Merge branch 'exec_rm_compat' of git://git.kernel.org/pub/scm/linux/kernel/git/oleg...
[pandora-kernel.git] / arch / x86 / platform / uv / uv_time.c
1 /*
2  * SGI RTC clock/timer routines.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, write to the Free Software
16  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  *
18  *  Copyright (c) 2009 Silicon Graphics, Inc.  All Rights Reserved.
19  *  Copyright (c) Dimitri Sivanich
20  */
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
23
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
28 #include <asm/apic.h>
29 #include <asm/cpu.h>
30
31 #define RTC_NAME                "sgi_rtc"
32
33 static cycle_t uv_read_rtc(struct clocksource *cs);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35 static void uv_rtc_timer_setup(enum clock_event_mode,
36                                 struct clock_event_device *);
37
38 static struct clocksource clocksource_uv = {
39         .name           = RTC_NAME,
40         .rating         = 400,
41         .read           = uv_read_rtc,
42         .mask           = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
43         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
44 };
45
46 static struct clock_event_device clock_event_device_uv = {
47         .name           = RTC_NAME,
48         .features       = CLOCK_EVT_FEAT_ONESHOT,
49         .shift          = 20,
50         .rating         = 400,
51         .irq            = -1,
52         .set_next_event = uv_rtc_next_event,
53         .set_mode       = uv_rtc_timer_setup,
54         .event_handler  = NULL,
55 };
56
57 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
58
59 /* There is one of these allocated per node */
60 struct uv_rtc_timer_head {
61         spinlock_t      lock;
62         /* next cpu waiting for timer, local node relative: */
63         int             next_cpu;
64         /* number of cpus on this node: */
65         int             ncpus;
66         struct {
67                 int     lcpu;           /* systemwide logical cpu number */
68                 u64     expires;        /* next timer expiration for this cpu */
69         } cpu[1];
70 };
71
72 /*
73  * Access to uv_rtc_timer_head via blade id.
74  */
75 static struct uv_rtc_timer_head         **blade_info __read_mostly;
76
77 static int                              uv_rtc_evt_enable;
78
79 /*
80  * Hardware interface routines
81  */
82
83 /* Send IPIs to another node */
84 static void uv_rtc_send_IPI(int cpu)
85 {
86         unsigned long apicid, val;
87         int pnode;
88
89         apicid = cpu_physical_id(cpu);
90         pnode = uv_apicid_to_pnode(apicid);
91         apicid |= uv_apicid_hibits;
92         val = (1UL << UVH_IPI_INT_SEND_SHFT) |
93               (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
94               (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
95
96         uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
97 }
98
99 /* Check for an RTC interrupt pending */
100 static int uv_intr_pending(int pnode)
101 {
102         return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
103                 UVH_EVENT_OCCURRED0_RTC1_MASK;
104 }
105
106 /* Setup interrupt and return non-zero if early expiration occurred. */
107 static int uv_setup_intr(int cpu, u64 expires)
108 {
109         u64 val;
110         unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
111         int pnode = uv_cpu_to_pnode(cpu);
112
113         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
114                 UVH_RTC1_INT_CONFIG_M_MASK);
115         uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
116
117         uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
118                 UVH_EVENT_OCCURRED0_RTC1_MASK);
119
120         val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
121                 ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
122
123         /* Set configuration */
124         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
125         /* Initialize comparator value */
126         uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
127
128         if (uv_read_rtc(NULL) <= expires)
129                 return 0;
130
131         return !uv_intr_pending(pnode);
132 }
133
134 /*
135  * Per-cpu timer tracking routines
136  */
137
138 static __init void uv_rtc_deallocate_timers(void)
139 {
140         int bid;
141
142         for_each_possible_blade(bid) {
143                 kfree(blade_info[bid]);
144         }
145         kfree(blade_info);
146 }
147
148 /* Allocate per-node list of cpu timer expiration times. */
149 static __init int uv_rtc_allocate_timers(void)
150 {
151         int cpu;
152
153         blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
154         if (!blade_info)
155                 return -ENOMEM;
156         memset(blade_info, 0, uv_possible_blades * sizeof(void *));
157
158         for_each_present_cpu(cpu) {
159                 int nid = cpu_to_node(cpu);
160                 int bid = uv_cpu_to_blade_id(cpu);
161                 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
162                 struct uv_rtc_timer_head *head = blade_info[bid];
163
164                 if (!head) {
165                         head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
166                                 (uv_blade_nr_possible_cpus(bid) *
167                                         2 * sizeof(u64)),
168                                 GFP_KERNEL, nid);
169                         if (!head) {
170                                 uv_rtc_deallocate_timers();
171                                 return -ENOMEM;
172                         }
173                         spin_lock_init(&head->lock);
174                         head->ncpus = uv_blade_nr_possible_cpus(bid);
175                         head->next_cpu = -1;
176                         blade_info[bid] = head;
177                 }
178
179                 head->cpu[bcpu].lcpu = cpu;
180                 head->cpu[bcpu].expires = ULLONG_MAX;
181         }
182
183         return 0;
184 }
185
186 /* Find and set the next expiring timer.  */
187 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
188 {
189         u64 lowest = ULLONG_MAX;
190         int c, bcpu = -1;
191
192         head->next_cpu = -1;
193         for (c = 0; c < head->ncpus; c++) {
194                 u64 exp = head->cpu[c].expires;
195                 if (exp < lowest) {
196                         bcpu = c;
197                         lowest = exp;
198                 }
199         }
200         if (bcpu >= 0) {
201                 head->next_cpu = bcpu;
202                 c = head->cpu[bcpu].lcpu;
203                 if (uv_setup_intr(c, lowest))
204                         /* If we didn't set it up in time, trigger */
205                         uv_rtc_send_IPI(c);
206         } else {
207                 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
208                         UVH_RTC1_INT_CONFIG_M_MASK);
209         }
210 }
211
212 /*
213  * Set expiration time for current cpu.
214  *
215  * Returns 1 if we missed the expiration time.
216  */
217 static int uv_rtc_set_timer(int cpu, u64 expires)
218 {
219         int pnode = uv_cpu_to_pnode(cpu);
220         int bid = uv_cpu_to_blade_id(cpu);
221         struct uv_rtc_timer_head *head = blade_info[bid];
222         int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
223         u64 *t = &head->cpu[bcpu].expires;
224         unsigned long flags;
225         int next_cpu;
226
227         spin_lock_irqsave(&head->lock, flags);
228
229         next_cpu = head->next_cpu;
230         *t = expires;
231
232         /* Will this one be next to go off? */
233         if (next_cpu < 0 || bcpu == next_cpu ||
234                         expires < head->cpu[next_cpu].expires) {
235                 head->next_cpu = bcpu;
236                 if (uv_setup_intr(cpu, expires)) {
237                         *t = ULLONG_MAX;
238                         uv_rtc_find_next_timer(head, pnode);
239                         spin_unlock_irqrestore(&head->lock, flags);
240                         return -ETIME;
241                 }
242         }
243
244         spin_unlock_irqrestore(&head->lock, flags);
245         return 0;
246 }
247
248 /*
249  * Unset expiration time for current cpu.
250  *
251  * Returns 1 if this timer was pending.
252  */
253 static int uv_rtc_unset_timer(int cpu, int force)
254 {
255         int pnode = uv_cpu_to_pnode(cpu);
256         int bid = uv_cpu_to_blade_id(cpu);
257         struct uv_rtc_timer_head *head = blade_info[bid];
258         int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
259         u64 *t = &head->cpu[bcpu].expires;
260         unsigned long flags;
261         int rc = 0;
262
263         spin_lock_irqsave(&head->lock, flags);
264
265         if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
266                 rc = 1;
267
268         if (rc) {
269                 *t = ULLONG_MAX;
270                 /* Was the hardware setup for this timer? */
271                 if (head->next_cpu == bcpu)
272                         uv_rtc_find_next_timer(head, pnode);
273         }
274
275         spin_unlock_irqrestore(&head->lock, flags);
276
277         return rc;
278 }
279
280
281 /*
282  * Kernel interface routines.
283  */
284
285 /*
286  * Read the RTC.
287  *
288  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
289  * cachelines of it's own page.  This allows faster simultaneous reads
290  * from a given socket.
291  */
292 static cycle_t uv_read_rtc(struct clocksource *cs)
293 {
294         unsigned long offset;
295
296         if (uv_get_min_hub_revision_id() == 1)
297                 offset = 0;
298         else
299                 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
300
301         return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
302 }
303
304 /*
305  * Program the next event, relative to now
306  */
307 static int uv_rtc_next_event(unsigned long delta,
308                              struct clock_event_device *ced)
309 {
310         int ced_cpu = cpumask_first(ced->cpumask);
311
312         return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
313 }
314
315 /*
316  * Setup the RTC timer in oneshot mode
317  */
318 static void uv_rtc_timer_setup(enum clock_event_mode mode,
319                                struct clock_event_device *evt)
320 {
321         int ced_cpu = cpumask_first(evt->cpumask);
322
323         switch (mode) {
324         case CLOCK_EVT_MODE_PERIODIC:
325         case CLOCK_EVT_MODE_ONESHOT:
326         case CLOCK_EVT_MODE_RESUME:
327                 /* Nothing to do here yet */
328                 break;
329         case CLOCK_EVT_MODE_UNUSED:
330         case CLOCK_EVT_MODE_SHUTDOWN:
331                 uv_rtc_unset_timer(ced_cpu, 1);
332                 break;
333         }
334 }
335
336 static void uv_rtc_interrupt(void)
337 {
338         int cpu = smp_processor_id();
339         struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
340
341         if (!ced || !ced->event_handler)
342                 return;
343
344         if (uv_rtc_unset_timer(cpu, 0) != 1)
345                 return;
346
347         ced->event_handler(ced);
348 }
349
350 static int __init uv_enable_evt_rtc(char *str)
351 {
352         uv_rtc_evt_enable = 1;
353
354         return 1;
355 }
356 __setup("uvrtcevt", uv_enable_evt_rtc);
357
358 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
359 {
360         struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
361
362         *ced = clock_event_device_uv;
363         ced->cpumask = cpumask_of(smp_processor_id());
364         clockevents_register_device(ced);
365 }
366
367 static __init int uv_rtc_setup_clock(void)
368 {
369         int rc;
370
371         if (!is_uv_system())
372                 return -ENODEV;
373
374         /* If single blade, prefer tsc */
375         if (uv_num_possible_blades() == 1)
376                 clocksource_uv.rating = 250;
377
378         rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
379         if (rc)
380                 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
381         else
382                 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
383                         sn_rtc_cycles_per_second/(unsigned long)1E6);
384
385         if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
386                 return rc;
387
388         /* Setup and register clockevents */
389         rc = uv_rtc_allocate_timers();
390         if (rc)
391                 goto error;
392
393         x86_platform_ipi_callback = uv_rtc_interrupt;
394
395         clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
396                                 NSEC_PER_SEC, clock_event_device_uv.shift);
397
398         clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
399                                                 sn_rtc_cycles_per_second;
400
401         clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
402                                 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
403
404         rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
405         if (rc) {
406                 x86_platform_ipi_callback = NULL;
407                 uv_rtc_deallocate_timers();
408                 goto error;
409         }
410
411         printk(KERN_INFO "UV RTC clockevents registered\n");
412
413         return 0;
414
415 error:
416         clocksource_unregister(&clocksource_uv);
417         printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
418
419         return rc;
420 }
421 arch_initcall(uv_rtc_setup_clock);