Revert "cfq: Make use of service count to estimate the rb_key offset"
[pandora-kernel.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16
17 /*
18  * tunables
19  */
20 /* max queue in one round of service */
21 static const int cfq_quantum = 4;
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 /* maximum backwards seek, in KiB */
24 static const int cfq_back_max = 16 * 1024;
25 /* penalty of a backwards seek */
26 static const int cfq_back_penalty = 2;
27 static const int cfq_slice_sync = HZ / 10;
28 static int cfq_slice_async = HZ / 25;
29 static const int cfq_slice_async_rq = 2;
30 static int cfq_slice_idle = HZ / 125;
31 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32 static const int cfq_hist_divisor = 4;
33
34 /*
35  * offset from end of service tree
36  */
37 #define CFQ_IDLE_DELAY          (HZ / 5)
38
39 /*
40  * below this threshold, we consider thinktime immediate
41  */
42 #define CFQ_MIN_TT              (2)
43
44 /*
45  * Allow merged cfqqs to perform this amount of seeky I/O before
46  * deciding to break the queues up again.
47  */
48 #define CFQQ_COOP_TOUT          (HZ)
49
50 #define CFQ_SLICE_SCALE         (5)
51 #define CFQ_HW_QUEUE_MIN        (5)
52
53 #define RQ_CIC(rq)              \
54         ((struct cfq_io_context *) (rq)->elevator_private)
55 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
56
57 static struct kmem_cache *cfq_pool;
58 static struct kmem_cache *cfq_ioc_pool;
59
60 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61 static struct completion *ioc_gone;
62 static DEFINE_SPINLOCK(ioc_gone_lock);
63
64 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68 #define sample_valid(samples)   ((samples) > 80)
69
70 /*
71  * Most of our rbtree usage is for sorting with min extraction, so
72  * if we cache the leftmost node we don't have to walk down the tree
73  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74  * move this into the elevator for the rq sorting as well.
75  */
76 struct cfq_rb_root {
77         struct rb_root rb;
78         struct rb_node *left;
79         unsigned count;
80 };
81 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82
83 /*
84  * Per process-grouping structure
85  */
86 struct cfq_queue {
87         /* reference count */
88         atomic_t ref;
89         /* various state flags, see below */
90         unsigned int flags;
91         /* parent cfq_data */
92         struct cfq_data *cfqd;
93         /* service_tree member */
94         struct rb_node rb_node;
95         /* service_tree key */
96         unsigned long rb_key;
97         /* prio tree member */
98         struct rb_node p_node;
99         /* prio tree root we belong to, if any */
100         struct rb_root *p_root;
101         /* sorted list of pending requests */
102         struct rb_root sort_list;
103         /* if fifo isn't expired, next request to serve */
104         struct request *next_rq;
105         /* requests queued in sort_list */
106         int queued[2];
107         /* currently allocated requests */
108         int allocated[2];
109         /* fifo list of requests in sort_list */
110         struct list_head fifo;
111
112         unsigned long slice_end;
113         long slice_resid;
114         unsigned int slice_dispatch;
115
116         /* pending metadata requests */
117         int meta_pending;
118         /* number of requests that are on the dispatch list or inside driver */
119         int dispatched;
120
121         /* io prio of this group */
122         unsigned short ioprio, org_ioprio;
123         unsigned short ioprio_class, org_ioprio_class;
124
125         unsigned int seek_samples;
126         u64 seek_total;
127         sector_t seek_mean;
128         sector_t last_request_pos;
129         unsigned long seeky_start;
130
131         pid_t pid;
132
133         struct cfq_rb_root *service_tree;
134         struct cfq_queue *new_cfqq;
135 };
136
137 /*
138  * First index in the service_trees.
139  * IDLE is handled separately, so it has negative index
140  */
141 enum wl_prio_t {
142         IDLE_WORKLOAD = -1,
143         BE_WORKLOAD = 0,
144         RT_WORKLOAD = 1
145 };
146
147 /*
148  * Second index in the service_trees.
149  */
150 enum wl_type_t {
151         ASYNC_WORKLOAD = 0,
152         SYNC_NOIDLE_WORKLOAD = 1,
153         SYNC_WORKLOAD = 2
154 };
155
156
157 /*
158  * Per block device queue structure
159  */
160 struct cfq_data {
161         struct request_queue *queue;
162
163         /*
164          * rr lists of queues with requests, onle rr for each priority class.
165          * Counts are embedded in the cfq_rb_root
166          */
167         struct cfq_rb_root service_trees[2][3];
168         struct cfq_rb_root service_tree_idle;
169         /*
170          * The priority currently being served
171          */
172         enum wl_prio_t serving_prio;
173         enum wl_type_t serving_type;
174         unsigned long workload_expires;
175         bool noidle_tree_requires_idle;
176
177         /*
178          * Each priority tree is sorted by next_request position.  These
179          * trees are used when determining if two or more queues are
180          * interleaving requests (see cfq_close_cooperator).
181          */
182         struct rb_root prio_trees[CFQ_PRIO_LISTS];
183
184         unsigned int busy_queues;
185         unsigned int busy_queues_avg[2];
186
187         int rq_in_driver[2];
188         int sync_flight;
189
190         /*
191          * queue-depth detection
192          */
193         int rq_queued;
194         int hw_tag;
195         /*
196          * hw_tag can be
197          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
198          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
199          *  0 => no NCQ
200          */
201         int hw_tag_est_depth;
202         unsigned int hw_tag_samples;
203
204         /*
205          * idle window management
206          */
207         struct timer_list idle_slice_timer;
208         struct work_struct unplug_work;
209
210         struct cfq_queue *active_queue;
211         struct cfq_io_context *active_cic;
212
213         /*
214          * async queue for each priority case
215          */
216         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
217         struct cfq_queue *async_idle_cfqq;
218
219         sector_t last_position;
220
221         /*
222          * tunables, see top of file
223          */
224         unsigned int cfq_quantum;
225         unsigned int cfq_fifo_expire[2];
226         unsigned int cfq_back_penalty;
227         unsigned int cfq_back_max;
228         unsigned int cfq_slice[2];
229         unsigned int cfq_slice_async_rq;
230         unsigned int cfq_slice_idle;
231         unsigned int cfq_latency;
232
233         struct list_head cic_list;
234
235         /*
236          * Fallback dummy cfqq for extreme OOM conditions
237          */
238         struct cfq_queue oom_cfqq;
239
240         unsigned long last_end_sync_rq;
241 };
242
243 static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
244                                             enum wl_type_t type,
245                                             struct cfq_data *cfqd)
246 {
247         if (prio == IDLE_WORKLOAD)
248                 return &cfqd->service_tree_idle;
249
250         return &cfqd->service_trees[prio][type];
251 }
252
253 enum cfqq_state_flags {
254         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
255         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
256         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
257         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
258         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
259         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
260         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
261         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
262         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
263         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
264         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
265 };
266
267 #define CFQ_CFQQ_FNS(name)                                              \
268 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
269 {                                                                       \
270         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
271 }                                                                       \
272 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
273 {                                                                       \
274         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
275 }                                                                       \
276 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
277 {                                                                       \
278         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
279 }
280
281 CFQ_CFQQ_FNS(on_rr);
282 CFQ_CFQQ_FNS(wait_request);
283 CFQ_CFQQ_FNS(must_dispatch);
284 CFQ_CFQQ_FNS(must_alloc_slice);
285 CFQ_CFQQ_FNS(fifo_expire);
286 CFQ_CFQQ_FNS(idle_window);
287 CFQ_CFQQ_FNS(prio_changed);
288 CFQ_CFQQ_FNS(slice_new);
289 CFQ_CFQQ_FNS(sync);
290 CFQ_CFQQ_FNS(coop);
291 CFQ_CFQQ_FNS(deep);
292 #undef CFQ_CFQQ_FNS
293
294 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
295         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
296 #define cfq_log(cfqd, fmt, args...)     \
297         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
298
299 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
300 {
301         if (cfq_class_idle(cfqq))
302                 return IDLE_WORKLOAD;
303         if (cfq_class_rt(cfqq))
304                 return RT_WORKLOAD;
305         return BE_WORKLOAD;
306 }
307
308
309 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
310 {
311         if (!cfq_cfqq_sync(cfqq))
312                 return ASYNC_WORKLOAD;
313         if (!cfq_cfqq_idle_window(cfqq))
314                 return SYNC_NOIDLE_WORKLOAD;
315         return SYNC_WORKLOAD;
316 }
317
318 static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
319 {
320         if (wl == IDLE_WORKLOAD)
321                 return cfqd->service_tree_idle.count;
322
323         return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
324                 + cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
325                 + cfqd->service_trees[wl][SYNC_WORKLOAD].count;
326 }
327
328 static void cfq_dispatch_insert(struct request_queue *, struct request *);
329 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
330                                        struct io_context *, gfp_t);
331 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
332                                                 struct io_context *);
333
334 static inline int rq_in_driver(struct cfq_data *cfqd)
335 {
336         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
337 }
338
339 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
340                                             bool is_sync)
341 {
342         return cic->cfqq[is_sync];
343 }
344
345 static inline void cic_set_cfqq(struct cfq_io_context *cic,
346                                 struct cfq_queue *cfqq, bool is_sync)
347 {
348         cic->cfqq[is_sync] = cfqq;
349 }
350
351 /*
352  * We regard a request as SYNC, if it's either a read or has the SYNC bit
353  * set (in which case it could also be direct WRITE).
354  */
355 static inline bool cfq_bio_sync(struct bio *bio)
356 {
357         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
358 }
359
360 /*
361  * scheduler run of queue, if there are requests pending and no one in the
362  * driver that will restart queueing
363  */
364 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
365 {
366         if (cfqd->busy_queues) {
367                 cfq_log(cfqd, "schedule dispatch");
368                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
369         }
370 }
371
372 static int cfq_queue_empty(struct request_queue *q)
373 {
374         struct cfq_data *cfqd = q->elevator->elevator_data;
375
376         return !cfqd->busy_queues;
377 }
378
379 /*
380  * Scale schedule slice based on io priority. Use the sync time slice only
381  * if a queue is marked sync and has sync io queued. A sync queue with async
382  * io only, should not get full sync slice length.
383  */
384 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
385                                  unsigned short prio)
386 {
387         const int base_slice = cfqd->cfq_slice[sync];
388
389         WARN_ON(prio >= IOPRIO_BE_NR);
390
391         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
392 }
393
394 static inline int
395 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
396 {
397         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
398 }
399
400 /*
401  * get averaged number of queues of RT/BE priority.
402  * average is updated, with a formula that gives more weight to higher numbers,
403  * to quickly follows sudden increases and decrease slowly
404  */
405
406 static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
407 {
408         unsigned min_q, max_q;
409         unsigned mult  = cfq_hist_divisor - 1;
410         unsigned round = cfq_hist_divisor / 2;
411         unsigned busy = cfq_busy_queues_wl(rt, cfqd);
412
413         min_q = min(cfqd->busy_queues_avg[rt], busy);
414         max_q = max(cfqd->busy_queues_avg[rt], busy);
415         cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
416                 cfq_hist_divisor;
417         return cfqd->busy_queues_avg[rt];
418 }
419
420 static inline void
421 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
422 {
423         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
424         if (cfqd->cfq_latency) {
425                 /* interested queues (we consider only the ones with the same
426                  * priority class) */
427                 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
428                 unsigned sync_slice = cfqd->cfq_slice[1];
429                 unsigned expect_latency = sync_slice * iq;
430                 if (expect_latency > cfq_target_latency) {
431                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
432                         /* scale low_slice according to IO priority
433                          * and sync vs async */
434                         unsigned low_slice =
435                                 min(slice, base_low_slice * slice / sync_slice);
436                         /* the adapted slice value is scaled to fit all iqs
437                          * into the target latency */
438                         slice = max(slice * cfq_target_latency / expect_latency,
439                                     low_slice);
440                 }
441         }
442         cfqq->slice_end = jiffies + slice;
443         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
444 }
445
446 /*
447  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
448  * isn't valid until the first request from the dispatch is activated
449  * and the slice time set.
450  */
451 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
452 {
453         if (cfq_cfqq_slice_new(cfqq))
454                 return 0;
455         if (time_before(jiffies, cfqq->slice_end))
456                 return 0;
457
458         return 1;
459 }
460
461 /*
462  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
463  * We choose the request that is closest to the head right now. Distance
464  * behind the head is penalized and only allowed to a certain extent.
465  */
466 static struct request *
467 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
468 {
469         sector_t s1, s2, d1 = 0, d2 = 0;
470         unsigned long back_max;
471 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
472 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
473         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
474
475         if (rq1 == NULL || rq1 == rq2)
476                 return rq2;
477         if (rq2 == NULL)
478                 return rq1;
479
480         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
481                 return rq1;
482         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
483                 return rq2;
484         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
485                 return rq1;
486         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
487                 return rq2;
488
489         s1 = blk_rq_pos(rq1);
490         s2 = blk_rq_pos(rq2);
491
492         /*
493          * by definition, 1KiB is 2 sectors
494          */
495         back_max = cfqd->cfq_back_max * 2;
496
497         /*
498          * Strict one way elevator _except_ in the case where we allow
499          * short backward seeks which are biased as twice the cost of a
500          * similar forward seek.
501          */
502         if (s1 >= last)
503                 d1 = s1 - last;
504         else if (s1 + back_max >= last)
505                 d1 = (last - s1) * cfqd->cfq_back_penalty;
506         else
507                 wrap |= CFQ_RQ1_WRAP;
508
509         if (s2 >= last)
510                 d2 = s2 - last;
511         else if (s2 + back_max >= last)
512                 d2 = (last - s2) * cfqd->cfq_back_penalty;
513         else
514                 wrap |= CFQ_RQ2_WRAP;
515
516         /* Found required data */
517
518         /*
519          * By doing switch() on the bit mask "wrap" we avoid having to
520          * check two variables for all permutations: --> faster!
521          */
522         switch (wrap) {
523         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
524                 if (d1 < d2)
525                         return rq1;
526                 else if (d2 < d1)
527                         return rq2;
528                 else {
529                         if (s1 >= s2)
530                                 return rq1;
531                         else
532                                 return rq2;
533                 }
534
535         case CFQ_RQ2_WRAP:
536                 return rq1;
537         case CFQ_RQ1_WRAP:
538                 return rq2;
539         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
540         default:
541                 /*
542                  * Since both rqs are wrapped,
543                  * start with the one that's further behind head
544                  * (--> only *one* back seek required),
545                  * since back seek takes more time than forward.
546                  */
547                 if (s1 <= s2)
548                         return rq1;
549                 else
550                         return rq2;
551         }
552 }
553
554 /*
555  * The below is leftmost cache rbtree addon
556  */
557 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
558 {
559         if (!root->left)
560                 root->left = rb_first(&root->rb);
561
562         if (root->left)
563                 return rb_entry(root->left, struct cfq_queue, rb_node);
564
565         return NULL;
566 }
567
568 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
569 {
570         rb_erase(n, root);
571         RB_CLEAR_NODE(n);
572 }
573
574 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
575 {
576         if (root->left == n)
577                 root->left = NULL;
578         rb_erase_init(n, &root->rb);
579         --root->count;
580 }
581
582 /*
583  * would be nice to take fifo expire time into account as well
584  */
585 static struct request *
586 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
587                   struct request *last)
588 {
589         struct rb_node *rbnext = rb_next(&last->rb_node);
590         struct rb_node *rbprev = rb_prev(&last->rb_node);
591         struct request *next = NULL, *prev = NULL;
592
593         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
594
595         if (rbprev)
596                 prev = rb_entry_rq(rbprev);
597
598         if (rbnext)
599                 next = rb_entry_rq(rbnext);
600         else {
601                 rbnext = rb_first(&cfqq->sort_list);
602                 if (rbnext && rbnext != &last->rb_node)
603                         next = rb_entry_rq(rbnext);
604         }
605
606         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
607 }
608
609 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
610                                       struct cfq_queue *cfqq)
611 {
612         /*
613          * just an approximation, should be ok.
614          */
615         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
616                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
617 }
618
619 /*
620  * The cfqd->service_trees holds all pending cfq_queue's that have
621  * requests waiting to be processed. It is sorted in the order that
622  * we will service the queues.
623  */
624 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
625                                  bool add_front)
626 {
627         struct rb_node **p, *parent;
628         struct cfq_queue *__cfqq;
629         unsigned long rb_key;
630         struct cfq_rb_root *service_tree;
631         int left;
632
633         service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
634         if (cfq_class_idle(cfqq)) {
635                 rb_key = CFQ_IDLE_DELAY;
636                 parent = rb_last(&service_tree->rb);
637                 if (parent && parent != &cfqq->rb_node) {
638                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
639                         rb_key += __cfqq->rb_key;
640                 } else
641                         rb_key += jiffies;
642         } else if (!add_front) {
643                 /*
644                  * Get our rb key offset. Subtract any residual slice
645                  * value carried from last service. A negative resid
646                  * count indicates slice overrun, and this should position
647                  * the next service time further away in the tree.
648                  */
649                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
650                 rb_key -= cfqq->slice_resid;
651                 cfqq->slice_resid = 0;
652         } else {
653                 rb_key = -HZ;
654                 __cfqq = cfq_rb_first(service_tree);
655                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
656         }
657
658         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
659                 /*
660                  * same position, nothing more to do
661                  */
662                 if (rb_key == cfqq->rb_key &&
663                     cfqq->service_tree == service_tree)
664                         return;
665
666                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
667                 cfqq->service_tree = NULL;
668         }
669
670         left = 1;
671         parent = NULL;
672         cfqq->service_tree = service_tree;
673         p = &service_tree->rb.rb_node;
674         while (*p) {
675                 struct rb_node **n;
676
677                 parent = *p;
678                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
679
680                 /*
681                  * sort by key, that represents service time.
682                  */
683                 if (time_before(rb_key, __cfqq->rb_key))
684                         n = &(*p)->rb_left;
685                 else {
686                         n = &(*p)->rb_right;
687                         left = 0;
688                 }
689
690                 p = n;
691         }
692
693         if (left)
694                 service_tree->left = &cfqq->rb_node;
695
696         cfqq->rb_key = rb_key;
697         rb_link_node(&cfqq->rb_node, parent, p);
698         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
699         service_tree->count++;
700 }
701
702 static struct cfq_queue *
703 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
704                      sector_t sector, struct rb_node **ret_parent,
705                      struct rb_node ***rb_link)
706 {
707         struct rb_node **p, *parent;
708         struct cfq_queue *cfqq = NULL;
709
710         parent = NULL;
711         p = &root->rb_node;
712         while (*p) {
713                 struct rb_node **n;
714
715                 parent = *p;
716                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
717
718                 /*
719                  * Sort strictly based on sector.  Smallest to the left,
720                  * largest to the right.
721                  */
722                 if (sector > blk_rq_pos(cfqq->next_rq))
723                         n = &(*p)->rb_right;
724                 else if (sector < blk_rq_pos(cfqq->next_rq))
725                         n = &(*p)->rb_left;
726                 else
727                         break;
728                 p = n;
729                 cfqq = NULL;
730         }
731
732         *ret_parent = parent;
733         if (rb_link)
734                 *rb_link = p;
735         return cfqq;
736 }
737
738 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
739 {
740         struct rb_node **p, *parent;
741         struct cfq_queue *__cfqq;
742
743         if (cfqq->p_root) {
744                 rb_erase(&cfqq->p_node, cfqq->p_root);
745                 cfqq->p_root = NULL;
746         }
747
748         if (cfq_class_idle(cfqq))
749                 return;
750         if (!cfqq->next_rq)
751                 return;
752
753         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
754         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
755                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
756         if (!__cfqq) {
757                 rb_link_node(&cfqq->p_node, parent, p);
758                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
759         } else
760                 cfqq->p_root = NULL;
761 }
762
763 /*
764  * Update cfqq's position in the service tree.
765  */
766 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
767 {
768         /*
769          * Resorting requires the cfqq to be on the RR list already.
770          */
771         if (cfq_cfqq_on_rr(cfqq)) {
772                 cfq_service_tree_add(cfqd, cfqq, 0);
773                 cfq_prio_tree_add(cfqd, cfqq);
774         }
775 }
776
777 /*
778  * add to busy list of queues for service, trying to be fair in ordering
779  * the pending list according to last request service
780  */
781 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
782 {
783         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
784         BUG_ON(cfq_cfqq_on_rr(cfqq));
785         cfq_mark_cfqq_on_rr(cfqq);
786         cfqd->busy_queues++;
787
788         cfq_resort_rr_list(cfqd, cfqq);
789 }
790
791 /*
792  * Called when the cfqq no longer has requests pending, remove it from
793  * the service tree.
794  */
795 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
796 {
797         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
798         BUG_ON(!cfq_cfqq_on_rr(cfqq));
799         cfq_clear_cfqq_on_rr(cfqq);
800
801         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
802                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
803                 cfqq->service_tree = NULL;
804         }
805         if (cfqq->p_root) {
806                 rb_erase(&cfqq->p_node, cfqq->p_root);
807                 cfqq->p_root = NULL;
808         }
809
810         BUG_ON(!cfqd->busy_queues);
811         cfqd->busy_queues--;
812 }
813
814 /*
815  * rb tree support functions
816  */
817 static void cfq_del_rq_rb(struct request *rq)
818 {
819         struct cfq_queue *cfqq = RQ_CFQQ(rq);
820         struct cfq_data *cfqd = cfqq->cfqd;
821         const int sync = rq_is_sync(rq);
822
823         BUG_ON(!cfqq->queued[sync]);
824         cfqq->queued[sync]--;
825
826         elv_rb_del(&cfqq->sort_list, rq);
827
828         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
829                 cfq_del_cfqq_rr(cfqd, cfqq);
830 }
831
832 static void cfq_add_rq_rb(struct request *rq)
833 {
834         struct cfq_queue *cfqq = RQ_CFQQ(rq);
835         struct cfq_data *cfqd = cfqq->cfqd;
836         struct request *__alias, *prev;
837
838         cfqq->queued[rq_is_sync(rq)]++;
839
840         /*
841          * looks a little odd, but the first insert might return an alias.
842          * if that happens, put the alias on the dispatch list
843          */
844         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
845                 cfq_dispatch_insert(cfqd->queue, __alias);
846
847         if (!cfq_cfqq_on_rr(cfqq))
848                 cfq_add_cfqq_rr(cfqd, cfqq);
849
850         /*
851          * check if this request is a better next-serve candidate
852          */
853         prev = cfqq->next_rq;
854         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
855
856         /*
857          * adjust priority tree position, if ->next_rq changes
858          */
859         if (prev != cfqq->next_rq)
860                 cfq_prio_tree_add(cfqd, cfqq);
861
862         BUG_ON(!cfqq->next_rq);
863 }
864
865 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
866 {
867         elv_rb_del(&cfqq->sort_list, rq);
868         cfqq->queued[rq_is_sync(rq)]--;
869         cfq_add_rq_rb(rq);
870 }
871
872 static struct request *
873 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
874 {
875         struct task_struct *tsk = current;
876         struct cfq_io_context *cic;
877         struct cfq_queue *cfqq;
878
879         cic = cfq_cic_lookup(cfqd, tsk->io_context);
880         if (!cic)
881                 return NULL;
882
883         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
884         if (cfqq) {
885                 sector_t sector = bio->bi_sector + bio_sectors(bio);
886
887                 return elv_rb_find(&cfqq->sort_list, sector);
888         }
889
890         return NULL;
891 }
892
893 static void cfq_activate_request(struct request_queue *q, struct request *rq)
894 {
895         struct cfq_data *cfqd = q->elevator->elevator_data;
896
897         cfqd->rq_in_driver[rq_is_sync(rq)]++;
898         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
899                                                 rq_in_driver(cfqd));
900
901         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
902 }
903
904 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
905 {
906         struct cfq_data *cfqd = q->elevator->elevator_data;
907         const int sync = rq_is_sync(rq);
908
909         WARN_ON(!cfqd->rq_in_driver[sync]);
910         cfqd->rq_in_driver[sync]--;
911         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
912                                                 rq_in_driver(cfqd));
913 }
914
915 static void cfq_remove_request(struct request *rq)
916 {
917         struct cfq_queue *cfqq = RQ_CFQQ(rq);
918
919         if (cfqq->next_rq == rq)
920                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
921
922         list_del_init(&rq->queuelist);
923         cfq_del_rq_rb(rq);
924
925         cfqq->cfqd->rq_queued--;
926         if (rq_is_meta(rq)) {
927                 WARN_ON(!cfqq->meta_pending);
928                 cfqq->meta_pending--;
929         }
930 }
931
932 static int cfq_merge(struct request_queue *q, struct request **req,
933                      struct bio *bio)
934 {
935         struct cfq_data *cfqd = q->elevator->elevator_data;
936         struct request *__rq;
937
938         __rq = cfq_find_rq_fmerge(cfqd, bio);
939         if (__rq && elv_rq_merge_ok(__rq, bio)) {
940                 *req = __rq;
941                 return ELEVATOR_FRONT_MERGE;
942         }
943
944         return ELEVATOR_NO_MERGE;
945 }
946
947 static void cfq_merged_request(struct request_queue *q, struct request *req,
948                                int type)
949 {
950         if (type == ELEVATOR_FRONT_MERGE) {
951                 struct cfq_queue *cfqq = RQ_CFQQ(req);
952
953                 cfq_reposition_rq_rb(cfqq, req);
954         }
955 }
956
957 static void
958 cfq_merged_requests(struct request_queue *q, struct request *rq,
959                     struct request *next)
960 {
961         struct cfq_queue *cfqq = RQ_CFQQ(rq);
962         /*
963          * reposition in fifo if next is older than rq
964          */
965         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
966             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
967                 list_move(&rq->queuelist, &next->queuelist);
968                 rq_set_fifo_time(rq, rq_fifo_time(next));
969         }
970
971         if (cfqq->next_rq == next)
972                 cfqq->next_rq = rq;
973         cfq_remove_request(next);
974 }
975
976 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
977                            struct bio *bio)
978 {
979         struct cfq_data *cfqd = q->elevator->elevator_data;
980         struct cfq_io_context *cic;
981         struct cfq_queue *cfqq;
982
983         /*
984          * Disallow merge of a sync bio into an async request.
985          */
986         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
987                 return false;
988
989         /*
990          * Lookup the cfqq that this bio will be queued with. Allow
991          * merge only if rq is queued there.
992          */
993         cic = cfq_cic_lookup(cfqd, current->io_context);
994         if (!cic)
995                 return false;
996
997         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
998         return cfqq == RQ_CFQQ(rq);
999 }
1000
1001 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1002                                    struct cfq_queue *cfqq)
1003 {
1004         if (cfqq) {
1005                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1006                 cfqq->slice_end = 0;
1007                 cfqq->slice_dispatch = 0;
1008
1009                 cfq_clear_cfqq_wait_request(cfqq);
1010                 cfq_clear_cfqq_must_dispatch(cfqq);
1011                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1012                 cfq_clear_cfqq_fifo_expire(cfqq);
1013                 cfq_mark_cfqq_slice_new(cfqq);
1014
1015                 del_timer(&cfqd->idle_slice_timer);
1016         }
1017
1018         cfqd->active_queue = cfqq;
1019 }
1020
1021 /*
1022  * current cfqq expired its slice (or was too idle), select new one
1023  */
1024 static void
1025 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1026                     bool timed_out)
1027 {
1028         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1029
1030         if (cfq_cfqq_wait_request(cfqq))
1031                 del_timer(&cfqd->idle_slice_timer);
1032
1033         cfq_clear_cfqq_wait_request(cfqq);
1034
1035         /*
1036          * store what was left of this slice, if the queue idled/timed out
1037          */
1038         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1039                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1040                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1041         }
1042
1043         cfq_resort_rr_list(cfqd, cfqq);
1044
1045         if (cfqq == cfqd->active_queue)
1046                 cfqd->active_queue = NULL;
1047
1048         if (cfqd->active_cic) {
1049                 put_io_context(cfqd->active_cic->ioc);
1050                 cfqd->active_cic = NULL;
1051         }
1052 }
1053
1054 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1055 {
1056         struct cfq_queue *cfqq = cfqd->active_queue;
1057
1058         if (cfqq)
1059                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1060 }
1061
1062 /*
1063  * Get next queue for service. Unless we have a queue preemption,
1064  * we'll simply select the first cfqq in the service tree.
1065  */
1066 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1067 {
1068         struct cfq_rb_root *service_tree =
1069                 service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1070
1071         if (RB_EMPTY_ROOT(&service_tree->rb))
1072                 return NULL;
1073         return cfq_rb_first(service_tree);
1074 }
1075
1076 /*
1077  * Get and set a new active queue for service.
1078  */
1079 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1080                                               struct cfq_queue *cfqq)
1081 {
1082         if (!cfqq)
1083                 cfqq = cfq_get_next_queue(cfqd);
1084
1085         __cfq_set_active_queue(cfqd, cfqq);
1086         return cfqq;
1087 }
1088
1089 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1090                                           struct request *rq)
1091 {
1092         if (blk_rq_pos(rq) >= cfqd->last_position)
1093                 return blk_rq_pos(rq) - cfqd->last_position;
1094         else
1095                 return cfqd->last_position - blk_rq_pos(rq);
1096 }
1097
1098 #define CFQQ_SEEK_THR           8 * 1024
1099 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1100
1101 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1102                                struct request *rq)
1103 {
1104         sector_t sdist = cfqq->seek_mean;
1105
1106         if (!sample_valid(cfqq->seek_samples))
1107                 sdist = CFQQ_SEEK_THR;
1108
1109         return cfq_dist_from_last(cfqd, rq) <= sdist;
1110 }
1111
1112 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1113                                     struct cfq_queue *cur_cfqq)
1114 {
1115         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1116         struct rb_node *parent, *node;
1117         struct cfq_queue *__cfqq;
1118         sector_t sector = cfqd->last_position;
1119
1120         if (RB_EMPTY_ROOT(root))
1121                 return NULL;
1122
1123         /*
1124          * First, if we find a request starting at the end of the last
1125          * request, choose it.
1126          */
1127         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1128         if (__cfqq)
1129                 return __cfqq;
1130
1131         /*
1132          * If the exact sector wasn't found, the parent of the NULL leaf
1133          * will contain the closest sector.
1134          */
1135         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1136         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1137                 return __cfqq;
1138
1139         if (blk_rq_pos(__cfqq->next_rq) < sector)
1140                 node = rb_next(&__cfqq->p_node);
1141         else
1142                 node = rb_prev(&__cfqq->p_node);
1143         if (!node)
1144                 return NULL;
1145
1146         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1147         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1148                 return __cfqq;
1149
1150         return NULL;
1151 }
1152
1153 /*
1154  * cfqd - obvious
1155  * cur_cfqq - passed in so that we don't decide that the current queue is
1156  *            closely cooperating with itself.
1157  *
1158  * So, basically we're assuming that that cur_cfqq has dispatched at least
1159  * one request, and that cfqd->last_position reflects a position on the disk
1160  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1161  * assumption.
1162  */
1163 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1164                                               struct cfq_queue *cur_cfqq)
1165 {
1166         struct cfq_queue *cfqq;
1167
1168         if (!cfq_cfqq_sync(cur_cfqq))
1169                 return NULL;
1170         if (CFQQ_SEEKY(cur_cfqq))
1171                 return NULL;
1172
1173         /*
1174          * We should notice if some of the queues are cooperating, eg
1175          * working closely on the same area of the disk. In that case,
1176          * we can group them together and don't waste time idling.
1177          */
1178         cfqq = cfqq_close(cfqd, cur_cfqq);
1179         if (!cfqq)
1180                 return NULL;
1181
1182         /*
1183          * It only makes sense to merge sync queues.
1184          */
1185         if (!cfq_cfqq_sync(cfqq))
1186                 return NULL;
1187         if (CFQQ_SEEKY(cfqq))
1188                 return NULL;
1189
1190         /*
1191          * Do not merge queues of different priority classes
1192          */
1193         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1194                 return NULL;
1195
1196         return cfqq;
1197 }
1198
1199 /*
1200  * Determine whether we should enforce idle window for this queue.
1201  */
1202
1203 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1204 {
1205         enum wl_prio_t prio = cfqq_prio(cfqq);
1206         struct cfq_rb_root *service_tree = cfqq->service_tree;
1207
1208         /* We never do for idle class queues. */
1209         if (prio == IDLE_WORKLOAD)
1210                 return false;
1211
1212         /* We do for queues that were marked with idle window flag. */
1213         if (cfq_cfqq_idle_window(cfqq))
1214                 return true;
1215
1216         /*
1217          * Otherwise, we do only if they are the last ones
1218          * in their service tree.
1219          */
1220         if (!service_tree)
1221                 service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);
1222
1223         if (service_tree->count == 0)
1224                 return true;
1225
1226         return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1227 }
1228
1229 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1230 {
1231         struct cfq_queue *cfqq = cfqd->active_queue;
1232         struct cfq_io_context *cic;
1233         unsigned long sl;
1234
1235         /*
1236          * SSD device without seek penalty, disable idling. But only do so
1237          * for devices that support queuing, otherwise we still have a problem
1238          * with sync vs async workloads.
1239          */
1240         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1241                 return;
1242
1243         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1244         WARN_ON(cfq_cfqq_slice_new(cfqq));
1245
1246         /*
1247          * idle is disabled, either manually or by past process history
1248          */
1249         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1250                 return;
1251
1252         /*
1253          * still active requests from this queue, don't idle
1254          */
1255         if (cfqq->dispatched)
1256                 return;
1257
1258         /*
1259          * task has exited, don't wait
1260          */
1261         cic = cfqd->active_cic;
1262         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1263                 return;
1264
1265         /*
1266          * If our average think time is larger than the remaining time
1267          * slice, then don't idle. This avoids overrunning the allotted
1268          * time slice.
1269          */
1270         if (sample_valid(cic->ttime_samples) &&
1271             (cfqq->slice_end - jiffies < cic->ttime_mean))
1272                 return;
1273
1274         cfq_mark_cfqq_wait_request(cfqq);
1275
1276         sl = cfqd->cfq_slice_idle;
1277
1278         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1279         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1280 }
1281
1282 /*
1283  * Move request from internal lists to the request queue dispatch list.
1284  */
1285 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1286 {
1287         struct cfq_data *cfqd = q->elevator->elevator_data;
1288         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1289
1290         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1291
1292         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1293         cfq_remove_request(rq);
1294         cfqq->dispatched++;
1295         elv_dispatch_sort(q, rq);
1296
1297         if (cfq_cfqq_sync(cfqq))
1298                 cfqd->sync_flight++;
1299 }
1300
1301 /*
1302  * return expired entry, or NULL to just start from scratch in rbtree
1303  */
1304 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1305 {
1306         struct request *rq = NULL;
1307
1308         if (cfq_cfqq_fifo_expire(cfqq))
1309                 return NULL;
1310
1311         cfq_mark_cfqq_fifo_expire(cfqq);
1312
1313         if (list_empty(&cfqq->fifo))
1314                 return NULL;
1315
1316         rq = rq_entry_fifo(cfqq->fifo.next);
1317         if (time_before(jiffies, rq_fifo_time(rq)))
1318                 rq = NULL;
1319
1320         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1321         return rq;
1322 }
1323
1324 static inline int
1325 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1326 {
1327         const int base_rq = cfqd->cfq_slice_async_rq;
1328
1329         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1330
1331         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1332 }
1333
1334 /*
1335  * Must be called with the queue_lock held.
1336  */
1337 static int cfqq_process_refs(struct cfq_queue *cfqq)
1338 {
1339         int process_refs, io_refs;
1340
1341         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1342         process_refs = atomic_read(&cfqq->ref) - io_refs;
1343         BUG_ON(process_refs < 0);
1344         return process_refs;
1345 }
1346
1347 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1348 {
1349         int process_refs, new_process_refs;
1350         struct cfq_queue *__cfqq;
1351
1352         /* Avoid a circular list and skip interim queue merges */
1353         while ((__cfqq = new_cfqq->new_cfqq)) {
1354                 if (__cfqq == cfqq)
1355                         return;
1356                 new_cfqq = __cfqq;
1357         }
1358
1359         process_refs = cfqq_process_refs(cfqq);
1360         /*
1361          * If the process for the cfqq has gone away, there is no
1362          * sense in merging the queues.
1363          */
1364         if (process_refs == 0)
1365                 return;
1366
1367         /*
1368          * Merge in the direction of the lesser amount of work.
1369          */
1370         new_process_refs = cfqq_process_refs(new_cfqq);
1371         if (new_process_refs >= process_refs) {
1372                 cfqq->new_cfqq = new_cfqq;
1373                 atomic_add(process_refs, &new_cfqq->ref);
1374         } else {
1375                 new_cfqq->new_cfqq = cfqq;
1376                 atomic_add(new_process_refs, &cfqq->ref);
1377         }
1378 }
1379
1380 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
1381                                     bool prio_changed)
1382 {
1383         struct cfq_queue *queue;
1384         int i;
1385         bool key_valid = false;
1386         unsigned long lowest_key = 0;
1387         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1388
1389         if (prio_changed) {
1390                 /*
1391                  * When priorities switched, we prefer starting
1392                  * from SYNC_NOIDLE (first choice), or just SYNC
1393                  * over ASYNC
1394                  */
1395                 if (service_tree_for(prio, cur_best, cfqd)->count)
1396                         return cur_best;
1397                 cur_best = SYNC_WORKLOAD;
1398                 if (service_tree_for(prio, cur_best, cfqd)->count)
1399                         return cur_best;
1400
1401                 return ASYNC_WORKLOAD;
1402         }
1403
1404         for (i = 0; i < 3; ++i) {
1405                 /* otherwise, select the one with lowest rb_key */
1406                 queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
1407                 if (queue &&
1408                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1409                         lowest_key = queue->rb_key;
1410                         cur_best = i;
1411                         key_valid = true;
1412                 }
1413         }
1414
1415         return cur_best;
1416 }
1417
1418 static void choose_service_tree(struct cfq_data *cfqd)
1419 {
1420         enum wl_prio_t previous_prio = cfqd->serving_prio;
1421         bool prio_changed;
1422         unsigned slice;
1423         unsigned count;
1424
1425         /* Choose next priority. RT > BE > IDLE */
1426         if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1427                 cfqd->serving_prio = RT_WORKLOAD;
1428         else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1429                 cfqd->serving_prio = BE_WORKLOAD;
1430         else {
1431                 cfqd->serving_prio = IDLE_WORKLOAD;
1432                 cfqd->workload_expires = jiffies + 1;
1433                 return;
1434         }
1435
1436         /*
1437          * For RT and BE, we have to choose also the type
1438          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1439          * expiration time
1440          */
1441         prio_changed = (cfqd->serving_prio != previous_prio);
1442         count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1443                 ->count;
1444
1445         /*
1446          * If priority didn't change, check workload expiration,
1447          * and that we still have other queues ready
1448          */
1449         if (!prio_changed && count &&
1450             !time_after(jiffies, cfqd->workload_expires))
1451                 return;
1452
1453         /* otherwise select new workload type */
1454         cfqd->serving_type =
1455                 cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
1456         count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1457                 ->count;
1458
1459         /*
1460          * the workload slice is computed as a fraction of target latency
1461          * proportional to the number of queues in that workload, over
1462          * all the queues in the same priority class
1463          */
1464         slice = cfq_target_latency * count /
1465                 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1466                       cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1467
1468         if (cfqd->serving_type == ASYNC_WORKLOAD)
1469                 /* async workload slice is scaled down according to
1470                  * the sync/async slice ratio. */
1471                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1472         else
1473                 /* sync workload slice is at least 2 * cfq_slice_idle */
1474                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1475
1476         slice = max_t(unsigned, slice, CFQ_MIN_TT);
1477         cfqd->workload_expires = jiffies + slice;
1478         cfqd->noidle_tree_requires_idle = false;
1479 }
1480
1481 /*
1482  * Select a queue for service. If we have a current active queue,
1483  * check whether to continue servicing it, or retrieve and set a new one.
1484  */
1485 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1486 {
1487         struct cfq_queue *cfqq, *new_cfqq = NULL;
1488
1489         cfqq = cfqd->active_queue;
1490         if (!cfqq)
1491                 goto new_queue;
1492
1493         /*
1494          * The active queue has run out of time, expire it and select new.
1495          */
1496         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1497                 goto expire;
1498
1499         /*
1500          * The active queue has requests and isn't expired, allow it to
1501          * dispatch.
1502          */
1503         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1504                 goto keep_queue;
1505
1506         /*
1507          * If another queue has a request waiting within our mean seek
1508          * distance, let it run.  The expire code will check for close
1509          * cooperators and put the close queue at the front of the service
1510          * tree.  If possible, merge the expiring queue with the new cfqq.
1511          */
1512         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1513         if (new_cfqq) {
1514                 if (!cfqq->new_cfqq)
1515                         cfq_setup_merge(cfqq, new_cfqq);
1516                 goto expire;
1517         }
1518
1519         /*
1520          * No requests pending. If the active queue still has requests in
1521          * flight or is idling for a new request, allow either of these
1522          * conditions to happen (or time out) before selecting a new queue.
1523          */
1524         if (timer_pending(&cfqd->idle_slice_timer) ||
1525             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1526                 cfqq = NULL;
1527                 goto keep_queue;
1528         }
1529
1530 expire:
1531         cfq_slice_expired(cfqd, 0);
1532 new_queue:
1533         /*
1534          * Current queue expired. Check if we have to switch to a new
1535          * service tree
1536          */
1537         if (!new_cfqq)
1538                 choose_service_tree(cfqd);
1539
1540         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1541 keep_queue:
1542         return cfqq;
1543 }
1544
1545 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1546 {
1547         int dispatched = 0;
1548
1549         while (cfqq->next_rq) {
1550                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1551                 dispatched++;
1552         }
1553
1554         BUG_ON(!list_empty(&cfqq->fifo));
1555         return dispatched;
1556 }
1557
1558 /*
1559  * Drain our current requests. Used for barriers and when switching
1560  * io schedulers on-the-fly.
1561  */
1562 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1563 {
1564         struct cfq_queue *cfqq;
1565         int dispatched = 0;
1566         int i, j;
1567         for (i = 0; i < 2; ++i)
1568                 for (j = 0; j < 3; ++j)
1569                         while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
1570                                 != NULL)
1571                                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1572
1573         while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1574                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1575
1576         cfq_slice_expired(cfqd, 0);
1577
1578         BUG_ON(cfqd->busy_queues);
1579
1580         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1581         return dispatched;
1582 }
1583
1584 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1585 {
1586         unsigned int max_dispatch;
1587
1588         /*
1589          * Drain async requests before we start sync IO
1590          */
1591         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1592                 return false;
1593
1594         /*
1595          * If this is an async queue and we have sync IO in flight, let it wait
1596          */
1597         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1598                 return false;
1599
1600         max_dispatch = cfqd->cfq_quantum;
1601         if (cfq_class_idle(cfqq))
1602                 max_dispatch = 1;
1603
1604         /*
1605          * Does this cfqq already have too much IO in flight?
1606          */
1607         if (cfqq->dispatched >= max_dispatch) {
1608                 /*
1609                  * idle queue must always only have a single IO in flight
1610                  */
1611                 if (cfq_class_idle(cfqq))
1612                         return false;
1613
1614                 /*
1615                  * We have other queues, don't allow more IO from this one
1616                  */
1617                 if (cfqd->busy_queues > 1)
1618                         return false;
1619
1620                 /*
1621                  * Sole queue user, allow bigger slice
1622                  */
1623                 max_dispatch *= 4;
1624         }
1625
1626         /*
1627          * Async queues must wait a bit before being allowed dispatch.
1628          * We also ramp up the dispatch depth gradually for async IO,
1629          * based on the last sync IO we serviced
1630          */
1631         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1632                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1633                 unsigned int depth;
1634
1635                 depth = last_sync / cfqd->cfq_slice[1];
1636                 if (!depth && !cfqq->dispatched)
1637                         depth = 1;
1638                 if (depth < max_dispatch)
1639                         max_dispatch = depth;
1640         }
1641
1642         /*
1643          * If we're below the current max, allow a dispatch
1644          */
1645         return cfqq->dispatched < max_dispatch;
1646 }
1647
1648 /*
1649  * Dispatch a request from cfqq, moving them to the request queue
1650  * dispatch list.
1651  */
1652 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1653 {
1654         struct request *rq;
1655
1656         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1657
1658         if (!cfq_may_dispatch(cfqd, cfqq))
1659                 return false;
1660
1661         /*
1662          * follow expired path, else get first next available
1663          */
1664         rq = cfq_check_fifo(cfqq);
1665         if (!rq)
1666                 rq = cfqq->next_rq;
1667
1668         /*
1669          * insert request into driver dispatch list
1670          */
1671         cfq_dispatch_insert(cfqd->queue, rq);
1672
1673         if (!cfqd->active_cic) {
1674                 struct cfq_io_context *cic = RQ_CIC(rq);
1675
1676                 atomic_long_inc(&cic->ioc->refcount);
1677                 cfqd->active_cic = cic;
1678         }
1679
1680         return true;
1681 }
1682
1683 /*
1684  * Find the cfqq that we need to service and move a request from that to the
1685  * dispatch list
1686  */
1687 static int cfq_dispatch_requests(struct request_queue *q, int force)
1688 {
1689         struct cfq_data *cfqd = q->elevator->elevator_data;
1690         struct cfq_queue *cfqq;
1691
1692         if (!cfqd->busy_queues)
1693                 return 0;
1694
1695         if (unlikely(force))
1696                 return cfq_forced_dispatch(cfqd);
1697
1698         cfqq = cfq_select_queue(cfqd);
1699         if (!cfqq)
1700                 return 0;
1701
1702         /*
1703          * Dispatch a request from this cfqq, if it is allowed
1704          */
1705         if (!cfq_dispatch_request(cfqd, cfqq))
1706                 return 0;
1707
1708         cfqq->slice_dispatch++;
1709         cfq_clear_cfqq_must_dispatch(cfqq);
1710
1711         /*
1712          * expire an async queue immediately if it has used up its slice. idle
1713          * queue always expire after 1 dispatch round.
1714          */
1715         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1716             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1717             cfq_class_idle(cfqq))) {
1718                 cfqq->slice_end = jiffies + 1;
1719                 cfq_slice_expired(cfqd, 0);
1720         }
1721
1722         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1723         return 1;
1724 }
1725
1726 /*
1727  * task holds one reference to the queue, dropped when task exits. each rq
1728  * in-flight on this queue also holds a reference, dropped when rq is freed.
1729  *
1730  * queue lock must be held here.
1731  */
1732 static void cfq_put_queue(struct cfq_queue *cfqq)
1733 {
1734         struct cfq_data *cfqd = cfqq->cfqd;
1735
1736         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1737
1738         if (!atomic_dec_and_test(&cfqq->ref))
1739                 return;
1740
1741         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1742         BUG_ON(rb_first(&cfqq->sort_list));
1743         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1744         BUG_ON(cfq_cfqq_on_rr(cfqq));
1745
1746         if (unlikely(cfqd->active_queue == cfqq)) {
1747                 __cfq_slice_expired(cfqd, cfqq, 0);
1748                 cfq_schedule_dispatch(cfqd);
1749         }
1750
1751         kmem_cache_free(cfq_pool, cfqq);
1752 }
1753
1754 /*
1755  * Must always be called with the rcu_read_lock() held
1756  */
1757 static void
1758 __call_for_each_cic(struct io_context *ioc,
1759                     void (*func)(struct io_context *, struct cfq_io_context *))
1760 {
1761         struct cfq_io_context *cic;
1762         struct hlist_node *n;
1763
1764         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1765                 func(ioc, cic);
1766 }
1767
1768 /*
1769  * Call func for each cic attached to this ioc.
1770  */
1771 static void
1772 call_for_each_cic(struct io_context *ioc,
1773                   void (*func)(struct io_context *, struct cfq_io_context *))
1774 {
1775         rcu_read_lock();
1776         __call_for_each_cic(ioc, func);
1777         rcu_read_unlock();
1778 }
1779
1780 static void cfq_cic_free_rcu(struct rcu_head *head)
1781 {
1782         struct cfq_io_context *cic;
1783
1784         cic = container_of(head, struct cfq_io_context, rcu_head);
1785
1786         kmem_cache_free(cfq_ioc_pool, cic);
1787         elv_ioc_count_dec(cfq_ioc_count);
1788
1789         if (ioc_gone) {
1790                 /*
1791                  * CFQ scheduler is exiting, grab exit lock and check
1792                  * the pending io context count. If it hits zero,
1793                  * complete ioc_gone and set it back to NULL
1794                  */
1795                 spin_lock(&ioc_gone_lock);
1796                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1797                         complete(ioc_gone);
1798                         ioc_gone = NULL;
1799                 }
1800                 spin_unlock(&ioc_gone_lock);
1801         }
1802 }
1803
1804 static void cfq_cic_free(struct cfq_io_context *cic)
1805 {
1806         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1807 }
1808
1809 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1810 {
1811         unsigned long flags;
1812
1813         BUG_ON(!cic->dead_key);
1814
1815         spin_lock_irqsave(&ioc->lock, flags);
1816         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1817         hlist_del_rcu(&cic->cic_list);
1818         spin_unlock_irqrestore(&ioc->lock, flags);
1819
1820         cfq_cic_free(cic);
1821 }
1822
1823 /*
1824  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1825  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1826  * and ->trim() which is called with the task lock held
1827  */
1828 static void cfq_free_io_context(struct io_context *ioc)
1829 {
1830         /*
1831          * ioc->refcount is zero here, or we are called from elv_unregister(),
1832          * so no more cic's are allowed to be linked into this ioc.  So it
1833          * should be ok to iterate over the known list, we will see all cic's
1834          * since no new ones are added.
1835          */
1836         __call_for_each_cic(ioc, cic_free_func);
1837 }
1838
1839 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1840 {
1841         struct cfq_queue *__cfqq, *next;
1842
1843         if (unlikely(cfqq == cfqd->active_queue)) {
1844                 __cfq_slice_expired(cfqd, cfqq, 0);
1845                 cfq_schedule_dispatch(cfqd);
1846         }
1847
1848         /*
1849          * If this queue was scheduled to merge with another queue, be
1850          * sure to drop the reference taken on that queue (and others in
1851          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
1852          */
1853         __cfqq = cfqq->new_cfqq;
1854         while (__cfqq) {
1855                 if (__cfqq == cfqq) {
1856                         WARN(1, "cfqq->new_cfqq loop detected\n");
1857                         break;
1858                 }
1859                 next = __cfqq->new_cfqq;
1860                 cfq_put_queue(__cfqq);
1861                 __cfqq = next;
1862         }
1863
1864         cfq_put_queue(cfqq);
1865 }
1866
1867 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1868                                          struct cfq_io_context *cic)
1869 {
1870         struct io_context *ioc = cic->ioc;
1871
1872         list_del_init(&cic->queue_list);
1873
1874         /*
1875          * Make sure key == NULL is seen for dead queues
1876          */
1877         smp_wmb();
1878         cic->dead_key = (unsigned long) cic->key;
1879         cic->key = NULL;
1880
1881         if (ioc->ioc_data == cic)
1882                 rcu_assign_pointer(ioc->ioc_data, NULL);
1883
1884         if (cic->cfqq[BLK_RW_ASYNC]) {
1885                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1886                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1887         }
1888
1889         if (cic->cfqq[BLK_RW_SYNC]) {
1890                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1891                 cic->cfqq[BLK_RW_SYNC] = NULL;
1892         }
1893 }
1894
1895 static void cfq_exit_single_io_context(struct io_context *ioc,
1896                                        struct cfq_io_context *cic)
1897 {
1898         struct cfq_data *cfqd = cic->key;
1899
1900         if (cfqd) {
1901                 struct request_queue *q = cfqd->queue;
1902                 unsigned long flags;
1903
1904                 spin_lock_irqsave(q->queue_lock, flags);
1905
1906                 /*
1907                  * Ensure we get a fresh copy of the ->key to prevent
1908                  * race between exiting task and queue
1909                  */
1910                 smp_read_barrier_depends();
1911                 if (cic->key)
1912                         __cfq_exit_single_io_context(cfqd, cic);
1913
1914                 spin_unlock_irqrestore(q->queue_lock, flags);
1915         }
1916 }
1917
1918 /*
1919  * The process that ioc belongs to has exited, we need to clean up
1920  * and put the internal structures we have that belongs to that process.
1921  */
1922 static void cfq_exit_io_context(struct io_context *ioc)
1923 {
1924         call_for_each_cic(ioc, cfq_exit_single_io_context);
1925 }
1926
1927 static struct cfq_io_context *
1928 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1929 {
1930         struct cfq_io_context *cic;
1931
1932         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1933                                                         cfqd->queue->node);
1934         if (cic) {
1935                 cic->last_end_request = jiffies;
1936                 INIT_LIST_HEAD(&cic->queue_list);
1937                 INIT_HLIST_NODE(&cic->cic_list);
1938                 cic->dtor = cfq_free_io_context;
1939                 cic->exit = cfq_exit_io_context;
1940                 elv_ioc_count_inc(cfq_ioc_count);
1941         }
1942
1943         return cic;
1944 }
1945
1946 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1947 {
1948         struct task_struct *tsk = current;
1949         int ioprio_class;
1950
1951         if (!cfq_cfqq_prio_changed(cfqq))
1952                 return;
1953
1954         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1955         switch (ioprio_class) {
1956         default:
1957                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1958         case IOPRIO_CLASS_NONE:
1959                 /*
1960                  * no prio set, inherit CPU scheduling settings
1961                  */
1962                 cfqq->ioprio = task_nice_ioprio(tsk);
1963                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1964                 break;
1965         case IOPRIO_CLASS_RT:
1966                 cfqq->ioprio = task_ioprio(ioc);
1967                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1968                 break;
1969         case IOPRIO_CLASS_BE:
1970                 cfqq->ioprio = task_ioprio(ioc);
1971                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1972                 break;
1973         case IOPRIO_CLASS_IDLE:
1974                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1975                 cfqq->ioprio = 7;
1976                 cfq_clear_cfqq_idle_window(cfqq);
1977                 break;
1978         }
1979
1980         /*
1981          * keep track of original prio settings in case we have to temporarily
1982          * elevate the priority of this queue
1983          */
1984         cfqq->org_ioprio = cfqq->ioprio;
1985         cfqq->org_ioprio_class = cfqq->ioprio_class;
1986         cfq_clear_cfqq_prio_changed(cfqq);
1987 }
1988
1989 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1990 {
1991         struct cfq_data *cfqd = cic->key;
1992         struct cfq_queue *cfqq;
1993         unsigned long flags;
1994
1995         if (unlikely(!cfqd))
1996                 return;
1997
1998         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1999
2000         cfqq = cic->cfqq[BLK_RW_ASYNC];
2001         if (cfqq) {
2002                 struct cfq_queue *new_cfqq;
2003                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2004                                                 GFP_ATOMIC);
2005                 if (new_cfqq) {
2006                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2007                         cfq_put_queue(cfqq);
2008                 }
2009         }
2010
2011         cfqq = cic->cfqq[BLK_RW_SYNC];
2012         if (cfqq)
2013                 cfq_mark_cfqq_prio_changed(cfqq);
2014
2015         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2016 }
2017
2018 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2019 {
2020         call_for_each_cic(ioc, changed_ioprio);
2021         ioc->ioprio_changed = 0;
2022 }
2023
2024 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2025                           pid_t pid, bool is_sync)
2026 {
2027         RB_CLEAR_NODE(&cfqq->rb_node);
2028         RB_CLEAR_NODE(&cfqq->p_node);
2029         INIT_LIST_HEAD(&cfqq->fifo);
2030
2031         atomic_set(&cfqq->ref, 0);
2032         cfqq->cfqd = cfqd;
2033
2034         cfq_mark_cfqq_prio_changed(cfqq);
2035
2036         if (is_sync) {
2037                 if (!cfq_class_idle(cfqq))
2038                         cfq_mark_cfqq_idle_window(cfqq);
2039                 cfq_mark_cfqq_sync(cfqq);
2040         }
2041         cfqq->pid = pid;
2042 }
2043
2044 static struct cfq_queue *
2045 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2046                      struct io_context *ioc, gfp_t gfp_mask)
2047 {
2048         struct cfq_queue *cfqq, *new_cfqq = NULL;
2049         struct cfq_io_context *cic;
2050
2051 retry:
2052         cic = cfq_cic_lookup(cfqd, ioc);
2053         /* cic always exists here */
2054         cfqq = cic_to_cfqq(cic, is_sync);
2055
2056         /*
2057          * Always try a new alloc if we fell back to the OOM cfqq
2058          * originally, since it should just be a temporary situation.
2059          */
2060         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2061                 cfqq = NULL;
2062                 if (new_cfqq) {
2063                         cfqq = new_cfqq;
2064                         new_cfqq = NULL;
2065                 } else if (gfp_mask & __GFP_WAIT) {
2066                         spin_unlock_irq(cfqd->queue->queue_lock);
2067                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2068                                         gfp_mask | __GFP_ZERO,
2069                                         cfqd->queue->node);
2070                         spin_lock_irq(cfqd->queue->queue_lock);
2071                         if (new_cfqq)
2072                                 goto retry;
2073                 } else {
2074                         cfqq = kmem_cache_alloc_node(cfq_pool,
2075                                         gfp_mask | __GFP_ZERO,
2076                                         cfqd->queue->node);
2077                 }
2078
2079                 if (cfqq) {
2080                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2081                         cfq_init_prio_data(cfqq, ioc);
2082                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2083                 } else
2084                         cfqq = &cfqd->oom_cfqq;
2085         }
2086
2087         if (new_cfqq)
2088                 kmem_cache_free(cfq_pool, new_cfqq);
2089
2090         return cfqq;
2091 }
2092
2093 static struct cfq_queue **
2094 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2095 {
2096         switch (ioprio_class) {
2097         case IOPRIO_CLASS_RT:
2098                 return &cfqd->async_cfqq[0][ioprio];
2099         case IOPRIO_CLASS_BE:
2100                 return &cfqd->async_cfqq[1][ioprio];
2101         case IOPRIO_CLASS_IDLE:
2102                 return &cfqd->async_idle_cfqq;
2103         default:
2104                 BUG();
2105         }
2106 }
2107
2108 static struct cfq_queue *
2109 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2110               gfp_t gfp_mask)
2111 {
2112         const int ioprio = task_ioprio(ioc);
2113         const int ioprio_class = task_ioprio_class(ioc);
2114         struct cfq_queue **async_cfqq = NULL;
2115         struct cfq_queue *cfqq = NULL;
2116
2117         if (!is_sync) {
2118                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2119                 cfqq = *async_cfqq;
2120         }
2121
2122         if (!cfqq)
2123                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2124
2125         /*
2126          * pin the queue now that it's allocated, scheduler exit will prune it
2127          */
2128         if (!is_sync && !(*async_cfqq)) {
2129                 atomic_inc(&cfqq->ref);
2130                 *async_cfqq = cfqq;
2131         }
2132
2133         atomic_inc(&cfqq->ref);
2134         return cfqq;
2135 }
2136
2137 /*
2138  * We drop cfq io contexts lazily, so we may find a dead one.
2139  */
2140 static void
2141 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2142                   struct cfq_io_context *cic)
2143 {
2144         unsigned long flags;
2145
2146         WARN_ON(!list_empty(&cic->queue_list));
2147
2148         spin_lock_irqsave(&ioc->lock, flags);
2149
2150         BUG_ON(ioc->ioc_data == cic);
2151
2152         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2153         hlist_del_rcu(&cic->cic_list);
2154         spin_unlock_irqrestore(&ioc->lock, flags);
2155
2156         cfq_cic_free(cic);
2157 }
2158
2159 static struct cfq_io_context *
2160 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2161 {
2162         struct cfq_io_context *cic;
2163         unsigned long flags;
2164         void *k;
2165
2166         if (unlikely(!ioc))
2167                 return NULL;
2168
2169         rcu_read_lock();
2170
2171         /*
2172          * we maintain a last-hit cache, to avoid browsing over the tree
2173          */
2174         cic = rcu_dereference(ioc->ioc_data);
2175         if (cic && cic->key == cfqd) {
2176                 rcu_read_unlock();
2177                 return cic;
2178         }
2179
2180         do {
2181                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2182                 rcu_read_unlock();
2183                 if (!cic)
2184                         break;
2185                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2186                 k = cic->key;
2187                 if (unlikely(!k)) {
2188                         cfq_drop_dead_cic(cfqd, ioc, cic);
2189                         rcu_read_lock();
2190                         continue;
2191                 }
2192
2193                 spin_lock_irqsave(&ioc->lock, flags);
2194                 rcu_assign_pointer(ioc->ioc_data, cic);
2195                 spin_unlock_irqrestore(&ioc->lock, flags);
2196                 break;
2197         } while (1);
2198
2199         return cic;
2200 }
2201
2202 /*
2203  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2204  * the process specific cfq io context when entered from the block layer.
2205  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2206  */
2207 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2208                         struct cfq_io_context *cic, gfp_t gfp_mask)
2209 {
2210         unsigned long flags;
2211         int ret;
2212
2213         ret = radix_tree_preload(gfp_mask);
2214         if (!ret) {
2215                 cic->ioc = ioc;
2216                 cic->key = cfqd;
2217
2218                 spin_lock_irqsave(&ioc->lock, flags);
2219                 ret = radix_tree_insert(&ioc->radix_root,
2220                                                 (unsigned long) cfqd, cic);
2221                 if (!ret)
2222                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2223                 spin_unlock_irqrestore(&ioc->lock, flags);
2224
2225                 radix_tree_preload_end();
2226
2227                 if (!ret) {
2228                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2229                         list_add(&cic->queue_list, &cfqd->cic_list);
2230                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2231                 }
2232         }
2233
2234         if (ret)
2235                 printk(KERN_ERR "cfq: cic link failed!\n");
2236
2237         return ret;
2238 }
2239
2240 /*
2241  * Setup general io context and cfq io context. There can be several cfq
2242  * io contexts per general io context, if this process is doing io to more
2243  * than one device managed by cfq.
2244  */
2245 static struct cfq_io_context *
2246 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2247 {
2248         struct io_context *ioc = NULL;
2249         struct cfq_io_context *cic;
2250
2251         might_sleep_if(gfp_mask & __GFP_WAIT);
2252
2253         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2254         if (!ioc)
2255                 return NULL;
2256
2257         cic = cfq_cic_lookup(cfqd, ioc);
2258         if (cic)
2259                 goto out;
2260
2261         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2262         if (cic == NULL)
2263                 goto err;
2264
2265         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2266                 goto err_free;
2267
2268 out:
2269         smp_read_barrier_depends();
2270         if (unlikely(ioc->ioprio_changed))
2271                 cfq_ioc_set_ioprio(ioc);
2272
2273         return cic;
2274 err_free:
2275         cfq_cic_free(cic);
2276 err:
2277         put_io_context(ioc);
2278         return NULL;
2279 }
2280
2281 static void
2282 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2283 {
2284         unsigned long elapsed = jiffies - cic->last_end_request;
2285         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2286
2287         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2288         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2289         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2290 }
2291
2292 static void
2293 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2294                        struct request *rq)
2295 {
2296         sector_t sdist;
2297         u64 total;
2298
2299         if (!cfqq->last_request_pos)
2300                 sdist = 0;
2301         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2302                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2303         else
2304                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2305
2306         /*
2307          * Don't allow the seek distance to get too large from the
2308          * odd fragment, pagein, etc
2309          */
2310         if (cfqq->seek_samples <= 60) /* second&third seek */
2311                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2312         else
2313                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2314
2315         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2316         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2317         total = cfqq->seek_total + (cfqq->seek_samples/2);
2318         do_div(total, cfqq->seek_samples);
2319         cfqq->seek_mean = (sector_t)total;
2320
2321         /*
2322          * If this cfqq is shared between multiple processes, check to
2323          * make sure that those processes are still issuing I/Os within
2324          * the mean seek distance.  If not, it may be time to break the
2325          * queues apart again.
2326          */
2327         if (cfq_cfqq_coop(cfqq)) {
2328                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2329                         cfqq->seeky_start = jiffies;
2330                 else if (!CFQQ_SEEKY(cfqq))
2331                         cfqq->seeky_start = 0;
2332         }
2333 }
2334
2335 /*
2336  * Disable idle window if the process thinks too long or seeks so much that
2337  * it doesn't matter
2338  */
2339 static void
2340 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2341                        struct cfq_io_context *cic)
2342 {
2343         int old_idle, enable_idle;
2344
2345         /*
2346          * Don't idle for async or idle io prio class
2347          */
2348         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2349                 return;
2350
2351         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2352
2353         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2354                 cfq_mark_cfqq_deep(cfqq);
2355
2356         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2357             (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2358              && CFQQ_SEEKY(cfqq)))
2359                 enable_idle = 0;
2360         else if (sample_valid(cic->ttime_samples)) {
2361                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2362                         enable_idle = 0;
2363                 else
2364                         enable_idle = 1;
2365         }
2366
2367         if (old_idle != enable_idle) {
2368                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2369                 if (enable_idle)
2370                         cfq_mark_cfqq_idle_window(cfqq);
2371                 else
2372                         cfq_clear_cfqq_idle_window(cfqq);
2373         }
2374 }
2375
2376 /*
2377  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2378  * no or if we aren't sure, a 1 will cause a preempt.
2379  */
2380 static bool
2381 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2382                    struct request *rq)
2383 {
2384         struct cfq_queue *cfqq;
2385
2386         cfqq = cfqd->active_queue;
2387         if (!cfqq)
2388                 return false;
2389
2390         if (cfq_slice_used(cfqq))
2391                 return true;
2392
2393         if (cfq_class_idle(new_cfqq))
2394                 return false;
2395
2396         if (cfq_class_idle(cfqq))
2397                 return true;
2398
2399         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2400             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2401             new_cfqq->service_tree->count == 1)
2402                 return true;
2403
2404         /*
2405          * if the new request is sync, but the currently running queue is
2406          * not, let the sync request have priority.
2407          */
2408         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2409                 return true;
2410
2411         /*
2412          * So both queues are sync. Let the new request get disk time if
2413          * it's a metadata request and the current queue is doing regular IO.
2414          */
2415         if (rq_is_meta(rq) && !cfqq->meta_pending)
2416                 return true;
2417
2418         /*
2419          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2420          */
2421         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2422                 return true;
2423
2424         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2425                 return false;
2426
2427         /*
2428          * if this request is as-good as one we would expect from the
2429          * current cfqq, let it preempt
2430          */
2431         if (cfq_rq_close(cfqd, cfqq, rq))
2432                 return true;
2433
2434         return false;
2435 }
2436
2437 /*
2438  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2439  * let it have half of its nominal slice.
2440  */
2441 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2442 {
2443         cfq_log_cfqq(cfqd, cfqq, "preempt");
2444         cfq_slice_expired(cfqd, 1);
2445
2446         /*
2447          * Put the new queue at the front of the of the current list,
2448          * so we know that it will be selected next.
2449          */
2450         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2451
2452         cfq_service_tree_add(cfqd, cfqq, 1);
2453
2454         cfqq->slice_end = 0;
2455         cfq_mark_cfqq_slice_new(cfqq);
2456 }
2457
2458 /*
2459  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2460  * something we should do about it
2461  */
2462 static void
2463 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2464                 struct request *rq)
2465 {
2466         struct cfq_io_context *cic = RQ_CIC(rq);
2467
2468         cfqd->rq_queued++;
2469         if (rq_is_meta(rq))
2470                 cfqq->meta_pending++;
2471
2472         cfq_update_io_thinktime(cfqd, cic);
2473         cfq_update_io_seektime(cfqd, cfqq, rq);
2474         cfq_update_idle_window(cfqd, cfqq, cic);
2475
2476         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2477
2478         if (cfqq == cfqd->active_queue) {
2479                 /*
2480                  * Remember that we saw a request from this process, but
2481                  * don't start queuing just yet. Otherwise we risk seeing lots
2482                  * of tiny requests, because we disrupt the normal plugging
2483                  * and merging. If the request is already larger than a single
2484                  * page, let it rip immediately. For that case we assume that
2485                  * merging is already done. Ditto for a busy system that
2486                  * has other work pending, don't risk delaying until the
2487                  * idle timer unplug to continue working.
2488                  */
2489                 if (cfq_cfqq_wait_request(cfqq)) {
2490                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2491                             cfqd->busy_queues > 1) {
2492                                 del_timer(&cfqd->idle_slice_timer);
2493                         __blk_run_queue(cfqd->queue);
2494                         }
2495                         cfq_mark_cfqq_must_dispatch(cfqq);
2496                 }
2497         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2498                 /*
2499                  * not the active queue - expire current slice if it is
2500                  * idle and has expired it's mean thinktime or this new queue
2501                  * has some old slice time left and is of higher priority or
2502                  * this new queue is RT and the current one is BE
2503                  */
2504                 cfq_preempt_queue(cfqd, cfqq);
2505                 __blk_run_queue(cfqd->queue);
2506         }
2507 }
2508
2509 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2510 {
2511         struct cfq_data *cfqd = q->elevator->elevator_data;
2512         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2513
2514         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2515         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2516
2517         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2518         list_add_tail(&rq->queuelist, &cfqq->fifo);
2519         cfq_add_rq_rb(rq);
2520
2521         cfq_rq_enqueued(cfqd, cfqq, rq);
2522 }
2523
2524 /*
2525  * Update hw_tag based on peak queue depth over 50 samples under
2526  * sufficient load.
2527  */
2528 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2529 {
2530         struct cfq_queue *cfqq = cfqd->active_queue;
2531
2532         if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2533                 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2534
2535         if (cfqd->hw_tag == 1)
2536                 return;
2537
2538         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2539             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2540                 return;
2541
2542         /*
2543          * If active queue hasn't enough requests and can idle, cfq might not
2544          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2545          * case
2546          */
2547         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2548             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2549             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2550                 return;
2551
2552         if (cfqd->hw_tag_samples++ < 50)
2553                 return;
2554
2555         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2556                 cfqd->hw_tag = 1;
2557         else
2558                 cfqd->hw_tag = 0;
2559 }
2560
2561 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2562 {
2563         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2564         struct cfq_data *cfqd = cfqq->cfqd;
2565         const int sync = rq_is_sync(rq);
2566         unsigned long now;
2567
2568         now = jiffies;
2569         cfq_log_cfqq(cfqd, cfqq, "complete");
2570
2571         cfq_update_hw_tag(cfqd);
2572
2573         WARN_ON(!cfqd->rq_in_driver[sync]);
2574         WARN_ON(!cfqq->dispatched);
2575         cfqd->rq_in_driver[sync]--;
2576         cfqq->dispatched--;
2577
2578         if (cfq_cfqq_sync(cfqq))
2579                 cfqd->sync_flight--;
2580
2581         if (sync) {
2582                 RQ_CIC(rq)->last_end_request = now;
2583                 cfqd->last_end_sync_rq = now;
2584         }
2585
2586         /*
2587          * If this is the active queue, check if it needs to be expired,
2588          * or if we want to idle in case it has no pending requests.
2589          */
2590         if (cfqd->active_queue == cfqq) {
2591                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2592
2593                 if (cfq_cfqq_slice_new(cfqq)) {
2594                         cfq_set_prio_slice(cfqd, cfqq);
2595                         cfq_clear_cfqq_slice_new(cfqq);
2596                 }
2597                 /*
2598                  * Idling is not enabled on:
2599                  * - expired queues
2600                  * - idle-priority queues
2601                  * - async queues
2602                  * - queues with still some requests queued
2603                  * - when there is a close cooperator
2604                  */
2605                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2606                         cfq_slice_expired(cfqd, 1);
2607                 else if (sync && cfqq_empty &&
2608                          !cfq_close_cooperator(cfqd, cfqq)) {
2609                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2610                         /*
2611                          * Idling is enabled for SYNC_WORKLOAD.
2612                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2613                          * only if we processed at least one !rq_noidle request
2614                          */
2615                         if (cfqd->serving_type == SYNC_WORKLOAD
2616                             || cfqd->noidle_tree_requires_idle)
2617                                 cfq_arm_slice_timer(cfqd);
2618                 }
2619         }
2620
2621         if (!rq_in_driver(cfqd))
2622                 cfq_schedule_dispatch(cfqd);
2623 }
2624
2625 /*
2626  * we temporarily boost lower priority queues if they are holding fs exclusive
2627  * resources. they are boosted to normal prio (CLASS_BE/4)
2628  */
2629 static void cfq_prio_boost(struct cfq_queue *cfqq)
2630 {
2631         if (has_fs_excl()) {
2632                 /*
2633                  * boost idle prio on transactions that would lock out other
2634                  * users of the filesystem
2635                  */
2636                 if (cfq_class_idle(cfqq))
2637                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2638                 if (cfqq->ioprio > IOPRIO_NORM)
2639                         cfqq->ioprio = IOPRIO_NORM;
2640         } else {
2641                 /*
2642                  * unboost the queue (if needed)
2643                  */
2644                 cfqq->ioprio_class = cfqq->org_ioprio_class;
2645                 cfqq->ioprio = cfqq->org_ioprio;
2646         }
2647 }
2648
2649 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2650 {
2651         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2652                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2653                 return ELV_MQUEUE_MUST;
2654         }
2655
2656         return ELV_MQUEUE_MAY;
2657 }
2658
2659 static int cfq_may_queue(struct request_queue *q, int rw)
2660 {
2661         struct cfq_data *cfqd = q->elevator->elevator_data;
2662         struct task_struct *tsk = current;
2663         struct cfq_io_context *cic;
2664         struct cfq_queue *cfqq;
2665
2666         /*
2667          * don't force setup of a queue from here, as a call to may_queue
2668          * does not necessarily imply that a request actually will be queued.
2669          * so just lookup a possibly existing queue, or return 'may queue'
2670          * if that fails
2671          */
2672         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2673         if (!cic)
2674                 return ELV_MQUEUE_MAY;
2675
2676         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2677         if (cfqq) {
2678                 cfq_init_prio_data(cfqq, cic->ioc);
2679                 cfq_prio_boost(cfqq);
2680
2681                 return __cfq_may_queue(cfqq);
2682         }
2683
2684         return ELV_MQUEUE_MAY;
2685 }
2686
2687 /*
2688  * queue lock held here
2689  */
2690 static void cfq_put_request(struct request *rq)
2691 {
2692         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2693
2694         if (cfqq) {
2695                 const int rw = rq_data_dir(rq);
2696
2697                 BUG_ON(!cfqq->allocated[rw]);
2698                 cfqq->allocated[rw]--;
2699
2700                 put_io_context(RQ_CIC(rq)->ioc);
2701
2702                 rq->elevator_private = NULL;
2703                 rq->elevator_private2 = NULL;
2704
2705                 cfq_put_queue(cfqq);
2706         }
2707 }
2708
2709 static struct cfq_queue *
2710 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2711                 struct cfq_queue *cfqq)
2712 {
2713         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2714         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2715         cfq_mark_cfqq_coop(cfqq->new_cfqq);
2716         cfq_put_queue(cfqq);
2717         return cic_to_cfqq(cic, 1);
2718 }
2719
2720 static int should_split_cfqq(struct cfq_queue *cfqq)
2721 {
2722         if (cfqq->seeky_start &&
2723             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2724                 return 1;
2725         return 0;
2726 }
2727
2728 /*
2729  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2730  * was the last process referring to said cfqq.
2731  */
2732 static struct cfq_queue *
2733 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2734 {
2735         if (cfqq_process_refs(cfqq) == 1) {
2736                 cfqq->seeky_start = 0;
2737                 cfqq->pid = current->pid;
2738                 cfq_clear_cfqq_coop(cfqq);
2739                 return cfqq;
2740         }
2741
2742         cic_set_cfqq(cic, NULL, 1);
2743         cfq_put_queue(cfqq);
2744         return NULL;
2745 }
2746 /*
2747  * Allocate cfq data structures associated with this request.
2748  */
2749 static int
2750 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2751 {
2752         struct cfq_data *cfqd = q->elevator->elevator_data;
2753         struct cfq_io_context *cic;
2754         const int rw = rq_data_dir(rq);
2755         const bool is_sync = rq_is_sync(rq);
2756         struct cfq_queue *cfqq;
2757         unsigned long flags;
2758
2759         might_sleep_if(gfp_mask & __GFP_WAIT);
2760
2761         cic = cfq_get_io_context(cfqd, gfp_mask);
2762
2763         spin_lock_irqsave(q->queue_lock, flags);
2764
2765         if (!cic)
2766                 goto queue_fail;
2767
2768 new_queue:
2769         cfqq = cic_to_cfqq(cic, is_sync);
2770         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2771                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2772                 cic_set_cfqq(cic, cfqq, is_sync);
2773         } else {
2774                 /*
2775                  * If the queue was seeky for too long, break it apart.
2776                  */
2777                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2778                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2779                         cfqq = split_cfqq(cic, cfqq);
2780                         if (!cfqq)
2781                                 goto new_queue;
2782                 }
2783
2784                 /*
2785                  * Check to see if this queue is scheduled to merge with
2786                  * another, closely cooperating queue.  The merging of
2787                  * queues happens here as it must be done in process context.
2788                  * The reference on new_cfqq was taken in merge_cfqqs.
2789                  */
2790                 if (cfqq->new_cfqq)
2791                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2792         }
2793
2794         cfqq->allocated[rw]++;
2795         atomic_inc(&cfqq->ref);
2796
2797         spin_unlock_irqrestore(q->queue_lock, flags);
2798
2799         rq->elevator_private = cic;
2800         rq->elevator_private2 = cfqq;
2801         return 0;
2802
2803 queue_fail:
2804         if (cic)
2805                 put_io_context(cic->ioc);
2806
2807         cfq_schedule_dispatch(cfqd);
2808         spin_unlock_irqrestore(q->queue_lock, flags);
2809         cfq_log(cfqd, "set_request fail");
2810         return 1;
2811 }
2812
2813 static void cfq_kick_queue(struct work_struct *work)
2814 {
2815         struct cfq_data *cfqd =
2816                 container_of(work, struct cfq_data, unplug_work);
2817         struct request_queue *q = cfqd->queue;
2818
2819         spin_lock_irq(q->queue_lock);
2820         __blk_run_queue(cfqd->queue);
2821         spin_unlock_irq(q->queue_lock);
2822 }
2823
2824 /*
2825  * Timer running if the active_queue is currently idling inside its time slice
2826  */
2827 static void cfq_idle_slice_timer(unsigned long data)
2828 {
2829         struct cfq_data *cfqd = (struct cfq_data *) data;
2830         struct cfq_queue *cfqq;
2831         unsigned long flags;
2832         int timed_out = 1;
2833
2834         cfq_log(cfqd, "idle timer fired");
2835
2836         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2837
2838         cfqq = cfqd->active_queue;
2839         if (cfqq) {
2840                 timed_out = 0;
2841
2842                 /*
2843                  * We saw a request before the queue expired, let it through
2844                  */
2845                 if (cfq_cfqq_must_dispatch(cfqq))
2846                         goto out_kick;
2847
2848                 /*
2849                  * expired
2850                  */
2851                 if (cfq_slice_used(cfqq))
2852                         goto expire;
2853
2854                 /*
2855                  * only expire and reinvoke request handler, if there are
2856                  * other queues with pending requests
2857                  */
2858                 if (!cfqd->busy_queues)
2859                         goto out_cont;
2860
2861                 /*
2862                  * not expired and it has a request pending, let it dispatch
2863                  */
2864                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2865                         goto out_kick;
2866
2867                 /*
2868                  * Queue depth flag is reset only when the idle didn't succeed
2869                  */
2870                 cfq_clear_cfqq_deep(cfqq);
2871         }
2872 expire:
2873         cfq_slice_expired(cfqd, timed_out);
2874 out_kick:
2875         cfq_schedule_dispatch(cfqd);
2876 out_cont:
2877         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2878 }
2879
2880 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2881 {
2882         del_timer_sync(&cfqd->idle_slice_timer);
2883         cancel_work_sync(&cfqd->unplug_work);
2884 }
2885
2886 static void cfq_put_async_queues(struct cfq_data *cfqd)
2887 {
2888         int i;
2889
2890         for (i = 0; i < IOPRIO_BE_NR; i++) {
2891                 if (cfqd->async_cfqq[0][i])
2892                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2893                 if (cfqd->async_cfqq[1][i])
2894                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2895         }
2896
2897         if (cfqd->async_idle_cfqq)
2898                 cfq_put_queue(cfqd->async_idle_cfqq);
2899 }
2900
2901 static void cfq_exit_queue(struct elevator_queue *e)
2902 {
2903         struct cfq_data *cfqd = e->elevator_data;
2904         struct request_queue *q = cfqd->queue;
2905
2906         cfq_shutdown_timer_wq(cfqd);
2907
2908         spin_lock_irq(q->queue_lock);
2909
2910         if (cfqd->active_queue)
2911                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2912
2913         while (!list_empty(&cfqd->cic_list)) {
2914                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2915                                                         struct cfq_io_context,
2916                                                         queue_list);
2917
2918                 __cfq_exit_single_io_context(cfqd, cic);
2919         }
2920
2921         cfq_put_async_queues(cfqd);
2922
2923         spin_unlock_irq(q->queue_lock);
2924
2925         cfq_shutdown_timer_wq(cfqd);
2926
2927         kfree(cfqd);
2928 }
2929
2930 static void *cfq_init_queue(struct request_queue *q)
2931 {
2932         struct cfq_data *cfqd;
2933         int i, j;
2934
2935         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2936         if (!cfqd)
2937                 return NULL;
2938
2939         for (i = 0; i < 2; ++i)
2940                 for (j = 0; j < 3; ++j)
2941                         cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2942         cfqd->service_tree_idle = CFQ_RB_ROOT;
2943
2944         /*
2945          * Not strictly needed (since RB_ROOT just clears the node and we
2946          * zeroed cfqd on alloc), but better be safe in case someone decides
2947          * to add magic to the rb code
2948          */
2949         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2950                 cfqd->prio_trees[i] = RB_ROOT;
2951
2952         /*
2953          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2954          * Grab a permanent reference to it, so that the normal code flow
2955          * will not attempt to free it.
2956          */
2957         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2958         atomic_inc(&cfqd->oom_cfqq.ref);
2959
2960         INIT_LIST_HEAD(&cfqd->cic_list);
2961
2962         cfqd->queue = q;
2963
2964         init_timer(&cfqd->idle_slice_timer);
2965         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2966         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2967
2968         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2969
2970         cfqd->cfq_quantum = cfq_quantum;
2971         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2972         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2973         cfqd->cfq_back_max = cfq_back_max;
2974         cfqd->cfq_back_penalty = cfq_back_penalty;
2975         cfqd->cfq_slice[0] = cfq_slice_async;
2976         cfqd->cfq_slice[1] = cfq_slice_sync;
2977         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2978         cfqd->cfq_slice_idle = cfq_slice_idle;
2979         cfqd->cfq_latency = 1;
2980         cfqd->hw_tag = -1;
2981         cfqd->last_end_sync_rq = jiffies;
2982         return cfqd;
2983 }
2984
2985 static void cfq_slab_kill(void)
2986 {
2987         /*
2988          * Caller already ensured that pending RCU callbacks are completed,
2989          * so we should have no busy allocations at this point.
2990          */
2991         if (cfq_pool)
2992                 kmem_cache_destroy(cfq_pool);
2993         if (cfq_ioc_pool)
2994                 kmem_cache_destroy(cfq_ioc_pool);
2995 }
2996
2997 static int __init cfq_slab_setup(void)
2998 {
2999         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3000         if (!cfq_pool)
3001                 goto fail;
3002
3003         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3004         if (!cfq_ioc_pool)
3005                 goto fail;
3006
3007         return 0;
3008 fail:
3009         cfq_slab_kill();
3010         return -ENOMEM;
3011 }
3012
3013 /*
3014  * sysfs parts below -->
3015  */
3016 static ssize_t
3017 cfq_var_show(unsigned int var, char *page)
3018 {
3019         return sprintf(page, "%d\n", var);
3020 }
3021
3022 static ssize_t
3023 cfq_var_store(unsigned int *var, const char *page, size_t count)
3024 {
3025         char *p = (char *) page;
3026
3027         *var = simple_strtoul(p, &p, 10);
3028         return count;
3029 }
3030
3031 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3032 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3033 {                                                                       \
3034         struct cfq_data *cfqd = e->elevator_data;                       \
3035         unsigned int __data = __VAR;                                    \
3036         if (__CONV)                                                     \
3037                 __data = jiffies_to_msecs(__data);                      \
3038         return cfq_var_show(__data, (page));                            \
3039 }
3040 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3041 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3042 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3043 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3044 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3045 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3046 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3047 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3048 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3049 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3050 #undef SHOW_FUNCTION
3051
3052 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3053 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3054 {                                                                       \
3055         struct cfq_data *cfqd = e->elevator_data;                       \
3056         unsigned int __data;                                            \
3057         int ret = cfq_var_store(&__data, (page), count);                \
3058         if (__data < (MIN))                                             \
3059                 __data = (MIN);                                         \
3060         else if (__data > (MAX))                                        \
3061                 __data = (MAX);                                         \
3062         if (__CONV)                                                     \
3063                 *(__PTR) = msecs_to_jiffies(__data);                    \
3064         else                                                            \
3065                 *(__PTR) = __data;                                      \
3066         return ret;                                                     \
3067 }
3068 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3069 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3070                 UINT_MAX, 1);
3071 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3072                 UINT_MAX, 1);
3073 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3074 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3075                 UINT_MAX, 0);
3076 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3077 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3078 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3079 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3080                 UINT_MAX, 0);
3081 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3082 #undef STORE_FUNCTION
3083
3084 #define CFQ_ATTR(name) \
3085         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3086
3087 static struct elv_fs_entry cfq_attrs[] = {
3088         CFQ_ATTR(quantum),
3089         CFQ_ATTR(fifo_expire_sync),
3090         CFQ_ATTR(fifo_expire_async),
3091         CFQ_ATTR(back_seek_max),
3092         CFQ_ATTR(back_seek_penalty),
3093         CFQ_ATTR(slice_sync),
3094         CFQ_ATTR(slice_async),
3095         CFQ_ATTR(slice_async_rq),
3096         CFQ_ATTR(slice_idle),
3097         CFQ_ATTR(low_latency),
3098         __ATTR_NULL
3099 };
3100
3101 static struct elevator_type iosched_cfq = {
3102         .ops = {
3103                 .elevator_merge_fn =            cfq_merge,
3104                 .elevator_merged_fn =           cfq_merged_request,
3105                 .elevator_merge_req_fn =        cfq_merged_requests,
3106                 .elevator_allow_merge_fn =      cfq_allow_merge,
3107                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3108                 .elevator_add_req_fn =          cfq_insert_request,
3109                 .elevator_activate_req_fn =     cfq_activate_request,
3110                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3111                 .elevator_queue_empty_fn =      cfq_queue_empty,
3112                 .elevator_completed_req_fn =    cfq_completed_request,
3113                 .elevator_former_req_fn =       elv_rb_former_request,
3114                 .elevator_latter_req_fn =       elv_rb_latter_request,
3115                 .elevator_set_req_fn =          cfq_set_request,
3116                 .elevator_put_req_fn =          cfq_put_request,
3117                 .elevator_may_queue_fn =        cfq_may_queue,
3118                 .elevator_init_fn =             cfq_init_queue,
3119                 .elevator_exit_fn =             cfq_exit_queue,
3120                 .trim =                         cfq_free_io_context,
3121         },
3122         .elevator_attrs =       cfq_attrs,
3123         .elevator_name =        "cfq",
3124         .elevator_owner =       THIS_MODULE,
3125 };
3126
3127 static int __init cfq_init(void)
3128 {
3129         /*
3130          * could be 0 on HZ < 1000 setups
3131          */
3132         if (!cfq_slice_async)
3133                 cfq_slice_async = 1;
3134         if (!cfq_slice_idle)
3135                 cfq_slice_idle = 1;
3136
3137         if (cfq_slab_setup())
3138                 return -ENOMEM;
3139
3140         elv_register(&iosched_cfq);
3141
3142         return 0;
3143 }
3144
3145 static void __exit cfq_exit(void)
3146 {
3147         DECLARE_COMPLETION_ONSTACK(all_gone);
3148         elv_unregister(&iosched_cfq);
3149         ioc_gone = &all_gone;
3150         /* ioc_gone's update must be visible before reading ioc_count */
3151         smp_wmb();
3152
3153         /*
3154          * this also protects us from entering cfq_slab_kill() with
3155          * pending RCU callbacks
3156          */
3157         if (elv_ioc_count_read(cfq_ioc_count))
3158                 wait_for_completion(&all_gone);
3159         cfq_slab_kill();
3160 }
3161
3162 module_init(cfq_init);
3163 module_exit(cfq_exit);
3164
3165 MODULE_AUTHOR("Jens Axboe");
3166 MODULE_LICENSE("GPL");
3167 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");