Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <trace/events/kvm.h>
43 #undef TRACE_INCLUDE_FILE
44 #define CREATE_TRACE_POINTS
45 #include "trace.h"
46
47 #include <asm/debugreg.h>
48 #include <asm/uaccess.h>
49 #include <asm/msr.h>
50 #include <asm/desc.h>
51 #include <asm/mtrr.h>
52 #include <asm/mce.h>
53
54 #define MAX_IO_MSRS 256
55 #define CR0_RESERVED_BITS                                               \
56         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
57                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
58                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
59 #define CR4_RESERVED_BITS                                               \
60         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
61                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
62                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
63                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
64
65 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
66
67 #define KVM_MAX_MCE_BANKS 32
68 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
69
70 /* EFER defaults:
71  * - enable syscall per default because its emulated by KVM
72  * - enable LME and LMA per default on 64 bit KVM
73  */
74 #ifdef CONFIG_X86_64
75 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
76 #else
77 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
78 #endif
79
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
82
83 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85                                     struct kvm_cpuid_entry2 __user *entries);
86
87 struct kvm_x86_ops *kvm_x86_ops;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops);
89
90 int ignore_msrs = 0;
91 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
92
93 #define KVM_NR_SHARED_MSRS 16
94
95 struct kvm_shared_msrs_global {
96         int nr;
97         u32 msrs[KVM_NR_SHARED_MSRS];
98 };
99
100 struct kvm_shared_msrs {
101         struct user_return_notifier urn;
102         bool registered;
103         struct kvm_shared_msr_values {
104                 u64 host;
105                 u64 curr;
106         } values[KVM_NR_SHARED_MSRS];
107 };
108
109 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
110 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
111
112 struct kvm_stats_debugfs_item debugfs_entries[] = {
113         { "pf_fixed", VCPU_STAT(pf_fixed) },
114         { "pf_guest", VCPU_STAT(pf_guest) },
115         { "tlb_flush", VCPU_STAT(tlb_flush) },
116         { "invlpg", VCPU_STAT(invlpg) },
117         { "exits", VCPU_STAT(exits) },
118         { "io_exits", VCPU_STAT(io_exits) },
119         { "mmio_exits", VCPU_STAT(mmio_exits) },
120         { "signal_exits", VCPU_STAT(signal_exits) },
121         { "irq_window", VCPU_STAT(irq_window_exits) },
122         { "nmi_window", VCPU_STAT(nmi_window_exits) },
123         { "halt_exits", VCPU_STAT(halt_exits) },
124         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
125         { "hypercalls", VCPU_STAT(hypercalls) },
126         { "request_irq", VCPU_STAT(request_irq_exits) },
127         { "irq_exits", VCPU_STAT(irq_exits) },
128         { "host_state_reload", VCPU_STAT(host_state_reload) },
129         { "efer_reload", VCPU_STAT(efer_reload) },
130         { "fpu_reload", VCPU_STAT(fpu_reload) },
131         { "insn_emulation", VCPU_STAT(insn_emulation) },
132         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
133         { "irq_injections", VCPU_STAT(irq_injections) },
134         { "nmi_injections", VCPU_STAT(nmi_injections) },
135         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
136         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
137         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
138         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
139         { "mmu_flooded", VM_STAT(mmu_flooded) },
140         { "mmu_recycled", VM_STAT(mmu_recycled) },
141         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
142         { "mmu_unsync", VM_STAT(mmu_unsync) },
143         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
144         { "largepages", VM_STAT(lpages) },
145         { NULL }
146 };
147
148 static void kvm_on_user_return(struct user_return_notifier *urn)
149 {
150         unsigned slot;
151         struct kvm_shared_msrs *locals
152                 = container_of(urn, struct kvm_shared_msrs, urn);
153         struct kvm_shared_msr_values *values;
154
155         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
156                 values = &locals->values[slot];
157                 if (values->host != values->curr) {
158                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
159                         values->curr = values->host;
160                 }
161         }
162         locals->registered = false;
163         user_return_notifier_unregister(urn);
164 }
165
166 static void shared_msr_update(unsigned slot, u32 msr)
167 {
168         struct kvm_shared_msrs *smsr;
169         u64 value;
170
171         smsr = &__get_cpu_var(shared_msrs);
172         /* only read, and nobody should modify it at this time,
173          * so don't need lock */
174         if (slot >= shared_msrs_global.nr) {
175                 printk(KERN_ERR "kvm: invalid MSR slot!");
176                 return;
177         }
178         rdmsrl_safe(msr, &value);
179         smsr->values[slot].host = value;
180         smsr->values[slot].curr = value;
181 }
182
183 void kvm_define_shared_msr(unsigned slot, u32 msr)
184 {
185         if (slot >= shared_msrs_global.nr)
186                 shared_msrs_global.nr = slot + 1;
187         shared_msrs_global.msrs[slot] = msr;
188         /* we need ensured the shared_msr_global have been updated */
189         smp_wmb();
190 }
191 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
192
193 static void kvm_shared_msr_cpu_online(void)
194 {
195         unsigned i;
196
197         for (i = 0; i < shared_msrs_global.nr; ++i)
198                 shared_msr_update(i, shared_msrs_global.msrs[i]);
199 }
200
201 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
202 {
203         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
204
205         if (((value ^ smsr->values[slot].curr) & mask) == 0)
206                 return;
207         smsr->values[slot].curr = value;
208         wrmsrl(shared_msrs_global.msrs[slot], value);
209         if (!smsr->registered) {
210                 smsr->urn.on_user_return = kvm_on_user_return;
211                 user_return_notifier_register(&smsr->urn);
212                 smsr->registered = true;
213         }
214 }
215 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
216
217 static void drop_user_return_notifiers(void *ignore)
218 {
219         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
220
221         if (smsr->registered)
222                 kvm_on_user_return(&smsr->urn);
223 }
224
225 unsigned long segment_base(u16 selector)
226 {
227         struct descriptor_table gdt;
228         struct desc_struct *d;
229         unsigned long table_base;
230         unsigned long v;
231
232         if (selector == 0)
233                 return 0;
234
235         kvm_get_gdt(&gdt);
236         table_base = gdt.base;
237
238         if (selector & 4) {           /* from ldt */
239                 u16 ldt_selector = kvm_read_ldt();
240
241                 table_base = segment_base(ldt_selector);
242         }
243         d = (struct desc_struct *)(table_base + (selector & ~7));
244         v = get_desc_base(d);
245 #ifdef CONFIG_X86_64
246         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
247                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
248 #endif
249         return v;
250 }
251 EXPORT_SYMBOL_GPL(segment_base);
252
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
254 {
255         if (irqchip_in_kernel(vcpu->kvm))
256                 return vcpu->arch.apic_base;
257         else
258                 return vcpu->arch.apic_base;
259 }
260 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
261
262 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
263 {
264         /* TODO: reserve bits check */
265         if (irqchip_in_kernel(vcpu->kvm))
266                 kvm_lapic_set_base(vcpu, data);
267         else
268                 vcpu->arch.apic_base = data;
269 }
270 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
271
272 #define EXCPT_BENIGN            0
273 #define EXCPT_CONTRIBUTORY      1
274 #define EXCPT_PF                2
275
276 static int exception_class(int vector)
277 {
278         switch (vector) {
279         case PF_VECTOR:
280                 return EXCPT_PF;
281         case DE_VECTOR:
282         case TS_VECTOR:
283         case NP_VECTOR:
284         case SS_VECTOR:
285         case GP_VECTOR:
286                 return EXCPT_CONTRIBUTORY;
287         default:
288                 break;
289         }
290         return EXCPT_BENIGN;
291 }
292
293 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
294                 unsigned nr, bool has_error, u32 error_code)
295 {
296         u32 prev_nr;
297         int class1, class2;
298
299         if (!vcpu->arch.exception.pending) {
300         queue:
301                 vcpu->arch.exception.pending = true;
302                 vcpu->arch.exception.has_error_code = has_error;
303                 vcpu->arch.exception.nr = nr;
304                 vcpu->arch.exception.error_code = error_code;
305                 return;
306         }
307
308         /* to check exception */
309         prev_nr = vcpu->arch.exception.nr;
310         if (prev_nr == DF_VECTOR) {
311                 /* triple fault -> shutdown */
312                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
313                 return;
314         }
315         class1 = exception_class(prev_nr);
316         class2 = exception_class(nr);
317         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
318                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
319                 /* generate double fault per SDM Table 5-5 */
320                 vcpu->arch.exception.pending = true;
321                 vcpu->arch.exception.has_error_code = true;
322                 vcpu->arch.exception.nr = DF_VECTOR;
323                 vcpu->arch.exception.error_code = 0;
324         } else
325                 /* replace previous exception with a new one in a hope
326                    that instruction re-execution will regenerate lost
327                    exception */
328                 goto queue;
329 }
330
331 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333         kvm_multiple_exception(vcpu, nr, false, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_queue_exception);
336
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
338                            u32 error_code)
339 {
340         ++vcpu->stat.pf_guest;
341         vcpu->arch.cr2 = addr;
342         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
343 }
344
345 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
346 {
347         vcpu->arch.nmi_pending = 1;
348 }
349 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
350
351 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
352 {
353         kvm_multiple_exception(vcpu, nr, true, error_code);
354 }
355 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
356
357 /*
358  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
359  * a #GP and return false.
360  */
361 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
362 {
363         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
364                 return true;
365         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
366         return false;
367 }
368 EXPORT_SYMBOL_GPL(kvm_require_cpl);
369
370 /*
371  * Load the pae pdptrs.  Return true is they are all valid.
372  */
373 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
374 {
375         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
376         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
377         int i;
378         int ret;
379         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
380
381         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
382                                   offset * sizeof(u64), sizeof(pdpte));
383         if (ret < 0) {
384                 ret = 0;
385                 goto out;
386         }
387         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
388                 if (is_present_gpte(pdpte[i]) &&
389                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
390                         ret = 0;
391                         goto out;
392                 }
393         }
394         ret = 1;
395
396         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
397         __set_bit(VCPU_EXREG_PDPTR,
398                   (unsigned long *)&vcpu->arch.regs_avail);
399         __set_bit(VCPU_EXREG_PDPTR,
400                   (unsigned long *)&vcpu->arch.regs_dirty);
401 out:
402
403         return ret;
404 }
405 EXPORT_SYMBOL_GPL(load_pdptrs);
406
407 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
408 {
409         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
410         bool changed = true;
411         int r;
412
413         if (is_long_mode(vcpu) || !is_pae(vcpu))
414                 return false;
415
416         if (!test_bit(VCPU_EXREG_PDPTR,
417                       (unsigned long *)&vcpu->arch.regs_avail))
418                 return true;
419
420         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
421         if (r < 0)
422                 goto out;
423         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
424 out:
425
426         return changed;
427 }
428
429 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
430 {
431         cr0 |= X86_CR0_ET;
432
433 #ifdef CONFIG_X86_64
434         if (cr0 & 0xffffffff00000000UL) {
435                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
436                        cr0, kvm_read_cr0(vcpu));
437                 kvm_inject_gp(vcpu, 0);
438                 return;
439         }
440 #endif
441
442         cr0 &= ~CR0_RESERVED_BITS;
443
444         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
445                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
446                 kvm_inject_gp(vcpu, 0);
447                 return;
448         }
449
450         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
451                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
452                        "and a clear PE flag\n");
453                 kvm_inject_gp(vcpu, 0);
454                 return;
455         }
456
457         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
458 #ifdef CONFIG_X86_64
459                 if ((vcpu->arch.efer & EFER_LME)) {
460                         int cs_db, cs_l;
461
462                         if (!is_pae(vcpu)) {
463                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
464                                        "in long mode while PAE is disabled\n");
465                                 kvm_inject_gp(vcpu, 0);
466                                 return;
467                         }
468                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
469                         if (cs_l) {
470                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
471                                        "in long mode while CS.L == 1\n");
472                                 kvm_inject_gp(vcpu, 0);
473                                 return;
474
475                         }
476                 } else
477 #endif
478                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
479                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
480                                "reserved bits\n");
481                         kvm_inject_gp(vcpu, 0);
482                         return;
483                 }
484
485         }
486
487         kvm_x86_ops->set_cr0(vcpu, cr0);
488         vcpu->arch.cr0 = cr0;
489
490         kvm_mmu_reset_context(vcpu);
491         return;
492 }
493 EXPORT_SYMBOL_GPL(kvm_set_cr0);
494
495 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
496 {
497         kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
498 }
499 EXPORT_SYMBOL_GPL(kvm_lmsw);
500
501 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
502 {
503         unsigned long old_cr4 = kvm_read_cr4(vcpu);
504         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
505
506         if (cr4 & CR4_RESERVED_BITS) {
507                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
508                 kvm_inject_gp(vcpu, 0);
509                 return;
510         }
511
512         if (is_long_mode(vcpu)) {
513                 if (!(cr4 & X86_CR4_PAE)) {
514                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
515                                "in long mode\n");
516                         kvm_inject_gp(vcpu, 0);
517                         return;
518                 }
519         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
520                    && ((cr4 ^ old_cr4) & pdptr_bits)
521                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
522                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
523                 kvm_inject_gp(vcpu, 0);
524                 return;
525         }
526
527         if (cr4 & X86_CR4_VMXE) {
528                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
529                 kvm_inject_gp(vcpu, 0);
530                 return;
531         }
532         kvm_x86_ops->set_cr4(vcpu, cr4);
533         vcpu->arch.cr4 = cr4;
534         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
535         kvm_mmu_reset_context(vcpu);
536 }
537 EXPORT_SYMBOL_GPL(kvm_set_cr4);
538
539 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
540 {
541         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
542                 kvm_mmu_sync_roots(vcpu);
543                 kvm_mmu_flush_tlb(vcpu);
544                 return;
545         }
546
547         if (is_long_mode(vcpu)) {
548                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
549                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
550                         kvm_inject_gp(vcpu, 0);
551                         return;
552                 }
553         } else {
554                 if (is_pae(vcpu)) {
555                         if (cr3 & CR3_PAE_RESERVED_BITS) {
556                                 printk(KERN_DEBUG
557                                        "set_cr3: #GP, reserved bits\n");
558                                 kvm_inject_gp(vcpu, 0);
559                                 return;
560                         }
561                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
562                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
563                                        "reserved bits\n");
564                                 kvm_inject_gp(vcpu, 0);
565                                 return;
566                         }
567                 }
568                 /*
569                  * We don't check reserved bits in nonpae mode, because
570                  * this isn't enforced, and VMware depends on this.
571                  */
572         }
573
574         /*
575          * Does the new cr3 value map to physical memory? (Note, we
576          * catch an invalid cr3 even in real-mode, because it would
577          * cause trouble later on when we turn on paging anyway.)
578          *
579          * A real CPU would silently accept an invalid cr3 and would
580          * attempt to use it - with largely undefined (and often hard
581          * to debug) behavior on the guest side.
582          */
583         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
584                 kvm_inject_gp(vcpu, 0);
585         else {
586                 vcpu->arch.cr3 = cr3;
587                 vcpu->arch.mmu.new_cr3(vcpu);
588         }
589 }
590 EXPORT_SYMBOL_GPL(kvm_set_cr3);
591
592 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
593 {
594         if (cr8 & CR8_RESERVED_BITS) {
595                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
596                 kvm_inject_gp(vcpu, 0);
597                 return;
598         }
599         if (irqchip_in_kernel(vcpu->kvm))
600                 kvm_lapic_set_tpr(vcpu, cr8);
601         else
602                 vcpu->arch.cr8 = cr8;
603 }
604 EXPORT_SYMBOL_GPL(kvm_set_cr8);
605
606 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
607 {
608         if (irqchip_in_kernel(vcpu->kvm))
609                 return kvm_lapic_get_cr8(vcpu);
610         else
611                 return vcpu->arch.cr8;
612 }
613 EXPORT_SYMBOL_GPL(kvm_get_cr8);
614
615 static inline u32 bit(int bitno)
616 {
617         return 1 << (bitno & 31);
618 }
619
620 /*
621  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
622  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
623  *
624  * This list is modified at module load time to reflect the
625  * capabilities of the host cpu. This capabilities test skips MSRs that are
626  * kvm-specific. Those are put in the beginning of the list.
627  */
628
629 #define KVM_SAVE_MSRS_BEGIN     5
630 static u32 msrs_to_save[] = {
631         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
632         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
633         HV_X64_MSR_APIC_ASSIST_PAGE,
634         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
635         MSR_K6_STAR,
636 #ifdef CONFIG_X86_64
637         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
638 #endif
639         MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
640 };
641
642 static unsigned num_msrs_to_save;
643
644 static u32 emulated_msrs[] = {
645         MSR_IA32_MISC_ENABLE,
646 };
647
648 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
649 {
650         if (efer & efer_reserved_bits) {
651                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
652                        efer);
653                 kvm_inject_gp(vcpu, 0);
654                 return;
655         }
656
657         if (is_paging(vcpu)
658             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
659                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
660                 kvm_inject_gp(vcpu, 0);
661                 return;
662         }
663
664         if (efer & EFER_FFXSR) {
665                 struct kvm_cpuid_entry2 *feat;
666
667                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
668                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
669                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
670                         kvm_inject_gp(vcpu, 0);
671                         return;
672                 }
673         }
674
675         if (efer & EFER_SVME) {
676                 struct kvm_cpuid_entry2 *feat;
677
678                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
679                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
680                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
681                         kvm_inject_gp(vcpu, 0);
682                         return;
683                 }
684         }
685
686         kvm_x86_ops->set_efer(vcpu, efer);
687
688         efer &= ~EFER_LMA;
689         efer |= vcpu->arch.efer & EFER_LMA;
690
691         vcpu->arch.efer = efer;
692
693         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
694         kvm_mmu_reset_context(vcpu);
695 }
696
697 void kvm_enable_efer_bits(u64 mask)
698 {
699        efer_reserved_bits &= ~mask;
700 }
701 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
702
703
704 /*
705  * Writes msr value into into the appropriate "register".
706  * Returns 0 on success, non-0 otherwise.
707  * Assumes vcpu_load() was already called.
708  */
709 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
710 {
711         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
712 }
713
714 /*
715  * Adapt set_msr() to msr_io()'s calling convention
716  */
717 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
718 {
719         return kvm_set_msr(vcpu, index, *data);
720 }
721
722 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
723 {
724         static int version;
725         struct pvclock_wall_clock wc;
726         struct timespec boot;
727
728         if (!wall_clock)
729                 return;
730
731         version++;
732
733         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
734
735         /*
736          * The guest calculates current wall clock time by adding
737          * system time (updated by kvm_write_guest_time below) to the
738          * wall clock specified here.  guest system time equals host
739          * system time for us, thus we must fill in host boot time here.
740          */
741         getboottime(&boot);
742
743         wc.sec = boot.tv_sec;
744         wc.nsec = boot.tv_nsec;
745         wc.version = version;
746
747         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
748
749         version++;
750         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
751 }
752
753 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
754 {
755         uint32_t quotient, remainder;
756
757         /* Don't try to replace with do_div(), this one calculates
758          * "(dividend << 32) / divisor" */
759         __asm__ ( "divl %4"
760                   : "=a" (quotient), "=d" (remainder)
761                   : "0" (0), "1" (dividend), "r" (divisor) );
762         return quotient;
763 }
764
765 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
766 {
767         uint64_t nsecs = 1000000000LL;
768         int32_t  shift = 0;
769         uint64_t tps64;
770         uint32_t tps32;
771
772         tps64 = tsc_khz * 1000LL;
773         while (tps64 > nsecs*2) {
774                 tps64 >>= 1;
775                 shift--;
776         }
777
778         tps32 = (uint32_t)tps64;
779         while (tps32 <= (uint32_t)nsecs) {
780                 tps32 <<= 1;
781                 shift++;
782         }
783
784         hv_clock->tsc_shift = shift;
785         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
786
787         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
788                  __func__, tsc_khz, hv_clock->tsc_shift,
789                  hv_clock->tsc_to_system_mul);
790 }
791
792 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
793
794 static void kvm_write_guest_time(struct kvm_vcpu *v)
795 {
796         struct timespec ts;
797         unsigned long flags;
798         struct kvm_vcpu_arch *vcpu = &v->arch;
799         void *shared_kaddr;
800         unsigned long this_tsc_khz;
801
802         if ((!vcpu->time_page))
803                 return;
804
805         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
806         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
807                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
808                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
809         }
810         put_cpu_var(cpu_tsc_khz);
811
812         /* Keep irq disabled to prevent changes to the clock */
813         local_irq_save(flags);
814         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
815         ktime_get_ts(&ts);
816         monotonic_to_bootbased(&ts);
817         local_irq_restore(flags);
818
819         /* With all the info we got, fill in the values */
820
821         vcpu->hv_clock.system_time = ts.tv_nsec +
822                                      (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
823
824         /*
825          * The interface expects us to write an even number signaling that the
826          * update is finished. Since the guest won't see the intermediate
827          * state, we just increase by 2 at the end.
828          */
829         vcpu->hv_clock.version += 2;
830
831         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
832
833         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
834                sizeof(vcpu->hv_clock));
835
836         kunmap_atomic(shared_kaddr, KM_USER0);
837
838         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
839 }
840
841 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
842 {
843         struct kvm_vcpu_arch *vcpu = &v->arch;
844
845         if (!vcpu->time_page)
846                 return 0;
847         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
848         return 1;
849 }
850
851 static bool msr_mtrr_valid(unsigned msr)
852 {
853         switch (msr) {
854         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
855         case MSR_MTRRfix64K_00000:
856         case MSR_MTRRfix16K_80000:
857         case MSR_MTRRfix16K_A0000:
858         case MSR_MTRRfix4K_C0000:
859         case MSR_MTRRfix4K_C8000:
860         case MSR_MTRRfix4K_D0000:
861         case MSR_MTRRfix4K_D8000:
862         case MSR_MTRRfix4K_E0000:
863         case MSR_MTRRfix4K_E8000:
864         case MSR_MTRRfix4K_F0000:
865         case MSR_MTRRfix4K_F8000:
866         case MSR_MTRRdefType:
867         case MSR_IA32_CR_PAT:
868                 return true;
869         case 0x2f8:
870                 return true;
871         }
872         return false;
873 }
874
875 static bool valid_pat_type(unsigned t)
876 {
877         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
878 }
879
880 static bool valid_mtrr_type(unsigned t)
881 {
882         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
883 }
884
885 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
886 {
887         int i;
888
889         if (!msr_mtrr_valid(msr))
890                 return false;
891
892         if (msr == MSR_IA32_CR_PAT) {
893                 for (i = 0; i < 8; i++)
894                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
895                                 return false;
896                 return true;
897         } else if (msr == MSR_MTRRdefType) {
898                 if (data & ~0xcff)
899                         return false;
900                 return valid_mtrr_type(data & 0xff);
901         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
902                 for (i = 0; i < 8 ; i++)
903                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
904                                 return false;
905                 return true;
906         }
907
908         /* variable MTRRs */
909         return valid_mtrr_type(data & 0xff);
910 }
911
912 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
913 {
914         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
915
916         if (!mtrr_valid(vcpu, msr, data))
917                 return 1;
918
919         if (msr == MSR_MTRRdefType) {
920                 vcpu->arch.mtrr_state.def_type = data;
921                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
922         } else if (msr == MSR_MTRRfix64K_00000)
923                 p[0] = data;
924         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
925                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
926         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
927                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
928         else if (msr == MSR_IA32_CR_PAT)
929                 vcpu->arch.pat = data;
930         else {  /* Variable MTRRs */
931                 int idx, is_mtrr_mask;
932                 u64 *pt;
933
934                 idx = (msr - 0x200) / 2;
935                 is_mtrr_mask = msr - 0x200 - 2 * idx;
936                 if (!is_mtrr_mask)
937                         pt =
938                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
939                 else
940                         pt =
941                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
942                 *pt = data;
943         }
944
945         kvm_mmu_reset_context(vcpu);
946         return 0;
947 }
948
949 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
950 {
951         u64 mcg_cap = vcpu->arch.mcg_cap;
952         unsigned bank_num = mcg_cap & 0xff;
953
954         switch (msr) {
955         case MSR_IA32_MCG_STATUS:
956                 vcpu->arch.mcg_status = data;
957                 break;
958         case MSR_IA32_MCG_CTL:
959                 if (!(mcg_cap & MCG_CTL_P))
960                         return 1;
961                 if (data != 0 && data != ~(u64)0)
962                         return -1;
963                 vcpu->arch.mcg_ctl = data;
964                 break;
965         default:
966                 if (msr >= MSR_IA32_MC0_CTL &&
967                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
968                         u32 offset = msr - MSR_IA32_MC0_CTL;
969                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
970                         if ((offset & 0x3) == 0 &&
971                             data != 0 && data != ~(u64)0)
972                                 return -1;
973                         vcpu->arch.mce_banks[offset] = data;
974                         break;
975                 }
976                 return 1;
977         }
978         return 0;
979 }
980
981 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
982 {
983         struct kvm *kvm = vcpu->kvm;
984         int lm = is_long_mode(vcpu);
985         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
986                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
987         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
988                 : kvm->arch.xen_hvm_config.blob_size_32;
989         u32 page_num = data & ~PAGE_MASK;
990         u64 page_addr = data & PAGE_MASK;
991         u8 *page;
992         int r;
993
994         r = -E2BIG;
995         if (page_num >= blob_size)
996                 goto out;
997         r = -ENOMEM;
998         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
999         if (!page)
1000                 goto out;
1001         r = -EFAULT;
1002         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1003                 goto out_free;
1004         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1005                 goto out_free;
1006         r = 0;
1007 out_free:
1008         kfree(page);
1009 out:
1010         return r;
1011 }
1012
1013 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1014 {
1015         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1016 }
1017
1018 static bool kvm_hv_msr_partition_wide(u32 msr)
1019 {
1020         bool r = false;
1021         switch (msr) {
1022         case HV_X64_MSR_GUEST_OS_ID:
1023         case HV_X64_MSR_HYPERCALL:
1024                 r = true;
1025                 break;
1026         }
1027
1028         return r;
1029 }
1030
1031 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1032 {
1033         struct kvm *kvm = vcpu->kvm;
1034
1035         switch (msr) {
1036         case HV_X64_MSR_GUEST_OS_ID:
1037                 kvm->arch.hv_guest_os_id = data;
1038                 /* setting guest os id to zero disables hypercall page */
1039                 if (!kvm->arch.hv_guest_os_id)
1040                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1041                 break;
1042         case HV_X64_MSR_HYPERCALL: {
1043                 u64 gfn;
1044                 unsigned long addr;
1045                 u8 instructions[4];
1046
1047                 /* if guest os id is not set hypercall should remain disabled */
1048                 if (!kvm->arch.hv_guest_os_id)
1049                         break;
1050                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1051                         kvm->arch.hv_hypercall = data;
1052                         break;
1053                 }
1054                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1055                 addr = gfn_to_hva(kvm, gfn);
1056                 if (kvm_is_error_hva(addr))
1057                         return 1;
1058                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1059                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1060                 if (copy_to_user((void __user *)addr, instructions, 4))
1061                         return 1;
1062                 kvm->arch.hv_hypercall = data;
1063                 break;
1064         }
1065         default:
1066                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1067                           "data 0x%llx\n", msr, data);
1068                 return 1;
1069         }
1070         return 0;
1071 }
1072
1073 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1074 {
1075         switch (msr) {
1076         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1077                 unsigned long addr;
1078
1079                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1080                         vcpu->arch.hv_vapic = data;
1081                         break;
1082                 }
1083                 addr = gfn_to_hva(vcpu->kvm, data >>
1084                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1085                 if (kvm_is_error_hva(addr))
1086                         return 1;
1087                 if (clear_user((void __user *)addr, PAGE_SIZE))
1088                         return 1;
1089                 vcpu->arch.hv_vapic = data;
1090                 break;
1091         }
1092         case HV_X64_MSR_EOI:
1093                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1094         case HV_X64_MSR_ICR:
1095                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1096         case HV_X64_MSR_TPR:
1097                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1098         default:
1099                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1100                           "data 0x%llx\n", msr, data);
1101                 return 1;
1102         }
1103
1104         return 0;
1105 }
1106
1107 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1108 {
1109         switch (msr) {
1110         case MSR_EFER:
1111                 set_efer(vcpu, data);
1112                 break;
1113         case MSR_K7_HWCR:
1114                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1115                 if (data != 0) {
1116                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1117                                 data);
1118                         return 1;
1119                 }
1120                 break;
1121         case MSR_FAM10H_MMIO_CONF_BASE:
1122                 if (data != 0) {
1123                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1124                                 "0x%llx\n", data);
1125                         return 1;
1126                 }
1127                 break;
1128         case MSR_AMD64_NB_CFG:
1129                 break;
1130         case MSR_IA32_DEBUGCTLMSR:
1131                 if (!data) {
1132                         /* We support the non-activated case already */
1133                         break;
1134                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1135                         /* Values other than LBR and BTF are vendor-specific,
1136                            thus reserved and should throw a #GP */
1137                         return 1;
1138                 }
1139                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1140                         __func__, data);
1141                 break;
1142         case MSR_IA32_UCODE_REV:
1143         case MSR_IA32_UCODE_WRITE:
1144         case MSR_VM_HSAVE_PA:
1145         case MSR_AMD64_PATCH_LOADER:
1146                 break;
1147         case 0x200 ... 0x2ff:
1148                 return set_msr_mtrr(vcpu, msr, data);
1149         case MSR_IA32_APICBASE:
1150                 kvm_set_apic_base(vcpu, data);
1151                 break;
1152         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1153                 return kvm_x2apic_msr_write(vcpu, msr, data);
1154         case MSR_IA32_MISC_ENABLE:
1155                 vcpu->arch.ia32_misc_enable_msr = data;
1156                 break;
1157         case MSR_KVM_WALL_CLOCK:
1158                 vcpu->kvm->arch.wall_clock = data;
1159                 kvm_write_wall_clock(vcpu->kvm, data);
1160                 break;
1161         case MSR_KVM_SYSTEM_TIME: {
1162                 if (vcpu->arch.time_page) {
1163                         kvm_release_page_dirty(vcpu->arch.time_page);
1164                         vcpu->arch.time_page = NULL;
1165                 }
1166
1167                 vcpu->arch.time = data;
1168
1169                 /* we verify if the enable bit is set... */
1170                 if (!(data & 1))
1171                         break;
1172
1173                 /* ...but clean it before doing the actual write */
1174                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1175
1176                 vcpu->arch.time_page =
1177                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1178
1179                 if (is_error_page(vcpu->arch.time_page)) {
1180                         kvm_release_page_clean(vcpu->arch.time_page);
1181                         vcpu->arch.time_page = NULL;
1182                 }
1183
1184                 kvm_request_guest_time_update(vcpu);
1185                 break;
1186         }
1187         case MSR_IA32_MCG_CTL:
1188         case MSR_IA32_MCG_STATUS:
1189         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1190                 return set_msr_mce(vcpu, msr, data);
1191
1192         /* Performance counters are not protected by a CPUID bit,
1193          * so we should check all of them in the generic path for the sake of
1194          * cross vendor migration.
1195          * Writing a zero into the event select MSRs disables them,
1196          * which we perfectly emulate ;-). Any other value should be at least
1197          * reported, some guests depend on them.
1198          */
1199         case MSR_P6_EVNTSEL0:
1200         case MSR_P6_EVNTSEL1:
1201         case MSR_K7_EVNTSEL0:
1202         case MSR_K7_EVNTSEL1:
1203         case MSR_K7_EVNTSEL2:
1204         case MSR_K7_EVNTSEL3:
1205                 if (data != 0)
1206                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1207                                 "0x%x data 0x%llx\n", msr, data);
1208                 break;
1209         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1210          * so we ignore writes to make it happy.
1211          */
1212         case MSR_P6_PERFCTR0:
1213         case MSR_P6_PERFCTR1:
1214         case MSR_K7_PERFCTR0:
1215         case MSR_K7_PERFCTR1:
1216         case MSR_K7_PERFCTR2:
1217         case MSR_K7_PERFCTR3:
1218                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1219                         "0x%x data 0x%llx\n", msr, data);
1220                 break;
1221         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1222                 if (kvm_hv_msr_partition_wide(msr)) {
1223                         int r;
1224                         mutex_lock(&vcpu->kvm->lock);
1225                         r = set_msr_hyperv_pw(vcpu, msr, data);
1226                         mutex_unlock(&vcpu->kvm->lock);
1227                         return r;
1228                 } else
1229                         return set_msr_hyperv(vcpu, msr, data);
1230                 break;
1231         default:
1232                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1233                         return xen_hvm_config(vcpu, data);
1234                 if (!ignore_msrs) {
1235                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1236                                 msr, data);
1237                         return 1;
1238                 } else {
1239                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1240                                 msr, data);
1241                         break;
1242                 }
1243         }
1244         return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1247
1248
1249 /*
1250  * Reads an msr value (of 'msr_index') into 'pdata'.
1251  * Returns 0 on success, non-0 otherwise.
1252  * Assumes vcpu_load() was already called.
1253  */
1254 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1255 {
1256         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1257 }
1258
1259 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1260 {
1261         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1262
1263         if (!msr_mtrr_valid(msr))
1264                 return 1;
1265
1266         if (msr == MSR_MTRRdefType)
1267                 *pdata = vcpu->arch.mtrr_state.def_type +
1268                          (vcpu->arch.mtrr_state.enabled << 10);
1269         else if (msr == MSR_MTRRfix64K_00000)
1270                 *pdata = p[0];
1271         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1272                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1273         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1274                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1275         else if (msr == MSR_IA32_CR_PAT)
1276                 *pdata = vcpu->arch.pat;
1277         else {  /* Variable MTRRs */
1278                 int idx, is_mtrr_mask;
1279                 u64 *pt;
1280
1281                 idx = (msr - 0x200) / 2;
1282                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1283                 if (!is_mtrr_mask)
1284                         pt =
1285                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1286                 else
1287                         pt =
1288                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1289                 *pdata = *pt;
1290         }
1291
1292         return 0;
1293 }
1294
1295 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1296 {
1297         u64 data;
1298         u64 mcg_cap = vcpu->arch.mcg_cap;
1299         unsigned bank_num = mcg_cap & 0xff;
1300
1301         switch (msr) {
1302         case MSR_IA32_P5_MC_ADDR:
1303         case MSR_IA32_P5_MC_TYPE:
1304                 data = 0;
1305                 break;
1306         case MSR_IA32_MCG_CAP:
1307                 data = vcpu->arch.mcg_cap;
1308                 break;
1309         case MSR_IA32_MCG_CTL:
1310                 if (!(mcg_cap & MCG_CTL_P))
1311                         return 1;
1312                 data = vcpu->arch.mcg_ctl;
1313                 break;
1314         case MSR_IA32_MCG_STATUS:
1315                 data = vcpu->arch.mcg_status;
1316                 break;
1317         default:
1318                 if (msr >= MSR_IA32_MC0_CTL &&
1319                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1320                         u32 offset = msr - MSR_IA32_MC0_CTL;
1321                         data = vcpu->arch.mce_banks[offset];
1322                         break;
1323                 }
1324                 return 1;
1325         }
1326         *pdata = data;
1327         return 0;
1328 }
1329
1330 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1331 {
1332         u64 data = 0;
1333         struct kvm *kvm = vcpu->kvm;
1334
1335         switch (msr) {
1336         case HV_X64_MSR_GUEST_OS_ID:
1337                 data = kvm->arch.hv_guest_os_id;
1338                 break;
1339         case HV_X64_MSR_HYPERCALL:
1340                 data = kvm->arch.hv_hypercall;
1341                 break;
1342         default:
1343                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1344                 return 1;
1345         }
1346
1347         *pdata = data;
1348         return 0;
1349 }
1350
1351 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1352 {
1353         u64 data = 0;
1354
1355         switch (msr) {
1356         case HV_X64_MSR_VP_INDEX: {
1357                 int r;
1358                 struct kvm_vcpu *v;
1359                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1360                         if (v == vcpu)
1361                                 data = r;
1362                 break;
1363         }
1364         case HV_X64_MSR_EOI:
1365                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1366         case HV_X64_MSR_ICR:
1367                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1368         case HV_X64_MSR_TPR:
1369                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1370         default:
1371                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1372                 return 1;
1373         }
1374         *pdata = data;
1375         return 0;
1376 }
1377
1378 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1379 {
1380         u64 data;
1381
1382         switch (msr) {
1383         case MSR_IA32_PLATFORM_ID:
1384         case MSR_IA32_UCODE_REV:
1385         case MSR_IA32_EBL_CR_POWERON:
1386         case MSR_IA32_DEBUGCTLMSR:
1387         case MSR_IA32_LASTBRANCHFROMIP:
1388         case MSR_IA32_LASTBRANCHTOIP:
1389         case MSR_IA32_LASTINTFROMIP:
1390         case MSR_IA32_LASTINTTOIP:
1391         case MSR_K8_SYSCFG:
1392         case MSR_K7_HWCR:
1393         case MSR_VM_HSAVE_PA:
1394         case MSR_P6_PERFCTR0:
1395         case MSR_P6_PERFCTR1:
1396         case MSR_P6_EVNTSEL0:
1397         case MSR_P6_EVNTSEL1:
1398         case MSR_K7_EVNTSEL0:
1399         case MSR_K7_PERFCTR0:
1400         case MSR_K8_INT_PENDING_MSG:
1401         case MSR_AMD64_NB_CFG:
1402         case MSR_FAM10H_MMIO_CONF_BASE:
1403                 data = 0;
1404                 break;
1405         case MSR_MTRRcap:
1406                 data = 0x500 | KVM_NR_VAR_MTRR;
1407                 break;
1408         case 0x200 ... 0x2ff:
1409                 return get_msr_mtrr(vcpu, msr, pdata);
1410         case 0xcd: /* fsb frequency */
1411                 data = 3;
1412                 break;
1413         case MSR_IA32_APICBASE:
1414                 data = kvm_get_apic_base(vcpu);
1415                 break;
1416         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1417                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1418                 break;
1419         case MSR_IA32_MISC_ENABLE:
1420                 data = vcpu->arch.ia32_misc_enable_msr;
1421                 break;
1422         case MSR_IA32_PERF_STATUS:
1423                 /* TSC increment by tick */
1424                 data = 1000ULL;
1425                 /* CPU multiplier */
1426                 data |= (((uint64_t)4ULL) << 40);
1427                 break;
1428         case MSR_EFER:
1429                 data = vcpu->arch.efer;
1430                 break;
1431         case MSR_KVM_WALL_CLOCK:
1432                 data = vcpu->kvm->arch.wall_clock;
1433                 break;
1434         case MSR_KVM_SYSTEM_TIME:
1435                 data = vcpu->arch.time;
1436                 break;
1437         case MSR_IA32_P5_MC_ADDR:
1438         case MSR_IA32_P5_MC_TYPE:
1439         case MSR_IA32_MCG_CAP:
1440         case MSR_IA32_MCG_CTL:
1441         case MSR_IA32_MCG_STATUS:
1442         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1443                 return get_msr_mce(vcpu, msr, pdata);
1444         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1445                 if (kvm_hv_msr_partition_wide(msr)) {
1446                         int r;
1447                         mutex_lock(&vcpu->kvm->lock);
1448                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1449                         mutex_unlock(&vcpu->kvm->lock);
1450                         return r;
1451                 } else
1452                         return get_msr_hyperv(vcpu, msr, pdata);
1453                 break;
1454         default:
1455                 if (!ignore_msrs) {
1456                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1457                         return 1;
1458                 } else {
1459                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1460                         data = 0;
1461                 }
1462                 break;
1463         }
1464         *pdata = data;
1465         return 0;
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1468
1469 /*
1470  * Read or write a bunch of msrs. All parameters are kernel addresses.
1471  *
1472  * @return number of msrs set successfully.
1473  */
1474 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1475                     struct kvm_msr_entry *entries,
1476                     int (*do_msr)(struct kvm_vcpu *vcpu,
1477                                   unsigned index, u64 *data))
1478 {
1479         int i, idx;
1480
1481         vcpu_load(vcpu);
1482
1483         idx = srcu_read_lock(&vcpu->kvm->srcu);
1484         for (i = 0; i < msrs->nmsrs; ++i)
1485                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1486                         break;
1487         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1488
1489         vcpu_put(vcpu);
1490
1491         return i;
1492 }
1493
1494 /*
1495  * Read or write a bunch of msrs. Parameters are user addresses.
1496  *
1497  * @return number of msrs set successfully.
1498  */
1499 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1500                   int (*do_msr)(struct kvm_vcpu *vcpu,
1501                                 unsigned index, u64 *data),
1502                   int writeback)
1503 {
1504         struct kvm_msrs msrs;
1505         struct kvm_msr_entry *entries;
1506         int r, n;
1507         unsigned size;
1508
1509         r = -EFAULT;
1510         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1511                 goto out;
1512
1513         r = -E2BIG;
1514         if (msrs.nmsrs >= MAX_IO_MSRS)
1515                 goto out;
1516
1517         r = -ENOMEM;
1518         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1519         entries = vmalloc(size);
1520         if (!entries)
1521                 goto out;
1522
1523         r = -EFAULT;
1524         if (copy_from_user(entries, user_msrs->entries, size))
1525                 goto out_free;
1526
1527         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1528         if (r < 0)
1529                 goto out_free;
1530
1531         r = -EFAULT;
1532         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1533                 goto out_free;
1534
1535         r = n;
1536
1537 out_free:
1538         vfree(entries);
1539 out:
1540         return r;
1541 }
1542
1543 int kvm_dev_ioctl_check_extension(long ext)
1544 {
1545         int r;
1546
1547         switch (ext) {
1548         case KVM_CAP_IRQCHIP:
1549         case KVM_CAP_HLT:
1550         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1551         case KVM_CAP_SET_TSS_ADDR:
1552         case KVM_CAP_EXT_CPUID:
1553         case KVM_CAP_CLOCKSOURCE:
1554         case KVM_CAP_PIT:
1555         case KVM_CAP_NOP_IO_DELAY:
1556         case KVM_CAP_MP_STATE:
1557         case KVM_CAP_SYNC_MMU:
1558         case KVM_CAP_REINJECT_CONTROL:
1559         case KVM_CAP_IRQ_INJECT_STATUS:
1560         case KVM_CAP_ASSIGN_DEV_IRQ:
1561         case KVM_CAP_IRQFD:
1562         case KVM_CAP_IOEVENTFD:
1563         case KVM_CAP_PIT2:
1564         case KVM_CAP_PIT_STATE2:
1565         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1566         case KVM_CAP_XEN_HVM:
1567         case KVM_CAP_ADJUST_CLOCK:
1568         case KVM_CAP_VCPU_EVENTS:
1569         case KVM_CAP_HYPERV:
1570         case KVM_CAP_HYPERV_VAPIC:
1571         case KVM_CAP_HYPERV_SPIN:
1572         case KVM_CAP_PCI_SEGMENT:
1573         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1574                 r = 1;
1575                 break;
1576         case KVM_CAP_COALESCED_MMIO:
1577                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1578                 break;
1579         case KVM_CAP_VAPIC:
1580                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1581                 break;
1582         case KVM_CAP_NR_VCPUS:
1583                 r = KVM_MAX_VCPUS;
1584                 break;
1585         case KVM_CAP_NR_MEMSLOTS:
1586                 r = KVM_MEMORY_SLOTS;
1587                 break;
1588         case KVM_CAP_PV_MMU:    /* obsolete */
1589                 r = 0;
1590                 break;
1591         case KVM_CAP_IOMMU:
1592                 r = iommu_found();
1593                 break;
1594         case KVM_CAP_MCE:
1595                 r = KVM_MAX_MCE_BANKS;
1596                 break;
1597         default:
1598                 r = 0;
1599                 break;
1600         }
1601         return r;
1602
1603 }
1604
1605 long kvm_arch_dev_ioctl(struct file *filp,
1606                         unsigned int ioctl, unsigned long arg)
1607 {
1608         void __user *argp = (void __user *)arg;
1609         long r;
1610
1611         switch (ioctl) {
1612         case KVM_GET_MSR_INDEX_LIST: {
1613                 struct kvm_msr_list __user *user_msr_list = argp;
1614                 struct kvm_msr_list msr_list;
1615                 unsigned n;
1616
1617                 r = -EFAULT;
1618                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1619                         goto out;
1620                 n = msr_list.nmsrs;
1621                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1622                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1623                         goto out;
1624                 r = -E2BIG;
1625                 if (n < msr_list.nmsrs)
1626                         goto out;
1627                 r = -EFAULT;
1628                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1629                                  num_msrs_to_save * sizeof(u32)))
1630                         goto out;
1631                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1632                                  &emulated_msrs,
1633                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1634                         goto out;
1635                 r = 0;
1636                 break;
1637         }
1638         case KVM_GET_SUPPORTED_CPUID: {
1639                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1640                 struct kvm_cpuid2 cpuid;
1641
1642                 r = -EFAULT;
1643                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1644                         goto out;
1645                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1646                                                       cpuid_arg->entries);
1647                 if (r)
1648                         goto out;
1649
1650                 r = -EFAULT;
1651                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1652                         goto out;
1653                 r = 0;
1654                 break;
1655         }
1656         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1657                 u64 mce_cap;
1658
1659                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1660                 r = -EFAULT;
1661                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1662                         goto out;
1663                 r = 0;
1664                 break;
1665         }
1666         default:
1667                 r = -EINVAL;
1668         }
1669 out:
1670         return r;
1671 }
1672
1673 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1674 {
1675         kvm_x86_ops->vcpu_load(vcpu, cpu);
1676         if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1677                 unsigned long khz = cpufreq_quick_get(cpu);
1678                 if (!khz)
1679                         khz = tsc_khz;
1680                 per_cpu(cpu_tsc_khz, cpu) = khz;
1681         }
1682         kvm_request_guest_time_update(vcpu);
1683 }
1684
1685 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1686 {
1687         kvm_put_guest_fpu(vcpu);
1688         kvm_x86_ops->vcpu_put(vcpu);
1689 }
1690
1691 static int is_efer_nx(void)
1692 {
1693         unsigned long long efer = 0;
1694
1695         rdmsrl_safe(MSR_EFER, &efer);
1696         return efer & EFER_NX;
1697 }
1698
1699 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1700 {
1701         int i;
1702         struct kvm_cpuid_entry2 *e, *entry;
1703
1704         entry = NULL;
1705         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1706                 e = &vcpu->arch.cpuid_entries[i];
1707                 if (e->function == 0x80000001) {
1708                         entry = e;
1709                         break;
1710                 }
1711         }
1712         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1713                 entry->edx &= ~(1 << 20);
1714                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1715         }
1716 }
1717
1718 /* when an old userspace process fills a new kernel module */
1719 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1720                                     struct kvm_cpuid *cpuid,
1721                                     struct kvm_cpuid_entry __user *entries)
1722 {
1723         int r, i;
1724         struct kvm_cpuid_entry *cpuid_entries;
1725
1726         r = -E2BIG;
1727         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1728                 goto out;
1729         r = -ENOMEM;
1730         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1731         if (!cpuid_entries)
1732                 goto out;
1733         r = -EFAULT;
1734         if (copy_from_user(cpuid_entries, entries,
1735                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1736                 goto out_free;
1737         for (i = 0; i < cpuid->nent; i++) {
1738                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1739                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1740                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1741                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1742                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1743                 vcpu->arch.cpuid_entries[i].index = 0;
1744                 vcpu->arch.cpuid_entries[i].flags = 0;
1745                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1746                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1747                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1748         }
1749         vcpu->arch.cpuid_nent = cpuid->nent;
1750         cpuid_fix_nx_cap(vcpu);
1751         r = 0;
1752         kvm_apic_set_version(vcpu);
1753         kvm_x86_ops->cpuid_update(vcpu);
1754
1755 out_free:
1756         vfree(cpuid_entries);
1757 out:
1758         return r;
1759 }
1760
1761 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1762                                      struct kvm_cpuid2 *cpuid,
1763                                      struct kvm_cpuid_entry2 __user *entries)
1764 {
1765         int r;
1766
1767         r = -E2BIG;
1768         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1769                 goto out;
1770         r = -EFAULT;
1771         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1772                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1773                 goto out;
1774         vcpu->arch.cpuid_nent = cpuid->nent;
1775         kvm_apic_set_version(vcpu);
1776         kvm_x86_ops->cpuid_update(vcpu);
1777         return 0;
1778
1779 out:
1780         return r;
1781 }
1782
1783 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1784                                      struct kvm_cpuid2 *cpuid,
1785                                      struct kvm_cpuid_entry2 __user *entries)
1786 {
1787         int r;
1788
1789         r = -E2BIG;
1790         if (cpuid->nent < vcpu->arch.cpuid_nent)
1791                 goto out;
1792         r = -EFAULT;
1793         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1794                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1795                 goto out;
1796         return 0;
1797
1798 out:
1799         cpuid->nent = vcpu->arch.cpuid_nent;
1800         return r;
1801 }
1802
1803 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1804                            u32 index)
1805 {
1806         entry->function = function;
1807         entry->index = index;
1808         cpuid_count(entry->function, entry->index,
1809                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1810         entry->flags = 0;
1811 }
1812
1813 #define F(x) bit(X86_FEATURE_##x)
1814
1815 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1816                          u32 index, int *nent, int maxnent)
1817 {
1818         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1819 #ifdef CONFIG_X86_64
1820         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1821                                 ? F(GBPAGES) : 0;
1822         unsigned f_lm = F(LM);
1823 #else
1824         unsigned f_gbpages = 0;
1825         unsigned f_lm = 0;
1826 #endif
1827         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1828
1829         /* cpuid 1.edx */
1830         const u32 kvm_supported_word0_x86_features =
1831                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1832                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1833                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1834                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1835                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1836                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1837                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1838                 0 /* HTT, TM, Reserved, PBE */;
1839         /* cpuid 0x80000001.edx */
1840         const u32 kvm_supported_word1_x86_features =
1841                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1842                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1843                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1844                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1845                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1846                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1847                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1848                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1849         /* cpuid 1.ecx */
1850         const u32 kvm_supported_word4_x86_features =
1851                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1852                 0 /* DS-CPL, VMX, SMX, EST */ |
1853                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1854                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1855                 0 /* Reserved, DCA */ | F(XMM4_1) |
1856                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1857                 0 /* Reserved, XSAVE, OSXSAVE */;
1858         /* cpuid 0x80000001.ecx */
1859         const u32 kvm_supported_word6_x86_features =
1860                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1861                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1862                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1863                 0 /* SKINIT */ | 0 /* WDT */;
1864
1865         /* all calls to cpuid_count() should be made on the same cpu */
1866         get_cpu();
1867         do_cpuid_1_ent(entry, function, index);
1868         ++*nent;
1869
1870         switch (function) {
1871         case 0:
1872                 entry->eax = min(entry->eax, (u32)0xb);
1873                 break;
1874         case 1:
1875                 entry->edx &= kvm_supported_word0_x86_features;
1876                 entry->ecx &= kvm_supported_word4_x86_features;
1877                 /* we support x2apic emulation even if host does not support
1878                  * it since we emulate x2apic in software */
1879                 entry->ecx |= F(X2APIC);
1880                 break;
1881         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1882          * may return different values. This forces us to get_cpu() before
1883          * issuing the first command, and also to emulate this annoying behavior
1884          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1885         case 2: {
1886                 int t, times = entry->eax & 0xff;
1887
1888                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1889                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1890                 for (t = 1; t < times && *nent < maxnent; ++t) {
1891                         do_cpuid_1_ent(&entry[t], function, 0);
1892                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1893                         ++*nent;
1894                 }
1895                 break;
1896         }
1897         /* function 4 and 0xb have additional index. */
1898         case 4: {
1899                 int i, cache_type;
1900
1901                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1902                 /* read more entries until cache_type is zero */
1903                 for (i = 1; *nent < maxnent; ++i) {
1904                         cache_type = entry[i - 1].eax & 0x1f;
1905                         if (!cache_type)
1906                                 break;
1907                         do_cpuid_1_ent(&entry[i], function, i);
1908                         entry[i].flags |=
1909                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1910                         ++*nent;
1911                 }
1912                 break;
1913         }
1914         case 0xb: {
1915                 int i, level_type;
1916
1917                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1918                 /* read more entries until level_type is zero */
1919                 for (i = 1; *nent < maxnent; ++i) {
1920                         level_type = entry[i - 1].ecx & 0xff00;
1921                         if (!level_type)
1922                                 break;
1923                         do_cpuid_1_ent(&entry[i], function, i);
1924                         entry[i].flags |=
1925                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1926                         ++*nent;
1927                 }
1928                 break;
1929         }
1930         case 0x80000000:
1931                 entry->eax = min(entry->eax, 0x8000001a);
1932                 break;
1933         case 0x80000001:
1934                 entry->edx &= kvm_supported_word1_x86_features;
1935                 entry->ecx &= kvm_supported_word6_x86_features;
1936                 break;
1937         }
1938         put_cpu();
1939 }
1940
1941 #undef F
1942
1943 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1944                                      struct kvm_cpuid_entry2 __user *entries)
1945 {
1946         struct kvm_cpuid_entry2 *cpuid_entries;
1947         int limit, nent = 0, r = -E2BIG;
1948         u32 func;
1949
1950         if (cpuid->nent < 1)
1951                 goto out;
1952         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1953                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1954         r = -ENOMEM;
1955         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1956         if (!cpuid_entries)
1957                 goto out;
1958
1959         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1960         limit = cpuid_entries[0].eax;
1961         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1962                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1963                              &nent, cpuid->nent);
1964         r = -E2BIG;
1965         if (nent >= cpuid->nent)
1966                 goto out_free;
1967
1968         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1969         limit = cpuid_entries[nent - 1].eax;
1970         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1971                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1972                              &nent, cpuid->nent);
1973         r = -E2BIG;
1974         if (nent >= cpuid->nent)
1975                 goto out_free;
1976
1977         r = -EFAULT;
1978         if (copy_to_user(entries, cpuid_entries,
1979                          nent * sizeof(struct kvm_cpuid_entry2)))
1980                 goto out_free;
1981         cpuid->nent = nent;
1982         r = 0;
1983
1984 out_free:
1985         vfree(cpuid_entries);
1986 out:
1987         return r;
1988 }
1989
1990 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1991                                     struct kvm_lapic_state *s)
1992 {
1993         vcpu_load(vcpu);
1994         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1995         vcpu_put(vcpu);
1996
1997         return 0;
1998 }
1999
2000 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2001                                     struct kvm_lapic_state *s)
2002 {
2003         vcpu_load(vcpu);
2004         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2005         kvm_apic_post_state_restore(vcpu);
2006         update_cr8_intercept(vcpu);
2007         vcpu_put(vcpu);
2008
2009         return 0;
2010 }
2011
2012 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2013                                     struct kvm_interrupt *irq)
2014 {
2015         if (irq->irq < 0 || irq->irq >= 256)
2016                 return -EINVAL;
2017         if (irqchip_in_kernel(vcpu->kvm))
2018                 return -ENXIO;
2019         vcpu_load(vcpu);
2020
2021         kvm_queue_interrupt(vcpu, irq->irq, false);
2022
2023         vcpu_put(vcpu);
2024
2025         return 0;
2026 }
2027
2028 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2029 {
2030         vcpu_load(vcpu);
2031         kvm_inject_nmi(vcpu);
2032         vcpu_put(vcpu);
2033
2034         return 0;
2035 }
2036
2037 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2038                                            struct kvm_tpr_access_ctl *tac)
2039 {
2040         if (tac->flags)
2041                 return -EINVAL;
2042         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2043         return 0;
2044 }
2045
2046 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2047                                         u64 mcg_cap)
2048 {
2049         int r;
2050         unsigned bank_num = mcg_cap & 0xff, bank;
2051
2052         r = -EINVAL;
2053         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2054                 goto out;
2055         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2056                 goto out;
2057         r = 0;
2058         vcpu->arch.mcg_cap = mcg_cap;
2059         /* Init IA32_MCG_CTL to all 1s */
2060         if (mcg_cap & MCG_CTL_P)
2061                 vcpu->arch.mcg_ctl = ~(u64)0;
2062         /* Init IA32_MCi_CTL to all 1s */
2063         for (bank = 0; bank < bank_num; bank++)
2064                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2065 out:
2066         return r;
2067 }
2068
2069 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2070                                       struct kvm_x86_mce *mce)
2071 {
2072         u64 mcg_cap = vcpu->arch.mcg_cap;
2073         unsigned bank_num = mcg_cap & 0xff;
2074         u64 *banks = vcpu->arch.mce_banks;
2075
2076         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2077                 return -EINVAL;
2078         /*
2079          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2080          * reporting is disabled
2081          */
2082         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2083             vcpu->arch.mcg_ctl != ~(u64)0)
2084                 return 0;
2085         banks += 4 * mce->bank;
2086         /*
2087          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2088          * reporting is disabled for the bank
2089          */
2090         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2091                 return 0;
2092         if (mce->status & MCI_STATUS_UC) {
2093                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2094                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2095                         printk(KERN_DEBUG "kvm: set_mce: "
2096                                "injects mce exception while "
2097                                "previous one is in progress!\n");
2098                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2099                         return 0;
2100                 }
2101                 if (banks[1] & MCI_STATUS_VAL)
2102                         mce->status |= MCI_STATUS_OVER;
2103                 banks[2] = mce->addr;
2104                 banks[3] = mce->misc;
2105                 vcpu->arch.mcg_status = mce->mcg_status;
2106                 banks[1] = mce->status;
2107                 kvm_queue_exception(vcpu, MC_VECTOR);
2108         } else if (!(banks[1] & MCI_STATUS_VAL)
2109                    || !(banks[1] & MCI_STATUS_UC)) {
2110                 if (banks[1] & MCI_STATUS_VAL)
2111                         mce->status |= MCI_STATUS_OVER;
2112                 banks[2] = mce->addr;
2113                 banks[3] = mce->misc;
2114                 banks[1] = mce->status;
2115         } else
2116                 banks[1] |= MCI_STATUS_OVER;
2117         return 0;
2118 }
2119
2120 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2121                                                struct kvm_vcpu_events *events)
2122 {
2123         vcpu_load(vcpu);
2124
2125         events->exception.injected = vcpu->arch.exception.pending;
2126         events->exception.nr = vcpu->arch.exception.nr;
2127         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2128         events->exception.error_code = vcpu->arch.exception.error_code;
2129
2130         events->interrupt.injected = vcpu->arch.interrupt.pending;
2131         events->interrupt.nr = vcpu->arch.interrupt.nr;
2132         events->interrupt.soft = vcpu->arch.interrupt.soft;
2133
2134         events->nmi.injected = vcpu->arch.nmi_injected;
2135         events->nmi.pending = vcpu->arch.nmi_pending;
2136         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2137
2138         events->sipi_vector = vcpu->arch.sipi_vector;
2139
2140         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2141                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
2142
2143         vcpu_put(vcpu);
2144 }
2145
2146 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2147                                               struct kvm_vcpu_events *events)
2148 {
2149         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2150                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
2151                 return -EINVAL;
2152
2153         vcpu_load(vcpu);
2154
2155         vcpu->arch.exception.pending = events->exception.injected;
2156         vcpu->arch.exception.nr = events->exception.nr;
2157         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2158         vcpu->arch.exception.error_code = events->exception.error_code;
2159
2160         vcpu->arch.interrupt.pending = events->interrupt.injected;
2161         vcpu->arch.interrupt.nr = events->interrupt.nr;
2162         vcpu->arch.interrupt.soft = events->interrupt.soft;
2163         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2164                 kvm_pic_clear_isr_ack(vcpu->kvm);
2165
2166         vcpu->arch.nmi_injected = events->nmi.injected;
2167         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2168                 vcpu->arch.nmi_pending = events->nmi.pending;
2169         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2170
2171         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2172                 vcpu->arch.sipi_vector = events->sipi_vector;
2173
2174         vcpu_put(vcpu);
2175
2176         return 0;
2177 }
2178
2179 long kvm_arch_vcpu_ioctl(struct file *filp,
2180                          unsigned int ioctl, unsigned long arg)
2181 {
2182         struct kvm_vcpu *vcpu = filp->private_data;
2183         void __user *argp = (void __user *)arg;
2184         int r;
2185         struct kvm_lapic_state *lapic = NULL;
2186
2187         switch (ioctl) {
2188         case KVM_GET_LAPIC: {
2189                 r = -EINVAL;
2190                 if (!vcpu->arch.apic)
2191                         goto out;
2192                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2193
2194                 r = -ENOMEM;
2195                 if (!lapic)
2196                         goto out;
2197                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2198                 if (r)
2199                         goto out;
2200                 r = -EFAULT;
2201                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2202                         goto out;
2203                 r = 0;
2204                 break;
2205         }
2206         case KVM_SET_LAPIC: {
2207                 r = -EINVAL;
2208                 if (!vcpu->arch.apic)
2209                         goto out;
2210                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2211                 r = -ENOMEM;
2212                 if (!lapic)
2213                         goto out;
2214                 r = -EFAULT;
2215                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2216                         goto out;
2217                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2218                 if (r)
2219                         goto out;
2220                 r = 0;
2221                 break;
2222         }
2223         case KVM_INTERRUPT: {
2224                 struct kvm_interrupt irq;
2225
2226                 r = -EFAULT;
2227                 if (copy_from_user(&irq, argp, sizeof irq))
2228                         goto out;
2229                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2230                 if (r)
2231                         goto out;
2232                 r = 0;
2233                 break;
2234         }
2235         case KVM_NMI: {
2236                 r = kvm_vcpu_ioctl_nmi(vcpu);
2237                 if (r)
2238                         goto out;
2239                 r = 0;
2240                 break;
2241         }
2242         case KVM_SET_CPUID: {
2243                 struct kvm_cpuid __user *cpuid_arg = argp;
2244                 struct kvm_cpuid cpuid;
2245
2246                 r = -EFAULT;
2247                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2248                         goto out;
2249                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2250                 if (r)
2251                         goto out;
2252                 break;
2253         }
2254         case KVM_SET_CPUID2: {
2255                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2256                 struct kvm_cpuid2 cpuid;
2257
2258                 r = -EFAULT;
2259                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2260                         goto out;
2261                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2262                                               cpuid_arg->entries);
2263                 if (r)
2264                         goto out;
2265                 break;
2266         }
2267         case KVM_GET_CPUID2: {
2268                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2269                 struct kvm_cpuid2 cpuid;
2270
2271                 r = -EFAULT;
2272                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2273                         goto out;
2274                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2275                                               cpuid_arg->entries);
2276                 if (r)
2277                         goto out;
2278                 r = -EFAULT;
2279                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2280                         goto out;
2281                 r = 0;
2282                 break;
2283         }
2284         case KVM_GET_MSRS:
2285                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2286                 break;
2287         case KVM_SET_MSRS:
2288                 r = msr_io(vcpu, argp, do_set_msr, 0);
2289                 break;
2290         case KVM_TPR_ACCESS_REPORTING: {
2291                 struct kvm_tpr_access_ctl tac;
2292
2293                 r = -EFAULT;
2294                 if (copy_from_user(&tac, argp, sizeof tac))
2295                         goto out;
2296                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2297                 if (r)
2298                         goto out;
2299                 r = -EFAULT;
2300                 if (copy_to_user(argp, &tac, sizeof tac))
2301                         goto out;
2302                 r = 0;
2303                 break;
2304         };
2305         case KVM_SET_VAPIC_ADDR: {
2306                 struct kvm_vapic_addr va;
2307
2308                 r = -EINVAL;
2309                 if (!irqchip_in_kernel(vcpu->kvm))
2310                         goto out;
2311                 r = -EFAULT;
2312                 if (copy_from_user(&va, argp, sizeof va))
2313                         goto out;
2314                 r = 0;
2315                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2316                 break;
2317         }
2318         case KVM_X86_SETUP_MCE: {
2319                 u64 mcg_cap;
2320
2321                 r = -EFAULT;
2322                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2323                         goto out;
2324                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2325                 break;
2326         }
2327         case KVM_X86_SET_MCE: {
2328                 struct kvm_x86_mce mce;
2329
2330                 r = -EFAULT;
2331                 if (copy_from_user(&mce, argp, sizeof mce))
2332                         goto out;
2333                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2334                 break;
2335         }
2336         case KVM_GET_VCPU_EVENTS: {
2337                 struct kvm_vcpu_events events;
2338
2339                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2340
2341                 r = -EFAULT;
2342                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2343                         break;
2344                 r = 0;
2345                 break;
2346         }
2347         case KVM_SET_VCPU_EVENTS: {
2348                 struct kvm_vcpu_events events;
2349
2350                 r = -EFAULT;
2351                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2352                         break;
2353
2354                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2355                 break;
2356         }
2357         default:
2358                 r = -EINVAL;
2359         }
2360 out:
2361         kfree(lapic);
2362         return r;
2363 }
2364
2365 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2366 {
2367         int ret;
2368
2369         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2370                 return -1;
2371         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2372         return ret;
2373 }
2374
2375 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2376                                               u64 ident_addr)
2377 {
2378         kvm->arch.ept_identity_map_addr = ident_addr;
2379         return 0;
2380 }
2381
2382 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2383                                           u32 kvm_nr_mmu_pages)
2384 {
2385         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2386                 return -EINVAL;
2387
2388         mutex_lock(&kvm->slots_lock);
2389         spin_lock(&kvm->mmu_lock);
2390
2391         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2392         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2393
2394         spin_unlock(&kvm->mmu_lock);
2395         mutex_unlock(&kvm->slots_lock);
2396         return 0;
2397 }
2398
2399 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2400 {
2401         return kvm->arch.n_alloc_mmu_pages;
2402 }
2403
2404 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2405 {
2406         int i;
2407         struct kvm_mem_alias *alias;
2408         struct kvm_mem_aliases *aliases;
2409
2410         aliases = rcu_dereference(kvm->arch.aliases);
2411
2412         for (i = 0; i < aliases->naliases; ++i) {
2413                 alias = &aliases->aliases[i];
2414                 if (alias->flags & KVM_ALIAS_INVALID)
2415                         continue;
2416                 if (gfn >= alias->base_gfn
2417                     && gfn < alias->base_gfn + alias->npages)
2418                         return alias->target_gfn + gfn - alias->base_gfn;
2419         }
2420         return gfn;
2421 }
2422
2423 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2424 {
2425         int i;
2426         struct kvm_mem_alias *alias;
2427         struct kvm_mem_aliases *aliases;
2428
2429         aliases = rcu_dereference(kvm->arch.aliases);
2430
2431         for (i = 0; i < aliases->naliases; ++i) {
2432                 alias = &aliases->aliases[i];
2433                 if (gfn >= alias->base_gfn
2434                     && gfn < alias->base_gfn + alias->npages)
2435                         return alias->target_gfn + gfn - alias->base_gfn;
2436         }
2437         return gfn;
2438 }
2439
2440 /*
2441  * Set a new alias region.  Aliases map a portion of physical memory into
2442  * another portion.  This is useful for memory windows, for example the PC
2443  * VGA region.
2444  */
2445 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2446                                          struct kvm_memory_alias *alias)
2447 {
2448         int r, n;
2449         struct kvm_mem_alias *p;
2450         struct kvm_mem_aliases *aliases, *old_aliases;
2451
2452         r = -EINVAL;
2453         /* General sanity checks */
2454         if (alias->memory_size & (PAGE_SIZE - 1))
2455                 goto out;
2456         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2457                 goto out;
2458         if (alias->slot >= KVM_ALIAS_SLOTS)
2459                 goto out;
2460         if (alias->guest_phys_addr + alias->memory_size
2461             < alias->guest_phys_addr)
2462                 goto out;
2463         if (alias->target_phys_addr + alias->memory_size
2464             < alias->target_phys_addr)
2465                 goto out;
2466
2467         r = -ENOMEM;
2468         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2469         if (!aliases)
2470                 goto out;
2471
2472         mutex_lock(&kvm->slots_lock);
2473
2474         /* invalidate any gfn reference in case of deletion/shrinking */
2475         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2476         aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2477         old_aliases = kvm->arch.aliases;
2478         rcu_assign_pointer(kvm->arch.aliases, aliases);
2479         synchronize_srcu_expedited(&kvm->srcu);
2480         kvm_mmu_zap_all(kvm);
2481         kfree(old_aliases);
2482
2483         r = -ENOMEM;
2484         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2485         if (!aliases)
2486                 goto out_unlock;
2487
2488         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2489
2490         p = &aliases->aliases[alias->slot];
2491         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2492         p->npages = alias->memory_size >> PAGE_SHIFT;
2493         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2494         p->flags &= ~(KVM_ALIAS_INVALID);
2495
2496         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2497                 if (aliases->aliases[n - 1].npages)
2498                         break;
2499         aliases->naliases = n;
2500
2501         old_aliases = kvm->arch.aliases;
2502         rcu_assign_pointer(kvm->arch.aliases, aliases);
2503         synchronize_srcu_expedited(&kvm->srcu);
2504         kfree(old_aliases);
2505         r = 0;
2506
2507 out_unlock:
2508         mutex_unlock(&kvm->slots_lock);
2509 out:
2510         return r;
2511 }
2512
2513 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2514 {
2515         int r;
2516
2517         r = 0;
2518         switch (chip->chip_id) {
2519         case KVM_IRQCHIP_PIC_MASTER:
2520                 memcpy(&chip->chip.pic,
2521                         &pic_irqchip(kvm)->pics[0],
2522                         sizeof(struct kvm_pic_state));
2523                 break;
2524         case KVM_IRQCHIP_PIC_SLAVE:
2525                 memcpy(&chip->chip.pic,
2526                         &pic_irqchip(kvm)->pics[1],
2527                         sizeof(struct kvm_pic_state));
2528                 break;
2529         case KVM_IRQCHIP_IOAPIC:
2530                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2531                 break;
2532         default:
2533                 r = -EINVAL;
2534                 break;
2535         }
2536         return r;
2537 }
2538
2539 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2540 {
2541         int r;
2542
2543         r = 0;
2544         switch (chip->chip_id) {
2545         case KVM_IRQCHIP_PIC_MASTER:
2546                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2547                 memcpy(&pic_irqchip(kvm)->pics[0],
2548                         &chip->chip.pic,
2549                         sizeof(struct kvm_pic_state));
2550                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2551                 break;
2552         case KVM_IRQCHIP_PIC_SLAVE:
2553                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2554                 memcpy(&pic_irqchip(kvm)->pics[1],
2555                         &chip->chip.pic,
2556                         sizeof(struct kvm_pic_state));
2557                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2558                 break;
2559         case KVM_IRQCHIP_IOAPIC:
2560                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2561                 break;
2562         default:
2563                 r = -EINVAL;
2564                 break;
2565         }
2566         kvm_pic_update_irq(pic_irqchip(kvm));
2567         return r;
2568 }
2569
2570 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2571 {
2572         int r = 0;
2573
2574         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2575         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2576         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2577         return r;
2578 }
2579
2580 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2581 {
2582         int r = 0;
2583
2584         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2585         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2586         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2587         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2588         return r;
2589 }
2590
2591 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2592 {
2593         int r = 0;
2594
2595         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2596         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2597                 sizeof(ps->channels));
2598         ps->flags = kvm->arch.vpit->pit_state.flags;
2599         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2600         return r;
2601 }
2602
2603 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2604 {
2605         int r = 0, start = 0;
2606         u32 prev_legacy, cur_legacy;
2607         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2608         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2609         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2610         if (!prev_legacy && cur_legacy)
2611                 start = 1;
2612         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2613                sizeof(kvm->arch.vpit->pit_state.channels));
2614         kvm->arch.vpit->pit_state.flags = ps->flags;
2615         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2616         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2617         return r;
2618 }
2619
2620 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2621                                  struct kvm_reinject_control *control)
2622 {
2623         if (!kvm->arch.vpit)
2624                 return -ENXIO;
2625         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2626         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2627         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2628         return 0;
2629 }
2630
2631 /*
2632  * Get (and clear) the dirty memory log for a memory slot.
2633  */
2634 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2635                                       struct kvm_dirty_log *log)
2636 {
2637         int r, n, i;
2638         struct kvm_memory_slot *memslot;
2639         unsigned long is_dirty = 0;
2640         unsigned long *dirty_bitmap = NULL;
2641
2642         mutex_lock(&kvm->slots_lock);
2643
2644         r = -EINVAL;
2645         if (log->slot >= KVM_MEMORY_SLOTS)
2646                 goto out;
2647
2648         memslot = &kvm->memslots->memslots[log->slot];
2649         r = -ENOENT;
2650         if (!memslot->dirty_bitmap)
2651                 goto out;
2652
2653         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2654
2655         r = -ENOMEM;
2656         dirty_bitmap = vmalloc(n);
2657         if (!dirty_bitmap)
2658                 goto out;
2659         memset(dirty_bitmap, 0, n);
2660
2661         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2662                 is_dirty = memslot->dirty_bitmap[i];
2663
2664         /* If nothing is dirty, don't bother messing with page tables. */
2665         if (is_dirty) {
2666                 struct kvm_memslots *slots, *old_slots;
2667
2668                 spin_lock(&kvm->mmu_lock);
2669                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2670                 spin_unlock(&kvm->mmu_lock);
2671
2672                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2673                 if (!slots)
2674                         goto out_free;
2675
2676                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2677                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2678
2679                 old_slots = kvm->memslots;
2680                 rcu_assign_pointer(kvm->memslots, slots);
2681                 synchronize_srcu_expedited(&kvm->srcu);
2682                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2683                 kfree(old_slots);
2684         }
2685
2686         r = 0;
2687         if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2688                 r = -EFAULT;
2689 out_free:
2690         vfree(dirty_bitmap);
2691 out:
2692         mutex_unlock(&kvm->slots_lock);
2693         return r;
2694 }
2695
2696 long kvm_arch_vm_ioctl(struct file *filp,
2697                        unsigned int ioctl, unsigned long arg)
2698 {
2699         struct kvm *kvm = filp->private_data;
2700         void __user *argp = (void __user *)arg;
2701         int r = -ENOTTY;
2702         /*
2703          * This union makes it completely explicit to gcc-3.x
2704          * that these two variables' stack usage should be
2705          * combined, not added together.
2706          */
2707         union {
2708                 struct kvm_pit_state ps;
2709                 struct kvm_pit_state2 ps2;
2710                 struct kvm_memory_alias alias;
2711                 struct kvm_pit_config pit_config;
2712         } u;
2713
2714         switch (ioctl) {
2715         case KVM_SET_TSS_ADDR:
2716                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2717                 if (r < 0)
2718                         goto out;
2719                 break;
2720         case KVM_SET_IDENTITY_MAP_ADDR: {
2721                 u64 ident_addr;
2722
2723                 r = -EFAULT;
2724                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2725                         goto out;
2726                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2727                 if (r < 0)
2728                         goto out;
2729                 break;
2730         }
2731         case KVM_SET_MEMORY_REGION: {
2732                 struct kvm_memory_region kvm_mem;
2733                 struct kvm_userspace_memory_region kvm_userspace_mem;
2734
2735                 r = -EFAULT;
2736                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2737                         goto out;
2738                 kvm_userspace_mem.slot = kvm_mem.slot;
2739                 kvm_userspace_mem.flags = kvm_mem.flags;
2740                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2741                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2742                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2743                 if (r)
2744                         goto out;
2745                 break;
2746         }
2747         case KVM_SET_NR_MMU_PAGES:
2748                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2749                 if (r)
2750                         goto out;
2751                 break;
2752         case KVM_GET_NR_MMU_PAGES:
2753                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2754                 break;
2755         case KVM_SET_MEMORY_ALIAS:
2756                 r = -EFAULT;
2757                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2758                         goto out;
2759                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2760                 if (r)
2761                         goto out;
2762                 break;
2763         case KVM_CREATE_IRQCHIP: {
2764                 struct kvm_pic *vpic;
2765
2766                 mutex_lock(&kvm->lock);
2767                 r = -EEXIST;
2768                 if (kvm->arch.vpic)
2769                         goto create_irqchip_unlock;
2770                 r = -ENOMEM;
2771                 vpic = kvm_create_pic(kvm);
2772                 if (vpic) {
2773                         r = kvm_ioapic_init(kvm);
2774                         if (r) {
2775                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
2776                                                           &vpic->dev);
2777                                 kfree(vpic);
2778                                 goto create_irqchip_unlock;
2779                         }
2780                 } else
2781                         goto create_irqchip_unlock;
2782                 smp_wmb();
2783                 kvm->arch.vpic = vpic;
2784                 smp_wmb();
2785                 r = kvm_setup_default_irq_routing(kvm);
2786                 if (r) {
2787                         mutex_lock(&kvm->irq_lock);
2788                         kvm_ioapic_destroy(kvm);
2789                         kvm_destroy_pic(kvm);
2790                         mutex_unlock(&kvm->irq_lock);
2791                 }
2792         create_irqchip_unlock:
2793                 mutex_unlock(&kvm->lock);
2794                 break;
2795         }
2796         case KVM_CREATE_PIT:
2797                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2798                 goto create_pit;
2799         case KVM_CREATE_PIT2:
2800                 r = -EFAULT;
2801                 if (copy_from_user(&u.pit_config, argp,
2802                                    sizeof(struct kvm_pit_config)))
2803                         goto out;
2804         create_pit:
2805                 mutex_lock(&kvm->slots_lock);
2806                 r = -EEXIST;
2807                 if (kvm->arch.vpit)
2808                         goto create_pit_unlock;
2809                 r = -ENOMEM;
2810                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2811                 if (kvm->arch.vpit)
2812                         r = 0;
2813         create_pit_unlock:
2814                 mutex_unlock(&kvm->slots_lock);
2815                 break;
2816         case KVM_IRQ_LINE_STATUS:
2817         case KVM_IRQ_LINE: {
2818                 struct kvm_irq_level irq_event;
2819
2820                 r = -EFAULT;
2821                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2822                         goto out;
2823                 if (irqchip_in_kernel(kvm)) {
2824                         __s32 status;
2825                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2826                                         irq_event.irq, irq_event.level);
2827                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2828                                 irq_event.status = status;
2829                                 if (copy_to_user(argp, &irq_event,
2830                                                         sizeof irq_event))
2831                                         goto out;
2832                         }
2833                         r = 0;
2834                 }
2835                 break;
2836         }
2837         case KVM_GET_IRQCHIP: {
2838                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2839                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2840
2841                 r = -ENOMEM;
2842                 if (!chip)
2843                         goto out;
2844                 r = -EFAULT;
2845                 if (copy_from_user(chip, argp, sizeof *chip))
2846                         goto get_irqchip_out;
2847                 r = -ENXIO;
2848                 if (!irqchip_in_kernel(kvm))
2849                         goto get_irqchip_out;
2850                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2851                 if (r)
2852                         goto get_irqchip_out;
2853                 r = -EFAULT;
2854                 if (copy_to_user(argp, chip, sizeof *chip))
2855                         goto get_irqchip_out;
2856                 r = 0;
2857         get_irqchip_out:
2858                 kfree(chip);
2859                 if (r)
2860                         goto out;
2861                 break;
2862         }
2863         case KVM_SET_IRQCHIP: {
2864                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2865                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2866
2867                 r = -ENOMEM;
2868                 if (!chip)
2869                         goto out;
2870                 r = -EFAULT;
2871                 if (copy_from_user(chip, argp, sizeof *chip))
2872                         goto set_irqchip_out;
2873                 r = -ENXIO;
2874                 if (!irqchip_in_kernel(kvm))
2875                         goto set_irqchip_out;
2876                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2877                 if (r)
2878                         goto set_irqchip_out;
2879                 r = 0;
2880         set_irqchip_out:
2881                 kfree(chip);
2882                 if (r)
2883                         goto out;
2884                 break;
2885         }
2886         case KVM_GET_PIT: {
2887                 r = -EFAULT;
2888                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2889                         goto out;
2890                 r = -ENXIO;
2891                 if (!kvm->arch.vpit)
2892                         goto out;
2893                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2894                 if (r)
2895                         goto out;
2896                 r = -EFAULT;
2897                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2898                         goto out;
2899                 r = 0;
2900                 break;
2901         }
2902         case KVM_SET_PIT: {
2903                 r = -EFAULT;
2904                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2905                         goto out;
2906                 r = -ENXIO;
2907                 if (!kvm->arch.vpit)
2908                         goto out;
2909                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2910                 if (r)
2911                         goto out;
2912                 r = 0;
2913                 break;
2914         }
2915         case KVM_GET_PIT2: {
2916                 r = -ENXIO;
2917                 if (!kvm->arch.vpit)
2918                         goto out;
2919                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2920                 if (r)
2921                         goto out;
2922                 r = -EFAULT;
2923                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2924                         goto out;
2925                 r = 0;
2926                 break;
2927         }
2928         case KVM_SET_PIT2: {
2929                 r = -EFAULT;
2930                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2931                         goto out;
2932                 r = -ENXIO;
2933                 if (!kvm->arch.vpit)
2934                         goto out;
2935                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2936                 if (r)
2937                         goto out;
2938                 r = 0;
2939                 break;
2940         }
2941         case KVM_REINJECT_CONTROL: {
2942                 struct kvm_reinject_control control;
2943                 r =  -EFAULT;
2944                 if (copy_from_user(&control, argp, sizeof(control)))
2945                         goto out;
2946                 r = kvm_vm_ioctl_reinject(kvm, &control);
2947                 if (r)
2948                         goto out;
2949                 r = 0;
2950                 break;
2951         }
2952         case KVM_XEN_HVM_CONFIG: {
2953                 r = -EFAULT;
2954                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2955                                    sizeof(struct kvm_xen_hvm_config)))
2956                         goto out;
2957                 r = -EINVAL;
2958                 if (kvm->arch.xen_hvm_config.flags)
2959                         goto out;
2960                 r = 0;
2961                 break;
2962         }
2963         case KVM_SET_CLOCK: {
2964                 struct timespec now;
2965                 struct kvm_clock_data user_ns;
2966                 u64 now_ns;
2967                 s64 delta;
2968
2969                 r = -EFAULT;
2970                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2971                         goto out;
2972
2973                 r = -EINVAL;
2974                 if (user_ns.flags)
2975                         goto out;
2976
2977                 r = 0;
2978                 ktime_get_ts(&now);
2979                 now_ns = timespec_to_ns(&now);
2980                 delta = user_ns.clock - now_ns;
2981                 kvm->arch.kvmclock_offset = delta;
2982                 break;
2983         }
2984         case KVM_GET_CLOCK: {
2985                 struct timespec now;
2986                 struct kvm_clock_data user_ns;
2987                 u64 now_ns;
2988
2989                 ktime_get_ts(&now);
2990                 now_ns = timespec_to_ns(&now);
2991                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2992                 user_ns.flags = 0;
2993
2994                 r = -EFAULT;
2995                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2996                         goto out;
2997                 r = 0;
2998                 break;
2999         }
3000
3001         default:
3002                 ;
3003         }
3004 out:
3005         return r;
3006 }
3007
3008 static void kvm_init_msr_list(void)
3009 {
3010         u32 dummy[2];
3011         unsigned i, j;
3012
3013         /* skip the first msrs in the list. KVM-specific */
3014         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3015                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3016                         continue;
3017                 if (j < i)
3018                         msrs_to_save[j] = msrs_to_save[i];
3019                 j++;
3020         }
3021         num_msrs_to_save = j;
3022 }
3023
3024 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3025                            const void *v)
3026 {
3027         if (vcpu->arch.apic &&
3028             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3029                 return 0;
3030
3031         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3032 }
3033
3034 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3035 {
3036         if (vcpu->arch.apic &&
3037             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3038                 return 0;
3039
3040         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3041 }
3042
3043 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3044 {
3045         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3046         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3047 }
3048
3049  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3050 {
3051         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3052         access |= PFERR_FETCH_MASK;
3053         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3054 }
3055
3056 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3057 {
3058         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3059         access |= PFERR_WRITE_MASK;
3060         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3061 }
3062
3063 /* uses this to access any guest's mapped memory without checking CPL */
3064 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3065 {
3066         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3067 }
3068
3069 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3070                                       struct kvm_vcpu *vcpu, u32 access,
3071                                       u32 *error)
3072 {
3073         void *data = val;
3074         int r = X86EMUL_CONTINUE;
3075
3076         while (bytes) {
3077                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3078                 unsigned offset = addr & (PAGE_SIZE-1);
3079                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3080                 int ret;
3081
3082                 if (gpa == UNMAPPED_GVA) {
3083                         r = X86EMUL_PROPAGATE_FAULT;
3084                         goto out;
3085                 }
3086                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3087                 if (ret < 0) {
3088                         r = X86EMUL_UNHANDLEABLE;
3089                         goto out;
3090                 }
3091
3092                 bytes -= toread;
3093                 data += toread;
3094                 addr += toread;
3095         }
3096 out:
3097         return r;
3098 }
3099
3100 /* used for instruction fetching */
3101 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3102                                 struct kvm_vcpu *vcpu, u32 *error)
3103 {
3104         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3105         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3106                                           access | PFERR_FETCH_MASK, error);
3107 }
3108
3109 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3110                                struct kvm_vcpu *vcpu, u32 *error)
3111 {
3112         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3113         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3114                                           error);
3115 }
3116
3117 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3118                                struct kvm_vcpu *vcpu, u32 *error)
3119 {
3120         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3121 }
3122
3123 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
3124                                 struct kvm_vcpu *vcpu, u32 *error)
3125 {
3126         void *data = val;
3127         int r = X86EMUL_CONTINUE;
3128
3129         while (bytes) {
3130                 gpa_t gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error);
3131                 unsigned offset = addr & (PAGE_SIZE-1);
3132                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3133                 int ret;
3134
3135                 if (gpa == UNMAPPED_GVA) {
3136                         r = X86EMUL_PROPAGATE_FAULT;
3137                         goto out;
3138                 }
3139                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3140                 if (ret < 0) {
3141                         r = X86EMUL_UNHANDLEABLE;
3142                         goto out;
3143                 }
3144
3145                 bytes -= towrite;
3146                 data += towrite;
3147                 addr += towrite;
3148         }
3149 out:
3150         return r;
3151 }
3152
3153
3154 static int emulator_read_emulated(unsigned long addr,
3155                                   void *val,
3156                                   unsigned int bytes,
3157                                   struct kvm_vcpu *vcpu)
3158 {
3159         gpa_t                 gpa;
3160         u32 error_code;
3161
3162         if (vcpu->mmio_read_completed) {
3163                 memcpy(val, vcpu->mmio_data, bytes);
3164                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3165                                vcpu->mmio_phys_addr, *(u64 *)val);
3166                 vcpu->mmio_read_completed = 0;
3167                 return X86EMUL_CONTINUE;
3168         }
3169
3170         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3171
3172         if (gpa == UNMAPPED_GVA) {
3173                 kvm_inject_page_fault(vcpu, addr, error_code);
3174                 return X86EMUL_PROPAGATE_FAULT;
3175         }
3176
3177         /* For APIC access vmexit */
3178         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3179                 goto mmio;
3180
3181         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3182                                 == X86EMUL_CONTINUE)
3183                 return X86EMUL_CONTINUE;
3184
3185 mmio:
3186         /*
3187          * Is this MMIO handled locally?
3188          */
3189         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3190                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3191                 return X86EMUL_CONTINUE;
3192         }
3193
3194         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3195
3196         vcpu->mmio_needed = 1;
3197         vcpu->mmio_phys_addr = gpa;
3198         vcpu->mmio_size = bytes;
3199         vcpu->mmio_is_write = 0;
3200
3201         return X86EMUL_UNHANDLEABLE;
3202 }
3203
3204 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3205                           const void *val, int bytes)
3206 {
3207         int ret;
3208
3209         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3210         if (ret < 0)
3211                 return 0;
3212         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3213         return 1;
3214 }
3215
3216 static int emulator_write_emulated_onepage(unsigned long addr,
3217                                            const void *val,
3218                                            unsigned int bytes,
3219                                            struct kvm_vcpu *vcpu)
3220 {
3221         gpa_t                 gpa;
3222         u32 error_code;
3223
3224         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3225
3226         if (gpa == UNMAPPED_GVA) {
3227                 kvm_inject_page_fault(vcpu, addr, error_code);
3228                 return X86EMUL_PROPAGATE_FAULT;
3229         }
3230
3231         /* For APIC access vmexit */
3232         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3233                 goto mmio;
3234
3235         if (emulator_write_phys(vcpu, gpa, val, bytes))
3236                 return X86EMUL_CONTINUE;
3237
3238 mmio:
3239         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3240         /*
3241          * Is this MMIO handled locally?
3242          */
3243         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3244                 return X86EMUL_CONTINUE;
3245
3246         vcpu->mmio_needed = 1;
3247         vcpu->mmio_phys_addr = gpa;
3248         vcpu->mmio_size = bytes;
3249         vcpu->mmio_is_write = 1;
3250         memcpy(vcpu->mmio_data, val, bytes);
3251
3252         return X86EMUL_CONTINUE;
3253 }
3254
3255 int emulator_write_emulated(unsigned long addr,
3256                                    const void *val,
3257                                    unsigned int bytes,
3258                                    struct kvm_vcpu *vcpu)
3259 {
3260         /* Crossing a page boundary? */
3261         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3262                 int rc, now;
3263
3264                 now = -addr & ~PAGE_MASK;
3265                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3266                 if (rc != X86EMUL_CONTINUE)
3267                         return rc;
3268                 addr += now;
3269                 val += now;
3270                 bytes -= now;
3271         }
3272         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3273 }
3274 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3275
3276 static int emulator_cmpxchg_emulated(unsigned long addr,
3277                                      const void *old,
3278                                      const void *new,
3279                                      unsigned int bytes,
3280                                      struct kvm_vcpu *vcpu)
3281 {
3282         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3283 #ifndef CONFIG_X86_64
3284         /* guests cmpxchg8b have to be emulated atomically */
3285         if (bytes == 8) {
3286                 gpa_t gpa;
3287                 struct page *page;
3288                 char *kaddr;
3289                 u64 val;
3290
3291                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3292
3293                 if (gpa == UNMAPPED_GVA ||
3294                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3295                         goto emul_write;
3296
3297                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3298                         goto emul_write;
3299
3300                 val = *(u64 *)new;
3301
3302                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3303
3304                 kaddr = kmap_atomic(page, KM_USER0);
3305                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
3306                 kunmap_atomic(kaddr, KM_USER0);
3307                 kvm_release_page_dirty(page);
3308         }
3309 emul_write:
3310 #endif
3311
3312         return emulator_write_emulated(addr, new, bytes, vcpu);
3313 }
3314
3315 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3316 {
3317         return kvm_x86_ops->get_segment_base(vcpu, seg);
3318 }
3319
3320 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3321 {
3322         kvm_mmu_invlpg(vcpu, address);
3323         return X86EMUL_CONTINUE;
3324 }
3325
3326 int emulate_clts(struct kvm_vcpu *vcpu)
3327 {
3328         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3329         kvm_x86_ops->fpu_activate(vcpu);
3330         return X86EMUL_CONTINUE;
3331 }
3332
3333 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3334 {
3335         return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
3336 }
3337
3338 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3339 {
3340         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3341
3342         return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
3343 }
3344
3345 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3346 {
3347         u8 opcodes[4];
3348         unsigned long rip = kvm_rip_read(vcpu);
3349         unsigned long rip_linear;
3350
3351         if (!printk_ratelimit())
3352                 return;
3353
3354         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3355
3356         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
3357
3358         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3359                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3360 }
3361 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3362
3363 static struct x86_emulate_ops emulate_ops = {
3364         .read_std            = kvm_read_guest_virt_system,
3365         .fetch               = kvm_fetch_guest_virt,
3366         .read_emulated       = emulator_read_emulated,
3367         .write_emulated      = emulator_write_emulated,
3368         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
3369 };
3370
3371 static void cache_all_regs(struct kvm_vcpu *vcpu)
3372 {
3373         kvm_register_read(vcpu, VCPU_REGS_RAX);
3374         kvm_register_read(vcpu, VCPU_REGS_RSP);
3375         kvm_register_read(vcpu, VCPU_REGS_RIP);
3376         vcpu->arch.regs_dirty = ~0;
3377 }
3378
3379 int emulate_instruction(struct kvm_vcpu *vcpu,
3380                         unsigned long cr2,
3381                         u16 error_code,
3382                         int emulation_type)
3383 {
3384         int r, shadow_mask;
3385         struct decode_cache *c;
3386         struct kvm_run *run = vcpu->run;
3387
3388         kvm_clear_exception_queue(vcpu);
3389         vcpu->arch.mmio_fault_cr2 = cr2;
3390         /*
3391          * TODO: fix emulate.c to use guest_read/write_register
3392          * instead of direct ->regs accesses, can save hundred cycles
3393          * on Intel for instructions that don't read/change RSP, for
3394          * for example.
3395          */
3396         cache_all_regs(vcpu);
3397
3398         vcpu->mmio_is_write = 0;
3399         vcpu->arch.pio.string = 0;
3400
3401         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3402                 int cs_db, cs_l;
3403                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3404
3405                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3406                 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3407                 vcpu->arch.emulate_ctxt.mode =
3408                         (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3409                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3410                         ? X86EMUL_MODE_VM86 : cs_l
3411                         ? X86EMUL_MODE_PROT64 : cs_db
3412                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3413
3414                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3415
3416                 /* Only allow emulation of specific instructions on #UD
3417                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
3418                 c = &vcpu->arch.emulate_ctxt.decode;
3419                 if (emulation_type & EMULTYPE_TRAP_UD) {
3420                         if (!c->twobyte)
3421                                 return EMULATE_FAIL;
3422                         switch (c->b) {
3423                         case 0x01: /* VMMCALL */
3424                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3425                                         return EMULATE_FAIL;
3426                                 break;
3427                         case 0x34: /* sysenter */
3428                         case 0x35: /* sysexit */
3429                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3430                                         return EMULATE_FAIL;
3431                                 break;
3432                         case 0x05: /* syscall */
3433                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3434                                         return EMULATE_FAIL;
3435                                 break;
3436                         default:
3437                                 return EMULATE_FAIL;
3438                         }
3439
3440                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3441                                 return EMULATE_FAIL;
3442                 }
3443
3444                 ++vcpu->stat.insn_emulation;
3445                 if (r)  {
3446                         ++vcpu->stat.insn_emulation_fail;
3447                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3448                                 return EMULATE_DONE;
3449                         return EMULATE_FAIL;
3450                 }
3451         }
3452
3453         if (emulation_type & EMULTYPE_SKIP) {
3454                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3455                 return EMULATE_DONE;
3456         }
3457
3458         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3459         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3460
3461         if (r == 0)
3462                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3463
3464         if (vcpu->arch.pio.string)
3465                 return EMULATE_DO_MMIO;
3466
3467         if ((r || vcpu->mmio_is_write) && run) {
3468                 run->exit_reason = KVM_EXIT_MMIO;
3469                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3470                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3471                 run->mmio.len = vcpu->mmio_size;
3472                 run->mmio.is_write = vcpu->mmio_is_write;
3473         }
3474
3475         if (r) {
3476                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3477                         return EMULATE_DONE;
3478                 if (!vcpu->mmio_needed) {
3479                         kvm_report_emulation_failure(vcpu, "mmio");
3480                         return EMULATE_FAIL;
3481                 }
3482                 return EMULATE_DO_MMIO;
3483         }
3484
3485         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3486
3487         if (vcpu->mmio_is_write) {
3488                 vcpu->mmio_needed = 0;
3489                 return EMULATE_DO_MMIO;
3490         }
3491
3492         return EMULATE_DONE;
3493 }
3494 EXPORT_SYMBOL_GPL(emulate_instruction);
3495
3496 static int pio_copy_data(struct kvm_vcpu *vcpu)
3497 {
3498         void *p = vcpu->arch.pio_data;
3499         gva_t q = vcpu->arch.pio.guest_gva;
3500         unsigned bytes;
3501         int ret;
3502         u32 error_code;
3503
3504         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3505         if (vcpu->arch.pio.in)
3506                 ret = kvm_write_guest_virt(q, p, bytes, vcpu, &error_code);
3507         else
3508                 ret = kvm_read_guest_virt(q, p, bytes, vcpu, &error_code);
3509
3510         if (ret == X86EMUL_PROPAGATE_FAULT)
3511                 kvm_inject_page_fault(vcpu, q, error_code);
3512
3513         return ret;
3514 }
3515
3516 int complete_pio(struct kvm_vcpu *vcpu)
3517 {
3518         struct kvm_pio_request *io = &vcpu->arch.pio;
3519         long delta;
3520         int r;
3521         unsigned long val;
3522
3523         if (!io->string) {
3524                 if (io->in) {
3525                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3526                         memcpy(&val, vcpu->arch.pio_data, io->size);
3527                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3528                 }
3529         } else {
3530                 if (io->in) {
3531                         r = pio_copy_data(vcpu);
3532                         if (r)
3533                                 goto out;
3534                 }
3535
3536                 delta = 1;
3537                 if (io->rep) {
3538                         delta *= io->cur_count;
3539                         /*
3540                          * The size of the register should really depend on
3541                          * current address size.
3542                          */
3543                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3544                         val -= delta;
3545                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3546                 }
3547                 if (io->down)
3548                         delta = -delta;
3549                 delta *= io->size;
3550                 if (io->in) {
3551                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3552                         val += delta;
3553                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3554                 } else {
3555                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3556                         val += delta;
3557                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3558                 }
3559         }
3560 out:
3561         io->count -= io->cur_count;
3562         io->cur_count = 0;
3563
3564         return 0;
3565 }
3566
3567 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3568 {
3569         /* TODO: String I/O for in kernel device */
3570         int r;
3571
3572         if (vcpu->arch.pio.in)
3573                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3574                                     vcpu->arch.pio.size, pd);
3575         else
3576                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3577                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3578                                      pd);
3579         return r;
3580 }
3581
3582 static int pio_string_write(struct kvm_vcpu *vcpu)
3583 {
3584         struct kvm_pio_request *io = &vcpu->arch.pio;
3585         void *pd = vcpu->arch.pio_data;
3586         int i, r = 0;
3587
3588         for (i = 0; i < io->cur_count; i++) {
3589                 if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3590                                      io->port, io->size, pd)) {
3591                         r = -EOPNOTSUPP;
3592                         break;
3593                 }
3594                 pd += io->size;
3595         }
3596         return r;
3597 }
3598
3599 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3600 {
3601         unsigned long val;
3602
3603         trace_kvm_pio(!in, port, size, 1);
3604
3605         vcpu->run->exit_reason = KVM_EXIT_IO;
3606         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3607         vcpu->run->io.size = vcpu->arch.pio.size = size;
3608         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3609         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3610         vcpu->run->io.port = vcpu->arch.pio.port = port;
3611         vcpu->arch.pio.in = in;
3612         vcpu->arch.pio.string = 0;
3613         vcpu->arch.pio.down = 0;
3614         vcpu->arch.pio.rep = 0;
3615
3616         if (!vcpu->arch.pio.in) {
3617                 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3618                 memcpy(vcpu->arch.pio_data, &val, 4);
3619         }
3620
3621         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3622                 complete_pio(vcpu);
3623                 return 1;
3624         }
3625         return 0;
3626 }
3627 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3628
3629 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3630                   int size, unsigned long count, int down,
3631                   gva_t address, int rep, unsigned port)
3632 {
3633         unsigned now, in_page;
3634         int ret = 0;
3635
3636         trace_kvm_pio(!in, port, size, count);
3637
3638         vcpu->run->exit_reason = KVM_EXIT_IO;
3639         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3640         vcpu->run->io.size = vcpu->arch.pio.size = size;
3641         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3642         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3643         vcpu->run->io.port = vcpu->arch.pio.port = port;
3644         vcpu->arch.pio.in = in;
3645         vcpu->arch.pio.string = 1;
3646         vcpu->arch.pio.down = down;
3647         vcpu->arch.pio.rep = rep;
3648
3649         if (!count) {
3650                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3651                 return 1;
3652         }
3653
3654         if (!down)
3655                 in_page = PAGE_SIZE - offset_in_page(address);
3656         else
3657                 in_page = offset_in_page(address) + size;
3658         now = min(count, (unsigned long)in_page / size);
3659         if (!now)
3660                 now = 1;
3661         if (down) {
3662                 /*
3663                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3664                  */
3665                 pr_unimpl(vcpu, "guest string pio down\n");
3666                 kvm_inject_gp(vcpu, 0);
3667                 return 1;
3668         }
3669         vcpu->run->io.count = now;
3670         vcpu->arch.pio.cur_count = now;
3671
3672         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3673                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3674
3675         vcpu->arch.pio.guest_gva = address;
3676
3677         if (!vcpu->arch.pio.in) {
3678                 /* string PIO write */
3679                 ret = pio_copy_data(vcpu);
3680                 if (ret == X86EMUL_PROPAGATE_FAULT)
3681                         return 1;
3682                 if (ret == 0 && !pio_string_write(vcpu)) {
3683                         complete_pio(vcpu);
3684                         if (vcpu->arch.pio.count == 0)
3685                                 ret = 1;
3686                 }
3687         }
3688         /* no string PIO read support yet */
3689
3690         return ret;
3691 }
3692 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3693
3694 static void bounce_off(void *info)
3695 {
3696         /* nothing */
3697 }
3698
3699 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3700                                      void *data)
3701 {
3702         struct cpufreq_freqs *freq = data;
3703         struct kvm *kvm;
3704         struct kvm_vcpu *vcpu;
3705         int i, send_ipi = 0;
3706
3707         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3708                 return 0;
3709         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3710                 return 0;
3711         per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3712
3713         spin_lock(&kvm_lock);
3714         list_for_each_entry(kvm, &vm_list, vm_list) {
3715                 kvm_for_each_vcpu(i, vcpu, kvm) {
3716                         if (vcpu->cpu != freq->cpu)
3717                                 continue;
3718                         if (!kvm_request_guest_time_update(vcpu))
3719                                 continue;
3720                         if (vcpu->cpu != smp_processor_id())
3721                                 send_ipi++;
3722                 }
3723         }
3724         spin_unlock(&kvm_lock);
3725
3726         if (freq->old < freq->new && send_ipi) {
3727                 /*
3728                  * We upscale the frequency.  Must make the guest
3729                  * doesn't see old kvmclock values while running with
3730                  * the new frequency, otherwise we risk the guest sees
3731                  * time go backwards.
3732                  *
3733                  * In case we update the frequency for another cpu
3734                  * (which might be in guest context) send an interrupt
3735                  * to kick the cpu out of guest context.  Next time
3736                  * guest context is entered kvmclock will be updated,
3737                  * so the guest will not see stale values.
3738                  */
3739                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3740         }
3741         return 0;
3742 }
3743
3744 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3745         .notifier_call  = kvmclock_cpufreq_notifier
3746 };
3747
3748 static void kvm_timer_init(void)
3749 {
3750         int cpu;
3751
3752         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3753                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3754                                           CPUFREQ_TRANSITION_NOTIFIER);
3755                 for_each_online_cpu(cpu) {
3756                         unsigned long khz = cpufreq_get(cpu);
3757                         if (!khz)
3758                                 khz = tsc_khz;
3759                         per_cpu(cpu_tsc_khz, cpu) = khz;
3760                 }
3761         } else {
3762                 for_each_possible_cpu(cpu)
3763                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3764         }
3765 }
3766
3767 int kvm_arch_init(void *opaque)
3768 {
3769         int r;
3770         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3771
3772         if (kvm_x86_ops) {
3773                 printk(KERN_ERR "kvm: already loaded the other module\n");
3774                 r = -EEXIST;
3775                 goto out;
3776         }
3777
3778         if (!ops->cpu_has_kvm_support()) {
3779                 printk(KERN_ERR "kvm: no hardware support\n");
3780                 r = -EOPNOTSUPP;
3781                 goto out;
3782         }
3783         if (ops->disabled_by_bios()) {
3784                 printk(KERN_ERR "kvm: disabled by bios\n");
3785                 r = -EOPNOTSUPP;
3786                 goto out;
3787         }
3788
3789         r = kvm_mmu_module_init();
3790         if (r)
3791                 goto out;
3792
3793         kvm_init_msr_list();
3794
3795         kvm_x86_ops = ops;
3796         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3797         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3798         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3799                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3800
3801         kvm_timer_init();
3802
3803         return 0;
3804
3805 out:
3806         return r;
3807 }
3808
3809 void kvm_arch_exit(void)
3810 {
3811         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3812                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3813                                             CPUFREQ_TRANSITION_NOTIFIER);
3814         kvm_x86_ops = NULL;
3815         kvm_mmu_module_exit();
3816 }
3817
3818 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3819 {
3820         ++vcpu->stat.halt_exits;
3821         if (irqchip_in_kernel(vcpu->kvm)) {
3822                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3823                 return 1;
3824         } else {
3825                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3826                 return 0;
3827         }
3828 }
3829 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3830
3831 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3832                            unsigned long a1)
3833 {
3834         if (is_long_mode(vcpu))
3835                 return a0;
3836         else
3837                 return a0 | ((gpa_t)a1 << 32);
3838 }
3839
3840 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
3841 {
3842         u64 param, ingpa, outgpa, ret;
3843         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
3844         bool fast, longmode;
3845         int cs_db, cs_l;
3846
3847         /*
3848          * hypercall generates UD from non zero cpl and real mode
3849          * per HYPER-V spec
3850          */
3851         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
3852                 kvm_queue_exception(vcpu, UD_VECTOR);
3853                 return 0;
3854         }
3855
3856         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3857         longmode = is_long_mode(vcpu) && cs_l == 1;
3858
3859         if (!longmode) {
3860                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
3861                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
3862                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
3863                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
3864                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
3865                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
3866         }
3867 #ifdef CONFIG_X86_64
3868         else {
3869                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
3870                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
3871                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
3872         }
3873 #endif
3874
3875         code = param & 0xffff;
3876         fast = (param >> 16) & 0x1;
3877         rep_cnt = (param >> 32) & 0xfff;
3878         rep_idx = (param >> 48) & 0xfff;
3879
3880         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
3881
3882         switch (code) {
3883         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
3884                 kvm_vcpu_on_spin(vcpu);
3885                 break;
3886         default:
3887                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
3888                 break;
3889         }
3890
3891         ret = res | (((u64)rep_done & 0xfff) << 32);
3892         if (longmode) {
3893                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3894         } else {
3895                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
3896                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
3897         }
3898
3899         return 1;
3900 }
3901
3902 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3903 {
3904         unsigned long nr, a0, a1, a2, a3, ret;
3905         int r = 1;
3906
3907         if (kvm_hv_hypercall_enabled(vcpu->kvm))
3908                 return kvm_hv_hypercall(vcpu);
3909
3910         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3911         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3912         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3913         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3914         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3915
3916         trace_kvm_hypercall(nr, a0, a1, a2, a3);
3917
3918         if (!is_long_mode(vcpu)) {
3919                 nr &= 0xFFFFFFFF;
3920                 a0 &= 0xFFFFFFFF;
3921                 a1 &= 0xFFFFFFFF;
3922                 a2 &= 0xFFFFFFFF;
3923                 a3 &= 0xFFFFFFFF;
3924         }
3925
3926         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3927                 ret = -KVM_EPERM;
3928                 goto out;
3929         }
3930
3931         switch (nr) {
3932         case KVM_HC_VAPIC_POLL_IRQ:
3933                 ret = 0;
3934                 break;
3935         case KVM_HC_MMU_OP:
3936                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3937                 break;
3938         default:
3939                 ret = -KVM_ENOSYS;
3940                 break;
3941         }
3942 out:
3943         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3944         ++vcpu->stat.hypercalls;
3945         return r;
3946 }
3947 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3948
3949 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3950 {
3951         char instruction[3];
3952         unsigned long rip = kvm_rip_read(vcpu);
3953
3954         /*
3955          * Blow out the MMU to ensure that no other VCPU has an active mapping
3956          * to ensure that the updated hypercall appears atomically across all
3957          * VCPUs.
3958          */
3959         kvm_mmu_zap_all(vcpu->kvm);
3960
3961         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3962
3963         return emulator_write_emulated(rip, instruction, 3, vcpu);
3964 }
3965
3966 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3967 {
3968         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3969 }
3970
3971 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3972 {
3973         struct descriptor_table dt = { limit, base };
3974
3975         kvm_x86_ops->set_gdt(vcpu, &dt);
3976 }
3977
3978 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3979 {
3980         struct descriptor_table dt = { limit, base };
3981
3982         kvm_x86_ops->set_idt(vcpu, &dt);
3983 }
3984
3985 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3986                    unsigned long *rflags)
3987 {
3988         kvm_lmsw(vcpu, msw);
3989         *rflags = kvm_get_rflags(vcpu);
3990 }
3991
3992 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3993 {
3994         unsigned long value;
3995
3996         switch (cr) {
3997         case 0:
3998                 value = kvm_read_cr0(vcpu);
3999                 break;
4000         case 2:
4001                 value = vcpu->arch.cr2;
4002                 break;
4003         case 3:
4004                 value = vcpu->arch.cr3;
4005                 break;
4006         case 4:
4007                 value = kvm_read_cr4(vcpu);
4008                 break;
4009         case 8:
4010                 value = kvm_get_cr8(vcpu);
4011                 break;
4012         default:
4013                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4014                 return 0;
4015         }
4016
4017         return value;
4018 }
4019
4020 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
4021                      unsigned long *rflags)
4022 {
4023         switch (cr) {
4024         case 0:
4025                 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4026                 *rflags = kvm_get_rflags(vcpu);
4027                 break;
4028         case 2:
4029                 vcpu->arch.cr2 = val;
4030                 break;
4031         case 3:
4032                 kvm_set_cr3(vcpu, val);
4033                 break;
4034         case 4:
4035                 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4036                 break;
4037         case 8:
4038                 kvm_set_cr8(vcpu, val & 0xfUL);
4039                 break;
4040         default:
4041                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4042         }
4043 }
4044
4045 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4046 {
4047         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4048         int j, nent = vcpu->arch.cpuid_nent;
4049
4050         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4051         /* when no next entry is found, the current entry[i] is reselected */
4052         for (j = i + 1; ; j = (j + 1) % nent) {
4053                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4054                 if (ej->function == e->function) {
4055                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4056                         return j;
4057                 }
4058         }
4059         return 0; /* silence gcc, even though control never reaches here */
4060 }
4061
4062 /* find an entry with matching function, matching index (if needed), and that
4063  * should be read next (if it's stateful) */
4064 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4065         u32 function, u32 index)
4066 {
4067         if (e->function != function)
4068                 return 0;
4069         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4070                 return 0;
4071         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4072             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4073                 return 0;
4074         return 1;
4075 }
4076
4077 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4078                                               u32 function, u32 index)
4079 {
4080         int i;
4081         struct kvm_cpuid_entry2 *best = NULL;
4082
4083         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4084                 struct kvm_cpuid_entry2 *e;
4085
4086                 e = &vcpu->arch.cpuid_entries[i];
4087                 if (is_matching_cpuid_entry(e, function, index)) {
4088                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4089                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4090                         best = e;
4091                         break;
4092                 }
4093                 /*
4094                  * Both basic or both extended?
4095                  */
4096                 if (((e->function ^ function) & 0x80000000) == 0)
4097                         if (!best || e->function > best->function)
4098                                 best = e;
4099         }
4100         return best;
4101 }
4102 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4103
4104 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4105 {
4106         struct kvm_cpuid_entry2 *best;
4107
4108         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4109         if (best)
4110                 return best->eax & 0xff;
4111         return 36;
4112 }
4113
4114 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4115 {
4116         u32 function, index;
4117         struct kvm_cpuid_entry2 *best;
4118
4119         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4120         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4121         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4122         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4123         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4124         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4125         best = kvm_find_cpuid_entry(vcpu, function, index);
4126         if (best) {
4127                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4128                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4129                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4130                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4131         }
4132         kvm_x86_ops->skip_emulated_instruction(vcpu);
4133         trace_kvm_cpuid(function,
4134                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4135                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4136                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4137                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4138 }
4139 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4140
4141 /*
4142  * Check if userspace requested an interrupt window, and that the
4143  * interrupt window is open.
4144  *
4145  * No need to exit to userspace if we already have an interrupt queued.
4146  */
4147 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4148 {
4149         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4150                 vcpu->run->request_interrupt_window &&
4151                 kvm_arch_interrupt_allowed(vcpu));
4152 }
4153
4154 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4155 {
4156         struct kvm_run *kvm_run = vcpu->run;
4157
4158         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4159         kvm_run->cr8 = kvm_get_cr8(vcpu);
4160         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4161         if (irqchip_in_kernel(vcpu->kvm))
4162                 kvm_run->ready_for_interrupt_injection = 1;
4163         else
4164                 kvm_run->ready_for_interrupt_injection =
4165                         kvm_arch_interrupt_allowed(vcpu) &&
4166                         !kvm_cpu_has_interrupt(vcpu) &&
4167                         !kvm_event_needs_reinjection(vcpu);
4168 }
4169
4170 static void vapic_enter(struct kvm_vcpu *vcpu)
4171 {
4172         struct kvm_lapic *apic = vcpu->arch.apic;
4173         struct page *page;
4174
4175         if (!apic || !apic->vapic_addr)
4176                 return;
4177
4178         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4179
4180         vcpu->arch.apic->vapic_page = page;
4181 }
4182
4183 static void vapic_exit(struct kvm_vcpu *vcpu)
4184 {
4185         struct kvm_lapic *apic = vcpu->arch.apic;
4186         int idx;
4187
4188         if (!apic || !apic->vapic_addr)
4189                 return;
4190
4191         idx = srcu_read_lock(&vcpu->kvm->srcu);
4192         kvm_release_page_dirty(apic->vapic_page);
4193         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4194         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4195 }
4196
4197 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4198 {
4199         int max_irr, tpr;
4200
4201         if (!kvm_x86_ops->update_cr8_intercept)
4202                 return;
4203
4204         if (!vcpu->arch.apic)
4205                 return;
4206
4207         if (!vcpu->arch.apic->vapic_addr)
4208                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4209         else
4210                 max_irr = -1;
4211
4212         if (max_irr != -1)
4213                 max_irr >>= 4;
4214
4215         tpr = kvm_lapic_get_cr8(vcpu);
4216
4217         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4218 }
4219
4220 static void inject_pending_event(struct kvm_vcpu *vcpu)
4221 {
4222         /* try to reinject previous events if any */
4223         if (vcpu->arch.exception.pending) {
4224                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4225                                           vcpu->arch.exception.has_error_code,
4226                                           vcpu->arch.exception.error_code);
4227                 return;
4228         }
4229
4230         if (vcpu->arch.nmi_injected) {
4231                 kvm_x86_ops->set_nmi(vcpu);
4232                 return;
4233         }
4234
4235         if (vcpu->arch.interrupt.pending) {
4236                 kvm_x86_ops->set_irq(vcpu);
4237                 return;
4238         }
4239
4240         /* try to inject new event if pending */
4241         if (vcpu->arch.nmi_pending) {
4242                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4243                         vcpu->arch.nmi_pending = false;
4244                         vcpu->arch.nmi_injected = true;
4245                         kvm_x86_ops->set_nmi(vcpu);
4246                 }
4247         } else if (kvm_cpu_has_interrupt(vcpu)) {
4248                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4249                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4250                                             false);
4251                         kvm_x86_ops->set_irq(vcpu);
4252                 }
4253         }
4254 }
4255
4256 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4257 {
4258         int r;
4259         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4260                 vcpu->run->request_interrupt_window;
4261
4262         if (vcpu->requests)
4263                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4264                         kvm_mmu_unload(vcpu);
4265
4266         r = kvm_mmu_reload(vcpu);
4267         if (unlikely(r))
4268                 goto out;
4269
4270         if (vcpu->requests) {
4271                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4272                         __kvm_migrate_timers(vcpu);
4273                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4274                         kvm_write_guest_time(vcpu);
4275                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4276                         kvm_mmu_sync_roots(vcpu);
4277                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4278                         kvm_x86_ops->tlb_flush(vcpu);
4279                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4280                                        &vcpu->requests)) {
4281                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4282                         r = 0;
4283                         goto out;
4284                 }
4285                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4286                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4287                         r = 0;
4288                         goto out;
4289                 }
4290                 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4291                         vcpu->fpu_active = 0;
4292                         kvm_x86_ops->fpu_deactivate(vcpu);
4293                 }
4294         }
4295
4296         preempt_disable();
4297
4298         kvm_x86_ops->prepare_guest_switch(vcpu);
4299         if (vcpu->fpu_active)
4300                 kvm_load_guest_fpu(vcpu);
4301
4302         local_irq_disable();
4303
4304         clear_bit(KVM_REQ_KICK, &vcpu->requests);
4305         smp_mb__after_clear_bit();
4306
4307         if (vcpu->requests || need_resched() || signal_pending(current)) {
4308                 set_bit(KVM_REQ_KICK, &vcpu->requests);
4309                 local_irq_enable();
4310                 preempt_enable();
4311                 r = 1;
4312                 goto out;
4313         }
4314
4315         inject_pending_event(vcpu);
4316
4317         /* enable NMI/IRQ window open exits if needed */
4318         if (vcpu->arch.nmi_pending)
4319                 kvm_x86_ops->enable_nmi_window(vcpu);
4320         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4321                 kvm_x86_ops->enable_irq_window(vcpu);
4322
4323         if (kvm_lapic_enabled(vcpu)) {
4324                 update_cr8_intercept(vcpu);
4325                 kvm_lapic_sync_to_vapic(vcpu);
4326         }
4327
4328         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4329
4330         kvm_guest_enter();
4331
4332         if (unlikely(vcpu->arch.switch_db_regs)) {
4333                 set_debugreg(0, 7);
4334                 set_debugreg(vcpu->arch.eff_db[0], 0);
4335                 set_debugreg(vcpu->arch.eff_db[1], 1);
4336                 set_debugreg(vcpu->arch.eff_db[2], 2);
4337                 set_debugreg(vcpu->arch.eff_db[3], 3);
4338         }
4339
4340         trace_kvm_entry(vcpu->vcpu_id);
4341         kvm_x86_ops->run(vcpu);
4342
4343         /*
4344          * If the guest has used debug registers, at least dr7
4345          * will be disabled while returning to the host.
4346          * If we don't have active breakpoints in the host, we don't
4347          * care about the messed up debug address registers. But if
4348          * we have some of them active, restore the old state.
4349          */
4350         if (hw_breakpoint_active())
4351                 hw_breakpoint_restore();
4352
4353         set_bit(KVM_REQ_KICK, &vcpu->requests);
4354         local_irq_enable();
4355
4356         ++vcpu->stat.exits;
4357
4358         /*
4359          * We must have an instruction between local_irq_enable() and
4360          * kvm_guest_exit(), so the timer interrupt isn't delayed by
4361          * the interrupt shadow.  The stat.exits increment will do nicely.
4362          * But we need to prevent reordering, hence this barrier():
4363          */
4364         barrier();
4365
4366         kvm_guest_exit();
4367
4368         preempt_enable();
4369
4370         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4371
4372         /*
4373          * Profile KVM exit RIPs:
4374          */
4375         if (unlikely(prof_on == KVM_PROFILING)) {
4376                 unsigned long rip = kvm_rip_read(vcpu);
4377                 profile_hit(KVM_PROFILING, (void *)rip);
4378         }
4379
4380
4381         kvm_lapic_sync_from_vapic(vcpu);
4382
4383         r = kvm_x86_ops->handle_exit(vcpu);
4384 out:
4385         return r;
4386 }
4387
4388
4389 static int __vcpu_run(struct kvm_vcpu *vcpu)
4390 {
4391         int r;
4392         struct kvm *kvm = vcpu->kvm;
4393
4394         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4395                 pr_debug("vcpu %d received sipi with vector # %x\n",
4396                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
4397                 kvm_lapic_reset(vcpu);
4398                 r = kvm_arch_vcpu_reset(vcpu);
4399                 if (r)
4400                         return r;
4401                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4402         }
4403
4404         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4405         vapic_enter(vcpu);
4406
4407         r = 1;
4408         while (r > 0) {
4409                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4410                         r = vcpu_enter_guest(vcpu);
4411                 else {
4412                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4413                         kvm_vcpu_block(vcpu);
4414                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4415                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4416                         {
4417                                 switch(vcpu->arch.mp_state) {
4418                                 case KVM_MP_STATE_HALTED:
4419                                         vcpu->arch.mp_state =
4420                                                 KVM_MP_STATE_RUNNABLE;
4421                                 case KVM_MP_STATE_RUNNABLE:
4422                                         break;
4423                                 case KVM_MP_STATE_SIPI_RECEIVED:
4424                                 default:
4425                                         r = -EINTR;
4426                                         break;
4427                                 }
4428                         }
4429                 }
4430
4431                 if (r <= 0)
4432                         break;
4433
4434                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4435                 if (kvm_cpu_has_pending_timer(vcpu))
4436                         kvm_inject_pending_timer_irqs(vcpu);
4437
4438                 if (dm_request_for_irq_injection(vcpu)) {
4439                         r = -EINTR;
4440                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4441                         ++vcpu->stat.request_irq_exits;
4442                 }
4443                 if (signal_pending(current)) {
4444                         r = -EINTR;
4445                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4446                         ++vcpu->stat.signal_exits;
4447                 }
4448                 if (need_resched()) {
4449                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4450                         kvm_resched(vcpu);
4451                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4452                 }
4453         }
4454
4455         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4456         post_kvm_run_save(vcpu);
4457
4458         vapic_exit(vcpu);
4459
4460         return r;
4461 }
4462
4463 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4464 {
4465         int r;
4466         sigset_t sigsaved;
4467
4468         vcpu_load(vcpu);
4469
4470         if (vcpu->sigset_active)
4471                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4472
4473         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4474                 kvm_vcpu_block(vcpu);
4475                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4476                 r = -EAGAIN;
4477                 goto out;
4478         }
4479
4480         /* re-sync apic's tpr */
4481         if (!irqchip_in_kernel(vcpu->kvm))
4482                 kvm_set_cr8(vcpu, kvm_run->cr8);
4483
4484         if (vcpu->arch.pio.cur_count) {
4485                 r = complete_pio(vcpu);
4486                 if (r)
4487                         goto out;
4488         }
4489         if (vcpu->mmio_needed) {
4490                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4491                 vcpu->mmio_read_completed = 1;
4492                 vcpu->mmio_needed = 0;
4493
4494                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4495                 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4496                                         EMULTYPE_NO_DECODE);
4497                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4498                 if (r == EMULATE_DO_MMIO) {
4499                         /*
4500                          * Read-modify-write.  Back to userspace.
4501                          */
4502                         r = 0;
4503                         goto out;
4504                 }
4505         }
4506         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4507                 kvm_register_write(vcpu, VCPU_REGS_RAX,
4508                                      kvm_run->hypercall.ret);
4509
4510         r = __vcpu_run(vcpu);
4511
4512 out:
4513         if (vcpu->sigset_active)
4514                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4515
4516         vcpu_put(vcpu);
4517         return r;
4518 }
4519
4520 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4521 {
4522         vcpu_load(vcpu);
4523
4524         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4525         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4526         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4527         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4528         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4529         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4530         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4531         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4532 #ifdef CONFIG_X86_64
4533         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4534         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4535         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4536         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4537         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4538         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4539         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4540         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4541 #endif
4542
4543         regs->rip = kvm_rip_read(vcpu);
4544         regs->rflags = kvm_get_rflags(vcpu);
4545
4546         vcpu_put(vcpu);
4547
4548         return 0;
4549 }
4550
4551 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4552 {
4553         vcpu_load(vcpu);
4554
4555         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4556         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4557         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4558         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4559         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4560         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4561         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4562         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4563 #ifdef CONFIG_X86_64
4564         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4565         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4566         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4567         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4568         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4569         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4570         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4571         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4572 #endif
4573
4574         kvm_rip_write(vcpu, regs->rip);
4575         kvm_set_rflags(vcpu, regs->rflags);
4576
4577         vcpu->arch.exception.pending = false;
4578
4579         vcpu_put(vcpu);
4580
4581         return 0;
4582 }
4583
4584 void kvm_get_segment(struct kvm_vcpu *vcpu,
4585                      struct kvm_segment *var, int seg)
4586 {
4587         kvm_x86_ops->get_segment(vcpu, var, seg);
4588 }
4589
4590 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4591 {
4592         struct kvm_segment cs;
4593
4594         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4595         *db = cs.db;
4596         *l = cs.l;
4597 }
4598 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4599
4600 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4601                                   struct kvm_sregs *sregs)
4602 {
4603         struct descriptor_table dt;
4604
4605         vcpu_load(vcpu);
4606
4607         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4608         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4609         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4610         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4611         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4612         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4613
4614         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4615         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4616
4617         kvm_x86_ops->get_idt(vcpu, &dt);
4618         sregs->idt.limit = dt.limit;
4619         sregs->idt.base = dt.base;
4620         kvm_x86_ops->get_gdt(vcpu, &dt);
4621         sregs->gdt.limit = dt.limit;
4622         sregs->gdt.base = dt.base;
4623
4624         sregs->cr0 = kvm_read_cr0(vcpu);
4625         sregs->cr2 = vcpu->arch.cr2;
4626         sregs->cr3 = vcpu->arch.cr3;
4627         sregs->cr4 = kvm_read_cr4(vcpu);
4628         sregs->cr8 = kvm_get_cr8(vcpu);
4629         sregs->efer = vcpu->arch.efer;
4630         sregs->apic_base = kvm_get_apic_base(vcpu);
4631
4632         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4633
4634         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4635                 set_bit(vcpu->arch.interrupt.nr,
4636                         (unsigned long *)sregs->interrupt_bitmap);
4637
4638         vcpu_put(vcpu);
4639
4640         return 0;
4641 }
4642
4643 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4644                                     struct kvm_mp_state *mp_state)
4645 {
4646         vcpu_load(vcpu);
4647         mp_state->mp_state = vcpu->arch.mp_state;
4648         vcpu_put(vcpu);
4649         return 0;
4650 }
4651
4652 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4653                                     struct kvm_mp_state *mp_state)
4654 {
4655         vcpu_load(vcpu);
4656         vcpu->arch.mp_state = mp_state->mp_state;
4657         vcpu_put(vcpu);
4658         return 0;
4659 }
4660
4661 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4662                         struct kvm_segment *var, int seg)
4663 {
4664         kvm_x86_ops->set_segment(vcpu, var, seg);
4665 }
4666
4667 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4668                                    struct kvm_segment *kvm_desct)
4669 {
4670         kvm_desct->base = get_desc_base(seg_desc);
4671         kvm_desct->limit = get_desc_limit(seg_desc);
4672         if (seg_desc->g) {
4673                 kvm_desct->limit <<= 12;
4674                 kvm_desct->limit |= 0xfff;
4675         }
4676         kvm_desct->selector = selector;
4677         kvm_desct->type = seg_desc->type;
4678         kvm_desct->present = seg_desc->p;
4679         kvm_desct->dpl = seg_desc->dpl;
4680         kvm_desct->db = seg_desc->d;
4681         kvm_desct->s = seg_desc->s;
4682         kvm_desct->l = seg_desc->l;
4683         kvm_desct->g = seg_desc->g;
4684         kvm_desct->avl = seg_desc->avl;
4685         if (!selector)
4686                 kvm_desct->unusable = 1;
4687         else
4688                 kvm_desct->unusable = 0;
4689         kvm_desct->padding = 0;
4690 }
4691
4692 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4693                                           u16 selector,
4694                                           struct descriptor_table *dtable)
4695 {
4696         if (selector & 1 << 2) {
4697                 struct kvm_segment kvm_seg;
4698
4699                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4700
4701                 if (kvm_seg.unusable)
4702                         dtable->limit = 0;
4703                 else
4704                         dtable->limit = kvm_seg.limit;
4705                 dtable->base = kvm_seg.base;
4706         }
4707         else
4708                 kvm_x86_ops->get_gdt(vcpu, dtable);
4709 }
4710
4711 /* allowed just for 8 bytes segments */
4712 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4713                                          struct desc_struct *seg_desc)
4714 {
4715         struct descriptor_table dtable;
4716         u16 index = selector >> 3;
4717         int ret;
4718         u32 err;
4719         gva_t addr;
4720
4721         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4722
4723         if (dtable.limit < index * 8 + 7) {
4724                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4725                 return X86EMUL_PROPAGATE_FAULT;
4726         }
4727         addr = dtable.base + index * 8;
4728         ret = kvm_read_guest_virt_system(addr, seg_desc, sizeof(*seg_desc),
4729                                          vcpu,  &err);
4730         if (ret == X86EMUL_PROPAGATE_FAULT)
4731                 kvm_inject_page_fault(vcpu, addr, err);
4732
4733        return ret;
4734 }
4735
4736 /* allowed just for 8 bytes segments */
4737 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4738                                          struct desc_struct *seg_desc)
4739 {
4740         struct descriptor_table dtable;
4741         u16 index = selector >> 3;
4742
4743         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4744
4745         if (dtable.limit < index * 8 + 7)
4746                 return 1;
4747         return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu, NULL);
4748 }
4749
4750 static gpa_t get_tss_base_addr_write(struct kvm_vcpu *vcpu,
4751                                struct desc_struct *seg_desc)
4752 {
4753         u32 base_addr = get_desc_base(seg_desc);
4754
4755         return kvm_mmu_gva_to_gpa_write(vcpu, base_addr, NULL);
4756 }
4757
4758 static gpa_t get_tss_base_addr_read(struct kvm_vcpu *vcpu,
4759                              struct desc_struct *seg_desc)
4760 {
4761         u32 base_addr = get_desc_base(seg_desc);
4762
4763         return kvm_mmu_gva_to_gpa_read(vcpu, base_addr, NULL);
4764 }
4765
4766 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4767 {
4768         struct kvm_segment kvm_seg;
4769
4770         kvm_get_segment(vcpu, &kvm_seg, seg);
4771         return kvm_seg.selector;
4772 }
4773
4774 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4775 {
4776         struct kvm_segment segvar = {
4777                 .base = selector << 4,
4778                 .limit = 0xffff,
4779                 .selector = selector,
4780                 .type = 3,
4781                 .present = 1,
4782                 .dpl = 3,
4783                 .db = 0,
4784                 .s = 1,
4785                 .l = 0,
4786                 .g = 0,
4787                 .avl = 0,
4788                 .unusable = 0,
4789         };
4790         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4791         return X86EMUL_CONTINUE;
4792 }
4793
4794 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4795 {
4796         return (seg != VCPU_SREG_LDTR) &&
4797                 (seg != VCPU_SREG_TR) &&
4798                 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4799 }
4800
4801 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg)
4802 {
4803         struct kvm_segment kvm_seg;
4804         struct desc_struct seg_desc;
4805         u8 dpl, rpl, cpl;
4806         unsigned err_vec = GP_VECTOR;
4807         u32 err_code = 0;
4808         bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
4809         int ret;
4810
4811         if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
4812                 return kvm_load_realmode_segment(vcpu, selector, seg);
4813
4814         /* NULL selector is not valid for TR, CS and SS */
4815         if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
4816             && null_selector)
4817                 goto exception;
4818
4819         /* TR should be in GDT only */
4820         if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
4821                 goto exception;
4822
4823         ret = load_guest_segment_descriptor(vcpu, selector, &seg_desc);
4824         if (ret)
4825                 return ret;
4826
4827         seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
4828
4829         if (null_selector) { /* for NULL selector skip all following checks */
4830                 kvm_seg.unusable = 1;
4831                 goto load;
4832         }
4833
4834         err_code = selector & 0xfffc;
4835         err_vec = GP_VECTOR;
4836
4837         /* can't load system descriptor into segment selecor */
4838         if (seg <= VCPU_SREG_GS && !kvm_seg.s)
4839                 goto exception;
4840
4841         if (!kvm_seg.present) {
4842                 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
4843                 goto exception;
4844         }
4845
4846         rpl = selector & 3;
4847         dpl = kvm_seg.dpl;
4848         cpl = kvm_x86_ops->get_cpl(vcpu);
4849
4850         switch (seg) {
4851         case VCPU_SREG_SS:
4852                 /*
4853                  * segment is not a writable data segment or segment
4854                  * selector's RPL != CPL or segment selector's RPL != CPL
4855                  */
4856                 if (rpl != cpl || (kvm_seg.type & 0xa) != 0x2 || dpl != cpl)
4857                         goto exception;
4858                 break;
4859         case VCPU_SREG_CS:
4860                 if (!(kvm_seg.type & 8))
4861                         goto exception;
4862
4863                 if (kvm_seg.type & 4) {
4864                         /* conforming */
4865                         if (dpl > cpl)
4866                                 goto exception;
4867                 } else {
4868                         /* nonconforming */
4869                         if (rpl > cpl || dpl != cpl)
4870                                 goto exception;
4871                 }
4872                 /* CS(RPL) <- CPL */
4873                 selector = (selector & 0xfffc) | cpl;
4874             break;
4875         case VCPU_SREG_TR:
4876                 if (kvm_seg.s || (kvm_seg.type != 1 && kvm_seg.type != 9))
4877                         goto exception;
4878                 break;
4879         case VCPU_SREG_LDTR:
4880                 if (kvm_seg.s || kvm_seg.type != 2)
4881                         goto exception;
4882                 break;
4883         default: /*  DS, ES, FS, or GS */
4884                 /*
4885                  * segment is not a data or readable code segment or
4886                  * ((segment is a data or nonconforming code segment)
4887                  * and (both RPL and CPL > DPL))
4888                  */
4889                 if ((kvm_seg.type & 0xa) == 0x8 ||
4890                     (((kvm_seg.type & 0xc) != 0xc) && (rpl > dpl && cpl > dpl)))
4891                         goto exception;
4892                 break;
4893         }
4894
4895         if (!kvm_seg.unusable && kvm_seg.s) {
4896                 /* mark segment as accessed */
4897                 kvm_seg.type |= 1;
4898                 seg_desc.type |= 1;
4899                 save_guest_segment_descriptor(vcpu, selector, &seg_desc);
4900         }
4901 load:
4902         kvm_set_segment(vcpu, &kvm_seg, seg);
4903         return X86EMUL_CONTINUE;
4904 exception:
4905         kvm_queue_exception_e(vcpu, err_vec, err_code);
4906         return X86EMUL_PROPAGATE_FAULT;
4907 }
4908
4909 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4910                                 struct tss_segment_32 *tss)
4911 {
4912         tss->cr3 = vcpu->arch.cr3;
4913         tss->eip = kvm_rip_read(vcpu);
4914         tss->eflags = kvm_get_rflags(vcpu);
4915         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4916         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4917         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4918         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4919         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4920         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4921         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4922         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4923         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4924         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4925         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4926         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4927         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4928         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4929         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4930 }
4931
4932 static void kvm_load_segment_selector(struct kvm_vcpu *vcpu, u16 sel, int seg)
4933 {
4934         struct kvm_segment kvm_seg;
4935         kvm_get_segment(vcpu, &kvm_seg, seg);
4936         kvm_seg.selector = sel;
4937         kvm_set_segment(vcpu, &kvm_seg, seg);
4938 }
4939
4940 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4941                                   struct tss_segment_32 *tss)
4942 {
4943         kvm_set_cr3(vcpu, tss->cr3);
4944
4945         kvm_rip_write(vcpu, tss->eip);
4946         kvm_set_rflags(vcpu, tss->eflags | 2);
4947
4948         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4949         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4950         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4951         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4952         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4953         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4954         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4955         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4956
4957         /*
4958          * SDM says that segment selectors are loaded before segment
4959          * descriptors
4960          */
4961         kvm_load_segment_selector(vcpu, tss->ldt_selector, VCPU_SREG_LDTR);
4962         kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
4963         kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
4964         kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
4965         kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
4966         kvm_load_segment_selector(vcpu, tss->fs, VCPU_SREG_FS);
4967         kvm_load_segment_selector(vcpu, tss->gs, VCPU_SREG_GS);
4968
4969         /*
4970          * Now load segment descriptors. If fault happenes at this stage
4971          * it is handled in a context of new task
4972          */
4973         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, VCPU_SREG_LDTR))
4974                 return 1;
4975
4976         if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
4977                 return 1;
4978
4979         if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
4980                 return 1;
4981
4982         if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
4983                 return 1;
4984
4985         if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
4986                 return 1;
4987
4988         if (kvm_load_segment_descriptor(vcpu, tss->fs, VCPU_SREG_FS))
4989                 return 1;
4990
4991         if (kvm_load_segment_descriptor(vcpu, tss->gs, VCPU_SREG_GS))
4992                 return 1;
4993         return 0;
4994 }
4995
4996 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4997                                 struct tss_segment_16 *tss)
4998 {
4999         tss->ip = kvm_rip_read(vcpu);
5000         tss->flag = kvm_get_rflags(vcpu);
5001         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5002         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5003         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5004         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5005         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5006         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5007         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
5008         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
5009
5010         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
5011         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
5012         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
5013         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
5014         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
5015 }
5016
5017 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
5018                                  struct tss_segment_16 *tss)
5019 {
5020         kvm_rip_write(vcpu, tss->ip);
5021         kvm_set_rflags(vcpu, tss->flag | 2);
5022         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
5023         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
5024         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
5025         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
5026         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
5027         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
5028         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
5029         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
5030
5031         /*
5032          * SDM says that segment selectors are loaded before segment
5033          * descriptors
5034          */
5035         kvm_load_segment_selector(vcpu, tss->ldt, VCPU_SREG_LDTR);
5036         kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
5037         kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
5038         kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
5039         kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
5040
5041         /*
5042          * Now load segment descriptors. If fault happenes at this stage
5043          * it is handled in a context of new task
5044          */
5045         if (kvm_load_segment_descriptor(vcpu, tss->ldt, VCPU_SREG_LDTR))
5046                 return 1;
5047
5048         if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
5049                 return 1;
5050
5051         if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
5052                 return 1;
5053
5054         if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
5055                 return 1;
5056
5057         if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
5058                 return 1;
5059         return 0;
5060 }
5061
5062 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
5063                               u16 old_tss_sel, u32 old_tss_base,
5064                               struct desc_struct *nseg_desc)
5065 {
5066         struct tss_segment_16 tss_segment_16;
5067         int ret = 0;
5068
5069         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
5070                            sizeof tss_segment_16))
5071                 goto out;
5072
5073         save_state_to_tss16(vcpu, &tss_segment_16);
5074
5075         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
5076                             sizeof tss_segment_16))
5077                 goto out;
5078
5079         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
5080                            &tss_segment_16, sizeof tss_segment_16))
5081                 goto out;
5082
5083         if (old_tss_sel != 0xffff) {
5084                 tss_segment_16.prev_task_link = old_tss_sel;
5085
5086                 if (kvm_write_guest(vcpu->kvm,
5087                                     get_tss_base_addr_write(vcpu, nseg_desc),
5088                                     &tss_segment_16.prev_task_link,
5089                                     sizeof tss_segment_16.prev_task_link))
5090                         goto out;
5091         }
5092
5093         if (load_state_from_tss16(vcpu, &tss_segment_16))
5094                 goto out;
5095
5096         ret = 1;
5097 out:
5098         return ret;
5099 }
5100
5101 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
5102                        u16 old_tss_sel, u32 old_tss_base,
5103                        struct desc_struct *nseg_desc)
5104 {
5105         struct tss_segment_32 tss_segment_32;
5106         int ret = 0;
5107
5108         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
5109                            sizeof tss_segment_32))
5110                 goto out;
5111
5112         save_state_to_tss32(vcpu, &tss_segment_32);
5113
5114         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
5115                             sizeof tss_segment_32))
5116                 goto out;
5117
5118         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
5119                            &tss_segment_32, sizeof tss_segment_32))
5120                 goto out;
5121
5122         if (old_tss_sel != 0xffff) {
5123                 tss_segment_32.prev_task_link = old_tss_sel;
5124
5125                 if (kvm_write_guest(vcpu->kvm,
5126                                     get_tss_base_addr_write(vcpu, nseg_desc),
5127                                     &tss_segment_32.prev_task_link,
5128                                     sizeof tss_segment_32.prev_task_link))
5129                         goto out;
5130         }
5131
5132         if (load_state_from_tss32(vcpu, &tss_segment_32))
5133                 goto out;
5134
5135         ret = 1;
5136 out:
5137         return ret;
5138 }
5139
5140 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
5141 {
5142         struct kvm_segment tr_seg;
5143         struct desc_struct cseg_desc;
5144         struct desc_struct nseg_desc;
5145         int ret = 0;
5146         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
5147         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
5148
5149         old_tss_base = kvm_mmu_gva_to_gpa_write(vcpu, old_tss_base, NULL);
5150
5151         /* FIXME: Handle errors. Failure to read either TSS or their
5152          * descriptors should generate a pagefault.
5153          */
5154         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
5155                 goto out;
5156
5157         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
5158                 goto out;
5159
5160         if (reason != TASK_SWITCH_IRET) {
5161                 int cpl;
5162
5163                 cpl = kvm_x86_ops->get_cpl(vcpu);
5164                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
5165                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5166                         return 1;
5167                 }
5168         }
5169
5170         if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
5171                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
5172                 return 1;
5173         }
5174
5175         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
5176                 cseg_desc.type &= ~(1 << 1); //clear the B flag
5177                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
5178         }
5179
5180         if (reason == TASK_SWITCH_IRET) {
5181                 u32 eflags = kvm_get_rflags(vcpu);
5182                 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
5183         }
5184
5185         /* set back link to prev task only if NT bit is set in eflags
5186            note that old_tss_sel is not used afetr this point */
5187         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
5188                 old_tss_sel = 0xffff;
5189
5190         if (nseg_desc.type & 8)
5191                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
5192                                          old_tss_base, &nseg_desc);
5193         else
5194                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
5195                                          old_tss_base, &nseg_desc);
5196
5197         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
5198                 u32 eflags = kvm_get_rflags(vcpu);
5199                 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
5200         }
5201
5202         if (reason != TASK_SWITCH_IRET) {
5203                 nseg_desc.type |= (1 << 1);
5204                 save_guest_segment_descriptor(vcpu, tss_selector,
5205                                               &nseg_desc);
5206         }
5207
5208         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
5209         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
5210         tr_seg.type = 11;
5211         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
5212 out:
5213         return ret;
5214 }
5215 EXPORT_SYMBOL_GPL(kvm_task_switch);
5216
5217 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5218                                   struct kvm_sregs *sregs)
5219 {
5220         int mmu_reset_needed = 0;
5221         int pending_vec, max_bits;
5222         struct descriptor_table dt;
5223
5224         vcpu_load(vcpu);
5225
5226         dt.limit = sregs->idt.limit;
5227         dt.base = sregs->idt.base;
5228         kvm_x86_ops->set_idt(vcpu, &dt);
5229         dt.limit = sregs->gdt.limit;
5230         dt.base = sregs->gdt.base;
5231         kvm_x86_ops->set_gdt(vcpu, &dt);
5232
5233         vcpu->arch.cr2 = sregs->cr2;
5234         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5235         vcpu->arch.cr3 = sregs->cr3;
5236
5237         kvm_set_cr8(vcpu, sregs->cr8);
5238
5239         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5240         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5241         kvm_set_apic_base(vcpu, sregs->apic_base);
5242
5243         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5244         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5245         vcpu->arch.cr0 = sregs->cr0;
5246
5247         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5248         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5249         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5250                 load_pdptrs(vcpu, vcpu->arch.cr3);
5251                 mmu_reset_needed = 1;
5252         }
5253
5254         if (mmu_reset_needed)
5255                 kvm_mmu_reset_context(vcpu);
5256
5257         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5258         pending_vec = find_first_bit(
5259                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5260         if (pending_vec < max_bits) {
5261                 kvm_queue_interrupt(vcpu, pending_vec, false);
5262                 pr_debug("Set back pending irq %d\n", pending_vec);
5263                 if (irqchip_in_kernel(vcpu->kvm))
5264                         kvm_pic_clear_isr_ack(vcpu->kvm);
5265         }
5266
5267         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5268         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5269         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5270         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5271         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5272         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5273
5274         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5275         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5276
5277         update_cr8_intercept(vcpu);
5278
5279         /* Older userspace won't unhalt the vcpu on reset. */
5280         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5281             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5282             !is_protmode(vcpu))
5283                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5284
5285         vcpu_put(vcpu);
5286
5287         return 0;
5288 }
5289
5290 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5291                                         struct kvm_guest_debug *dbg)
5292 {
5293         unsigned long rflags;
5294         int i, r;
5295
5296         vcpu_load(vcpu);
5297
5298         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5299                 r = -EBUSY;
5300                 if (vcpu->arch.exception.pending)
5301                         goto unlock_out;
5302                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5303                         kvm_queue_exception(vcpu, DB_VECTOR);
5304                 else
5305                         kvm_queue_exception(vcpu, BP_VECTOR);
5306         }
5307
5308         /*
5309          * Read rflags as long as potentially injected trace flags are still
5310          * filtered out.
5311          */
5312         rflags = kvm_get_rflags(vcpu);
5313
5314         vcpu->guest_debug = dbg->control;
5315         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5316                 vcpu->guest_debug = 0;
5317
5318         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5319                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5320                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5321                 vcpu->arch.switch_db_regs =
5322                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5323         } else {
5324                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5325                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5326                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5327         }
5328
5329         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5330                 vcpu->arch.singlestep_cs =
5331                         get_segment_selector(vcpu, VCPU_SREG_CS);
5332                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
5333         }
5334
5335         /*
5336          * Trigger an rflags update that will inject or remove the trace
5337          * flags.
5338          */
5339         kvm_set_rflags(vcpu, rflags);
5340
5341         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5342
5343         r = 0;
5344
5345 unlock_out:
5346         vcpu_put(vcpu);
5347
5348         return r;
5349 }
5350
5351 /*
5352  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
5353  * we have asm/x86/processor.h
5354  */
5355 struct fxsave {
5356         u16     cwd;
5357         u16     swd;
5358         u16     twd;
5359         u16     fop;
5360         u64     rip;
5361         u64     rdp;
5362         u32     mxcsr;
5363         u32     mxcsr_mask;
5364         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
5365 #ifdef CONFIG_X86_64
5366         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
5367 #else
5368         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
5369 #endif
5370 };
5371
5372 /*
5373  * Translate a guest virtual address to a guest physical address.
5374  */
5375 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5376                                     struct kvm_translation *tr)
5377 {
5378         unsigned long vaddr = tr->linear_address;
5379         gpa_t gpa;
5380         int idx;
5381
5382         vcpu_load(vcpu);
5383         idx = srcu_read_lock(&vcpu->kvm->srcu);
5384         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5385         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5386         tr->physical_address = gpa;
5387         tr->valid = gpa != UNMAPPED_GVA;
5388         tr->writeable = 1;
5389         tr->usermode = 0;
5390         vcpu_put(vcpu);
5391
5392         return 0;
5393 }
5394
5395 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5396 {
5397         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5398
5399         vcpu_load(vcpu);
5400
5401         memcpy(fpu->fpr, fxsave->st_space, 128);
5402         fpu->fcw = fxsave->cwd;
5403         fpu->fsw = fxsave->swd;
5404         fpu->ftwx = fxsave->twd;
5405         fpu->last_opcode = fxsave->fop;
5406         fpu->last_ip = fxsave->rip;
5407         fpu->last_dp = fxsave->rdp;
5408         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5409
5410         vcpu_put(vcpu);
5411
5412         return 0;
5413 }
5414
5415 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5416 {
5417         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5418
5419         vcpu_load(vcpu);
5420
5421         memcpy(fxsave->st_space, fpu->fpr, 128);
5422         fxsave->cwd = fpu->fcw;
5423         fxsave->swd = fpu->fsw;
5424         fxsave->twd = fpu->ftwx;
5425         fxsave->fop = fpu->last_opcode;
5426         fxsave->rip = fpu->last_ip;
5427         fxsave->rdp = fpu->last_dp;
5428         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5429
5430         vcpu_put(vcpu);
5431
5432         return 0;
5433 }
5434
5435 void fx_init(struct kvm_vcpu *vcpu)
5436 {
5437         unsigned after_mxcsr_mask;
5438
5439         /*
5440          * Touch the fpu the first time in non atomic context as if
5441          * this is the first fpu instruction the exception handler
5442          * will fire before the instruction returns and it'll have to
5443          * allocate ram with GFP_KERNEL.
5444          */
5445         if (!used_math())
5446                 kvm_fx_save(&vcpu->arch.host_fx_image);
5447
5448         /* Initialize guest FPU by resetting ours and saving into guest's */
5449         preempt_disable();
5450         kvm_fx_save(&vcpu->arch.host_fx_image);
5451         kvm_fx_finit();
5452         kvm_fx_save(&vcpu->arch.guest_fx_image);
5453         kvm_fx_restore(&vcpu->arch.host_fx_image);
5454         preempt_enable();
5455
5456         vcpu->arch.cr0 |= X86_CR0_ET;
5457         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5458         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5459         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5460                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5461 }
5462 EXPORT_SYMBOL_GPL(fx_init);
5463
5464 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5465 {
5466         if (vcpu->guest_fpu_loaded)
5467                 return;
5468
5469         vcpu->guest_fpu_loaded = 1;
5470         kvm_fx_save(&vcpu->arch.host_fx_image);
5471         kvm_fx_restore(&vcpu->arch.guest_fx_image);
5472         trace_kvm_fpu(1);
5473 }
5474
5475 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5476 {
5477         if (!vcpu->guest_fpu_loaded)
5478                 return;
5479
5480         vcpu->guest_fpu_loaded = 0;
5481         kvm_fx_save(&vcpu->arch.guest_fx_image);
5482         kvm_fx_restore(&vcpu->arch.host_fx_image);
5483         ++vcpu->stat.fpu_reload;
5484         set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5485         trace_kvm_fpu(0);
5486 }
5487
5488 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5489 {
5490         if (vcpu->arch.time_page) {
5491                 kvm_release_page_dirty(vcpu->arch.time_page);
5492                 vcpu->arch.time_page = NULL;
5493         }
5494
5495         kvm_x86_ops->vcpu_free(vcpu);
5496 }
5497
5498 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5499                                                 unsigned int id)
5500 {
5501         return kvm_x86_ops->vcpu_create(kvm, id);
5502 }
5503
5504 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5505 {
5506         int r;
5507
5508         /* We do fxsave: this must be aligned. */
5509         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5510
5511         vcpu->arch.mtrr_state.have_fixed = 1;
5512         vcpu_load(vcpu);
5513         r = kvm_arch_vcpu_reset(vcpu);
5514         if (r == 0)
5515                 r = kvm_mmu_setup(vcpu);
5516         vcpu_put(vcpu);
5517         if (r < 0)
5518                 goto free_vcpu;
5519
5520         return 0;
5521 free_vcpu:
5522         kvm_x86_ops->vcpu_free(vcpu);
5523         return r;
5524 }
5525
5526 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5527 {
5528         vcpu_load(vcpu);
5529         kvm_mmu_unload(vcpu);
5530         vcpu_put(vcpu);
5531
5532         kvm_x86_ops->vcpu_free(vcpu);
5533 }
5534
5535 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5536 {
5537         vcpu->arch.nmi_pending = false;
5538         vcpu->arch.nmi_injected = false;
5539
5540         vcpu->arch.switch_db_regs = 0;
5541         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5542         vcpu->arch.dr6 = DR6_FIXED_1;
5543         vcpu->arch.dr7 = DR7_FIXED_1;
5544
5545         return kvm_x86_ops->vcpu_reset(vcpu);
5546 }
5547
5548 int kvm_arch_hardware_enable(void *garbage)
5549 {
5550         /*
5551          * Since this may be called from a hotplug notifcation,
5552          * we can't get the CPU frequency directly.
5553          */
5554         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5555                 int cpu = raw_smp_processor_id();
5556                 per_cpu(cpu_tsc_khz, cpu) = 0;
5557         }
5558
5559         kvm_shared_msr_cpu_online();
5560
5561         return kvm_x86_ops->hardware_enable(garbage);
5562 }
5563
5564 void kvm_arch_hardware_disable(void *garbage)
5565 {
5566         kvm_x86_ops->hardware_disable(garbage);
5567         drop_user_return_notifiers(garbage);
5568 }
5569
5570 int kvm_arch_hardware_setup(void)
5571 {
5572         return kvm_x86_ops->hardware_setup();
5573 }
5574
5575 void kvm_arch_hardware_unsetup(void)
5576 {
5577         kvm_x86_ops->hardware_unsetup();
5578 }
5579
5580 void kvm_arch_check_processor_compat(void *rtn)
5581 {
5582         kvm_x86_ops->check_processor_compatibility(rtn);
5583 }
5584
5585 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5586 {
5587         struct page *page;
5588         struct kvm *kvm;
5589         int r;
5590
5591         BUG_ON(vcpu->kvm == NULL);
5592         kvm = vcpu->kvm;
5593
5594         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5595         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5596                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5597         else
5598                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5599
5600         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5601         if (!page) {
5602                 r = -ENOMEM;
5603                 goto fail;
5604         }
5605         vcpu->arch.pio_data = page_address(page);
5606
5607         r = kvm_mmu_create(vcpu);
5608         if (r < 0)
5609                 goto fail_free_pio_data;
5610
5611         if (irqchip_in_kernel(kvm)) {
5612                 r = kvm_create_lapic(vcpu);
5613                 if (r < 0)
5614                         goto fail_mmu_destroy;
5615         }
5616
5617         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5618                                        GFP_KERNEL);
5619         if (!vcpu->arch.mce_banks) {
5620                 r = -ENOMEM;
5621                 goto fail_free_lapic;
5622         }
5623         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5624
5625         return 0;
5626 fail_free_lapic:
5627         kvm_free_lapic(vcpu);
5628 fail_mmu_destroy:
5629         kvm_mmu_destroy(vcpu);
5630 fail_free_pio_data:
5631         free_page((unsigned long)vcpu->arch.pio_data);
5632 fail:
5633         return r;
5634 }
5635
5636 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5637 {
5638         int idx;
5639
5640         kfree(vcpu->arch.mce_banks);
5641         kvm_free_lapic(vcpu);
5642         idx = srcu_read_lock(&vcpu->kvm->srcu);
5643         kvm_mmu_destroy(vcpu);
5644         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5645         free_page((unsigned long)vcpu->arch.pio_data);
5646 }
5647
5648 struct  kvm *kvm_arch_create_vm(void)
5649 {
5650         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5651
5652         if (!kvm)
5653                 return ERR_PTR(-ENOMEM);
5654
5655         kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5656         if (!kvm->arch.aliases) {
5657                 kfree(kvm);
5658                 return ERR_PTR(-ENOMEM);
5659         }
5660
5661         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5662         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5663
5664         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5665         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5666
5667         rdtscll(kvm->arch.vm_init_tsc);
5668
5669         return kvm;
5670 }
5671
5672 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5673 {
5674         vcpu_load(vcpu);
5675         kvm_mmu_unload(vcpu);
5676         vcpu_put(vcpu);
5677 }
5678
5679 static void kvm_free_vcpus(struct kvm *kvm)
5680 {
5681         unsigned int i;
5682         struct kvm_vcpu *vcpu;
5683
5684         /*
5685          * Unpin any mmu pages first.
5686          */
5687         kvm_for_each_vcpu(i, vcpu, kvm)
5688                 kvm_unload_vcpu_mmu(vcpu);
5689         kvm_for_each_vcpu(i, vcpu, kvm)
5690                 kvm_arch_vcpu_free(vcpu);
5691
5692         mutex_lock(&kvm->lock);
5693         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5694                 kvm->vcpus[i] = NULL;
5695
5696         atomic_set(&kvm->online_vcpus, 0);
5697         mutex_unlock(&kvm->lock);
5698 }
5699
5700 void kvm_arch_sync_events(struct kvm *kvm)
5701 {
5702         kvm_free_all_assigned_devices(kvm);
5703 }
5704
5705 void kvm_arch_destroy_vm(struct kvm *kvm)
5706 {
5707         kvm_iommu_unmap_guest(kvm);
5708         kvm_free_pit(kvm);
5709         kfree(kvm->arch.vpic);
5710         kfree(kvm->arch.vioapic);
5711         kvm_free_vcpus(kvm);
5712         kvm_free_physmem(kvm);
5713         if (kvm->arch.apic_access_page)
5714                 put_page(kvm->arch.apic_access_page);
5715         if (kvm->arch.ept_identity_pagetable)
5716                 put_page(kvm->arch.ept_identity_pagetable);
5717         cleanup_srcu_struct(&kvm->srcu);
5718         kfree(kvm->arch.aliases);
5719         kfree(kvm);
5720 }
5721
5722 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5723                                 struct kvm_memory_slot *memslot,
5724                                 struct kvm_memory_slot old,
5725                                 struct kvm_userspace_memory_region *mem,
5726                                 int user_alloc)
5727 {
5728         int npages = memslot->npages;
5729
5730         /*To keep backward compatibility with older userspace,
5731          *x86 needs to hanlde !user_alloc case.
5732          */
5733         if (!user_alloc) {
5734                 if (npages && !old.rmap) {
5735                         unsigned long userspace_addr;
5736
5737                         down_write(&current->mm->mmap_sem);
5738                         userspace_addr = do_mmap(NULL, 0,
5739                                                  npages * PAGE_SIZE,
5740                                                  PROT_READ | PROT_WRITE,
5741                                                  MAP_PRIVATE | MAP_ANONYMOUS,
5742                                                  0);
5743                         up_write(&current->mm->mmap_sem);
5744
5745                         if (IS_ERR((void *)userspace_addr))
5746                                 return PTR_ERR((void *)userspace_addr);
5747
5748                         memslot->userspace_addr = userspace_addr;
5749                 }
5750         }
5751
5752
5753         return 0;
5754 }
5755
5756 void kvm_arch_commit_memory_region(struct kvm *kvm,
5757                                 struct kvm_userspace_memory_region *mem,
5758                                 struct kvm_memory_slot old,
5759                                 int user_alloc)
5760 {
5761
5762         int npages = mem->memory_size >> PAGE_SHIFT;
5763
5764         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5765                 int ret;
5766
5767                 down_write(&current->mm->mmap_sem);
5768                 ret = do_munmap(current->mm, old.userspace_addr,
5769                                 old.npages * PAGE_SIZE);
5770                 up_write(&current->mm->mmap_sem);
5771                 if (ret < 0)
5772                         printk(KERN_WARNING
5773                                "kvm_vm_ioctl_set_memory_region: "
5774                                "failed to munmap memory\n");
5775         }
5776
5777         spin_lock(&kvm->mmu_lock);
5778         if (!kvm->arch.n_requested_mmu_pages) {
5779                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5780                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5781         }
5782
5783         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5784         spin_unlock(&kvm->mmu_lock);
5785 }
5786
5787 void kvm_arch_flush_shadow(struct kvm *kvm)
5788 {
5789         kvm_mmu_zap_all(kvm);
5790         kvm_reload_remote_mmus(kvm);
5791 }
5792
5793 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5794 {
5795         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5796                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5797                 || vcpu->arch.nmi_pending ||
5798                 (kvm_arch_interrupt_allowed(vcpu) &&
5799                  kvm_cpu_has_interrupt(vcpu));
5800 }
5801
5802 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5803 {
5804         int me;
5805         int cpu = vcpu->cpu;
5806
5807         if (waitqueue_active(&vcpu->wq)) {
5808                 wake_up_interruptible(&vcpu->wq);
5809                 ++vcpu->stat.halt_wakeup;
5810         }
5811
5812         me = get_cpu();
5813         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5814                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5815                         smp_send_reschedule(cpu);
5816         put_cpu();
5817 }
5818
5819 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5820 {
5821         return kvm_x86_ops->interrupt_allowed(vcpu);
5822 }
5823
5824 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5825 {
5826         unsigned long rflags;
5827
5828         rflags = kvm_x86_ops->get_rflags(vcpu);
5829         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5830                 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5831         return rflags;
5832 }
5833 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5834
5835 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5836 {
5837         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5838             vcpu->arch.singlestep_cs ==
5839                         get_segment_selector(vcpu, VCPU_SREG_CS) &&
5840             vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5841                 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5842         kvm_x86_ops->set_rflags(vcpu, rflags);
5843 }
5844 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5845
5846 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5847 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);