Merge branch 'stable/xen-swiotlb-0.8.6' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33
34 #include <xen/xen.h>
35 #include <xen/interface/xen.h>
36 #include <xen/interface/version.h>
37 #include <xen/interface/physdev.h>
38 #include <xen/interface/vcpu.h>
39 #include <xen/interface/memory.h>
40 #include <xen/features.h>
41 #include <xen/page.h>
42 #include <xen/hvm.h>
43 #include <xen/hvc-console.h>
44
45 #include <asm/paravirt.h>
46 #include <asm/apic.h>
47 #include <asm/page.h>
48 #include <asm/xen/hypercall.h>
49 #include <asm/xen/hypervisor.h>
50 #include <asm/fixmap.h>
51 #include <asm/processor.h>
52 #include <asm/proto.h>
53 #include <asm/msr-index.h>
54 #include <asm/traps.h>
55 #include <asm/setup.h>
56 #include <asm/desc.h>
57 #include <asm/pgalloc.h>
58 #include <asm/pgtable.h>
59 #include <asm/tlbflush.h>
60 #include <asm/reboot.h>
61 #include <asm/setup.h>
62 #include <asm/stackprotector.h>
63 #include <asm/hypervisor.h>
64
65 #include "xen-ops.h"
66 #include "mmu.h"
67 #include "multicalls.h"
68
69 EXPORT_SYMBOL_GPL(hypercall_page);
70
71 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
72 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
73
74 enum xen_domain_type xen_domain_type = XEN_NATIVE;
75 EXPORT_SYMBOL_GPL(xen_domain_type);
76
77 struct start_info *xen_start_info;
78 EXPORT_SYMBOL_GPL(xen_start_info);
79
80 struct shared_info xen_dummy_shared_info;
81
82 void *xen_initial_gdt;
83
84 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
85 __read_mostly int xen_have_vector_callback;
86 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
87
88 /*
89  * Point at some empty memory to start with. We map the real shared_info
90  * page as soon as fixmap is up and running.
91  */
92 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
93
94 /*
95  * Flag to determine whether vcpu info placement is available on all
96  * VCPUs.  We assume it is to start with, and then set it to zero on
97  * the first failure.  This is because it can succeed on some VCPUs
98  * and not others, since it can involve hypervisor memory allocation,
99  * or because the guest failed to guarantee all the appropriate
100  * constraints on all VCPUs (ie buffer can't cross a page boundary).
101  *
102  * Note that any particular CPU may be using a placed vcpu structure,
103  * but we can only optimise if the all are.
104  *
105  * 0: not available, 1: available
106  */
107 static int have_vcpu_info_placement = 1;
108
109 static void clamp_max_cpus(void)
110 {
111 #ifdef CONFIG_SMP
112         if (setup_max_cpus > MAX_VIRT_CPUS)
113                 setup_max_cpus = MAX_VIRT_CPUS;
114 #endif
115 }
116
117 static void xen_vcpu_setup(int cpu)
118 {
119         struct vcpu_register_vcpu_info info;
120         int err;
121         struct vcpu_info *vcpup;
122
123         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
124
125         if (cpu < MAX_VIRT_CPUS)
126                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
127
128         if (!have_vcpu_info_placement) {
129                 if (cpu >= MAX_VIRT_CPUS)
130                         clamp_max_cpus();
131                 return;
132         }
133
134         vcpup = &per_cpu(xen_vcpu_info, cpu);
135         info.mfn = arbitrary_virt_to_mfn(vcpup);
136         info.offset = offset_in_page(vcpup);
137
138         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
139                cpu, vcpup, info.mfn, info.offset);
140
141         /* Check to see if the hypervisor will put the vcpu_info
142            structure where we want it, which allows direct access via
143            a percpu-variable. */
144         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
145
146         if (err) {
147                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
148                 have_vcpu_info_placement = 0;
149                 clamp_max_cpus();
150         } else {
151                 /* This cpu is using the registered vcpu info, even if
152                    later ones fail to. */
153                 per_cpu(xen_vcpu, cpu) = vcpup;
154
155                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
156                        cpu, vcpup);
157         }
158 }
159
160 /*
161  * On restore, set the vcpu placement up again.
162  * If it fails, then we're in a bad state, since
163  * we can't back out from using it...
164  */
165 void xen_vcpu_restore(void)
166 {
167         int cpu;
168
169         for_each_online_cpu(cpu) {
170                 bool other_cpu = (cpu != smp_processor_id());
171
172                 if (other_cpu &&
173                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
174                         BUG();
175
176                 xen_setup_runstate_info(cpu);
177
178                 if (have_vcpu_info_placement)
179                         xen_vcpu_setup(cpu);
180
181                 if (other_cpu &&
182                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
183                         BUG();
184         }
185 }
186
187 static void __init xen_banner(void)
188 {
189         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
190         struct xen_extraversion extra;
191         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
192
193         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
194                pv_info.name);
195         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
196                version >> 16, version & 0xffff, extra.extraversion,
197                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
198 }
199
200 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
201 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
202
203 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
204                       unsigned int *cx, unsigned int *dx)
205 {
206         unsigned maskebx = ~0;
207         unsigned maskecx = ~0;
208         unsigned maskedx = ~0;
209
210         /*
211          * Mask out inconvenient features, to try and disable as many
212          * unsupported kernel subsystems as possible.
213          */
214         switch (*ax) {
215         case 1:
216                 maskecx = cpuid_leaf1_ecx_mask;
217                 maskedx = cpuid_leaf1_edx_mask;
218                 break;
219
220         case 0xb:
221                 /* Suppress extended topology stuff */
222                 maskebx = 0;
223                 break;
224         }
225
226         asm(XEN_EMULATE_PREFIX "cpuid"
227                 : "=a" (*ax),
228                   "=b" (*bx),
229                   "=c" (*cx),
230                   "=d" (*dx)
231                 : "0" (*ax), "2" (*cx));
232
233         *bx &= maskebx;
234         *cx &= maskecx;
235         *dx &= maskedx;
236 }
237
238 static __init void xen_init_cpuid_mask(void)
239 {
240         unsigned int ax, bx, cx, dx;
241
242         cpuid_leaf1_edx_mask =
243                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
244                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
245                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
246
247         if (!xen_initial_domain())
248                 cpuid_leaf1_edx_mask &=
249                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
250                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
251
252         ax = 1;
253         cx = 0;
254         xen_cpuid(&ax, &bx, &cx, &dx);
255
256         /* cpuid claims we support xsave; try enabling it to see what happens */
257         if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
258                 unsigned long cr4;
259
260                 set_in_cr4(X86_CR4_OSXSAVE);
261                 
262                 cr4 = read_cr4();
263
264                 if ((cr4 & X86_CR4_OSXSAVE) == 0)
265                         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
266
267                 clear_in_cr4(X86_CR4_OSXSAVE);
268         }
269 }
270
271 static void xen_set_debugreg(int reg, unsigned long val)
272 {
273         HYPERVISOR_set_debugreg(reg, val);
274 }
275
276 static unsigned long xen_get_debugreg(int reg)
277 {
278         return HYPERVISOR_get_debugreg(reg);
279 }
280
281 static void xen_end_context_switch(struct task_struct *next)
282 {
283         xen_mc_flush();
284         paravirt_end_context_switch(next);
285 }
286
287 static unsigned long xen_store_tr(void)
288 {
289         return 0;
290 }
291
292 /*
293  * Set the page permissions for a particular virtual address.  If the
294  * address is a vmalloc mapping (or other non-linear mapping), then
295  * find the linear mapping of the page and also set its protections to
296  * match.
297  */
298 static void set_aliased_prot(void *v, pgprot_t prot)
299 {
300         int level;
301         pte_t *ptep;
302         pte_t pte;
303         unsigned long pfn;
304         struct page *page;
305
306         ptep = lookup_address((unsigned long)v, &level);
307         BUG_ON(ptep == NULL);
308
309         pfn = pte_pfn(*ptep);
310         page = pfn_to_page(pfn);
311
312         pte = pfn_pte(pfn, prot);
313
314         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
315                 BUG();
316
317         if (!PageHighMem(page)) {
318                 void *av = __va(PFN_PHYS(pfn));
319
320                 if (av != v)
321                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
322                                 BUG();
323         } else
324                 kmap_flush_unused();
325 }
326
327 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
328 {
329         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
330         int i;
331
332         for(i = 0; i < entries; i += entries_per_page)
333                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
334 }
335
336 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
337 {
338         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
339         int i;
340
341         for(i = 0; i < entries; i += entries_per_page)
342                 set_aliased_prot(ldt + i, PAGE_KERNEL);
343 }
344
345 static void xen_set_ldt(const void *addr, unsigned entries)
346 {
347         struct mmuext_op *op;
348         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
349
350         op = mcs.args;
351         op->cmd = MMUEXT_SET_LDT;
352         op->arg1.linear_addr = (unsigned long)addr;
353         op->arg2.nr_ents = entries;
354
355         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
356
357         xen_mc_issue(PARAVIRT_LAZY_CPU);
358 }
359
360 static void xen_load_gdt(const struct desc_ptr *dtr)
361 {
362         unsigned long va = dtr->address;
363         unsigned int size = dtr->size + 1;
364         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
365         unsigned long frames[pages];
366         int f;
367
368         /*
369          * A GDT can be up to 64k in size, which corresponds to 8192
370          * 8-byte entries, or 16 4k pages..
371          */
372
373         BUG_ON(size > 65536);
374         BUG_ON(va & ~PAGE_MASK);
375
376         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
377                 int level;
378                 pte_t *ptep;
379                 unsigned long pfn, mfn;
380                 void *virt;
381
382                 /*
383                  * The GDT is per-cpu and is in the percpu data area.
384                  * That can be virtually mapped, so we need to do a
385                  * page-walk to get the underlying MFN for the
386                  * hypercall.  The page can also be in the kernel's
387                  * linear range, so we need to RO that mapping too.
388                  */
389                 ptep = lookup_address(va, &level);
390                 BUG_ON(ptep == NULL);
391
392                 pfn = pte_pfn(*ptep);
393                 mfn = pfn_to_mfn(pfn);
394                 virt = __va(PFN_PHYS(pfn));
395
396                 frames[f] = mfn;
397
398                 make_lowmem_page_readonly((void *)va);
399                 make_lowmem_page_readonly(virt);
400         }
401
402         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
403                 BUG();
404 }
405
406 /*
407  * load_gdt for early boot, when the gdt is only mapped once
408  */
409 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
410 {
411         unsigned long va = dtr->address;
412         unsigned int size = dtr->size + 1;
413         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
414         unsigned long frames[pages];
415         int f;
416
417         /*
418          * A GDT can be up to 64k in size, which corresponds to 8192
419          * 8-byte entries, or 16 4k pages..
420          */
421
422         BUG_ON(size > 65536);
423         BUG_ON(va & ~PAGE_MASK);
424
425         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
426                 pte_t pte;
427                 unsigned long pfn, mfn;
428
429                 pfn = virt_to_pfn(va);
430                 mfn = pfn_to_mfn(pfn);
431
432                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
433
434                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
435                         BUG();
436
437                 frames[f] = mfn;
438         }
439
440         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
441                 BUG();
442 }
443
444 static void load_TLS_descriptor(struct thread_struct *t,
445                                 unsigned int cpu, unsigned int i)
446 {
447         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
448         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
449         struct multicall_space mc = __xen_mc_entry(0);
450
451         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
452 }
453
454 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
455 {
456         /*
457          * XXX sleazy hack: If we're being called in a lazy-cpu zone
458          * and lazy gs handling is enabled, it means we're in a
459          * context switch, and %gs has just been saved.  This means we
460          * can zero it out to prevent faults on exit from the
461          * hypervisor if the next process has no %gs.  Either way, it
462          * has been saved, and the new value will get loaded properly.
463          * This will go away as soon as Xen has been modified to not
464          * save/restore %gs for normal hypercalls.
465          *
466          * On x86_64, this hack is not used for %gs, because gs points
467          * to KERNEL_GS_BASE (and uses it for PDA references), so we
468          * must not zero %gs on x86_64
469          *
470          * For x86_64, we need to zero %fs, otherwise we may get an
471          * exception between the new %fs descriptor being loaded and
472          * %fs being effectively cleared at __switch_to().
473          */
474         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
475 #ifdef CONFIG_X86_32
476                 lazy_load_gs(0);
477 #else
478                 loadsegment(fs, 0);
479 #endif
480         }
481
482         xen_mc_batch();
483
484         load_TLS_descriptor(t, cpu, 0);
485         load_TLS_descriptor(t, cpu, 1);
486         load_TLS_descriptor(t, cpu, 2);
487
488         xen_mc_issue(PARAVIRT_LAZY_CPU);
489 }
490
491 #ifdef CONFIG_X86_64
492 static void xen_load_gs_index(unsigned int idx)
493 {
494         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
495                 BUG();
496 }
497 #endif
498
499 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
500                                 const void *ptr)
501 {
502         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
503         u64 entry = *(u64 *)ptr;
504
505         preempt_disable();
506
507         xen_mc_flush();
508         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
509                 BUG();
510
511         preempt_enable();
512 }
513
514 static int cvt_gate_to_trap(int vector, const gate_desc *val,
515                             struct trap_info *info)
516 {
517         unsigned long addr;
518
519         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
520                 return 0;
521
522         info->vector = vector;
523
524         addr = gate_offset(*val);
525 #ifdef CONFIG_X86_64
526         /*
527          * Look for known traps using IST, and substitute them
528          * appropriately.  The debugger ones are the only ones we care
529          * about.  Xen will handle faults like double_fault and
530          * machine_check, so we should never see them.  Warn if
531          * there's an unexpected IST-using fault handler.
532          */
533         if (addr == (unsigned long)debug)
534                 addr = (unsigned long)xen_debug;
535         else if (addr == (unsigned long)int3)
536                 addr = (unsigned long)xen_int3;
537         else if (addr == (unsigned long)stack_segment)
538                 addr = (unsigned long)xen_stack_segment;
539         else if (addr == (unsigned long)double_fault ||
540                  addr == (unsigned long)nmi) {
541                 /* Don't need to handle these */
542                 return 0;
543 #ifdef CONFIG_X86_MCE
544         } else if (addr == (unsigned long)machine_check) {
545                 return 0;
546 #endif
547         } else {
548                 /* Some other trap using IST? */
549                 if (WARN_ON(val->ist != 0))
550                         return 0;
551         }
552 #endif  /* CONFIG_X86_64 */
553         info->address = addr;
554
555         info->cs = gate_segment(*val);
556         info->flags = val->dpl;
557         /* interrupt gates clear IF */
558         if (val->type == GATE_INTERRUPT)
559                 info->flags |= 1 << 2;
560
561         return 1;
562 }
563
564 /* Locations of each CPU's IDT */
565 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
566
567 /* Set an IDT entry.  If the entry is part of the current IDT, then
568    also update Xen. */
569 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
570 {
571         unsigned long p = (unsigned long)&dt[entrynum];
572         unsigned long start, end;
573
574         preempt_disable();
575
576         start = __get_cpu_var(idt_desc).address;
577         end = start + __get_cpu_var(idt_desc).size + 1;
578
579         xen_mc_flush();
580
581         native_write_idt_entry(dt, entrynum, g);
582
583         if (p >= start && (p + 8) <= end) {
584                 struct trap_info info[2];
585
586                 info[1].address = 0;
587
588                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
589                         if (HYPERVISOR_set_trap_table(info))
590                                 BUG();
591         }
592
593         preempt_enable();
594 }
595
596 static void xen_convert_trap_info(const struct desc_ptr *desc,
597                                   struct trap_info *traps)
598 {
599         unsigned in, out, count;
600
601         count = (desc->size+1) / sizeof(gate_desc);
602         BUG_ON(count > 256);
603
604         for (in = out = 0; in < count; in++) {
605                 gate_desc *entry = (gate_desc*)(desc->address) + in;
606
607                 if (cvt_gate_to_trap(in, entry, &traps[out]))
608                         out++;
609         }
610         traps[out].address = 0;
611 }
612
613 void xen_copy_trap_info(struct trap_info *traps)
614 {
615         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
616
617         xen_convert_trap_info(desc, traps);
618 }
619
620 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
621    hold a spinlock to protect the static traps[] array (static because
622    it avoids allocation, and saves stack space). */
623 static void xen_load_idt(const struct desc_ptr *desc)
624 {
625         static DEFINE_SPINLOCK(lock);
626         static struct trap_info traps[257];
627
628         spin_lock(&lock);
629
630         __get_cpu_var(idt_desc) = *desc;
631
632         xen_convert_trap_info(desc, traps);
633
634         xen_mc_flush();
635         if (HYPERVISOR_set_trap_table(traps))
636                 BUG();
637
638         spin_unlock(&lock);
639 }
640
641 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
642    they're handled differently. */
643 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
644                                 const void *desc, int type)
645 {
646         preempt_disable();
647
648         switch (type) {
649         case DESC_LDT:
650         case DESC_TSS:
651                 /* ignore */
652                 break;
653
654         default: {
655                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
656
657                 xen_mc_flush();
658                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
659                         BUG();
660         }
661
662         }
663
664         preempt_enable();
665 }
666
667 /*
668  * Version of write_gdt_entry for use at early boot-time needed to
669  * update an entry as simply as possible.
670  */
671 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
672                                             const void *desc, int type)
673 {
674         switch (type) {
675         case DESC_LDT:
676         case DESC_TSS:
677                 /* ignore */
678                 break;
679
680         default: {
681                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
682
683                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
684                         dt[entry] = *(struct desc_struct *)desc;
685         }
686
687         }
688 }
689
690 static void xen_load_sp0(struct tss_struct *tss,
691                          struct thread_struct *thread)
692 {
693         struct multicall_space mcs = xen_mc_entry(0);
694         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
695         xen_mc_issue(PARAVIRT_LAZY_CPU);
696 }
697
698 static void xen_set_iopl_mask(unsigned mask)
699 {
700         struct physdev_set_iopl set_iopl;
701
702         /* Force the change at ring 0. */
703         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
704         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
705 }
706
707 static void xen_io_delay(void)
708 {
709 }
710
711 #ifdef CONFIG_X86_LOCAL_APIC
712 static u32 xen_apic_read(u32 reg)
713 {
714         return 0;
715 }
716
717 static void xen_apic_write(u32 reg, u32 val)
718 {
719         /* Warn to see if there's any stray references */
720         WARN_ON(1);
721 }
722
723 static u64 xen_apic_icr_read(void)
724 {
725         return 0;
726 }
727
728 static void xen_apic_icr_write(u32 low, u32 id)
729 {
730         /* Warn to see if there's any stray references */
731         WARN_ON(1);
732 }
733
734 static void xen_apic_wait_icr_idle(void)
735 {
736         return;
737 }
738
739 static u32 xen_safe_apic_wait_icr_idle(void)
740 {
741         return 0;
742 }
743
744 static void set_xen_basic_apic_ops(void)
745 {
746         apic->read = xen_apic_read;
747         apic->write = xen_apic_write;
748         apic->icr_read = xen_apic_icr_read;
749         apic->icr_write = xen_apic_icr_write;
750         apic->wait_icr_idle = xen_apic_wait_icr_idle;
751         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
752 }
753
754 #endif
755
756 static void xen_clts(void)
757 {
758         struct multicall_space mcs;
759
760         mcs = xen_mc_entry(0);
761
762         MULTI_fpu_taskswitch(mcs.mc, 0);
763
764         xen_mc_issue(PARAVIRT_LAZY_CPU);
765 }
766
767 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
768
769 static unsigned long xen_read_cr0(void)
770 {
771         unsigned long cr0 = percpu_read(xen_cr0_value);
772
773         if (unlikely(cr0 == 0)) {
774                 cr0 = native_read_cr0();
775                 percpu_write(xen_cr0_value, cr0);
776         }
777
778         return cr0;
779 }
780
781 static void xen_write_cr0(unsigned long cr0)
782 {
783         struct multicall_space mcs;
784
785         percpu_write(xen_cr0_value, cr0);
786
787         /* Only pay attention to cr0.TS; everything else is
788            ignored. */
789         mcs = xen_mc_entry(0);
790
791         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
792
793         xen_mc_issue(PARAVIRT_LAZY_CPU);
794 }
795
796 static void xen_write_cr4(unsigned long cr4)
797 {
798         cr4 &= ~X86_CR4_PGE;
799         cr4 &= ~X86_CR4_PSE;
800
801         native_write_cr4(cr4);
802 }
803
804 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
805 {
806         int ret;
807
808         ret = 0;
809
810         switch (msr) {
811 #ifdef CONFIG_X86_64
812                 unsigned which;
813                 u64 base;
814
815         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
816         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
817         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
818
819         set:
820                 base = ((u64)high << 32) | low;
821                 if (HYPERVISOR_set_segment_base(which, base) != 0)
822                         ret = -EIO;
823                 break;
824 #endif
825
826         case MSR_STAR:
827         case MSR_CSTAR:
828         case MSR_LSTAR:
829         case MSR_SYSCALL_MASK:
830         case MSR_IA32_SYSENTER_CS:
831         case MSR_IA32_SYSENTER_ESP:
832         case MSR_IA32_SYSENTER_EIP:
833                 /* Fast syscall setup is all done in hypercalls, so
834                    these are all ignored.  Stub them out here to stop
835                    Xen console noise. */
836                 break;
837
838         default:
839                 ret = native_write_msr_safe(msr, low, high);
840         }
841
842         return ret;
843 }
844
845 void xen_setup_shared_info(void)
846 {
847         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
848                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
849                            xen_start_info->shared_info);
850
851                 HYPERVISOR_shared_info =
852                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
853         } else
854                 HYPERVISOR_shared_info =
855                         (struct shared_info *)__va(xen_start_info->shared_info);
856
857 #ifndef CONFIG_SMP
858         /* In UP this is as good a place as any to set up shared info */
859         xen_setup_vcpu_info_placement();
860 #endif
861
862         xen_setup_mfn_list_list();
863 }
864
865 /* This is called once we have the cpu_possible_map */
866 void xen_setup_vcpu_info_placement(void)
867 {
868         int cpu;
869
870         for_each_possible_cpu(cpu)
871                 xen_vcpu_setup(cpu);
872
873         /* xen_vcpu_setup managed to place the vcpu_info within the
874            percpu area for all cpus, so make use of it */
875         if (have_vcpu_info_placement) {
876                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
877
878                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
879                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
880                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
881                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
882                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
883         }
884 }
885
886 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
887                           unsigned long addr, unsigned len)
888 {
889         char *start, *end, *reloc;
890         unsigned ret;
891
892         start = end = reloc = NULL;
893
894 #define SITE(op, x)                                                     \
895         case PARAVIRT_PATCH(op.x):                                      \
896         if (have_vcpu_info_placement) {                                 \
897                 start = (char *)xen_##x##_direct;                       \
898                 end = xen_##x##_direct_end;                             \
899                 reloc = xen_##x##_direct_reloc;                         \
900         }                                                               \
901         goto patch_site
902
903         switch (type) {
904                 SITE(pv_irq_ops, irq_enable);
905                 SITE(pv_irq_ops, irq_disable);
906                 SITE(pv_irq_ops, save_fl);
907                 SITE(pv_irq_ops, restore_fl);
908 #undef SITE
909
910         patch_site:
911                 if (start == NULL || (end-start) > len)
912                         goto default_patch;
913
914                 ret = paravirt_patch_insns(insnbuf, len, start, end);
915
916                 /* Note: because reloc is assigned from something that
917                    appears to be an array, gcc assumes it's non-null,
918                    but doesn't know its relationship with start and
919                    end. */
920                 if (reloc > start && reloc < end) {
921                         int reloc_off = reloc - start;
922                         long *relocp = (long *)(insnbuf + reloc_off);
923                         long delta = start - (char *)addr;
924
925                         *relocp += delta;
926                 }
927                 break;
928
929         default_patch:
930         default:
931                 ret = paravirt_patch_default(type, clobbers, insnbuf,
932                                              addr, len);
933                 break;
934         }
935
936         return ret;
937 }
938
939 static const struct pv_info xen_info __initdata = {
940         .paravirt_enabled = 1,
941         .shared_kernel_pmd = 0,
942
943         .name = "Xen",
944 };
945
946 static const struct pv_init_ops xen_init_ops __initdata = {
947         .patch = xen_patch,
948 };
949
950 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
951         .cpuid = xen_cpuid,
952
953         .set_debugreg = xen_set_debugreg,
954         .get_debugreg = xen_get_debugreg,
955
956         .clts = xen_clts,
957
958         .read_cr0 = xen_read_cr0,
959         .write_cr0 = xen_write_cr0,
960
961         .read_cr4 = native_read_cr4,
962         .read_cr4_safe = native_read_cr4_safe,
963         .write_cr4 = xen_write_cr4,
964
965         .wbinvd = native_wbinvd,
966
967         .read_msr = native_read_msr_safe,
968         .write_msr = xen_write_msr_safe,
969         .read_tsc = native_read_tsc,
970         .read_pmc = native_read_pmc,
971
972         .iret = xen_iret,
973         .irq_enable_sysexit = xen_sysexit,
974 #ifdef CONFIG_X86_64
975         .usergs_sysret32 = xen_sysret32,
976         .usergs_sysret64 = xen_sysret64,
977 #endif
978
979         .load_tr_desc = paravirt_nop,
980         .set_ldt = xen_set_ldt,
981         .load_gdt = xen_load_gdt,
982         .load_idt = xen_load_idt,
983         .load_tls = xen_load_tls,
984 #ifdef CONFIG_X86_64
985         .load_gs_index = xen_load_gs_index,
986 #endif
987
988         .alloc_ldt = xen_alloc_ldt,
989         .free_ldt = xen_free_ldt,
990
991         .store_gdt = native_store_gdt,
992         .store_idt = native_store_idt,
993         .store_tr = xen_store_tr,
994
995         .write_ldt_entry = xen_write_ldt_entry,
996         .write_gdt_entry = xen_write_gdt_entry,
997         .write_idt_entry = xen_write_idt_entry,
998         .load_sp0 = xen_load_sp0,
999
1000         .set_iopl_mask = xen_set_iopl_mask,
1001         .io_delay = xen_io_delay,
1002
1003         /* Xen takes care of %gs when switching to usermode for us */
1004         .swapgs = paravirt_nop,
1005
1006         .start_context_switch = paravirt_start_context_switch,
1007         .end_context_switch = xen_end_context_switch,
1008 };
1009
1010 static const struct pv_apic_ops xen_apic_ops __initdata = {
1011 #ifdef CONFIG_X86_LOCAL_APIC
1012         .startup_ipi_hook = paravirt_nop,
1013 #endif
1014 };
1015
1016 static void xen_reboot(int reason)
1017 {
1018         struct sched_shutdown r = { .reason = reason };
1019
1020 #ifdef CONFIG_SMP
1021         smp_send_stop();
1022 #endif
1023
1024         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1025                 BUG();
1026 }
1027
1028 static void xen_restart(char *msg)
1029 {
1030         xen_reboot(SHUTDOWN_reboot);
1031 }
1032
1033 static void xen_emergency_restart(void)
1034 {
1035         xen_reboot(SHUTDOWN_reboot);
1036 }
1037
1038 static void xen_machine_halt(void)
1039 {
1040         xen_reboot(SHUTDOWN_poweroff);
1041 }
1042
1043 static void xen_crash_shutdown(struct pt_regs *regs)
1044 {
1045         xen_reboot(SHUTDOWN_crash);
1046 }
1047
1048 static int
1049 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1050 {
1051         xen_reboot(SHUTDOWN_crash);
1052         return NOTIFY_DONE;
1053 }
1054
1055 static struct notifier_block xen_panic_block = {
1056         .notifier_call= xen_panic_event,
1057 };
1058
1059 int xen_panic_handler_init(void)
1060 {
1061         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1062         return 0;
1063 }
1064
1065 static const struct machine_ops __initdata xen_machine_ops = {
1066         .restart = xen_restart,
1067         .halt = xen_machine_halt,
1068         .power_off = xen_machine_halt,
1069         .shutdown = xen_machine_halt,
1070         .crash_shutdown = xen_crash_shutdown,
1071         .emergency_restart = xen_emergency_restart,
1072 };
1073
1074 /*
1075  * Set up the GDT and segment registers for -fstack-protector.  Until
1076  * we do this, we have to be careful not to call any stack-protected
1077  * function, which is most of the kernel.
1078  */
1079 static void __init xen_setup_stackprotector(void)
1080 {
1081         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1082         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1083
1084         setup_stack_canary_segment(0);
1085         switch_to_new_gdt(0);
1086
1087         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1088         pv_cpu_ops.load_gdt = xen_load_gdt;
1089 }
1090
1091 /* First C function to be called on Xen boot */
1092 asmlinkage void __init xen_start_kernel(void)
1093 {
1094         pgd_t *pgd;
1095
1096         if (!xen_start_info)
1097                 return;
1098
1099         xen_domain_type = XEN_PV_DOMAIN;
1100
1101         /* Install Xen paravirt ops */
1102         pv_info = xen_info;
1103         pv_init_ops = xen_init_ops;
1104         pv_cpu_ops = xen_cpu_ops;
1105         pv_apic_ops = xen_apic_ops;
1106
1107         x86_init.resources.memory_setup = xen_memory_setup;
1108         x86_init.oem.arch_setup = xen_arch_setup;
1109         x86_init.oem.banner = xen_banner;
1110
1111         xen_init_time_ops();
1112
1113         /*
1114          * Set up some pagetable state before starting to set any ptes.
1115          */
1116
1117         xen_init_mmu_ops();
1118
1119         /* Prevent unwanted bits from being set in PTEs. */
1120         __supported_pte_mask &= ~_PAGE_GLOBAL;
1121         if (!xen_initial_domain())
1122                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1123
1124         __supported_pte_mask |= _PAGE_IOMAP;
1125
1126         /*
1127          * Prevent page tables from being allocated in highmem, even
1128          * if CONFIG_HIGHPTE is enabled.
1129          */
1130         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1131
1132         /* Work out if we support NX */
1133         x86_configure_nx();
1134
1135         xen_setup_features();
1136
1137         /* Get mfn list */
1138         if (!xen_feature(XENFEAT_auto_translated_physmap))
1139                 xen_build_dynamic_phys_to_machine();
1140
1141         /*
1142          * Set up kernel GDT and segment registers, mainly so that
1143          * -fstack-protector code can be executed.
1144          */
1145         xen_setup_stackprotector();
1146
1147         xen_init_irq_ops();
1148         xen_init_cpuid_mask();
1149
1150 #ifdef CONFIG_X86_LOCAL_APIC
1151         /*
1152          * set up the basic apic ops.
1153          */
1154         set_xen_basic_apic_ops();
1155 #endif
1156
1157         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1158                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1159                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1160         }
1161
1162         machine_ops = xen_machine_ops;
1163
1164         /*
1165          * The only reliable way to retain the initial address of the
1166          * percpu gdt_page is to remember it here, so we can go and
1167          * mark it RW later, when the initial percpu area is freed.
1168          */
1169         xen_initial_gdt = &per_cpu(gdt_page, 0);
1170
1171         xen_smp_init();
1172
1173         pgd = (pgd_t *)xen_start_info->pt_base;
1174
1175         if (!xen_initial_domain())
1176                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1177
1178         __supported_pte_mask |= _PAGE_IOMAP;
1179         /* Don't do the full vcpu_info placement stuff until we have a
1180            possible map and a non-dummy shared_info. */
1181         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1182
1183         local_irq_disable();
1184         early_boot_irqs_off();
1185
1186         xen_raw_console_write("mapping kernel into physical memory\n");
1187         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1188
1189         init_mm.pgd = pgd;
1190
1191         /* keep using Xen gdt for now; no urgent need to change it */
1192
1193 #ifdef CONFIG_X86_32
1194         pv_info.kernel_rpl = 1;
1195         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1196                 pv_info.kernel_rpl = 0;
1197 #else
1198         pv_info.kernel_rpl = 0;
1199 #endif
1200
1201         /* set the limit of our address space */
1202         xen_reserve_top();
1203
1204 #ifdef CONFIG_X86_32
1205         /* set up basic CPUID stuff */
1206         cpu_detect(&new_cpu_data);
1207         new_cpu_data.hard_math = 1;
1208         new_cpu_data.wp_works_ok = 1;
1209         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1210 #endif
1211
1212         /* Poke various useful things into boot_params */
1213         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1214         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1215                 ? __pa(xen_start_info->mod_start) : 0;
1216         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1217         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1218
1219         if (!xen_initial_domain()) {
1220                 add_preferred_console("xenboot", 0, NULL);
1221                 add_preferred_console("tty", 0, NULL);
1222                 add_preferred_console("hvc", 0, NULL);
1223         } else {
1224                 /* Make sure ACS will be enabled */
1225                 pci_request_acs();
1226         }
1227                 
1228
1229         xen_raw_console_write("about to get started...\n");
1230
1231         xen_setup_runstate_info(0);
1232
1233         /* Start the world */
1234 #ifdef CONFIG_X86_32
1235         i386_start_kernel();
1236 #else
1237         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1238 #endif
1239 }
1240
1241 static uint32_t xen_cpuid_base(void)
1242 {
1243         uint32_t base, eax, ebx, ecx, edx;
1244         char signature[13];
1245
1246         for (base = 0x40000000; base < 0x40010000; base += 0x100) {
1247                 cpuid(base, &eax, &ebx, &ecx, &edx);
1248                 *(uint32_t *)(signature + 0) = ebx;
1249                 *(uint32_t *)(signature + 4) = ecx;
1250                 *(uint32_t *)(signature + 8) = edx;
1251                 signature[12] = 0;
1252
1253                 if (!strcmp("XenVMMXenVMM", signature) && ((eax - base) >= 2))
1254                         return base;
1255         }
1256
1257         return 0;
1258 }
1259
1260 static int init_hvm_pv_info(int *major, int *minor)
1261 {
1262         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1263         u64 pfn;
1264
1265         base = xen_cpuid_base();
1266         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1267
1268         *major = eax >> 16;
1269         *minor = eax & 0xffff;
1270         printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1271
1272         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1273
1274         pfn = __pa(hypercall_page);
1275         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1276
1277         xen_setup_features();
1278
1279         pv_info = xen_info;
1280         pv_info.kernel_rpl = 0;
1281
1282         xen_domain_type = XEN_HVM_DOMAIN;
1283
1284         return 0;
1285 }
1286
1287 void xen_hvm_init_shared_info(void)
1288 {
1289         int cpu;
1290         struct xen_add_to_physmap xatp;
1291         static struct shared_info *shared_info_page = 0;
1292
1293         if (!shared_info_page)
1294                 shared_info_page = (struct shared_info *)
1295                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1296         xatp.domid = DOMID_SELF;
1297         xatp.idx = 0;
1298         xatp.space = XENMAPSPACE_shared_info;
1299         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1300         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1301                 BUG();
1302
1303         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1304
1305         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1306          * page, we use it in the event channel upcall and in some pvclock
1307          * related functions. We don't need the vcpu_info placement
1308          * optimizations because we don't use any pv_mmu or pv_irq op on
1309          * HVM.
1310          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1311          * online but xen_hvm_init_shared_info is run at resume time too and
1312          * in that case multiple vcpus might be online. */
1313         for_each_online_cpu(cpu) {
1314                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1315         }
1316 }
1317
1318 #ifdef CONFIG_XEN_PVHVM
1319 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1320                                     unsigned long action, void *hcpu)
1321 {
1322         int cpu = (long)hcpu;
1323         switch (action) {
1324         case CPU_UP_PREPARE:
1325                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1326                 break;
1327         default:
1328                 break;
1329         }
1330         return NOTIFY_OK;
1331 }
1332
1333 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = {
1334         .notifier_call  = xen_hvm_cpu_notify,
1335 };
1336
1337 static void __init xen_hvm_guest_init(void)
1338 {
1339         int r;
1340         int major, minor;
1341
1342         r = init_hvm_pv_info(&major, &minor);
1343         if (r < 0)
1344                 return;
1345
1346         xen_hvm_init_shared_info();
1347
1348         if (xen_feature(XENFEAT_hvm_callback_vector))
1349                 xen_have_vector_callback = 1;
1350         register_cpu_notifier(&xen_hvm_cpu_notifier);
1351         xen_unplug_emulated_devices();
1352         have_vcpu_info_placement = 0;
1353         x86_init.irqs.intr_init = xen_init_IRQ;
1354         xen_hvm_init_time_ops();
1355         xen_hvm_init_mmu_ops();
1356 }
1357
1358 static bool __init xen_hvm_platform(void)
1359 {
1360         if (xen_pv_domain())
1361                 return false;
1362
1363         if (!xen_cpuid_base())
1364                 return false;
1365
1366         return true;
1367 }
1368
1369 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = {
1370         .name                   = "Xen HVM",
1371         .detect                 = xen_hvm_platform,
1372         .init_platform          = xen_hvm_guest_init,
1373 };
1374 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1375 #endif