Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
[pandora-kernel.git] / arch / x86 / platform / uv / tlb_uv.c
1 /*
2  *      SGI UltraViolet TLB flush routines.
3  *
4  *      (c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI.
5  *
6  *      This code is released under the GNU General Public License version 2 or
7  *      later.
8  */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/debugfs.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15
16 #include <asm/mmu_context.h>
17 #include <asm/uv/uv.h>
18 #include <asm/uv/uv_mmrs.h>
19 #include <asm/uv/uv_hub.h>
20 #include <asm/uv/uv_bau.h>
21 #include <asm/apic.h>
22 #include <asm/idle.h>
23 #include <asm/tsc.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/timer.h>
26
27 /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
28 static int timeout_base_ns[] = {
29                 20,
30                 160,
31                 1280,
32                 10240,
33                 81920,
34                 655360,
35                 5242880,
36                 167772160
37 };
38 static int timeout_us;
39 static int nobau;
40 static int baudisabled;
41 static spinlock_t disable_lock;
42 static cycles_t congested_cycles;
43
44 /* tunables: */
45 static int max_bau_concurrent = MAX_BAU_CONCURRENT;
46 static int max_bau_concurrent_constant = MAX_BAU_CONCURRENT;
47 static int plugged_delay = PLUGGED_DELAY;
48 static int plugsb4reset = PLUGSB4RESET;
49 static int timeoutsb4reset = TIMEOUTSB4RESET;
50 static int ipi_reset_limit = IPI_RESET_LIMIT;
51 static int complete_threshold = COMPLETE_THRESHOLD;
52 static int congested_response_us = CONGESTED_RESPONSE_US;
53 static int congested_reps = CONGESTED_REPS;
54 static int congested_period = CONGESTED_PERIOD;
55 static struct dentry *tunables_dir;
56 static struct dentry *tunables_file;
57
58 static int __init setup_nobau(char *arg)
59 {
60         nobau = 1;
61         return 0;
62 }
63 early_param("nobau", setup_nobau);
64
65 /* base pnode in this partition */
66 static int uv_partition_base_pnode __read_mostly;
67 /* position of pnode (which is nasid>>1): */
68 static int uv_nshift __read_mostly;
69 static unsigned long uv_mmask __read_mostly;
70
71 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
72 static DEFINE_PER_CPU(struct bau_control, bau_control);
73 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
74
75 /*
76  * Determine the first node on a uvhub. 'Nodes' are used for kernel
77  * memory allocation.
78  */
79 static int __init uvhub_to_first_node(int uvhub)
80 {
81         int node, b;
82
83         for_each_online_node(node) {
84                 b = uv_node_to_blade_id(node);
85                 if (uvhub == b)
86                         return node;
87         }
88         return -1;
89 }
90
91 /*
92  * Determine the apicid of the first cpu on a uvhub.
93  */
94 static int __init uvhub_to_first_apicid(int uvhub)
95 {
96         int cpu;
97
98         for_each_present_cpu(cpu)
99                 if (uvhub == uv_cpu_to_blade_id(cpu))
100                         return per_cpu(x86_cpu_to_apicid, cpu);
101         return -1;
102 }
103
104 /*
105  * Free a software acknowledge hardware resource by clearing its Pending
106  * bit. This will return a reply to the sender.
107  * If the message has timed out, a reply has already been sent by the
108  * hardware but the resource has not been released. In that case our
109  * clear of the Timeout bit (as well) will free the resource. No reply will
110  * be sent (the hardware will only do one reply per message).
111  */
112 static inline void uv_reply_to_message(struct msg_desc *mdp,
113                                        struct bau_control *bcp)
114 {
115         unsigned long dw;
116         struct bau_payload_queue_entry *msg;
117
118         msg = mdp->msg;
119         if (!msg->canceled) {
120                 dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) |
121                                                 msg->sw_ack_vector;
122                 uv_write_local_mmr(
123                                 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
124         }
125         msg->replied_to = 1;
126         msg->sw_ack_vector = 0;
127 }
128
129 /*
130  * Process the receipt of a RETRY message
131  */
132 static inline void uv_bau_process_retry_msg(struct msg_desc *mdp,
133                                             struct bau_control *bcp)
134 {
135         int i;
136         int cancel_count = 0;
137         int slot2;
138         unsigned long msg_res;
139         unsigned long mmr = 0;
140         struct bau_payload_queue_entry *msg;
141         struct bau_payload_queue_entry *msg2;
142         struct ptc_stats *stat;
143
144         msg = mdp->msg;
145         stat = bcp->statp;
146         stat->d_retries++;
147         /*
148          * cancel any message from msg+1 to the retry itself
149          */
150         for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
151                 if (msg2 > mdp->va_queue_last)
152                         msg2 = mdp->va_queue_first;
153                 if (msg2 == msg)
154                         break;
155
156                 /* same conditions for cancellation as uv_do_reset */
157                 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
158                     (msg2->sw_ack_vector) && ((msg2->sw_ack_vector &
159                         msg->sw_ack_vector) == 0) &&
160                     (msg2->sending_cpu == msg->sending_cpu) &&
161                     (msg2->msg_type != MSG_NOOP)) {
162                         slot2 = msg2 - mdp->va_queue_first;
163                         mmr = uv_read_local_mmr
164                                 (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
165                         msg_res = msg2->sw_ack_vector;
166                         /*
167                          * This is a message retry; clear the resources held
168                          * by the previous message only if they timed out.
169                          * If it has not timed out we have an unexpected
170                          * situation to report.
171                          */
172                         if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
173                                 /*
174                                  * is the resource timed out?
175                                  * make everyone ignore the cancelled message.
176                                  */
177                                 msg2->canceled = 1;
178                                 stat->d_canceled++;
179                                 cancel_count++;
180                                 uv_write_local_mmr(
181                                     UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
182                                         (msg_res << UV_SW_ACK_NPENDING) |
183                                          msg_res);
184                         }
185                 }
186         }
187         if (!cancel_count)
188                 stat->d_nocanceled++;
189 }
190
191 /*
192  * Do all the things a cpu should do for a TLB shootdown message.
193  * Other cpu's may come here at the same time for this message.
194  */
195 static void uv_bau_process_message(struct msg_desc *mdp,
196                                    struct bau_control *bcp)
197 {
198         int msg_ack_count;
199         short socket_ack_count = 0;
200         struct ptc_stats *stat;
201         struct bau_payload_queue_entry *msg;
202         struct bau_control *smaster = bcp->socket_master;
203
204         /*
205          * This must be a normal message, or retry of a normal message
206          */
207         msg = mdp->msg;
208         stat = bcp->statp;
209         if (msg->address == TLB_FLUSH_ALL) {
210                 local_flush_tlb();
211                 stat->d_alltlb++;
212         } else {
213                 __flush_tlb_one(msg->address);
214                 stat->d_onetlb++;
215         }
216         stat->d_requestee++;
217
218         /*
219          * One cpu on each uvhub has the additional job on a RETRY
220          * of releasing the resource held by the message that is
221          * being retried.  That message is identified by sending
222          * cpu number.
223          */
224         if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
225                 uv_bau_process_retry_msg(mdp, bcp);
226
227         /*
228          * This is a sw_ack message, so we have to reply to it.
229          * Count each responding cpu on the socket. This avoids
230          * pinging the count's cache line back and forth between
231          * the sockets.
232          */
233         socket_ack_count = atomic_add_short_return(1, (struct atomic_short *)
234                         &smaster->socket_acknowledge_count[mdp->msg_slot]);
235         if (socket_ack_count == bcp->cpus_in_socket) {
236                 /*
237                  * Both sockets dump their completed count total into
238                  * the message's count.
239                  */
240                 smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
241                 msg_ack_count = atomic_add_short_return(socket_ack_count,
242                                 (struct atomic_short *)&msg->acknowledge_count);
243
244                 if (msg_ack_count == bcp->cpus_in_uvhub) {
245                         /*
246                          * All cpus in uvhub saw it; reply
247                          */
248                         uv_reply_to_message(mdp, bcp);
249                 }
250         }
251
252         return;
253 }
254
255 /*
256  * Determine the first cpu on a uvhub.
257  */
258 static int uvhub_to_first_cpu(int uvhub)
259 {
260         int cpu;
261         for_each_present_cpu(cpu)
262                 if (uvhub == uv_cpu_to_blade_id(cpu))
263                         return cpu;
264         return -1;
265 }
266
267 /*
268  * Last resort when we get a large number of destination timeouts is
269  * to clear resources held by a given cpu.
270  * Do this with IPI so that all messages in the BAU message queue
271  * can be identified by their nonzero sw_ack_vector field.
272  *
273  * This is entered for a single cpu on the uvhub.
274  * The sender want's this uvhub to free a specific message's
275  * sw_ack resources.
276  */
277 static void
278 uv_do_reset(void *ptr)
279 {
280         int i;
281         int slot;
282         int count = 0;
283         unsigned long mmr;
284         unsigned long msg_res;
285         struct bau_control *bcp;
286         struct reset_args *rap;
287         struct bau_payload_queue_entry *msg;
288         struct ptc_stats *stat;
289
290         bcp = &per_cpu(bau_control, smp_processor_id());
291         rap = (struct reset_args *)ptr;
292         stat = bcp->statp;
293         stat->d_resets++;
294
295         /*
296          * We're looking for the given sender, and
297          * will free its sw_ack resource.
298          * If all cpu's finally responded after the timeout, its
299          * message 'replied_to' was set.
300          */
301         for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
302                 /* uv_do_reset: same conditions for cancellation as
303                    uv_bau_process_retry_msg() */
304                 if ((msg->replied_to == 0) &&
305                     (msg->canceled == 0) &&
306                     (msg->sending_cpu == rap->sender) &&
307                     (msg->sw_ack_vector) &&
308                     (msg->msg_type != MSG_NOOP)) {
309                         /*
310                          * make everyone else ignore this message
311                          */
312                         msg->canceled = 1;
313                         slot = msg - bcp->va_queue_first;
314                         count++;
315                         /*
316                          * only reset the resource if it is still pending
317                          */
318                         mmr = uv_read_local_mmr
319                                         (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
320                         msg_res = msg->sw_ack_vector;
321                         if (mmr & msg_res) {
322                                 stat->d_rcanceled++;
323                                 uv_write_local_mmr(
324                                     UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
325                                         (msg_res << UV_SW_ACK_NPENDING) |
326                                          msg_res);
327                         }
328                 }
329         }
330         return;
331 }
332
333 /*
334  * Use IPI to get all target uvhubs to release resources held by
335  * a given sending cpu number.
336  */
337 static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution,
338                               int sender)
339 {
340         int uvhub;
341         int cpu;
342         cpumask_t mask;
343         struct reset_args reset_args;
344
345         reset_args.sender = sender;
346
347         cpus_clear(mask);
348         /* find a single cpu for each uvhub in this distribution mask */
349         for (uvhub = 0;
350                     uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE;
351                     uvhub++) {
352                 if (!bau_uvhub_isset(uvhub, distribution))
353                         continue;
354                 /* find a cpu for this uvhub */
355                 cpu = uvhub_to_first_cpu(uvhub);
356                 cpu_set(cpu, mask);
357         }
358         /* IPI all cpus; Preemption is already disabled */
359         smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1);
360         return;
361 }
362
363 static inline unsigned long
364 cycles_2_us(unsigned long long cyc)
365 {
366         unsigned long long ns;
367         unsigned long us;
368         ns =  (cyc * per_cpu(cyc2ns, smp_processor_id()))
369                                                 >> CYC2NS_SCALE_FACTOR;
370         us = ns / 1000;
371         return us;
372 }
373
374 /*
375  * wait for all cpus on this hub to finish their sends and go quiet
376  * leaves uvhub_quiesce set so that no new broadcasts are started by
377  * bau_flush_send_and_wait()
378  */
379 static inline void
380 quiesce_local_uvhub(struct bau_control *hmaster)
381 {
382         atomic_add_short_return(1, (struct atomic_short *)
383                  &hmaster->uvhub_quiesce);
384 }
385
386 /*
387  * mark this quiet-requestor as done
388  */
389 static inline void
390 end_uvhub_quiesce(struct bau_control *hmaster)
391 {
392         atomic_add_short_return(-1, (struct atomic_short *)
393                 &hmaster->uvhub_quiesce);
394 }
395
396 /*
397  * Wait for completion of a broadcast software ack message
398  * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
399  */
400 static int uv_wait_completion(struct bau_desc *bau_desc,
401         unsigned long mmr_offset, int right_shift, int this_cpu,
402         struct bau_control *bcp, struct bau_control *smaster, long try)
403 {
404         unsigned long descriptor_status;
405         cycles_t ttime;
406         struct ptc_stats *stat = bcp->statp;
407         struct bau_control *hmaster;
408
409         hmaster = bcp->uvhub_master;
410
411         /* spin on the status MMR, waiting for it to go idle */
412         while ((descriptor_status = (((unsigned long)
413                 uv_read_local_mmr(mmr_offset) >>
414                         right_shift) & UV_ACT_STATUS_MASK)) !=
415                         DESC_STATUS_IDLE) {
416                 /*
417                  * Our software ack messages may be blocked because there are
418                  * no swack resources available.  As long as none of them
419                  * has timed out hardware will NACK our message and its
420                  * state will stay IDLE.
421                  */
422                 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
423                         stat->s_stimeout++;
424                         return FLUSH_GIVEUP;
425                 } else if (descriptor_status ==
426                                         DESC_STATUS_DESTINATION_TIMEOUT) {
427                         stat->s_dtimeout++;
428                         ttime = get_cycles();
429
430                         /*
431                          * Our retries may be blocked by all destination
432                          * swack resources being consumed, and a timeout
433                          * pending.  In that case hardware returns the
434                          * ERROR that looks like a destination timeout.
435                          */
436                         if (cycles_2_us(ttime - bcp->send_message) <
437                                                         timeout_us) {
438                                 bcp->conseccompletes = 0;
439                                 return FLUSH_RETRY_PLUGGED;
440                         }
441
442                         bcp->conseccompletes = 0;
443                         return FLUSH_RETRY_TIMEOUT;
444                 } else {
445                         /*
446                          * descriptor_status is still BUSY
447                          */
448                         cpu_relax();
449                 }
450         }
451         bcp->conseccompletes++;
452         return FLUSH_COMPLETE;
453 }
454
455 static inline cycles_t
456 sec_2_cycles(unsigned long sec)
457 {
458         unsigned long ns;
459         cycles_t cyc;
460
461         ns = sec * 1000000000;
462         cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
463         return cyc;
464 }
465
466 /*
467  * conditionally add 1 to *v, unless *v is >= u
468  * return 0 if we cannot add 1 to *v because it is >= u
469  * return 1 if we can add 1 to *v because it is < u
470  * the add is atomic
471  *
472  * This is close to atomic_add_unless(), but this allows the 'u' value
473  * to be lowered below the current 'v'.  atomic_add_unless can only stop
474  * on equal.
475  */
476 static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u)
477 {
478         spin_lock(lock);
479         if (atomic_read(v) >= u) {
480                 spin_unlock(lock);
481                 return 0;
482         }
483         atomic_inc(v);
484         spin_unlock(lock);
485         return 1;
486 }
487
488 /*
489  * Our retries are blocked by all destination swack resources being
490  * in use, and a timeout is pending. In that case hardware immediately
491  * returns the ERROR that looks like a destination timeout.
492  */
493 static void
494 destination_plugged(struct bau_desc *bau_desc, struct bau_control *bcp,
495                         struct bau_control *hmaster, struct ptc_stats *stat)
496 {
497         udelay(bcp->plugged_delay);
498         bcp->plugged_tries++;
499         if (bcp->plugged_tries >= bcp->plugsb4reset) {
500                 bcp->plugged_tries = 0;
501                 quiesce_local_uvhub(hmaster);
502                 spin_lock(&hmaster->queue_lock);
503                 uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu);
504                 spin_unlock(&hmaster->queue_lock);
505                 end_uvhub_quiesce(hmaster);
506                 bcp->ipi_attempts++;
507                 stat->s_resets_plug++;
508         }
509 }
510
511 static void
512 destination_timeout(struct bau_desc *bau_desc, struct bau_control *bcp,
513                         struct bau_control *hmaster, struct ptc_stats *stat)
514 {
515         hmaster->max_bau_concurrent = 1;
516         bcp->timeout_tries++;
517         if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
518                 bcp->timeout_tries = 0;
519                 quiesce_local_uvhub(hmaster);
520                 spin_lock(&hmaster->queue_lock);
521                 uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu);
522                 spin_unlock(&hmaster->queue_lock);
523                 end_uvhub_quiesce(hmaster);
524                 bcp->ipi_attempts++;
525                 stat->s_resets_timeout++;
526         }
527 }
528
529 /*
530  * Completions are taking a very long time due to a congested numalink
531  * network.
532  */
533 static void
534 disable_for_congestion(struct bau_control *bcp, struct ptc_stats *stat)
535 {
536         int tcpu;
537         struct bau_control *tbcp;
538
539         /* let only one cpu do this disabling */
540         spin_lock(&disable_lock);
541         if (!baudisabled && bcp->period_requests &&
542             ((bcp->period_time / bcp->period_requests) > congested_cycles)) {
543                 /* it becomes this cpu's job to turn on the use of the
544                    BAU again */
545                 baudisabled = 1;
546                 bcp->set_bau_off = 1;
547                 bcp->set_bau_on_time = get_cycles() +
548                         sec_2_cycles(bcp->congested_period);
549                 stat->s_bau_disabled++;
550                 for_each_present_cpu(tcpu) {
551                         tbcp = &per_cpu(bau_control, tcpu);
552                                 tbcp->baudisabled = 1;
553                 }
554         }
555         spin_unlock(&disable_lock);
556 }
557
558 /**
559  * uv_flush_send_and_wait
560  *
561  * Send a broadcast and wait for it to complete.
562  *
563  * The flush_mask contains the cpus the broadcast is to be sent to including
564  * cpus that are on the local uvhub.
565  *
566  * Returns 0 if all flushing represented in the mask was done.
567  * Returns 1 if it gives up entirely and the original cpu mask is to be
568  * returned to the kernel.
569  */
570 int uv_flush_send_and_wait(struct bau_desc *bau_desc,
571                            struct cpumask *flush_mask, struct bau_control *bcp)
572 {
573         int right_shift;
574         int completion_status = 0;
575         int seq_number = 0;
576         long try = 0;
577         int cpu = bcp->uvhub_cpu;
578         int this_cpu = bcp->cpu;
579         unsigned long mmr_offset;
580         unsigned long index;
581         cycles_t time1;
582         cycles_t time2;
583         cycles_t elapsed;
584         struct ptc_stats *stat = bcp->statp;
585         struct bau_control *smaster = bcp->socket_master;
586         struct bau_control *hmaster = bcp->uvhub_master;
587
588         if (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
589                         &hmaster->active_descriptor_count,
590                         hmaster->max_bau_concurrent)) {
591                 stat->s_throttles++;
592                 do {
593                         cpu_relax();
594                 } while (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
595                         &hmaster->active_descriptor_count,
596                         hmaster->max_bau_concurrent));
597         }
598         while (hmaster->uvhub_quiesce)
599                 cpu_relax();
600
601         if (cpu < UV_CPUS_PER_ACT_STATUS) {
602                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
603                 right_shift = cpu * UV_ACT_STATUS_SIZE;
604         } else {
605                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
606                 right_shift =
607                     ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
608         }
609         time1 = get_cycles();
610         do {
611                 if (try == 0) {
612                         bau_desc->header.msg_type = MSG_REGULAR;
613                         seq_number = bcp->message_number++;
614                 } else {
615                         bau_desc->header.msg_type = MSG_RETRY;
616                         stat->s_retry_messages++;
617                 }
618                 bau_desc->header.sequence = seq_number;
619                 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
620                         bcp->uvhub_cpu;
621                 bcp->send_message = get_cycles();
622                 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
623                 try++;
624                 completion_status = uv_wait_completion(bau_desc, mmr_offset,
625                         right_shift, this_cpu, bcp, smaster, try);
626
627                 if (completion_status == FLUSH_RETRY_PLUGGED) {
628                         destination_plugged(bau_desc, bcp, hmaster, stat);
629                 } else if (completion_status == FLUSH_RETRY_TIMEOUT) {
630                         destination_timeout(bau_desc, bcp, hmaster, stat);
631                 }
632                 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
633                         bcp->ipi_attempts = 0;
634                         completion_status = FLUSH_GIVEUP;
635                         break;
636                 }
637                 cpu_relax();
638         } while ((completion_status == FLUSH_RETRY_PLUGGED) ||
639                  (completion_status == FLUSH_RETRY_TIMEOUT));
640         time2 = get_cycles();
641         bcp->plugged_tries = 0;
642         bcp->timeout_tries = 0;
643         if ((completion_status == FLUSH_COMPLETE) &&
644             (bcp->conseccompletes > bcp->complete_threshold) &&
645             (hmaster->max_bau_concurrent <
646                                         hmaster->max_bau_concurrent_constant))
647                         hmaster->max_bau_concurrent++;
648         while (hmaster->uvhub_quiesce)
649                 cpu_relax();
650         atomic_dec(&hmaster->active_descriptor_count);
651         if (time2 > time1) {
652                 elapsed = time2 - time1;
653                 stat->s_time += elapsed;
654                 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
655                         bcp->period_requests++;
656                         bcp->period_time += elapsed;
657                         if ((elapsed > congested_cycles) &&
658                             (bcp->period_requests > bcp->congested_reps)) {
659                                 disable_for_congestion(bcp, stat);
660                         }
661                 }
662         } else
663                 stat->s_requestor--;
664         if (completion_status == FLUSH_COMPLETE && try > 1)
665                 stat->s_retriesok++;
666         else if (completion_status == FLUSH_GIVEUP) {
667                 stat->s_giveup++;
668                 return 1;
669         }
670         return 0;
671 }
672
673 /**
674  * uv_flush_tlb_others - globally purge translation cache of a virtual
675  * address or all TLB's
676  * @cpumask: mask of all cpu's in which the address is to be removed
677  * @mm: mm_struct containing virtual address range
678  * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
679  * @cpu: the current cpu
680  *
681  * This is the entry point for initiating any UV global TLB shootdown.
682  *
683  * Purges the translation caches of all specified processors of the given
684  * virtual address, or purges all TLB's on specified processors.
685  *
686  * The caller has derived the cpumask from the mm_struct.  This function
687  * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
688  *
689  * The cpumask is converted into a uvhubmask of the uvhubs containing
690  * those cpus.
691  *
692  * Note that this function should be called with preemption disabled.
693  *
694  * Returns NULL if all remote flushing was done.
695  * Returns pointer to cpumask if some remote flushing remains to be
696  * done.  The returned pointer is valid till preemption is re-enabled.
697  */
698 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
699                                           struct mm_struct *mm,
700                                           unsigned long va, unsigned int cpu)
701 {
702         int locals = 0;
703         int remotes = 0;
704         int hubs = 0;
705         int tcpu;
706         int tpnode;
707         struct bau_desc *bau_desc;
708         struct cpumask *flush_mask;
709         struct ptc_stats *stat;
710         struct bau_control *bcp;
711         struct bau_control *tbcp;
712         struct hub_and_pnode *hpp;
713
714         /* kernel was booted 'nobau' */
715         if (nobau)
716                 return cpumask;
717
718         bcp = &per_cpu(bau_control, cpu);
719         stat = bcp->statp;
720
721         /* bau was disabled due to slow response */
722         if (bcp->baudisabled) {
723                 /* the cpu that disabled it must re-enable it */
724                 if (bcp->set_bau_off) {
725                         if (get_cycles() >= bcp->set_bau_on_time) {
726                                 stat->s_bau_reenabled++;
727                                 baudisabled = 0;
728                                 for_each_present_cpu(tcpu) {
729                                         tbcp = &per_cpu(bau_control, tcpu);
730                                         tbcp->baudisabled = 0;
731                                         tbcp->period_requests = 0;
732                                         tbcp->period_time = 0;
733                                 }
734                         }
735                 }
736                 return cpumask;
737         }
738
739         /*
740          * Each sending cpu has a per-cpu mask which it fills from the caller's
741          * cpu mask.  All cpus are converted to uvhubs and copied to the
742          * activation descriptor.
743          */
744         flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
745         /* don't actually do a shootdown of the local cpu */
746         cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
747         if (cpu_isset(cpu, *cpumask))
748                 stat->s_ntargself++;
749
750         bau_desc = bcp->descriptor_base;
751         bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu;
752         bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
753
754         for_each_cpu(tcpu, flush_mask) {
755                 /*
756                  * The distribution vector is a bit map of pnodes, relative
757                  * to the partition base pnode (and the partition base nasid
758                  * in the header).
759                  * Translate cpu to pnode and hub using an array stored
760                  * in local memory.
761                  */
762                 hpp = &bcp->socket_master->target_hub_and_pnode[tcpu];
763                 tpnode = hpp->pnode - bcp->partition_base_pnode;
764                 bau_uvhub_set(tpnode, &bau_desc->distribution);
765                 if (hpp->uvhub == bcp->uvhub)
766                         locals++;
767                 else
768                         remotes++;
769         }
770         if ((locals + remotes) == 0)
771                 return NULL;
772         stat->s_requestor++;
773         stat->s_ntargcpu += remotes + locals;
774         stat->s_ntargremotes += remotes;
775         stat->s_ntarglocals += locals;
776         remotes = bau_uvhub_weight(&bau_desc->distribution);
777
778         /* uvhub statistics */
779         hubs = bau_uvhub_weight(&bau_desc->distribution);
780         if (locals) {
781                 stat->s_ntarglocaluvhub++;
782                 stat->s_ntargremoteuvhub += (hubs - 1);
783         } else
784                 stat->s_ntargremoteuvhub += hubs;
785         stat->s_ntarguvhub += hubs;
786         if (hubs >= 16)
787                 stat->s_ntarguvhub16++;
788         else if (hubs >= 8)
789                 stat->s_ntarguvhub8++;
790         else if (hubs >= 4)
791                 stat->s_ntarguvhub4++;
792         else if (hubs >= 2)
793                 stat->s_ntarguvhub2++;
794         else
795                 stat->s_ntarguvhub1++;
796
797         bau_desc->payload.address = va;
798         bau_desc->payload.sending_cpu = cpu;
799
800         /*
801          * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
802          * or 1 if it gave up and the original cpumask should be returned.
803          */
804         if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp))
805                 return NULL;
806         else
807                 return cpumask;
808 }
809
810 /*
811  * The BAU message interrupt comes here. (registered by set_intr_gate)
812  * See entry_64.S
813  *
814  * We received a broadcast assist message.
815  *
816  * Interrupts are disabled; this interrupt could represent
817  * the receipt of several messages.
818  *
819  * All cores/threads on this hub get this interrupt.
820  * The last one to see it does the software ack.
821  * (the resource will not be freed until noninterruptable cpus see this
822  *  interrupt; hardware may timeout the s/w ack and reply ERROR)
823  */
824 void uv_bau_message_interrupt(struct pt_regs *regs)
825 {
826         int count = 0;
827         cycles_t time_start;
828         struct bau_payload_queue_entry *msg;
829         struct bau_control *bcp;
830         struct ptc_stats *stat;
831         struct msg_desc msgdesc;
832
833         time_start = get_cycles();
834         bcp = &per_cpu(bau_control, smp_processor_id());
835         stat = bcp->statp;
836         msgdesc.va_queue_first = bcp->va_queue_first;
837         msgdesc.va_queue_last = bcp->va_queue_last;
838         msg = bcp->bau_msg_head;
839         while (msg->sw_ack_vector) {
840                 count++;
841                 msgdesc.msg_slot = msg - msgdesc.va_queue_first;
842                 msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1;
843                 msgdesc.msg = msg;
844                 uv_bau_process_message(&msgdesc, bcp);
845                 msg++;
846                 if (msg > msgdesc.va_queue_last)
847                         msg = msgdesc.va_queue_first;
848                 bcp->bau_msg_head = msg;
849         }
850         stat->d_time += (get_cycles() - time_start);
851         if (!count)
852                 stat->d_nomsg++;
853         else if (count > 1)
854                 stat->d_multmsg++;
855         ack_APIC_irq();
856 }
857
858 /*
859  * uv_enable_timeouts
860  *
861  * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have
862  * shootdown message timeouts enabled.  The timeout does not cause
863  * an interrupt, but causes an error message to be returned to
864  * the sender.
865  */
866 static void __init uv_enable_timeouts(void)
867 {
868         int uvhub;
869         int nuvhubs;
870         int pnode;
871         unsigned long mmr_image;
872
873         nuvhubs = uv_num_possible_blades();
874
875         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
876                 if (!uv_blade_nr_possible_cpus(uvhub))
877                         continue;
878
879                 pnode = uv_blade_to_pnode(uvhub);
880                 mmr_image =
881                     uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
882                 /*
883                  * Set the timeout period and then lock it in, in three
884                  * steps; captures and locks in the period.
885                  *
886                  * To program the period, the SOFT_ACK_MODE must be off.
887                  */
888                 mmr_image &= ~((unsigned long)1 <<
889                     UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
890                 uv_write_global_mmr64
891                     (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
892                 /*
893                  * Set the 4-bit period.
894                  */
895                 mmr_image &= ~((unsigned long)0xf <<
896                      UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
897                 mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
898                      UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
899                 uv_write_global_mmr64
900                     (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
901                 /*
902                  * Subsequent reversals of the timebase bit (3) cause an
903                  * immediate timeout of one or all INTD resources as
904                  * indicated in bits 2:0 (7 causes all of them to timeout).
905                  */
906                 mmr_image |= ((unsigned long)1 <<
907                     UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
908                 uv_write_global_mmr64
909                     (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
910         }
911 }
912
913 static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
914 {
915         if (*offset < num_possible_cpus())
916                 return offset;
917         return NULL;
918 }
919
920 static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
921 {
922         (*offset)++;
923         if (*offset < num_possible_cpus())
924                 return offset;
925         return NULL;
926 }
927
928 static void uv_ptc_seq_stop(struct seq_file *file, void *data)
929 {
930 }
931
932 static inline unsigned long long
933 microsec_2_cycles(unsigned long microsec)
934 {
935         unsigned long ns;
936         unsigned long long cyc;
937
938         ns = microsec * 1000;
939         cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
940         return cyc;
941 }
942
943 /*
944  * Display the statistics thru /proc.
945  * 'data' points to the cpu number
946  */
947 static int uv_ptc_seq_show(struct seq_file *file, void *data)
948 {
949         struct ptc_stats *stat;
950         int cpu;
951
952         cpu = *(loff_t *)data;
953
954         if (!cpu) {
955                 seq_printf(file,
956                         "# cpu sent stime self locals remotes ncpus localhub ");
957                 seq_printf(file,
958                         "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
959                 seq_printf(file,
960                         "numuvhubs4 numuvhubs2 numuvhubs1 dto ");
961                 seq_printf(file,
962                         "retries rok resetp resett giveup sto bz throt ");
963                 seq_printf(file,
964                         "sw_ack recv rtime all ");
965                 seq_printf(file,
966                         "one mult none retry canc nocan reset rcan ");
967                 seq_printf(file,
968                         "disable enable\n");
969         }
970         if (cpu < num_possible_cpus() && cpu_online(cpu)) {
971                 stat = &per_cpu(ptcstats, cpu);
972                 /* source side statistics */
973                 seq_printf(file,
974                         "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
975                            cpu, stat->s_requestor, cycles_2_us(stat->s_time),
976                            stat->s_ntargself, stat->s_ntarglocals,
977                            stat->s_ntargremotes, stat->s_ntargcpu,
978                            stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
979                            stat->s_ntarguvhub, stat->s_ntarguvhub16);
980                 seq_printf(file, "%ld %ld %ld %ld %ld ",
981                            stat->s_ntarguvhub8, stat->s_ntarguvhub4,
982                            stat->s_ntarguvhub2, stat->s_ntarguvhub1,
983                            stat->s_dtimeout);
984                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
985                            stat->s_retry_messages, stat->s_retriesok,
986                            stat->s_resets_plug, stat->s_resets_timeout,
987                            stat->s_giveup, stat->s_stimeout,
988                            stat->s_busy, stat->s_throttles);
989
990                 /* destination side statistics */
991                 seq_printf(file,
992                            "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
993                            uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
994                                         UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
995                            stat->d_requestee, cycles_2_us(stat->d_time),
996                            stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
997                            stat->d_nomsg, stat->d_retries, stat->d_canceled,
998                            stat->d_nocanceled, stat->d_resets,
999                            stat->d_rcanceled);
1000                 seq_printf(file, "%ld %ld\n",
1001                         stat->s_bau_disabled, stat->s_bau_reenabled);
1002         }
1003
1004         return 0;
1005 }
1006
1007 /*
1008  * Display the tunables thru debugfs
1009  */
1010 static ssize_t tunables_read(struct file *file, char __user *userbuf,
1011                                                 size_t count, loff_t *ppos)
1012 {
1013         char *buf;
1014         int ret;
1015
1016         buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n",
1017                 "max_bau_concurrent plugged_delay plugsb4reset",
1018                 "timeoutsb4reset ipi_reset_limit complete_threshold",
1019                 "congested_response_us congested_reps congested_period",
1020                 max_bau_concurrent, plugged_delay, plugsb4reset,
1021                 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1022                 congested_response_us, congested_reps, congested_period);
1023
1024         if (!buf)
1025                 return -ENOMEM;
1026
1027         ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1028         kfree(buf);
1029         return ret;
1030 }
1031
1032 /*
1033  * -1: resetf the statistics
1034  *  0: display meaning of the statistics
1035  */
1036 static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
1037                                  size_t count, loff_t *data)
1038 {
1039         int cpu;
1040         long input_arg;
1041         char optstr[64];
1042         struct ptc_stats *stat;
1043
1044         if (count == 0 || count > sizeof(optstr))
1045                 return -EINVAL;
1046         if (copy_from_user(optstr, user, count))
1047                 return -EFAULT;
1048         optstr[count - 1] = '\0';
1049         if (strict_strtol(optstr, 10, &input_arg) < 0) {
1050                 printk(KERN_DEBUG "%s is invalid\n", optstr);
1051                 return -EINVAL;
1052         }
1053
1054         if (input_arg == 0) {
1055                 printk(KERN_DEBUG "# cpu:      cpu number\n");
1056                 printk(KERN_DEBUG "Sender statistics:\n");
1057                 printk(KERN_DEBUG
1058                 "sent:     number of shootdown messages sent\n");
1059                 printk(KERN_DEBUG
1060                 "stime:    time spent sending messages\n");
1061                 printk(KERN_DEBUG
1062                 "numuvhubs: number of hubs targeted with shootdown\n");
1063                 printk(KERN_DEBUG
1064                 "numuvhubs16: number times 16 or more hubs targeted\n");
1065                 printk(KERN_DEBUG
1066                 "numuvhubs8: number times 8 or more hubs targeted\n");
1067                 printk(KERN_DEBUG
1068                 "numuvhubs4: number times 4 or more hubs targeted\n");
1069                 printk(KERN_DEBUG
1070                 "numuvhubs2: number times 2 or more hubs targeted\n");
1071                 printk(KERN_DEBUG
1072                 "numuvhubs1: number times 1 hub targeted\n");
1073                 printk(KERN_DEBUG
1074                 "numcpus:  number of cpus targeted with shootdown\n");
1075                 printk(KERN_DEBUG
1076                 "dto:      number of destination timeouts\n");
1077                 printk(KERN_DEBUG
1078                 "retries:  destination timeout retries sent\n");
1079                 printk(KERN_DEBUG
1080                 "rok:   :  destination timeouts successfully retried\n");
1081                 printk(KERN_DEBUG
1082                 "resetp:   ipi-style resource resets for plugs\n");
1083                 printk(KERN_DEBUG
1084                 "resett:   ipi-style resource resets for timeouts\n");
1085                 printk(KERN_DEBUG
1086                 "giveup:   fall-backs to ipi-style shootdowns\n");
1087                 printk(KERN_DEBUG
1088                 "sto:      number of source timeouts\n");
1089                 printk(KERN_DEBUG
1090                 "bz:       number of stay-busy's\n");
1091                 printk(KERN_DEBUG
1092                 "throt:    number times spun in throttle\n");
1093                 printk(KERN_DEBUG "Destination side statistics:\n");
1094                 printk(KERN_DEBUG
1095                 "sw_ack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
1096                 printk(KERN_DEBUG
1097                 "recv:     shootdown messages received\n");
1098                 printk(KERN_DEBUG
1099                 "rtime:    time spent processing messages\n");
1100                 printk(KERN_DEBUG
1101                 "all:      shootdown all-tlb messages\n");
1102                 printk(KERN_DEBUG
1103                 "one:      shootdown one-tlb messages\n");
1104                 printk(KERN_DEBUG
1105                 "mult:     interrupts that found multiple messages\n");
1106                 printk(KERN_DEBUG
1107                 "none:     interrupts that found no messages\n");
1108                 printk(KERN_DEBUG
1109                 "retry:    number of retry messages processed\n");
1110                 printk(KERN_DEBUG
1111                 "canc:     number messages canceled by retries\n");
1112                 printk(KERN_DEBUG
1113                 "nocan:    number retries that found nothing to cancel\n");
1114                 printk(KERN_DEBUG
1115                 "reset:    number of ipi-style reset requests processed\n");
1116                 printk(KERN_DEBUG
1117                 "rcan:     number messages canceled by reset requests\n");
1118                 printk(KERN_DEBUG
1119                 "disable:  number times use of the BAU was disabled\n");
1120                 printk(KERN_DEBUG
1121                 "enable:   number times use of the BAU was re-enabled\n");
1122         } else if (input_arg == -1) {
1123                 for_each_present_cpu(cpu) {
1124                         stat = &per_cpu(ptcstats, cpu);
1125                         memset(stat, 0, sizeof(struct ptc_stats));
1126                 }
1127         }
1128
1129         return count;
1130 }
1131
1132 static int local_atoi(const char *name)
1133 {
1134         int val = 0;
1135
1136         for (;; name++) {
1137                 switch (*name) {
1138                 case '0' ... '9':
1139                         val = 10*val+(*name-'0');
1140                         break;
1141                 default:
1142                         return val;
1143                 }
1144         }
1145 }
1146
1147 /*
1148  * set the tunables
1149  * 0 values reset them to defaults
1150  */
1151 static ssize_t tunables_write(struct file *file, const char __user *user,
1152                                  size_t count, loff_t *data)
1153 {
1154         int cpu;
1155         int cnt = 0;
1156         int val;
1157         char *p;
1158         char *q;
1159         char instr[64];
1160         struct bau_control *bcp;
1161
1162         if (count == 0 || count > sizeof(instr)-1)
1163                 return -EINVAL;
1164         if (copy_from_user(instr, user, count))
1165                 return -EFAULT;
1166
1167         instr[count] = '\0';
1168         /* count the fields */
1169         p = instr + strspn(instr, WHITESPACE);
1170         q = p;
1171         for (; *p; p = q + strspn(q, WHITESPACE)) {
1172                 q = p + strcspn(p, WHITESPACE);
1173                 cnt++;
1174                 if (q == p)
1175                         break;
1176         }
1177         if (cnt != 9) {
1178                 printk(KERN_INFO "bau tunable error: should be 9 numbers\n");
1179                 return -EINVAL;
1180         }
1181
1182         p = instr + strspn(instr, WHITESPACE);
1183         q = p;
1184         for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1185                 q = p + strcspn(p, WHITESPACE);
1186                 val = local_atoi(p);
1187                 switch (cnt) {
1188                 case 0:
1189                         if (val == 0) {
1190                                 max_bau_concurrent = MAX_BAU_CONCURRENT;
1191                                 max_bau_concurrent_constant =
1192                                                         MAX_BAU_CONCURRENT;
1193                                 continue;
1194                         }
1195                         bcp = &per_cpu(bau_control, smp_processor_id());
1196                         if (val < 1 || val > bcp->cpus_in_uvhub) {
1197                                 printk(KERN_DEBUG
1198                                 "Error: BAU max concurrent %d is invalid\n",
1199                                 val);
1200                                 return -EINVAL;
1201                         }
1202                         max_bau_concurrent = val;
1203                         max_bau_concurrent_constant = val;
1204                         continue;
1205                 case 1:
1206                         if (val == 0)
1207                                 plugged_delay = PLUGGED_DELAY;
1208                         else
1209                                 plugged_delay = val;
1210                         continue;
1211                 case 2:
1212                         if (val == 0)
1213                                 plugsb4reset = PLUGSB4RESET;
1214                         else
1215                                 plugsb4reset = val;
1216                         continue;
1217                 case 3:
1218                         if (val == 0)
1219                                 timeoutsb4reset = TIMEOUTSB4RESET;
1220                         else
1221                                 timeoutsb4reset = val;
1222                         continue;
1223                 case 4:
1224                         if (val == 0)
1225                                 ipi_reset_limit = IPI_RESET_LIMIT;
1226                         else
1227                                 ipi_reset_limit = val;
1228                         continue;
1229                 case 5:
1230                         if (val == 0)
1231                                 complete_threshold = COMPLETE_THRESHOLD;
1232                         else
1233                                 complete_threshold = val;
1234                         continue;
1235                 case 6:
1236                         if (val == 0)
1237                                 congested_response_us = CONGESTED_RESPONSE_US;
1238                         else
1239                                 congested_response_us = val;
1240                         continue;
1241                 case 7:
1242                         if (val == 0)
1243                                 congested_reps = CONGESTED_REPS;
1244                         else
1245                                 congested_reps = val;
1246                         continue;
1247                 case 8:
1248                         if (val == 0)
1249                                 congested_period = CONGESTED_PERIOD;
1250                         else
1251                                 congested_period = val;
1252                         continue;
1253                 }
1254                 if (q == p)
1255                         break;
1256         }
1257         for_each_present_cpu(cpu) {
1258                 bcp = &per_cpu(bau_control, cpu);
1259                 bcp->max_bau_concurrent = max_bau_concurrent;
1260                 bcp->max_bau_concurrent_constant = max_bau_concurrent;
1261                 bcp->plugged_delay = plugged_delay;
1262                 bcp->plugsb4reset = plugsb4reset;
1263                 bcp->timeoutsb4reset = timeoutsb4reset;
1264                 bcp->ipi_reset_limit = ipi_reset_limit;
1265                 bcp->complete_threshold = complete_threshold;
1266                 bcp->congested_response_us = congested_response_us;
1267                 bcp->congested_reps = congested_reps;
1268                 bcp->congested_period = congested_period;
1269         }
1270         return count;
1271 }
1272
1273 static const struct seq_operations uv_ptc_seq_ops = {
1274         .start          = uv_ptc_seq_start,
1275         .next           = uv_ptc_seq_next,
1276         .stop           = uv_ptc_seq_stop,
1277         .show           = uv_ptc_seq_show
1278 };
1279
1280 static int uv_ptc_proc_open(struct inode *inode, struct file *file)
1281 {
1282         return seq_open(file, &uv_ptc_seq_ops);
1283 }
1284
1285 static int tunables_open(struct inode *inode, struct file *file)
1286 {
1287         return 0;
1288 }
1289
1290 static const struct file_operations proc_uv_ptc_operations = {
1291         .open           = uv_ptc_proc_open,
1292         .read           = seq_read,
1293         .write          = uv_ptc_proc_write,
1294         .llseek         = seq_lseek,
1295         .release        = seq_release,
1296 };
1297
1298 static const struct file_operations tunables_fops = {
1299         .open           = tunables_open,
1300         .read           = tunables_read,
1301         .write          = tunables_write,
1302         .llseek         = default_llseek,
1303 };
1304
1305 static int __init uv_ptc_init(void)
1306 {
1307         struct proc_dir_entry *proc_uv_ptc;
1308
1309         if (!is_uv_system())
1310                 return 0;
1311
1312         proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1313                                   &proc_uv_ptc_operations);
1314         if (!proc_uv_ptc) {
1315                 printk(KERN_ERR "unable to create %s proc entry\n",
1316                        UV_PTC_BASENAME);
1317                 return -EINVAL;
1318         }
1319
1320         tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1321         if (!tunables_dir) {
1322                 printk(KERN_ERR "unable to create debugfs directory %s\n",
1323                        UV_BAU_TUNABLES_DIR);
1324                 return -EINVAL;
1325         }
1326         tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1327                         tunables_dir, NULL, &tunables_fops);
1328         if (!tunables_file) {
1329                 printk(KERN_ERR "unable to create debugfs file %s\n",
1330                        UV_BAU_TUNABLES_FILE);
1331                 return -EINVAL;
1332         }
1333         return 0;
1334 }
1335
1336 /*
1337  * Initialize the sending side's sending buffers.
1338  */
1339 static void
1340 uv_activation_descriptor_init(int node, int pnode, int base_pnode)
1341 {
1342         int i;
1343         int cpu;
1344         unsigned long pa;
1345         unsigned long m;
1346         unsigned long n;
1347         struct bau_desc *bau_desc;
1348         struct bau_desc *bd2;
1349         struct bau_control *bcp;
1350
1351         /*
1352          * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
1353          * per cpu; and one per cpu on the uvhub (UV_ADP_SIZE)
1354          */
1355         bau_desc = kmalloc_node(sizeof(struct bau_desc) * UV_ADP_SIZE
1356                                 * UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
1357         BUG_ON(!bau_desc);
1358
1359         pa = uv_gpa(bau_desc); /* need the real nasid*/
1360         n = pa >> uv_nshift;
1361         m = pa & uv_mmask;
1362
1363         /* the 14-bit pnode */
1364         uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
1365                               (n << UV_DESC_BASE_PNODE_SHIFT | m));
1366         /*
1367          * Initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
1368          * cpu even though we only use the first one; one descriptor can
1369          * describe a broadcast to 256 uv hubs.
1370          */
1371         for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
1372                 i++, bd2++) {
1373                 memset(bd2, 0, sizeof(struct bau_desc));
1374                 bd2->header.sw_ack_flag = 1;
1375                 /*
1376                  * The base_dest_nasid set in the message header is the nasid
1377                  * of the first uvhub in the partition. The bit map will
1378                  * indicate destination pnode numbers relative to that base.
1379                  * They may not be consecutive if nasid striding is being used.
1380                  */
1381                 bd2->header.base_dest_nasid = UV_PNODE_TO_NASID(base_pnode);
1382                 bd2->header.dest_subnodeid = UV_LB_SUBNODEID;
1383                 bd2->header.command = UV_NET_ENDPOINT_INTD;
1384                 bd2->header.int_both = 1;
1385                 /*
1386                  * all others need to be set to zero:
1387                  *   fairness chaining multilevel count replied_to
1388                  */
1389         }
1390         for_each_present_cpu(cpu) {
1391                 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1392                         continue;
1393                 bcp = &per_cpu(bau_control, cpu);
1394                 bcp->descriptor_base = bau_desc;
1395         }
1396 }
1397
1398 /*
1399  * initialize the destination side's receiving buffers
1400  * entered for each uvhub in the partition
1401  * - node is first node (kernel memory notion) on the uvhub
1402  * - pnode is the uvhub's physical identifier
1403  */
1404 static void
1405 uv_payload_queue_init(int node, int pnode)
1406 {
1407         int pn;
1408         int cpu;
1409         char *cp;
1410         unsigned long pa;
1411         struct bau_payload_queue_entry *pqp;
1412         struct bau_payload_queue_entry *pqp_malloc;
1413         struct bau_control *bcp;
1414
1415         pqp = kmalloc_node((DEST_Q_SIZE + 1)
1416                            * sizeof(struct bau_payload_queue_entry),
1417                            GFP_KERNEL, node);
1418         BUG_ON(!pqp);
1419         pqp_malloc = pqp;
1420
1421         cp = (char *)pqp + 31;
1422         pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
1423
1424         for_each_present_cpu(cpu) {
1425                 if (pnode != uv_cpu_to_pnode(cpu))
1426                         continue;
1427                 /* for every cpu on this pnode: */
1428                 bcp = &per_cpu(bau_control, cpu);
1429                 bcp->va_queue_first = pqp;
1430                 bcp->bau_msg_head = pqp;
1431                 bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
1432         }
1433         /*
1434          * need the pnode of where the memory was really allocated
1435          */
1436         pa = uv_gpa(pqp);
1437         pn = pa >> uv_nshift;
1438         uv_write_global_mmr64(pnode,
1439                               UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
1440                               ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
1441                               uv_physnodeaddr(pqp));
1442         uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
1443                               uv_physnodeaddr(pqp));
1444         uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
1445                               (unsigned long)
1446                               uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1)));
1447         /* in effect, all msg_type's are set to MSG_NOOP */
1448         memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
1449 }
1450
1451 /*
1452  * Initialization of each UV hub's structures
1453  */
1454 static void __init uv_init_uvhub(int uvhub, int vector, int base_pnode)
1455 {
1456         int node;
1457         int pnode;
1458         unsigned long apicid;
1459
1460         node = uvhub_to_first_node(uvhub);
1461         pnode = uv_blade_to_pnode(uvhub);
1462         uv_activation_descriptor_init(node, pnode, base_pnode);
1463         uv_payload_queue_init(node, pnode);
1464         /*
1465          * The below initialization can't be in firmware because the
1466          * messaging IRQ will be determined by the OS.
1467          */
1468         apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1469         uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
1470                                       ((apicid << 32) | vector));
1471 }
1472
1473 /*
1474  * We will set BAU_MISC_CONTROL with a timeout period.
1475  * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1476  * So the destination timeout period has be be calculated from them.
1477  */
1478 static int
1479 calculate_destination_timeout(void)
1480 {
1481         unsigned long mmr_image;
1482         int mult1;
1483         int mult2;
1484         int index;
1485         int base;
1486         int ret;
1487         unsigned long ts_ns;
1488
1489         mult1 = UV_INTD_SOFT_ACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1490         mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1491         index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1492         mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1493         mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1494         base = timeout_base_ns[index];
1495         ts_ns = base * mult1 * mult2;
1496         ret = ts_ns / 1000;
1497         return ret;
1498 }
1499
1500 /*
1501  * initialize the bau_control structure for each cpu
1502  */
1503 static int __init uv_init_per_cpu(int nuvhubs, int base_part_pnode)
1504 {
1505         int i;
1506         int cpu;
1507         int tcpu;
1508         int pnode;
1509         int uvhub;
1510         int have_hmaster;
1511         short socket = 0;
1512         unsigned short socket_mask;
1513         unsigned char *uvhub_mask;
1514         struct bau_control *bcp;
1515         struct uvhub_desc *bdp;
1516         struct socket_desc *sdp;
1517         struct bau_control *hmaster = NULL;
1518         struct bau_control *smaster = NULL;
1519         struct socket_desc {
1520                 short num_cpus;
1521                 short cpu_number[MAX_CPUS_PER_SOCKET];
1522         };
1523         struct uvhub_desc {
1524                 unsigned short socket_mask;
1525                 short num_cpus;
1526                 short uvhub;
1527                 short pnode;
1528                 struct socket_desc socket[2];
1529         };
1530         struct uvhub_desc *uvhub_descs;
1531
1532         timeout_us = calculate_destination_timeout();
1533
1534         uvhub_descs = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
1535         memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
1536         uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
1537         for_each_present_cpu(cpu) {
1538                 bcp = &per_cpu(bau_control, cpu);
1539                 memset(bcp, 0, sizeof(struct bau_control));
1540                 pnode = uv_cpu_hub_info(cpu)->pnode;
1541                 if ((pnode - base_part_pnode) >= UV_DISTRIBUTION_SIZE) {
1542                         printk(KERN_EMERG
1543                                 "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1544                                 cpu, pnode, base_part_pnode,
1545                                 UV_DISTRIBUTION_SIZE);
1546                         return 1;
1547                 }
1548                 bcp->osnode = cpu_to_node(cpu);
1549                 bcp->partition_base_pnode = uv_partition_base_pnode;
1550                 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1551                 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1552                 bdp = &uvhub_descs[uvhub];
1553                 bdp->num_cpus++;
1554                 bdp->uvhub = uvhub;
1555                 bdp->pnode = pnode;
1556                 /* kludge: 'assuming' one node per socket, and assuming that
1557                    disabling a socket just leaves a gap in node numbers */
1558                 socket = bcp->osnode & 1;
1559                 bdp->socket_mask |= (1 << socket);
1560                 sdp = &bdp->socket[socket];
1561                 sdp->cpu_number[sdp->num_cpus] = cpu;
1562                 sdp->num_cpus++;
1563                 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1564                         printk(KERN_EMERG "%d cpus per socket invalid\n", sdp->num_cpus);
1565                         return 1;
1566                 }
1567         }
1568         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1569                 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
1570                         continue;
1571                 have_hmaster = 0;
1572                 bdp = &uvhub_descs[uvhub];
1573                 socket_mask = bdp->socket_mask;
1574                 socket = 0;
1575                 while (socket_mask) {
1576                         if (!(socket_mask & 1))
1577                                 goto nextsocket;
1578                         sdp = &bdp->socket[socket];
1579                         for (i = 0; i < sdp->num_cpus; i++) {
1580                                 cpu = sdp->cpu_number[i];
1581                                 bcp = &per_cpu(bau_control, cpu);
1582                                 bcp->cpu = cpu;
1583                                 if (i == 0) {
1584                                         smaster = bcp;
1585                                         if (!have_hmaster) {
1586                                                 have_hmaster++;
1587                                                 hmaster = bcp;
1588                                         }
1589                                 }
1590                                 bcp->cpus_in_uvhub = bdp->num_cpus;
1591                                 bcp->cpus_in_socket = sdp->num_cpus;
1592                                 bcp->socket_master = smaster;
1593                                 bcp->uvhub = bdp->uvhub;
1594                                 bcp->uvhub_master = hmaster;
1595                                 bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->
1596                                                 blade_processor_id;
1597                                 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
1598                                         printk(KERN_EMERG
1599                                                 "%d cpus per uvhub invalid\n",
1600                                                 bcp->uvhub_cpu);
1601                                         return 1;
1602                                 }
1603                         }
1604 nextsocket:
1605                         socket++;
1606                         socket_mask = (socket_mask >> 1);
1607                         /* each socket gets a local array of pnodes/hubs */
1608                         bcp = smaster;
1609                         bcp->target_hub_and_pnode = kmalloc_node(
1610                                 sizeof(struct hub_and_pnode) *
1611                                 num_possible_cpus(), GFP_KERNEL, bcp->osnode);
1612                         memset(bcp->target_hub_and_pnode, 0,
1613                                 sizeof(struct hub_and_pnode) *
1614                                 num_possible_cpus());
1615                         for_each_present_cpu(tcpu) {
1616                                 bcp->target_hub_and_pnode[tcpu].pnode =
1617                                         uv_cpu_hub_info(tcpu)->pnode;
1618                                 bcp->target_hub_and_pnode[tcpu].uvhub =
1619                                         uv_cpu_hub_info(tcpu)->numa_blade_id;
1620                         }
1621                 }
1622         }
1623         kfree(uvhub_descs);
1624         kfree(uvhub_mask);
1625         for_each_present_cpu(cpu) {
1626                 bcp = &per_cpu(bau_control, cpu);
1627                 bcp->baudisabled = 0;
1628                 bcp->statp = &per_cpu(ptcstats, cpu);
1629                 /* time interval to catch a hardware stay-busy bug */
1630                 bcp->timeout_interval = microsec_2_cycles(2*timeout_us);
1631                 bcp->max_bau_concurrent = max_bau_concurrent;
1632                 bcp->max_bau_concurrent_constant = max_bau_concurrent;
1633                 bcp->plugged_delay = plugged_delay;
1634                 bcp->plugsb4reset = plugsb4reset;
1635                 bcp->timeoutsb4reset = timeoutsb4reset;
1636                 bcp->ipi_reset_limit = ipi_reset_limit;
1637                 bcp->complete_threshold = complete_threshold;
1638                 bcp->congested_response_us = congested_response_us;
1639                 bcp->congested_reps = congested_reps;
1640                 bcp->congested_period = congested_period;
1641         }
1642         return 0;
1643 }
1644
1645 /*
1646  * Initialization of BAU-related structures
1647  */
1648 static int __init uv_bau_init(void)
1649 {
1650         int uvhub;
1651         int pnode;
1652         int nuvhubs;
1653         int cur_cpu;
1654         int vector;
1655         unsigned long mmr;
1656
1657         if (!is_uv_system())
1658                 return 0;
1659
1660         if (nobau)
1661                 return 0;
1662
1663         for_each_possible_cpu(cur_cpu)
1664                 zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
1665                                        GFP_KERNEL, cpu_to_node(cur_cpu));
1666
1667         uv_nshift = uv_hub_info->m_val;
1668         uv_mmask = (1UL << uv_hub_info->m_val) - 1;
1669         nuvhubs = uv_num_possible_blades();
1670         spin_lock_init(&disable_lock);
1671         congested_cycles = microsec_2_cycles(congested_response_us);
1672
1673         uv_partition_base_pnode = 0x7fffffff;
1674         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1675                 if (uv_blade_nr_possible_cpus(uvhub) &&
1676                         (uv_blade_to_pnode(uvhub) < uv_partition_base_pnode))
1677                         uv_partition_base_pnode = uv_blade_to_pnode(uvhub);
1678         }
1679
1680         if (uv_init_per_cpu(nuvhubs, uv_partition_base_pnode)) {
1681                 nobau = 1;
1682                 return 0;
1683         }
1684
1685         vector = UV_BAU_MESSAGE;
1686         for_each_possible_blade(uvhub)
1687                 if (uv_blade_nr_possible_cpus(uvhub))
1688                         uv_init_uvhub(uvhub, vector, uv_partition_base_pnode);
1689
1690         uv_enable_timeouts();
1691         alloc_intr_gate(vector, uv_bau_message_intr1);
1692
1693         for_each_possible_blade(uvhub) {
1694                 if (uv_blade_nr_possible_cpus(uvhub)) {
1695                         pnode = uv_blade_to_pnode(uvhub);
1696                         /* INIT the bau */
1697                         uv_write_global_mmr64(pnode,
1698                                         UVH_LB_BAU_SB_ACTIVATION_CONTROL,
1699                                         ((unsigned long)1 << 63));
1700                         mmr = 1; /* should be 1 to broadcast to both sockets */
1701                         uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST,
1702                                                 mmr);
1703                 }
1704         }
1705
1706         return 0;
1707 }
1708 core_initcall(uv_bau_init);
1709 fs_initcall(uv_ptc_init);