x86: Remove redundant display of free swap space in show_mem()
[pandora-kernel.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
31
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/kdebug.h>
47 #include <asm/numa.h>
48 #include <asm/cacheflush.h>
49
50 const struct dma_mapping_ops *dma_ops;
51 EXPORT_SYMBOL(dma_ops);
52
53 static unsigned long dma_reserve __initdata;
54
55 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
56
57 int direct_gbpages __meminitdata
58 #ifdef CONFIG_DIRECT_GBPAGES
59                                 = 1
60 #endif
61 ;
62
63 static int __init parse_direct_gbpages_off(char *arg)
64 {
65         direct_gbpages = 0;
66         return 0;
67 }
68 early_param("nogbpages", parse_direct_gbpages_off);
69
70 static int __init parse_direct_gbpages_on(char *arg)
71 {
72         direct_gbpages = 1;
73         return 0;
74 }
75 early_param("gbpages", parse_direct_gbpages_on);
76
77 /*
78  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
79  * physical space so we can cache the place of the first one and move
80  * around without checking the pgd every time.
81  */
82
83 void show_mem(void)
84 {
85         long i, total = 0, reserved = 0;
86         long shared = 0, cached = 0;
87         struct page *page;
88         pg_data_t *pgdat;
89
90         printk(KERN_INFO "Mem-info:\n");
91         show_free_areas();
92         for_each_online_pgdat(pgdat) {
93                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
94                         /*
95                          * This loop can take a while with 256 GB and
96                          * 4k pages so defer the NMI watchdog:
97                          */
98                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
99                                 touch_nmi_watchdog();
100
101                         if (!pfn_valid(pgdat->node_start_pfn + i))
102                                 continue;
103
104                         page = pfn_to_page(pgdat->node_start_pfn + i);
105                         total++;
106                         if (PageReserved(page))
107                                 reserved++;
108                         else if (PageSwapCache(page))
109                                 cached++;
110                         else if (page_count(page))
111                                 shared += page_count(page) - 1;
112                 }
113         }
114         printk(KERN_INFO "%lu pages of RAM\n",          total);
115         printk(KERN_INFO "%lu reserved pages\n",        reserved);
116         printk(KERN_INFO "%lu pages shared\n",          shared);
117         printk(KERN_INFO "%lu pages swap cached\n",     cached);
118 }
119
120 int after_bootmem;
121
122 static __init void *spp_getpage(void)
123 {
124         void *ptr;
125
126         if (after_bootmem)
127                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
128         else
129                 ptr = alloc_bootmem_pages(PAGE_SIZE);
130
131         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
132                 panic("set_pte_phys: cannot allocate page data %s\n",
133                         after_bootmem ? "after bootmem" : "");
134         }
135
136         pr_debug("spp_getpage %p\n", ptr);
137
138         return ptr;
139 }
140
141 static __init void
142 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
143 {
144         pgd_t *pgd;
145         pud_t *pud;
146         pmd_t *pmd;
147         pte_t *pte, new_pte;
148
149         pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
150
151         pgd = pgd_offset_k(vaddr);
152         if (pgd_none(*pgd)) {
153                 printk(KERN_ERR
154                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
155                 return;
156         }
157         pud = pud_offset(pgd, vaddr);
158         if (pud_none(*pud)) {
159                 pmd = (pmd_t *) spp_getpage();
160                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
161                 if (pmd != pmd_offset(pud, 0)) {
162                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
163                                 pmd, pmd_offset(pud, 0));
164                         return;
165                 }
166         }
167         pmd = pmd_offset(pud, vaddr);
168         if (pmd_none(*pmd)) {
169                 pte = (pte_t *) spp_getpage();
170                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
171                 if (pte != pte_offset_kernel(pmd, 0)) {
172                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
173                         return;
174                 }
175         }
176         new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
177
178         pte = pte_offset_kernel(pmd, vaddr);
179         if (!pte_none(*pte) &&
180             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
181                 pte_ERROR(*pte);
182         set_pte(pte, new_pte);
183
184         /*
185          * It's enough to flush this one mapping.
186          * (PGE mappings get flushed as well)
187          */
188         __flush_tlb_one(vaddr);
189 }
190
191 /*
192  * The head.S code sets up the kernel high mapping:
193  *
194  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
195  *
196  * phys_addr holds the negative offset to the kernel, which is added
197  * to the compile time generated pmds. This results in invalid pmds up
198  * to the point where we hit the physaddr 0 mapping.
199  *
200  * We limit the mappings to the region from _text to _end.  _end is
201  * rounded up to the 2MB boundary. This catches the invalid pmds as
202  * well, as they are located before _text:
203  */
204 void __init cleanup_highmap(void)
205 {
206         unsigned long vaddr = __START_KERNEL_map;
207         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
208         pmd_t *pmd = level2_kernel_pgt;
209         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
210
211         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
212                 if (!pmd_present(*pmd))
213                         continue;
214                 if (vaddr < (unsigned long) _text || vaddr > end)
215                         set_pmd(pmd, __pmd(0));
216         }
217 }
218
219 /* NOTE: this is meant to be run only at boot */
220 void __init
221 __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
222 {
223         unsigned long address = __fix_to_virt(idx);
224
225         if (idx >= __end_of_fixed_addresses) {
226                 printk(KERN_ERR "Invalid __set_fixmap\n");
227                 return;
228         }
229         set_pte_phys(address, phys, prot);
230 }
231
232 static unsigned long __initdata table_start;
233 static unsigned long __meminitdata table_end;
234
235 static __meminit void *alloc_low_page(unsigned long *phys)
236 {
237         unsigned long pfn = table_end++;
238         void *adr;
239
240         if (after_bootmem) {
241                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
242                 *phys = __pa(adr);
243
244                 return adr;
245         }
246
247         if (pfn >= end_pfn)
248                 panic("alloc_low_page: ran out of memory");
249
250         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
251         memset(adr, 0, PAGE_SIZE);
252         *phys  = pfn * PAGE_SIZE;
253         return adr;
254 }
255
256 static __meminit void unmap_low_page(void *adr)
257 {
258         if (after_bootmem)
259                 return;
260
261         early_iounmap(adr, PAGE_SIZE);
262 }
263
264 /* Must run before zap_low_mappings */
265 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
266 {
267         pmd_t *pmd, *last_pmd;
268         unsigned long vaddr;
269         int i, pmds;
270
271         pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
272         vaddr = __START_KERNEL_map;
273         pmd = level2_kernel_pgt;
274         last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
275
276         for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
277                 for (i = 0; i < pmds; i++) {
278                         if (pmd_present(pmd[i]))
279                                 goto continue_outer_loop;
280                 }
281                 vaddr += addr & ~PMD_MASK;
282                 addr &= PMD_MASK;
283
284                 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
285                         set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
286                 __flush_tlb_all();
287
288                 return (void *)vaddr;
289 continue_outer_loop:
290                 ;
291         }
292         printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
293
294         return NULL;
295 }
296
297 /*
298  * To avoid virtual aliases later:
299  */
300 __meminit void early_iounmap(void *addr, unsigned long size)
301 {
302         unsigned long vaddr;
303         pmd_t *pmd;
304         int i, pmds;
305
306         vaddr = (unsigned long)addr;
307         pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
308         pmd = level2_kernel_pgt + pmd_index(vaddr);
309
310         for (i = 0; i < pmds; i++)
311                 pmd_clear(pmd + i);
312
313         __flush_tlb_all();
314 }
315
316 static void __meminit
317 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
318 {
319         int i = pmd_index(address);
320
321         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
322                 pmd_t *pmd = pmd_page + pmd_index(address);
323
324                 if (address >= end) {
325                         if (!after_bootmem) {
326                                 for (; i < PTRS_PER_PMD; i++, pmd++)
327                                         set_pmd(pmd, __pmd(0));
328                         }
329                         break;
330                 }
331
332                 if (pmd_val(*pmd))
333                         continue;
334
335                 set_pte((pte_t *)pmd,
336                         pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
337         }
338 }
339
340 static void __meminit
341 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
342 {
343         pmd_t *pmd = pmd_offset(pud, 0);
344         spin_lock(&init_mm.page_table_lock);
345         phys_pmd_init(pmd, address, end);
346         spin_unlock(&init_mm.page_table_lock);
347         __flush_tlb_all();
348 }
349
350 static void __meminit
351 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
352 {
353         int i = pud_index(addr);
354
355         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
356                 unsigned long pmd_phys;
357                 pud_t *pud = pud_page + pud_index(addr);
358                 pmd_t *pmd;
359
360                 if (addr >= end)
361                         break;
362
363                 if (!after_bootmem &&
364                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
365                         set_pud(pud, __pud(0));
366                         continue;
367                 }
368
369                 if (pud_val(*pud)) {
370                         if (!pud_large(*pud))
371                                 phys_pmd_update(pud, addr, end);
372                         continue;
373                 }
374
375                 if (direct_gbpages) {
376                         set_pte((pte_t *)pud,
377                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
378                         continue;
379                 }
380
381                 pmd = alloc_low_page(&pmd_phys);
382
383                 spin_lock(&init_mm.page_table_lock);
384                 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
385                 phys_pmd_init(pmd, addr, end);
386                 spin_unlock(&init_mm.page_table_lock);
387
388                 unmap_low_page(pmd);
389         }
390         __flush_tlb_all();
391 }
392
393 static void __init find_early_table_space(unsigned long end)
394 {
395         unsigned long puds, pmds, tables, start;
396
397         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
398         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
399         if (!direct_gbpages) {
400                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
401                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
402         }
403
404         /*
405          * RED-PEN putting page tables only on node 0 could
406          * cause a hotspot and fill up ZONE_DMA. The page tables
407          * need roughly 0.5KB per GB.
408          */
409         start = 0x8000;
410         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
411         if (table_start == -1UL)
412                 panic("Cannot find space for the kernel page tables");
413
414         table_start >>= PAGE_SHIFT;
415         table_end = table_start;
416
417         early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
418                 end, table_start << PAGE_SHIFT,
419                 (table_start << PAGE_SHIFT) + tables);
420 }
421
422 static void __init init_gbpages(void)
423 {
424         if (direct_gbpages && cpu_has_gbpages)
425                 printk(KERN_INFO "Using GB pages for direct mapping\n");
426         else
427                 direct_gbpages = 0;
428 }
429
430 /*
431  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
432  * This runs before bootmem is initialized and gets pages directly from
433  * the physical memory. To access them they are temporarily mapped.
434  */
435 void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
436 {
437         unsigned long next;
438
439         pr_debug("init_memory_mapping\n");
440
441         /*
442          * Find space for the kernel direct mapping tables.
443          *
444          * Later we should allocate these tables in the local node of the
445          * memory mapped. Unfortunately this is done currently before the
446          * nodes are discovered.
447          */
448         if (!after_bootmem) {
449                 init_gbpages();
450                 find_early_table_space(end);
451         }
452
453         start = (unsigned long)__va(start);
454         end = (unsigned long)__va(end);
455
456         for (; start < end; start = next) {
457                 pgd_t *pgd = pgd_offset_k(start);
458                 unsigned long pud_phys;
459                 pud_t *pud;
460
461                 if (after_bootmem)
462                         pud = pud_offset(pgd, start & PGDIR_MASK);
463                 else
464                         pud = alloc_low_page(&pud_phys);
465
466                 next = start + PGDIR_SIZE;
467                 if (next > end)
468                         next = end;
469                 phys_pud_init(pud, __pa(start), __pa(next));
470                 if (!after_bootmem)
471                         set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
472                 unmap_low_page(pud);
473         }
474
475         if (!after_bootmem)
476                 mmu_cr4_features = read_cr4();
477         __flush_tlb_all();
478
479         if (!after_bootmem)
480                 reserve_early(table_start << PAGE_SHIFT,
481                                  table_end << PAGE_SHIFT, "PGTABLE");
482 }
483
484 #ifndef CONFIG_NUMA
485 void __init paging_init(void)
486 {
487         unsigned long max_zone_pfns[MAX_NR_ZONES];
488
489         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
490         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
491         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
492         max_zone_pfns[ZONE_NORMAL] = end_pfn;
493
494         memory_present(0, 0, end_pfn);
495         sparse_init();
496         free_area_init_nodes(max_zone_pfns);
497 }
498 #endif
499
500 /*
501  * Memory hotplug specific functions
502  */
503 void online_page(struct page *page)
504 {
505         ClearPageReserved(page);
506         init_page_count(page);
507         __free_page(page);
508         totalram_pages++;
509         num_physpages++;
510 }
511
512 #ifdef CONFIG_MEMORY_HOTPLUG
513 /*
514  * Memory is added always to NORMAL zone. This means you will never get
515  * additional DMA/DMA32 memory.
516  */
517 int arch_add_memory(int nid, u64 start, u64 size)
518 {
519         struct pglist_data *pgdat = NODE_DATA(nid);
520         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
521         unsigned long start_pfn = start >> PAGE_SHIFT;
522         unsigned long nr_pages = size >> PAGE_SHIFT;
523         int ret;
524
525         init_memory_mapping(start, start + size-1);
526
527         ret = __add_pages(zone, start_pfn, nr_pages);
528         WARN_ON(1);
529
530         return ret;
531 }
532 EXPORT_SYMBOL_GPL(arch_add_memory);
533
534 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
535 int memory_add_physaddr_to_nid(u64 start)
536 {
537         return 0;
538 }
539 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
540 #endif
541
542 #endif /* CONFIG_MEMORY_HOTPLUG */
543
544 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
545                          kcore_modules, kcore_vsyscall;
546
547 void __init mem_init(void)
548 {
549         long codesize, reservedpages, datasize, initsize;
550
551         pci_iommu_alloc();
552
553         /* clear_bss() already clear the empty_zero_page */
554
555         reservedpages = 0;
556
557         /* this will put all low memory onto the freelists */
558 #ifdef CONFIG_NUMA
559         totalram_pages = numa_free_all_bootmem();
560 #else
561         totalram_pages = free_all_bootmem();
562 #endif
563         reservedpages = end_pfn - totalram_pages -
564                                         absent_pages_in_range(0, end_pfn);
565         after_bootmem = 1;
566
567         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
568         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
569         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
570
571         /* Register memory areas for /proc/kcore */
572         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
573         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
574                    VMALLOC_END-VMALLOC_START);
575         kclist_add(&kcore_kernel, &_stext, _end - _stext);
576         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
577         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
578                                  VSYSCALL_END - VSYSCALL_START);
579
580         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
581                                 "%ldk reserved, %ldk data, %ldk init)\n",
582                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
583                 end_pfn << (PAGE_SHIFT-10),
584                 codesize >> 10,
585                 reservedpages << (PAGE_SHIFT-10),
586                 datasize >> 10,
587                 initsize >> 10);
588
589         cpa_init();
590 }
591
592 void free_init_pages(char *what, unsigned long begin, unsigned long end)
593 {
594         unsigned long addr = begin;
595
596         if (addr >= end)
597                 return;
598
599         /*
600          * If debugging page accesses then do not free this memory but
601          * mark them not present - any buggy init-section access will
602          * create a kernel page fault:
603          */
604 #ifdef CONFIG_DEBUG_PAGEALLOC
605         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
606                 begin, PAGE_ALIGN(end));
607         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
608 #else
609         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
610
611         for (; addr < end; addr += PAGE_SIZE) {
612                 ClearPageReserved(virt_to_page(addr));
613                 init_page_count(virt_to_page(addr));
614                 memset((void *)(addr & ~(PAGE_SIZE-1)),
615                         POISON_FREE_INITMEM, PAGE_SIZE);
616                 free_page(addr);
617                 totalram_pages++;
618         }
619 #endif
620 }
621
622 void free_initmem(void)
623 {
624         free_init_pages("unused kernel memory",
625                         (unsigned long)(&__init_begin),
626                         (unsigned long)(&__init_end));
627 }
628
629 #ifdef CONFIG_DEBUG_RODATA
630 const int rodata_test_data = 0xC3;
631 EXPORT_SYMBOL_GPL(rodata_test_data);
632
633 void mark_rodata_ro(void)
634 {
635         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
636
637         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
638                (end - start) >> 10);
639         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
640
641         /*
642          * The rodata section (but not the kernel text!) should also be
643          * not-executable.
644          */
645         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
646         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
647
648         rodata_test();
649
650 #ifdef CONFIG_CPA_DEBUG
651         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
652         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
653
654         printk(KERN_INFO "Testing CPA: again\n");
655         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
656 #endif
657 }
658
659 #endif
660
661 #ifdef CONFIG_BLK_DEV_INITRD
662 void free_initrd_mem(unsigned long start, unsigned long end)
663 {
664         free_init_pages("initrd memory", start, end);
665 }
666 #endif
667
668 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
669 {
670 #ifdef CONFIG_NUMA
671         int nid = phys_to_nid(phys);
672 #endif
673         unsigned long pfn = phys >> PAGE_SHIFT;
674
675         if (pfn >= end_pfn) {
676                 /*
677                  * This can happen with kdump kernels when accessing
678                  * firmware tables:
679                  */
680                 if (pfn < end_pfn_map)
681                         return;
682
683                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
684                                 phys, len);
685                 return;
686         }
687
688         /* Should check here against the e820 map to avoid double free */
689 #ifdef CONFIG_NUMA
690         reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
691 #else
692         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
693 #endif
694         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
695                 dma_reserve += len / PAGE_SIZE;
696                 set_dma_reserve(dma_reserve);
697         }
698 }
699
700 int kern_addr_valid(unsigned long addr)
701 {
702         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
703         pgd_t *pgd;
704         pud_t *pud;
705         pmd_t *pmd;
706         pte_t *pte;
707
708         if (above != 0 && above != -1UL)
709                 return 0;
710
711         pgd = pgd_offset_k(addr);
712         if (pgd_none(*pgd))
713                 return 0;
714
715         pud = pud_offset(pgd, addr);
716         if (pud_none(*pud))
717                 return 0;
718
719         pmd = pmd_offset(pud, addr);
720         if (pmd_none(*pmd))
721                 return 0;
722
723         if (pmd_large(*pmd))
724                 return pfn_valid(pmd_pfn(*pmd));
725
726         pte = pte_offset_kernel(pmd, addr);
727         if (pte_none(*pte))
728                 return 0;
729
730         return pfn_valid(pte_pfn(*pte));
731 }
732
733 /*
734  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
735  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
736  * not need special handling anymore:
737  */
738 static struct vm_area_struct gate_vma = {
739         .vm_start       = VSYSCALL_START,
740         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
741         .vm_page_prot   = PAGE_READONLY_EXEC,
742         .vm_flags       = VM_READ | VM_EXEC
743 };
744
745 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
746 {
747 #ifdef CONFIG_IA32_EMULATION
748         if (test_tsk_thread_flag(tsk, TIF_IA32))
749                 return NULL;
750 #endif
751         return &gate_vma;
752 }
753
754 int in_gate_area(struct task_struct *task, unsigned long addr)
755 {
756         struct vm_area_struct *vma = get_gate_vma(task);
757
758         if (!vma)
759                 return 0;
760
761         return (addr >= vma->vm_start) && (addr < vma->vm_end);
762 }
763
764 /*
765  * Use this when you have no reliable task/vma, typically from interrupt
766  * context. It is less reliable than using the task's vma and may give
767  * false positives:
768  */
769 int in_gate_area_no_task(unsigned long addr)
770 {
771         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
772 }
773
774 const char *arch_vma_name(struct vm_area_struct *vma)
775 {
776         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
777                 return "[vdso]";
778         if (vma == &gate_vma)
779                 return "[vsyscall]";
780         return NULL;
781 }
782
783 #ifdef CONFIG_SPARSEMEM_VMEMMAP
784 /*
785  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
786  */
787 int __meminit
788 vmemmap_populate(struct page *start_page, unsigned long size, int node)
789 {
790         unsigned long addr = (unsigned long)start_page;
791         unsigned long end = (unsigned long)(start_page + size);
792         unsigned long next;
793         pgd_t *pgd;
794         pud_t *pud;
795         pmd_t *pmd;
796
797         for (; addr < end; addr = next) {
798                 next = pmd_addr_end(addr, end);
799
800                 pgd = vmemmap_pgd_populate(addr, node);
801                 if (!pgd)
802                         return -ENOMEM;
803
804                 pud = vmemmap_pud_populate(pgd, addr, node);
805                 if (!pud)
806                         return -ENOMEM;
807
808                 pmd = pmd_offset(pud, addr);
809                 if (pmd_none(*pmd)) {
810                         pte_t entry;
811                         void *p;
812
813                         p = vmemmap_alloc_block(PMD_SIZE, node);
814                         if (!p)
815                                 return -ENOMEM;
816
817                         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
818                                                         PAGE_KERNEL_LARGE);
819                         set_pmd(pmd, __pmd(pte_val(entry)));
820
821                         printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
822                                 addr, addr + PMD_SIZE - 1, p, node);
823                 } else {
824                         vmemmap_verify((pte_t *)pmd, node, addr, next);
825                 }
826         }
827         return 0;
828 }
829 #endif