ASoC: wm8731: Fix wrong value references for boolean kctl
[pandora-kernel.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5         tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16         tristate "Cryptographic API"
17         help
18           This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25         bool "FIPS 200 compliance"
26         depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27         depends on MODULE_SIG
28         help
29           This options enables the fips boot option which is
30           required if you want to system to operate in a FIPS 200
31           certification.  You should say no unless you know what
32           this is.
33
34 config CRYPTO_ALGAPI
35         tristate
36         select CRYPTO_ALGAPI2
37         help
38           This option provides the API for cryptographic algorithms.
39
40 config CRYPTO_ALGAPI2
41         tristate
42
43 config CRYPTO_AEAD
44         tristate
45         select CRYPTO_AEAD2
46         select CRYPTO_ALGAPI
47
48 config CRYPTO_AEAD2
49         tristate
50         select CRYPTO_ALGAPI2
51
52 config CRYPTO_BLKCIPHER
53         tristate
54         select CRYPTO_BLKCIPHER2
55         select CRYPTO_ALGAPI
56
57 config CRYPTO_BLKCIPHER2
58         tristate
59         select CRYPTO_ALGAPI2
60         select CRYPTO_RNG2
61         select CRYPTO_WORKQUEUE
62
63 config CRYPTO_HASH
64         tristate
65         select CRYPTO_HASH2
66         select CRYPTO_ALGAPI
67
68 config CRYPTO_HASH2
69         tristate
70         select CRYPTO_ALGAPI2
71
72 config CRYPTO_RNG
73         tristate
74         select CRYPTO_RNG2
75         select CRYPTO_ALGAPI
76
77 config CRYPTO_RNG2
78         tristate
79         select CRYPTO_ALGAPI2
80
81 config CRYPTO_PCOMP
82         tristate
83         select CRYPTO_PCOMP2
84         select CRYPTO_ALGAPI
85
86 config CRYPTO_PCOMP2
87         tristate
88         select CRYPTO_ALGAPI2
89
90 config CRYPTO_MANAGER
91         tristate "Cryptographic algorithm manager"
92         select CRYPTO_MANAGER2
93         help
94           Create default cryptographic template instantiations such as
95           cbc(aes).
96
97 config CRYPTO_MANAGER2
98         def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
99         select CRYPTO_AEAD2
100         select CRYPTO_HASH2
101         select CRYPTO_BLKCIPHER2
102         select CRYPTO_PCOMP2
103
104 config CRYPTO_USER
105         tristate "Userspace cryptographic algorithm configuration"
106         depends on NET
107         select CRYPTO_MANAGER
108         help
109           Userspace configuration for cryptographic instantiations such as
110           cbc(aes).
111
112 config CRYPTO_MANAGER_DISABLE_TESTS
113         bool "Disable run-time self tests"
114         default y
115         depends on CRYPTO_MANAGER2
116         help
117           Disable run-time self tests that normally take place at
118           algorithm registration.
119
120 config CRYPTO_GF128MUL
121         tristate "GF(2^128) multiplication functions"
122         help
123           Efficient table driven implementation of multiplications in the
124           field GF(2^128).  This is needed by some cypher modes. This
125           option will be selected automatically if you select such a
126           cipher mode.  Only select this option by hand if you expect to load
127           an external module that requires these functions.
128
129 config CRYPTO_NULL
130         tristate "Null algorithms"
131         select CRYPTO_ALGAPI
132         select CRYPTO_BLKCIPHER
133         select CRYPTO_HASH
134         help
135           These are 'Null' algorithms, used by IPsec, which do nothing.
136
137 config CRYPTO_PCRYPT
138         tristate "Parallel crypto engine"
139         depends on SMP
140         select PADATA
141         select CRYPTO_MANAGER
142         select CRYPTO_AEAD
143         help
144           This converts an arbitrary crypto algorithm into a parallel
145           algorithm that executes in kernel threads.
146
147 config CRYPTO_WORKQUEUE
148        tristate
149
150 config CRYPTO_CRYPTD
151         tristate "Software async crypto daemon"
152         select CRYPTO_BLKCIPHER
153         select CRYPTO_HASH
154         select CRYPTO_MANAGER
155         select CRYPTO_WORKQUEUE
156         help
157           This is a generic software asynchronous crypto daemon that
158           converts an arbitrary synchronous software crypto algorithm
159           into an asynchronous algorithm that executes in a kernel thread.
160
161 config CRYPTO_MCRYPTD
162         tristate "Software async multi-buffer crypto daemon"
163         select CRYPTO_BLKCIPHER
164         select CRYPTO_HASH
165         select CRYPTO_MANAGER
166         select CRYPTO_WORKQUEUE
167         help
168           This is a generic software asynchronous crypto daemon that
169           provides the kernel thread to assist multi-buffer crypto
170           algorithms for submitting jobs and flushing jobs in multi-buffer
171           crypto algorithms.  Multi-buffer crypto algorithms are executed
172           in the context of this kernel thread and drivers can post
173           their crypto request asynchronously to be processed by this daemon.
174
175 config CRYPTO_AUTHENC
176         tristate "Authenc support"
177         select CRYPTO_AEAD
178         select CRYPTO_BLKCIPHER
179         select CRYPTO_MANAGER
180         select CRYPTO_HASH
181         help
182           Authenc: Combined mode wrapper for IPsec.
183           This is required for IPSec.
184
185 config CRYPTO_TEST
186         tristate "Testing module"
187         depends on m
188         select CRYPTO_MANAGER
189         help
190           Quick & dirty crypto test module.
191
192 config CRYPTO_ABLK_HELPER
193         tristate
194         select CRYPTO_CRYPTD
195
196 config CRYPTO_GLUE_HELPER_X86
197         tristate
198         depends on X86
199         select CRYPTO_ALGAPI
200
201 comment "Authenticated Encryption with Associated Data"
202
203 config CRYPTO_CCM
204         tristate "CCM support"
205         select CRYPTO_CTR
206         select CRYPTO_AEAD
207         help
208           Support for Counter with CBC MAC. Required for IPsec.
209
210 config CRYPTO_GCM
211         tristate "GCM/GMAC support"
212         select CRYPTO_CTR
213         select CRYPTO_AEAD
214         select CRYPTO_GHASH
215         select CRYPTO_NULL
216         help
217           Support for Galois/Counter Mode (GCM) and Galois Message
218           Authentication Code (GMAC). Required for IPSec.
219
220 config CRYPTO_SEQIV
221         tristate "Sequence Number IV Generator"
222         select CRYPTO_AEAD
223         select CRYPTO_BLKCIPHER
224         select CRYPTO_RNG
225         help
226           This IV generator generates an IV based on a sequence number by
227           xoring it with a salt.  This algorithm is mainly useful for CTR
228
229 comment "Block modes"
230
231 config CRYPTO_CBC
232         tristate "CBC support"
233         select CRYPTO_BLKCIPHER
234         select CRYPTO_MANAGER
235         help
236           CBC: Cipher Block Chaining mode
237           This block cipher algorithm is required for IPSec.
238
239 config CRYPTO_CTR
240         tristate "CTR support"
241         select CRYPTO_BLKCIPHER
242         select CRYPTO_SEQIV
243         select CRYPTO_MANAGER
244         help
245           CTR: Counter mode
246           This block cipher algorithm is required for IPSec.
247
248 config CRYPTO_CTS
249         tristate "CTS support"
250         select CRYPTO_BLKCIPHER
251         help
252           CTS: Cipher Text Stealing
253           This is the Cipher Text Stealing mode as described by
254           Section 8 of rfc2040 and referenced by rfc3962.
255           (rfc3962 includes errata information in its Appendix A)
256           This mode is required for Kerberos gss mechanism support
257           for AES encryption.
258
259 config CRYPTO_ECB
260         tristate "ECB support"
261         select CRYPTO_BLKCIPHER
262         select CRYPTO_MANAGER
263         help
264           ECB: Electronic CodeBook mode
265           This is the simplest block cipher algorithm.  It simply encrypts
266           the input block by block.
267
268 config CRYPTO_LRW
269         tristate "LRW support"
270         select CRYPTO_BLKCIPHER
271         select CRYPTO_MANAGER
272         select CRYPTO_GF128MUL
273         help
274           LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
275           narrow block cipher mode for dm-crypt.  Use it with cipher
276           specification string aes-lrw-benbi, the key must be 256, 320 or 384.
277           The first 128, 192 or 256 bits in the key are used for AES and the
278           rest is used to tie each cipher block to its logical position.
279
280 config CRYPTO_PCBC
281         tristate "PCBC support"
282         select CRYPTO_BLKCIPHER
283         select CRYPTO_MANAGER
284         help
285           PCBC: Propagating Cipher Block Chaining mode
286           This block cipher algorithm is required for RxRPC.
287
288 config CRYPTO_XTS
289         tristate "XTS support"
290         select CRYPTO_BLKCIPHER
291         select CRYPTO_MANAGER
292         select CRYPTO_GF128MUL
293         help
294           XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
295           key size 256, 384 or 512 bits. This implementation currently
296           can't handle a sectorsize which is not a multiple of 16 bytes.
297
298 comment "Hash modes"
299
300 config CRYPTO_CMAC
301         tristate "CMAC support"
302         select CRYPTO_HASH
303         select CRYPTO_MANAGER
304         help
305           Cipher-based Message Authentication Code (CMAC) specified by
306           The National Institute of Standards and Technology (NIST).
307
308           https://tools.ietf.org/html/rfc4493
309           http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
310
311 config CRYPTO_HMAC
312         tristate "HMAC support"
313         select CRYPTO_HASH
314         select CRYPTO_MANAGER
315         help
316           HMAC: Keyed-Hashing for Message Authentication (RFC2104).
317           This is required for IPSec.
318
319 config CRYPTO_XCBC
320         tristate "XCBC support"
321         select CRYPTO_HASH
322         select CRYPTO_MANAGER
323         help
324           XCBC: Keyed-Hashing with encryption algorithm
325                 http://www.ietf.org/rfc/rfc3566.txt
326                 http://csrc.nist.gov/encryption/modes/proposedmodes/
327                  xcbc-mac/xcbc-mac-spec.pdf
328
329 config CRYPTO_VMAC
330         tristate "VMAC support"
331         select CRYPTO_HASH
332         select CRYPTO_MANAGER
333         help
334           VMAC is a message authentication algorithm designed for
335           very high speed on 64-bit architectures.
336
337           See also:
338           <http://fastcrypto.org/vmac>
339
340 comment "Digest"
341
342 config CRYPTO_CRC32C
343         tristate "CRC32c CRC algorithm"
344         select CRYPTO_HASH
345         select CRC32
346         help
347           Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
348           by iSCSI for header and data digests and by others.
349           See Castagnoli93.  Module will be crc32c.
350
351 config CRYPTO_CRC32C_INTEL
352         tristate "CRC32c INTEL hardware acceleration"
353         depends on X86
354         select CRYPTO_HASH
355         help
356           In Intel processor with SSE4.2 supported, the processor will
357           support CRC32C implementation using hardware accelerated CRC32
358           instruction. This option will create 'crc32c-intel' module,
359           which will enable any routine to use the CRC32 instruction to
360           gain performance compared with software implementation.
361           Module will be crc32c-intel.
362
363 config CRYPTO_CRC32C_SPARC64
364         tristate "CRC32c CRC algorithm (SPARC64)"
365         depends on SPARC64
366         select CRYPTO_HASH
367         select CRC32
368         help
369           CRC32c CRC algorithm implemented using sparc64 crypto instructions,
370           when available.
371
372 config CRYPTO_CRC32
373         tristate "CRC32 CRC algorithm"
374         select CRYPTO_HASH
375         select CRC32
376         help
377           CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
378           Shash crypto api wrappers to crc32_le function.
379
380 config CRYPTO_CRC32_PCLMUL
381         tristate "CRC32 PCLMULQDQ hardware acceleration"
382         depends on X86
383         select CRYPTO_HASH
384         select CRC32
385         help
386           From Intel Westmere and AMD Bulldozer processor with SSE4.2
387           and PCLMULQDQ supported, the processor will support
388           CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
389           instruction. This option will create 'crc32-plcmul' module,
390           which will enable any routine to use the CRC-32-IEEE 802.3 checksum
391           and gain better performance as compared with the table implementation.
392
393 config CRYPTO_CRCT10DIF
394         tristate "CRCT10DIF algorithm"
395         select CRYPTO_HASH
396         help
397           CRC T10 Data Integrity Field computation is being cast as
398           a crypto transform.  This allows for faster crc t10 diff
399           transforms to be used if they are available.
400
401 config CRYPTO_CRCT10DIF_PCLMUL
402         tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
403         depends on X86 && 64BIT && CRC_T10DIF
404         select CRYPTO_HASH
405         help
406           For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
407           CRC T10 DIF PCLMULQDQ computation can be hardware
408           accelerated PCLMULQDQ instruction. This option will create
409           'crct10dif-plcmul' module, which is faster when computing the
410           crct10dif checksum as compared with the generic table implementation.
411
412 config CRYPTO_GHASH
413         tristate "GHASH digest algorithm"
414         select CRYPTO_GF128MUL
415         help
416           GHASH is message digest algorithm for GCM (Galois/Counter Mode).
417
418 config CRYPTO_MD4
419         tristate "MD4 digest algorithm"
420         select CRYPTO_HASH
421         help
422           MD4 message digest algorithm (RFC1320).
423
424 config CRYPTO_MD5
425         tristate "MD5 digest algorithm"
426         select CRYPTO_HASH
427         help
428           MD5 message digest algorithm (RFC1321).
429
430 config CRYPTO_MD5_OCTEON
431         tristate "MD5 digest algorithm (OCTEON)"
432         depends on CPU_CAVIUM_OCTEON
433         select CRYPTO_MD5
434         select CRYPTO_HASH
435         help
436           MD5 message digest algorithm (RFC1321) implemented
437           using OCTEON crypto instructions, when available.
438
439 config CRYPTO_MD5_SPARC64
440         tristate "MD5 digest algorithm (SPARC64)"
441         depends on SPARC64
442         select CRYPTO_MD5
443         select CRYPTO_HASH
444         help
445           MD5 message digest algorithm (RFC1321) implemented
446           using sparc64 crypto instructions, when available.
447
448 config CRYPTO_MICHAEL_MIC
449         tristate "Michael MIC keyed digest algorithm"
450         select CRYPTO_HASH
451         help
452           Michael MIC is used for message integrity protection in TKIP
453           (IEEE 802.11i). This algorithm is required for TKIP, but it
454           should not be used for other purposes because of the weakness
455           of the algorithm.
456
457 config CRYPTO_RMD128
458         tristate "RIPEMD-128 digest algorithm"
459         select CRYPTO_HASH
460         help
461           RIPEMD-128 (ISO/IEC 10118-3:2004).
462
463           RIPEMD-128 is a 128-bit cryptographic hash function. It should only
464           be used as a secure replacement for RIPEMD. For other use cases,
465           RIPEMD-160 should be used.
466
467           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
468           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
469
470 config CRYPTO_RMD160
471         tristate "RIPEMD-160 digest algorithm"
472         select CRYPTO_HASH
473         help
474           RIPEMD-160 (ISO/IEC 10118-3:2004).
475
476           RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
477           to be used as a secure replacement for the 128-bit hash functions
478           MD4, MD5 and it's predecessor RIPEMD
479           (not to be confused with RIPEMD-128).
480
481           It's speed is comparable to SHA1 and there are no known attacks
482           against RIPEMD-160.
483
484           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
485           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
486
487 config CRYPTO_RMD256
488         tristate "RIPEMD-256 digest algorithm"
489         select CRYPTO_HASH
490         help
491           RIPEMD-256 is an optional extension of RIPEMD-128 with a
492           256 bit hash. It is intended for applications that require
493           longer hash-results, without needing a larger security level
494           (than RIPEMD-128).
495
496           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
497           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
498
499 config CRYPTO_RMD320
500         tristate "RIPEMD-320 digest algorithm"
501         select CRYPTO_HASH
502         help
503           RIPEMD-320 is an optional extension of RIPEMD-160 with a
504           320 bit hash. It is intended for applications that require
505           longer hash-results, without needing a larger security level
506           (than RIPEMD-160).
507
508           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
509           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
510
511 config CRYPTO_SHA1
512         tristate "SHA1 digest algorithm"
513         select CRYPTO_HASH
514         help
515           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
516
517 config CRYPTO_SHA1_SSSE3
518         tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
519         depends on X86 && 64BIT
520         select CRYPTO_SHA1
521         select CRYPTO_HASH
522         help
523           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
524           using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
525           Extensions (AVX/AVX2), when available.
526
527 config CRYPTO_SHA256_SSSE3
528         tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
529         depends on X86 && 64BIT
530         select CRYPTO_SHA256
531         select CRYPTO_HASH
532         help
533           SHA-256 secure hash standard (DFIPS 180-2) implemented
534           using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
535           Extensions version 1 (AVX1), or Advanced Vector Extensions
536           version 2 (AVX2) instructions, when available.
537
538 config CRYPTO_SHA512_SSSE3
539         tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
540         depends on X86 && 64BIT
541         select CRYPTO_SHA512
542         select CRYPTO_HASH
543         help
544           SHA-512 secure hash standard (DFIPS 180-2) implemented
545           using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
546           Extensions version 1 (AVX1), or Advanced Vector Extensions
547           version 2 (AVX2) instructions, when available.
548
549 config CRYPTO_SHA1_SPARC64
550         tristate "SHA1 digest algorithm (SPARC64)"
551         depends on SPARC64
552         select CRYPTO_SHA1
553         select CRYPTO_HASH
554         help
555           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
556           using sparc64 crypto instructions, when available.
557
558 config CRYPTO_SHA1_ARM
559         tristate "SHA1 digest algorithm (ARM-asm)"
560         depends on ARM
561         select CRYPTO_SHA1
562         select CRYPTO_HASH
563         help
564           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
565           using optimized ARM assembler.
566
567 config CRYPTO_SHA1_ARM_NEON
568         tristate "SHA1 digest algorithm (ARM NEON)"
569         depends on ARM && KERNEL_MODE_NEON
570         select CRYPTO_SHA1_ARM
571         select CRYPTO_SHA1
572         select CRYPTO_HASH
573         help
574           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
575           using optimized ARM NEON assembly, when NEON instructions are
576           available.
577
578 config CRYPTO_SHA1_PPC
579         tristate "SHA1 digest algorithm (powerpc)"
580         depends on PPC
581         help
582           This is the powerpc hardware accelerated implementation of the
583           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
584
585 config CRYPTO_SHA1_MB
586         tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
587         depends on X86 && 64BIT
588         select CRYPTO_SHA1
589         select CRYPTO_HASH
590         select CRYPTO_MCRYPTD
591         help
592           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
593           using multi-buffer technique.  This algorithm computes on
594           multiple data lanes concurrently with SIMD instructions for
595           better throughput.  It should not be enabled by default but
596           used when there is significant amount of work to keep the keep
597           the data lanes filled to get performance benefit.  If the data
598           lanes remain unfilled, a flush operation will be initiated to
599           process the crypto jobs, adding a slight latency.
600
601 config CRYPTO_SHA256
602         tristate "SHA224 and SHA256 digest algorithm"
603         select CRYPTO_HASH
604         help
605           SHA256 secure hash standard (DFIPS 180-2).
606
607           This version of SHA implements a 256 bit hash with 128 bits of
608           security against collision attacks.
609
610           This code also includes SHA-224, a 224 bit hash with 112 bits
611           of security against collision attacks.
612
613 config CRYPTO_SHA256_SPARC64
614         tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
615         depends on SPARC64
616         select CRYPTO_SHA256
617         select CRYPTO_HASH
618         help
619           SHA-256 secure hash standard (DFIPS 180-2) implemented
620           using sparc64 crypto instructions, when available.
621
622 config CRYPTO_SHA512
623         tristate "SHA384 and SHA512 digest algorithms"
624         select CRYPTO_HASH
625         help
626           SHA512 secure hash standard (DFIPS 180-2).
627
628           This version of SHA implements a 512 bit hash with 256 bits of
629           security against collision attacks.
630
631           This code also includes SHA-384, a 384 bit hash with 192 bits
632           of security against collision attacks.
633
634 config CRYPTO_SHA512_SPARC64
635         tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
636         depends on SPARC64
637         select CRYPTO_SHA512
638         select CRYPTO_HASH
639         help
640           SHA-512 secure hash standard (DFIPS 180-2) implemented
641           using sparc64 crypto instructions, when available.
642
643 config CRYPTO_SHA512_ARM_NEON
644         tristate "SHA384 and SHA512 digest algorithm (ARM NEON)"
645         depends on ARM && KERNEL_MODE_NEON
646         select CRYPTO_SHA512
647         select CRYPTO_HASH
648         help
649           SHA-512 secure hash standard (DFIPS 180-2) implemented
650           using ARM NEON instructions, when available.
651
652           This version of SHA implements a 512 bit hash with 256 bits of
653           security against collision attacks.
654
655           This code also includes SHA-384, a 384 bit hash with 192 bits
656           of security against collision attacks.
657
658 config CRYPTO_TGR192
659         tristate "Tiger digest algorithms"
660         select CRYPTO_HASH
661         help
662           Tiger hash algorithm 192, 160 and 128-bit hashes
663
664           Tiger is a hash function optimized for 64-bit processors while
665           still having decent performance on 32-bit processors.
666           Tiger was developed by Ross Anderson and Eli Biham.
667
668           See also:
669           <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
670
671 config CRYPTO_WP512
672         tristate "Whirlpool digest algorithms"
673         select CRYPTO_HASH
674         help
675           Whirlpool hash algorithm 512, 384 and 256-bit hashes
676
677           Whirlpool-512 is part of the NESSIE cryptographic primitives.
678           Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
679
680           See also:
681           <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
682
683 config CRYPTO_GHASH_CLMUL_NI_INTEL
684         tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
685         depends on X86 && 64BIT
686         select CRYPTO_CRYPTD
687         help
688           GHASH is message digest algorithm for GCM (Galois/Counter Mode).
689           The implementation is accelerated by CLMUL-NI of Intel.
690
691 comment "Ciphers"
692
693 config CRYPTO_AES
694         tristate "AES cipher algorithms"
695         select CRYPTO_ALGAPI
696         help
697           AES cipher algorithms (FIPS-197). AES uses the Rijndael
698           algorithm.
699
700           Rijndael appears to be consistently a very good performer in
701           both hardware and software across a wide range of computing
702           environments regardless of its use in feedback or non-feedback
703           modes. Its key setup time is excellent, and its key agility is
704           good. Rijndael's very low memory requirements make it very well
705           suited for restricted-space environments, in which it also
706           demonstrates excellent performance. Rijndael's operations are
707           among the easiest to defend against power and timing attacks.
708
709           The AES specifies three key sizes: 128, 192 and 256 bits
710
711           See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
712
713 config CRYPTO_AES_586
714         tristate "AES cipher algorithms (i586)"
715         depends on (X86 || UML_X86) && !64BIT
716         select CRYPTO_ALGAPI
717         select CRYPTO_AES
718         help
719           AES cipher algorithms (FIPS-197). AES uses the Rijndael
720           algorithm.
721
722           Rijndael appears to be consistently a very good performer in
723           both hardware and software across a wide range of computing
724           environments regardless of its use in feedback or non-feedback
725           modes. Its key setup time is excellent, and its key agility is
726           good. Rijndael's very low memory requirements make it very well
727           suited for restricted-space environments, in which it also
728           demonstrates excellent performance. Rijndael's operations are
729           among the easiest to defend against power and timing attacks.
730
731           The AES specifies three key sizes: 128, 192 and 256 bits
732
733           See <http://csrc.nist.gov/encryption/aes/> for more information.
734
735 config CRYPTO_AES_X86_64
736         tristate "AES cipher algorithms (x86_64)"
737         depends on (X86 || UML_X86) && 64BIT
738         select CRYPTO_ALGAPI
739         select CRYPTO_AES
740         help
741           AES cipher algorithms (FIPS-197). AES uses the Rijndael
742           algorithm.
743
744           Rijndael appears to be consistently a very good performer in
745           both hardware and software across a wide range of computing
746           environments regardless of its use in feedback or non-feedback
747           modes. Its key setup time is excellent, and its key agility is
748           good. Rijndael's very low memory requirements make it very well
749           suited for restricted-space environments, in which it also
750           demonstrates excellent performance. Rijndael's operations are
751           among the easiest to defend against power and timing attacks.
752
753           The AES specifies three key sizes: 128, 192 and 256 bits
754
755           See <http://csrc.nist.gov/encryption/aes/> for more information.
756
757 config CRYPTO_AES_NI_INTEL
758         tristate "AES cipher algorithms (AES-NI)"
759         depends on X86
760         select CRYPTO_AES_X86_64 if 64BIT
761         select CRYPTO_AES_586 if !64BIT
762         select CRYPTO_CRYPTD
763         select CRYPTO_ABLK_HELPER
764         select CRYPTO_ALGAPI
765         select CRYPTO_GLUE_HELPER_X86 if 64BIT
766         select CRYPTO_LRW
767         select CRYPTO_XTS
768         help
769           Use Intel AES-NI instructions for AES algorithm.
770
771           AES cipher algorithms (FIPS-197). AES uses the Rijndael
772           algorithm.
773
774           Rijndael appears to be consistently a very good performer in
775           both hardware and software across a wide range of computing
776           environments regardless of its use in feedback or non-feedback
777           modes. Its key setup time is excellent, and its key agility is
778           good. Rijndael's very low memory requirements make it very well
779           suited for restricted-space environments, in which it also
780           demonstrates excellent performance. Rijndael's operations are
781           among the easiest to defend against power and timing attacks.
782
783           The AES specifies three key sizes: 128, 192 and 256 bits
784
785           See <http://csrc.nist.gov/encryption/aes/> for more information.
786
787           In addition to AES cipher algorithm support, the acceleration
788           for some popular block cipher mode is supported too, including
789           ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
790           acceleration for CTR.
791
792 config CRYPTO_AES_SPARC64
793         tristate "AES cipher algorithms (SPARC64)"
794         depends on SPARC64
795         select CRYPTO_CRYPTD
796         select CRYPTO_ALGAPI
797         help
798           Use SPARC64 crypto opcodes for AES algorithm.
799
800           AES cipher algorithms (FIPS-197). AES uses the Rijndael
801           algorithm.
802
803           Rijndael appears to be consistently a very good performer in
804           both hardware and software across a wide range of computing
805           environments regardless of its use in feedback or non-feedback
806           modes. Its key setup time is excellent, and its key agility is
807           good. Rijndael's very low memory requirements make it very well
808           suited for restricted-space environments, in which it also
809           demonstrates excellent performance. Rijndael's operations are
810           among the easiest to defend against power and timing attacks.
811
812           The AES specifies three key sizes: 128, 192 and 256 bits
813
814           See <http://csrc.nist.gov/encryption/aes/> for more information.
815
816           In addition to AES cipher algorithm support, the acceleration
817           for some popular block cipher mode is supported too, including
818           ECB and CBC.
819
820 config CRYPTO_AES_ARM
821         tristate "AES cipher algorithms (ARM-asm)"
822         depends on ARM
823         select CRYPTO_ALGAPI
824         select CRYPTO_AES
825         help
826           Use optimized AES assembler routines for ARM platforms.
827
828           AES cipher algorithms (FIPS-197). AES uses the Rijndael
829           algorithm.
830
831           Rijndael appears to be consistently a very good performer in
832           both hardware and software across a wide range of computing
833           environments regardless of its use in feedback or non-feedback
834           modes. Its key setup time is excellent, and its key agility is
835           good. Rijndael's very low memory requirements make it very well
836           suited for restricted-space environments, in which it also
837           demonstrates excellent performance. Rijndael's operations are
838           among the easiest to defend against power and timing attacks.
839
840           The AES specifies three key sizes: 128, 192 and 256 bits
841
842           See <http://csrc.nist.gov/encryption/aes/> for more information.
843
844 config CRYPTO_AES_ARM_BS
845         tristate "Bit sliced AES using NEON instructions"
846         depends on ARM && KERNEL_MODE_NEON
847         select CRYPTO_ALGAPI
848         select CRYPTO_AES_ARM
849         select CRYPTO_ABLK_HELPER
850         help
851           Use a faster and more secure NEON based implementation of AES in CBC,
852           CTR and XTS modes
853
854           Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode
855           and for XTS mode encryption, CBC and XTS mode decryption speedup is
856           around 25%. (CBC encryption speed is not affected by this driver.)
857           This implementation does not rely on any lookup tables so it is
858           believed to be invulnerable to cache timing attacks.
859
860 config CRYPTO_ANUBIS
861         tristate "Anubis cipher algorithm"
862         select CRYPTO_ALGAPI
863         help
864           Anubis cipher algorithm.
865
866           Anubis is a variable key length cipher which can use keys from
867           128 bits to 320 bits in length.  It was evaluated as a entrant
868           in the NESSIE competition.
869
870           See also:
871           <https://www.cosic.esat.kuleuven.be/nessie/reports/>
872           <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
873
874 config CRYPTO_ARC4
875         tristate "ARC4 cipher algorithm"
876         select CRYPTO_BLKCIPHER
877         help
878           ARC4 cipher algorithm.
879
880           ARC4 is a stream cipher using keys ranging from 8 bits to 2048
881           bits in length.  This algorithm is required for driver-based
882           WEP, but it should not be for other purposes because of the
883           weakness of the algorithm.
884
885 config CRYPTO_BLOWFISH
886         tristate "Blowfish cipher algorithm"
887         select CRYPTO_ALGAPI
888         select CRYPTO_BLOWFISH_COMMON
889         help
890           Blowfish cipher algorithm, by Bruce Schneier.
891
892           This is a variable key length cipher which can use keys from 32
893           bits to 448 bits in length.  It's fast, simple and specifically
894           designed for use on "large microprocessors".
895
896           See also:
897           <http://www.schneier.com/blowfish.html>
898
899 config CRYPTO_BLOWFISH_COMMON
900         tristate
901         help
902           Common parts of the Blowfish cipher algorithm shared by the
903           generic c and the assembler implementations.
904
905           See also:
906           <http://www.schneier.com/blowfish.html>
907
908 config CRYPTO_BLOWFISH_X86_64
909         tristate "Blowfish cipher algorithm (x86_64)"
910         depends on X86 && 64BIT
911         select CRYPTO_ALGAPI
912         select CRYPTO_BLOWFISH_COMMON
913         help
914           Blowfish cipher algorithm (x86_64), by Bruce Schneier.
915
916           This is a variable key length cipher which can use keys from 32
917           bits to 448 bits in length.  It's fast, simple and specifically
918           designed for use on "large microprocessors".
919
920           See also:
921           <http://www.schneier.com/blowfish.html>
922
923 config CRYPTO_CAMELLIA
924         tristate "Camellia cipher algorithms"
925         depends on CRYPTO
926         select CRYPTO_ALGAPI
927         help
928           Camellia cipher algorithms module.
929
930           Camellia is a symmetric key block cipher developed jointly
931           at NTT and Mitsubishi Electric Corporation.
932
933           The Camellia specifies three key sizes: 128, 192 and 256 bits.
934
935           See also:
936           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
937
938 config CRYPTO_CAMELLIA_X86_64
939         tristate "Camellia cipher algorithm (x86_64)"
940         depends on X86 && 64BIT
941         depends on CRYPTO
942         select CRYPTO_ALGAPI
943         select CRYPTO_GLUE_HELPER_X86
944         select CRYPTO_LRW
945         select CRYPTO_XTS
946         help
947           Camellia cipher algorithm module (x86_64).
948
949           Camellia is a symmetric key block cipher developed jointly
950           at NTT and Mitsubishi Electric Corporation.
951
952           The Camellia specifies three key sizes: 128, 192 and 256 bits.
953
954           See also:
955           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
956
957 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
958         tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
959         depends on X86 && 64BIT
960         depends on CRYPTO
961         select CRYPTO_ALGAPI
962         select CRYPTO_CRYPTD
963         select CRYPTO_ABLK_HELPER
964         select CRYPTO_GLUE_HELPER_X86
965         select CRYPTO_CAMELLIA_X86_64
966         select CRYPTO_LRW
967         select CRYPTO_XTS
968         help
969           Camellia cipher algorithm module (x86_64/AES-NI/AVX).
970
971           Camellia is a symmetric key block cipher developed jointly
972           at NTT and Mitsubishi Electric Corporation.
973
974           The Camellia specifies three key sizes: 128, 192 and 256 bits.
975
976           See also:
977           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
978
979 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
980         tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
981         depends on X86 && 64BIT
982         depends on CRYPTO
983         select CRYPTO_ALGAPI
984         select CRYPTO_CRYPTD
985         select CRYPTO_ABLK_HELPER
986         select CRYPTO_GLUE_HELPER_X86
987         select CRYPTO_CAMELLIA_X86_64
988         select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
989         select CRYPTO_LRW
990         select CRYPTO_XTS
991         help
992           Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
993
994           Camellia is a symmetric key block cipher developed jointly
995           at NTT and Mitsubishi Electric Corporation.
996
997           The Camellia specifies three key sizes: 128, 192 and 256 bits.
998
999           See also:
1000           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1001
1002 config CRYPTO_CAMELLIA_SPARC64
1003         tristate "Camellia cipher algorithm (SPARC64)"
1004         depends on SPARC64
1005         depends on CRYPTO
1006         select CRYPTO_ALGAPI
1007         help
1008           Camellia cipher algorithm module (SPARC64).
1009
1010           Camellia is a symmetric key block cipher developed jointly
1011           at NTT and Mitsubishi Electric Corporation.
1012
1013           The Camellia specifies three key sizes: 128, 192 and 256 bits.
1014
1015           See also:
1016           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1017
1018 config CRYPTO_CAST_COMMON
1019         tristate
1020         help
1021           Common parts of the CAST cipher algorithms shared by the
1022           generic c and the assembler implementations.
1023
1024 config CRYPTO_CAST5
1025         tristate "CAST5 (CAST-128) cipher algorithm"
1026         select CRYPTO_ALGAPI
1027         select CRYPTO_CAST_COMMON
1028         help
1029           The CAST5 encryption algorithm (synonymous with CAST-128) is
1030           described in RFC2144.
1031
1032 config CRYPTO_CAST5_AVX_X86_64
1033         tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1034         depends on X86 && 64BIT
1035         select CRYPTO_ALGAPI
1036         select CRYPTO_CRYPTD
1037         select CRYPTO_ABLK_HELPER
1038         select CRYPTO_CAST_COMMON
1039         select CRYPTO_CAST5
1040         help
1041           The CAST5 encryption algorithm (synonymous with CAST-128) is
1042           described in RFC2144.
1043
1044           This module provides the Cast5 cipher algorithm that processes
1045           sixteen blocks parallel using the AVX instruction set.
1046
1047 config CRYPTO_CAST6
1048         tristate "CAST6 (CAST-256) cipher algorithm"
1049         select CRYPTO_ALGAPI
1050         select CRYPTO_CAST_COMMON
1051         help
1052           The CAST6 encryption algorithm (synonymous with CAST-256) is
1053           described in RFC2612.
1054
1055 config CRYPTO_CAST6_AVX_X86_64
1056         tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1057         depends on X86 && 64BIT
1058         select CRYPTO_ALGAPI
1059         select CRYPTO_CRYPTD
1060         select CRYPTO_ABLK_HELPER
1061         select CRYPTO_GLUE_HELPER_X86
1062         select CRYPTO_CAST_COMMON
1063         select CRYPTO_CAST6
1064         select CRYPTO_LRW
1065         select CRYPTO_XTS
1066         help
1067           The CAST6 encryption algorithm (synonymous with CAST-256) is
1068           described in RFC2612.
1069
1070           This module provides the Cast6 cipher algorithm that processes
1071           eight blocks parallel using the AVX instruction set.
1072
1073 config CRYPTO_DES
1074         tristate "DES and Triple DES EDE cipher algorithms"
1075         select CRYPTO_ALGAPI
1076         help
1077           DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1078
1079 config CRYPTO_DES_SPARC64
1080         tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1081         depends on SPARC64
1082         select CRYPTO_ALGAPI
1083         select CRYPTO_DES
1084         help
1085           DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1086           optimized using SPARC64 crypto opcodes.
1087
1088 config CRYPTO_DES3_EDE_X86_64
1089         tristate "Triple DES EDE cipher algorithm (x86-64)"
1090         depends on X86 && 64BIT
1091         select CRYPTO_ALGAPI
1092         select CRYPTO_DES
1093         help
1094           Triple DES EDE (FIPS 46-3) algorithm.
1095
1096           This module provides implementation of the Triple DES EDE cipher
1097           algorithm that is optimized for x86-64 processors. Two versions of
1098           algorithm are provided; regular processing one input block and
1099           one that processes three blocks parallel.
1100
1101 config CRYPTO_FCRYPT
1102         tristate "FCrypt cipher algorithm"
1103         select CRYPTO_ALGAPI
1104         select CRYPTO_BLKCIPHER
1105         help
1106           FCrypt algorithm used by RxRPC.
1107
1108 config CRYPTO_KHAZAD
1109         tristate "Khazad cipher algorithm"
1110         select CRYPTO_ALGAPI
1111         help
1112           Khazad cipher algorithm.
1113
1114           Khazad was a finalist in the initial NESSIE competition.  It is
1115           an algorithm optimized for 64-bit processors with good performance
1116           on 32-bit processors.  Khazad uses an 128 bit key size.
1117
1118           See also:
1119           <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1120
1121 config CRYPTO_SALSA20
1122         tristate "Salsa20 stream cipher algorithm"
1123         select CRYPTO_BLKCIPHER
1124         help
1125           Salsa20 stream cipher algorithm.
1126
1127           Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1128           Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1129
1130           The Salsa20 stream cipher algorithm is designed by Daniel J.
1131           Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1132
1133 config CRYPTO_SALSA20_586
1134         tristate "Salsa20 stream cipher algorithm (i586)"
1135         depends on (X86 || UML_X86) && !64BIT
1136         select CRYPTO_BLKCIPHER
1137         help
1138           Salsa20 stream cipher algorithm.
1139
1140           Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1141           Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1142
1143           The Salsa20 stream cipher algorithm is designed by Daniel J.
1144           Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1145
1146 config CRYPTO_SALSA20_X86_64
1147         tristate "Salsa20 stream cipher algorithm (x86_64)"
1148         depends on (X86 || UML_X86) && 64BIT
1149         select CRYPTO_BLKCIPHER
1150         help
1151           Salsa20 stream cipher algorithm.
1152
1153           Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1154           Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1155
1156           The Salsa20 stream cipher algorithm is designed by Daniel J.
1157           Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1158
1159 config CRYPTO_SEED
1160         tristate "SEED cipher algorithm"
1161         select CRYPTO_ALGAPI
1162         help
1163           SEED cipher algorithm (RFC4269).
1164
1165           SEED is a 128-bit symmetric key block cipher that has been
1166           developed by KISA (Korea Information Security Agency) as a
1167           national standard encryption algorithm of the Republic of Korea.
1168           It is a 16 round block cipher with the key size of 128 bit.
1169
1170           See also:
1171           <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1172
1173 config CRYPTO_SERPENT
1174         tristate "Serpent cipher algorithm"
1175         select CRYPTO_ALGAPI
1176         help
1177           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1178
1179           Keys are allowed to be from 0 to 256 bits in length, in steps
1180           of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1181           variant of Serpent for compatibility with old kerneli.org code.
1182
1183           See also:
1184           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1185
1186 config CRYPTO_SERPENT_SSE2_X86_64
1187         tristate "Serpent cipher algorithm (x86_64/SSE2)"
1188         depends on X86 && 64BIT
1189         select CRYPTO_ALGAPI
1190         select CRYPTO_CRYPTD
1191         select CRYPTO_ABLK_HELPER
1192         select CRYPTO_GLUE_HELPER_X86
1193         select CRYPTO_SERPENT
1194         select CRYPTO_LRW
1195         select CRYPTO_XTS
1196         help
1197           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1198
1199           Keys are allowed to be from 0 to 256 bits in length, in steps
1200           of 8 bits.
1201
1202           This module provides Serpent cipher algorithm that processes eigth
1203           blocks parallel using SSE2 instruction set.
1204
1205           See also:
1206           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1207
1208 config CRYPTO_SERPENT_SSE2_586
1209         tristate "Serpent cipher algorithm (i586/SSE2)"
1210         depends on X86 && !64BIT
1211         select CRYPTO_ALGAPI
1212         select CRYPTO_CRYPTD
1213         select CRYPTO_ABLK_HELPER
1214         select CRYPTO_GLUE_HELPER_X86
1215         select CRYPTO_SERPENT
1216         select CRYPTO_LRW
1217         select CRYPTO_XTS
1218         help
1219           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1220
1221           Keys are allowed to be from 0 to 256 bits in length, in steps
1222           of 8 bits.
1223
1224           This module provides Serpent cipher algorithm that processes four
1225           blocks parallel using SSE2 instruction set.
1226
1227           See also:
1228           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1229
1230 config CRYPTO_SERPENT_AVX_X86_64
1231         tristate "Serpent cipher algorithm (x86_64/AVX)"
1232         depends on X86 && 64BIT
1233         select CRYPTO_ALGAPI
1234         select CRYPTO_CRYPTD
1235         select CRYPTO_ABLK_HELPER
1236         select CRYPTO_GLUE_HELPER_X86
1237         select CRYPTO_SERPENT
1238         select CRYPTO_LRW
1239         select CRYPTO_XTS
1240         help
1241           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1242
1243           Keys are allowed to be from 0 to 256 bits in length, in steps
1244           of 8 bits.
1245
1246           This module provides the Serpent cipher algorithm that processes
1247           eight blocks parallel using the AVX instruction set.
1248
1249           See also:
1250           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1251
1252 config CRYPTO_SERPENT_AVX2_X86_64
1253         tristate "Serpent cipher algorithm (x86_64/AVX2)"
1254         depends on X86 && 64BIT
1255         select CRYPTO_ALGAPI
1256         select CRYPTO_CRYPTD
1257         select CRYPTO_ABLK_HELPER
1258         select CRYPTO_GLUE_HELPER_X86
1259         select CRYPTO_SERPENT
1260         select CRYPTO_SERPENT_AVX_X86_64
1261         select CRYPTO_LRW
1262         select CRYPTO_XTS
1263         help
1264           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1265
1266           Keys are allowed to be from 0 to 256 bits in length, in steps
1267           of 8 bits.
1268
1269           This module provides Serpent cipher algorithm that processes 16
1270           blocks parallel using AVX2 instruction set.
1271
1272           See also:
1273           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1274
1275 config CRYPTO_TEA
1276         tristate "TEA, XTEA and XETA cipher algorithms"
1277         select CRYPTO_ALGAPI
1278         help
1279           TEA cipher algorithm.
1280
1281           Tiny Encryption Algorithm is a simple cipher that uses
1282           many rounds for security.  It is very fast and uses
1283           little memory.
1284
1285           Xtendend Tiny Encryption Algorithm is a modification to
1286           the TEA algorithm to address a potential key weakness
1287           in the TEA algorithm.
1288
1289           Xtendend Encryption Tiny Algorithm is a mis-implementation
1290           of the XTEA algorithm for compatibility purposes.
1291
1292 config CRYPTO_TWOFISH
1293         tristate "Twofish cipher algorithm"
1294         select CRYPTO_ALGAPI
1295         select CRYPTO_TWOFISH_COMMON
1296         help
1297           Twofish cipher algorithm.
1298
1299           Twofish was submitted as an AES (Advanced Encryption Standard)
1300           candidate cipher by researchers at CounterPane Systems.  It is a
1301           16 round block cipher supporting key sizes of 128, 192, and 256
1302           bits.
1303
1304           See also:
1305           <http://www.schneier.com/twofish.html>
1306
1307 config CRYPTO_TWOFISH_COMMON
1308         tristate
1309         help
1310           Common parts of the Twofish cipher algorithm shared by the
1311           generic c and the assembler implementations.
1312
1313 config CRYPTO_TWOFISH_586
1314         tristate "Twofish cipher algorithms (i586)"
1315         depends on (X86 || UML_X86) && !64BIT
1316         select CRYPTO_ALGAPI
1317         select CRYPTO_TWOFISH_COMMON
1318         help
1319           Twofish cipher algorithm.
1320
1321           Twofish was submitted as an AES (Advanced Encryption Standard)
1322           candidate cipher by researchers at CounterPane Systems.  It is a
1323           16 round block cipher supporting key sizes of 128, 192, and 256
1324           bits.
1325
1326           See also:
1327           <http://www.schneier.com/twofish.html>
1328
1329 config CRYPTO_TWOFISH_X86_64
1330         tristate "Twofish cipher algorithm (x86_64)"
1331         depends on (X86 || UML_X86) && 64BIT
1332         select CRYPTO_ALGAPI
1333         select CRYPTO_TWOFISH_COMMON
1334         help
1335           Twofish cipher algorithm (x86_64).
1336
1337           Twofish was submitted as an AES (Advanced Encryption Standard)
1338           candidate cipher by researchers at CounterPane Systems.  It is a
1339           16 round block cipher supporting key sizes of 128, 192, and 256
1340           bits.
1341
1342           See also:
1343           <http://www.schneier.com/twofish.html>
1344
1345 config CRYPTO_TWOFISH_X86_64_3WAY
1346         tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1347         depends on X86 && 64BIT
1348         select CRYPTO_ALGAPI
1349         select CRYPTO_TWOFISH_COMMON
1350         select CRYPTO_TWOFISH_X86_64
1351         select CRYPTO_GLUE_HELPER_X86
1352         select CRYPTO_LRW
1353         select CRYPTO_XTS
1354         help
1355           Twofish cipher algorithm (x86_64, 3-way parallel).
1356
1357           Twofish was submitted as an AES (Advanced Encryption Standard)
1358           candidate cipher by researchers at CounterPane Systems.  It is a
1359           16 round block cipher supporting key sizes of 128, 192, and 256
1360           bits.
1361
1362           This module provides Twofish cipher algorithm that processes three
1363           blocks parallel, utilizing resources of out-of-order CPUs better.
1364
1365           See also:
1366           <http://www.schneier.com/twofish.html>
1367
1368 config CRYPTO_TWOFISH_AVX_X86_64
1369         tristate "Twofish cipher algorithm (x86_64/AVX)"
1370         depends on X86 && 64BIT
1371         select CRYPTO_ALGAPI
1372         select CRYPTO_CRYPTD
1373         select CRYPTO_ABLK_HELPER
1374         select CRYPTO_GLUE_HELPER_X86
1375         select CRYPTO_TWOFISH_COMMON
1376         select CRYPTO_TWOFISH_X86_64
1377         select CRYPTO_TWOFISH_X86_64_3WAY
1378         select CRYPTO_LRW
1379         select CRYPTO_XTS
1380         help
1381           Twofish cipher algorithm (x86_64/AVX).
1382
1383           Twofish was submitted as an AES (Advanced Encryption Standard)
1384           candidate cipher by researchers at CounterPane Systems.  It is a
1385           16 round block cipher supporting key sizes of 128, 192, and 256
1386           bits.
1387
1388           This module provides the Twofish cipher algorithm that processes
1389           eight blocks parallel using the AVX Instruction Set.
1390
1391           See also:
1392           <http://www.schneier.com/twofish.html>
1393
1394 comment "Compression"
1395
1396 config CRYPTO_DEFLATE
1397         tristate "Deflate compression algorithm"
1398         select CRYPTO_ALGAPI
1399         select ZLIB_INFLATE
1400         select ZLIB_DEFLATE
1401         help
1402           This is the Deflate algorithm (RFC1951), specified for use in
1403           IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1404
1405           You will most probably want this if using IPSec.
1406
1407 config CRYPTO_ZLIB
1408         tristate "Zlib compression algorithm"
1409         select CRYPTO_PCOMP
1410         select ZLIB_INFLATE
1411         select ZLIB_DEFLATE
1412         select NLATTR
1413         help
1414           This is the zlib algorithm.
1415
1416 config CRYPTO_LZO
1417         tristate "LZO compression algorithm"
1418         select CRYPTO_ALGAPI
1419         select LZO_COMPRESS
1420         select LZO_DECOMPRESS
1421         help
1422           This is the LZO algorithm.
1423
1424 config CRYPTO_842
1425         tristate "842 compression algorithm"
1426         depends on CRYPTO_DEV_NX_COMPRESS
1427         # 842 uses lzo if the hardware becomes unavailable
1428         select LZO_COMPRESS
1429         select LZO_DECOMPRESS
1430         help
1431           This is the 842 algorithm.
1432
1433 config CRYPTO_LZ4
1434         tristate "LZ4 compression algorithm"
1435         select CRYPTO_ALGAPI
1436         select LZ4_COMPRESS
1437         select LZ4_DECOMPRESS
1438         help
1439           This is the LZ4 algorithm.
1440
1441 config CRYPTO_LZ4HC
1442         tristate "LZ4HC compression algorithm"
1443         select CRYPTO_ALGAPI
1444         select LZ4HC_COMPRESS
1445         select LZ4_DECOMPRESS
1446         help
1447           This is the LZ4 high compression mode algorithm.
1448
1449 comment "Random Number Generation"
1450
1451 config CRYPTO_ANSI_CPRNG
1452         tristate "Pseudo Random Number Generation for Cryptographic modules"
1453         default m
1454         select CRYPTO_AES
1455         select CRYPTO_RNG
1456         help
1457           This option enables the generic pseudo random number generator
1458           for cryptographic modules.  Uses the Algorithm specified in
1459           ANSI X9.31 A.2.4. Note that this option must be enabled if
1460           CRYPTO_FIPS is selected
1461
1462 menuconfig CRYPTO_DRBG_MENU
1463         tristate "NIST SP800-90A DRBG"
1464         help
1465           NIST SP800-90A compliant DRBG. In the following submenu, one or
1466           more of the DRBG types must be selected.
1467
1468 if CRYPTO_DRBG_MENU
1469
1470 config CRYPTO_DRBG_HMAC
1471         bool "Enable HMAC DRBG"
1472         default y
1473         select CRYPTO_HMAC
1474         help
1475           Enable the HMAC DRBG variant as defined in NIST SP800-90A.
1476
1477 config CRYPTO_DRBG_HASH
1478         bool "Enable Hash DRBG"
1479         select CRYPTO_HASH
1480         help
1481           Enable the Hash DRBG variant as defined in NIST SP800-90A.
1482
1483 config CRYPTO_DRBG_CTR
1484         bool "Enable CTR DRBG"
1485         select CRYPTO_AES
1486         help
1487           Enable the CTR DRBG variant as defined in NIST SP800-90A.
1488
1489 config CRYPTO_DRBG
1490         tristate
1491         default CRYPTO_DRBG_MENU if (CRYPTO_DRBG_HMAC || CRYPTO_DRBG_HASH || CRYPTO_DRBG_CTR)
1492         select CRYPTO_RNG
1493
1494 endif   # if CRYPTO_DRBG_MENU
1495
1496 config CRYPTO_USER_API
1497         tristate
1498
1499 config CRYPTO_USER_API_HASH
1500         tristate "User-space interface for hash algorithms"
1501         depends on NET
1502         select CRYPTO_HASH
1503         select CRYPTO_USER_API
1504         help
1505           This option enables the user-spaces interface for hash
1506           algorithms.
1507
1508 config CRYPTO_USER_API_SKCIPHER
1509         tristate "User-space interface for symmetric key cipher algorithms"
1510         depends on NET
1511         select CRYPTO_BLKCIPHER
1512         select CRYPTO_USER_API
1513         help
1514           This option enables the user-spaces interface for symmetric
1515           key cipher algorithms.
1516
1517 config CRYPTO_USER_API_RNG
1518         tristate "User-space interface for random number generator algorithms"
1519         depends on NET
1520         select CRYPTO_RNG
1521         select CRYPTO_USER_API
1522         help
1523           This option enables the user-spaces interface for random
1524           number generator algorithms.
1525
1526 config CRYPTO_HASH_INFO
1527         bool
1528
1529 source "drivers/crypto/Kconfig"
1530 source crypto/asymmetric_keys/Kconfig
1531
1532 endif   # if CRYPTO