xen: make sure the kernel command line is right
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/page.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/setup.h>
45 #include <asm/desc.h>
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/reboot.h>
49 #include <asm/pgalloc.h>
50
51 #include "xen-ops.h"
52 #include "mmu.h"
53 #include "multicalls.h"
54
55 EXPORT_SYMBOL_GPL(hypercall_page);
56
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
59
60 /*
61  * Note about cr3 (pagetable base) values:
62  *
63  * xen_cr3 contains the current logical cr3 value; it contains the
64  * last set cr3.  This may not be the current effective cr3, because
65  * its update may be being lazily deferred.  However, a vcpu looking
66  * at its own cr3 can use this value knowing that it everything will
67  * be self-consistent.
68  *
69  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
70  * hypercall to set the vcpu cr3 is complete (so it may be a little
71  * out of date, but it will never be set early).  If one vcpu is
72  * looking at another vcpu's cr3 value, it should use this variable.
73  */
74 DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
75 DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
76
77 struct start_info *xen_start_info;
78 EXPORT_SYMBOL_GPL(xen_start_info);
79
80 struct shared_info xen_dummy_shared_info;
81
82 /*
83  * Point at some empty memory to start with. We map the real shared_info
84  * page as soon as fixmap is up and running.
85  */
86 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
87
88 /*
89  * Flag to determine whether vcpu info placement is available on all
90  * VCPUs.  We assume it is to start with, and then set it to zero on
91  * the first failure.  This is because it can succeed on some VCPUs
92  * and not others, since it can involve hypervisor memory allocation,
93  * or because the guest failed to guarantee all the appropriate
94  * constraints on all VCPUs (ie buffer can't cross a page boundary).
95  *
96  * Note that any particular CPU may be using a placed vcpu structure,
97  * but we can only optimise if the all are.
98  *
99  * 0: not available, 1: available
100  */
101 static int have_vcpu_info_placement = 1;
102
103 static void xen_vcpu_setup(int cpu)
104 {
105         struct vcpu_register_vcpu_info info;
106         int err;
107         struct vcpu_info *vcpup;
108
109         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
110         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
111
112         if (!have_vcpu_info_placement)
113                 return;         /* already tested, not available */
114
115         vcpup = &per_cpu(xen_vcpu_info, cpu);
116
117         info.mfn = virt_to_mfn(vcpup);
118         info.offset = offset_in_page(vcpup);
119
120         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
121                cpu, vcpup, info.mfn, info.offset);
122
123         /* Check to see if the hypervisor will put the vcpu_info
124            structure where we want it, which allows direct access via
125            a percpu-variable. */
126         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
127
128         if (err) {
129                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
130                 have_vcpu_info_placement = 0;
131         } else {
132                 /* This cpu is using the registered vcpu info, even if
133                    later ones fail to. */
134                 per_cpu(xen_vcpu, cpu) = vcpup;
135
136                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
137                        cpu, vcpup);
138         }
139 }
140
141 /*
142  * On restore, set the vcpu placement up again.
143  * If it fails, then we're in a bad state, since
144  * we can't back out from using it...
145  */
146 void xen_vcpu_restore(void)
147 {
148         if (have_vcpu_info_placement) {
149                 int cpu;
150
151                 for_each_online_cpu(cpu) {
152                         bool other_cpu = (cpu != smp_processor_id());
153
154                         if (other_cpu &&
155                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
156                                 BUG();
157
158                         xen_vcpu_setup(cpu);
159
160                         if (other_cpu &&
161                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
162                                 BUG();
163                 }
164
165                 BUG_ON(!have_vcpu_info_placement);
166         }
167 }
168
169 static void __init xen_banner(void)
170 {
171         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
172                pv_info.name);
173         printk(KERN_INFO "Hypervisor signature: %s%s\n",
174                xen_start_info->magic,
175                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
176 }
177
178 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
179                       unsigned int *cx, unsigned int *dx)
180 {
181         unsigned maskedx = ~0;
182
183         /*
184          * Mask out inconvenient features, to try and disable as many
185          * unsupported kernel subsystems as possible.
186          */
187         if (*ax == 1)
188                 maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
189                             (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
190                             (1 << X86_FEATURE_MCE)  |  /* disable MCE */
191                             (1 << X86_FEATURE_MCA)  |  /* disable MCA */
192                             (1 << X86_FEATURE_ACC));   /* thermal monitoring */
193
194         asm(XEN_EMULATE_PREFIX "cpuid"
195                 : "=a" (*ax),
196                   "=b" (*bx),
197                   "=c" (*cx),
198                   "=d" (*dx)
199                 : "0" (*ax), "2" (*cx));
200         *dx &= maskedx;
201 }
202
203 static void xen_set_debugreg(int reg, unsigned long val)
204 {
205         HYPERVISOR_set_debugreg(reg, val);
206 }
207
208 static unsigned long xen_get_debugreg(int reg)
209 {
210         return HYPERVISOR_get_debugreg(reg);
211 }
212
213 static unsigned long xen_save_fl(void)
214 {
215         struct vcpu_info *vcpu;
216         unsigned long flags;
217
218         vcpu = x86_read_percpu(xen_vcpu);
219
220         /* flag has opposite sense of mask */
221         flags = !vcpu->evtchn_upcall_mask;
222
223         /* convert to IF type flag
224            -0 -> 0x00000000
225            -1 -> 0xffffffff
226         */
227         return (-flags) & X86_EFLAGS_IF;
228 }
229
230 static void xen_restore_fl(unsigned long flags)
231 {
232         struct vcpu_info *vcpu;
233
234         /* convert from IF type flag */
235         flags = !(flags & X86_EFLAGS_IF);
236
237         /* There's a one instruction preempt window here.  We need to
238            make sure we're don't switch CPUs between getting the vcpu
239            pointer and updating the mask. */
240         preempt_disable();
241         vcpu = x86_read_percpu(xen_vcpu);
242         vcpu->evtchn_upcall_mask = flags;
243         preempt_enable_no_resched();
244
245         /* Doesn't matter if we get preempted here, because any
246            pending event will get dealt with anyway. */
247
248         if (flags == 0) {
249                 preempt_check_resched();
250                 barrier(); /* unmask then check (avoid races) */
251                 if (unlikely(vcpu->evtchn_upcall_pending))
252                         force_evtchn_callback();
253         }
254 }
255
256 static void xen_irq_disable(void)
257 {
258         /* There's a one instruction preempt window here.  We need to
259            make sure we're don't switch CPUs between getting the vcpu
260            pointer and updating the mask. */
261         preempt_disable();
262         x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
263         preempt_enable_no_resched();
264 }
265
266 static void xen_irq_enable(void)
267 {
268         struct vcpu_info *vcpu;
269
270         /* We don't need to worry about being preempted here, since
271            either a) interrupts are disabled, so no preemption, or b)
272            the caller is confused and is trying to re-enable interrupts
273            on an indeterminate processor. */
274
275         vcpu = x86_read_percpu(xen_vcpu);
276         vcpu->evtchn_upcall_mask = 0;
277
278         /* Doesn't matter if we get preempted here, because any
279            pending event will get dealt with anyway. */
280
281         barrier(); /* unmask then check (avoid races) */
282         if (unlikely(vcpu->evtchn_upcall_pending))
283                 force_evtchn_callback();
284 }
285
286 static void xen_safe_halt(void)
287 {
288         /* Blocking includes an implicit local_irq_enable(). */
289         if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
290                 BUG();
291 }
292
293 static void xen_halt(void)
294 {
295         if (irqs_disabled())
296                 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
297         else
298                 xen_safe_halt();
299 }
300
301 static void xen_leave_lazy(void)
302 {
303         paravirt_leave_lazy(paravirt_get_lazy_mode());
304         xen_mc_flush();
305 }
306
307 static unsigned long xen_store_tr(void)
308 {
309         return 0;
310 }
311
312 static void xen_set_ldt(const void *addr, unsigned entries)
313 {
314         struct mmuext_op *op;
315         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
316
317         op = mcs.args;
318         op->cmd = MMUEXT_SET_LDT;
319         op->arg1.linear_addr = (unsigned long)addr;
320         op->arg2.nr_ents = entries;
321
322         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
323
324         xen_mc_issue(PARAVIRT_LAZY_CPU);
325 }
326
327 static void xen_load_gdt(const struct desc_ptr *dtr)
328 {
329         unsigned long *frames;
330         unsigned long va = dtr->address;
331         unsigned int size = dtr->size + 1;
332         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
333         int f;
334         struct multicall_space mcs;
335
336         /* A GDT can be up to 64k in size, which corresponds to 8192
337            8-byte entries, or 16 4k pages.. */
338
339         BUG_ON(size > 65536);
340         BUG_ON(va & ~PAGE_MASK);
341
342         mcs = xen_mc_entry(sizeof(*frames) * pages);
343         frames = mcs.args;
344
345         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
346                 frames[f] = virt_to_mfn(va);
347                 make_lowmem_page_readonly((void *)va);
348         }
349
350         MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
351
352         xen_mc_issue(PARAVIRT_LAZY_CPU);
353 }
354
355 static void load_TLS_descriptor(struct thread_struct *t,
356                                 unsigned int cpu, unsigned int i)
357 {
358         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
359         xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
360         struct multicall_space mc = __xen_mc_entry(0);
361
362         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
363 }
364
365 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
366 {
367         xen_mc_batch();
368
369         load_TLS_descriptor(t, cpu, 0);
370         load_TLS_descriptor(t, cpu, 1);
371         load_TLS_descriptor(t, cpu, 2);
372
373         xen_mc_issue(PARAVIRT_LAZY_CPU);
374
375         /*
376          * XXX sleazy hack: If we're being called in a lazy-cpu zone,
377          * it means we're in a context switch, and %gs has just been
378          * saved.  This means we can zero it out to prevent faults on
379          * exit from the hypervisor if the next process has no %gs.
380          * Either way, it has been saved, and the new value will get
381          * loaded properly.  This will go away as soon as Xen has been
382          * modified to not save/restore %gs for normal hypercalls.
383          */
384         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
385                 loadsegment(gs, 0);
386 }
387
388 #ifdef CONFIG_X86_64
389 static void xen_load_gs_index(unsigned int idx)
390 {
391         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
392                 BUG();
393 }
394 #endif
395
396 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
397                                 const void *ptr)
398 {
399         unsigned long lp = (unsigned long)&dt[entrynum];
400         xmaddr_t mach_lp = virt_to_machine(lp);
401         u64 entry = *(u64 *)ptr;
402
403         preempt_disable();
404
405         xen_mc_flush();
406         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
407                 BUG();
408
409         preempt_enable();
410 }
411
412 static int cvt_gate_to_trap(int vector, const gate_desc *val,
413                             struct trap_info *info)
414 {
415         if (val->type != 0xf && val->type != 0xe)
416                 return 0;
417
418         info->vector = vector;
419         info->address = gate_offset(*val);
420         info->cs = gate_segment(*val);
421         info->flags = val->dpl;
422         /* interrupt gates clear IF */
423         if (val->type == 0xe)
424                 info->flags |= 4;
425
426         return 1;
427 }
428
429 /* Locations of each CPU's IDT */
430 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
431
432 /* Set an IDT entry.  If the entry is part of the current IDT, then
433    also update Xen. */
434 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
435 {
436         unsigned long p = (unsigned long)&dt[entrynum];
437         unsigned long start, end;
438
439         preempt_disable();
440
441         start = __get_cpu_var(idt_desc).address;
442         end = start + __get_cpu_var(idt_desc).size + 1;
443
444         xen_mc_flush();
445
446         native_write_idt_entry(dt, entrynum, g);
447
448         if (p >= start && (p + 8) <= end) {
449                 struct trap_info info[2];
450
451                 info[1].address = 0;
452
453                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
454                         if (HYPERVISOR_set_trap_table(info))
455                                 BUG();
456         }
457
458         preempt_enable();
459 }
460
461 static void xen_convert_trap_info(const struct desc_ptr *desc,
462                                   struct trap_info *traps)
463 {
464         unsigned in, out, count;
465
466         count = (desc->size+1) / sizeof(gate_desc);
467         BUG_ON(count > 256);
468
469         for (in = out = 0; in < count; in++) {
470                 gate_desc *entry = (gate_desc*)(desc->address) + in;
471
472                 if (cvt_gate_to_trap(in, entry, &traps[out]))
473                         out++;
474         }
475         traps[out].address = 0;
476 }
477
478 void xen_copy_trap_info(struct trap_info *traps)
479 {
480         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
481
482         xen_convert_trap_info(desc, traps);
483 }
484
485 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
486    hold a spinlock to protect the static traps[] array (static because
487    it avoids allocation, and saves stack space). */
488 static void xen_load_idt(const struct desc_ptr *desc)
489 {
490         static DEFINE_SPINLOCK(lock);
491         static struct trap_info traps[257];
492
493         spin_lock(&lock);
494
495         __get_cpu_var(idt_desc) = *desc;
496
497         xen_convert_trap_info(desc, traps);
498
499         xen_mc_flush();
500         if (HYPERVISOR_set_trap_table(traps))
501                 BUG();
502
503         spin_unlock(&lock);
504 }
505
506 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
507    they're handled differently. */
508 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
509                                 const void *desc, int type)
510 {
511         preempt_disable();
512
513         switch (type) {
514         case DESC_LDT:
515         case DESC_TSS:
516                 /* ignore */
517                 break;
518
519         default: {
520                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
521
522                 xen_mc_flush();
523                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
524                         BUG();
525         }
526
527         }
528
529         preempt_enable();
530 }
531
532 static void xen_load_sp0(struct tss_struct *tss,
533                           struct thread_struct *thread)
534 {
535         struct multicall_space mcs = xen_mc_entry(0);
536         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
537         xen_mc_issue(PARAVIRT_LAZY_CPU);
538 }
539
540 static void xen_set_iopl_mask(unsigned mask)
541 {
542         struct physdev_set_iopl set_iopl;
543
544         /* Force the change at ring 0. */
545         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
546         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
547 }
548
549 static void xen_io_delay(void)
550 {
551 }
552
553 #ifdef CONFIG_X86_LOCAL_APIC
554 static u32 xen_apic_read(unsigned long reg)
555 {
556         return 0;
557 }
558
559 static void xen_apic_write(unsigned long reg, u32 val)
560 {
561         /* Warn to see if there's any stray references */
562         WARN_ON(1);
563 }
564 #endif
565
566 static void xen_flush_tlb(void)
567 {
568         struct mmuext_op *op;
569         struct multicall_space mcs;
570
571         preempt_disable();
572
573         mcs = xen_mc_entry(sizeof(*op));
574
575         op = mcs.args;
576         op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
577         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
578
579         xen_mc_issue(PARAVIRT_LAZY_MMU);
580
581         preempt_enable();
582 }
583
584 static void xen_flush_tlb_single(unsigned long addr)
585 {
586         struct mmuext_op *op;
587         struct multicall_space mcs;
588
589         preempt_disable();
590
591         mcs = xen_mc_entry(sizeof(*op));
592         op = mcs.args;
593         op->cmd = MMUEXT_INVLPG_LOCAL;
594         op->arg1.linear_addr = addr & PAGE_MASK;
595         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
596
597         xen_mc_issue(PARAVIRT_LAZY_MMU);
598
599         preempt_enable();
600 }
601
602 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
603                                  unsigned long va)
604 {
605         struct {
606                 struct mmuext_op op;
607                 cpumask_t mask;
608         } *args;
609         cpumask_t cpumask = *cpus;
610         struct multicall_space mcs;
611
612         /*
613          * A couple of (to be removed) sanity checks:
614          *
615          * - current CPU must not be in mask
616          * - mask must exist :)
617          */
618         BUG_ON(cpus_empty(cpumask));
619         BUG_ON(cpu_isset(smp_processor_id(), cpumask));
620         BUG_ON(!mm);
621
622         /* If a CPU which we ran on has gone down, OK. */
623         cpus_and(cpumask, cpumask, cpu_online_map);
624         if (cpus_empty(cpumask))
625                 return;
626
627         mcs = xen_mc_entry(sizeof(*args));
628         args = mcs.args;
629         args->mask = cpumask;
630         args->op.arg2.vcpumask = &args->mask;
631
632         if (va == TLB_FLUSH_ALL) {
633                 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
634         } else {
635                 args->op.cmd = MMUEXT_INVLPG_MULTI;
636                 args->op.arg1.linear_addr = va;
637         }
638
639         MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
640
641         xen_mc_issue(PARAVIRT_LAZY_MMU);
642 }
643
644 static void xen_clts(void)
645 {
646         struct multicall_space mcs;
647
648         mcs = xen_mc_entry(0);
649
650         MULTI_fpu_taskswitch(mcs.mc, 0);
651
652         xen_mc_issue(PARAVIRT_LAZY_CPU);
653 }
654
655 static void xen_write_cr0(unsigned long cr0)
656 {
657         struct multicall_space mcs;
658
659         /* Only pay attention to cr0.TS; everything else is
660            ignored. */
661         mcs = xen_mc_entry(0);
662
663         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
664
665         xen_mc_issue(PARAVIRT_LAZY_CPU);
666 }
667
668 static void xen_write_cr2(unsigned long cr2)
669 {
670         x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
671 }
672
673 static unsigned long xen_read_cr2(void)
674 {
675         return x86_read_percpu(xen_vcpu)->arch.cr2;
676 }
677
678 static unsigned long xen_read_cr2_direct(void)
679 {
680         return x86_read_percpu(xen_vcpu_info.arch.cr2);
681 }
682
683 static void xen_write_cr4(unsigned long cr4)
684 {
685         cr4 &= ~X86_CR4_PGE;
686         cr4 &= ~X86_CR4_PSE;
687
688         native_write_cr4(cr4);
689 }
690
691 static unsigned long xen_read_cr3(void)
692 {
693         return x86_read_percpu(xen_cr3);
694 }
695
696 static void set_current_cr3(void *v)
697 {
698         x86_write_percpu(xen_current_cr3, (unsigned long)v);
699 }
700
701 static void xen_write_cr3(unsigned long cr3)
702 {
703         struct mmuext_op *op;
704         struct multicall_space mcs;
705         unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
706
707         BUG_ON(preemptible());
708
709         mcs = xen_mc_entry(sizeof(*op));  /* disables interrupts */
710
711         /* Update while interrupts are disabled, so its atomic with
712            respect to ipis */
713         x86_write_percpu(xen_cr3, cr3);
714
715         op = mcs.args;
716         op->cmd = MMUEXT_NEW_BASEPTR;
717         op->arg1.mfn = mfn;
718
719         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
720
721         /* Update xen_update_cr3 once the batch has actually
722            been submitted. */
723         xen_mc_callback(set_current_cr3, (void *)cr3);
724
725         xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
726 }
727
728 /* Early in boot, while setting up the initial pagetable, assume
729    everything is pinned. */
730 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
731 {
732 #ifdef CONFIG_FLATMEM
733         BUG_ON(mem_map);        /* should only be used early */
734 #endif
735         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
736 }
737
738 /* Early release_pte assumes that all pts are pinned, since there's
739    only init_mm and anything attached to that is pinned. */
740 static void xen_release_pte_init(u32 pfn)
741 {
742         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
743 }
744
745 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
746 {
747         struct mmuext_op op;
748         op.cmd = cmd;
749         op.arg1.mfn = pfn_to_mfn(pfn);
750         if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
751                 BUG();
752 }
753
754 /* This needs to make sure the new pte page is pinned iff its being
755    attached to a pinned pagetable. */
756 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
757 {
758         struct page *page = pfn_to_page(pfn);
759
760         if (PagePinned(virt_to_page(mm->pgd))) {
761                 SetPagePinned(page);
762
763                 if (!PageHighMem(page)) {
764                         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
765                         if (level == PT_PTE)
766                                 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
767                 } else
768                         /* make sure there are no stray mappings of
769                            this page */
770                         kmap_flush_unused();
771         }
772 }
773
774 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
775 {
776         xen_alloc_ptpage(mm, pfn, PT_PTE);
777 }
778
779 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
780 {
781         xen_alloc_ptpage(mm, pfn, PT_PMD);
782 }
783
784 /* This should never happen until we're OK to use struct page */
785 static void xen_release_ptpage(u32 pfn, unsigned level)
786 {
787         struct page *page = pfn_to_page(pfn);
788
789         if (PagePinned(page)) {
790                 if (!PageHighMem(page)) {
791                         if (level == PT_PTE)
792                                 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
793                         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
794                 }
795                 ClearPagePinned(page);
796         }
797 }
798
799 static void xen_release_pte(u32 pfn)
800 {
801         xen_release_ptpage(pfn, PT_PTE);
802 }
803
804 static void xen_release_pmd(u32 pfn)
805 {
806         xen_release_ptpage(pfn, PT_PMD);
807 }
808
809 #if PAGETABLE_LEVELS == 4
810 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
811 {
812         xen_alloc_ptpage(mm, pfn, PT_PUD);
813 }
814
815 static void xen_release_pud(u32 pfn)
816 {
817         xen_release_ptpage(pfn, PT_PUD);
818 }
819 #endif
820
821 #ifdef CONFIG_HIGHPTE
822 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
823 {
824         pgprot_t prot = PAGE_KERNEL;
825
826         if (PagePinned(page))
827                 prot = PAGE_KERNEL_RO;
828
829         if (0 && PageHighMem(page))
830                 printk("mapping highpte %lx type %d prot %s\n",
831                        page_to_pfn(page), type,
832                        (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
833
834         return kmap_atomic_prot(page, type, prot);
835 }
836 #endif
837
838 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
839 {
840         /* If there's an existing pte, then don't allow _PAGE_RW to be set */
841         if (pte_val_ma(*ptep) & _PAGE_PRESENT)
842                 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
843                                pte_val_ma(pte));
844
845         return pte;
846 }
847
848 /* Init-time set_pte while constructing initial pagetables, which
849    doesn't allow RO pagetable pages to be remapped RW */
850 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
851 {
852         pte = mask_rw_pte(ptep, pte);
853
854         xen_set_pte(ptep, pte);
855 }
856
857 static __init void xen_pagetable_setup_start(pgd_t *base)
858 {
859 }
860
861 void xen_setup_shared_info(void)
862 {
863         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
864                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
865                            xen_start_info->shared_info);
866
867                 HYPERVISOR_shared_info =
868                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
869         } else
870                 HYPERVISOR_shared_info =
871                         (struct shared_info *)__va(xen_start_info->shared_info);
872
873 #ifndef CONFIG_SMP
874         /* In UP this is as good a place as any to set up shared info */
875         xen_setup_vcpu_info_placement();
876 #endif
877
878         xen_setup_mfn_list_list();
879 }
880
881 static __init void xen_pagetable_setup_done(pgd_t *base)
882 {
883         xen_setup_shared_info();
884 }
885
886 static __init void xen_post_allocator_init(void)
887 {
888         pv_mmu_ops.set_pte = xen_set_pte;
889         pv_mmu_ops.set_pmd = xen_set_pmd;
890         pv_mmu_ops.set_pud = xen_set_pud;
891 #if PAGETABLE_LEVELS == 4
892         pv_mmu_ops.set_pgd = xen_set_pgd;
893 #endif
894
895         /* This will work as long as patching hasn't happened yet
896            (which it hasn't) */
897         pv_mmu_ops.alloc_pte = xen_alloc_pte;
898         pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
899         pv_mmu_ops.release_pte = xen_release_pte;
900         pv_mmu_ops.release_pmd = xen_release_pmd;
901 #if PAGETABLE_LEVELS == 4
902         pv_mmu_ops.alloc_pud = xen_alloc_pud;
903         pv_mmu_ops.release_pud = xen_release_pud;
904 #endif
905
906         xen_mark_init_mm_pinned();
907 }
908
909 /* This is called once we have the cpu_possible_map */
910 void xen_setup_vcpu_info_placement(void)
911 {
912         int cpu;
913
914         for_each_possible_cpu(cpu)
915                 xen_vcpu_setup(cpu);
916
917         /* xen_vcpu_setup managed to place the vcpu_info within the
918            percpu area for all cpus, so make use of it */
919 #ifdef CONFIG_X86_32
920         if (have_vcpu_info_placement) {
921                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
922
923                 pv_irq_ops.save_fl = xen_save_fl_direct;
924                 pv_irq_ops.restore_fl = xen_restore_fl_direct;
925                 pv_irq_ops.irq_disable = xen_irq_disable_direct;
926                 pv_irq_ops.irq_enable = xen_irq_enable_direct;
927                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
928         }
929 #endif
930 }
931
932 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
933                           unsigned long addr, unsigned len)
934 {
935         char *start, *end, *reloc;
936         unsigned ret;
937
938         start = end = reloc = NULL;
939
940 #define SITE(op, x)                                                     \
941         case PARAVIRT_PATCH(op.x):                                      \
942         if (have_vcpu_info_placement) {                                 \
943                 start = (char *)xen_##x##_direct;                       \
944                 end = xen_##x##_direct_end;                             \
945                 reloc = xen_##x##_direct_reloc;                         \
946         }                                                               \
947         goto patch_site
948
949         switch (type) {
950 #ifdef CONFIG_X86_32
951                 SITE(pv_irq_ops, irq_enable);
952                 SITE(pv_irq_ops, irq_disable);
953                 SITE(pv_irq_ops, save_fl);
954                 SITE(pv_irq_ops, restore_fl);
955 #endif /* CONFIG_X86_32 */
956 #undef SITE
957
958         patch_site:
959                 if (start == NULL || (end-start) > len)
960                         goto default_patch;
961
962                 ret = paravirt_patch_insns(insnbuf, len, start, end);
963
964                 /* Note: because reloc is assigned from something that
965                    appears to be an array, gcc assumes it's non-null,
966                    but doesn't know its relationship with start and
967                    end. */
968                 if (reloc > start && reloc < end) {
969                         int reloc_off = reloc - start;
970                         long *relocp = (long *)(insnbuf + reloc_off);
971                         long delta = start - (char *)addr;
972
973                         *relocp += delta;
974                 }
975                 break;
976
977         default_patch:
978         default:
979                 ret = paravirt_patch_default(type, clobbers, insnbuf,
980                                              addr, len);
981                 break;
982         }
983
984         return ret;
985 }
986
987 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
988 {
989         pte_t pte;
990
991         phys >>= PAGE_SHIFT;
992
993         switch (idx) {
994         case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
995 #ifdef CONFIG_X86_F00F_BUG
996         case FIX_F00F_IDT:
997 #endif
998 #ifdef CONFIG_X86_32
999         case FIX_WP_TEST:
1000         case FIX_VDSO:
1001         case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1002 #else
1003         case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1004 #endif
1005 #ifdef CONFIG_X86_LOCAL_APIC
1006         case FIX_APIC_BASE:     /* maps dummy local APIC */
1007 #endif
1008                 pte = pfn_pte(phys, prot);
1009                 break;
1010
1011         default:
1012                 pte = mfn_pte(phys, prot);
1013                 break;
1014         }
1015
1016         __native_set_fixmap(idx, pte);
1017 }
1018
1019 static const struct pv_info xen_info __initdata = {
1020         .paravirt_enabled = 1,
1021         .shared_kernel_pmd = 0,
1022
1023         .name = "Xen",
1024 };
1025
1026 static const struct pv_init_ops xen_init_ops __initdata = {
1027         .patch = xen_patch,
1028
1029         .banner = xen_banner,
1030         .memory_setup = xen_memory_setup,
1031         .arch_setup = xen_arch_setup,
1032         .post_allocator_init = xen_post_allocator_init,
1033 };
1034
1035 static const struct pv_time_ops xen_time_ops __initdata = {
1036         .time_init = xen_time_init,
1037
1038         .set_wallclock = xen_set_wallclock,
1039         .get_wallclock = xen_get_wallclock,
1040         .get_tsc_khz = xen_tsc_khz,
1041         .sched_clock = xen_sched_clock,
1042 };
1043
1044 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1045         .cpuid = xen_cpuid,
1046
1047         .set_debugreg = xen_set_debugreg,
1048         .get_debugreg = xen_get_debugreg,
1049
1050         .clts = xen_clts,
1051
1052         .read_cr0 = native_read_cr0,
1053         .write_cr0 = xen_write_cr0,
1054
1055         .read_cr4 = native_read_cr4,
1056         .read_cr4_safe = native_read_cr4_safe,
1057         .write_cr4 = xen_write_cr4,
1058
1059         .wbinvd = native_wbinvd,
1060
1061         .read_msr = native_read_msr_safe,
1062         .write_msr = native_write_msr_safe,
1063         .read_tsc = native_read_tsc,
1064         .read_pmc = native_read_pmc,
1065
1066         .iret = xen_iret,
1067         .irq_enable_sysexit = xen_sysexit,
1068
1069         .load_tr_desc = paravirt_nop,
1070         .set_ldt = xen_set_ldt,
1071         .load_gdt = xen_load_gdt,
1072         .load_idt = xen_load_idt,
1073         .load_tls = xen_load_tls,
1074 #ifdef CONFIG_X86_64
1075         .load_gs_index = xen_load_gs_index,
1076 #endif
1077
1078         .store_gdt = native_store_gdt,
1079         .store_idt = native_store_idt,
1080         .store_tr = xen_store_tr,
1081
1082         .write_ldt_entry = xen_write_ldt_entry,
1083         .write_gdt_entry = xen_write_gdt_entry,
1084         .write_idt_entry = xen_write_idt_entry,
1085         .load_sp0 = xen_load_sp0,
1086
1087         .set_iopl_mask = xen_set_iopl_mask,
1088         .io_delay = xen_io_delay,
1089
1090         /* Xen takes care of %gs when switching to usermode for us */
1091         .swapgs = paravirt_nop,
1092
1093         .lazy_mode = {
1094                 .enter = paravirt_enter_lazy_cpu,
1095                 .leave = xen_leave_lazy,
1096         },
1097 };
1098
1099 static void __init __xen_init_IRQ(void)
1100 {
1101 #ifdef CONFIG_X86_64
1102         int i;
1103
1104         /* Create identity vector->irq map */
1105         for(i = 0; i < NR_VECTORS; i++) {
1106                 int cpu;
1107
1108                 for_each_possible_cpu(cpu)
1109                         per_cpu(vector_irq, cpu)[i] = i;
1110         }
1111 #endif  /* CONFIG_X86_64 */
1112
1113         xen_init_IRQ();
1114 }
1115
1116 static const struct pv_irq_ops xen_irq_ops __initdata = {
1117         .init_IRQ = __xen_init_IRQ,
1118         .save_fl = xen_save_fl,
1119         .restore_fl = xen_restore_fl,
1120         .irq_disable = xen_irq_disable,
1121         .irq_enable = xen_irq_enable,
1122         .safe_halt = xen_safe_halt,
1123         .halt = xen_halt,
1124 #ifdef CONFIG_X86_64
1125         .adjust_exception_frame = xen_adjust_exception_frame,
1126 #endif
1127 };
1128
1129 static const struct pv_apic_ops xen_apic_ops __initdata = {
1130 #ifdef CONFIG_X86_LOCAL_APIC
1131         .apic_write = xen_apic_write,
1132         .apic_write_atomic = xen_apic_write,
1133         .apic_read = xen_apic_read,
1134         .setup_boot_clock = paravirt_nop,
1135         .setup_secondary_clock = paravirt_nop,
1136         .startup_ipi_hook = paravirt_nop,
1137 #endif
1138 };
1139
1140 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1141         .pagetable_setup_start = xen_pagetable_setup_start,
1142         .pagetable_setup_done = xen_pagetable_setup_done,
1143
1144         .read_cr2 = xen_read_cr2,
1145         .write_cr2 = xen_write_cr2,
1146
1147         .read_cr3 = xen_read_cr3,
1148         .write_cr3 = xen_write_cr3,
1149
1150         .flush_tlb_user = xen_flush_tlb,
1151         .flush_tlb_kernel = xen_flush_tlb,
1152         .flush_tlb_single = xen_flush_tlb_single,
1153         .flush_tlb_others = xen_flush_tlb_others,
1154
1155         .pte_update = paravirt_nop,
1156         .pte_update_defer = paravirt_nop,
1157
1158         .pgd_alloc = __paravirt_pgd_alloc,
1159         .pgd_free = paravirt_nop,
1160
1161         .alloc_pte = xen_alloc_pte_init,
1162         .release_pte = xen_release_pte_init,
1163         .alloc_pmd = xen_alloc_pte_init,
1164         .alloc_pmd_clone = paravirt_nop,
1165         .release_pmd = xen_release_pte_init,
1166
1167 #ifdef CONFIG_HIGHPTE
1168         .kmap_atomic_pte = xen_kmap_atomic_pte,
1169 #endif
1170
1171 #ifdef CONFIG_X86_64
1172         .set_pte = xen_set_pte,
1173 #else
1174         .set_pte = xen_set_pte_init,
1175 #endif
1176         .set_pte_at = xen_set_pte_at,
1177         .set_pmd = xen_set_pmd_hyper,
1178
1179         .ptep_modify_prot_start = __ptep_modify_prot_start,
1180         .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1181
1182         .pte_val = xen_pte_val,
1183         .pte_flags = native_pte_val,
1184         .pgd_val = xen_pgd_val,
1185
1186         .make_pte = xen_make_pte,
1187         .make_pgd = xen_make_pgd,
1188
1189 #ifdef CONFIG_X86_PAE
1190         .set_pte_atomic = xen_set_pte_atomic,
1191         .set_pte_present = xen_set_pte_at,
1192         .pte_clear = xen_pte_clear,
1193         .pmd_clear = xen_pmd_clear,
1194 #endif  /* CONFIG_X86_PAE */
1195         .set_pud = xen_set_pud_hyper,
1196
1197         .make_pmd = xen_make_pmd,
1198         .pmd_val = xen_pmd_val,
1199
1200 #if PAGETABLE_LEVELS == 4
1201         .pud_val = xen_pud_val,
1202         .make_pud = xen_make_pud,
1203         .set_pgd = xen_set_pgd_hyper,
1204
1205         .alloc_pud = xen_alloc_pte_init,
1206         .release_pud = xen_release_pte_init,
1207 #endif  /* PAGETABLE_LEVELS == 4 */
1208
1209         .activate_mm = xen_activate_mm,
1210         .dup_mmap = xen_dup_mmap,
1211         .exit_mmap = xen_exit_mmap,
1212
1213         .lazy_mode = {
1214                 .enter = paravirt_enter_lazy_mmu,
1215                 .leave = xen_leave_lazy,
1216         },
1217
1218         .set_fixmap = xen_set_fixmap,
1219 };
1220
1221 static void xen_reboot(int reason)
1222 {
1223         struct sched_shutdown r = { .reason = reason };
1224
1225 #ifdef CONFIG_SMP
1226         smp_send_stop();
1227 #endif
1228
1229         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1230                 BUG();
1231 }
1232
1233 static void xen_restart(char *msg)
1234 {
1235         xen_reboot(SHUTDOWN_reboot);
1236 }
1237
1238 static void xen_emergency_restart(void)
1239 {
1240         xen_reboot(SHUTDOWN_reboot);
1241 }
1242
1243 static void xen_machine_halt(void)
1244 {
1245         xen_reboot(SHUTDOWN_poweroff);
1246 }
1247
1248 static void xen_crash_shutdown(struct pt_regs *regs)
1249 {
1250         xen_reboot(SHUTDOWN_crash);
1251 }
1252
1253 static const struct machine_ops __initdata xen_machine_ops = {
1254         .restart = xen_restart,
1255         .halt = xen_machine_halt,
1256         .power_off = xen_machine_halt,
1257         .shutdown = xen_machine_halt,
1258         .crash_shutdown = xen_crash_shutdown,
1259         .emergency_restart = xen_emergency_restart,
1260 };
1261
1262
1263 static void __init xen_reserve_top(void)
1264 {
1265 #ifdef CONFIG_X86_32
1266         unsigned long top = HYPERVISOR_VIRT_START;
1267         struct xen_platform_parameters pp;
1268
1269         if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1270                 top = pp.virt_start;
1271
1272         reserve_top_address(-top + 2 * PAGE_SIZE);
1273 #endif  /* CONFIG_X86_32 */
1274 }
1275
1276 /*
1277  * Like __va(), but returns address in the kernel mapping (which is
1278  * all we have until the physical memory mapping has been set up.
1279  */
1280 static void *__ka(phys_addr_t paddr)
1281 {
1282 #ifdef CONFIG_X86_64
1283         return (void *)(paddr + __START_KERNEL_map);
1284 #else
1285         return __va(paddr);
1286 #endif
1287 }
1288
1289 /* Convert a machine address to physical address */
1290 static unsigned long m2p(phys_addr_t maddr)
1291 {
1292         phys_addr_t paddr;
1293
1294         maddr &= PTE_MASK;
1295         paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1296
1297         return paddr;
1298 }
1299
1300 /* Convert a machine address to kernel virtual */
1301 static void *m2v(phys_addr_t maddr)
1302 {
1303         return __ka(m2p(maddr));
1304 }
1305
1306 #ifdef CONFIG_X86_64
1307 static void walk(pgd_t *pgd, unsigned long addr)
1308 {
1309         unsigned l4idx = pgd_index(addr);
1310         unsigned l3idx = pud_index(addr);
1311         unsigned l2idx = pmd_index(addr);
1312         unsigned l1idx = pte_index(addr);
1313         pgd_t l4;
1314         pud_t l3;
1315         pmd_t l2;
1316         pte_t l1;
1317
1318         xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1319                        pgd, addr, l4idx, l3idx, l2idx, l1idx);
1320
1321         l4 = pgd[l4idx];
1322         xen_raw_printk("  l4: %016lx\n", l4.pgd);
1323         xen_raw_printk("      %016lx\n", pgd_val(l4));
1324
1325         l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1326         xen_raw_printk("  l3: %016lx\n", l3.pud);
1327         xen_raw_printk("      %016lx\n", pud_val(l3));
1328
1329         l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1330         xen_raw_printk("  l2: %016lx\n", l2.pmd);
1331         xen_raw_printk("      %016lx\n", pmd_val(l2));
1332
1333         l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1334         xen_raw_printk("  l1: %016lx\n", l1.pte);
1335         xen_raw_printk("      %016lx\n", pte_val(l1));
1336 }
1337 #endif
1338
1339 static void set_page_prot(void *addr, pgprot_t prot)
1340 {
1341         unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1342         pte_t pte = pfn_pte(pfn, prot);
1343
1344         xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1345                        addr, pfn, get_phys_to_machine(pfn),
1346                        pgprot_val(prot), pte.pte);
1347
1348         if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1349                 BUG();
1350 }
1351
1352 /*
1353  * Identity map, in addition to plain kernel map.  This needs to be
1354  * large enough to allocate page table pages to allocate the rest.
1355  * Each page can map 2MB.
1356  */
1357 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
1358
1359 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1360 {
1361         unsigned pmdidx, pteidx;
1362         unsigned ident_pte;
1363         unsigned long pfn;
1364
1365         ident_pte = 0;
1366         pfn = 0;
1367         for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1368                 pte_t *pte_page;
1369
1370                 /* Reuse or allocate a page of ptes */
1371                 if (pmd_present(pmd[pmdidx]))
1372                         pte_page = m2v(pmd[pmdidx].pmd);
1373                 else {
1374                         /* Check for free pte pages */
1375                         if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1376                                 break;
1377
1378                         pte_page = &level1_ident_pgt[ident_pte];
1379                         ident_pte += PTRS_PER_PTE;
1380
1381                         pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1382                 }
1383
1384                 /* Install mappings */
1385                 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1386                         pte_t pte;
1387
1388                         if (pfn > max_pfn_mapped)
1389                                 max_pfn_mapped = pfn;
1390
1391                         if (!pte_none(pte_page[pteidx]))
1392                                 continue;
1393
1394                         pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1395                         pte_page[pteidx] = pte;
1396                 }
1397         }
1398
1399         for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1400                 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1401
1402         set_page_prot(pmd, PAGE_KERNEL_RO);
1403 }
1404
1405 #ifdef CONFIG_X86_64
1406 static void convert_pfn_mfn(void *v)
1407 {
1408         pte_t *pte = v;
1409         int i;
1410
1411         /* All levels are converted the same way, so just treat them
1412            as ptes. */
1413         for(i = 0; i < PTRS_PER_PTE; i++)
1414                 pte[i] = xen_make_pte(pte[i].pte);
1415 }
1416
1417 /*
1418  * Set up the inital kernel pagetable.
1419  *
1420  * We can construct this by grafting the Xen provided pagetable into
1421  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1422  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1423  * means that only the kernel has a physical mapping to start with -
1424  * but that's enough to get __va working.  We need to fill in the rest
1425  * of the physical mapping once some sort of allocator has been set
1426  * up.
1427  */
1428 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1429 {
1430         pud_t *l3;
1431         pmd_t *l2;
1432
1433         /* Zap identity mapping */
1434         init_level4_pgt[0] = __pgd(0);
1435
1436         /* Pre-constructed entries are in pfn, so convert to mfn */
1437         convert_pfn_mfn(init_level4_pgt);
1438         convert_pfn_mfn(level3_ident_pgt);
1439         convert_pfn_mfn(level3_kernel_pgt);
1440
1441         l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1442         l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1443
1444         memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1445         memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1446
1447         l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1448         l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1449         memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1450
1451         /* Set up identity map */
1452         xen_map_identity_early(level2_ident_pgt, max_pfn);
1453
1454         /* Make pagetable pieces RO */
1455         set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1456         set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1457         set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1458         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1459         set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1460
1461         /* Pin down new L4 */
1462         pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1463                           PFN_DOWN(__pa_symbol(init_level4_pgt)));
1464
1465         /* Unpin Xen-provided one */
1466         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1467
1468         /* Switch over */
1469         pgd = init_level4_pgt;
1470         xen_write_cr3(__pa(pgd));
1471
1472         reserve_early(__pa(xen_start_info->pt_base),
1473                       __pa(xen_start_info->pt_base +
1474                            xen_start_info->nr_pt_frames * PAGE_SIZE),
1475                       "XEN PAGETABLES");
1476
1477         return pgd;
1478 }
1479 #else   /* !CONFIG_X86_64 */
1480 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1481
1482 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1483 {
1484         pmd_t *kernel_pmd;
1485
1486         init_pg_tables_start = __pa(pgd);
1487         init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1488         max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1489
1490         kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1491         memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1492
1493         xen_map_identity_early(level2_kernel_pgt, max_pfn);
1494
1495         memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1496         set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1497                         __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1498
1499         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1500         set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1501         set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1502
1503         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1504
1505         xen_write_cr3(__pa(swapper_pg_dir));
1506
1507         pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1508
1509         return swapper_pg_dir;
1510 }
1511 #endif  /* CONFIG_X86_64 */
1512
1513 /* First C function to be called on Xen boot */
1514 asmlinkage void __init xen_start_kernel(void)
1515 {
1516         pgd_t *pgd;
1517
1518         if (!xen_start_info)
1519                 return;
1520
1521         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1522
1523         xen_setup_features();
1524
1525         /* Install Xen paravirt ops */
1526         pv_info = xen_info;
1527         pv_init_ops = xen_init_ops;
1528         pv_time_ops = xen_time_ops;
1529         pv_cpu_ops = xen_cpu_ops;
1530         pv_irq_ops = xen_irq_ops;
1531         pv_apic_ops = xen_apic_ops;
1532         pv_mmu_ops = xen_mmu_ops;
1533
1534         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1535                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1536                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1537         }
1538
1539         machine_ops = xen_machine_ops;
1540
1541 #ifdef CONFIG_X86_64
1542         /* Disable until direct per-cpu data access. */
1543         have_vcpu_info_placement = 0;
1544         x86_64_init_pda();
1545 #endif
1546
1547         xen_smp_init();
1548
1549         /* Get mfn list */
1550         if (!xen_feature(XENFEAT_auto_translated_physmap))
1551                 xen_build_dynamic_phys_to_machine();
1552
1553         pgd = (pgd_t *)xen_start_info->pt_base;
1554
1555         /* Prevent unwanted bits from being set in PTEs. */
1556         __supported_pte_mask &= ~_PAGE_GLOBAL;
1557         if (!is_initial_xendomain())
1558                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1559
1560         /* Don't do the full vcpu_info placement stuff until we have a
1561            possible map and a non-dummy shared_info. */
1562         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1563
1564         xen_raw_console_write("mapping kernel into physical memory\n");
1565         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1566
1567         init_mm.pgd = pgd;
1568
1569         /* keep using Xen gdt for now; no urgent need to change it */
1570
1571         pv_info.kernel_rpl = 1;
1572         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1573                 pv_info.kernel_rpl = 0;
1574
1575         /* set the limit of our address space */
1576         xen_reserve_top();
1577
1578 #ifdef CONFIG_X86_32
1579         /* set up basic CPUID stuff */
1580         cpu_detect(&new_cpu_data);
1581         new_cpu_data.hard_math = 1;
1582         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1583 #endif
1584
1585         /* Poke various useful things into boot_params */
1586         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1587         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1588                 ? __pa(xen_start_info->mod_start) : 0;
1589         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1590         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1591
1592         if (!is_initial_xendomain()) {
1593                 add_preferred_console("xenboot", 0, NULL);
1594                 add_preferred_console("tty", 0, NULL);
1595                 add_preferred_console("hvc", 0, NULL);
1596         }
1597
1598         xen_raw_console_write("about to get started...\n");
1599
1600 #if 0
1601         xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1602                        &boot_params, __pa_symbol(&boot_params),
1603                        __va(__pa_symbol(&boot_params)));
1604
1605         walk(pgd, &boot_params);
1606         walk(pgd, __va(__pa(&boot_params)));
1607 #endif
1608
1609         /* Start the world */
1610 #ifdef CONFIG_X86_32
1611         i386_start_kernel();
1612 #else
1613         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1614 #endif
1615 }