Merge branches 'stable/irq.fairness' and 'stable/irq.ween_of_nr_irqs' of git://git...
[pandora-kernel.git] / arch / x86 / mm / pgtable.c
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20         return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25         struct page *pte;
26
27         pte = alloc_pages(__userpte_alloc_gfp, 0);
28         if (pte)
29                 pgtable_page_ctor(pte);
30         return pte;
31 }
32
33 static int __init setup_userpte(char *arg)
34 {
35         if (!arg)
36                 return -EINVAL;
37
38         /*
39          * "userpte=nohigh" disables allocation of user pagetables in
40          * high memory.
41          */
42         if (strcmp(arg, "nohigh") == 0)
43                 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
44         else
45                 return -EINVAL;
46         return 0;
47 }
48 early_param("userpte", setup_userpte);
49
50 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
51 {
52         pgtable_page_dtor(pte);
53         paravirt_release_pte(page_to_pfn(pte));
54         tlb_remove_page(tlb, pte);
55 }
56
57 #if PAGETABLE_LEVELS > 2
58 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
59 {
60         paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
61         tlb_remove_page(tlb, virt_to_page(pmd));
62 }
63
64 #if PAGETABLE_LEVELS > 3
65 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
66 {
67         paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
68         tlb_remove_page(tlb, virt_to_page(pud));
69 }
70 #endif  /* PAGETABLE_LEVELS > 3 */
71 #endif  /* PAGETABLE_LEVELS > 2 */
72
73 static inline void pgd_list_add(pgd_t *pgd)
74 {
75         struct page *page = virt_to_page(pgd);
76
77         list_add(&page->lru, &pgd_list);
78 }
79
80 static inline void pgd_list_del(pgd_t *pgd)
81 {
82         struct page *page = virt_to_page(pgd);
83
84         list_del(&page->lru);
85 }
86
87 #define UNSHARED_PTRS_PER_PGD                           \
88         (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
89
90
91 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
92 {
93         BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
94         virt_to_page(pgd)->index = (pgoff_t)mm;
95 }
96
97 struct mm_struct *pgd_page_get_mm(struct page *page)
98 {
99         return (struct mm_struct *)page->index;
100 }
101
102 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
103 {
104         /* If the pgd points to a shared pagetable level (either the
105            ptes in non-PAE, or shared PMD in PAE), then just copy the
106            references from swapper_pg_dir. */
107         if (PAGETABLE_LEVELS == 2 ||
108             (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
109             PAGETABLE_LEVELS == 4) {
110                 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
111                                 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
112                                 KERNEL_PGD_PTRS);
113         }
114
115         /* list required to sync kernel mapping updates */
116         if (!SHARED_KERNEL_PMD) {
117                 pgd_set_mm(pgd, mm);
118                 pgd_list_add(pgd);
119         }
120 }
121
122 static void pgd_dtor(pgd_t *pgd)
123 {
124         if (SHARED_KERNEL_PMD)
125                 return;
126
127         spin_lock(&pgd_lock);
128         pgd_list_del(pgd);
129         spin_unlock(&pgd_lock);
130 }
131
132 /*
133  * List of all pgd's needed for non-PAE so it can invalidate entries
134  * in both cached and uncached pgd's; not needed for PAE since the
135  * kernel pmd is shared. If PAE were not to share the pmd a similar
136  * tactic would be needed. This is essentially codepath-based locking
137  * against pageattr.c; it is the unique case in which a valid change
138  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
139  * vmalloc faults work because attached pagetables are never freed.
140  * -- wli
141  */
142
143 #ifdef CONFIG_X86_PAE
144 /*
145  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
146  * updating the top-level pagetable entries to guarantee the
147  * processor notices the update.  Since this is expensive, and
148  * all 4 top-level entries are used almost immediately in a
149  * new process's life, we just pre-populate them here.
150  *
151  * Also, if we're in a paravirt environment where the kernel pmd is
152  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
153  * and initialize the kernel pmds here.
154  */
155 #define PREALLOCATED_PMDS       UNSHARED_PTRS_PER_PGD
156
157 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
158 {
159         paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
160
161         /* Note: almost everything apart from _PAGE_PRESENT is
162            reserved at the pmd (PDPT) level. */
163         set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
164
165         /*
166          * According to Intel App note "TLBs, Paging-Structure Caches,
167          * and Their Invalidation", April 2007, document 317080-001,
168          * section 8.1: in PAE mode we explicitly have to flush the
169          * TLB via cr3 if the top-level pgd is changed...
170          */
171         if (mm == current->active_mm)
172                 write_cr3(read_cr3());
173 }
174 #else  /* !CONFIG_X86_PAE */
175
176 /* No need to prepopulate any pagetable entries in non-PAE modes. */
177 #define PREALLOCATED_PMDS       0
178
179 #endif  /* CONFIG_X86_PAE */
180
181 static void free_pmds(pmd_t *pmds[])
182 {
183         int i;
184
185         for(i = 0; i < PREALLOCATED_PMDS; i++)
186                 if (pmds[i])
187                         free_page((unsigned long)pmds[i]);
188 }
189
190 static int preallocate_pmds(pmd_t *pmds[])
191 {
192         int i;
193         bool failed = false;
194
195         for(i = 0; i < PREALLOCATED_PMDS; i++) {
196                 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
197                 if (pmd == NULL)
198                         failed = true;
199                 pmds[i] = pmd;
200         }
201
202         if (failed) {
203                 free_pmds(pmds);
204                 return -ENOMEM;
205         }
206
207         return 0;
208 }
209
210 /*
211  * Mop up any pmd pages which may still be attached to the pgd.
212  * Normally they will be freed by munmap/exit_mmap, but any pmd we
213  * preallocate which never got a corresponding vma will need to be
214  * freed manually.
215  */
216 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
217 {
218         int i;
219
220         for(i = 0; i < PREALLOCATED_PMDS; i++) {
221                 pgd_t pgd = pgdp[i];
222
223                 if (pgd_val(pgd) != 0) {
224                         pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
225
226                         pgdp[i] = native_make_pgd(0);
227
228                         paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
229                         pmd_free(mm, pmd);
230                 }
231         }
232 }
233
234 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
235 {
236         pud_t *pud;
237         unsigned long addr;
238         int i;
239
240         if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
241                 return;
242
243         pud = pud_offset(pgd, 0);
244
245         for (addr = i = 0; i < PREALLOCATED_PMDS;
246              i++, pud++, addr += PUD_SIZE) {
247                 pmd_t *pmd = pmds[i];
248
249                 if (i >= KERNEL_PGD_BOUNDARY)
250                         memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
251                                sizeof(pmd_t) * PTRS_PER_PMD);
252
253                 pud_populate(mm, pud, pmd);
254         }
255 }
256
257 pgd_t *pgd_alloc(struct mm_struct *mm)
258 {
259         pgd_t *pgd;
260         pmd_t *pmds[PREALLOCATED_PMDS];
261
262         pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
263
264         if (pgd == NULL)
265                 goto out;
266
267         mm->pgd = pgd;
268
269         if (preallocate_pmds(pmds) != 0)
270                 goto out_free_pgd;
271
272         if (paravirt_pgd_alloc(mm) != 0)
273                 goto out_free_pmds;
274
275         /*
276          * Make sure that pre-populating the pmds is atomic with
277          * respect to anything walking the pgd_list, so that they
278          * never see a partially populated pgd.
279          */
280         spin_lock(&pgd_lock);
281
282         pgd_ctor(mm, pgd);
283         pgd_prepopulate_pmd(mm, pgd, pmds);
284
285         spin_unlock(&pgd_lock);
286
287         return pgd;
288
289 out_free_pmds:
290         free_pmds(pmds);
291 out_free_pgd:
292         free_page((unsigned long)pgd);
293 out:
294         return NULL;
295 }
296
297 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
298 {
299         pgd_mop_up_pmds(mm, pgd);
300         pgd_dtor(pgd);
301         paravirt_pgd_free(mm, pgd);
302         free_page((unsigned long)pgd);
303 }
304
305 int ptep_set_access_flags(struct vm_area_struct *vma,
306                           unsigned long address, pte_t *ptep,
307                           pte_t entry, int dirty)
308 {
309         int changed = !pte_same(*ptep, entry);
310
311         if (changed && dirty) {
312                 *ptep = entry;
313                 pte_update_defer(vma->vm_mm, address, ptep);
314                 flush_tlb_page(vma, address);
315         }
316
317         return changed;
318 }
319
320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
321 int pmdp_set_access_flags(struct vm_area_struct *vma,
322                           unsigned long address, pmd_t *pmdp,
323                           pmd_t entry, int dirty)
324 {
325         int changed = !pmd_same(*pmdp, entry);
326
327         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
328
329         if (changed && dirty) {
330                 *pmdp = entry;
331                 pmd_update_defer(vma->vm_mm, address, pmdp);
332                 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
333         }
334
335         return changed;
336 }
337 #endif
338
339 int ptep_test_and_clear_young(struct vm_area_struct *vma,
340                               unsigned long addr, pte_t *ptep)
341 {
342         int ret = 0;
343
344         if (pte_young(*ptep))
345                 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
346                                          (unsigned long *) &ptep->pte);
347
348         if (ret)
349                 pte_update(vma->vm_mm, addr, ptep);
350
351         return ret;
352 }
353
354 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
355 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
356                               unsigned long addr, pmd_t *pmdp)
357 {
358         int ret = 0;
359
360         if (pmd_young(*pmdp))
361                 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
362                                          (unsigned long *)pmdp);
363
364         if (ret)
365                 pmd_update(vma->vm_mm, addr, pmdp);
366
367         return ret;
368 }
369 #endif
370
371 int ptep_clear_flush_young(struct vm_area_struct *vma,
372                            unsigned long address, pte_t *ptep)
373 {
374         int young;
375
376         young = ptep_test_and_clear_young(vma, address, ptep);
377         if (young)
378                 flush_tlb_page(vma, address);
379
380         return young;
381 }
382
383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
384 int pmdp_clear_flush_young(struct vm_area_struct *vma,
385                            unsigned long address, pmd_t *pmdp)
386 {
387         int young;
388
389         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
390
391         young = pmdp_test_and_clear_young(vma, address, pmdp);
392         if (young)
393                 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
394
395         return young;
396 }
397
398 void pmdp_splitting_flush(struct vm_area_struct *vma,
399                           unsigned long address, pmd_t *pmdp)
400 {
401         int set;
402         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
403         set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
404                                 (unsigned long *)pmdp);
405         if (set) {
406                 pmd_update(vma->vm_mm, address, pmdp);
407                 /* need tlb flush only to serialize against gup-fast */
408                 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
409         }
410 }
411 #endif
412
413 /**
414  * reserve_top_address - reserves a hole in the top of kernel address space
415  * @reserve - size of hole to reserve
416  *
417  * Can be used to relocate the fixmap area and poke a hole in the top
418  * of kernel address space to make room for a hypervisor.
419  */
420 void __init reserve_top_address(unsigned long reserve)
421 {
422 #ifdef CONFIG_X86_32
423         BUG_ON(fixmaps_set > 0);
424         printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
425                (int)-reserve);
426         __FIXADDR_TOP = -reserve - PAGE_SIZE;
427 #endif
428 }
429
430 int fixmaps_set;
431
432 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
433 {
434         unsigned long address = __fix_to_virt(idx);
435
436         if (idx >= __end_of_fixed_addresses) {
437                 BUG();
438                 return;
439         }
440         set_pte_vaddr(address, pte);
441         fixmaps_set++;
442 }
443
444 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
445                        pgprot_t flags)
446 {
447         __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
448 }