Merge branch 'rbd-sysfs' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[pandora-kernel.git] / arch / x86 / platform / uv / uv_time.c
1 /*
2  * SGI RTC clock/timer routines.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, write to the Free Software
16  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  *
18  *  Copyright (c) 2009 Silicon Graphics, Inc.  All Rights Reserved.
19  *  Copyright (c) Dimitri Sivanich
20  */
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
23
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
28 #include <asm/apic.h>
29 #include <asm/cpu.h>
30
31 #define RTC_NAME                "sgi_rtc"
32
33 static cycle_t uv_read_rtc(struct clocksource *cs);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35 static void uv_rtc_timer_setup(enum clock_event_mode,
36                                 struct clock_event_device *);
37
38 static struct clocksource clocksource_uv = {
39         .name           = RTC_NAME,
40         .rating         = 400,
41         .read           = uv_read_rtc,
42         .mask           = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
43         .shift          = 10,
44         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
45 };
46
47 static struct clock_event_device clock_event_device_uv = {
48         .name           = RTC_NAME,
49         .features       = CLOCK_EVT_FEAT_ONESHOT,
50         .shift          = 20,
51         .rating         = 400,
52         .irq            = -1,
53         .set_next_event = uv_rtc_next_event,
54         .set_mode       = uv_rtc_timer_setup,
55         .event_handler  = NULL,
56 };
57
58 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
59
60 /* There is one of these allocated per node */
61 struct uv_rtc_timer_head {
62         spinlock_t      lock;
63         /* next cpu waiting for timer, local node relative: */
64         int             next_cpu;
65         /* number of cpus on this node: */
66         int             ncpus;
67         struct {
68                 int     lcpu;           /* systemwide logical cpu number */
69                 u64     expires;        /* next timer expiration for this cpu */
70         } cpu[1];
71 };
72
73 /*
74  * Access to uv_rtc_timer_head via blade id.
75  */
76 static struct uv_rtc_timer_head         **blade_info __read_mostly;
77
78 static int                              uv_rtc_evt_enable;
79
80 /*
81  * Hardware interface routines
82  */
83
84 /* Send IPIs to another node */
85 static void uv_rtc_send_IPI(int cpu)
86 {
87         unsigned long apicid, val;
88         int pnode;
89
90         apicid = cpu_physical_id(cpu);
91         pnode = uv_apicid_to_pnode(apicid);
92         apicid |= uv_apicid_hibits;
93         val = (1UL << UVH_IPI_INT_SEND_SHFT) |
94               (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
95               (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
96
97         uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
98 }
99
100 /* Check for an RTC interrupt pending */
101 static int uv_intr_pending(int pnode)
102 {
103         return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
104                 UVH_EVENT_OCCURRED0_RTC1_MASK;
105 }
106
107 /* Setup interrupt and return non-zero if early expiration occurred. */
108 static int uv_setup_intr(int cpu, u64 expires)
109 {
110         u64 val;
111         unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
112         int pnode = uv_cpu_to_pnode(cpu);
113
114         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
115                 UVH_RTC1_INT_CONFIG_M_MASK);
116         uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
117
118         uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
119                 UVH_EVENT_OCCURRED0_RTC1_MASK);
120
121         val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
122                 ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
123
124         /* Set configuration */
125         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
126         /* Initialize comparator value */
127         uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
128
129         if (uv_read_rtc(NULL) <= expires)
130                 return 0;
131
132         return !uv_intr_pending(pnode);
133 }
134
135 /*
136  * Per-cpu timer tracking routines
137  */
138
139 static __init void uv_rtc_deallocate_timers(void)
140 {
141         int bid;
142
143         for_each_possible_blade(bid) {
144                 kfree(blade_info[bid]);
145         }
146         kfree(blade_info);
147 }
148
149 /* Allocate per-node list of cpu timer expiration times. */
150 static __init int uv_rtc_allocate_timers(void)
151 {
152         int cpu;
153
154         blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
155         if (!blade_info)
156                 return -ENOMEM;
157         memset(blade_info, 0, uv_possible_blades * sizeof(void *));
158
159         for_each_present_cpu(cpu) {
160                 int nid = cpu_to_node(cpu);
161                 int bid = uv_cpu_to_blade_id(cpu);
162                 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
163                 struct uv_rtc_timer_head *head = blade_info[bid];
164
165                 if (!head) {
166                         head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
167                                 (uv_blade_nr_possible_cpus(bid) *
168                                         2 * sizeof(u64)),
169                                 GFP_KERNEL, nid);
170                         if (!head) {
171                                 uv_rtc_deallocate_timers();
172                                 return -ENOMEM;
173                         }
174                         spin_lock_init(&head->lock);
175                         head->ncpus = uv_blade_nr_possible_cpus(bid);
176                         head->next_cpu = -1;
177                         blade_info[bid] = head;
178                 }
179
180                 head->cpu[bcpu].lcpu = cpu;
181                 head->cpu[bcpu].expires = ULLONG_MAX;
182         }
183
184         return 0;
185 }
186
187 /* Find and set the next expiring timer.  */
188 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
189 {
190         u64 lowest = ULLONG_MAX;
191         int c, bcpu = -1;
192
193         head->next_cpu = -1;
194         for (c = 0; c < head->ncpus; c++) {
195                 u64 exp = head->cpu[c].expires;
196                 if (exp < lowest) {
197                         bcpu = c;
198                         lowest = exp;
199                 }
200         }
201         if (bcpu >= 0) {
202                 head->next_cpu = bcpu;
203                 c = head->cpu[bcpu].lcpu;
204                 if (uv_setup_intr(c, lowest))
205                         /* If we didn't set it up in time, trigger */
206                         uv_rtc_send_IPI(c);
207         } else {
208                 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
209                         UVH_RTC1_INT_CONFIG_M_MASK);
210         }
211 }
212
213 /*
214  * Set expiration time for current cpu.
215  *
216  * Returns 1 if we missed the expiration time.
217  */
218 static int uv_rtc_set_timer(int cpu, u64 expires)
219 {
220         int pnode = uv_cpu_to_pnode(cpu);
221         int bid = uv_cpu_to_blade_id(cpu);
222         struct uv_rtc_timer_head *head = blade_info[bid];
223         int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
224         u64 *t = &head->cpu[bcpu].expires;
225         unsigned long flags;
226         int next_cpu;
227
228         spin_lock_irqsave(&head->lock, flags);
229
230         next_cpu = head->next_cpu;
231         *t = expires;
232
233         /* Will this one be next to go off? */
234         if (next_cpu < 0 || bcpu == next_cpu ||
235                         expires < head->cpu[next_cpu].expires) {
236                 head->next_cpu = bcpu;
237                 if (uv_setup_intr(cpu, expires)) {
238                         *t = ULLONG_MAX;
239                         uv_rtc_find_next_timer(head, pnode);
240                         spin_unlock_irqrestore(&head->lock, flags);
241                         return -ETIME;
242                 }
243         }
244
245         spin_unlock_irqrestore(&head->lock, flags);
246         return 0;
247 }
248
249 /*
250  * Unset expiration time for current cpu.
251  *
252  * Returns 1 if this timer was pending.
253  */
254 static int uv_rtc_unset_timer(int cpu, int force)
255 {
256         int pnode = uv_cpu_to_pnode(cpu);
257         int bid = uv_cpu_to_blade_id(cpu);
258         struct uv_rtc_timer_head *head = blade_info[bid];
259         int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
260         u64 *t = &head->cpu[bcpu].expires;
261         unsigned long flags;
262         int rc = 0;
263
264         spin_lock_irqsave(&head->lock, flags);
265
266         if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
267                 rc = 1;
268
269         if (rc) {
270                 *t = ULLONG_MAX;
271                 /* Was the hardware setup for this timer? */
272                 if (head->next_cpu == bcpu)
273                         uv_rtc_find_next_timer(head, pnode);
274         }
275
276         spin_unlock_irqrestore(&head->lock, flags);
277
278         return rc;
279 }
280
281
282 /*
283  * Kernel interface routines.
284  */
285
286 /*
287  * Read the RTC.
288  *
289  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
290  * cachelines of it's own page.  This allows faster simultaneous reads
291  * from a given socket.
292  */
293 static cycle_t uv_read_rtc(struct clocksource *cs)
294 {
295         unsigned long offset;
296
297         if (uv_get_min_hub_revision_id() == 1)
298                 offset = 0;
299         else
300                 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
301
302         return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
303 }
304
305 /*
306  * Program the next event, relative to now
307  */
308 static int uv_rtc_next_event(unsigned long delta,
309                              struct clock_event_device *ced)
310 {
311         int ced_cpu = cpumask_first(ced->cpumask);
312
313         return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
314 }
315
316 /*
317  * Setup the RTC timer in oneshot mode
318  */
319 static void uv_rtc_timer_setup(enum clock_event_mode mode,
320                                struct clock_event_device *evt)
321 {
322         int ced_cpu = cpumask_first(evt->cpumask);
323
324         switch (mode) {
325         case CLOCK_EVT_MODE_PERIODIC:
326         case CLOCK_EVT_MODE_ONESHOT:
327         case CLOCK_EVT_MODE_RESUME:
328                 /* Nothing to do here yet */
329                 break;
330         case CLOCK_EVT_MODE_UNUSED:
331         case CLOCK_EVT_MODE_SHUTDOWN:
332                 uv_rtc_unset_timer(ced_cpu, 1);
333                 break;
334         }
335 }
336
337 static void uv_rtc_interrupt(void)
338 {
339         int cpu = smp_processor_id();
340         struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
341
342         if (!ced || !ced->event_handler)
343                 return;
344
345         if (uv_rtc_unset_timer(cpu, 0) != 1)
346                 return;
347
348         ced->event_handler(ced);
349 }
350
351 static int __init uv_enable_evt_rtc(char *str)
352 {
353         uv_rtc_evt_enable = 1;
354
355         return 1;
356 }
357 __setup("uvrtcevt", uv_enable_evt_rtc);
358
359 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
360 {
361         struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
362
363         *ced = clock_event_device_uv;
364         ced->cpumask = cpumask_of(smp_processor_id());
365         clockevents_register_device(ced);
366 }
367
368 static __init int uv_rtc_setup_clock(void)
369 {
370         int rc;
371
372         if (!is_uv_system())
373                 return -ENODEV;
374
375         clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second,
376                                 clocksource_uv.shift);
377
378         /* If single blade, prefer tsc */
379         if (uv_num_possible_blades() == 1)
380                 clocksource_uv.rating = 250;
381
382         rc = clocksource_register(&clocksource_uv);
383         if (rc)
384                 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
385         else
386                 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
387                         sn_rtc_cycles_per_second/(unsigned long)1E6);
388
389         if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
390                 return rc;
391
392         /* Setup and register clockevents */
393         rc = uv_rtc_allocate_timers();
394         if (rc)
395                 goto error;
396
397         x86_platform_ipi_callback = uv_rtc_interrupt;
398
399         clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
400                                 NSEC_PER_SEC, clock_event_device_uv.shift);
401
402         clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
403                                                 sn_rtc_cycles_per_second;
404
405         clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
406                                 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
407
408         rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
409         if (rc) {
410                 x86_platform_ipi_callback = NULL;
411                 uv_rtc_deallocate_timers();
412                 goto error;
413         }
414
415         printk(KERN_INFO "UV RTC clockevents registered\n");
416
417         return 0;
418
419 error:
420         clocksource_unregister(&clocksource_uv);
421         printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
422
423         return rc;
424 }
425 arch_initcall(uv_rtc_setup_clock);