Merge tag 'boards' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45 #include <xen/acpi.h>
46
47 #include <asm/paravirt.h>
48 #include <asm/apic.h>
49 #include <asm/page.h>
50 #include <asm/xen/pci.h>
51 #include <asm/xen/hypercall.h>
52 #include <asm/xen/hypervisor.h>
53 #include <asm/fixmap.h>
54 #include <asm/processor.h>
55 #include <asm/proto.h>
56 #include <asm/msr-index.h>
57 #include <asm/traps.h>
58 #include <asm/setup.h>
59 #include <asm/desc.h>
60 #include <asm/pgalloc.h>
61 #include <asm/pgtable.h>
62 #include <asm/tlbflush.h>
63 #include <asm/reboot.h>
64 #include <asm/stackprotector.h>
65 #include <asm/hypervisor.h>
66 #include <asm/mwait.h>
67 #include <asm/pci_x86.h>
68
69 #ifdef CONFIG_ACPI
70 #include <linux/acpi.h>
71 #include <asm/acpi.h>
72 #include <acpi/pdc_intel.h>
73 #include <acpi/processor.h>
74 #include <xen/interface/platform.h>
75 #endif
76
77 #include "xen-ops.h"
78 #include "mmu.h"
79 #include "smp.h"
80 #include "multicalls.h"
81
82 EXPORT_SYMBOL_GPL(hypercall_page);
83
84 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
85 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
86
87 enum xen_domain_type xen_domain_type = XEN_NATIVE;
88 EXPORT_SYMBOL_GPL(xen_domain_type);
89
90 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
91 EXPORT_SYMBOL(machine_to_phys_mapping);
92 unsigned long  machine_to_phys_nr;
93 EXPORT_SYMBOL(machine_to_phys_nr);
94
95 struct start_info *xen_start_info;
96 EXPORT_SYMBOL_GPL(xen_start_info);
97
98 struct shared_info xen_dummy_shared_info;
99
100 void *xen_initial_gdt;
101
102 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
103 __read_mostly int xen_have_vector_callback;
104 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
105
106 /*
107  * Point at some empty memory to start with. We map the real shared_info
108  * page as soon as fixmap is up and running.
109  */
110 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
111
112 /*
113  * Flag to determine whether vcpu info placement is available on all
114  * VCPUs.  We assume it is to start with, and then set it to zero on
115  * the first failure.  This is because it can succeed on some VCPUs
116  * and not others, since it can involve hypervisor memory allocation,
117  * or because the guest failed to guarantee all the appropriate
118  * constraints on all VCPUs (ie buffer can't cross a page boundary).
119  *
120  * Note that any particular CPU may be using a placed vcpu structure,
121  * but we can only optimise if the all are.
122  *
123  * 0: not available, 1: available
124  */
125 static int have_vcpu_info_placement = 1;
126
127 static void clamp_max_cpus(void)
128 {
129 #ifdef CONFIG_SMP
130         if (setup_max_cpus > MAX_VIRT_CPUS)
131                 setup_max_cpus = MAX_VIRT_CPUS;
132 #endif
133 }
134
135 static void xen_vcpu_setup(int cpu)
136 {
137         struct vcpu_register_vcpu_info info;
138         int err;
139         struct vcpu_info *vcpup;
140
141         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
142
143         if (cpu < MAX_VIRT_CPUS)
144                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
145
146         if (!have_vcpu_info_placement) {
147                 if (cpu >= MAX_VIRT_CPUS)
148                         clamp_max_cpus();
149                 return;
150         }
151
152         vcpup = &per_cpu(xen_vcpu_info, cpu);
153         info.mfn = arbitrary_virt_to_mfn(vcpup);
154         info.offset = offset_in_page(vcpup);
155
156         /* Check to see if the hypervisor will put the vcpu_info
157            structure where we want it, which allows direct access via
158            a percpu-variable. */
159         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
160
161         if (err) {
162                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
163                 have_vcpu_info_placement = 0;
164                 clamp_max_cpus();
165         } else {
166                 /* This cpu is using the registered vcpu info, even if
167                    later ones fail to. */
168                 per_cpu(xen_vcpu, cpu) = vcpup;
169         }
170 }
171
172 /*
173  * On restore, set the vcpu placement up again.
174  * If it fails, then we're in a bad state, since
175  * we can't back out from using it...
176  */
177 void xen_vcpu_restore(void)
178 {
179         int cpu;
180
181         for_each_online_cpu(cpu) {
182                 bool other_cpu = (cpu != smp_processor_id());
183
184                 if (other_cpu &&
185                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
186                         BUG();
187
188                 xen_setup_runstate_info(cpu);
189
190                 if (have_vcpu_info_placement)
191                         xen_vcpu_setup(cpu);
192
193                 if (other_cpu &&
194                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
195                         BUG();
196         }
197 }
198
199 static void __init xen_banner(void)
200 {
201         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
202         struct xen_extraversion extra;
203         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
204
205         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
206                pv_info.name);
207         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
208                version >> 16, version & 0xffff, extra.extraversion,
209                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
210 }
211
212 #define CPUID_THERM_POWER_LEAF 6
213 #define APERFMPERF_PRESENT 0
214
215 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
216 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
217
218 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
219 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
220 static __read_mostly unsigned int cpuid_leaf5_edx_val;
221
222 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
223                       unsigned int *cx, unsigned int *dx)
224 {
225         unsigned maskebx = ~0;
226         unsigned maskecx = ~0;
227         unsigned maskedx = ~0;
228         unsigned setecx = 0;
229         /*
230          * Mask out inconvenient features, to try and disable as many
231          * unsupported kernel subsystems as possible.
232          */
233         switch (*ax) {
234         case 1:
235                 maskecx = cpuid_leaf1_ecx_mask;
236                 setecx = cpuid_leaf1_ecx_set_mask;
237                 maskedx = cpuid_leaf1_edx_mask;
238                 break;
239
240         case CPUID_MWAIT_LEAF:
241                 /* Synthesize the values.. */
242                 *ax = 0;
243                 *bx = 0;
244                 *cx = cpuid_leaf5_ecx_val;
245                 *dx = cpuid_leaf5_edx_val;
246                 return;
247
248         case CPUID_THERM_POWER_LEAF:
249                 /* Disabling APERFMPERF for kernel usage */
250                 maskecx = ~(1 << APERFMPERF_PRESENT);
251                 break;
252
253         case 0xb:
254                 /* Suppress extended topology stuff */
255                 maskebx = 0;
256                 break;
257         }
258
259         asm(XEN_EMULATE_PREFIX "cpuid"
260                 : "=a" (*ax),
261                   "=b" (*bx),
262                   "=c" (*cx),
263                   "=d" (*dx)
264                 : "0" (*ax), "2" (*cx));
265
266         *bx &= maskebx;
267         *cx &= maskecx;
268         *cx |= setecx;
269         *dx &= maskedx;
270
271 }
272
273 static bool __init xen_check_mwait(void)
274 {
275 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
276         !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
277         struct xen_platform_op op = {
278                 .cmd                    = XENPF_set_processor_pminfo,
279                 .u.set_pminfo.id        = -1,
280                 .u.set_pminfo.type      = XEN_PM_PDC,
281         };
282         uint32_t buf[3];
283         unsigned int ax, bx, cx, dx;
284         unsigned int mwait_mask;
285
286         /* We need to determine whether it is OK to expose the MWAIT
287          * capability to the kernel to harvest deeper than C3 states from ACPI
288          * _CST using the processor_harvest_xen.c module. For this to work, we
289          * need to gather the MWAIT_LEAF values (which the cstate.c code
290          * checks against). The hypervisor won't expose the MWAIT flag because
291          * it would break backwards compatibility; so we will find out directly
292          * from the hardware and hypercall.
293          */
294         if (!xen_initial_domain())
295                 return false;
296
297         ax = 1;
298         cx = 0;
299
300         native_cpuid(&ax, &bx, &cx, &dx);
301
302         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
303                      (1 << (X86_FEATURE_MWAIT % 32));
304
305         if ((cx & mwait_mask) != mwait_mask)
306                 return false;
307
308         /* We need to emulate the MWAIT_LEAF and for that we need both
309          * ecx and edx. The hypercall provides only partial information.
310          */
311
312         ax = CPUID_MWAIT_LEAF;
313         bx = 0;
314         cx = 0;
315         dx = 0;
316
317         native_cpuid(&ax, &bx, &cx, &dx);
318
319         /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
320          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
321          */
322         buf[0] = ACPI_PDC_REVISION_ID;
323         buf[1] = 1;
324         buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
325
326         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
327
328         if ((HYPERVISOR_dom0_op(&op) == 0) &&
329             (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
330                 cpuid_leaf5_ecx_val = cx;
331                 cpuid_leaf5_edx_val = dx;
332         }
333         return true;
334 #else
335         return false;
336 #endif
337 }
338 static void __init xen_init_cpuid_mask(void)
339 {
340         unsigned int ax, bx, cx, dx;
341         unsigned int xsave_mask;
342
343         cpuid_leaf1_edx_mask =
344                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
345                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
346                   (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
347                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
348
349         if (!xen_initial_domain())
350                 cpuid_leaf1_edx_mask &=
351                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
352                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
353         ax = 1;
354         cx = 0;
355         xen_cpuid(&ax, &bx, &cx, &dx);
356
357         xsave_mask =
358                 (1 << (X86_FEATURE_XSAVE % 32)) |
359                 (1 << (X86_FEATURE_OSXSAVE % 32));
360
361         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
362         if ((cx & xsave_mask) != xsave_mask)
363                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
364         if (xen_check_mwait())
365                 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
366 }
367
368 static void xen_set_debugreg(int reg, unsigned long val)
369 {
370         HYPERVISOR_set_debugreg(reg, val);
371 }
372
373 static unsigned long xen_get_debugreg(int reg)
374 {
375         return HYPERVISOR_get_debugreg(reg);
376 }
377
378 static void xen_end_context_switch(struct task_struct *next)
379 {
380         xen_mc_flush();
381         paravirt_end_context_switch(next);
382 }
383
384 static unsigned long xen_store_tr(void)
385 {
386         return 0;
387 }
388
389 /*
390  * Set the page permissions for a particular virtual address.  If the
391  * address is a vmalloc mapping (or other non-linear mapping), then
392  * find the linear mapping of the page and also set its protections to
393  * match.
394  */
395 static void set_aliased_prot(void *v, pgprot_t prot)
396 {
397         int level;
398         pte_t *ptep;
399         pte_t pte;
400         unsigned long pfn;
401         struct page *page;
402
403         ptep = lookup_address((unsigned long)v, &level);
404         BUG_ON(ptep == NULL);
405
406         pfn = pte_pfn(*ptep);
407         page = pfn_to_page(pfn);
408
409         pte = pfn_pte(pfn, prot);
410
411         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
412                 BUG();
413
414         if (!PageHighMem(page)) {
415                 void *av = __va(PFN_PHYS(pfn));
416
417                 if (av != v)
418                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
419                                 BUG();
420         } else
421                 kmap_flush_unused();
422 }
423
424 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
425 {
426         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
427         int i;
428
429         for(i = 0; i < entries; i += entries_per_page)
430                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
431 }
432
433 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
434 {
435         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
436         int i;
437
438         for(i = 0; i < entries; i += entries_per_page)
439                 set_aliased_prot(ldt + i, PAGE_KERNEL);
440 }
441
442 static void xen_set_ldt(const void *addr, unsigned entries)
443 {
444         struct mmuext_op *op;
445         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
446
447         trace_xen_cpu_set_ldt(addr, entries);
448
449         op = mcs.args;
450         op->cmd = MMUEXT_SET_LDT;
451         op->arg1.linear_addr = (unsigned long)addr;
452         op->arg2.nr_ents = entries;
453
454         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
455
456         xen_mc_issue(PARAVIRT_LAZY_CPU);
457 }
458
459 static void xen_load_gdt(const struct desc_ptr *dtr)
460 {
461         unsigned long va = dtr->address;
462         unsigned int size = dtr->size + 1;
463         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
464         unsigned long frames[pages];
465         int f;
466
467         /*
468          * A GDT can be up to 64k in size, which corresponds to 8192
469          * 8-byte entries, or 16 4k pages..
470          */
471
472         BUG_ON(size > 65536);
473         BUG_ON(va & ~PAGE_MASK);
474
475         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
476                 int level;
477                 pte_t *ptep;
478                 unsigned long pfn, mfn;
479                 void *virt;
480
481                 /*
482                  * The GDT is per-cpu and is in the percpu data area.
483                  * That can be virtually mapped, so we need to do a
484                  * page-walk to get the underlying MFN for the
485                  * hypercall.  The page can also be in the kernel's
486                  * linear range, so we need to RO that mapping too.
487                  */
488                 ptep = lookup_address(va, &level);
489                 BUG_ON(ptep == NULL);
490
491                 pfn = pte_pfn(*ptep);
492                 mfn = pfn_to_mfn(pfn);
493                 virt = __va(PFN_PHYS(pfn));
494
495                 frames[f] = mfn;
496
497                 make_lowmem_page_readonly((void *)va);
498                 make_lowmem_page_readonly(virt);
499         }
500
501         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
502                 BUG();
503 }
504
505 /*
506  * load_gdt for early boot, when the gdt is only mapped once
507  */
508 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
509 {
510         unsigned long va = dtr->address;
511         unsigned int size = dtr->size + 1;
512         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
513         unsigned long frames[pages];
514         int f;
515
516         /*
517          * A GDT can be up to 64k in size, which corresponds to 8192
518          * 8-byte entries, or 16 4k pages..
519          */
520
521         BUG_ON(size > 65536);
522         BUG_ON(va & ~PAGE_MASK);
523
524         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
525                 pte_t pte;
526                 unsigned long pfn, mfn;
527
528                 pfn = virt_to_pfn(va);
529                 mfn = pfn_to_mfn(pfn);
530
531                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
532
533                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
534                         BUG();
535
536                 frames[f] = mfn;
537         }
538
539         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
540                 BUG();
541 }
542
543 static void load_TLS_descriptor(struct thread_struct *t,
544                                 unsigned int cpu, unsigned int i)
545 {
546         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
547         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
548         struct multicall_space mc = __xen_mc_entry(0);
549
550         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
551 }
552
553 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
554 {
555         /*
556          * XXX sleazy hack: If we're being called in a lazy-cpu zone
557          * and lazy gs handling is enabled, it means we're in a
558          * context switch, and %gs has just been saved.  This means we
559          * can zero it out to prevent faults on exit from the
560          * hypervisor if the next process has no %gs.  Either way, it
561          * has been saved, and the new value will get loaded properly.
562          * This will go away as soon as Xen has been modified to not
563          * save/restore %gs for normal hypercalls.
564          *
565          * On x86_64, this hack is not used for %gs, because gs points
566          * to KERNEL_GS_BASE (and uses it for PDA references), so we
567          * must not zero %gs on x86_64
568          *
569          * For x86_64, we need to zero %fs, otherwise we may get an
570          * exception between the new %fs descriptor being loaded and
571          * %fs being effectively cleared at __switch_to().
572          */
573         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
574 #ifdef CONFIG_X86_32
575                 lazy_load_gs(0);
576 #else
577                 loadsegment(fs, 0);
578 #endif
579         }
580
581         xen_mc_batch();
582
583         load_TLS_descriptor(t, cpu, 0);
584         load_TLS_descriptor(t, cpu, 1);
585         load_TLS_descriptor(t, cpu, 2);
586
587         xen_mc_issue(PARAVIRT_LAZY_CPU);
588 }
589
590 #ifdef CONFIG_X86_64
591 static void xen_load_gs_index(unsigned int idx)
592 {
593         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
594                 BUG();
595 }
596 #endif
597
598 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
599                                 const void *ptr)
600 {
601         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
602         u64 entry = *(u64 *)ptr;
603
604         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
605
606         preempt_disable();
607
608         xen_mc_flush();
609         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
610                 BUG();
611
612         preempt_enable();
613 }
614
615 static int cvt_gate_to_trap(int vector, const gate_desc *val,
616                             struct trap_info *info)
617 {
618         unsigned long addr;
619
620         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
621                 return 0;
622
623         info->vector = vector;
624
625         addr = gate_offset(*val);
626 #ifdef CONFIG_X86_64
627         /*
628          * Look for known traps using IST, and substitute them
629          * appropriately.  The debugger ones are the only ones we care
630          * about.  Xen will handle faults like double_fault and
631          * machine_check, so we should never see them.  Warn if
632          * there's an unexpected IST-using fault handler.
633          */
634         if (addr == (unsigned long)debug)
635                 addr = (unsigned long)xen_debug;
636         else if (addr == (unsigned long)int3)
637                 addr = (unsigned long)xen_int3;
638         else if (addr == (unsigned long)stack_segment)
639                 addr = (unsigned long)xen_stack_segment;
640         else if (addr == (unsigned long)double_fault ||
641                  addr == (unsigned long)nmi) {
642                 /* Don't need to handle these */
643                 return 0;
644 #ifdef CONFIG_X86_MCE
645         } else if (addr == (unsigned long)machine_check) {
646                 return 0;
647 #endif
648         } else {
649                 /* Some other trap using IST? */
650                 if (WARN_ON(val->ist != 0))
651                         return 0;
652         }
653 #endif  /* CONFIG_X86_64 */
654         info->address = addr;
655
656         info->cs = gate_segment(*val);
657         info->flags = val->dpl;
658         /* interrupt gates clear IF */
659         if (val->type == GATE_INTERRUPT)
660                 info->flags |= 1 << 2;
661
662         return 1;
663 }
664
665 /* Locations of each CPU's IDT */
666 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
667
668 /* Set an IDT entry.  If the entry is part of the current IDT, then
669    also update Xen. */
670 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
671 {
672         unsigned long p = (unsigned long)&dt[entrynum];
673         unsigned long start, end;
674
675         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
676
677         preempt_disable();
678
679         start = __this_cpu_read(idt_desc.address);
680         end = start + __this_cpu_read(idt_desc.size) + 1;
681
682         xen_mc_flush();
683
684         native_write_idt_entry(dt, entrynum, g);
685
686         if (p >= start && (p + 8) <= end) {
687                 struct trap_info info[2];
688
689                 info[1].address = 0;
690
691                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
692                         if (HYPERVISOR_set_trap_table(info))
693                                 BUG();
694         }
695
696         preempt_enable();
697 }
698
699 static void xen_convert_trap_info(const struct desc_ptr *desc,
700                                   struct trap_info *traps)
701 {
702         unsigned in, out, count;
703
704         count = (desc->size+1) / sizeof(gate_desc);
705         BUG_ON(count > 256);
706
707         for (in = out = 0; in < count; in++) {
708                 gate_desc *entry = (gate_desc*)(desc->address) + in;
709
710                 if (cvt_gate_to_trap(in, entry, &traps[out]))
711                         out++;
712         }
713         traps[out].address = 0;
714 }
715
716 void xen_copy_trap_info(struct trap_info *traps)
717 {
718         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
719
720         xen_convert_trap_info(desc, traps);
721 }
722
723 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
724    hold a spinlock to protect the static traps[] array (static because
725    it avoids allocation, and saves stack space). */
726 static void xen_load_idt(const struct desc_ptr *desc)
727 {
728         static DEFINE_SPINLOCK(lock);
729         static struct trap_info traps[257];
730
731         trace_xen_cpu_load_idt(desc);
732
733         spin_lock(&lock);
734
735         __get_cpu_var(idt_desc) = *desc;
736
737         xen_convert_trap_info(desc, traps);
738
739         xen_mc_flush();
740         if (HYPERVISOR_set_trap_table(traps))
741                 BUG();
742
743         spin_unlock(&lock);
744 }
745
746 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
747    they're handled differently. */
748 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
749                                 const void *desc, int type)
750 {
751         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
752
753         preempt_disable();
754
755         switch (type) {
756         case DESC_LDT:
757         case DESC_TSS:
758                 /* ignore */
759                 break;
760
761         default: {
762                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
763
764                 xen_mc_flush();
765                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
766                         BUG();
767         }
768
769         }
770
771         preempt_enable();
772 }
773
774 /*
775  * Version of write_gdt_entry for use at early boot-time needed to
776  * update an entry as simply as possible.
777  */
778 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
779                                             const void *desc, int type)
780 {
781         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
782
783         switch (type) {
784         case DESC_LDT:
785         case DESC_TSS:
786                 /* ignore */
787                 break;
788
789         default: {
790                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
791
792                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
793                         dt[entry] = *(struct desc_struct *)desc;
794         }
795
796         }
797 }
798
799 static void xen_load_sp0(struct tss_struct *tss,
800                          struct thread_struct *thread)
801 {
802         struct multicall_space mcs;
803
804         mcs = xen_mc_entry(0);
805         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
806         xen_mc_issue(PARAVIRT_LAZY_CPU);
807 }
808
809 static void xen_set_iopl_mask(unsigned mask)
810 {
811         struct physdev_set_iopl set_iopl;
812
813         /* Force the change at ring 0. */
814         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
815         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
816 }
817
818 static void xen_io_delay(void)
819 {
820 }
821
822 #ifdef CONFIG_X86_LOCAL_APIC
823 static unsigned long xen_set_apic_id(unsigned int x)
824 {
825         WARN_ON(1);
826         return x;
827 }
828 static unsigned int xen_get_apic_id(unsigned long x)
829 {
830         return ((x)>>24) & 0xFFu;
831 }
832 static u32 xen_apic_read(u32 reg)
833 {
834         struct xen_platform_op op = {
835                 .cmd = XENPF_get_cpuinfo,
836                 .interface_version = XENPF_INTERFACE_VERSION,
837                 .u.pcpu_info.xen_cpuid = 0,
838         };
839         int ret = 0;
840
841         /* Shouldn't need this as APIC is turned off for PV, and we only
842          * get called on the bootup processor. But just in case. */
843         if (!xen_initial_domain() || smp_processor_id())
844                 return 0;
845
846         if (reg == APIC_LVR)
847                 return 0x10;
848
849         if (reg != APIC_ID)
850                 return 0;
851
852         ret = HYPERVISOR_dom0_op(&op);
853         if (ret)
854                 return 0;
855
856         return op.u.pcpu_info.apic_id << 24;
857 }
858
859 static void xen_apic_write(u32 reg, u32 val)
860 {
861         /* Warn to see if there's any stray references */
862         WARN_ON(1);
863 }
864
865 static u64 xen_apic_icr_read(void)
866 {
867         return 0;
868 }
869
870 static void xen_apic_icr_write(u32 low, u32 id)
871 {
872         /* Warn to see if there's any stray references */
873         WARN_ON(1);
874 }
875
876 static void xen_apic_wait_icr_idle(void)
877 {
878         return;
879 }
880
881 static u32 xen_safe_apic_wait_icr_idle(void)
882 {
883         return 0;
884 }
885
886 static void set_xen_basic_apic_ops(void)
887 {
888         apic->read = xen_apic_read;
889         apic->write = xen_apic_write;
890         apic->icr_read = xen_apic_icr_read;
891         apic->icr_write = xen_apic_icr_write;
892         apic->wait_icr_idle = xen_apic_wait_icr_idle;
893         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
894         apic->set_apic_id = xen_set_apic_id;
895         apic->get_apic_id = xen_get_apic_id;
896
897 #ifdef CONFIG_SMP
898         apic->send_IPI_allbutself = xen_send_IPI_allbutself;
899         apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
900         apic->send_IPI_mask = xen_send_IPI_mask;
901         apic->send_IPI_all = xen_send_IPI_all;
902         apic->send_IPI_self = xen_send_IPI_self;
903 #endif
904 }
905
906 #endif
907
908 static void xen_clts(void)
909 {
910         struct multicall_space mcs;
911
912         mcs = xen_mc_entry(0);
913
914         MULTI_fpu_taskswitch(mcs.mc, 0);
915
916         xen_mc_issue(PARAVIRT_LAZY_CPU);
917 }
918
919 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
920
921 static unsigned long xen_read_cr0(void)
922 {
923         unsigned long cr0 = this_cpu_read(xen_cr0_value);
924
925         if (unlikely(cr0 == 0)) {
926                 cr0 = native_read_cr0();
927                 this_cpu_write(xen_cr0_value, cr0);
928         }
929
930         return cr0;
931 }
932
933 static void xen_write_cr0(unsigned long cr0)
934 {
935         struct multicall_space mcs;
936
937         this_cpu_write(xen_cr0_value, cr0);
938
939         /* Only pay attention to cr0.TS; everything else is
940            ignored. */
941         mcs = xen_mc_entry(0);
942
943         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
944
945         xen_mc_issue(PARAVIRT_LAZY_CPU);
946 }
947
948 static void xen_write_cr4(unsigned long cr4)
949 {
950         cr4 &= ~X86_CR4_PGE;
951         cr4 &= ~X86_CR4_PSE;
952
953         native_write_cr4(cr4);
954 }
955
956 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
957 {
958         int ret;
959
960         ret = 0;
961
962         switch (msr) {
963 #ifdef CONFIG_X86_64
964                 unsigned which;
965                 u64 base;
966
967         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
968         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
969         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
970
971         set:
972                 base = ((u64)high << 32) | low;
973                 if (HYPERVISOR_set_segment_base(which, base) != 0)
974                         ret = -EIO;
975                 break;
976 #endif
977
978         case MSR_STAR:
979         case MSR_CSTAR:
980         case MSR_LSTAR:
981         case MSR_SYSCALL_MASK:
982         case MSR_IA32_SYSENTER_CS:
983         case MSR_IA32_SYSENTER_ESP:
984         case MSR_IA32_SYSENTER_EIP:
985                 /* Fast syscall setup is all done in hypercalls, so
986                    these are all ignored.  Stub them out here to stop
987                    Xen console noise. */
988                 break;
989
990         case MSR_IA32_CR_PAT:
991                 if (smp_processor_id() == 0)
992                         xen_set_pat(((u64)high << 32) | low);
993                 break;
994
995         default:
996                 ret = native_write_msr_safe(msr, low, high);
997         }
998
999         return ret;
1000 }
1001
1002 void xen_setup_shared_info(void)
1003 {
1004         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1005                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1006                            xen_start_info->shared_info);
1007
1008                 HYPERVISOR_shared_info =
1009                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1010         } else
1011                 HYPERVISOR_shared_info =
1012                         (struct shared_info *)__va(xen_start_info->shared_info);
1013
1014 #ifndef CONFIG_SMP
1015         /* In UP this is as good a place as any to set up shared info */
1016         xen_setup_vcpu_info_placement();
1017 #endif
1018
1019         xen_setup_mfn_list_list();
1020 }
1021
1022 /* This is called once we have the cpu_possible_mask */
1023 void xen_setup_vcpu_info_placement(void)
1024 {
1025         int cpu;
1026
1027         for_each_possible_cpu(cpu)
1028                 xen_vcpu_setup(cpu);
1029
1030         /* xen_vcpu_setup managed to place the vcpu_info within the
1031            percpu area for all cpus, so make use of it */
1032         if (have_vcpu_info_placement) {
1033                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1034                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1035                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1036                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1037                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1038         }
1039 }
1040
1041 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1042                           unsigned long addr, unsigned len)
1043 {
1044         char *start, *end, *reloc;
1045         unsigned ret;
1046
1047         start = end = reloc = NULL;
1048
1049 #define SITE(op, x)                                                     \
1050         case PARAVIRT_PATCH(op.x):                                      \
1051         if (have_vcpu_info_placement) {                                 \
1052                 start = (char *)xen_##x##_direct;                       \
1053                 end = xen_##x##_direct_end;                             \
1054                 reloc = xen_##x##_direct_reloc;                         \
1055         }                                                               \
1056         goto patch_site
1057
1058         switch (type) {
1059                 SITE(pv_irq_ops, irq_enable);
1060                 SITE(pv_irq_ops, irq_disable);
1061                 SITE(pv_irq_ops, save_fl);
1062                 SITE(pv_irq_ops, restore_fl);
1063 #undef SITE
1064
1065         patch_site:
1066                 if (start == NULL || (end-start) > len)
1067                         goto default_patch;
1068
1069                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1070
1071                 /* Note: because reloc is assigned from something that
1072                    appears to be an array, gcc assumes it's non-null,
1073                    but doesn't know its relationship with start and
1074                    end. */
1075                 if (reloc > start && reloc < end) {
1076                         int reloc_off = reloc - start;
1077                         long *relocp = (long *)(insnbuf + reloc_off);
1078                         long delta = start - (char *)addr;
1079
1080                         *relocp += delta;
1081                 }
1082                 break;
1083
1084         default_patch:
1085         default:
1086                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1087                                              addr, len);
1088                 break;
1089         }
1090
1091         return ret;
1092 }
1093
1094 static const struct pv_info xen_info __initconst = {
1095         .paravirt_enabled = 1,
1096         .shared_kernel_pmd = 0,
1097
1098 #ifdef CONFIG_X86_64
1099         .extra_user_64bit_cs = FLAT_USER_CS64,
1100 #endif
1101
1102         .name = "Xen",
1103 };
1104
1105 static const struct pv_init_ops xen_init_ops __initconst = {
1106         .patch = xen_patch,
1107 };
1108
1109 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1110         .cpuid = xen_cpuid,
1111
1112         .set_debugreg = xen_set_debugreg,
1113         .get_debugreg = xen_get_debugreg,
1114
1115         .clts = xen_clts,
1116
1117         .read_cr0 = xen_read_cr0,
1118         .write_cr0 = xen_write_cr0,
1119
1120         .read_cr4 = native_read_cr4,
1121         .read_cr4_safe = native_read_cr4_safe,
1122         .write_cr4 = xen_write_cr4,
1123
1124         .wbinvd = native_wbinvd,
1125
1126         .read_msr = native_read_msr_safe,
1127         .write_msr = xen_write_msr_safe,
1128
1129         .read_tsc = native_read_tsc,
1130         .read_pmc = native_read_pmc,
1131
1132         .iret = xen_iret,
1133         .irq_enable_sysexit = xen_sysexit,
1134 #ifdef CONFIG_X86_64
1135         .usergs_sysret32 = xen_sysret32,
1136         .usergs_sysret64 = xen_sysret64,
1137 #endif
1138
1139         .load_tr_desc = paravirt_nop,
1140         .set_ldt = xen_set_ldt,
1141         .load_gdt = xen_load_gdt,
1142         .load_idt = xen_load_idt,
1143         .load_tls = xen_load_tls,
1144 #ifdef CONFIG_X86_64
1145         .load_gs_index = xen_load_gs_index,
1146 #endif
1147
1148         .alloc_ldt = xen_alloc_ldt,
1149         .free_ldt = xen_free_ldt,
1150
1151         .store_gdt = native_store_gdt,
1152         .store_idt = native_store_idt,
1153         .store_tr = xen_store_tr,
1154
1155         .write_ldt_entry = xen_write_ldt_entry,
1156         .write_gdt_entry = xen_write_gdt_entry,
1157         .write_idt_entry = xen_write_idt_entry,
1158         .load_sp0 = xen_load_sp0,
1159
1160         .set_iopl_mask = xen_set_iopl_mask,
1161         .io_delay = xen_io_delay,
1162
1163         /* Xen takes care of %gs when switching to usermode for us */
1164         .swapgs = paravirt_nop,
1165
1166         .start_context_switch = paravirt_start_context_switch,
1167         .end_context_switch = xen_end_context_switch,
1168 };
1169
1170 static const struct pv_apic_ops xen_apic_ops __initconst = {
1171 #ifdef CONFIG_X86_LOCAL_APIC
1172         .startup_ipi_hook = paravirt_nop,
1173 #endif
1174 };
1175
1176 static void xen_reboot(int reason)
1177 {
1178         struct sched_shutdown r = { .reason = reason };
1179
1180         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1181                 BUG();
1182 }
1183
1184 static void xen_restart(char *msg)
1185 {
1186         xen_reboot(SHUTDOWN_reboot);
1187 }
1188
1189 static void xen_emergency_restart(void)
1190 {
1191         xen_reboot(SHUTDOWN_reboot);
1192 }
1193
1194 static void xen_machine_halt(void)
1195 {
1196         xen_reboot(SHUTDOWN_poweroff);
1197 }
1198
1199 static void xen_machine_power_off(void)
1200 {
1201         if (pm_power_off)
1202                 pm_power_off();
1203         xen_reboot(SHUTDOWN_poweroff);
1204 }
1205
1206 static void xen_crash_shutdown(struct pt_regs *regs)
1207 {
1208         xen_reboot(SHUTDOWN_crash);
1209 }
1210
1211 static int
1212 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1213 {
1214         xen_reboot(SHUTDOWN_crash);
1215         return NOTIFY_DONE;
1216 }
1217
1218 static struct notifier_block xen_panic_block = {
1219         .notifier_call= xen_panic_event,
1220 };
1221
1222 int xen_panic_handler_init(void)
1223 {
1224         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1225         return 0;
1226 }
1227
1228 static const struct machine_ops xen_machine_ops __initconst = {
1229         .restart = xen_restart,
1230         .halt = xen_machine_halt,
1231         .power_off = xen_machine_power_off,
1232         .shutdown = xen_machine_halt,
1233         .crash_shutdown = xen_crash_shutdown,
1234         .emergency_restart = xen_emergency_restart,
1235 };
1236
1237 /*
1238  * Set up the GDT and segment registers for -fstack-protector.  Until
1239  * we do this, we have to be careful not to call any stack-protected
1240  * function, which is most of the kernel.
1241  */
1242 static void __init xen_setup_stackprotector(void)
1243 {
1244         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1245         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1246
1247         setup_stack_canary_segment(0);
1248         switch_to_new_gdt(0);
1249
1250         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1251         pv_cpu_ops.load_gdt = xen_load_gdt;
1252 }
1253
1254 /* First C function to be called on Xen boot */
1255 asmlinkage void __init xen_start_kernel(void)
1256 {
1257         struct physdev_set_iopl set_iopl;
1258         int rc;
1259         pgd_t *pgd;
1260
1261         if (!xen_start_info)
1262                 return;
1263
1264         xen_domain_type = XEN_PV_DOMAIN;
1265
1266         xen_setup_machphys_mapping();
1267
1268         /* Install Xen paravirt ops */
1269         pv_info = xen_info;
1270         pv_init_ops = xen_init_ops;
1271         pv_cpu_ops = xen_cpu_ops;
1272         pv_apic_ops = xen_apic_ops;
1273
1274         x86_init.resources.memory_setup = xen_memory_setup;
1275         x86_init.oem.arch_setup = xen_arch_setup;
1276         x86_init.oem.banner = xen_banner;
1277
1278         xen_init_time_ops();
1279
1280         /*
1281          * Set up some pagetable state before starting to set any ptes.
1282          */
1283
1284         xen_init_mmu_ops();
1285
1286         /* Prevent unwanted bits from being set in PTEs. */
1287         __supported_pte_mask &= ~_PAGE_GLOBAL;
1288 #if 0
1289         if (!xen_initial_domain())
1290 #endif
1291                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1292
1293         __supported_pte_mask |= _PAGE_IOMAP;
1294
1295         /*
1296          * Prevent page tables from being allocated in highmem, even
1297          * if CONFIG_HIGHPTE is enabled.
1298          */
1299         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1300
1301         /* Work out if we support NX */
1302         x86_configure_nx();
1303
1304         xen_setup_features();
1305
1306         /* Get mfn list */
1307         if (!xen_feature(XENFEAT_auto_translated_physmap))
1308                 xen_build_dynamic_phys_to_machine();
1309
1310         /*
1311          * Set up kernel GDT and segment registers, mainly so that
1312          * -fstack-protector code can be executed.
1313          */
1314         xen_setup_stackprotector();
1315
1316         xen_init_irq_ops();
1317         xen_init_cpuid_mask();
1318
1319 #ifdef CONFIG_X86_LOCAL_APIC
1320         /*
1321          * set up the basic apic ops.
1322          */
1323         set_xen_basic_apic_ops();
1324 #endif
1325
1326         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1327                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1328                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1329         }
1330
1331         machine_ops = xen_machine_ops;
1332
1333         /*
1334          * The only reliable way to retain the initial address of the
1335          * percpu gdt_page is to remember it here, so we can go and
1336          * mark it RW later, when the initial percpu area is freed.
1337          */
1338         xen_initial_gdt = &per_cpu(gdt_page, 0);
1339
1340         xen_smp_init();
1341
1342 #ifdef CONFIG_ACPI_NUMA
1343         /*
1344          * The pages we from Xen are not related to machine pages, so
1345          * any NUMA information the kernel tries to get from ACPI will
1346          * be meaningless.  Prevent it from trying.
1347          */
1348         acpi_numa = -1;
1349 #endif
1350
1351         pgd = (pgd_t *)xen_start_info->pt_base;
1352
1353         /* Don't do the full vcpu_info placement stuff until we have a
1354            possible map and a non-dummy shared_info. */
1355         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1356
1357         local_irq_disable();
1358         early_boot_irqs_disabled = true;
1359
1360         xen_raw_console_write("mapping kernel into physical memory\n");
1361         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1362
1363         /* Allocate and initialize top and mid mfn levels for p2m structure */
1364         xen_build_mfn_list_list();
1365
1366         /* keep using Xen gdt for now; no urgent need to change it */
1367
1368 #ifdef CONFIG_X86_32
1369         pv_info.kernel_rpl = 1;
1370         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1371                 pv_info.kernel_rpl = 0;
1372 #else
1373         pv_info.kernel_rpl = 0;
1374 #endif
1375         /* set the limit of our address space */
1376         xen_reserve_top();
1377
1378         /* We used to do this in xen_arch_setup, but that is too late on AMD
1379          * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1380          * which pokes 0xcf8 port.
1381          */
1382         set_iopl.iopl = 1;
1383         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1384         if (rc != 0)
1385                 xen_raw_printk("physdev_op failed %d\n", rc);
1386
1387 #ifdef CONFIG_X86_32
1388         /* set up basic CPUID stuff */
1389         cpu_detect(&new_cpu_data);
1390         new_cpu_data.hard_math = 1;
1391         new_cpu_data.wp_works_ok = 1;
1392         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1393 #endif
1394
1395         /* Poke various useful things into boot_params */
1396         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1397         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1398                 ? __pa(xen_start_info->mod_start) : 0;
1399         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1400         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1401
1402         if (!xen_initial_domain()) {
1403                 add_preferred_console("xenboot", 0, NULL);
1404                 add_preferred_console("tty", 0, NULL);
1405                 add_preferred_console("hvc", 0, NULL);
1406                 if (pci_xen)
1407                         x86_init.pci.arch_init = pci_xen_init;
1408         } else {
1409                 const struct dom0_vga_console_info *info =
1410                         (void *)((char *)xen_start_info +
1411                                  xen_start_info->console.dom0.info_off);
1412
1413                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1414                 xen_start_info->console.domU.mfn = 0;
1415                 xen_start_info->console.domU.evtchn = 0;
1416
1417                 xen_init_apic();
1418
1419                 /* Make sure ACS will be enabled */
1420                 pci_request_acs();
1421
1422                 xen_acpi_sleep_register();
1423         }
1424 #ifdef CONFIG_PCI
1425         /* PCI BIOS service won't work from a PV guest. */
1426         pci_probe &= ~PCI_PROBE_BIOS;
1427 #endif
1428         xen_raw_console_write("about to get started...\n");
1429
1430         xen_setup_runstate_info(0);
1431
1432         /* Start the world */
1433 #ifdef CONFIG_X86_32
1434         i386_start_kernel();
1435 #else
1436         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1437 #endif
1438 }
1439
1440 static int init_hvm_pv_info(int *major, int *minor)
1441 {
1442         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1443         u64 pfn;
1444
1445         base = xen_cpuid_base();
1446         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1447
1448         *major = eax >> 16;
1449         *minor = eax & 0xffff;
1450         printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1451
1452         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1453
1454         pfn = __pa(hypercall_page);
1455         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1456
1457         xen_setup_features();
1458
1459         pv_info.name = "Xen HVM";
1460
1461         xen_domain_type = XEN_HVM_DOMAIN;
1462
1463         return 0;
1464 }
1465
1466 void __ref xen_hvm_init_shared_info(void)
1467 {
1468         int cpu;
1469         struct xen_add_to_physmap xatp;
1470         static struct shared_info *shared_info_page = 0;
1471
1472         if (!shared_info_page)
1473                 shared_info_page = (struct shared_info *)
1474                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1475         xatp.domid = DOMID_SELF;
1476         xatp.idx = 0;
1477         xatp.space = XENMAPSPACE_shared_info;
1478         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1479         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1480                 BUG();
1481
1482         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1483
1484         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1485          * page, we use it in the event channel upcall and in some pvclock
1486          * related functions. We don't need the vcpu_info placement
1487          * optimizations because we don't use any pv_mmu or pv_irq op on
1488          * HVM.
1489          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1490          * online but xen_hvm_init_shared_info is run at resume time too and
1491          * in that case multiple vcpus might be online. */
1492         for_each_online_cpu(cpu) {
1493                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1494         }
1495 }
1496
1497 #ifdef CONFIG_XEN_PVHVM
1498 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1499                                     unsigned long action, void *hcpu)
1500 {
1501         int cpu = (long)hcpu;
1502         switch (action) {
1503         case CPU_UP_PREPARE:
1504                 xen_vcpu_setup(cpu);
1505                 if (xen_have_vector_callback)
1506                         xen_init_lock_cpu(cpu);
1507                 break;
1508         default:
1509                 break;
1510         }
1511         return NOTIFY_OK;
1512 }
1513
1514 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1515         .notifier_call  = xen_hvm_cpu_notify,
1516 };
1517
1518 static void __init xen_hvm_guest_init(void)
1519 {
1520         int r;
1521         int major, minor;
1522
1523         r = init_hvm_pv_info(&major, &minor);
1524         if (r < 0)
1525                 return;
1526
1527         xen_hvm_init_shared_info();
1528
1529         if (xen_feature(XENFEAT_hvm_callback_vector))
1530                 xen_have_vector_callback = 1;
1531         xen_hvm_smp_init();
1532         register_cpu_notifier(&xen_hvm_cpu_notifier);
1533         xen_unplug_emulated_devices();
1534         x86_init.irqs.intr_init = xen_init_IRQ;
1535         xen_hvm_init_time_ops();
1536         xen_hvm_init_mmu_ops();
1537 }
1538
1539 static bool __init xen_hvm_platform(void)
1540 {
1541         if (xen_pv_domain())
1542                 return false;
1543
1544         if (!xen_cpuid_base())
1545                 return false;
1546
1547         return true;
1548 }
1549
1550 bool xen_hvm_need_lapic(void)
1551 {
1552         if (xen_pv_domain())
1553                 return false;
1554         if (!xen_hvm_domain())
1555                 return false;
1556         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1557                 return false;
1558         return true;
1559 }
1560 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1561
1562 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1563         .name                   = "Xen HVM",
1564         .detect                 = xen_hvm_platform,
1565         .init_platform          = xen_hvm_guest_init,
1566 };
1567 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1568 #endif