xen64: allocate and manage user pagetables
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/page.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/setup.h>
45 #include <asm/desc.h>
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/reboot.h>
49
50 #include "xen-ops.h"
51 #include "mmu.h"
52 #include "multicalls.h"
53
54 EXPORT_SYMBOL_GPL(hypercall_page);
55
56 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
57 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
58
59 /*
60  * Note about cr3 (pagetable base) values:
61  *
62  * xen_cr3 contains the current logical cr3 value; it contains the
63  * last set cr3.  This may not be the current effective cr3, because
64  * its update may be being lazily deferred.  However, a vcpu looking
65  * at its own cr3 can use this value knowing that it everything will
66  * be self-consistent.
67  *
68  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
69  * hypercall to set the vcpu cr3 is complete (so it may be a little
70  * out of date, but it will never be set early).  If one vcpu is
71  * looking at another vcpu's cr3 value, it should use this variable.
72  */
73 DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
74 DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
75
76 struct start_info *xen_start_info;
77 EXPORT_SYMBOL_GPL(xen_start_info);
78
79 struct shared_info xen_dummy_shared_info;
80
81 /*
82  * Point at some empty memory to start with. We map the real shared_info
83  * page as soon as fixmap is up and running.
84  */
85 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
86
87 /*
88  * Flag to determine whether vcpu info placement is available on all
89  * VCPUs.  We assume it is to start with, and then set it to zero on
90  * the first failure.  This is because it can succeed on some VCPUs
91  * and not others, since it can involve hypervisor memory allocation,
92  * or because the guest failed to guarantee all the appropriate
93  * constraints on all VCPUs (ie buffer can't cross a page boundary).
94  *
95  * Note that any particular CPU may be using a placed vcpu structure,
96  * but we can only optimise if the all are.
97  *
98  * 0: not available, 1: available
99  */
100 static int have_vcpu_info_placement = 1;
101
102 static void xen_vcpu_setup(int cpu)
103 {
104         struct vcpu_register_vcpu_info info;
105         int err;
106         struct vcpu_info *vcpup;
107
108         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
109         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
110
111         if (!have_vcpu_info_placement)
112                 return;         /* already tested, not available */
113
114         vcpup = &per_cpu(xen_vcpu_info, cpu);
115
116         info.mfn = virt_to_mfn(vcpup);
117         info.offset = offset_in_page(vcpup);
118
119         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
120                cpu, vcpup, info.mfn, info.offset);
121
122         /* Check to see if the hypervisor will put the vcpu_info
123            structure where we want it, which allows direct access via
124            a percpu-variable. */
125         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
126
127         if (err) {
128                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
129                 have_vcpu_info_placement = 0;
130         } else {
131                 /* This cpu is using the registered vcpu info, even if
132                    later ones fail to. */
133                 per_cpu(xen_vcpu, cpu) = vcpup;
134
135                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
136                        cpu, vcpup);
137         }
138 }
139
140 /*
141  * On restore, set the vcpu placement up again.
142  * If it fails, then we're in a bad state, since
143  * we can't back out from using it...
144  */
145 void xen_vcpu_restore(void)
146 {
147         if (have_vcpu_info_placement) {
148                 int cpu;
149
150                 for_each_online_cpu(cpu) {
151                         bool other_cpu = (cpu != smp_processor_id());
152
153                         if (other_cpu &&
154                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
155                                 BUG();
156
157                         xen_vcpu_setup(cpu);
158
159                         if (other_cpu &&
160                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
161                                 BUG();
162                 }
163
164                 BUG_ON(!have_vcpu_info_placement);
165         }
166 }
167
168 static void __init xen_banner(void)
169 {
170         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
171                pv_info.name);
172         printk(KERN_INFO "Hypervisor signature: %s%s\n",
173                xen_start_info->magic,
174                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
175 }
176
177 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
178                       unsigned int *cx, unsigned int *dx)
179 {
180         unsigned maskedx = ~0;
181
182         /*
183          * Mask out inconvenient features, to try and disable as many
184          * unsupported kernel subsystems as possible.
185          */
186         if (*ax == 1)
187                 maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
188                             (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
189                             (1 << X86_FEATURE_MCE)  |  /* disable MCE */
190                             (1 << X86_FEATURE_MCA)  |  /* disable MCA */
191                             (1 << X86_FEATURE_ACC));   /* thermal monitoring */
192
193         asm(XEN_EMULATE_PREFIX "cpuid"
194                 : "=a" (*ax),
195                   "=b" (*bx),
196                   "=c" (*cx),
197                   "=d" (*dx)
198                 : "0" (*ax), "2" (*cx));
199         *dx &= maskedx;
200 }
201
202 static void xen_set_debugreg(int reg, unsigned long val)
203 {
204         HYPERVISOR_set_debugreg(reg, val);
205 }
206
207 static unsigned long xen_get_debugreg(int reg)
208 {
209         return HYPERVISOR_get_debugreg(reg);
210 }
211
212 static unsigned long xen_save_fl(void)
213 {
214         struct vcpu_info *vcpu;
215         unsigned long flags;
216
217         vcpu = x86_read_percpu(xen_vcpu);
218
219         /* flag has opposite sense of mask */
220         flags = !vcpu->evtchn_upcall_mask;
221
222         /* convert to IF type flag
223            -0 -> 0x00000000
224            -1 -> 0xffffffff
225         */
226         return (-flags) & X86_EFLAGS_IF;
227 }
228
229 static void xen_restore_fl(unsigned long flags)
230 {
231         struct vcpu_info *vcpu;
232
233         /* convert from IF type flag */
234         flags = !(flags & X86_EFLAGS_IF);
235
236         /* There's a one instruction preempt window here.  We need to
237            make sure we're don't switch CPUs between getting the vcpu
238            pointer and updating the mask. */
239         preempt_disable();
240         vcpu = x86_read_percpu(xen_vcpu);
241         vcpu->evtchn_upcall_mask = flags;
242         preempt_enable_no_resched();
243
244         /* Doesn't matter if we get preempted here, because any
245            pending event will get dealt with anyway. */
246
247         if (flags == 0) {
248                 preempt_check_resched();
249                 barrier(); /* unmask then check (avoid races) */
250                 if (unlikely(vcpu->evtchn_upcall_pending))
251                         force_evtchn_callback();
252         }
253 }
254
255 static void xen_irq_disable(void)
256 {
257         /* There's a one instruction preempt window here.  We need to
258            make sure we're don't switch CPUs between getting the vcpu
259            pointer and updating the mask. */
260         preempt_disable();
261         x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
262         preempt_enable_no_resched();
263 }
264
265 static void xen_irq_enable(void)
266 {
267         struct vcpu_info *vcpu;
268
269         /* We don't need to worry about being preempted here, since
270            either a) interrupts are disabled, so no preemption, or b)
271            the caller is confused and is trying to re-enable interrupts
272            on an indeterminate processor. */
273
274         vcpu = x86_read_percpu(xen_vcpu);
275         vcpu->evtchn_upcall_mask = 0;
276
277         /* Doesn't matter if we get preempted here, because any
278            pending event will get dealt with anyway. */
279
280         barrier(); /* unmask then check (avoid races) */
281         if (unlikely(vcpu->evtchn_upcall_pending))
282                 force_evtchn_callback();
283 }
284
285 static void xen_safe_halt(void)
286 {
287         /* Blocking includes an implicit local_irq_enable(). */
288         if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
289                 BUG();
290 }
291
292 static void xen_halt(void)
293 {
294         if (irqs_disabled())
295                 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
296         else
297                 xen_safe_halt();
298 }
299
300 static void xen_leave_lazy(void)
301 {
302         paravirt_leave_lazy(paravirt_get_lazy_mode());
303         xen_mc_flush();
304 }
305
306 static unsigned long xen_store_tr(void)
307 {
308         return 0;
309 }
310
311 static void xen_set_ldt(const void *addr, unsigned entries)
312 {
313         struct mmuext_op *op;
314         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
315
316         op = mcs.args;
317         op->cmd = MMUEXT_SET_LDT;
318         op->arg1.linear_addr = (unsigned long)addr;
319         op->arg2.nr_ents = entries;
320
321         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
322
323         xen_mc_issue(PARAVIRT_LAZY_CPU);
324 }
325
326 static void xen_load_gdt(const struct desc_ptr *dtr)
327 {
328         unsigned long *frames;
329         unsigned long va = dtr->address;
330         unsigned int size = dtr->size + 1;
331         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
332         int f;
333         struct multicall_space mcs;
334
335         /* A GDT can be up to 64k in size, which corresponds to 8192
336            8-byte entries, or 16 4k pages.. */
337
338         BUG_ON(size > 65536);
339         BUG_ON(va & ~PAGE_MASK);
340
341         mcs = xen_mc_entry(sizeof(*frames) * pages);
342         frames = mcs.args;
343
344         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
345                 frames[f] = virt_to_mfn(va);
346                 make_lowmem_page_readonly((void *)va);
347         }
348
349         MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
350
351         xen_mc_issue(PARAVIRT_LAZY_CPU);
352 }
353
354 static void load_TLS_descriptor(struct thread_struct *t,
355                                 unsigned int cpu, unsigned int i)
356 {
357         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
358         xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
359         struct multicall_space mc = __xen_mc_entry(0);
360
361         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
362 }
363
364 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
365 {
366         /*
367          * XXX sleazy hack: If we're being called in a lazy-cpu zone,
368          * it means we're in a context switch, and %gs has just been
369          * saved.  This means we can zero it out to prevent faults on
370          * exit from the hypervisor if the next process has no %gs.
371          * Either way, it has been saved, and the new value will get
372          * loaded properly.  This will go away as soon as Xen has been
373          * modified to not save/restore %gs for normal hypercalls.
374          *
375          * On x86_64, this hack is not used for %gs, because gs points
376          * to KERNEL_GS_BASE (and uses it for PDA references), so we
377          * must not zero %gs on x86_64
378          *
379          * For x86_64, we need to zero %fs, otherwise we may get an
380          * exception between the new %fs descriptor being loaded and
381          * %fs being effectively cleared at __switch_to().
382          */
383         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
384 #ifdef CONFIG_X86_32
385                 loadsegment(gs, 0);
386 #else
387                 loadsegment(fs, 0);
388 #endif
389         }
390
391         xen_mc_batch();
392
393         load_TLS_descriptor(t, cpu, 0);
394         load_TLS_descriptor(t, cpu, 1);
395         load_TLS_descriptor(t, cpu, 2);
396
397         xen_mc_issue(PARAVIRT_LAZY_CPU);
398 }
399
400 #ifdef CONFIG_X86_64
401 static void xen_load_gs_index(unsigned int idx)
402 {
403         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
404                 BUG();
405 }
406 #endif
407
408 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
409                                 const void *ptr)
410 {
411         unsigned long lp = (unsigned long)&dt[entrynum];
412         xmaddr_t mach_lp = virt_to_machine(lp);
413         u64 entry = *(u64 *)ptr;
414
415         preempt_disable();
416
417         xen_mc_flush();
418         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
419                 BUG();
420
421         preempt_enable();
422 }
423
424 static int cvt_gate_to_trap(int vector, const gate_desc *val,
425                             struct trap_info *info)
426 {
427         if (val->type != 0xf && val->type != 0xe)
428                 return 0;
429
430         info->vector = vector;
431         info->address = gate_offset(*val);
432         info->cs = gate_segment(*val);
433         info->flags = val->dpl;
434         /* interrupt gates clear IF */
435         if (val->type == 0xe)
436                 info->flags |= 4;
437
438         return 1;
439 }
440
441 /* Locations of each CPU's IDT */
442 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
443
444 /* Set an IDT entry.  If the entry is part of the current IDT, then
445    also update Xen. */
446 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
447 {
448         unsigned long p = (unsigned long)&dt[entrynum];
449         unsigned long start, end;
450
451         preempt_disable();
452
453         start = __get_cpu_var(idt_desc).address;
454         end = start + __get_cpu_var(idt_desc).size + 1;
455
456         xen_mc_flush();
457
458         native_write_idt_entry(dt, entrynum, g);
459
460         if (p >= start && (p + 8) <= end) {
461                 struct trap_info info[2];
462
463                 info[1].address = 0;
464
465                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
466                         if (HYPERVISOR_set_trap_table(info))
467                                 BUG();
468         }
469
470         preempt_enable();
471 }
472
473 static void xen_convert_trap_info(const struct desc_ptr *desc,
474                                   struct trap_info *traps)
475 {
476         unsigned in, out, count;
477
478         count = (desc->size+1) / sizeof(gate_desc);
479         BUG_ON(count > 256);
480
481         for (in = out = 0; in < count; in++) {
482                 gate_desc *entry = (gate_desc*)(desc->address) + in;
483
484                 if (cvt_gate_to_trap(in, entry, &traps[out]))
485                         out++;
486         }
487         traps[out].address = 0;
488 }
489
490 void xen_copy_trap_info(struct trap_info *traps)
491 {
492         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
493
494         xen_convert_trap_info(desc, traps);
495 }
496
497 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
498    hold a spinlock to protect the static traps[] array (static because
499    it avoids allocation, and saves stack space). */
500 static void xen_load_idt(const struct desc_ptr *desc)
501 {
502         static DEFINE_SPINLOCK(lock);
503         static struct trap_info traps[257];
504
505         spin_lock(&lock);
506
507         __get_cpu_var(idt_desc) = *desc;
508
509         xen_convert_trap_info(desc, traps);
510
511         xen_mc_flush();
512         if (HYPERVISOR_set_trap_table(traps))
513                 BUG();
514
515         spin_unlock(&lock);
516 }
517
518 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
519    they're handled differently. */
520 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
521                                 const void *desc, int type)
522 {
523         preempt_disable();
524
525         switch (type) {
526         case DESC_LDT:
527         case DESC_TSS:
528                 /* ignore */
529                 break;
530
531         default: {
532                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
533
534                 xen_mc_flush();
535                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
536                         BUG();
537         }
538
539         }
540
541         preempt_enable();
542 }
543
544 static void xen_load_sp0(struct tss_struct *tss,
545                           struct thread_struct *thread)
546 {
547         struct multicall_space mcs = xen_mc_entry(0);
548         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
549         xen_mc_issue(PARAVIRT_LAZY_CPU);
550 }
551
552 static void xen_set_iopl_mask(unsigned mask)
553 {
554         struct physdev_set_iopl set_iopl;
555
556         /* Force the change at ring 0. */
557         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
558         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
559 }
560
561 static void xen_io_delay(void)
562 {
563 }
564
565 #ifdef CONFIG_X86_LOCAL_APIC
566 static u32 xen_apic_read(unsigned long reg)
567 {
568         return 0;
569 }
570
571 static void xen_apic_write(unsigned long reg, u32 val)
572 {
573         /* Warn to see if there's any stray references */
574         WARN_ON(1);
575 }
576 #endif
577
578 static void xen_flush_tlb(void)
579 {
580         struct mmuext_op *op;
581         struct multicall_space mcs;
582
583         preempt_disable();
584
585         mcs = xen_mc_entry(sizeof(*op));
586
587         op = mcs.args;
588         op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
589         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
590
591         xen_mc_issue(PARAVIRT_LAZY_MMU);
592
593         preempt_enable();
594 }
595
596 static void xen_flush_tlb_single(unsigned long addr)
597 {
598         struct mmuext_op *op;
599         struct multicall_space mcs;
600
601         preempt_disable();
602
603         mcs = xen_mc_entry(sizeof(*op));
604         op = mcs.args;
605         op->cmd = MMUEXT_INVLPG_LOCAL;
606         op->arg1.linear_addr = addr & PAGE_MASK;
607         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
608
609         xen_mc_issue(PARAVIRT_LAZY_MMU);
610
611         preempt_enable();
612 }
613
614 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
615                                  unsigned long va)
616 {
617         struct {
618                 struct mmuext_op op;
619                 cpumask_t mask;
620         } *args;
621         cpumask_t cpumask = *cpus;
622         struct multicall_space mcs;
623
624         /*
625          * A couple of (to be removed) sanity checks:
626          *
627          * - current CPU must not be in mask
628          * - mask must exist :)
629          */
630         BUG_ON(cpus_empty(cpumask));
631         BUG_ON(cpu_isset(smp_processor_id(), cpumask));
632         BUG_ON(!mm);
633
634         /* If a CPU which we ran on has gone down, OK. */
635         cpus_and(cpumask, cpumask, cpu_online_map);
636         if (cpus_empty(cpumask))
637                 return;
638
639         mcs = xen_mc_entry(sizeof(*args));
640         args = mcs.args;
641         args->mask = cpumask;
642         args->op.arg2.vcpumask = &args->mask;
643
644         if (va == TLB_FLUSH_ALL) {
645                 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
646         } else {
647                 args->op.cmd = MMUEXT_INVLPG_MULTI;
648                 args->op.arg1.linear_addr = va;
649         }
650
651         MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
652
653         xen_mc_issue(PARAVIRT_LAZY_MMU);
654 }
655
656 static void xen_clts(void)
657 {
658         struct multicall_space mcs;
659
660         mcs = xen_mc_entry(0);
661
662         MULTI_fpu_taskswitch(mcs.mc, 0);
663
664         xen_mc_issue(PARAVIRT_LAZY_CPU);
665 }
666
667 static void xen_write_cr0(unsigned long cr0)
668 {
669         struct multicall_space mcs;
670
671         /* Only pay attention to cr0.TS; everything else is
672            ignored. */
673         mcs = xen_mc_entry(0);
674
675         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
676
677         xen_mc_issue(PARAVIRT_LAZY_CPU);
678 }
679
680 static void xen_write_cr2(unsigned long cr2)
681 {
682         x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
683 }
684
685 static unsigned long xen_read_cr2(void)
686 {
687         return x86_read_percpu(xen_vcpu)->arch.cr2;
688 }
689
690 static unsigned long xen_read_cr2_direct(void)
691 {
692         return x86_read_percpu(xen_vcpu_info.arch.cr2);
693 }
694
695 static void xen_write_cr4(unsigned long cr4)
696 {
697         cr4 &= ~X86_CR4_PGE;
698         cr4 &= ~X86_CR4_PSE;
699
700         native_write_cr4(cr4);
701 }
702
703 static unsigned long xen_read_cr3(void)
704 {
705         return x86_read_percpu(xen_cr3);
706 }
707
708 static void set_current_cr3(void *v)
709 {
710         x86_write_percpu(xen_current_cr3, (unsigned long)v);
711 }
712
713 static void __xen_write_cr3(bool kernel, unsigned long cr3)
714 {
715         struct mmuext_op *op;
716         struct multicall_space mcs;
717         unsigned long mfn;
718
719         if (cr3)
720                 mfn = pfn_to_mfn(PFN_DOWN(cr3));
721         else
722                 mfn = 0;
723
724         WARN_ON(mfn == 0 && kernel);
725
726         mcs = __xen_mc_entry(sizeof(*op));
727
728         op = mcs.args;
729         op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
730         op->arg1.mfn = mfn;
731
732         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
733
734         if (kernel) {
735                 x86_write_percpu(xen_cr3, cr3);
736
737                 /* Update xen_current_cr3 once the batch has actually
738                    been submitted. */
739                 xen_mc_callback(set_current_cr3, (void *)cr3);
740         }
741 }
742
743 static void xen_write_cr3(unsigned long cr3)
744 {
745         BUG_ON(preemptible());
746
747         xen_mc_batch();  /* disables interrupts */
748
749         /* Update while interrupts are disabled, so its atomic with
750            respect to ipis */
751         x86_write_percpu(xen_cr3, cr3);
752
753         __xen_write_cr3(true, cr3);
754
755 #ifdef CONFIG_X86_64
756         {
757                 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
758                 if (user_pgd)
759                         __xen_write_cr3(false, __pa(user_pgd));
760                 else
761                         __xen_write_cr3(false, 0);
762         }
763 #endif
764
765         xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
766 }
767
768 /* Early in boot, while setting up the initial pagetable, assume
769    everything is pinned. */
770 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
771 {
772 #ifdef CONFIG_FLATMEM
773         BUG_ON(mem_map);        /* should only be used early */
774 #endif
775         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
776 }
777
778 /* Early release_pte assumes that all pts are pinned, since there's
779    only init_mm and anything attached to that is pinned. */
780 static void xen_release_pte_init(u32 pfn)
781 {
782         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
783 }
784
785 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
786 {
787         struct mmuext_op op;
788         op.cmd = cmd;
789         op.arg1.mfn = pfn_to_mfn(pfn);
790         if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
791                 BUG();
792 }
793
794 /* This needs to make sure the new pte page is pinned iff its being
795    attached to a pinned pagetable. */
796 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
797 {
798         struct page *page = pfn_to_page(pfn);
799
800         if (PagePinned(virt_to_page(mm->pgd))) {
801                 SetPagePinned(page);
802
803                 if (!PageHighMem(page)) {
804                         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
805                         if (level == PT_PTE)
806                                 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
807                 } else
808                         /* make sure there are no stray mappings of
809                            this page */
810                         kmap_flush_unused();
811         }
812 }
813
814 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
815 {
816         xen_alloc_ptpage(mm, pfn, PT_PTE);
817 }
818
819 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
820 {
821         xen_alloc_ptpage(mm, pfn, PT_PMD);
822 }
823
824 static int xen_pgd_alloc(struct mm_struct *mm)
825 {
826         pgd_t *pgd = mm->pgd;
827         int ret = 0;
828
829         BUG_ON(PagePinned(virt_to_page(pgd)));
830
831 #ifdef CONFIG_X86_64
832         {
833                 struct page *page = virt_to_page(pgd);
834
835                 BUG_ON(page->private != 0);
836
837                 page->private = __get_free_page(GFP_KERNEL | __GFP_ZERO);
838                 if (page->private == 0)
839                         ret = -ENOMEM;
840
841                 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
842         }
843 #endif
844
845         return ret;
846 }
847
848 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
849 {
850 #ifdef CONFIG_X86_64
851         pgd_t *user_pgd = xen_get_user_pgd(pgd);
852
853         if (user_pgd)
854                 free_page((unsigned long)user_pgd);
855 #endif
856 }
857
858 /* This should never happen until we're OK to use struct page */
859 static void xen_release_ptpage(u32 pfn, unsigned level)
860 {
861         struct page *page = pfn_to_page(pfn);
862
863         if (PagePinned(page)) {
864                 if (!PageHighMem(page)) {
865                         if (level == PT_PTE)
866                                 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
867                         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
868                 }
869                 ClearPagePinned(page);
870         }
871 }
872
873 static void xen_release_pte(u32 pfn)
874 {
875         xen_release_ptpage(pfn, PT_PTE);
876 }
877
878 static void xen_release_pmd(u32 pfn)
879 {
880         xen_release_ptpage(pfn, PT_PMD);
881 }
882
883 #if PAGETABLE_LEVELS == 4
884 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
885 {
886         xen_alloc_ptpage(mm, pfn, PT_PUD);
887 }
888
889 static void xen_release_pud(u32 pfn)
890 {
891         xen_release_ptpage(pfn, PT_PUD);
892 }
893 #endif
894
895 #ifdef CONFIG_HIGHPTE
896 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
897 {
898         pgprot_t prot = PAGE_KERNEL;
899
900         if (PagePinned(page))
901                 prot = PAGE_KERNEL_RO;
902
903         if (0 && PageHighMem(page))
904                 printk("mapping highpte %lx type %d prot %s\n",
905                        page_to_pfn(page), type,
906                        (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
907
908         return kmap_atomic_prot(page, type, prot);
909 }
910 #endif
911
912 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
913 {
914         /* If there's an existing pte, then don't allow _PAGE_RW to be set */
915         if (pte_val_ma(*ptep) & _PAGE_PRESENT)
916                 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
917                                pte_val_ma(pte));
918
919         return pte;
920 }
921
922 /* Init-time set_pte while constructing initial pagetables, which
923    doesn't allow RO pagetable pages to be remapped RW */
924 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
925 {
926         pte = mask_rw_pte(ptep, pte);
927
928         xen_set_pte(ptep, pte);
929 }
930
931 static __init void xen_pagetable_setup_start(pgd_t *base)
932 {
933 }
934
935 void xen_setup_shared_info(void)
936 {
937         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
938                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
939                            xen_start_info->shared_info);
940
941                 HYPERVISOR_shared_info =
942                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
943         } else
944                 HYPERVISOR_shared_info =
945                         (struct shared_info *)__va(xen_start_info->shared_info);
946
947 #ifndef CONFIG_SMP
948         /* In UP this is as good a place as any to set up shared info */
949         xen_setup_vcpu_info_placement();
950 #endif
951
952         xen_setup_mfn_list_list();
953 }
954
955 static __init void xen_pagetable_setup_done(pgd_t *base)
956 {
957         xen_setup_shared_info();
958 }
959
960 static __init void xen_post_allocator_init(void)
961 {
962         pv_mmu_ops.set_pte = xen_set_pte;
963         pv_mmu_ops.set_pmd = xen_set_pmd;
964         pv_mmu_ops.set_pud = xen_set_pud;
965 #if PAGETABLE_LEVELS == 4
966         pv_mmu_ops.set_pgd = xen_set_pgd;
967 #endif
968
969         /* This will work as long as patching hasn't happened yet
970            (which it hasn't) */
971         pv_mmu_ops.alloc_pte = xen_alloc_pte;
972         pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
973         pv_mmu_ops.release_pte = xen_release_pte;
974         pv_mmu_ops.release_pmd = xen_release_pmd;
975 #if PAGETABLE_LEVELS == 4
976         pv_mmu_ops.alloc_pud = xen_alloc_pud;
977         pv_mmu_ops.release_pud = xen_release_pud;
978 #endif
979
980         xen_mark_init_mm_pinned();
981 }
982
983 /* This is called once we have the cpu_possible_map */
984 void xen_setup_vcpu_info_placement(void)
985 {
986         int cpu;
987
988         for_each_possible_cpu(cpu)
989                 xen_vcpu_setup(cpu);
990
991         /* xen_vcpu_setup managed to place the vcpu_info within the
992            percpu area for all cpus, so make use of it */
993 #ifdef CONFIG_X86_32
994         if (have_vcpu_info_placement) {
995                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
996
997                 pv_irq_ops.save_fl = xen_save_fl_direct;
998                 pv_irq_ops.restore_fl = xen_restore_fl_direct;
999                 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1000                 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1001                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1002         }
1003 #endif
1004 }
1005
1006 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1007                           unsigned long addr, unsigned len)
1008 {
1009         char *start, *end, *reloc;
1010         unsigned ret;
1011
1012         start = end = reloc = NULL;
1013
1014 #define SITE(op, x)                                                     \
1015         case PARAVIRT_PATCH(op.x):                                      \
1016         if (have_vcpu_info_placement) {                                 \
1017                 start = (char *)xen_##x##_direct;                       \
1018                 end = xen_##x##_direct_end;                             \
1019                 reloc = xen_##x##_direct_reloc;                         \
1020         }                                                               \
1021         goto patch_site
1022
1023         switch (type) {
1024 #ifdef CONFIG_X86_32
1025                 SITE(pv_irq_ops, irq_enable);
1026                 SITE(pv_irq_ops, irq_disable);
1027                 SITE(pv_irq_ops, save_fl);
1028                 SITE(pv_irq_ops, restore_fl);
1029 #endif /* CONFIG_X86_32 */
1030 #undef SITE
1031
1032         patch_site:
1033                 if (start == NULL || (end-start) > len)
1034                         goto default_patch;
1035
1036                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1037
1038                 /* Note: because reloc is assigned from something that
1039                    appears to be an array, gcc assumes it's non-null,
1040                    but doesn't know its relationship with start and
1041                    end. */
1042                 if (reloc > start && reloc < end) {
1043                         int reloc_off = reloc - start;
1044                         long *relocp = (long *)(insnbuf + reloc_off);
1045                         long delta = start - (char *)addr;
1046
1047                         *relocp += delta;
1048                 }
1049                 break;
1050
1051         default_patch:
1052         default:
1053                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1054                                              addr, len);
1055                 break;
1056         }
1057
1058         return ret;
1059 }
1060
1061 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1062 {
1063         pte_t pte;
1064
1065         phys >>= PAGE_SHIFT;
1066
1067         switch (idx) {
1068         case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1069 #ifdef CONFIG_X86_F00F_BUG
1070         case FIX_F00F_IDT:
1071 #endif
1072 #ifdef CONFIG_X86_32
1073         case FIX_WP_TEST:
1074         case FIX_VDSO:
1075         case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1076 #else
1077         case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1078 #endif
1079 #ifdef CONFIG_X86_LOCAL_APIC
1080         case FIX_APIC_BASE:     /* maps dummy local APIC */
1081 #endif
1082                 pte = pfn_pte(phys, prot);
1083                 break;
1084
1085         default:
1086                 pte = mfn_pte(phys, prot);
1087                 break;
1088         }
1089
1090         __native_set_fixmap(idx, pte);
1091 }
1092
1093 static const struct pv_info xen_info __initdata = {
1094         .paravirt_enabled = 1,
1095         .shared_kernel_pmd = 0,
1096
1097         .name = "Xen",
1098 };
1099
1100 static const struct pv_init_ops xen_init_ops __initdata = {
1101         .patch = xen_patch,
1102
1103         .banner = xen_banner,
1104         .memory_setup = xen_memory_setup,
1105         .arch_setup = xen_arch_setup,
1106         .post_allocator_init = xen_post_allocator_init,
1107 };
1108
1109 static const struct pv_time_ops xen_time_ops __initdata = {
1110         .time_init = xen_time_init,
1111
1112         .set_wallclock = xen_set_wallclock,
1113         .get_wallclock = xen_get_wallclock,
1114         .get_tsc_khz = xen_tsc_khz,
1115         .sched_clock = xen_sched_clock,
1116 };
1117
1118 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1119         .cpuid = xen_cpuid,
1120
1121         .set_debugreg = xen_set_debugreg,
1122         .get_debugreg = xen_get_debugreg,
1123
1124         .clts = xen_clts,
1125
1126         .read_cr0 = native_read_cr0,
1127         .write_cr0 = xen_write_cr0,
1128
1129         .read_cr4 = native_read_cr4,
1130         .read_cr4_safe = native_read_cr4_safe,
1131         .write_cr4 = xen_write_cr4,
1132
1133         .wbinvd = native_wbinvd,
1134
1135         .read_msr = native_read_msr_safe,
1136         .write_msr = native_write_msr_safe,
1137         .read_tsc = native_read_tsc,
1138         .read_pmc = native_read_pmc,
1139
1140         .iret = xen_iret,
1141         .irq_enable_sysexit = xen_sysexit,
1142
1143         .load_tr_desc = paravirt_nop,
1144         .set_ldt = xen_set_ldt,
1145         .load_gdt = xen_load_gdt,
1146         .load_idt = xen_load_idt,
1147         .load_tls = xen_load_tls,
1148 #ifdef CONFIG_X86_64
1149         .load_gs_index = xen_load_gs_index,
1150 #endif
1151
1152         .store_gdt = native_store_gdt,
1153         .store_idt = native_store_idt,
1154         .store_tr = xen_store_tr,
1155
1156         .write_ldt_entry = xen_write_ldt_entry,
1157         .write_gdt_entry = xen_write_gdt_entry,
1158         .write_idt_entry = xen_write_idt_entry,
1159         .load_sp0 = xen_load_sp0,
1160
1161         .set_iopl_mask = xen_set_iopl_mask,
1162         .io_delay = xen_io_delay,
1163
1164         /* Xen takes care of %gs when switching to usermode for us */
1165         .swapgs = paravirt_nop,
1166
1167         .lazy_mode = {
1168                 .enter = paravirt_enter_lazy_cpu,
1169                 .leave = xen_leave_lazy,
1170         },
1171 };
1172
1173 static void __init __xen_init_IRQ(void)
1174 {
1175 #ifdef CONFIG_X86_64
1176         int i;
1177
1178         /* Create identity vector->irq map */
1179         for(i = 0; i < NR_VECTORS; i++) {
1180                 int cpu;
1181
1182                 for_each_possible_cpu(cpu)
1183                         per_cpu(vector_irq, cpu)[i] = i;
1184         }
1185 #endif  /* CONFIG_X86_64 */
1186
1187         xen_init_IRQ();
1188 }
1189
1190 static const struct pv_irq_ops xen_irq_ops __initdata = {
1191         .init_IRQ = __xen_init_IRQ,
1192         .save_fl = xen_save_fl,
1193         .restore_fl = xen_restore_fl,
1194         .irq_disable = xen_irq_disable,
1195         .irq_enable = xen_irq_enable,
1196         .safe_halt = xen_safe_halt,
1197         .halt = xen_halt,
1198 #ifdef CONFIG_X86_64
1199         .adjust_exception_frame = xen_adjust_exception_frame,
1200 #endif
1201 };
1202
1203 static const struct pv_apic_ops xen_apic_ops __initdata = {
1204 #ifdef CONFIG_X86_LOCAL_APIC
1205         .apic_write = xen_apic_write,
1206         .apic_write_atomic = xen_apic_write,
1207         .apic_read = xen_apic_read,
1208         .setup_boot_clock = paravirt_nop,
1209         .setup_secondary_clock = paravirt_nop,
1210         .startup_ipi_hook = paravirt_nop,
1211 #endif
1212 };
1213
1214 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1215         .pagetable_setup_start = xen_pagetable_setup_start,
1216         .pagetable_setup_done = xen_pagetable_setup_done,
1217
1218         .read_cr2 = xen_read_cr2,
1219         .write_cr2 = xen_write_cr2,
1220
1221         .read_cr3 = xen_read_cr3,
1222         .write_cr3 = xen_write_cr3,
1223
1224         .flush_tlb_user = xen_flush_tlb,
1225         .flush_tlb_kernel = xen_flush_tlb,
1226         .flush_tlb_single = xen_flush_tlb_single,
1227         .flush_tlb_others = xen_flush_tlb_others,
1228
1229         .pte_update = paravirt_nop,
1230         .pte_update_defer = paravirt_nop,
1231
1232         .pgd_alloc = xen_pgd_alloc,
1233         .pgd_free = xen_pgd_free,
1234
1235         .alloc_pte = xen_alloc_pte_init,
1236         .release_pte = xen_release_pte_init,
1237         .alloc_pmd = xen_alloc_pte_init,
1238         .alloc_pmd_clone = paravirt_nop,
1239         .release_pmd = xen_release_pte_init,
1240
1241 #ifdef CONFIG_HIGHPTE
1242         .kmap_atomic_pte = xen_kmap_atomic_pte,
1243 #endif
1244
1245 #ifdef CONFIG_X86_64
1246         .set_pte = xen_set_pte,
1247 #else
1248         .set_pte = xen_set_pte_init,
1249 #endif
1250         .set_pte_at = xen_set_pte_at,
1251         .set_pmd = xen_set_pmd_hyper,
1252
1253         .ptep_modify_prot_start = __ptep_modify_prot_start,
1254         .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1255
1256         .pte_val = xen_pte_val,
1257         .pte_flags = native_pte_val,
1258         .pgd_val = xen_pgd_val,
1259
1260         .make_pte = xen_make_pte,
1261         .make_pgd = xen_make_pgd,
1262
1263 #ifdef CONFIG_X86_PAE
1264         .set_pte_atomic = xen_set_pte_atomic,
1265         .set_pte_present = xen_set_pte_at,
1266         .pte_clear = xen_pte_clear,
1267         .pmd_clear = xen_pmd_clear,
1268 #endif  /* CONFIG_X86_PAE */
1269         .set_pud = xen_set_pud_hyper,
1270
1271         .make_pmd = xen_make_pmd,
1272         .pmd_val = xen_pmd_val,
1273
1274 #if PAGETABLE_LEVELS == 4
1275         .pud_val = xen_pud_val,
1276         .make_pud = xen_make_pud,
1277         .set_pgd = xen_set_pgd_hyper,
1278
1279         .alloc_pud = xen_alloc_pte_init,
1280         .release_pud = xen_release_pte_init,
1281 #endif  /* PAGETABLE_LEVELS == 4 */
1282
1283         .activate_mm = xen_activate_mm,
1284         .dup_mmap = xen_dup_mmap,
1285         .exit_mmap = xen_exit_mmap,
1286
1287         .lazy_mode = {
1288                 .enter = paravirt_enter_lazy_mmu,
1289                 .leave = xen_leave_lazy,
1290         },
1291
1292         .set_fixmap = xen_set_fixmap,
1293 };
1294
1295 static void xen_reboot(int reason)
1296 {
1297         struct sched_shutdown r = { .reason = reason };
1298
1299 #ifdef CONFIG_SMP
1300         smp_send_stop();
1301 #endif
1302
1303         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1304                 BUG();
1305 }
1306
1307 static void xen_restart(char *msg)
1308 {
1309         xen_reboot(SHUTDOWN_reboot);
1310 }
1311
1312 static void xen_emergency_restart(void)
1313 {
1314         xen_reboot(SHUTDOWN_reboot);
1315 }
1316
1317 static void xen_machine_halt(void)
1318 {
1319         xen_reboot(SHUTDOWN_poweroff);
1320 }
1321
1322 static void xen_crash_shutdown(struct pt_regs *regs)
1323 {
1324         xen_reboot(SHUTDOWN_crash);
1325 }
1326
1327 static const struct machine_ops __initdata xen_machine_ops = {
1328         .restart = xen_restart,
1329         .halt = xen_machine_halt,
1330         .power_off = xen_machine_halt,
1331         .shutdown = xen_machine_halt,
1332         .crash_shutdown = xen_crash_shutdown,
1333         .emergency_restart = xen_emergency_restart,
1334 };
1335
1336
1337 static void __init xen_reserve_top(void)
1338 {
1339 #ifdef CONFIG_X86_32
1340         unsigned long top = HYPERVISOR_VIRT_START;
1341         struct xen_platform_parameters pp;
1342
1343         if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1344                 top = pp.virt_start;
1345
1346         reserve_top_address(-top + 2 * PAGE_SIZE);
1347 #endif  /* CONFIG_X86_32 */
1348 }
1349
1350 /*
1351  * Like __va(), but returns address in the kernel mapping (which is
1352  * all we have until the physical memory mapping has been set up.
1353  */
1354 static void *__ka(phys_addr_t paddr)
1355 {
1356 #ifdef CONFIG_X86_64
1357         return (void *)(paddr + __START_KERNEL_map);
1358 #else
1359         return __va(paddr);
1360 #endif
1361 }
1362
1363 /* Convert a machine address to physical address */
1364 static unsigned long m2p(phys_addr_t maddr)
1365 {
1366         phys_addr_t paddr;
1367
1368         maddr &= PTE_MASK;
1369         paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1370
1371         return paddr;
1372 }
1373
1374 /* Convert a machine address to kernel virtual */
1375 static void *m2v(phys_addr_t maddr)
1376 {
1377         return __ka(m2p(maddr));
1378 }
1379
1380 #ifdef CONFIG_X86_64
1381 static void walk(pgd_t *pgd, unsigned long addr)
1382 {
1383         unsigned l4idx = pgd_index(addr);
1384         unsigned l3idx = pud_index(addr);
1385         unsigned l2idx = pmd_index(addr);
1386         unsigned l1idx = pte_index(addr);
1387         pgd_t l4;
1388         pud_t l3;
1389         pmd_t l2;
1390         pte_t l1;
1391
1392         xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1393                        pgd, addr, l4idx, l3idx, l2idx, l1idx);
1394
1395         l4 = pgd[l4idx];
1396         xen_raw_printk("  l4: %016lx\n", l4.pgd);
1397         xen_raw_printk("      %016lx\n", pgd_val(l4));
1398
1399         l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1400         xen_raw_printk("  l3: %016lx\n", l3.pud);
1401         xen_raw_printk("      %016lx\n", pud_val(l3));
1402
1403         l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1404         xen_raw_printk("  l2: %016lx\n", l2.pmd);
1405         xen_raw_printk("      %016lx\n", pmd_val(l2));
1406
1407         l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1408         xen_raw_printk("  l1: %016lx\n", l1.pte);
1409         xen_raw_printk("      %016lx\n", pte_val(l1));
1410 }
1411 #endif
1412
1413 static void set_page_prot(void *addr, pgprot_t prot)
1414 {
1415         unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1416         pte_t pte = pfn_pte(pfn, prot);
1417
1418         xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1419                        addr, pfn, get_phys_to_machine(pfn),
1420                        pgprot_val(prot), pte.pte);
1421
1422         if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1423                 BUG();
1424 }
1425
1426 /*
1427  * Identity map, in addition to plain kernel map.  This needs to be
1428  * large enough to allocate page table pages to allocate the rest.
1429  * Each page can map 2MB.
1430  */
1431 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
1432
1433 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1434 {
1435         unsigned pmdidx, pteidx;
1436         unsigned ident_pte;
1437         unsigned long pfn;
1438
1439         ident_pte = 0;
1440         pfn = 0;
1441         for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1442                 pte_t *pte_page;
1443
1444                 /* Reuse or allocate a page of ptes */
1445                 if (pmd_present(pmd[pmdidx]))
1446                         pte_page = m2v(pmd[pmdidx].pmd);
1447                 else {
1448                         /* Check for free pte pages */
1449                         if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1450                                 break;
1451
1452                         pte_page = &level1_ident_pgt[ident_pte];
1453                         ident_pte += PTRS_PER_PTE;
1454
1455                         pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1456                 }
1457
1458                 /* Install mappings */
1459                 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1460                         pte_t pte;
1461
1462                         if (pfn > max_pfn_mapped)
1463                                 max_pfn_mapped = pfn;
1464
1465                         if (!pte_none(pte_page[pteidx]))
1466                                 continue;
1467
1468                         pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1469                         pte_page[pteidx] = pte;
1470                 }
1471         }
1472
1473         for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1474                 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1475
1476         set_page_prot(pmd, PAGE_KERNEL_RO);
1477 }
1478
1479 #ifdef CONFIG_X86_64
1480 static void convert_pfn_mfn(void *v)
1481 {
1482         pte_t *pte = v;
1483         int i;
1484
1485         /* All levels are converted the same way, so just treat them
1486            as ptes. */
1487         for(i = 0; i < PTRS_PER_PTE; i++)
1488                 pte[i] = xen_make_pte(pte[i].pte);
1489 }
1490
1491 /*
1492  * Set up the inital kernel pagetable.
1493  *
1494  * We can construct this by grafting the Xen provided pagetable into
1495  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1496  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1497  * means that only the kernel has a physical mapping to start with -
1498  * but that's enough to get __va working.  We need to fill in the rest
1499  * of the physical mapping once some sort of allocator has been set
1500  * up.
1501  */
1502 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1503 {
1504         pud_t *l3;
1505         pmd_t *l2;
1506
1507         /* Zap identity mapping */
1508         init_level4_pgt[0] = __pgd(0);
1509
1510         /* Pre-constructed entries are in pfn, so convert to mfn */
1511         convert_pfn_mfn(init_level4_pgt);
1512         convert_pfn_mfn(level3_ident_pgt);
1513         convert_pfn_mfn(level3_kernel_pgt);
1514
1515         l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1516         l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1517
1518         memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1519         memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1520
1521         l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1522         l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1523         memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1524
1525         /* Set up identity map */
1526         xen_map_identity_early(level2_ident_pgt, max_pfn);
1527
1528         /* Make pagetable pieces RO */
1529         set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1530         set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1531         set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1532         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1533         set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1534
1535         /* Pin down new L4 */
1536         pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1537                           PFN_DOWN(__pa_symbol(init_level4_pgt)));
1538
1539         /* Unpin Xen-provided one */
1540         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1541
1542         /* Switch over */
1543         pgd = init_level4_pgt;
1544
1545         /*
1546          * At this stage there can be no user pgd, and no page
1547          * structure to attach it to, so make sure we just set kernel
1548          * pgd.
1549          */
1550         xen_mc_batch();
1551         __xen_write_cr3(true, __pa(pgd));
1552         xen_mc_issue(PARAVIRT_LAZY_CPU);
1553
1554         reserve_early(__pa(xen_start_info->pt_base),
1555                       __pa(xen_start_info->pt_base +
1556                            xen_start_info->nr_pt_frames * PAGE_SIZE),
1557                       "XEN PAGETABLES");
1558
1559         return pgd;
1560 }
1561 #else   /* !CONFIG_X86_64 */
1562 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1563
1564 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1565 {
1566         pmd_t *kernel_pmd;
1567
1568         init_pg_tables_start = __pa(pgd);
1569         init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1570         max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1571
1572         kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1573         memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1574
1575         xen_map_identity_early(level2_kernel_pgt, max_pfn);
1576
1577         memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1578         set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1579                         __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1580
1581         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1582         set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1583         set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1584
1585         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1586
1587         xen_write_cr3(__pa(swapper_pg_dir));
1588
1589         pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1590
1591         return swapper_pg_dir;
1592 }
1593 #endif  /* CONFIG_X86_64 */
1594
1595 /* First C function to be called on Xen boot */
1596 asmlinkage void __init xen_start_kernel(void)
1597 {
1598         pgd_t *pgd;
1599
1600         if (!xen_start_info)
1601                 return;
1602
1603         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1604
1605         xen_setup_features();
1606
1607         /* Install Xen paravirt ops */
1608         pv_info = xen_info;
1609         pv_init_ops = xen_init_ops;
1610         pv_time_ops = xen_time_ops;
1611         pv_cpu_ops = xen_cpu_ops;
1612         pv_irq_ops = xen_irq_ops;
1613         pv_apic_ops = xen_apic_ops;
1614         pv_mmu_ops = xen_mmu_ops;
1615
1616         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1617                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1618                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1619         }
1620
1621         machine_ops = xen_machine_ops;
1622
1623 #ifdef CONFIG_X86_64
1624         /* Disable until direct per-cpu data access. */
1625         have_vcpu_info_placement = 0;
1626         x86_64_init_pda();
1627 #endif
1628
1629         xen_smp_init();
1630
1631         /* Get mfn list */
1632         if (!xen_feature(XENFEAT_auto_translated_physmap))
1633                 xen_build_dynamic_phys_to_machine();
1634
1635         pgd = (pgd_t *)xen_start_info->pt_base;
1636
1637         /* Prevent unwanted bits from being set in PTEs. */
1638         __supported_pte_mask &= ~_PAGE_GLOBAL;
1639         if (!is_initial_xendomain())
1640                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1641
1642         /* Don't do the full vcpu_info placement stuff until we have a
1643            possible map and a non-dummy shared_info. */
1644         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1645
1646         xen_raw_console_write("mapping kernel into physical memory\n");
1647         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1648
1649         init_mm.pgd = pgd;
1650
1651         /* keep using Xen gdt for now; no urgent need to change it */
1652
1653         pv_info.kernel_rpl = 1;
1654         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1655                 pv_info.kernel_rpl = 0;
1656
1657         /* set the limit of our address space */
1658         xen_reserve_top();
1659
1660 #ifdef CONFIG_X86_32
1661         /* set up basic CPUID stuff */
1662         cpu_detect(&new_cpu_data);
1663         new_cpu_data.hard_math = 1;
1664         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1665 #endif
1666
1667         /* Poke various useful things into boot_params */
1668         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1669         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1670                 ? __pa(xen_start_info->mod_start) : 0;
1671         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1672         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1673
1674         if (!is_initial_xendomain()) {
1675                 add_preferred_console("xenboot", 0, NULL);
1676                 add_preferred_console("tty", 0, NULL);
1677                 add_preferred_console("hvc", 0, NULL);
1678         }
1679
1680         xen_raw_console_write("about to get started...\n");
1681
1682 #if 0
1683         xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1684                        &boot_params, __pa_symbol(&boot_params),
1685                        __va(__pa_symbol(&boot_params)));
1686
1687         walk(pgd, &boot_params);
1688         walk(pgd, __va(__pa(&boot_params)));
1689 #endif
1690
1691         /* Start the world */
1692 #ifdef CONFIG_X86_32
1693         i386_start_kernel();
1694 #else
1695         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1696 #endif
1697 }