);
384                 break;
385         case 32:
386                 outl(value, port);
387                 break;
388         default:
389                 BUG();
390         }
391
392         return AE_OK;
393 }
394
395 EXPORT_SYMBOL(acpi_os_write_port);
396
397 acpi_status
398 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
399 {
400         u32 dummy;
401         void __iomem *virt_addr;
402
403         virt_addr = ioremap(phys_addr, width);
404         if (!value)
405                 value = &dummy;
406
407         switch (width) {
408         case 8:
409                 *(u8 *) value = readb(virt_addr);
410                 break;
411         case 16:
412                 *(u16 *) value = readw(virt_addr);
413                 break;
414         case 32:
415                 *(u32 *) value = readl(virt_addr);
416                 break;
417         default:
418                 BUG();
419         }
420
421         iounmap(virt_addr);
422
423         return AE_OK;
424 }
425
426 acpi_status
427 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
428 {
429         void __iomem *virt_addr;
430
431         virt_addr = ioremap(phys_addr, width);
432
433         switch (width) {
434         case 8:
435                 writeb(value, virt_addr);
436                 break;
437         case 16:
438                 writew(value, virt_addr);
439                 break;
440         case 32:
441                 writel(value, virt_addr);
442                 break;
443         default:
444                 BUG();
445         }
446
447         iounmap(virt_addr);
448
449         return AE_OK;
450 }
451
452 acpi_status
453 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
454                                void *value, u32 width)
455 {
456         int result, size;
457
458         if (!value)
459                 return AE_BAD_PARAMETER;
460
461         switch (width) {
462         case 8:
463                 size = 1;
464                 break;
465         case 16:
466                 size = 2;
467                 break;
468         case 32:
469                 size = 4;
470                 break;
471         default:
472                 return AE_ERROR;
473         }
474
475         BUG_ON(!raw_pci_ops);
476
477         result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
478                                    PCI_DEVFN(pci_id->device, pci_id->function),
479                                    reg, size, value);
480
481         return (result ? AE_ERROR : AE_OK);
482 }
483
484 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
485
486 acpi_status
487 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
488                                 acpi_integer value, u32 width)
489 {
490         int result, size;
491
492         switch (width) {
493         case 8:
494                 size = 1;
495                 break;
496         case 16:
497                 size = 2;
498                 break;
499         case 32:
500                 size = 4;
501                 break;
502         default:
503                 return AE_ERROR;
504         }
505
506         BUG_ON(!raw_pci_ops);
507
508         result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
509                                     PCI_DEVFN(pci_id->device, pci_id->function),
510                                     reg, size, value);
511
512         return (result ? AE_ERROR : AE_OK);
513 }
514
515 /* TODO: Change code to take advantage of driver model more */
516 static void acpi_os_derive_pci_id_2(acpi_handle rhandle,        /* upper bound  */
517                                     acpi_handle chandle,        /* current node */
518                                     struct acpi_pci_id **id,
519                                     int *is_bridge, u8 * bus_number)
520 {
521         acpi_handle handle;
522         struct acpi_pci_id *pci_id = *id;
523         acpi_status status;
524         unsigned long temp;
525         acpi_object_type type;
526         u8 tu8;
527
528         acpi_get_parent(chandle, &handle);
529         if (handle != rhandle) {
530                 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
531                                         bus_number);
532
533                 status = acpi_get_type(handle, &type);
534                 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
535                         return;
536
537                 status =
538                     acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
539                                           &temp);
540                 if (ACPI_SUCCESS(status)) {
541                         pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
542                         pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
543
544                         if (*is_bridge)
545                                 pci_id->bus = *bus_number;
546
547                         /* any nicer way to get bus number of bridge ? */
548                         status =
549                             acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
550                                                            8);
551                         if (ACPI_SUCCESS(status)
552                             && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
553                                 status =
554                                     acpi_os_read_pci_configuration(pci_id, 0x18,
555                                                                    &tu8, 8);
556                                 if (!ACPI_SUCCESS(status)) {
557                                         /* Certainly broken...  FIX ME */
558                                         return;
559                                 }
560                                 *is_bridge = 1;
561                                 pci_id->bus = tu8;
562                                 status =
563                                     acpi_os_read_pci_configuration(pci_id, 0x19,
564                                                                    &tu8, 8);
565                                 if (ACPI_SUCCESS(status)) {
566                                         *bus_number = tu8;
567                                 }
568                         } else
569                                 *is_bridge = 0;
570                 }
571         }
572 }
573
574 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound  */
575                            acpi_handle chandle, /* current node */
576                            struct acpi_pci_id **id)
577 {
578         int is_bridge = 1;
579         u8 bus_number = (*id)->bus;
580
581         acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
582 }
583
584 static void acpi_os_execute_deferred(void *context)
585 {
586         struct acpi_os_dpc *dpc = NULL;
587
588         ACPI_FUNCTION_TRACE("os_execute_deferred");
589
590         dpc = (struct acpi_os_dpc *)context;
591         if (!dpc) {
592                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid (NULL) context.\n"));
593                 return_VOID;
594         }
595
596         dpc->function(dpc->context);
597
598         kfree(dpc);
599
600         return_VOID;
601 }
602
603 static int acpi_os_execute_thread(void *context)
604 {
605         struct acpi_os_dpc *dpc = (struct acpi_os_dpc *)context;
606         if (dpc) {
607                 dpc->function(dpc->context);
608                 kfree(dpc);
609         }
610         do_exit(0);
611 }
612
613 /*******************************************************************************
614  *
615  * FUNCTION:    acpi_os_execute
616  *
617  * PARAMETERS:  Type               - Type of the callback
618  *              Function           - Function to be executed
619  *              Context            - Function parameters
620  *
621  * RETURN:      Status
622  *
623  * DESCRIPTION: Depending on type, either queues function for deferred execution or
624  *              immediately executes function on a separate thread.
625  *
626  ******************************************************************************/
627
628 acpi_status acpi_os_execute(acpi_execute_type type,
629                             acpi_osd_exec_callback function, void *context)
630 {
631         acpi_status status = AE_OK;
632         struct acpi_os_dpc *dpc;
633         struct work_struct *task;
634         struct task_struct *p;
635
636         if (!function)
637                 return AE_BAD_PARAMETER;
638         /*
639          * Allocate/initialize DPC structure.  Note that this memory will be
640          * freed by the callee.  The kernel handles the tq_struct list  in a
641          * way that allows us to also free its memory inside the callee.
642          * Because we may want to schedule several tasks with different
643          * parameters we can't use the approach some kernel code uses of
644          * having a static tq_struct.
645          * We can save time and code by allocating the DPC and tq_structs
646          * from the same memory.
647          */
648         if (type == OSL_NOTIFY_HANDLER) {
649                 dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_KERNEL);
650         } else {
651                 dpc = kmalloc(sizeof(struct acpi_os_dpc) +
652                                 sizeof(struct work_struct), GFP_ATOMIC);
653         }
654         if (!dpc)
655                 return AE_NO_MEMORY;
656         dpc->function = function;
657         dpc->context = context;
658
659         if (type == OSL_NOTIFY_HANDLER) {
660                 p = kthread_create(acpi_os_execute_thread, dpc, "kacpid_notify");
661                 if (!IS_ERR(p)) {
662                         wake_up_process(p);
663                 } else {
664                         status = AE_NO_MEMORY;
665                         kfree(dpc);
666                 }
667         } else {
668                 task = (void *)(dpc + 1);
669                 INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
670                 if (!queue_work(kacpid_wq, task)) {
671                         status = AE_ERROR;
672                         kfree(dpc);
673                 }
674         }
675         return status;
676 }
677
678 EXPORT_SYMBOL(acpi_os_execute);
679
680 void acpi_os_wait_events_complete(void *context)
681 {
682         flush_workqueue(kacpid_wq);
683 }
684
685 EXPORT_SYMBOL(acpi_os_wait_events_complete);
686
687 /*
688  * Allocate the memory for a spinlock and initialize it.
689  */
690 acpi_status acpi_os_create_lock(acpi_handle * out_handle)
691 {
692         spinlock_t *lock_ptr;
693
694         ACPI_FUNCTION_TRACE("os_create_lock");
695
696         lock_ptr = acpi_os_allocate(sizeof(spinlock_t));
697
698         spin_lock_init(lock_ptr);
699
700         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating spinlock[%p].\n", lock_ptr));
701
702         *out_handle = lock_ptr;
703
704         return_ACPI_STATUS(AE_OK);
705 }
706
707 /*
708  * Deallocate the memory for a spinlock.
709  */
710 void acpi_os_delete_lock(acpi_handle handle)
711 {
712         ACPI_FUNCTION_TRACE("os_create_lock");
713
714         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting spinlock[%p].\n", handle));
715
716         acpi_os_free(handle);
717
718         return_VOID;
719 }
720
721 acpi_status
722 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
723 {
724         struct semaphore *sem = NULL;
725
726         ACPI_FUNCTION_TRACE("os_create_semaphore");
727
728         sem = acpi_os_allocate(sizeof(struct semaphore));
729         if (!sem)
730                 return_ACPI_STATUS(AE_NO_MEMORY);
731         memset(sem, 0, sizeof(struct semaphore));
732
733         sema_init(sem, initial_units);
734
735         *handle = (acpi_handle *) sem;
736
737         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
738                           *handle, initial_units));
739
740         return_ACPI_STATUS(AE_OK);
741 }
742
743 EXPORT_SYMBOL(acpi_os_create_semaphore);
744
745 /*
746  * TODO: A better way to delete semaphores?  Linux doesn't have a
747  * 'delete_semaphore()' function -- may result in an invalid
748  * pointer dereference for non-synchronized consumers.  Should
749  * we at least check for blocked threads and signal/cancel them?
750  */
751
752 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
753 {
754         struct semaphore *sem = (struct semaphore *)handle;
755
756         ACPI_FUNCTION_TRACE("os_delete_semaphore");
757
758         if (!sem)
759                 return_ACPI_STATUS(AE_BAD_PARAMETER);
760
761         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
762
763         acpi_os_free(sem);
764         sem = NULL;
765
766         return_ACPI_STATUS(AE_OK);
767 }
768
769 EXPORT_SYMBOL(acpi_os_delete_semaphore);
770
771 /*
772  * TODO: The kernel doesn't have a 'down_timeout' function -- had to
773  * improvise.  The process is to sleep for one scheduler quantum
774  * until the semaphore becomes available.  Downside is that this
775  * may result in starvation for timeout-based waits when there's
776  * lots of semaphore activity.
777  *
778  * TODO: Support for units > 1?
779  */
780 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
781 {
782         acpi_status status = AE_OK;
783         struct semaphore *sem = (struct semaphore *)handle;
784         int ret = 0;
785
786         ACPI_FUNCTION_TRACE("os_wait_semaphore");
787
788         if (!sem || (units < 1))
789                 return_ACPI_STATUS(AE_BAD_PARAMETER);
790
791         if (units > 1)
792                 return_ACPI_STATUS(AE_SUPPORT);
793
794         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
795                           handle, units, timeout));
796
797         switch (timeout) {
798                 /*
799                  * No Wait:
800                  * --------
801                  * A zero timeout value indicates that we shouldn't wait - just
802                  * acquire the semaphore if available otherwise return AE_TIME
803                  * (a.k.a. 'would block').
804                  */
805         case 0:
806                 if (down_trylock(sem))
807                         status = AE_TIME;
808                 break;
809
810                 /*
811                  * Wait Indefinitely:
812                  * ------------------
813                  */
814         case ACPI_WAIT_FOREVER:
815                 down(sem);
816                 break;
817
818                 /*
819                  * Wait w/ Timeout:
820                  * ----------------
821                  */
822         default:
823                 // TODO: A better timeout algorithm?
824                 {
825                         int i = 0;
826                         static const int quantum_ms = 1000 / HZ;
827
828                         ret = down_trylock(sem);
829                         for (i = timeout; (i > 0 && ret != 0); i -= quantum_ms) {
830                                 schedule_timeout_interruptible(1);
831                                 ret = down_trylock(sem);
832                         }
833
834                         if (ret != 0)
835                                 status = AE_TIME;
836                 }
837                 break;
838         }
839
840         if (ACPI_FAILURE(status)) {
841                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
842                                   "Failed to acquire semaphore[%p|%d|%d], %s\n",
843                                   handle, units, timeout,
844                                   acpi_format_exception(status)));
845         } else {
846                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
847                                   "Acquired semaphore[%p|%d|%d]\n", handle,
848                                   units, timeout));
849         }
850
851         return_ACPI_STATUS(status);
852 }
853
854 EXPORT_SYMBOL(acpi_os_wait_semaphore);
855
856 /*
857  * TODO: Support for units > 1?
858  */
859 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
860 {
861         struct semaphore *sem = (struct semaphore *)handle;
862
863         ACPI_FUNCTION_TRACE("os_signal_semaphore");
864
865         if (!sem || (units < 1))
866                 return_ACPI_STATUS(AE_BAD_PARAMETER);
867
868         if (units > 1)
869                 return_ACPI_STATUS(AE_SUPPORT);
870
871         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
872                           units));
873
874         up(sem);
875
876         return_ACPI_STATUS(AE_OK);
877 }
878
879 EXPORT_SYMBOL(acpi_os_signal_semaphore);
880
881 #ifdef ACPI_FUTURE_USAGE
882 u32 acpi_os_get_line(char *buffer)
883 {
884
885 #ifdef ENABLE_DEBUGGER
886         if (acpi_in_debugger) {
887                 u32 chars;
888
889                 kdb_read(buffer, sizeof(line_buf));
890
891                 /* remove the CR kdb includes */
892                 chars = strlen(buffer) - 1;
893                 buffer[chars] = '\0';
894         }
895 #endif
896
897         return 0;
898 }
899 #endif                          /*  ACPI_FUTURE_USAGE  */
900
901 /* Assumes no unreadable holes inbetween */
902 u8 acpi_os_readable(void *ptr, acpi_size len)
903 {
904 #if defined(__i386__) || defined(__x86_64__)
905         char tmp;
906         return !__get_user(tmp, (char __user *)ptr)
907             && !__get_user(tmp, (char __user *)ptr + len - 1);
908 #endif
909         return 1;
910 }
911
912 #ifdef ACPI_FUTURE_USAGE
913 u8 acpi_os_writable(void *ptr, acpi_size len)
914 {
915         /* could do dummy write (racy) or a kernel page table lookup.
916            The later may be difficult at early boot when kmap doesn't work yet. */
917         return 1;
918 }
919 #endif
920
921 acpi_status acpi_os_signal(u32 function, void *info)
922 {
923         switch (function) {
924         case ACPI_SIGNAL_FATAL:
925                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
926                 break;
927         case ACPI_SIGNAL_BREAKPOINT:
928                 /*
929                  * AML Breakpoint
930                  * ACPI spec. says to treat it as a NOP unless
931                  * you are debugging.  So if/when we integrate
932                  * AML debugger into the kernel debugger its
933                  * hook will go here.  But until then it is
934                  * not useful to print anything on breakpoints.
935                  */
936                 break;
937         default:
938                 break;
939         }
940
941         return AE_OK;
942 }
943
944 EXPORT_SYMBOL(acpi_os_signal);
945
946 static int __init acpi_os_name_setup(char *str)
947 {
948         char *p = acpi_os_name;
949         int count = ACPI_MAX_OVERRIDE_LEN - 1;
950
951         if (!str || !*str)
952                 return 0;
953
954         for (; count-- && str && *str; str++) {
955                 if (isalnum(*str) || *str == ' ' || *str == ':')
956                         *p++ = *str;
957                 else if (*str == '\'' || *str == '"')
958                         continue;
959                 else
960                         break;
961         }
962         *p = 0;
963
964         return 1;
965
966 }
967
968 __setup("acpi_os_name=", acpi_os_name_setup);
969
970 /*
971  * _OSI control
972  * empty string disables _OSI
973  * TBD additional string adds to _OSI
974  */
975 static int __init acpi_osi_setup(char *str)
976 {
977         if (str == NULL || *str == '\0') {
978                 printk(KERN_INFO PREFIX "_OSI method disabled\n");
979                 acpi_gbl_create_osi_method = FALSE;
980         } else {
981                 /* TBD */
982                 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
983                        str);
984         }
985
986         return 1;
987 }
988
989 __setup("acpi_osi=", acpi_osi_setup);
990
991 /* enable serialization to combat AE_ALREADY_EXISTS errors */
992 static int __init acpi_serialize_setup(char *str)
993 {
994         printk(KERN_INFO PREFIX "serialize enabled\n");
995
996         acpi_gbl_all_methods_serialized = TRUE;
997
998         return 1;
999 }
1000
1001 __setup("acpi_serialize", acpi_serialize_setup);
1002
1003 /*
1004  * Wake and Run-Time GPES are expected to be separate.
1005  * We disable wake-GPEs at run-time to prevent spurious
1006  * interrupts.
1007  *
1008  * However, if a system exists that shares Wake and
1009  * Run-time events on the same GPE this flag is available
1010  * to tell Linux to keep the wake-time GPEs enabled at run-time.
1011  */
1012 static int __init acpi_wake_gpes_always_on_setup(char *str)
1013 {
1014         printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
1015
1016         acpi_gbl_leave_wake_gpes_disabled = FALSE;
1017
1018         return 1;
1019 }
1020
1021 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1022
1023 static int __init acpi_hotkey_setup(char *str)
1024 {
1025         acpi_specific_hotkey_enabled = FALSE;
1026         return 1;
1027 }
1028
1029 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
1030
1031 /*
1032  * max_cstate is defined in the base kernel so modules can
1033  * change it w/o depending on the state of the processor module.
1034  */
1035 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
1036
1037 EXPORT_SYMBOL(max_cstate);
1038
1039 /*
1040  * Acquire a spinlock.
1041  *
1042  * handle is a pointer to the spinlock_t.
1043  */
1044
1045 acpi_cpu_flags acpi_os_acquire_lock(acpi_handle handle)
1046 {
1047         acpi_cpu_flags flags;
1048         spin_lock_irqsave((spinlock_t *) handle, flags);
1049         return flags;
1050 }
1051
1052 /*
1053  * Release a spinlock. See above.
1054  */
1055
1056 void acpi_os_release_lock(acpi_handle handle, acpi_cpu_flags flags)
1057 {
1058         spin_unlock_irqrestore((spinlock_t *) handle, flags);
1059 }
1060
1061 #ifndef ACPI_USE_LOCAL_CACHE
1062
1063 /*******************************************************************************
1064  *
1065  * FUNCTION:    acpi_os_create_cache
1066  *
1067  * PARAMETERS:  name      - Ascii name for the cache
1068  *              size      - Size of each cached object
1069  *              depth     - Maximum depth of the cache (in objects) <ignored>
1070  *              cache     - Where the new cache object is returned
1071  *
1072  * RETURN:      status
1073  *
1074  * DESCRIPTION: Create a cache object
1075  *
1076  ******************************************************************************/
1077
1078 acpi_status
1079 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1080 {
1081         *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1082         if (cache == NULL)
1083                 return AE_ERROR;
1084         else
1085                 return AE_OK;
1086 }
1087
1088 /*******************************************************************************
1089  *
1090  * FUNCTION:    acpi_os_purge_cache
1091  *
1092  * PARAMETERS:  Cache           - Handle to cache object
1093  *
1094  * RETURN:      Status
1095  *
1096  * DESCRIPTION: Free all objects within the requested cache.
1097  *
1098  ******************************************************************************/
1099
1100 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1101 {
1102         (void)kmem_cache_shrink(cache);
1103         return (AE_OK);
1104 }
1105
1106 /*******************************************************************************
1107  *
1108  * FUNCTION:    acpi_os_delete_cache
1109  *
1110  * PARAMETERS:  Cache           - Handle to cache object
1111  *
1112  * RETURN:      Status
1113  *
1114  * DESCRIPTION: Free all objects within the requested cache and delete the
1115  *              cache object.
1116  *
1117  ******************************************************************************/
1118
1119 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1120 {
1121         (void)kmem_cache_destroy(cache);
1122         return (AE_OK);
1123 }
1124
1125 /*******************************************************************************
1126  *
1127  * FUNCTION:    acpi_os_release_object
1128  *
1129  * PARAMETERS:  Cache       - Handle to cache object
1130  *              Object      - The object to be released
1131  *
1132  * RETURN:      None
1133  *
1134  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1135  *              the object is deleted.
1136  *
1137  ******************************************************************************/
1138
1139 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1140 {
1141         kmem_cache_free(cache, object);
1142         return (AE_OK);
1143 }
1144
1145 /*******************************************************************************
1146  *
1147  * FUNCTION:    acpi_os_acquire_object
1148  *
1149  * PARAMETERS:  Cache           - Handle to cache object
1150  *              ReturnObject    - Where the object is returned
1151  *
1152  * RETURN:      Status
1153  *
1154  * DESCRIPTION: Return a zero-filled object.
1155  *
1156  ******************************************************************************/
1157
1158 void *acpi_os_acquire_object(acpi_cache_t * cache)
1159 {
1160         void *object = kmem_cache_zalloc(cache, GFP_KERNEL);
1161         WARN_ON(!object);
1162         return object;
1163 }
1164
1165 /******************************************************************************
1166  *
1167  * FUNCTION:    acpi_os_validate_interface
1168  *
1169  * PARAMETERS:  interface           - Requested interface to be validated
1170  *
1171  * RETURN:      AE_OK if interface is supported, AE_SUPPORT otherwise
1172  *
1173  * DESCRIPTION: Match an interface string to the interfaces supported by the
1174  *              host. Strings originate from an AML call to the _OSI method.
1175  *
1176  *****************************************************************************/
1177
1178 acpi_status
1179 acpi_os_validate_interface (char *interface)
1180 {
1181
1182     return AE_SUPPORT;
1183 }
1184
1185
1186 /******************************************************************************
1187  *
1188  * FUNCTION:    acpi_os_validate_address
1189  *
1190  * PARAMETERS:  space_id             - ACPI space ID
1191  *              address             - Physical address
1192  *              length              - Address length
1193  *
1194  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1195  *              should return AE_AML_ILLEGAL_ADDRESS.
1196  *
1197  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1198  *              the addresses accessed by AML operation regions.
1199  *
1200  *****************************************************************************/
1201
1202 acpi_status
1203 acpi_os_validate_address (
1204     u8                   space_id,
1205     acpi_physical_address   address,
1206     acpi_size               length)
1207 {
1208
1209     return AE_OK;
1210 }
1211
1212
1213 #endif