xen/acpi: Move the xen_running_on_version_or_later function.
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/events.h>
37 #include <xen/interface/xen.h>
38 #include <xen/interface/version.h>
39 #include <xen/interface/physdev.h>
40 #include <xen/interface/vcpu.h>
41 #include <xen/interface/memory.h>
42 #include <xen/interface/xen-mca.h>
43 #include <xen/features.h>
44 #include <xen/page.h>
45 #include <xen/hvm.h>
46 #include <xen/hvc-console.h>
47 #include <xen/acpi.h>
48
49 #include <asm/paravirt.h>
50 #include <asm/apic.h>
51 #include <asm/page.h>
52 #include <asm/xen/pci.h>
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/fixmap.h>
56 #include <asm/processor.h>
57 #include <asm/proto.h>
58 #include <asm/msr-index.h>
59 #include <asm/traps.h>
60 #include <asm/setup.h>
61 #include <asm/desc.h>
62 #include <asm/pgalloc.h>
63 #include <asm/pgtable.h>
64 #include <asm/tlbflush.h>
65 #include <asm/reboot.h>
66 #include <asm/stackprotector.h>
67 #include <asm/hypervisor.h>
68 #include <asm/mwait.h>
69 #include <asm/pci_x86.h>
70
71 #ifdef CONFIG_ACPI
72 #include <linux/acpi.h>
73 #include <asm/acpi.h>
74 #include <acpi/pdc_intel.h>
75 #include <acpi/processor.h>
76 #include <xen/interface/platform.h>
77 #endif
78
79 #include "xen-ops.h"
80 #include "mmu.h"
81 #include "smp.h"
82 #include "multicalls.h"
83
84 EXPORT_SYMBOL_GPL(hypercall_page);
85
86 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
87 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
88
89 enum xen_domain_type xen_domain_type = XEN_NATIVE;
90 EXPORT_SYMBOL_GPL(xen_domain_type);
91
92 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
93 EXPORT_SYMBOL(machine_to_phys_mapping);
94 unsigned long  machine_to_phys_nr;
95 EXPORT_SYMBOL(machine_to_phys_nr);
96
97 struct start_info *xen_start_info;
98 EXPORT_SYMBOL_GPL(xen_start_info);
99
100 struct shared_info xen_dummy_shared_info;
101
102 void *xen_initial_gdt;
103
104 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
105 __read_mostly int xen_have_vector_callback;
106 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
107
108 /*
109  * Point at some empty memory to start with. We map the real shared_info
110  * page as soon as fixmap is up and running.
111  */
112 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
113
114 /*
115  * Flag to determine whether vcpu info placement is available on all
116  * VCPUs.  We assume it is to start with, and then set it to zero on
117  * the first failure.  This is because it can succeed on some VCPUs
118  * and not others, since it can involve hypervisor memory allocation,
119  * or because the guest failed to guarantee all the appropriate
120  * constraints on all VCPUs (ie buffer can't cross a page boundary).
121  *
122  * Note that any particular CPU may be using a placed vcpu structure,
123  * but we can only optimise if the all are.
124  *
125  * 0: not available, 1: available
126  */
127 static int have_vcpu_info_placement = 1;
128
129 struct tls_descs {
130         struct desc_struct desc[3];
131 };
132
133 /*
134  * Updating the 3 TLS descriptors in the GDT on every task switch is
135  * surprisingly expensive so we avoid updating them if they haven't
136  * changed.  Since Xen writes different descriptors than the one
137  * passed in the update_descriptor hypercall we keep shadow copies to
138  * compare against.
139  */
140 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
141
142 static void clamp_max_cpus(void)
143 {
144 #ifdef CONFIG_SMP
145         if (setup_max_cpus > MAX_VIRT_CPUS)
146                 setup_max_cpus = MAX_VIRT_CPUS;
147 #endif
148 }
149
150 static void xen_vcpu_setup(int cpu)
151 {
152         struct vcpu_register_vcpu_info info;
153         int err;
154         struct vcpu_info *vcpup;
155
156         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
157
158         if (cpu < MAX_VIRT_CPUS)
159                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
160
161         if (!have_vcpu_info_placement) {
162                 if (cpu >= MAX_VIRT_CPUS)
163                         clamp_max_cpus();
164                 return;
165         }
166
167         vcpup = &per_cpu(xen_vcpu_info, cpu);
168         info.mfn = arbitrary_virt_to_mfn(vcpup);
169         info.offset = offset_in_page(vcpup);
170
171         /* Check to see if the hypervisor will put the vcpu_info
172            structure where we want it, which allows direct access via
173            a percpu-variable. */
174         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
175
176         if (err) {
177                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
178                 have_vcpu_info_placement = 0;
179                 clamp_max_cpus();
180         } else {
181                 /* This cpu is using the registered vcpu info, even if
182                    later ones fail to. */
183                 per_cpu(xen_vcpu, cpu) = vcpup;
184         }
185 }
186
187 /*
188  * On restore, set the vcpu placement up again.
189  * If it fails, then we're in a bad state, since
190  * we can't back out from using it...
191  */
192 void xen_vcpu_restore(void)
193 {
194         int cpu;
195
196         for_each_online_cpu(cpu) {
197                 bool other_cpu = (cpu != smp_processor_id());
198
199                 if (other_cpu &&
200                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
201                         BUG();
202
203                 xen_setup_runstate_info(cpu);
204
205                 if (have_vcpu_info_placement)
206                         xen_vcpu_setup(cpu);
207
208                 if (other_cpu &&
209                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
210                         BUG();
211         }
212 }
213
214 static void __init xen_banner(void)
215 {
216         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
217         struct xen_extraversion extra;
218         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
219
220         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
221                pv_info.name);
222         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
223                version >> 16, version & 0xffff, extra.extraversion,
224                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
225 }
226 /* Check if running on Xen version (major, minor) or later */
227 bool
228 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
229 {
230         unsigned int version;
231
232         if (!xen_domain())
233                 return false;
234
235         version = HYPERVISOR_xen_version(XENVER_version, NULL);
236         if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
237                 ((version >> 16) > major))
238                 return true;
239         return false;
240 }
241
242 #define CPUID_THERM_POWER_LEAF 6
243 #define APERFMPERF_PRESENT 0
244
245 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
246 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
247
248 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
249 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
250 static __read_mostly unsigned int cpuid_leaf5_edx_val;
251
252 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
253                       unsigned int *cx, unsigned int *dx)
254 {
255         unsigned maskebx = ~0;
256         unsigned maskecx = ~0;
257         unsigned maskedx = ~0;
258         unsigned setecx = 0;
259         /*
260          * Mask out inconvenient features, to try and disable as many
261          * unsupported kernel subsystems as possible.
262          */
263         switch (*ax) {
264         case 1:
265                 maskecx = cpuid_leaf1_ecx_mask;
266                 setecx = cpuid_leaf1_ecx_set_mask;
267                 maskedx = cpuid_leaf1_edx_mask;
268                 break;
269
270         case CPUID_MWAIT_LEAF:
271                 /* Synthesize the values.. */
272                 *ax = 0;
273                 *bx = 0;
274                 *cx = cpuid_leaf5_ecx_val;
275                 *dx = cpuid_leaf5_edx_val;
276                 return;
277
278         case CPUID_THERM_POWER_LEAF:
279                 /* Disabling APERFMPERF for kernel usage */
280                 maskecx = ~(1 << APERFMPERF_PRESENT);
281                 break;
282
283         case 0xb:
284                 /* Suppress extended topology stuff */
285                 maskebx = 0;
286                 break;
287         }
288
289         asm(XEN_EMULATE_PREFIX "cpuid"
290                 : "=a" (*ax),
291                   "=b" (*bx),
292                   "=c" (*cx),
293                   "=d" (*dx)
294                 : "0" (*ax), "2" (*cx));
295
296         *bx &= maskebx;
297         *cx &= maskecx;
298         *cx |= setecx;
299         *dx &= maskedx;
300
301 }
302
303 static bool __init xen_check_mwait(void)
304 {
305 #ifdef CONFIG_ACPI
306         struct xen_platform_op op = {
307                 .cmd                    = XENPF_set_processor_pminfo,
308                 .u.set_pminfo.id        = -1,
309                 .u.set_pminfo.type      = XEN_PM_PDC,
310         };
311         uint32_t buf[3];
312         unsigned int ax, bx, cx, dx;
313         unsigned int mwait_mask;
314
315         /* We need to determine whether it is OK to expose the MWAIT
316          * capability to the kernel to harvest deeper than C3 states from ACPI
317          * _CST using the processor_harvest_xen.c module. For this to work, we
318          * need to gather the MWAIT_LEAF values (which the cstate.c code
319          * checks against). The hypervisor won't expose the MWAIT flag because
320          * it would break backwards compatibility; so we will find out directly
321          * from the hardware and hypercall.
322          */
323         if (!xen_initial_domain())
324                 return false;
325
326         /*
327          * When running under platform earlier than Xen4.2, do not expose
328          * mwait, to avoid the risk of loading native acpi pad driver
329          */
330         if (!xen_running_on_version_or_later(4, 2))
331                 return false;
332
333         ax = 1;
334         cx = 0;
335
336         native_cpuid(&ax, &bx, &cx, &dx);
337
338         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
339                      (1 << (X86_FEATURE_MWAIT % 32));
340
341         if ((cx & mwait_mask) != mwait_mask)
342                 return false;
343
344         /* We need to emulate the MWAIT_LEAF and for that we need both
345          * ecx and edx. The hypercall provides only partial information.
346          */
347
348         ax = CPUID_MWAIT_LEAF;
349         bx = 0;
350         cx = 0;
351         dx = 0;
352
353         native_cpuid(&ax, &bx, &cx, &dx);
354
355         /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
356          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
357          */
358         buf[0] = ACPI_PDC_REVISION_ID;
359         buf[1] = 1;
360         buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
361
362         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
363
364         if ((HYPERVISOR_dom0_op(&op) == 0) &&
365             (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
366                 cpuid_leaf5_ecx_val = cx;
367                 cpuid_leaf5_edx_val = dx;
368         }
369         return true;
370 #else
371         return false;
372 #endif
373 }
374 static void __init xen_init_cpuid_mask(void)
375 {
376         unsigned int ax, bx, cx, dx;
377         unsigned int xsave_mask;
378
379         cpuid_leaf1_edx_mask =
380                 ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
381                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
382
383         if (!xen_initial_domain())
384                 cpuid_leaf1_edx_mask &=
385                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
386                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
387         ax = 1;
388         cx = 0;
389         xen_cpuid(&ax, &bx, &cx, &dx);
390
391         xsave_mask =
392                 (1 << (X86_FEATURE_XSAVE % 32)) |
393                 (1 << (X86_FEATURE_OSXSAVE % 32));
394
395         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
396         if ((cx & xsave_mask) != xsave_mask)
397                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
398         if (xen_check_mwait())
399                 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
400 }
401
402 static void xen_set_debugreg(int reg, unsigned long val)
403 {
404         HYPERVISOR_set_debugreg(reg, val);
405 }
406
407 static unsigned long xen_get_debugreg(int reg)
408 {
409         return HYPERVISOR_get_debugreg(reg);
410 }
411
412 static void xen_end_context_switch(struct task_struct *next)
413 {
414         xen_mc_flush();
415         paravirt_end_context_switch(next);
416 }
417
418 static unsigned long xen_store_tr(void)
419 {
420         return 0;
421 }
422
423 /*
424  * Set the page permissions for a particular virtual address.  If the
425  * address is a vmalloc mapping (or other non-linear mapping), then
426  * find the linear mapping of the page and also set its protections to
427  * match.
428  */
429 static void set_aliased_prot(void *v, pgprot_t prot)
430 {
431         int level;
432         pte_t *ptep;
433         pte_t pte;
434         unsigned long pfn;
435         struct page *page;
436
437         ptep = lookup_address((unsigned long)v, &level);
438         BUG_ON(ptep == NULL);
439
440         pfn = pte_pfn(*ptep);
441         page = pfn_to_page(pfn);
442
443         pte = pfn_pte(pfn, prot);
444
445         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
446                 BUG();
447
448         if (!PageHighMem(page)) {
449                 void *av = __va(PFN_PHYS(pfn));
450
451                 if (av != v)
452                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
453                                 BUG();
454         } else
455                 kmap_flush_unused();
456 }
457
458 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
459 {
460         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
461         int i;
462
463         for(i = 0; i < entries; i += entries_per_page)
464                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
465 }
466
467 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
468 {
469         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
470         int i;
471
472         for(i = 0; i < entries; i += entries_per_page)
473                 set_aliased_prot(ldt + i, PAGE_KERNEL);
474 }
475
476 static void xen_set_ldt(const void *addr, unsigned entries)
477 {
478         struct mmuext_op *op;
479         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
480
481         trace_xen_cpu_set_ldt(addr, entries);
482
483         op = mcs.args;
484         op->cmd = MMUEXT_SET_LDT;
485         op->arg1.linear_addr = (unsigned long)addr;
486         op->arg2.nr_ents = entries;
487
488         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
489
490         xen_mc_issue(PARAVIRT_LAZY_CPU);
491 }
492
493 static void xen_load_gdt(const struct desc_ptr *dtr)
494 {
495         unsigned long va = dtr->address;
496         unsigned int size = dtr->size + 1;
497         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
498         unsigned long frames[pages];
499         int f;
500
501         /*
502          * A GDT can be up to 64k in size, which corresponds to 8192
503          * 8-byte entries, or 16 4k pages..
504          */
505
506         BUG_ON(size > 65536);
507         BUG_ON(va & ~PAGE_MASK);
508
509         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
510                 int level;
511                 pte_t *ptep;
512                 unsigned long pfn, mfn;
513                 void *virt;
514
515                 /*
516                  * The GDT is per-cpu and is in the percpu data area.
517                  * That can be virtually mapped, so we need to do a
518                  * page-walk to get the underlying MFN for the
519                  * hypercall.  The page can also be in the kernel's
520                  * linear range, so we need to RO that mapping too.
521                  */
522                 ptep = lookup_address(va, &level);
523                 BUG_ON(ptep == NULL);
524
525                 pfn = pte_pfn(*ptep);
526                 mfn = pfn_to_mfn(pfn);
527                 virt = __va(PFN_PHYS(pfn));
528
529                 frames[f] = mfn;
530
531                 make_lowmem_page_readonly((void *)va);
532                 make_lowmem_page_readonly(virt);
533         }
534
535         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
536                 BUG();
537 }
538
539 /*
540  * load_gdt for early boot, when the gdt is only mapped once
541  */
542 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
543 {
544         unsigned long va = dtr->address;
545         unsigned int size = dtr->size + 1;
546         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
547         unsigned long frames[pages];
548         int f;
549
550         /*
551          * A GDT can be up to 64k in size, which corresponds to 8192
552          * 8-byte entries, or 16 4k pages..
553          */
554
555         BUG_ON(size > 65536);
556         BUG_ON(va & ~PAGE_MASK);
557
558         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
559                 pte_t pte;
560                 unsigned long pfn, mfn;
561
562                 pfn = virt_to_pfn(va);
563                 mfn = pfn_to_mfn(pfn);
564
565                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
566
567                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
568                         BUG();
569
570                 frames[f] = mfn;
571         }
572
573         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
574                 BUG();
575 }
576
577 static inline bool desc_equal(const struct desc_struct *d1,
578                               const struct desc_struct *d2)
579 {
580         return d1->a == d2->a && d1->b == d2->b;
581 }
582
583 static void load_TLS_descriptor(struct thread_struct *t,
584                                 unsigned int cpu, unsigned int i)
585 {
586         struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
587         struct desc_struct *gdt;
588         xmaddr_t maddr;
589         struct multicall_space mc;
590
591         if (desc_equal(shadow, &t->tls_array[i]))
592                 return;
593
594         *shadow = t->tls_array[i];
595
596         gdt = get_cpu_gdt_table(cpu);
597         maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
598         mc = __xen_mc_entry(0);
599
600         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
601 }
602
603 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
604 {
605         /*
606          * XXX sleazy hack: If we're being called in a lazy-cpu zone
607          * and lazy gs handling is enabled, it means we're in a
608          * context switch, and %gs has just been saved.  This means we
609          * can zero it out to prevent faults on exit from the
610          * hypervisor if the next process has no %gs.  Either way, it
611          * has been saved, and the new value will get loaded properly.
612          * This will go away as soon as Xen has been modified to not
613          * save/restore %gs for normal hypercalls.
614          *
615          * On x86_64, this hack is not used for %gs, because gs points
616          * to KERNEL_GS_BASE (and uses it for PDA references), so we
617          * must not zero %gs on x86_64
618          *
619          * For x86_64, we need to zero %fs, otherwise we may get an
620          * exception between the new %fs descriptor being loaded and
621          * %fs being effectively cleared at __switch_to().
622          */
623         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
624 #ifdef CONFIG_X86_32
625                 lazy_load_gs(0);
626 #else
627                 loadsegment(fs, 0);
628 #endif
629         }
630
631         xen_mc_batch();
632
633         load_TLS_descriptor(t, cpu, 0);
634         load_TLS_descriptor(t, cpu, 1);
635         load_TLS_descriptor(t, cpu, 2);
636
637         xen_mc_issue(PARAVIRT_LAZY_CPU);
638 }
639
640 #ifdef CONFIG_X86_64
641 static void xen_load_gs_index(unsigned int idx)
642 {
643         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
644                 BUG();
645 }
646 #endif
647
648 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
649                                 const void *ptr)
650 {
651         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
652         u64 entry = *(u64 *)ptr;
653
654         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
655
656         preempt_disable();
657
658         xen_mc_flush();
659         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
660                 BUG();
661
662         preempt_enable();
663 }
664
665 static int cvt_gate_to_trap(int vector, const gate_desc *val,
666                             struct trap_info *info)
667 {
668         unsigned long addr;
669
670         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
671                 return 0;
672
673         info->vector = vector;
674
675         addr = gate_offset(*val);
676 #ifdef CONFIG_X86_64
677         /*
678          * Look for known traps using IST, and substitute them
679          * appropriately.  The debugger ones are the only ones we care
680          * about.  Xen will handle faults like double_fault,
681          * so we should never see them.  Warn if
682          * there's an unexpected IST-using fault handler.
683          */
684         if (addr == (unsigned long)debug)
685                 addr = (unsigned long)xen_debug;
686         else if (addr == (unsigned long)int3)
687                 addr = (unsigned long)xen_int3;
688         else if (addr == (unsigned long)stack_segment)
689                 addr = (unsigned long)xen_stack_segment;
690         else if (addr == (unsigned long)double_fault ||
691                  addr == (unsigned long)nmi) {
692                 /* Don't need to handle these */
693                 return 0;
694 #ifdef CONFIG_X86_MCE
695         } else if (addr == (unsigned long)machine_check) {
696                 /*
697                  * when xen hypervisor inject vMCE to guest,
698                  * use native mce handler to handle it
699                  */
700                 ;
701 #endif
702         } else {
703                 /* Some other trap using IST? */
704                 if (WARN_ON(val->ist != 0))
705                         return 0;
706         }
707 #endif  /* CONFIG_X86_64 */
708         info->address = addr;
709
710         info->cs = gate_segment(*val);
711         info->flags = val->dpl;
712         /* interrupt gates clear IF */
713         if (val->type == GATE_INTERRUPT)
714                 info->flags |= 1 << 2;
715
716         return 1;
717 }
718
719 /* Locations of each CPU's IDT */
720 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
721
722 /* Set an IDT entry.  If the entry is part of the current IDT, then
723    also update Xen. */
724 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
725 {
726         unsigned long p = (unsigned long)&dt[entrynum];
727         unsigned long start, end;
728
729         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
730
731         preempt_disable();
732
733         start = __this_cpu_read(idt_desc.address);
734         end = start + __this_cpu_read(idt_desc.size) + 1;
735
736         xen_mc_flush();
737
738         native_write_idt_entry(dt, entrynum, g);
739
740         if (p >= start && (p + 8) <= end) {
741                 struct trap_info info[2];
742
743                 info[1].address = 0;
744
745                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
746                         if (HYPERVISOR_set_trap_table(info))
747                                 BUG();
748         }
749
750         preempt_enable();
751 }
752
753 static void xen_convert_trap_info(const struct desc_ptr *desc,
754                                   struct trap_info *traps)
755 {
756         unsigned in, out, count;
757
758         count = (desc->size+1) / sizeof(gate_desc);
759         BUG_ON(count > 256);
760
761         for (in = out = 0; in < count; in++) {
762                 gate_desc *entry = (gate_desc*)(desc->address) + in;
763
764                 if (cvt_gate_to_trap(in, entry, &traps[out]))
765                         out++;
766         }
767         traps[out].address = 0;
768 }
769
770 void xen_copy_trap_info(struct trap_info *traps)
771 {
772         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
773
774         xen_convert_trap_info(desc, traps);
775 }
776
777 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
778    hold a spinlock to protect the static traps[] array (static because
779    it avoids allocation, and saves stack space). */
780 static void xen_load_idt(const struct desc_ptr *desc)
781 {
782         static DEFINE_SPINLOCK(lock);
783         static struct trap_info traps[257];
784
785         trace_xen_cpu_load_idt(desc);
786
787         spin_lock(&lock);
788
789         __get_cpu_var(idt_desc) = *desc;
790
791         xen_convert_trap_info(desc, traps);
792
793         xen_mc_flush();
794         if (HYPERVISOR_set_trap_table(traps))
795                 BUG();
796
797         spin_unlock(&lock);
798 }
799
800 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
801    they're handled differently. */
802 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
803                                 const void *desc, int type)
804 {
805         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
806
807         preempt_disable();
808
809         switch (type) {
810         case DESC_LDT:
811         case DESC_TSS:
812                 /* ignore */
813                 break;
814
815         default: {
816                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
817
818                 xen_mc_flush();
819                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
820                         BUG();
821         }
822
823         }
824
825         preempt_enable();
826 }
827
828 /*
829  * Version of write_gdt_entry for use at early boot-time needed to
830  * update an entry as simply as possible.
831  */
832 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
833                                             const void *desc, int type)
834 {
835         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
836
837         switch (type) {
838         case DESC_LDT:
839         case DESC_TSS:
840                 /* ignore */
841                 break;
842
843         default: {
844                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
845
846                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
847                         dt[entry] = *(struct desc_struct *)desc;
848         }
849
850         }
851 }
852
853 static void xen_load_sp0(struct tss_struct *tss,
854                          struct thread_struct *thread)
855 {
856         struct multicall_space mcs;
857
858         mcs = xen_mc_entry(0);
859         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
860         xen_mc_issue(PARAVIRT_LAZY_CPU);
861 }
862
863 static void xen_set_iopl_mask(unsigned mask)
864 {
865         struct physdev_set_iopl set_iopl;
866
867         /* Force the change at ring 0. */
868         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
869         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
870 }
871
872 static void xen_io_delay(void)
873 {
874 }
875
876 #ifdef CONFIG_X86_LOCAL_APIC
877 static unsigned long xen_set_apic_id(unsigned int x)
878 {
879         WARN_ON(1);
880         return x;
881 }
882 static unsigned int xen_get_apic_id(unsigned long x)
883 {
884         return ((x)>>24) & 0xFFu;
885 }
886 static u32 xen_apic_read(u32 reg)
887 {
888         struct xen_platform_op op = {
889                 .cmd = XENPF_get_cpuinfo,
890                 .interface_version = XENPF_INTERFACE_VERSION,
891                 .u.pcpu_info.xen_cpuid = 0,
892         };
893         int ret = 0;
894
895         /* Shouldn't need this as APIC is turned off for PV, and we only
896          * get called on the bootup processor. But just in case. */
897         if (!xen_initial_domain() || smp_processor_id())
898                 return 0;
899
900         if (reg == APIC_LVR)
901                 return 0x10;
902
903         if (reg != APIC_ID)
904                 return 0;
905
906         ret = HYPERVISOR_dom0_op(&op);
907         if (ret)
908                 return 0;
909
910         return op.u.pcpu_info.apic_id << 24;
911 }
912
913 static void xen_apic_write(u32 reg, u32 val)
914 {
915         /* Warn to see if there's any stray references */
916         WARN_ON(1);
917 }
918
919 static u64 xen_apic_icr_read(void)
920 {
921         return 0;
922 }
923
924 static void xen_apic_icr_write(u32 low, u32 id)
925 {
926         /* Warn to see if there's any stray references */
927         WARN_ON(1);
928 }
929
930 static void xen_apic_wait_icr_idle(void)
931 {
932         return;
933 }
934
935 static u32 xen_safe_apic_wait_icr_idle(void)
936 {
937         return 0;
938 }
939
940 static void set_xen_basic_apic_ops(void)
941 {
942         apic->read = xen_apic_read;
943         apic->write = xen_apic_write;
944         apic->icr_read = xen_apic_icr_read;
945         apic->icr_write = xen_apic_icr_write;
946         apic->wait_icr_idle = xen_apic_wait_icr_idle;
947         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
948         apic->set_apic_id = xen_set_apic_id;
949         apic->get_apic_id = xen_get_apic_id;
950
951 #ifdef CONFIG_SMP
952         apic->send_IPI_allbutself = xen_send_IPI_allbutself;
953         apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
954         apic->send_IPI_mask = xen_send_IPI_mask;
955         apic->send_IPI_all = xen_send_IPI_all;
956         apic->send_IPI_self = xen_send_IPI_self;
957 #endif
958 }
959
960 #endif
961
962 static void xen_clts(void)
963 {
964         struct multicall_space mcs;
965
966         mcs = xen_mc_entry(0);
967
968         MULTI_fpu_taskswitch(mcs.mc, 0);
969
970         xen_mc_issue(PARAVIRT_LAZY_CPU);
971 }
972
973 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
974
975 static unsigned long xen_read_cr0(void)
976 {
977         unsigned long cr0 = this_cpu_read(xen_cr0_value);
978
979         if (unlikely(cr0 == 0)) {
980                 cr0 = native_read_cr0();
981                 this_cpu_write(xen_cr0_value, cr0);
982         }
983
984         return cr0;
985 }
986
987 static void xen_write_cr0(unsigned long cr0)
988 {
989         struct multicall_space mcs;
990
991         this_cpu_write(xen_cr0_value, cr0);
992
993         /* Only pay attention to cr0.TS; everything else is
994            ignored. */
995         mcs = xen_mc_entry(0);
996
997         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
998
999         xen_mc_issue(PARAVIRT_LAZY_CPU);
1000 }
1001
1002 static void xen_write_cr4(unsigned long cr4)
1003 {
1004         cr4 &= ~X86_CR4_PGE;
1005         cr4 &= ~X86_CR4_PSE;
1006
1007         native_write_cr4(cr4);
1008 }
1009 #ifdef CONFIG_X86_64
1010 static inline unsigned long xen_read_cr8(void)
1011 {
1012         return 0;
1013 }
1014 static inline void xen_write_cr8(unsigned long val)
1015 {
1016         BUG_ON(val);
1017 }
1018 #endif
1019 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1020 {
1021         int ret;
1022
1023         ret = 0;
1024
1025         switch (msr) {
1026 #ifdef CONFIG_X86_64
1027                 unsigned which;
1028                 u64 base;
1029
1030         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1031         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1032         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1033
1034         set:
1035                 base = ((u64)high << 32) | low;
1036                 if (HYPERVISOR_set_segment_base(which, base) != 0)
1037                         ret = -EIO;
1038                 break;
1039 #endif
1040
1041         case MSR_STAR:
1042         case MSR_CSTAR:
1043         case MSR_LSTAR:
1044         case MSR_SYSCALL_MASK:
1045         case MSR_IA32_SYSENTER_CS:
1046         case MSR_IA32_SYSENTER_ESP:
1047         case MSR_IA32_SYSENTER_EIP:
1048                 /* Fast syscall setup is all done in hypercalls, so
1049                    these are all ignored.  Stub them out here to stop
1050                    Xen console noise. */
1051                 break;
1052
1053         case MSR_IA32_CR_PAT:
1054                 if (smp_processor_id() == 0)
1055                         xen_set_pat(((u64)high << 32) | low);
1056                 break;
1057
1058         default:
1059                 ret = native_write_msr_safe(msr, low, high);
1060         }
1061
1062         return ret;
1063 }
1064
1065 void xen_setup_shared_info(void)
1066 {
1067         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1068                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1069                            xen_start_info->shared_info);
1070
1071                 HYPERVISOR_shared_info =
1072                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1073         } else
1074                 HYPERVISOR_shared_info =
1075                         (struct shared_info *)__va(xen_start_info->shared_info);
1076
1077 #ifndef CONFIG_SMP
1078         /* In UP this is as good a place as any to set up shared info */
1079         xen_setup_vcpu_info_placement();
1080 #endif
1081
1082         xen_setup_mfn_list_list();
1083 }
1084
1085 /* This is called once we have the cpu_possible_mask */
1086 void xen_setup_vcpu_info_placement(void)
1087 {
1088         int cpu;
1089
1090         for_each_possible_cpu(cpu)
1091                 xen_vcpu_setup(cpu);
1092
1093         /* xen_vcpu_setup managed to place the vcpu_info within the
1094            percpu area for all cpus, so make use of it */
1095         if (have_vcpu_info_placement) {
1096                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1097                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1098                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1099                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1100                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1101         }
1102 }
1103
1104 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1105                           unsigned long addr, unsigned len)
1106 {
1107         char *start, *end, *reloc;
1108         unsigned ret;
1109
1110         start = end = reloc = NULL;
1111
1112 #define SITE(op, x)                                                     \
1113         case PARAVIRT_PATCH(op.x):                                      \
1114         if (have_vcpu_info_placement) {                                 \
1115                 start = (char *)xen_##x##_direct;                       \
1116                 end = xen_##x##_direct_end;                             \
1117                 reloc = xen_##x##_direct_reloc;                         \
1118         }                                                               \
1119         goto patch_site
1120
1121         switch (type) {
1122                 SITE(pv_irq_ops, irq_enable);
1123                 SITE(pv_irq_ops, irq_disable);
1124                 SITE(pv_irq_ops, save_fl);
1125                 SITE(pv_irq_ops, restore_fl);
1126 #undef SITE
1127
1128         patch_site:
1129                 if (start == NULL || (end-start) > len)
1130                         goto default_patch;
1131
1132                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1133
1134                 /* Note: because reloc is assigned from something that
1135                    appears to be an array, gcc assumes it's non-null,
1136                    but doesn't know its relationship with start and
1137                    end. */
1138                 if (reloc > start && reloc < end) {
1139                         int reloc_off = reloc - start;
1140                         long *relocp = (long *)(insnbuf + reloc_off);
1141                         long delta = start - (char *)addr;
1142
1143                         *relocp += delta;
1144                 }
1145                 break;
1146
1147         default_patch:
1148         default:
1149                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1150                                              addr, len);
1151                 break;
1152         }
1153
1154         return ret;
1155 }
1156
1157 static const struct pv_info xen_info __initconst = {
1158         .paravirt_enabled = 1,
1159         .shared_kernel_pmd = 0,
1160
1161 #ifdef CONFIG_X86_64
1162         .extra_user_64bit_cs = FLAT_USER_CS64,
1163 #endif
1164
1165         .name = "Xen",
1166 };
1167
1168 static const struct pv_init_ops xen_init_ops __initconst = {
1169         .patch = xen_patch,
1170 };
1171
1172 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1173         .cpuid = xen_cpuid,
1174
1175         .set_debugreg = xen_set_debugreg,
1176         .get_debugreg = xen_get_debugreg,
1177
1178         .clts = xen_clts,
1179
1180         .read_cr0 = xen_read_cr0,
1181         .write_cr0 = xen_write_cr0,
1182
1183         .read_cr4 = native_read_cr4,
1184         .read_cr4_safe = native_read_cr4_safe,
1185         .write_cr4 = xen_write_cr4,
1186
1187 #ifdef CONFIG_X86_64
1188         .read_cr8 = xen_read_cr8,
1189         .write_cr8 = xen_write_cr8,
1190 #endif
1191
1192         .wbinvd = native_wbinvd,
1193
1194         .read_msr = native_read_msr_safe,
1195         .write_msr = xen_write_msr_safe,
1196
1197         .read_tsc = native_read_tsc,
1198         .read_pmc = native_read_pmc,
1199
1200         .read_tscp = native_read_tscp,
1201
1202         .iret = xen_iret,
1203         .irq_enable_sysexit = xen_sysexit,
1204 #ifdef CONFIG_X86_64
1205         .usergs_sysret32 = xen_sysret32,
1206         .usergs_sysret64 = xen_sysret64,
1207 #endif
1208
1209         .load_tr_desc = paravirt_nop,
1210         .set_ldt = xen_set_ldt,
1211         .load_gdt = xen_load_gdt,
1212         .load_idt = xen_load_idt,
1213         .load_tls = xen_load_tls,
1214 #ifdef CONFIG_X86_64
1215         .load_gs_index = xen_load_gs_index,
1216 #endif
1217
1218         .alloc_ldt = xen_alloc_ldt,
1219         .free_ldt = xen_free_ldt,
1220
1221         .store_gdt = native_store_gdt,
1222         .store_idt = native_store_idt,
1223         .store_tr = xen_store_tr,
1224
1225         .write_ldt_entry = xen_write_ldt_entry,
1226         .write_gdt_entry = xen_write_gdt_entry,
1227         .write_idt_entry = xen_write_idt_entry,
1228         .load_sp0 = xen_load_sp0,
1229
1230         .set_iopl_mask = xen_set_iopl_mask,
1231         .io_delay = xen_io_delay,
1232
1233         /* Xen takes care of %gs when switching to usermode for us */
1234         .swapgs = paravirt_nop,
1235
1236         .start_context_switch = paravirt_start_context_switch,
1237         .end_context_switch = xen_end_context_switch,
1238 };
1239
1240 static const struct pv_apic_ops xen_apic_ops __initconst = {
1241 #ifdef CONFIG_X86_LOCAL_APIC
1242         .startup_ipi_hook = paravirt_nop,
1243 #endif
1244 };
1245
1246 static void xen_reboot(int reason)
1247 {
1248         struct sched_shutdown r = { .reason = reason };
1249
1250         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1251                 BUG();
1252 }
1253
1254 static void xen_restart(char *msg)
1255 {
1256         xen_reboot(SHUTDOWN_reboot);
1257 }
1258
1259 static void xen_emergency_restart(void)
1260 {
1261         xen_reboot(SHUTDOWN_reboot);
1262 }
1263
1264 static void xen_machine_halt(void)
1265 {
1266         xen_reboot(SHUTDOWN_poweroff);
1267 }
1268
1269 static void xen_machine_power_off(void)
1270 {
1271         if (pm_power_off)
1272                 pm_power_off();
1273         xen_reboot(SHUTDOWN_poweroff);
1274 }
1275
1276 static void xen_crash_shutdown(struct pt_regs *regs)
1277 {
1278         xen_reboot(SHUTDOWN_crash);
1279 }
1280
1281 static int
1282 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1283 {
1284         xen_reboot(SHUTDOWN_crash);
1285         return NOTIFY_DONE;
1286 }
1287
1288 static struct notifier_block xen_panic_block = {
1289         .notifier_call= xen_panic_event,
1290 };
1291
1292 int xen_panic_handler_init(void)
1293 {
1294         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1295         return 0;
1296 }
1297
1298 static const struct machine_ops xen_machine_ops __initconst = {
1299         .restart = xen_restart,
1300         .halt = xen_machine_halt,
1301         .power_off = xen_machine_power_off,
1302         .shutdown = xen_machine_halt,
1303         .crash_shutdown = xen_crash_shutdown,
1304         .emergency_restart = xen_emergency_restart,
1305 };
1306
1307 /*
1308  * Set up the GDT and segment registers for -fstack-protector.  Until
1309  * we do this, we have to be careful not to call any stack-protected
1310  * function, which is most of the kernel.
1311  */
1312 static void __init xen_setup_stackprotector(void)
1313 {
1314         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1315         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1316
1317         setup_stack_canary_segment(0);
1318         switch_to_new_gdt(0);
1319
1320         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1321         pv_cpu_ops.load_gdt = xen_load_gdt;
1322 }
1323
1324 /* First C function to be called on Xen boot */
1325 asmlinkage void __init xen_start_kernel(void)
1326 {
1327         struct physdev_set_iopl set_iopl;
1328         int rc;
1329
1330         if (!xen_start_info)
1331                 return;
1332
1333         xen_domain_type = XEN_PV_DOMAIN;
1334
1335         xen_setup_machphys_mapping();
1336
1337         /* Install Xen paravirt ops */
1338         pv_info = xen_info;
1339         pv_init_ops = xen_init_ops;
1340         pv_cpu_ops = xen_cpu_ops;
1341         pv_apic_ops = xen_apic_ops;
1342
1343         x86_init.resources.memory_setup = xen_memory_setup;
1344         x86_init.oem.arch_setup = xen_arch_setup;
1345         x86_init.oem.banner = xen_banner;
1346
1347         xen_init_time_ops();
1348
1349         /*
1350          * Set up some pagetable state before starting to set any ptes.
1351          */
1352
1353         xen_init_mmu_ops();
1354
1355         /* Prevent unwanted bits from being set in PTEs. */
1356         __supported_pte_mask &= ~_PAGE_GLOBAL;
1357 #if 0
1358         if (!xen_initial_domain())
1359 #endif
1360                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1361
1362         __supported_pte_mask |= _PAGE_IOMAP;
1363
1364         /*
1365          * Prevent page tables from being allocated in highmem, even
1366          * if CONFIG_HIGHPTE is enabled.
1367          */
1368         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1369
1370         /* Work out if we support NX */
1371         x86_configure_nx();
1372
1373         xen_setup_features();
1374
1375         /* Get mfn list */
1376         if (!xen_feature(XENFEAT_auto_translated_physmap))
1377                 xen_build_dynamic_phys_to_machine();
1378
1379         /*
1380          * Set up kernel GDT and segment registers, mainly so that
1381          * -fstack-protector code can be executed.
1382          */
1383         xen_setup_stackprotector();
1384
1385         xen_init_irq_ops();
1386         xen_init_cpuid_mask();
1387
1388 #ifdef CONFIG_X86_LOCAL_APIC
1389         /*
1390          * set up the basic apic ops.
1391          */
1392         set_xen_basic_apic_ops();
1393 #endif
1394
1395         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1396                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1397                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1398         }
1399
1400         machine_ops = xen_machine_ops;
1401
1402         /*
1403          * The only reliable way to retain the initial address of the
1404          * percpu gdt_page is to remember it here, so we can go and
1405          * mark it RW later, when the initial percpu area is freed.
1406          */
1407         xen_initial_gdt = &per_cpu(gdt_page, 0);
1408
1409         xen_smp_init();
1410
1411 #ifdef CONFIG_ACPI_NUMA
1412         /*
1413          * The pages we from Xen are not related to machine pages, so
1414          * any NUMA information the kernel tries to get from ACPI will
1415          * be meaningless.  Prevent it from trying.
1416          */
1417         acpi_numa = -1;
1418 #endif
1419
1420         /* Don't do the full vcpu_info placement stuff until we have a
1421            possible map and a non-dummy shared_info. */
1422         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1423
1424         local_irq_disable();
1425         early_boot_irqs_disabled = true;
1426
1427         xen_raw_console_write("mapping kernel into physical memory\n");
1428         xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1429
1430         /* Allocate and initialize top and mid mfn levels for p2m structure */
1431         xen_build_mfn_list_list();
1432
1433         /* keep using Xen gdt for now; no urgent need to change it */
1434
1435 #ifdef CONFIG_X86_32
1436         pv_info.kernel_rpl = 1;
1437         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1438                 pv_info.kernel_rpl = 0;
1439 #else
1440         pv_info.kernel_rpl = 0;
1441 #endif
1442         /* set the limit of our address space */
1443         xen_reserve_top();
1444
1445         /* We used to do this in xen_arch_setup, but that is too late on AMD
1446          * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1447          * which pokes 0xcf8 port.
1448          */
1449         set_iopl.iopl = 1;
1450         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1451         if (rc != 0)
1452                 xen_raw_printk("physdev_op failed %d\n", rc);
1453
1454 #ifdef CONFIG_X86_32
1455         /* set up basic CPUID stuff */
1456         cpu_detect(&new_cpu_data);
1457         new_cpu_data.hard_math = 1;
1458         new_cpu_data.wp_works_ok = 1;
1459         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1460 #endif
1461
1462         /* Poke various useful things into boot_params */
1463         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1464         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1465                 ? __pa(xen_start_info->mod_start) : 0;
1466         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1467         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1468
1469         if (!xen_initial_domain()) {
1470                 add_preferred_console("xenboot", 0, NULL);
1471                 add_preferred_console("tty", 0, NULL);
1472                 add_preferred_console("hvc", 0, NULL);
1473                 if (pci_xen)
1474                         x86_init.pci.arch_init = pci_xen_init;
1475         } else {
1476                 const struct dom0_vga_console_info *info =
1477                         (void *)((char *)xen_start_info +
1478                                  xen_start_info->console.dom0.info_off);
1479                 struct xen_platform_op op = {
1480                         .cmd = XENPF_firmware_info,
1481                         .interface_version = XENPF_INTERFACE_VERSION,
1482                         .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1483                 };
1484
1485                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1486                 xen_start_info->console.domU.mfn = 0;
1487                 xen_start_info->console.domU.evtchn = 0;
1488
1489                 if (HYPERVISOR_dom0_op(&op) == 0)
1490                         boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1491
1492                 xen_init_apic();
1493
1494                 /* Make sure ACS will be enabled */
1495                 pci_request_acs();
1496
1497                 xen_acpi_sleep_register();
1498
1499                 /* Avoid searching for BIOS MP tables */
1500                 x86_init.mpparse.find_smp_config = x86_init_noop;
1501                 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1502         }
1503 #ifdef CONFIG_PCI
1504         /* PCI BIOS service won't work from a PV guest. */
1505         pci_probe &= ~PCI_PROBE_BIOS;
1506 #endif
1507         xen_raw_console_write("about to get started...\n");
1508
1509         xen_setup_runstate_info(0);
1510
1511         /* Start the world */
1512 #ifdef CONFIG_X86_32
1513         i386_start_kernel();
1514 #else
1515         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1516 #endif
1517 }
1518
1519 #ifdef CONFIG_XEN_PVHVM
1520 #define HVM_SHARED_INFO_ADDR 0xFE700000UL
1521 static struct shared_info *xen_hvm_shared_info;
1522 static unsigned long xen_hvm_sip_phys;
1523 static int xen_major, xen_minor;
1524
1525 static void xen_hvm_connect_shared_info(unsigned long pfn)
1526 {
1527         struct xen_add_to_physmap xatp;
1528
1529         xatp.domid = DOMID_SELF;
1530         xatp.idx = 0;
1531         xatp.space = XENMAPSPACE_shared_info;
1532         xatp.gpfn = pfn;
1533         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1534                 BUG();
1535
1536 }
1537 static void __init xen_hvm_set_shared_info(struct shared_info *sip)
1538 {
1539         int cpu;
1540
1541         HYPERVISOR_shared_info = sip;
1542
1543         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1544          * page, we use it in the event channel upcall and in some pvclock
1545          * related functions. We don't need the vcpu_info placement
1546          * optimizations because we don't use any pv_mmu or pv_irq op on
1547          * HVM. */
1548         for_each_online_cpu(cpu)
1549                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1550 }
1551
1552 /* Reconnect the shared_info pfn to a (new) mfn */
1553 void xen_hvm_resume_shared_info(void)
1554 {
1555         xen_hvm_connect_shared_info(xen_hvm_sip_phys >> PAGE_SHIFT);
1556 }
1557
1558 /* Xen tools prior to Xen 4 do not provide a E820_Reserved area for guest usage.
1559  * On these old tools the shared info page will be placed in E820_Ram.
1560  * Xen 4 provides a E820_Reserved area at 0xFC000000, and this code expects
1561  * that nothing is mapped up to HVM_SHARED_INFO_ADDR.
1562  * Xen 4.3+ provides an explicit 1MB area at HVM_SHARED_INFO_ADDR which is used
1563  * here for the shared info page. */
1564 static void __init xen_hvm_init_shared_info(void)
1565 {
1566         if (xen_major < 4) {
1567                 xen_hvm_shared_info = extend_brk(PAGE_SIZE, PAGE_SIZE);
1568                 xen_hvm_sip_phys = __pa(xen_hvm_shared_info);
1569         } else {
1570                 xen_hvm_sip_phys = HVM_SHARED_INFO_ADDR;
1571                 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_hvm_sip_phys);
1572                 xen_hvm_shared_info =
1573                 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1574         }
1575         xen_hvm_connect_shared_info(xen_hvm_sip_phys >> PAGE_SHIFT);
1576         xen_hvm_set_shared_info(xen_hvm_shared_info);
1577 }
1578
1579 static void __init init_hvm_pv_info(void)
1580 {
1581         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1582         u64 pfn;
1583
1584         base = xen_cpuid_base();
1585         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1586
1587         pfn = __pa(hypercall_page);
1588         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1589
1590         xen_setup_features();
1591
1592         pv_info.name = "Xen HVM";
1593
1594         xen_domain_type = XEN_HVM_DOMAIN;
1595 }
1596
1597 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1598                                     unsigned long action, void *hcpu)
1599 {
1600         int cpu = (long)hcpu;
1601         switch (action) {
1602         case CPU_UP_PREPARE:
1603                 xen_vcpu_setup(cpu);
1604                 if (xen_have_vector_callback)
1605                         xen_init_lock_cpu(cpu);
1606                 break;
1607         default:
1608                 break;
1609         }
1610         return NOTIFY_OK;
1611 }
1612
1613 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1614         .notifier_call  = xen_hvm_cpu_notify,
1615 };
1616
1617 static void __init xen_hvm_guest_init(void)
1618 {
1619         init_hvm_pv_info();
1620
1621         xen_hvm_init_shared_info();
1622
1623         if (xen_feature(XENFEAT_hvm_callback_vector))
1624                 xen_have_vector_callback = 1;
1625         xen_hvm_smp_init();
1626         register_cpu_notifier(&xen_hvm_cpu_notifier);
1627         xen_unplug_emulated_devices();
1628         x86_init.irqs.intr_init = xen_init_IRQ;
1629         xen_hvm_init_time_ops();
1630         xen_hvm_init_mmu_ops();
1631 }
1632
1633 static bool __init xen_hvm_platform(void)
1634 {
1635         uint32_t eax, ebx, ecx, edx, base;
1636
1637         if (xen_pv_domain())
1638                 return false;
1639
1640         base = xen_cpuid_base();
1641         if (!base)
1642                 return false;
1643
1644         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1645
1646         xen_major = eax >> 16;
1647         xen_minor = eax & 0xffff;
1648
1649         printk(KERN_INFO "Xen version %d.%d.\n", xen_major, xen_minor);
1650
1651         return true;
1652 }
1653
1654 bool xen_hvm_need_lapic(void)
1655 {
1656         if (xen_pv_domain())
1657                 return false;
1658         if (!xen_hvm_domain())
1659                 return false;
1660         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1661                 return false;
1662         return true;
1663 }
1664 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1665
1666 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1667         .name                   = "Xen HVM",
1668         .detect                 = xen_hvm_platform,
1669         .init_platform          = xen_hvm_guest_init,
1670 };
1671 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1672 #endif