Merge tag 'staging-3.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/events.h>
37 #include <xen/interface/xen.h>
38 #include <xen/interface/version.h>
39 #include <xen/interface/physdev.h>
40 #include <xen/interface/vcpu.h>
41 #include <xen/interface/memory.h>
42 #include <xen/interface/xen-mca.h>
43 #include <xen/features.h>
44 #include <xen/page.h>
45 #include <xen/hvm.h>
46 #include <xen/hvc-console.h>
47 #include <xen/acpi.h>
48
49 #include <asm/paravirt.h>
50 #include <asm/apic.h>
51 #include <asm/page.h>
52 #include <asm/xen/pci.h>
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/fixmap.h>
56 #include <asm/processor.h>
57 #include <asm/proto.h>
58 #include <asm/msr-index.h>
59 #include <asm/traps.h>
60 #include <asm/setup.h>
61 #include <asm/desc.h>
62 #include <asm/pgalloc.h>
63 #include <asm/pgtable.h>
64 #include <asm/tlbflush.h>
65 #include <asm/reboot.h>
66 #include <asm/stackprotector.h>
67 #include <asm/hypervisor.h>
68 #include <asm/mwait.h>
69 #include <asm/pci_x86.h>
70
71 #ifdef CONFIG_ACPI
72 #include <linux/acpi.h>
73 #include <asm/acpi.h>
74 #include <acpi/pdc_intel.h>
75 #include <acpi/processor.h>
76 #include <xen/interface/platform.h>
77 #endif
78
79 #include "xen-ops.h"
80 #include "mmu.h"
81 #include "smp.h"
82 #include "multicalls.h"
83
84 EXPORT_SYMBOL_GPL(hypercall_page);
85
86 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
87 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
88
89 enum xen_domain_type xen_domain_type = XEN_NATIVE;
90 EXPORT_SYMBOL_GPL(xen_domain_type);
91
92 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
93 EXPORT_SYMBOL(machine_to_phys_mapping);
94 unsigned long  machine_to_phys_nr;
95 EXPORT_SYMBOL(machine_to_phys_nr);
96
97 struct start_info *xen_start_info;
98 EXPORT_SYMBOL_GPL(xen_start_info);
99
100 struct shared_info xen_dummy_shared_info;
101
102 void *xen_initial_gdt;
103
104 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
105 __read_mostly int xen_have_vector_callback;
106 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
107
108 /*
109  * Point at some empty memory to start with. We map the real shared_info
110  * page as soon as fixmap is up and running.
111  */
112 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
113
114 /*
115  * Flag to determine whether vcpu info placement is available on all
116  * VCPUs.  We assume it is to start with, and then set it to zero on
117  * the first failure.  This is because it can succeed on some VCPUs
118  * and not others, since it can involve hypervisor memory allocation,
119  * or because the guest failed to guarantee all the appropriate
120  * constraints on all VCPUs (ie buffer can't cross a page boundary).
121  *
122  * Note that any particular CPU may be using a placed vcpu structure,
123  * but we can only optimise if the all are.
124  *
125  * 0: not available, 1: available
126  */
127 static int have_vcpu_info_placement = 1;
128
129 struct tls_descs {
130         struct desc_struct desc[3];
131 };
132
133 /*
134  * Updating the 3 TLS descriptors in the GDT on every task switch is
135  * surprisingly expensive so we avoid updating them if they haven't
136  * changed.  Since Xen writes different descriptors than the one
137  * passed in the update_descriptor hypercall we keep shadow copies to
138  * compare against.
139  */
140 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
141
142 static void clamp_max_cpus(void)
143 {
144 #ifdef CONFIG_SMP
145         if (setup_max_cpus > MAX_VIRT_CPUS)
146                 setup_max_cpus = MAX_VIRT_CPUS;
147 #endif
148 }
149
150 static void xen_vcpu_setup(int cpu)
151 {
152         struct vcpu_register_vcpu_info info;
153         int err;
154         struct vcpu_info *vcpup;
155
156         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
157
158         if (cpu < MAX_VIRT_CPUS)
159                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
160
161         if (!have_vcpu_info_placement) {
162                 if (cpu >= MAX_VIRT_CPUS)
163                         clamp_max_cpus();
164                 return;
165         }
166
167         vcpup = &per_cpu(xen_vcpu_info, cpu);
168         info.mfn = arbitrary_virt_to_mfn(vcpup);
169         info.offset = offset_in_page(vcpup);
170
171         /* Check to see if the hypervisor will put the vcpu_info
172            structure where we want it, which allows direct access via
173            a percpu-variable. */
174         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
175
176         if (err) {
177                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
178                 have_vcpu_info_placement = 0;
179                 clamp_max_cpus();
180         } else {
181                 /* This cpu is using the registered vcpu info, even if
182                    later ones fail to. */
183                 per_cpu(xen_vcpu, cpu) = vcpup;
184         }
185 }
186
187 /*
188  * On restore, set the vcpu placement up again.
189  * If it fails, then we're in a bad state, since
190  * we can't back out from using it...
191  */
192 void xen_vcpu_restore(void)
193 {
194         int cpu;
195
196         for_each_online_cpu(cpu) {
197                 bool other_cpu = (cpu != smp_processor_id());
198
199                 if (other_cpu &&
200                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
201                         BUG();
202
203                 xen_setup_runstate_info(cpu);
204
205                 if (have_vcpu_info_placement)
206                         xen_vcpu_setup(cpu);
207
208                 if (other_cpu &&
209                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
210                         BUG();
211         }
212 }
213
214 static void __init xen_banner(void)
215 {
216         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
217         struct xen_extraversion extra;
218         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
219
220         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
221                pv_info.name);
222         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
223                version >> 16, version & 0xffff, extra.extraversion,
224                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
225 }
226
227 #define CPUID_THERM_POWER_LEAF 6
228 #define APERFMPERF_PRESENT 0
229
230 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
231 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
232
233 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
234 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
235 static __read_mostly unsigned int cpuid_leaf5_edx_val;
236
237 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
238                       unsigned int *cx, unsigned int *dx)
239 {
240         unsigned maskebx = ~0;
241         unsigned maskecx = ~0;
242         unsigned maskedx = ~0;
243         unsigned setecx = 0;
244         /*
245          * Mask out inconvenient features, to try and disable as many
246          * unsupported kernel subsystems as possible.
247          */
248         switch (*ax) {
249         case 1:
250                 maskecx = cpuid_leaf1_ecx_mask;
251                 setecx = cpuid_leaf1_ecx_set_mask;
252                 maskedx = cpuid_leaf1_edx_mask;
253                 break;
254
255         case CPUID_MWAIT_LEAF:
256                 /* Synthesize the values.. */
257                 *ax = 0;
258                 *bx = 0;
259                 *cx = cpuid_leaf5_ecx_val;
260                 *dx = cpuid_leaf5_edx_val;
261                 return;
262
263         case CPUID_THERM_POWER_LEAF:
264                 /* Disabling APERFMPERF for kernel usage */
265                 maskecx = ~(1 << APERFMPERF_PRESENT);
266                 break;
267
268         case 0xb:
269                 /* Suppress extended topology stuff */
270                 maskebx = 0;
271                 break;
272         }
273
274         asm(XEN_EMULATE_PREFIX "cpuid"
275                 : "=a" (*ax),
276                   "=b" (*bx),
277                   "=c" (*cx),
278                   "=d" (*dx)
279                 : "0" (*ax), "2" (*cx));
280
281         *bx &= maskebx;
282         *cx &= maskecx;
283         *cx |= setecx;
284         *dx &= maskedx;
285
286 }
287
288 static bool __init xen_check_mwait(void)
289 {
290 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
291         !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
292         struct xen_platform_op op = {
293                 .cmd                    = XENPF_set_processor_pminfo,
294                 .u.set_pminfo.id        = -1,
295                 .u.set_pminfo.type      = XEN_PM_PDC,
296         };
297         uint32_t buf[3];
298         unsigned int ax, bx, cx, dx;
299         unsigned int mwait_mask;
300
301         /* We need to determine whether it is OK to expose the MWAIT
302          * capability to the kernel to harvest deeper than C3 states from ACPI
303          * _CST using the processor_harvest_xen.c module. For this to work, we
304          * need to gather the MWAIT_LEAF values (which the cstate.c code
305          * checks against). The hypervisor won't expose the MWAIT flag because
306          * it would break backwards compatibility; so we will find out directly
307          * from the hardware and hypercall.
308          */
309         if (!xen_initial_domain())
310                 return false;
311
312         ax = 1;
313         cx = 0;
314
315         native_cpuid(&ax, &bx, &cx, &dx);
316
317         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
318                      (1 << (X86_FEATURE_MWAIT % 32));
319
320         if ((cx & mwait_mask) != mwait_mask)
321                 return false;
322
323         /* We need to emulate the MWAIT_LEAF and for that we need both
324          * ecx and edx. The hypercall provides only partial information.
325          */
326
327         ax = CPUID_MWAIT_LEAF;
328         bx = 0;
329         cx = 0;
330         dx = 0;
331
332         native_cpuid(&ax, &bx, &cx, &dx);
333
334         /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
335          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
336          */
337         buf[0] = ACPI_PDC_REVISION_ID;
338         buf[1] = 1;
339         buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
340
341         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
342
343         if ((HYPERVISOR_dom0_op(&op) == 0) &&
344             (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
345                 cpuid_leaf5_ecx_val = cx;
346                 cpuid_leaf5_edx_val = dx;
347         }
348         return true;
349 #else
350         return false;
351 #endif
352 }
353 static void __init xen_init_cpuid_mask(void)
354 {
355         unsigned int ax, bx, cx, dx;
356         unsigned int xsave_mask;
357
358         cpuid_leaf1_edx_mask =
359                 ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
360                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
361
362         if (!xen_initial_domain())
363                 cpuid_leaf1_edx_mask &=
364                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
365                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
366         ax = 1;
367         cx = 0;
368         xen_cpuid(&ax, &bx, &cx, &dx);
369
370         xsave_mask =
371                 (1 << (X86_FEATURE_XSAVE % 32)) |
372                 (1 << (X86_FEATURE_OSXSAVE % 32));
373
374         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
375         if ((cx & xsave_mask) != xsave_mask)
376                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
377         if (xen_check_mwait())
378                 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
379 }
380
381 static void xen_set_debugreg(int reg, unsigned long val)
382 {
383         HYPERVISOR_set_debugreg(reg, val);
384 }
385
386 static unsigned long xen_get_debugreg(int reg)
387 {
388         return HYPERVISOR_get_debugreg(reg);
389 }
390
391 static void xen_end_context_switch(struct task_struct *next)
392 {
393         xen_mc_flush();
394         paravirt_end_context_switch(next);
395 }
396
397 static unsigned long xen_store_tr(void)
398 {
399         return 0;
400 }
401
402 /*
403  * Set the page permissions for a particular virtual address.  If the
404  * address is a vmalloc mapping (or other non-linear mapping), then
405  * find the linear mapping of the page and also set its protections to
406  * match.
407  */
408 static void set_aliased_prot(void *v, pgprot_t prot)
409 {
410         int level;
411         pte_t *ptep;
412         pte_t pte;
413         unsigned long pfn;
414         struct page *page;
415
416         ptep = lookup_address((unsigned long)v, &level);
417         BUG_ON(ptep == NULL);
418
419         pfn = pte_pfn(*ptep);
420         page = pfn_to_page(pfn);
421
422         pte = pfn_pte(pfn, prot);
423
424         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
425                 BUG();
426
427         if (!PageHighMem(page)) {
428                 void *av = __va(PFN_PHYS(pfn));
429
430                 if (av != v)
431                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
432                                 BUG();
433         } else
434                 kmap_flush_unused();
435 }
436
437 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
438 {
439         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
440         int i;
441
442         for(i = 0; i < entries; i += entries_per_page)
443                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
444 }
445
446 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
447 {
448         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
449         int i;
450
451         for(i = 0; i < entries; i += entries_per_page)
452                 set_aliased_prot(ldt + i, PAGE_KERNEL);
453 }
454
455 static void xen_set_ldt(const void *addr, unsigned entries)
456 {
457         struct mmuext_op *op;
458         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
459
460         trace_xen_cpu_set_ldt(addr, entries);
461
462         op = mcs.args;
463         op->cmd = MMUEXT_SET_LDT;
464         op->arg1.linear_addr = (unsigned long)addr;
465         op->arg2.nr_ents = entries;
466
467         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
468
469         xen_mc_issue(PARAVIRT_LAZY_CPU);
470 }
471
472 static void xen_load_gdt(const struct desc_ptr *dtr)
473 {
474         unsigned long va = dtr->address;
475         unsigned int size = dtr->size + 1;
476         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
477         unsigned long frames[pages];
478         int f;
479
480         /*
481          * A GDT can be up to 64k in size, which corresponds to 8192
482          * 8-byte entries, or 16 4k pages..
483          */
484
485         BUG_ON(size > 65536);
486         BUG_ON(va & ~PAGE_MASK);
487
488         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
489                 int level;
490                 pte_t *ptep;
491                 unsigned long pfn, mfn;
492                 void *virt;
493
494                 /*
495                  * The GDT is per-cpu and is in the percpu data area.
496                  * That can be virtually mapped, so we need to do a
497                  * page-walk to get the underlying MFN for the
498                  * hypercall.  The page can also be in the kernel's
499                  * linear range, so we need to RO that mapping too.
500                  */
501                 ptep = lookup_address(va, &level);
502                 BUG_ON(ptep == NULL);
503
504                 pfn = pte_pfn(*ptep);
505                 mfn = pfn_to_mfn(pfn);
506                 virt = __va(PFN_PHYS(pfn));
507
508                 frames[f] = mfn;
509
510                 make_lowmem_page_readonly((void *)va);
511                 make_lowmem_page_readonly(virt);
512         }
513
514         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
515                 BUG();
516 }
517
518 /*
519  * load_gdt for early boot, when the gdt is only mapped once
520  */
521 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
522 {
523         unsigned long va = dtr->address;
524         unsigned int size = dtr->size + 1;
525         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
526         unsigned long frames[pages];
527         int f;
528
529         /*
530          * A GDT can be up to 64k in size, which corresponds to 8192
531          * 8-byte entries, or 16 4k pages..
532          */
533
534         BUG_ON(size > 65536);
535         BUG_ON(va & ~PAGE_MASK);
536
537         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
538                 pte_t pte;
539                 unsigned long pfn, mfn;
540
541                 pfn = virt_to_pfn(va);
542                 mfn = pfn_to_mfn(pfn);
543
544                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
545
546                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
547                         BUG();
548
549                 frames[f] = mfn;
550         }
551
552         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
553                 BUG();
554 }
555
556 static inline bool desc_equal(const struct desc_struct *d1,
557                               const struct desc_struct *d2)
558 {
559         return d1->a == d2->a && d1->b == d2->b;
560 }
561
562 static void load_TLS_descriptor(struct thread_struct *t,
563                                 unsigned int cpu, unsigned int i)
564 {
565         struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
566         struct desc_struct *gdt;
567         xmaddr_t maddr;
568         struct multicall_space mc;
569
570         if (desc_equal(shadow, &t->tls_array[i]))
571                 return;
572
573         *shadow = t->tls_array[i];
574
575         gdt = get_cpu_gdt_table(cpu);
576         maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
577         mc = __xen_mc_entry(0);
578
579         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
580 }
581
582 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
583 {
584         /*
585          * XXX sleazy hack: If we're being called in a lazy-cpu zone
586          * and lazy gs handling is enabled, it means we're in a
587          * context switch, and %gs has just been saved.  This means we
588          * can zero it out to prevent faults on exit from the
589          * hypervisor if the next process has no %gs.  Either way, it
590          * has been saved, and the new value will get loaded properly.
591          * This will go away as soon as Xen has been modified to not
592          * save/restore %gs for normal hypercalls.
593          *
594          * On x86_64, this hack is not used for %gs, because gs points
595          * to KERNEL_GS_BASE (and uses it for PDA references), so we
596          * must not zero %gs on x86_64
597          *
598          * For x86_64, we need to zero %fs, otherwise we may get an
599          * exception between the new %fs descriptor being loaded and
600          * %fs being effectively cleared at __switch_to().
601          */
602         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
603 #ifdef CONFIG_X86_32
604                 lazy_load_gs(0);
605 #else
606                 loadsegment(fs, 0);
607 #endif
608         }
609
610         xen_mc_batch();
611
612         load_TLS_descriptor(t, cpu, 0);
613         load_TLS_descriptor(t, cpu, 1);
614         load_TLS_descriptor(t, cpu, 2);
615
616         xen_mc_issue(PARAVIRT_LAZY_CPU);
617 }
618
619 #ifdef CONFIG_X86_64
620 static void xen_load_gs_index(unsigned int idx)
621 {
622         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
623                 BUG();
624 }
625 #endif
626
627 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
628                                 const void *ptr)
629 {
630         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
631         u64 entry = *(u64 *)ptr;
632
633         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
634
635         preempt_disable();
636
637         xen_mc_flush();
638         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
639                 BUG();
640
641         preempt_enable();
642 }
643
644 static int cvt_gate_to_trap(int vector, const gate_desc *val,
645                             struct trap_info *info)
646 {
647         unsigned long addr;
648
649         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
650                 return 0;
651
652         info->vector = vector;
653
654         addr = gate_offset(*val);
655 #ifdef CONFIG_X86_64
656         /*
657          * Look for known traps using IST, and substitute them
658          * appropriately.  The debugger ones are the only ones we care
659          * about.  Xen will handle faults like double_fault,
660          * so we should never see them.  Warn if
661          * there's an unexpected IST-using fault handler.
662          */
663         if (addr == (unsigned long)debug)
664                 addr = (unsigned long)xen_debug;
665         else if (addr == (unsigned long)int3)
666                 addr = (unsigned long)xen_int3;
667         else if (addr == (unsigned long)stack_segment)
668                 addr = (unsigned long)xen_stack_segment;
669         else if (addr == (unsigned long)double_fault ||
670                  addr == (unsigned long)nmi) {
671                 /* Don't need to handle these */
672                 return 0;
673 #ifdef CONFIG_X86_MCE
674         } else if (addr == (unsigned long)machine_check) {
675                 /*
676                  * when xen hypervisor inject vMCE to guest,
677                  * use native mce handler to handle it
678                  */
679                 ;
680 #endif
681         } else {
682                 /* Some other trap using IST? */
683                 if (WARN_ON(val->ist != 0))
684                         return 0;
685         }
686 #endif  /* CONFIG_X86_64 */
687         info->address = addr;
688
689         info->cs = gate_segment(*val);
690         info->flags = val->dpl;
691         /* interrupt gates clear IF */
692         if (val->type == GATE_INTERRUPT)
693                 info->flags |= 1 << 2;
694
695         return 1;
696 }
697
698 /* Locations of each CPU's IDT */
699 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
700
701 /* Set an IDT entry.  If the entry is part of the current IDT, then
702    also update Xen. */
703 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
704 {
705         unsigned long p = (unsigned long)&dt[entrynum];
706         unsigned long start, end;
707
708         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
709
710         preempt_disable();
711
712         start = __this_cpu_read(idt_desc.address);
713         end = start + __this_cpu_read(idt_desc.size) + 1;
714
715         xen_mc_flush();
716
717         native_write_idt_entry(dt, entrynum, g);
718
719         if (p >= start && (p + 8) <= end) {
720                 struct trap_info info[2];
721
722                 info[1].address = 0;
723
724                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
725                         if (HYPERVISOR_set_trap_table(info))
726                                 BUG();
727         }
728
729         preempt_enable();
730 }
731
732 static void xen_convert_trap_info(const struct desc_ptr *desc,
733                                   struct trap_info *traps)
734 {
735         unsigned in, out, count;
736
737         count = (desc->size+1) / sizeof(gate_desc);
738         BUG_ON(count > 256);
739
740         for (in = out = 0; in < count; in++) {
741                 gate_desc *entry = (gate_desc*)(desc->address) + in;
742
743                 if (cvt_gate_to_trap(in, entry, &traps[out]))
744                         out++;
745         }
746         traps[out].address = 0;
747 }
748
749 void xen_copy_trap_info(struct trap_info *traps)
750 {
751         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
752
753         xen_convert_trap_info(desc, traps);
754 }
755
756 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
757    hold a spinlock to protect the static traps[] array (static because
758    it avoids allocation, and saves stack space). */
759 static void xen_load_idt(const struct desc_ptr *desc)
760 {
761         static DEFINE_SPINLOCK(lock);
762         static struct trap_info traps[257];
763
764         trace_xen_cpu_load_idt(desc);
765
766         spin_lock(&lock);
767
768         __get_cpu_var(idt_desc) = *desc;
769
770         xen_convert_trap_info(desc, traps);
771
772         xen_mc_flush();
773         if (HYPERVISOR_set_trap_table(traps))
774                 BUG();
775
776         spin_unlock(&lock);
777 }
778
779 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
780    they're handled differently. */
781 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
782                                 const void *desc, int type)
783 {
784         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
785
786         preempt_disable();
787
788         switch (type) {
789         case DESC_LDT:
790         case DESC_TSS:
791                 /* ignore */
792                 break;
793
794         default: {
795                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
796
797                 xen_mc_flush();
798                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
799                         BUG();
800         }
801
802         }
803
804         preempt_enable();
805 }
806
807 /*
808  * Version of write_gdt_entry for use at early boot-time needed to
809  * update an entry as simply as possible.
810  */
811 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
812                                             const void *desc, int type)
813 {
814         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
815
816         switch (type) {
817         case DESC_LDT:
818         case DESC_TSS:
819                 /* ignore */
820                 break;
821
822         default: {
823                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
824
825                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
826                         dt[entry] = *(struct desc_struct *)desc;
827         }
828
829         }
830 }
831
832 static void xen_load_sp0(struct tss_struct *tss,
833                          struct thread_struct *thread)
834 {
835         struct multicall_space mcs;
836
837         mcs = xen_mc_entry(0);
838         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
839         xen_mc_issue(PARAVIRT_LAZY_CPU);
840 }
841
842 static void xen_set_iopl_mask(unsigned mask)
843 {
844         struct physdev_set_iopl set_iopl;
845
846         /* Force the change at ring 0. */
847         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
848         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
849 }
850
851 static void xen_io_delay(void)
852 {
853 }
854
855 #ifdef CONFIG_X86_LOCAL_APIC
856 static unsigned long xen_set_apic_id(unsigned int x)
857 {
858         WARN_ON(1);
859         return x;
860 }
861 static unsigned int xen_get_apic_id(unsigned long x)
862 {
863         return ((x)>>24) & 0xFFu;
864 }
865 static u32 xen_apic_read(u32 reg)
866 {
867         struct xen_platform_op op = {
868                 .cmd = XENPF_get_cpuinfo,
869                 .interface_version = XENPF_INTERFACE_VERSION,
870                 .u.pcpu_info.xen_cpuid = 0,
871         };
872         int ret = 0;
873
874         /* Shouldn't need this as APIC is turned off for PV, and we only
875          * get called on the bootup processor. But just in case. */
876         if (!xen_initial_domain() || smp_processor_id())
877                 return 0;
878
879         if (reg == APIC_LVR)
880                 return 0x10;
881
882         if (reg != APIC_ID)
883                 return 0;
884
885         ret = HYPERVISOR_dom0_op(&op);
886         if (ret)
887                 return 0;
888
889         return op.u.pcpu_info.apic_id << 24;
890 }
891
892 static void xen_apic_write(u32 reg, u32 val)
893 {
894         /* Warn to see if there's any stray references */
895         WARN_ON(1);
896 }
897
898 static u64 xen_apic_icr_read(void)
899 {
900         return 0;
901 }
902
903 static void xen_apic_icr_write(u32 low, u32 id)
904 {
905         /* Warn to see if there's any stray references */
906         WARN_ON(1);
907 }
908
909 static void xen_apic_wait_icr_idle(void)
910 {
911         return;
912 }
913
914 static u32 xen_safe_apic_wait_icr_idle(void)
915 {
916         return 0;
917 }
918
919 static void set_xen_basic_apic_ops(void)
920 {
921         apic->read = xen_apic_read;
922         apic->write = xen_apic_write;
923         apic->icr_read = xen_apic_icr_read;
924         apic->icr_write = xen_apic_icr_write;
925         apic->wait_icr_idle = xen_apic_wait_icr_idle;
926         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
927         apic->set_apic_id = xen_set_apic_id;
928         apic->get_apic_id = xen_get_apic_id;
929
930 #ifdef CONFIG_SMP
931         apic->send_IPI_allbutself = xen_send_IPI_allbutself;
932         apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
933         apic->send_IPI_mask = xen_send_IPI_mask;
934         apic->send_IPI_all = xen_send_IPI_all;
935         apic->send_IPI_self = xen_send_IPI_self;
936 #endif
937 }
938
939 #endif
940
941 static void xen_clts(void)
942 {
943         struct multicall_space mcs;
944
945         mcs = xen_mc_entry(0);
946
947         MULTI_fpu_taskswitch(mcs.mc, 0);
948
949         xen_mc_issue(PARAVIRT_LAZY_CPU);
950 }
951
952 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
953
954 static unsigned long xen_read_cr0(void)
955 {
956         unsigned long cr0 = this_cpu_read(xen_cr0_value);
957
958         if (unlikely(cr0 == 0)) {
959                 cr0 = native_read_cr0();
960                 this_cpu_write(xen_cr0_value, cr0);
961         }
962
963         return cr0;
964 }
965
966 static void xen_write_cr0(unsigned long cr0)
967 {
968         struct multicall_space mcs;
969
970         this_cpu_write(xen_cr0_value, cr0);
971
972         /* Only pay attention to cr0.TS; everything else is
973            ignored. */
974         mcs = xen_mc_entry(0);
975
976         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
977
978         xen_mc_issue(PARAVIRT_LAZY_CPU);
979 }
980
981 static void xen_write_cr4(unsigned long cr4)
982 {
983         cr4 &= ~X86_CR4_PGE;
984         cr4 &= ~X86_CR4_PSE;
985
986         native_write_cr4(cr4);
987 }
988 #ifdef CONFIG_X86_64
989 static inline unsigned long xen_read_cr8(void)
990 {
991         return 0;
992 }
993 static inline void xen_write_cr8(unsigned long val)
994 {
995         BUG_ON(val);
996 }
997 #endif
998 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
999 {
1000         int ret;
1001
1002         ret = 0;
1003
1004         switch (msr) {
1005 #ifdef CONFIG_X86_64
1006                 unsigned which;
1007                 u64 base;
1008
1009         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1010         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1011         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1012
1013         set:
1014                 base = ((u64)high << 32) | low;
1015                 if (HYPERVISOR_set_segment_base(which, base) != 0)
1016                         ret = -EIO;
1017                 break;
1018 #endif
1019
1020         case MSR_STAR:
1021         case MSR_CSTAR:
1022         case MSR_LSTAR:
1023         case MSR_SYSCALL_MASK:
1024         case MSR_IA32_SYSENTER_CS:
1025         case MSR_IA32_SYSENTER_ESP:
1026         case MSR_IA32_SYSENTER_EIP:
1027                 /* Fast syscall setup is all done in hypercalls, so
1028                    these are all ignored.  Stub them out here to stop
1029                    Xen console noise. */
1030                 break;
1031
1032         case MSR_IA32_CR_PAT:
1033                 if (smp_processor_id() == 0)
1034                         xen_set_pat(((u64)high << 32) | low);
1035                 break;
1036
1037         default:
1038                 ret = native_write_msr_safe(msr, low, high);
1039         }
1040
1041         return ret;
1042 }
1043
1044 void xen_setup_shared_info(void)
1045 {
1046         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1047                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1048                            xen_start_info->shared_info);
1049
1050                 HYPERVISOR_shared_info =
1051                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1052         } else
1053                 HYPERVISOR_shared_info =
1054                         (struct shared_info *)__va(xen_start_info->shared_info);
1055
1056 #ifndef CONFIG_SMP
1057         /* In UP this is as good a place as any to set up shared info */
1058         xen_setup_vcpu_info_placement();
1059 #endif
1060
1061         xen_setup_mfn_list_list();
1062 }
1063
1064 /* This is called once we have the cpu_possible_mask */
1065 void xen_setup_vcpu_info_placement(void)
1066 {
1067         int cpu;
1068
1069         for_each_possible_cpu(cpu)
1070                 xen_vcpu_setup(cpu);
1071
1072         /* xen_vcpu_setup managed to place the vcpu_info within the
1073            percpu area for all cpus, so make use of it */
1074         if (have_vcpu_info_placement) {
1075                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1076                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1077                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1078                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1079                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1080         }
1081 }
1082
1083 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1084                           unsigned long addr, unsigned len)
1085 {
1086         char *start, *end, *reloc;
1087         unsigned ret;
1088
1089         start = end = reloc = NULL;
1090
1091 #define SITE(op, x)                                                     \
1092         case PARAVIRT_PATCH(op.x):                                      \
1093         if (have_vcpu_info_placement) {                                 \
1094                 start = (char *)xen_##x##_direct;                       \
1095                 end = xen_##x##_direct_end;                             \
1096                 reloc = xen_##x##_direct_reloc;                         \
1097         }                                                               \
1098         goto patch_site
1099
1100         switch (type) {
1101                 SITE(pv_irq_ops, irq_enable);
1102                 SITE(pv_irq_ops, irq_disable);
1103                 SITE(pv_irq_ops, save_fl);
1104                 SITE(pv_irq_ops, restore_fl);
1105 #undef SITE
1106
1107         patch_site:
1108                 if (start == NULL || (end-start) > len)
1109                         goto default_patch;
1110
1111                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1112
1113                 /* Note: because reloc is assigned from something that
1114                    appears to be an array, gcc assumes it's non-null,
1115                    but doesn't know its relationship with start and
1116                    end. */
1117                 if (reloc > start && reloc < end) {
1118                         int reloc_off = reloc - start;
1119                         long *relocp = (long *)(insnbuf + reloc_off);
1120                         long delta = start - (char *)addr;
1121
1122                         *relocp += delta;
1123                 }
1124                 break;
1125
1126         default_patch:
1127         default:
1128                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1129                                              addr, len);
1130                 break;
1131         }
1132
1133         return ret;
1134 }
1135
1136 static const struct pv_info xen_info __initconst = {
1137         .paravirt_enabled = 1,
1138         .shared_kernel_pmd = 0,
1139
1140 #ifdef CONFIG_X86_64
1141         .extra_user_64bit_cs = FLAT_USER_CS64,
1142 #endif
1143
1144         .name = "Xen",
1145 };
1146
1147 static const struct pv_init_ops xen_init_ops __initconst = {
1148         .patch = xen_patch,
1149 };
1150
1151 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1152         .cpuid = xen_cpuid,
1153
1154         .set_debugreg = xen_set_debugreg,
1155         .get_debugreg = xen_get_debugreg,
1156
1157         .clts = xen_clts,
1158
1159         .read_cr0 = xen_read_cr0,
1160         .write_cr0 = xen_write_cr0,
1161
1162         .read_cr4 = native_read_cr4,
1163         .read_cr4_safe = native_read_cr4_safe,
1164         .write_cr4 = xen_write_cr4,
1165
1166 #ifdef CONFIG_X86_64
1167         .read_cr8 = xen_read_cr8,
1168         .write_cr8 = xen_write_cr8,
1169 #endif
1170
1171         .wbinvd = native_wbinvd,
1172
1173         .read_msr = native_read_msr_safe,
1174         .write_msr = xen_write_msr_safe,
1175
1176         .read_tsc = native_read_tsc,
1177         .read_pmc = native_read_pmc,
1178
1179         .read_tscp = native_read_tscp,
1180
1181         .iret = xen_iret,
1182         .irq_enable_sysexit = xen_sysexit,
1183 #ifdef CONFIG_X86_64
1184         .usergs_sysret32 = xen_sysret32,
1185         .usergs_sysret64 = xen_sysret64,
1186 #endif
1187
1188         .load_tr_desc = paravirt_nop,
1189         .set_ldt = xen_set_ldt,
1190         .load_gdt = xen_load_gdt,
1191         .load_idt = xen_load_idt,
1192         .load_tls = xen_load_tls,
1193 #ifdef CONFIG_X86_64
1194         .load_gs_index = xen_load_gs_index,
1195 #endif
1196
1197         .alloc_ldt = xen_alloc_ldt,
1198         .free_ldt = xen_free_ldt,
1199
1200         .store_gdt = native_store_gdt,
1201         .store_idt = native_store_idt,
1202         .store_tr = xen_store_tr,
1203
1204         .write_ldt_entry = xen_write_ldt_entry,
1205         .write_gdt_entry = xen_write_gdt_entry,
1206         .write_idt_entry = xen_write_idt_entry,
1207         .load_sp0 = xen_load_sp0,
1208
1209         .set_iopl_mask = xen_set_iopl_mask,
1210         .io_delay = xen_io_delay,
1211
1212         /* Xen takes care of %gs when switching to usermode for us */
1213         .swapgs = paravirt_nop,
1214
1215         .start_context_switch = paravirt_start_context_switch,
1216         .end_context_switch = xen_end_context_switch,
1217 };
1218
1219 static const struct pv_apic_ops xen_apic_ops __initconst = {
1220 #ifdef CONFIG_X86_LOCAL_APIC
1221         .startup_ipi_hook = paravirt_nop,
1222 #endif
1223 };
1224
1225 static void xen_reboot(int reason)
1226 {
1227         struct sched_shutdown r = { .reason = reason };
1228
1229         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1230                 BUG();
1231 }
1232
1233 static void xen_restart(char *msg)
1234 {
1235         xen_reboot(SHUTDOWN_reboot);
1236 }
1237
1238 static void xen_emergency_restart(void)
1239 {
1240         xen_reboot(SHUTDOWN_reboot);
1241 }
1242
1243 static void xen_machine_halt(void)
1244 {
1245         xen_reboot(SHUTDOWN_poweroff);
1246 }
1247
1248 static void xen_machine_power_off(void)
1249 {
1250         if (pm_power_off)
1251                 pm_power_off();
1252         xen_reboot(SHUTDOWN_poweroff);
1253 }
1254
1255 static void xen_crash_shutdown(struct pt_regs *regs)
1256 {
1257         xen_reboot(SHUTDOWN_crash);
1258 }
1259
1260 static int
1261 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1262 {
1263         xen_reboot(SHUTDOWN_crash);
1264         return NOTIFY_DONE;
1265 }
1266
1267 static struct notifier_block xen_panic_block = {
1268         .notifier_call= xen_panic_event,
1269 };
1270
1271 int xen_panic_handler_init(void)
1272 {
1273         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1274         return 0;
1275 }
1276
1277 static const struct machine_ops xen_machine_ops __initconst = {
1278         .restart = xen_restart,
1279         .halt = xen_machine_halt,
1280         .power_off = xen_machine_power_off,
1281         .shutdown = xen_machine_halt,
1282         .crash_shutdown = xen_crash_shutdown,
1283         .emergency_restart = xen_emergency_restart,
1284 };
1285
1286 /*
1287  * Set up the GDT and segment registers for -fstack-protector.  Until
1288  * we do this, we have to be careful not to call any stack-protected
1289  * function, which is most of the kernel.
1290  */
1291 static void __init xen_setup_stackprotector(void)
1292 {
1293         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1294         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1295
1296         setup_stack_canary_segment(0);
1297         switch_to_new_gdt(0);
1298
1299         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1300         pv_cpu_ops.load_gdt = xen_load_gdt;
1301 }
1302
1303 /* First C function to be called on Xen boot */
1304 asmlinkage void __init xen_start_kernel(void)
1305 {
1306         struct physdev_set_iopl set_iopl;
1307         int rc;
1308
1309         if (!xen_start_info)
1310                 return;
1311
1312         xen_domain_type = XEN_PV_DOMAIN;
1313
1314         xen_setup_machphys_mapping();
1315
1316         /* Install Xen paravirt ops */
1317         pv_info = xen_info;
1318         pv_init_ops = xen_init_ops;
1319         pv_cpu_ops = xen_cpu_ops;
1320         pv_apic_ops = xen_apic_ops;
1321
1322         x86_init.resources.memory_setup = xen_memory_setup;
1323         x86_init.oem.arch_setup = xen_arch_setup;
1324         x86_init.oem.banner = xen_banner;
1325
1326         xen_init_time_ops();
1327
1328         /*
1329          * Set up some pagetable state before starting to set any ptes.
1330          */
1331
1332         xen_init_mmu_ops();
1333
1334         /* Prevent unwanted bits from being set in PTEs. */
1335         __supported_pte_mask &= ~_PAGE_GLOBAL;
1336 #if 0
1337         if (!xen_initial_domain())
1338 #endif
1339                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1340
1341         __supported_pte_mask |= _PAGE_IOMAP;
1342
1343         /*
1344          * Prevent page tables from being allocated in highmem, even
1345          * if CONFIG_HIGHPTE is enabled.
1346          */
1347         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1348
1349         /* Work out if we support NX */
1350         x86_configure_nx();
1351
1352         xen_setup_features();
1353
1354         /* Get mfn list */
1355         if (!xen_feature(XENFEAT_auto_translated_physmap))
1356                 xen_build_dynamic_phys_to_machine();
1357
1358         /*
1359          * Set up kernel GDT and segment registers, mainly so that
1360          * -fstack-protector code can be executed.
1361          */
1362         xen_setup_stackprotector();
1363
1364         xen_init_irq_ops();
1365         xen_init_cpuid_mask();
1366
1367 #ifdef CONFIG_X86_LOCAL_APIC
1368         /*
1369          * set up the basic apic ops.
1370          */
1371         set_xen_basic_apic_ops();
1372 #endif
1373
1374         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1375                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1376                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1377         }
1378
1379         machine_ops = xen_machine_ops;
1380
1381         /*
1382          * The only reliable way to retain the initial address of the
1383          * percpu gdt_page is to remember it here, so we can go and
1384          * mark it RW later, when the initial percpu area is freed.
1385          */
1386         xen_initial_gdt = &per_cpu(gdt_page, 0);
1387
1388         xen_smp_init();
1389
1390 #ifdef CONFIG_ACPI_NUMA
1391         /*
1392          * The pages we from Xen are not related to machine pages, so
1393          * any NUMA information the kernel tries to get from ACPI will
1394          * be meaningless.  Prevent it from trying.
1395          */
1396         acpi_numa = -1;
1397 #endif
1398
1399         /* Don't do the full vcpu_info placement stuff until we have a
1400            possible map and a non-dummy shared_info. */
1401         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1402
1403         local_irq_disable();
1404         early_boot_irqs_disabled = true;
1405
1406         xen_raw_console_write("mapping kernel into physical memory\n");
1407         xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1408
1409         /* Allocate and initialize top and mid mfn levels for p2m structure */
1410         xen_build_mfn_list_list();
1411
1412         /* keep using Xen gdt for now; no urgent need to change it */
1413
1414 #ifdef CONFIG_X86_32
1415         pv_info.kernel_rpl = 1;
1416         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1417                 pv_info.kernel_rpl = 0;
1418 #else
1419         pv_info.kernel_rpl = 0;
1420 #endif
1421         /* set the limit of our address space */
1422         xen_reserve_top();
1423
1424         /* We used to do this in xen_arch_setup, but that is too late on AMD
1425          * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1426          * which pokes 0xcf8 port.
1427          */
1428         set_iopl.iopl = 1;
1429         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1430         if (rc != 0)
1431                 xen_raw_printk("physdev_op failed %d\n", rc);
1432
1433 #ifdef CONFIG_X86_32
1434         /* set up basic CPUID stuff */
1435         cpu_detect(&new_cpu_data);
1436         new_cpu_data.hard_math = 1;
1437         new_cpu_data.wp_works_ok = 1;
1438         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1439 #endif
1440
1441         /* Poke various useful things into boot_params */
1442         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1443         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1444                 ? __pa(xen_start_info->mod_start) : 0;
1445         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1446         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1447
1448         if (!xen_initial_domain()) {
1449                 add_preferred_console("xenboot", 0, NULL);
1450                 add_preferred_console("tty", 0, NULL);
1451                 add_preferred_console("hvc", 0, NULL);
1452                 if (pci_xen)
1453                         x86_init.pci.arch_init = pci_xen_init;
1454         } else {
1455                 const struct dom0_vga_console_info *info =
1456                         (void *)((char *)xen_start_info +
1457                                  xen_start_info->console.dom0.info_off);
1458                 struct xen_platform_op op = {
1459                         .cmd = XENPF_firmware_info,
1460                         .interface_version = XENPF_INTERFACE_VERSION,
1461                         .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1462                 };
1463
1464                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1465                 xen_start_info->console.domU.mfn = 0;
1466                 xen_start_info->console.domU.evtchn = 0;
1467
1468                 if (HYPERVISOR_dom0_op(&op) == 0)
1469                         boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1470
1471                 xen_init_apic();
1472
1473                 /* Make sure ACS will be enabled */
1474                 pci_request_acs();
1475
1476                 xen_acpi_sleep_register();
1477
1478                 /* Avoid searching for BIOS MP tables */
1479                 x86_init.mpparse.find_smp_config = x86_init_noop;
1480                 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1481         }
1482 #ifdef CONFIG_PCI
1483         /* PCI BIOS service won't work from a PV guest. */
1484         pci_probe &= ~PCI_PROBE_BIOS;
1485 #endif
1486         xen_raw_console_write("about to get started...\n");
1487
1488         xen_setup_runstate_info(0);
1489
1490         /* Start the world */
1491 #ifdef CONFIG_X86_32
1492         i386_start_kernel();
1493 #else
1494         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1495 #endif
1496 }
1497
1498 void __ref xen_hvm_init_shared_info(void)
1499 {
1500         int cpu;
1501         struct xen_add_to_physmap xatp;
1502         static struct shared_info *shared_info_page = 0;
1503
1504         if (!shared_info_page)
1505                 shared_info_page = (struct shared_info *)
1506                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1507         xatp.domid = DOMID_SELF;
1508         xatp.idx = 0;
1509         xatp.space = XENMAPSPACE_shared_info;
1510         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1511         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1512                 BUG();
1513
1514         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1515
1516         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1517          * page, we use it in the event channel upcall and in some pvclock
1518          * related functions. We don't need the vcpu_info placement
1519          * optimizations because we don't use any pv_mmu or pv_irq op on
1520          * HVM.
1521          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1522          * online but xen_hvm_init_shared_info is run at resume time too and
1523          * in that case multiple vcpus might be online. */
1524         for_each_online_cpu(cpu) {
1525                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1526         }
1527 }
1528
1529 #ifdef CONFIG_XEN_PVHVM
1530 static void __init init_hvm_pv_info(void)
1531 {
1532         int major, minor;
1533         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1534         u64 pfn;
1535
1536         base = xen_cpuid_base();
1537         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1538
1539         major = eax >> 16;
1540         minor = eax & 0xffff;
1541         printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1542
1543         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1544
1545         pfn = __pa(hypercall_page);
1546         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1547
1548         xen_setup_features();
1549
1550         pv_info.name = "Xen HVM";
1551
1552         xen_domain_type = XEN_HVM_DOMAIN;
1553 }
1554
1555 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1556                                     unsigned long action, void *hcpu)
1557 {
1558         int cpu = (long)hcpu;
1559         switch (action) {
1560         case CPU_UP_PREPARE:
1561                 xen_vcpu_setup(cpu);
1562                 if (xen_have_vector_callback)
1563                         xen_init_lock_cpu(cpu);
1564                 break;
1565         default:
1566                 break;
1567         }
1568         return NOTIFY_OK;
1569 }
1570
1571 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1572         .notifier_call  = xen_hvm_cpu_notify,
1573 };
1574
1575 static void __init xen_hvm_guest_init(void)
1576 {
1577         init_hvm_pv_info();
1578
1579         xen_hvm_init_shared_info();
1580
1581         if (xen_feature(XENFEAT_hvm_callback_vector))
1582                 xen_have_vector_callback = 1;
1583         xen_hvm_smp_init();
1584         register_cpu_notifier(&xen_hvm_cpu_notifier);
1585         xen_unplug_emulated_devices();
1586         x86_init.irqs.intr_init = xen_init_IRQ;
1587         xen_hvm_init_time_ops();
1588         xen_hvm_init_mmu_ops();
1589 }
1590
1591 static bool __init xen_hvm_platform(void)
1592 {
1593         if (xen_pv_domain())
1594                 return false;
1595
1596         if (!xen_cpuid_base())
1597                 return false;
1598
1599         return true;
1600 }
1601
1602 bool xen_hvm_need_lapic(void)
1603 {
1604         if (xen_pv_domain())
1605                 return false;
1606         if (!xen_hvm_domain())
1607                 return false;
1608         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1609                 return false;
1610         return true;
1611 }
1612 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1613
1614 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1615         .name                   = "Xen HVM",
1616         .detect                 = xen_hvm_platform,
1617         .init_platform          = xen_hvm_guest_init,
1618 };
1619 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1620 #endif