Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
50
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58 #include <asm/pvclock.h>
59 #include <asm/div64.h>
60
61 #define MAX_IO_MSRS 256
62 #define CR0_RESERVED_BITS                                               \
63         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
64                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
65                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
66 #define CR4_RESERVED_BITS                                               \
67         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
68                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
69                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
70                           | X86_CR4_OSXSAVE \
71                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
72
73 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
74
75 #define KVM_MAX_MCE_BANKS 32
76 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
84 #else
85 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
86 #endif
87
88 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
89 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
90
91 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
92 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
93                                     struct kvm_cpuid_entry2 __user *entries);
94
95 struct kvm_x86_ops *kvm_x86_ops;
96 EXPORT_SYMBOL_GPL(kvm_x86_ops);
97
98 int ignore_msrs = 0;
99 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
100
101 #define KVM_NR_SHARED_MSRS 16
102
103 struct kvm_shared_msrs_global {
104         int nr;
105         u32 msrs[KVM_NR_SHARED_MSRS];
106 };
107
108 struct kvm_shared_msrs {
109         struct user_return_notifier urn;
110         bool registered;
111         struct kvm_shared_msr_values {
112                 u64 host;
113                 u64 curr;
114         } values[KVM_NR_SHARED_MSRS];
115 };
116
117 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
118 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
119
120 struct kvm_stats_debugfs_item debugfs_entries[] = {
121         { "pf_fixed", VCPU_STAT(pf_fixed) },
122         { "pf_guest", VCPU_STAT(pf_guest) },
123         { "tlb_flush", VCPU_STAT(tlb_flush) },
124         { "invlpg", VCPU_STAT(invlpg) },
125         { "exits", VCPU_STAT(exits) },
126         { "io_exits", VCPU_STAT(io_exits) },
127         { "mmio_exits", VCPU_STAT(mmio_exits) },
128         { "signal_exits", VCPU_STAT(signal_exits) },
129         { "irq_window", VCPU_STAT(irq_window_exits) },
130         { "nmi_window", VCPU_STAT(nmi_window_exits) },
131         { "halt_exits", VCPU_STAT(halt_exits) },
132         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
133         { "hypercalls", VCPU_STAT(hypercalls) },
134         { "request_irq", VCPU_STAT(request_irq_exits) },
135         { "irq_exits", VCPU_STAT(irq_exits) },
136         { "host_state_reload", VCPU_STAT(host_state_reload) },
137         { "efer_reload", VCPU_STAT(efer_reload) },
138         { "fpu_reload", VCPU_STAT(fpu_reload) },
139         { "insn_emulation", VCPU_STAT(insn_emulation) },
140         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
141         { "irq_injections", VCPU_STAT(irq_injections) },
142         { "nmi_injections", VCPU_STAT(nmi_injections) },
143         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
144         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
145         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
146         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
147         { "mmu_flooded", VM_STAT(mmu_flooded) },
148         { "mmu_recycled", VM_STAT(mmu_recycled) },
149         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
150         { "mmu_unsync", VM_STAT(mmu_unsync) },
151         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
152         { "largepages", VM_STAT(lpages) },
153         { NULL }
154 };
155
156 u64 __read_mostly host_xcr0;
157
158 static void kvm_on_user_return(struct user_return_notifier *urn)
159 {
160         unsigned slot;
161         struct kvm_shared_msrs *locals
162                 = container_of(urn, struct kvm_shared_msrs, urn);
163         struct kvm_shared_msr_values *values;
164
165         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
166                 values = &locals->values[slot];
167                 if (values->host != values->curr) {
168                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
169                         values->curr = values->host;
170                 }
171         }
172         locals->registered = false;
173         user_return_notifier_unregister(urn);
174 }
175
176 static void shared_msr_update(unsigned slot, u32 msr)
177 {
178         struct kvm_shared_msrs *smsr;
179         u64 value;
180
181         smsr = &__get_cpu_var(shared_msrs);
182         /* only read, and nobody should modify it at this time,
183          * so don't need lock */
184         if (slot >= shared_msrs_global.nr) {
185                 printk(KERN_ERR "kvm: invalid MSR slot!");
186                 return;
187         }
188         rdmsrl_safe(msr, &value);
189         smsr->values[slot].host = value;
190         smsr->values[slot].curr = value;
191 }
192
193 void kvm_define_shared_msr(unsigned slot, u32 msr)
194 {
195         if (slot >= shared_msrs_global.nr)
196                 shared_msrs_global.nr = slot + 1;
197         shared_msrs_global.msrs[slot] = msr;
198         /* we need ensured the shared_msr_global have been updated */
199         smp_wmb();
200 }
201 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
202
203 static void kvm_shared_msr_cpu_online(void)
204 {
205         unsigned i;
206
207         for (i = 0; i < shared_msrs_global.nr; ++i)
208                 shared_msr_update(i, shared_msrs_global.msrs[i]);
209 }
210
211 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
212 {
213         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
214
215         if (((value ^ smsr->values[slot].curr) & mask) == 0)
216                 return;
217         smsr->values[slot].curr = value;
218         wrmsrl(shared_msrs_global.msrs[slot], value);
219         if (!smsr->registered) {
220                 smsr->urn.on_user_return = kvm_on_user_return;
221                 user_return_notifier_register(&smsr->urn);
222                 smsr->registered = true;
223         }
224 }
225 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
226
227 static void drop_user_return_notifiers(void *ignore)
228 {
229         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
230
231         if (smsr->registered)
232                 kvm_on_user_return(&smsr->urn);
233 }
234
235 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
236 {
237         if (irqchip_in_kernel(vcpu->kvm))
238                 return vcpu->arch.apic_base;
239         else
240                 return vcpu->arch.apic_base;
241 }
242 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
243
244 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
245 {
246         /* TODO: reserve bits check */
247         if (irqchip_in_kernel(vcpu->kvm))
248                 kvm_lapic_set_base(vcpu, data);
249         else
250                 vcpu->arch.apic_base = data;
251 }
252 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
253
254 #define EXCPT_BENIGN            0
255 #define EXCPT_CONTRIBUTORY      1
256 #define EXCPT_PF                2
257
258 static int exception_class(int vector)
259 {
260         switch (vector) {
261         case PF_VECTOR:
262                 return EXCPT_PF;
263         case DE_VECTOR:
264         case TS_VECTOR:
265         case NP_VECTOR:
266         case SS_VECTOR:
267         case GP_VECTOR:
268                 return EXCPT_CONTRIBUTORY;
269         default:
270                 break;
271         }
272         return EXCPT_BENIGN;
273 }
274
275 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
276                 unsigned nr, bool has_error, u32 error_code,
277                 bool reinject)
278 {
279         u32 prev_nr;
280         int class1, class2;
281
282         kvm_make_request(KVM_REQ_EVENT, vcpu);
283
284         if (!vcpu->arch.exception.pending) {
285         queue:
286                 vcpu->arch.exception.pending = true;
287                 vcpu->arch.exception.has_error_code = has_error;
288                 vcpu->arch.exception.nr = nr;
289                 vcpu->arch.exception.error_code = error_code;
290                 vcpu->arch.exception.reinject = reinject;
291                 return;
292         }
293
294         /* to check exception */
295         prev_nr = vcpu->arch.exception.nr;
296         if (prev_nr == DF_VECTOR) {
297                 /* triple fault -> shutdown */
298                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
299                 return;
300         }
301         class1 = exception_class(prev_nr);
302         class2 = exception_class(nr);
303         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
304                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
305                 /* generate double fault per SDM Table 5-5 */
306                 vcpu->arch.exception.pending = true;
307                 vcpu->arch.exception.has_error_code = true;
308                 vcpu->arch.exception.nr = DF_VECTOR;
309                 vcpu->arch.exception.error_code = 0;
310         } else
311                 /* replace previous exception with a new one in a hope
312                    that instruction re-execution will regenerate lost
313                    exception */
314                 goto queue;
315 }
316
317 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
318 {
319         kvm_multiple_exception(vcpu, nr, false, 0, false);
320 }
321 EXPORT_SYMBOL_GPL(kvm_queue_exception);
322
323 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
324 {
325         kvm_multiple_exception(vcpu, nr, false, 0, true);
326 }
327 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
328
329 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
330 {
331         unsigned error_code = vcpu->arch.fault.error_code;
332
333         ++vcpu->stat.pf_guest;
334         vcpu->arch.cr2 = vcpu->arch.fault.address;
335         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
336 }
337
338 void kvm_propagate_fault(struct kvm_vcpu *vcpu)
339 {
340         if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
341                 vcpu->arch.nested_mmu.inject_page_fault(vcpu);
342         else
343                 vcpu->arch.mmu.inject_page_fault(vcpu);
344
345         vcpu->arch.fault.nested = false;
346 }
347
348 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
349 {
350         kvm_make_request(KVM_REQ_EVENT, vcpu);
351         vcpu->arch.nmi_pending = 1;
352 }
353 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
354
355 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
356 {
357         kvm_multiple_exception(vcpu, nr, true, error_code, false);
358 }
359 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
360
361 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
362 {
363         kvm_multiple_exception(vcpu, nr, true, error_code, true);
364 }
365 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
366
367 /*
368  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
369  * a #GP and return false.
370  */
371 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
372 {
373         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
374                 return true;
375         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
376         return false;
377 }
378 EXPORT_SYMBOL_GPL(kvm_require_cpl);
379
380 /*
381  * This function will be used to read from the physical memory of the currently
382  * running guest. The difference to kvm_read_guest_page is that this function
383  * can read from guest physical or from the guest's guest physical memory.
384  */
385 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
386                             gfn_t ngfn, void *data, int offset, int len,
387                             u32 access)
388 {
389         gfn_t real_gfn;
390         gpa_t ngpa;
391
392         ngpa     = gfn_to_gpa(ngfn);
393         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
394         if (real_gfn == UNMAPPED_GVA)
395                 return -EFAULT;
396
397         real_gfn = gpa_to_gfn(real_gfn);
398
399         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
400 }
401 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
402
403 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
404                                void *data, int offset, int len, u32 access)
405 {
406         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
407                                        data, offset, len, access);
408 }
409
410 /*
411  * Load the pae pdptrs.  Return true is they are all valid.
412  */
413 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
414 {
415         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
416         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
417         int i;
418         int ret;
419         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
420
421         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
422                                       offset * sizeof(u64), sizeof(pdpte),
423                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
424         if (ret < 0) {
425                 ret = 0;
426                 goto out;
427         }
428         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
429                 if (is_present_gpte(pdpte[i]) &&
430                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
431                         ret = 0;
432                         goto out;
433                 }
434         }
435         ret = 1;
436
437         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
438         __set_bit(VCPU_EXREG_PDPTR,
439                   (unsigned long *)&vcpu->arch.regs_avail);
440         __set_bit(VCPU_EXREG_PDPTR,
441                   (unsigned long *)&vcpu->arch.regs_dirty);
442 out:
443
444         return ret;
445 }
446 EXPORT_SYMBOL_GPL(load_pdptrs);
447
448 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
449 {
450         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
451         bool changed = true;
452         int offset;
453         gfn_t gfn;
454         int r;
455
456         if (is_long_mode(vcpu) || !is_pae(vcpu))
457                 return false;
458
459         if (!test_bit(VCPU_EXREG_PDPTR,
460                       (unsigned long *)&vcpu->arch.regs_avail))
461                 return true;
462
463         gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
464         offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
465         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
466                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
467         if (r < 0)
468                 goto out;
469         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
470 out:
471
472         return changed;
473 }
474
475 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
476 {
477         unsigned long old_cr0 = kvm_read_cr0(vcpu);
478         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
479                                     X86_CR0_CD | X86_CR0_NW;
480
481         cr0 |= X86_CR0_ET;
482
483 #ifdef CONFIG_X86_64
484         if (cr0 & 0xffffffff00000000UL)
485                 return 1;
486 #endif
487
488         cr0 &= ~CR0_RESERVED_BITS;
489
490         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
491                 return 1;
492
493         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
494                 return 1;
495
496         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
497 #ifdef CONFIG_X86_64
498                 if ((vcpu->arch.efer & EFER_LME)) {
499                         int cs_db, cs_l;
500
501                         if (!is_pae(vcpu))
502                                 return 1;
503                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
504                         if (cs_l)
505                                 return 1;
506                 } else
507 #endif
508                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
509                                                  vcpu->arch.cr3))
510                         return 1;
511         }
512
513         kvm_x86_ops->set_cr0(vcpu, cr0);
514
515         if ((cr0 ^ old_cr0) & update_bits)
516                 kvm_mmu_reset_context(vcpu);
517         return 0;
518 }
519 EXPORT_SYMBOL_GPL(kvm_set_cr0);
520
521 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
522 {
523         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
524 }
525 EXPORT_SYMBOL_GPL(kvm_lmsw);
526
527 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
528 {
529         u64 xcr0;
530
531         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
532         if (index != XCR_XFEATURE_ENABLED_MASK)
533                 return 1;
534         xcr0 = xcr;
535         if (kvm_x86_ops->get_cpl(vcpu) != 0)
536                 return 1;
537         if (!(xcr0 & XSTATE_FP))
538                 return 1;
539         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
540                 return 1;
541         if (xcr0 & ~host_xcr0)
542                 return 1;
543         vcpu->arch.xcr0 = xcr0;
544         vcpu->guest_xcr0_loaded = 0;
545         return 0;
546 }
547
548 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
549 {
550         if (__kvm_set_xcr(vcpu, index, xcr)) {
551                 kvm_inject_gp(vcpu, 0);
552                 return 1;
553         }
554         return 0;
555 }
556 EXPORT_SYMBOL_GPL(kvm_set_xcr);
557
558 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
559 {
560         struct kvm_cpuid_entry2 *best;
561
562         best = kvm_find_cpuid_entry(vcpu, 1, 0);
563         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
564 }
565
566 static void update_cpuid(struct kvm_vcpu *vcpu)
567 {
568         struct kvm_cpuid_entry2 *best;
569
570         best = kvm_find_cpuid_entry(vcpu, 1, 0);
571         if (!best)
572                 return;
573
574         /* Update OSXSAVE bit */
575         if (cpu_has_xsave && best->function == 0x1) {
576                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
577                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
578                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
579         }
580 }
581
582 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
583 {
584         unsigned long old_cr4 = kvm_read_cr4(vcpu);
585         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
586
587         if (cr4 & CR4_RESERVED_BITS)
588                 return 1;
589
590         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
591                 return 1;
592
593         if (is_long_mode(vcpu)) {
594                 if (!(cr4 & X86_CR4_PAE))
595                         return 1;
596         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
597                    && ((cr4 ^ old_cr4) & pdptr_bits)
598                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
599                 return 1;
600
601         if (cr4 & X86_CR4_VMXE)
602                 return 1;
603
604         kvm_x86_ops->set_cr4(vcpu, cr4);
605
606         if ((cr4 ^ old_cr4) & pdptr_bits)
607                 kvm_mmu_reset_context(vcpu);
608
609         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
610                 update_cpuid(vcpu);
611
612         return 0;
613 }
614 EXPORT_SYMBOL_GPL(kvm_set_cr4);
615
616 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
617 {
618         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
619                 kvm_mmu_sync_roots(vcpu);
620                 kvm_mmu_flush_tlb(vcpu);
621                 return 0;
622         }
623
624         if (is_long_mode(vcpu)) {
625                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
626                         return 1;
627         } else {
628                 if (is_pae(vcpu)) {
629                         if (cr3 & CR3_PAE_RESERVED_BITS)
630                                 return 1;
631                         if (is_paging(vcpu) &&
632                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
633                                 return 1;
634                 }
635                 /*
636                  * We don't check reserved bits in nonpae mode, because
637                  * this isn't enforced, and VMware depends on this.
638                  */
639         }
640
641         /*
642          * Does the new cr3 value map to physical memory? (Note, we
643          * catch an invalid cr3 even in real-mode, because it would
644          * cause trouble later on when we turn on paging anyway.)
645          *
646          * A real CPU would silently accept an invalid cr3 and would
647          * attempt to use it - with largely undefined (and often hard
648          * to debug) behavior on the guest side.
649          */
650         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
651                 return 1;
652         vcpu->arch.cr3 = cr3;
653         vcpu->arch.mmu.new_cr3(vcpu);
654         return 0;
655 }
656 EXPORT_SYMBOL_GPL(kvm_set_cr3);
657
658 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
659 {
660         if (cr8 & CR8_RESERVED_BITS)
661                 return 1;
662         if (irqchip_in_kernel(vcpu->kvm))
663                 kvm_lapic_set_tpr(vcpu, cr8);
664         else
665                 vcpu->arch.cr8 = cr8;
666         return 0;
667 }
668
669 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
670 {
671         if (__kvm_set_cr8(vcpu, cr8))
672                 kvm_inject_gp(vcpu, 0);
673 }
674 EXPORT_SYMBOL_GPL(kvm_set_cr8);
675
676 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
677 {
678         if (irqchip_in_kernel(vcpu->kvm))
679                 return kvm_lapic_get_cr8(vcpu);
680         else
681                 return vcpu->arch.cr8;
682 }
683 EXPORT_SYMBOL_GPL(kvm_get_cr8);
684
685 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
686 {
687         switch (dr) {
688         case 0 ... 3:
689                 vcpu->arch.db[dr] = val;
690                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
691                         vcpu->arch.eff_db[dr] = val;
692                 break;
693         case 4:
694                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
695                         return 1; /* #UD */
696                 /* fall through */
697         case 6:
698                 if (val & 0xffffffff00000000ULL)
699                         return -1; /* #GP */
700                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
701                 break;
702         case 5:
703                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
704                         return 1; /* #UD */
705                 /* fall through */
706         default: /* 7 */
707                 if (val & 0xffffffff00000000ULL)
708                         return -1; /* #GP */
709                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
710                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
711                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
712                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
713                 }
714                 break;
715         }
716
717         return 0;
718 }
719
720 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
721 {
722         int res;
723
724         res = __kvm_set_dr(vcpu, dr, val);
725         if (res > 0)
726                 kvm_queue_exception(vcpu, UD_VECTOR);
727         else if (res < 0)
728                 kvm_inject_gp(vcpu, 0);
729
730         return res;
731 }
732 EXPORT_SYMBOL_GPL(kvm_set_dr);
733
734 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
735 {
736         switch (dr) {
737         case 0 ... 3:
738                 *val = vcpu->arch.db[dr];
739                 break;
740         case 4:
741                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
742                         return 1;
743                 /* fall through */
744         case 6:
745                 *val = vcpu->arch.dr6;
746                 break;
747         case 5:
748                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
749                         return 1;
750                 /* fall through */
751         default: /* 7 */
752                 *val = vcpu->arch.dr7;
753                 break;
754         }
755
756         return 0;
757 }
758
759 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
760 {
761         if (_kvm_get_dr(vcpu, dr, val)) {
762                 kvm_queue_exception(vcpu, UD_VECTOR);
763                 return 1;
764         }
765         return 0;
766 }
767 EXPORT_SYMBOL_GPL(kvm_get_dr);
768
769 /*
770  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
771  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
772  *
773  * This list is modified at module load time to reflect the
774  * capabilities of the host cpu. This capabilities test skips MSRs that are
775  * kvm-specific. Those are put in the beginning of the list.
776  */
777
778 #define KVM_SAVE_MSRS_BEGIN     7
779 static u32 msrs_to_save[] = {
780         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
781         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
782         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
783         HV_X64_MSR_APIC_ASSIST_PAGE,
784         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
785         MSR_STAR,
786 #ifdef CONFIG_X86_64
787         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
788 #endif
789         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
790 };
791
792 static unsigned num_msrs_to_save;
793
794 static u32 emulated_msrs[] = {
795         MSR_IA32_MISC_ENABLE,
796         MSR_IA32_MCG_STATUS,
797         MSR_IA32_MCG_CTL,
798 };
799
800 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
801 {
802         u64 old_efer = vcpu->arch.efer;
803
804         if (efer & efer_reserved_bits)
805                 return 1;
806
807         if (is_paging(vcpu)
808             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
809                 return 1;
810
811         if (efer & EFER_FFXSR) {
812                 struct kvm_cpuid_entry2 *feat;
813
814                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
815                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
816                         return 1;
817         }
818
819         if (efer & EFER_SVME) {
820                 struct kvm_cpuid_entry2 *feat;
821
822                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
823                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
824                         return 1;
825         }
826
827         efer &= ~EFER_LMA;
828         efer |= vcpu->arch.efer & EFER_LMA;
829
830         kvm_x86_ops->set_efer(vcpu, efer);
831
832         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
833         kvm_mmu_reset_context(vcpu);
834
835         /* Update reserved bits */
836         if ((efer ^ old_efer) & EFER_NX)
837                 kvm_mmu_reset_context(vcpu);
838
839         return 0;
840 }
841
842 void kvm_enable_efer_bits(u64 mask)
843 {
844        efer_reserved_bits &= ~mask;
845 }
846 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
847
848
849 /*
850  * Writes msr value into into the appropriate "register".
851  * Returns 0 on success, non-0 otherwise.
852  * Assumes vcpu_load() was already called.
853  */
854 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
855 {
856         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
857 }
858
859 /*
860  * Adapt set_msr() to msr_io()'s calling convention
861  */
862 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
863 {
864         return kvm_set_msr(vcpu, index, *data);
865 }
866
867 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
868 {
869         int version;
870         int r;
871         struct pvclock_wall_clock wc;
872         struct timespec boot;
873
874         if (!wall_clock)
875                 return;
876
877         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
878         if (r)
879                 return;
880
881         if (version & 1)
882                 ++version;  /* first time write, random junk */
883
884         ++version;
885
886         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
887
888         /*
889          * The guest calculates current wall clock time by adding
890          * system time (updated by kvm_guest_time_update below) to the
891          * wall clock specified here.  guest system time equals host
892          * system time for us, thus we must fill in host boot time here.
893          */
894         getboottime(&boot);
895
896         wc.sec = boot.tv_sec;
897         wc.nsec = boot.tv_nsec;
898         wc.version = version;
899
900         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
901
902         version++;
903         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
904 }
905
906 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
907 {
908         uint32_t quotient, remainder;
909
910         /* Don't try to replace with do_div(), this one calculates
911          * "(dividend << 32) / divisor" */
912         __asm__ ( "divl %4"
913                   : "=a" (quotient), "=d" (remainder)
914                   : "0" (0), "1" (dividend), "r" (divisor) );
915         return quotient;
916 }
917
918 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
919                                s8 *pshift, u32 *pmultiplier)
920 {
921         uint64_t scaled64;
922         int32_t  shift = 0;
923         uint64_t tps64;
924         uint32_t tps32;
925
926         tps64 = base_khz * 1000LL;
927         scaled64 = scaled_khz * 1000LL;
928         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
929                 tps64 >>= 1;
930                 shift--;
931         }
932
933         tps32 = (uint32_t)tps64;
934         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
935                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
936                         scaled64 >>= 1;
937                 else
938                         tps32 <<= 1;
939                 shift++;
940         }
941
942         *pshift = shift;
943         *pmultiplier = div_frac(scaled64, tps32);
944
945         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
946                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
947 }
948
949 static inline u64 get_kernel_ns(void)
950 {
951         struct timespec ts;
952
953         WARN_ON(preemptible());
954         ktime_get_ts(&ts);
955         monotonic_to_bootbased(&ts);
956         return timespec_to_ns(&ts);
957 }
958
959 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
960 unsigned long max_tsc_khz;
961
962 static inline int kvm_tsc_changes_freq(void)
963 {
964         int cpu = get_cpu();
965         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
966                   cpufreq_quick_get(cpu) != 0;
967         put_cpu();
968         return ret;
969 }
970
971 static inline u64 nsec_to_cycles(u64 nsec)
972 {
973         u64 ret;
974
975         WARN_ON(preemptible());
976         if (kvm_tsc_changes_freq())
977                 printk_once(KERN_WARNING
978                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
979         ret = nsec * __this_cpu_read(cpu_tsc_khz);
980         do_div(ret, USEC_PER_SEC);
981         return ret;
982 }
983
984 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
985 {
986         /* Compute a scale to convert nanoseconds in TSC cycles */
987         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
988                            &kvm->arch.virtual_tsc_shift,
989                            &kvm->arch.virtual_tsc_mult);
990         kvm->arch.virtual_tsc_khz = this_tsc_khz;
991 }
992
993 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
994 {
995         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
996                                       vcpu->kvm->arch.virtual_tsc_mult,
997                                       vcpu->kvm->arch.virtual_tsc_shift);
998         tsc += vcpu->arch.last_tsc_write;
999         return tsc;
1000 }
1001
1002 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1003 {
1004         struct kvm *kvm = vcpu->kvm;
1005         u64 offset, ns, elapsed;
1006         unsigned long flags;
1007         s64 sdiff;
1008
1009         spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1010         offset = data - native_read_tsc();
1011         ns = get_kernel_ns();
1012         elapsed = ns - kvm->arch.last_tsc_nsec;
1013         sdiff = data - kvm->arch.last_tsc_write;
1014         if (sdiff < 0)
1015                 sdiff = -sdiff;
1016
1017         /*
1018          * Special case: close write to TSC within 5 seconds of
1019          * another CPU is interpreted as an attempt to synchronize
1020          * The 5 seconds is to accomodate host load / swapping as
1021          * well as any reset of TSC during the boot process.
1022          *
1023          * In that case, for a reliable TSC, we can match TSC offsets,
1024          * or make a best guest using elapsed value.
1025          */
1026         if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1027             elapsed < 5ULL * NSEC_PER_SEC) {
1028                 if (!check_tsc_unstable()) {
1029                         offset = kvm->arch.last_tsc_offset;
1030                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1031                 } else {
1032                         u64 delta = nsec_to_cycles(elapsed);
1033                         offset += delta;
1034                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1035                 }
1036                 ns = kvm->arch.last_tsc_nsec;
1037         }
1038         kvm->arch.last_tsc_nsec = ns;
1039         kvm->arch.last_tsc_write = data;
1040         kvm->arch.last_tsc_offset = offset;
1041         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1042         spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1043
1044         /* Reset of TSC must disable overshoot protection below */
1045         vcpu->arch.hv_clock.tsc_timestamp = 0;
1046         vcpu->arch.last_tsc_write = data;
1047         vcpu->arch.last_tsc_nsec = ns;
1048 }
1049 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1050
1051 static int kvm_guest_time_update(struct kvm_vcpu *v)
1052 {
1053         unsigned long flags;
1054         struct kvm_vcpu_arch *vcpu = &v->arch;
1055         void *shared_kaddr;
1056         unsigned long this_tsc_khz;
1057         s64 kernel_ns, max_kernel_ns;
1058         u64 tsc_timestamp;
1059
1060         /* Keep irq disabled to prevent changes to the clock */
1061         local_irq_save(flags);
1062         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1063         kernel_ns = get_kernel_ns();
1064         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1065
1066         if (unlikely(this_tsc_khz == 0)) {
1067                 local_irq_restore(flags);
1068                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1069                 return 1;
1070         }
1071
1072         /*
1073          * We may have to catch up the TSC to match elapsed wall clock
1074          * time for two reasons, even if kvmclock is used.
1075          *   1) CPU could have been running below the maximum TSC rate
1076          *   2) Broken TSC compensation resets the base at each VCPU
1077          *      entry to avoid unknown leaps of TSC even when running
1078          *      again on the same CPU.  This may cause apparent elapsed
1079          *      time to disappear, and the guest to stand still or run
1080          *      very slowly.
1081          */
1082         if (vcpu->tsc_catchup) {
1083                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1084                 if (tsc > tsc_timestamp) {
1085                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1086                         tsc_timestamp = tsc;
1087                 }
1088         }
1089
1090         local_irq_restore(flags);
1091
1092         if (!vcpu->time_page)
1093                 return 0;
1094
1095         /*
1096          * Time as measured by the TSC may go backwards when resetting the base
1097          * tsc_timestamp.  The reason for this is that the TSC resolution is
1098          * higher than the resolution of the other clock scales.  Thus, many
1099          * possible measurments of the TSC correspond to one measurement of any
1100          * other clock, and so a spread of values is possible.  This is not a
1101          * problem for the computation of the nanosecond clock; with TSC rates
1102          * around 1GHZ, there can only be a few cycles which correspond to one
1103          * nanosecond value, and any path through this code will inevitably
1104          * take longer than that.  However, with the kernel_ns value itself,
1105          * the precision may be much lower, down to HZ granularity.  If the
1106          * first sampling of TSC against kernel_ns ends in the low part of the
1107          * range, and the second in the high end of the range, we can get:
1108          *
1109          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1110          *
1111          * As the sampling errors potentially range in the thousands of cycles,
1112          * it is possible such a time value has already been observed by the
1113          * guest.  To protect against this, we must compute the system time as
1114          * observed by the guest and ensure the new system time is greater.
1115          */
1116         max_kernel_ns = 0;
1117         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1118                 max_kernel_ns = vcpu->last_guest_tsc -
1119                                 vcpu->hv_clock.tsc_timestamp;
1120                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1121                                     vcpu->hv_clock.tsc_to_system_mul,
1122                                     vcpu->hv_clock.tsc_shift);
1123                 max_kernel_ns += vcpu->last_kernel_ns;
1124         }
1125
1126         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1127                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1128                                    &vcpu->hv_clock.tsc_shift,
1129                                    &vcpu->hv_clock.tsc_to_system_mul);
1130                 vcpu->hw_tsc_khz = this_tsc_khz;
1131         }
1132
1133         if (max_kernel_ns > kernel_ns)
1134                 kernel_ns = max_kernel_ns;
1135
1136         /* With all the info we got, fill in the values */
1137         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1138         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1139         vcpu->last_kernel_ns = kernel_ns;
1140         vcpu->last_guest_tsc = tsc_timestamp;
1141         vcpu->hv_clock.flags = 0;
1142
1143         /*
1144          * The interface expects us to write an even number signaling that the
1145          * update is finished. Since the guest won't see the intermediate
1146          * state, we just increase by 2 at the end.
1147          */
1148         vcpu->hv_clock.version += 2;
1149
1150         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1151
1152         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1153                sizeof(vcpu->hv_clock));
1154
1155         kunmap_atomic(shared_kaddr, KM_USER0);
1156
1157         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1158         return 0;
1159 }
1160
1161 static bool msr_mtrr_valid(unsigned msr)
1162 {
1163         switch (msr) {
1164         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1165         case MSR_MTRRfix64K_00000:
1166         case MSR_MTRRfix16K_80000:
1167         case MSR_MTRRfix16K_A0000:
1168         case MSR_MTRRfix4K_C0000:
1169         case MSR_MTRRfix4K_C8000:
1170         case MSR_MTRRfix4K_D0000:
1171         case MSR_MTRRfix4K_D8000:
1172         case MSR_MTRRfix4K_E0000:
1173         case MSR_MTRRfix4K_E8000:
1174         case MSR_MTRRfix4K_F0000:
1175         case MSR_MTRRfix4K_F8000:
1176         case MSR_MTRRdefType:
1177         case MSR_IA32_CR_PAT:
1178                 return true;
1179         case 0x2f8:
1180                 return true;
1181         }
1182         return false;
1183 }
1184
1185 static bool valid_pat_type(unsigned t)
1186 {
1187         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1188 }
1189
1190 static bool valid_mtrr_type(unsigned t)
1191 {
1192         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1193 }
1194
1195 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1196 {
1197         int i;
1198
1199         if (!msr_mtrr_valid(msr))
1200                 return false;
1201
1202         if (msr == MSR_IA32_CR_PAT) {
1203                 for (i = 0; i < 8; i++)
1204                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1205                                 return false;
1206                 return true;
1207         } else if (msr == MSR_MTRRdefType) {
1208                 if (data & ~0xcff)
1209                         return false;
1210                 return valid_mtrr_type(data & 0xff);
1211         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1212                 for (i = 0; i < 8 ; i++)
1213                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1214                                 return false;
1215                 return true;
1216         }
1217
1218         /* variable MTRRs */
1219         return valid_mtrr_type(data & 0xff);
1220 }
1221
1222 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1223 {
1224         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1225
1226         if (!mtrr_valid(vcpu, msr, data))
1227                 return 1;
1228
1229         if (msr == MSR_MTRRdefType) {
1230                 vcpu->arch.mtrr_state.def_type = data;
1231                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1232         } else if (msr == MSR_MTRRfix64K_00000)
1233                 p[0] = data;
1234         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1235                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1236         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1237                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1238         else if (msr == MSR_IA32_CR_PAT)
1239                 vcpu->arch.pat = data;
1240         else {  /* Variable MTRRs */
1241                 int idx, is_mtrr_mask;
1242                 u64 *pt;
1243
1244                 idx = (msr - 0x200) / 2;
1245                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1246                 if (!is_mtrr_mask)
1247                         pt =
1248                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1249                 else
1250                         pt =
1251                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1252                 *pt = data;
1253         }
1254
1255         kvm_mmu_reset_context(vcpu);
1256         return 0;
1257 }
1258
1259 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1260 {
1261         u64 mcg_cap = vcpu->arch.mcg_cap;
1262         unsigned bank_num = mcg_cap & 0xff;
1263
1264         switch (msr) {
1265         case MSR_IA32_MCG_STATUS:
1266                 vcpu->arch.mcg_status = data;
1267                 break;
1268         case MSR_IA32_MCG_CTL:
1269                 if (!(mcg_cap & MCG_CTL_P))
1270                         return 1;
1271                 if (data != 0 && data != ~(u64)0)
1272                         return -1;
1273                 vcpu->arch.mcg_ctl = data;
1274                 break;
1275         default:
1276                 if (msr >= MSR_IA32_MC0_CTL &&
1277                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1278                         u32 offset = msr - MSR_IA32_MC0_CTL;
1279                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1280                          * some Linux kernels though clear bit 10 in bank 4 to
1281                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1282                          * this to avoid an uncatched #GP in the guest
1283                          */
1284                         if ((offset & 0x3) == 0 &&
1285                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1286                                 return -1;
1287                         vcpu->arch.mce_banks[offset] = data;
1288                         break;
1289                 }
1290                 return 1;
1291         }
1292         return 0;
1293 }
1294
1295 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1296 {
1297         struct kvm *kvm = vcpu->kvm;
1298         int lm = is_long_mode(vcpu);
1299         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1300                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1301         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1302                 : kvm->arch.xen_hvm_config.blob_size_32;
1303         u32 page_num = data & ~PAGE_MASK;
1304         u64 page_addr = data & PAGE_MASK;
1305         u8 *page;
1306         int r;
1307
1308         r = -E2BIG;
1309         if (page_num >= blob_size)
1310                 goto out;
1311         r = -ENOMEM;
1312         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1313         if (!page)
1314                 goto out;
1315         r = -EFAULT;
1316         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1317                 goto out_free;
1318         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1319                 goto out_free;
1320         r = 0;
1321 out_free:
1322         kfree(page);
1323 out:
1324         return r;
1325 }
1326
1327 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1328 {
1329         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1330 }
1331
1332 static bool kvm_hv_msr_partition_wide(u32 msr)
1333 {
1334         bool r = false;
1335         switch (msr) {
1336         case HV_X64_MSR_GUEST_OS_ID:
1337         case HV_X64_MSR_HYPERCALL:
1338                 r = true;
1339                 break;
1340         }
1341
1342         return r;
1343 }
1344
1345 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1346 {
1347         struct kvm *kvm = vcpu->kvm;
1348
1349         switch (msr) {
1350         case HV_X64_MSR_GUEST_OS_ID:
1351                 kvm->arch.hv_guest_os_id = data;
1352                 /* setting guest os id to zero disables hypercall page */
1353                 if (!kvm->arch.hv_guest_os_id)
1354                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1355                 break;
1356         case HV_X64_MSR_HYPERCALL: {
1357                 u64 gfn;
1358                 unsigned long addr;
1359                 u8 instructions[4];
1360
1361                 /* if guest os id is not set hypercall should remain disabled */
1362                 if (!kvm->arch.hv_guest_os_id)
1363                         break;
1364                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1365                         kvm->arch.hv_hypercall = data;
1366                         break;
1367                 }
1368                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1369                 addr = gfn_to_hva(kvm, gfn);
1370                 if (kvm_is_error_hva(addr))
1371                         return 1;
1372                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1373                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1374                 if (copy_to_user((void __user *)addr, instructions, 4))
1375                         return 1;
1376                 kvm->arch.hv_hypercall = data;
1377                 break;
1378         }
1379         default:
1380                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1381                           "data 0x%llx\n", msr, data);
1382                 return 1;
1383         }
1384         return 0;
1385 }
1386
1387 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1388 {
1389         switch (msr) {
1390         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1391                 unsigned long addr;
1392
1393                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1394                         vcpu->arch.hv_vapic = data;
1395                         break;
1396                 }
1397                 addr = gfn_to_hva(vcpu->kvm, data >>
1398                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1399                 if (kvm_is_error_hva(addr))
1400                         return 1;
1401                 if (clear_user((void __user *)addr, PAGE_SIZE))
1402                         return 1;
1403                 vcpu->arch.hv_vapic = data;
1404                 break;
1405         }
1406         case HV_X64_MSR_EOI:
1407                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1408         case HV_X64_MSR_ICR:
1409                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1410         case HV_X64_MSR_TPR:
1411                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1412         default:
1413                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1414                           "data 0x%llx\n", msr, data);
1415                 return 1;
1416         }
1417
1418         return 0;
1419 }
1420
1421 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1422 {
1423         switch (msr) {
1424         case MSR_EFER:
1425                 return set_efer(vcpu, data);
1426         case MSR_K7_HWCR:
1427                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1428                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1429                 if (data != 0) {
1430                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1431                                 data);
1432                         return 1;
1433                 }
1434                 break;
1435         case MSR_FAM10H_MMIO_CONF_BASE:
1436                 if (data != 0) {
1437                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1438                                 "0x%llx\n", data);
1439                         return 1;
1440                 }
1441                 break;
1442         case MSR_AMD64_NB_CFG:
1443                 break;
1444         case MSR_IA32_DEBUGCTLMSR:
1445                 if (!data) {
1446                         /* We support the non-activated case already */
1447                         break;
1448                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1449                         /* Values other than LBR and BTF are vendor-specific,
1450                            thus reserved and should throw a #GP */
1451                         return 1;
1452                 }
1453                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1454                         __func__, data);
1455                 break;
1456         case MSR_IA32_UCODE_REV:
1457         case MSR_IA32_UCODE_WRITE:
1458         case MSR_VM_HSAVE_PA:
1459         case MSR_AMD64_PATCH_LOADER:
1460                 break;
1461         case 0x200 ... 0x2ff:
1462                 return set_msr_mtrr(vcpu, msr, data);
1463         case MSR_IA32_APICBASE:
1464                 kvm_set_apic_base(vcpu, data);
1465                 break;
1466         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1467                 return kvm_x2apic_msr_write(vcpu, msr, data);
1468         case MSR_IA32_MISC_ENABLE:
1469                 vcpu->arch.ia32_misc_enable_msr = data;
1470                 break;
1471         case MSR_KVM_WALL_CLOCK_NEW:
1472         case MSR_KVM_WALL_CLOCK:
1473                 vcpu->kvm->arch.wall_clock = data;
1474                 kvm_write_wall_clock(vcpu->kvm, data);
1475                 break;
1476         case MSR_KVM_SYSTEM_TIME_NEW:
1477         case MSR_KVM_SYSTEM_TIME: {
1478                 if (vcpu->arch.time_page) {
1479                         kvm_release_page_dirty(vcpu->arch.time_page);
1480                         vcpu->arch.time_page = NULL;
1481                 }
1482
1483                 vcpu->arch.time = data;
1484                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1485
1486                 /* we verify if the enable bit is set... */
1487                 if (!(data & 1))
1488                         break;
1489
1490                 /* ...but clean it before doing the actual write */
1491                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1492
1493                 vcpu->arch.time_page =
1494                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1495
1496                 if (is_error_page(vcpu->arch.time_page)) {
1497                         kvm_release_page_clean(vcpu->arch.time_page);
1498                         vcpu->arch.time_page = NULL;
1499                 }
1500                 break;
1501         }
1502         case MSR_IA32_MCG_CTL:
1503         case MSR_IA32_MCG_STATUS:
1504         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1505                 return set_msr_mce(vcpu, msr, data);
1506
1507         /* Performance counters are not protected by a CPUID bit,
1508          * so we should check all of them in the generic path for the sake of
1509          * cross vendor migration.
1510          * Writing a zero into the event select MSRs disables them,
1511          * which we perfectly emulate ;-). Any other value should be at least
1512          * reported, some guests depend on them.
1513          */
1514         case MSR_P6_EVNTSEL0:
1515         case MSR_P6_EVNTSEL1:
1516         case MSR_K7_EVNTSEL0:
1517         case MSR_K7_EVNTSEL1:
1518         case MSR_K7_EVNTSEL2:
1519         case MSR_K7_EVNTSEL3:
1520                 if (data != 0)
1521                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1522                                 "0x%x data 0x%llx\n", msr, data);
1523                 break;
1524         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1525          * so we ignore writes to make it happy.
1526          */
1527         case MSR_P6_PERFCTR0:
1528         case MSR_P6_PERFCTR1:
1529         case MSR_K7_PERFCTR0:
1530         case MSR_K7_PERFCTR1:
1531         case MSR_K7_PERFCTR2:
1532         case MSR_K7_PERFCTR3:
1533                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1534                         "0x%x data 0x%llx\n", msr, data);
1535                 break;
1536         case MSR_K7_CLK_CTL:
1537                 /*
1538                  * Ignore all writes to this no longer documented MSR.
1539                  * Writes are only relevant for old K7 processors,
1540                  * all pre-dating SVM, but a recommended workaround from
1541                  * AMD for these chips. It is possible to speicify the
1542                  * affected processor models on the command line, hence
1543                  * the need to ignore the workaround.
1544                  */
1545                 break;
1546         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1547                 if (kvm_hv_msr_partition_wide(msr)) {
1548                         int r;
1549                         mutex_lock(&vcpu->kvm->lock);
1550                         r = set_msr_hyperv_pw(vcpu, msr, data);
1551                         mutex_unlock(&vcpu->kvm->lock);
1552                         return r;
1553                 } else
1554                         return set_msr_hyperv(vcpu, msr, data);
1555                 break;
1556         default:
1557                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1558                         return xen_hvm_config(vcpu, data);
1559                 if (!ignore_msrs) {
1560                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1561                                 msr, data);
1562                         return 1;
1563                 } else {
1564                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1565                                 msr, data);
1566                         break;
1567                 }
1568         }
1569         return 0;
1570 }
1571 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1572
1573
1574 /*
1575  * Reads an msr value (of 'msr_index') into 'pdata'.
1576  * Returns 0 on success, non-0 otherwise.
1577  * Assumes vcpu_load() was already called.
1578  */
1579 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1580 {
1581         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1582 }
1583
1584 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1585 {
1586         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1587
1588         if (!msr_mtrr_valid(msr))
1589                 return 1;
1590
1591         if (msr == MSR_MTRRdefType)
1592                 *pdata = vcpu->arch.mtrr_state.def_type +
1593                          (vcpu->arch.mtrr_state.enabled << 10);
1594         else if (msr == MSR_MTRRfix64K_00000)
1595                 *pdata = p[0];
1596         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1597                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1598         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1599                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1600         else if (msr == MSR_IA32_CR_PAT)
1601                 *pdata = vcpu->arch.pat;
1602         else {  /* Variable MTRRs */
1603                 int idx, is_mtrr_mask;
1604                 u64 *pt;
1605
1606                 idx = (msr - 0x200) / 2;
1607                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1608                 if (!is_mtrr_mask)
1609                         pt =
1610                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1611                 else
1612                         pt =
1613                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1614                 *pdata = *pt;
1615         }
1616
1617         return 0;
1618 }
1619
1620 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1621 {
1622         u64 data;
1623         u64 mcg_cap = vcpu->arch.mcg_cap;
1624         unsigned bank_num = mcg_cap & 0xff;
1625
1626         switch (msr) {
1627         case MSR_IA32_P5_MC_ADDR:
1628         case MSR_IA32_P5_MC_TYPE:
1629                 data = 0;
1630                 break;
1631         case MSR_IA32_MCG_CAP:
1632                 data = vcpu->arch.mcg_cap;
1633                 break;
1634         case MSR_IA32_MCG_CTL:
1635                 if (!(mcg_cap & MCG_CTL_P))
1636                         return 1;
1637                 data = vcpu->arch.mcg_ctl;
1638                 break;
1639         case MSR_IA32_MCG_STATUS:
1640                 data = vcpu->arch.mcg_status;
1641                 break;
1642         default:
1643                 if (msr >= MSR_IA32_MC0_CTL &&
1644                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1645                         u32 offset = msr - MSR_IA32_MC0_CTL;
1646                         data = vcpu->arch.mce_banks[offset];
1647                         break;
1648                 }
1649                 return 1;
1650         }
1651         *pdata = data;
1652         return 0;
1653 }
1654
1655 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1656 {
1657         u64 data = 0;
1658         struct kvm *kvm = vcpu->kvm;
1659
1660         switch (msr) {
1661         case HV_X64_MSR_GUEST_OS_ID:
1662                 data = kvm->arch.hv_guest_os_id;
1663                 break;
1664         case HV_X64_MSR_HYPERCALL:
1665                 data = kvm->arch.hv_hypercall;
1666                 break;
1667         default:
1668                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1669                 return 1;
1670         }
1671
1672         *pdata = data;
1673         return 0;
1674 }
1675
1676 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1677 {
1678         u64 data = 0;
1679
1680         switch (msr) {
1681         case HV_X64_MSR_VP_INDEX: {
1682                 int r;
1683                 struct kvm_vcpu *v;
1684                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1685                         if (v == vcpu)
1686                                 data = r;
1687                 break;
1688         }
1689         case HV_X64_MSR_EOI:
1690                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1691         case HV_X64_MSR_ICR:
1692                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1693         case HV_X64_MSR_TPR:
1694                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1695         default:
1696                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1697                 return 1;
1698         }
1699         *pdata = data;
1700         return 0;
1701 }
1702
1703 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1704 {
1705         u64 data;
1706
1707         switch (msr) {
1708         case MSR_IA32_PLATFORM_ID:
1709         case MSR_IA32_UCODE_REV:
1710         case MSR_IA32_EBL_CR_POWERON:
1711         case MSR_IA32_DEBUGCTLMSR:
1712         case MSR_IA32_LASTBRANCHFROMIP:
1713         case MSR_IA32_LASTBRANCHTOIP:
1714         case MSR_IA32_LASTINTFROMIP:
1715         case MSR_IA32_LASTINTTOIP:
1716         case MSR_K8_SYSCFG:
1717         case MSR_K7_HWCR:
1718         case MSR_VM_HSAVE_PA:
1719         case MSR_P6_PERFCTR0:
1720         case MSR_P6_PERFCTR1:
1721         case MSR_P6_EVNTSEL0:
1722         case MSR_P6_EVNTSEL1:
1723         case MSR_K7_EVNTSEL0:
1724         case MSR_K7_PERFCTR0:
1725         case MSR_K8_INT_PENDING_MSG:
1726         case MSR_AMD64_NB_CFG:
1727         case MSR_FAM10H_MMIO_CONF_BASE:
1728                 data = 0;
1729                 break;
1730         case MSR_MTRRcap:
1731                 data = 0x500 | KVM_NR_VAR_MTRR;
1732                 break;
1733         case 0x200 ... 0x2ff:
1734                 return get_msr_mtrr(vcpu, msr, pdata);
1735         case 0xcd: /* fsb frequency */
1736                 data = 3;
1737                 break;
1738                 /*
1739                  * MSR_EBC_FREQUENCY_ID
1740                  * Conservative value valid for even the basic CPU models.
1741                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1742                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1743                  * and 266MHz for model 3, or 4. Set Core Clock
1744                  * Frequency to System Bus Frequency Ratio to 1 (bits
1745                  * 31:24) even though these are only valid for CPU
1746                  * models > 2, however guests may end up dividing or
1747                  * multiplying by zero otherwise.
1748                  */
1749         case MSR_EBC_FREQUENCY_ID:
1750                 data = 1 << 24;
1751                 break;
1752         case MSR_IA32_APICBASE:
1753                 data = kvm_get_apic_base(vcpu);
1754                 break;
1755         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1756                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1757                 break;
1758         case MSR_IA32_MISC_ENABLE:
1759                 data = vcpu->arch.ia32_misc_enable_msr;
1760                 break;
1761         case MSR_IA32_PERF_STATUS:
1762                 /* TSC increment by tick */
1763                 data = 1000ULL;
1764                 /* CPU multiplier */
1765                 data |= (((uint64_t)4ULL) << 40);
1766                 break;
1767         case MSR_EFER:
1768                 data = vcpu->arch.efer;
1769                 break;
1770         case MSR_KVM_WALL_CLOCK:
1771         case MSR_KVM_WALL_CLOCK_NEW:
1772                 data = vcpu->kvm->arch.wall_clock;
1773                 break;
1774         case MSR_KVM_SYSTEM_TIME:
1775         case MSR_KVM_SYSTEM_TIME_NEW:
1776                 data = vcpu->arch.time;
1777                 break;
1778         case MSR_IA32_P5_MC_ADDR:
1779         case MSR_IA32_P5_MC_TYPE:
1780         case MSR_IA32_MCG_CAP:
1781         case MSR_IA32_MCG_CTL:
1782         case MSR_IA32_MCG_STATUS:
1783         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1784                 return get_msr_mce(vcpu, msr, pdata);
1785         case MSR_K7_CLK_CTL:
1786                 /*
1787                  * Provide expected ramp-up count for K7. All other
1788                  * are set to zero, indicating minimum divisors for
1789                  * every field.
1790                  *
1791                  * This prevents guest kernels on AMD host with CPU
1792                  * type 6, model 8 and higher from exploding due to
1793                  * the rdmsr failing.
1794                  */
1795                 data = 0x20000000;
1796                 break;
1797         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1798                 if (kvm_hv_msr_partition_wide(msr)) {
1799                         int r;
1800                         mutex_lock(&vcpu->kvm->lock);
1801                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1802                         mutex_unlock(&vcpu->kvm->lock);
1803                         return r;
1804                 } else
1805                         return get_msr_hyperv(vcpu, msr, pdata);
1806                 break;
1807         default:
1808                 if (!ignore_msrs) {
1809                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1810                         return 1;
1811                 } else {
1812                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1813                         data = 0;
1814                 }
1815                 break;
1816         }
1817         *pdata = data;
1818         return 0;
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1821
1822 /*
1823  * Read or write a bunch of msrs. All parameters are kernel addresses.
1824  *
1825  * @return number of msrs set successfully.
1826  */
1827 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1828                     struct kvm_msr_entry *entries,
1829                     int (*do_msr)(struct kvm_vcpu *vcpu,
1830                                   unsigned index, u64 *data))
1831 {
1832         int i, idx;
1833
1834         idx = srcu_read_lock(&vcpu->kvm->srcu);
1835         for (i = 0; i < msrs->nmsrs; ++i)
1836                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1837                         break;
1838         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1839
1840         return i;
1841 }
1842
1843 /*
1844  * Read or write a bunch of msrs. Parameters are user addresses.
1845  *
1846  * @return number of msrs set successfully.
1847  */
1848 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1849                   int (*do_msr)(struct kvm_vcpu *vcpu,
1850                                 unsigned index, u64 *data),
1851                   int writeback)
1852 {
1853         struct kvm_msrs msrs;
1854         struct kvm_msr_entry *entries;
1855         int r, n;
1856         unsigned size;
1857
1858         r = -EFAULT;
1859         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1860                 goto out;
1861
1862         r = -E2BIG;
1863         if (msrs.nmsrs >= MAX_IO_MSRS)
1864                 goto out;
1865
1866         r = -ENOMEM;
1867         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1868         entries = kmalloc(size, GFP_KERNEL);
1869         if (!entries)
1870                 goto out;
1871
1872         r = -EFAULT;
1873         if (copy_from_user(entries, user_msrs->entries, size))
1874                 goto out_free;
1875
1876         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1877         if (r < 0)
1878                 goto out_free;
1879
1880         r = -EFAULT;
1881         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1882                 goto out_free;
1883
1884         r = n;
1885
1886 out_free:
1887         kfree(entries);
1888 out:
1889         return r;
1890 }
1891
1892 int kvm_dev_ioctl_check_extension(long ext)
1893 {
1894         int r;
1895
1896         switch (ext) {
1897         case KVM_CAP_IRQCHIP:
1898         case KVM_CAP_HLT:
1899         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1900         case KVM_CAP_SET_TSS_ADDR:
1901         case KVM_CAP_EXT_CPUID:
1902         case KVM_CAP_CLOCKSOURCE:
1903         case KVM_CAP_PIT:
1904         case KVM_CAP_NOP_IO_DELAY:
1905         case KVM_CAP_MP_STATE:
1906         case KVM_CAP_SYNC_MMU:
1907         case KVM_CAP_REINJECT_CONTROL:
1908         case KVM_CAP_IRQ_INJECT_STATUS:
1909         case KVM_CAP_ASSIGN_DEV_IRQ:
1910         case KVM_CAP_IRQFD:
1911         case KVM_CAP_IOEVENTFD:
1912         case KVM_CAP_PIT2:
1913         case KVM_CAP_PIT_STATE2:
1914         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1915         case KVM_CAP_XEN_HVM:
1916         case KVM_CAP_ADJUST_CLOCK:
1917         case KVM_CAP_VCPU_EVENTS:
1918         case KVM_CAP_HYPERV:
1919         case KVM_CAP_HYPERV_VAPIC:
1920         case KVM_CAP_HYPERV_SPIN:
1921         case KVM_CAP_PCI_SEGMENT:
1922         case KVM_CAP_DEBUGREGS:
1923         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1924         case KVM_CAP_XSAVE:
1925                 r = 1;
1926                 break;
1927         case KVM_CAP_COALESCED_MMIO:
1928                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1929                 break;
1930         case KVM_CAP_VAPIC:
1931                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1932                 break;
1933         case KVM_CAP_NR_VCPUS:
1934                 r = KVM_MAX_VCPUS;
1935                 break;
1936         case KVM_CAP_NR_MEMSLOTS:
1937                 r = KVM_MEMORY_SLOTS;
1938                 break;
1939         case KVM_CAP_PV_MMU:    /* obsolete */
1940                 r = 0;
1941                 break;
1942         case KVM_CAP_IOMMU:
1943                 r = iommu_found();
1944                 break;
1945         case KVM_CAP_MCE:
1946                 r = KVM_MAX_MCE_BANKS;
1947                 break;
1948         case KVM_CAP_XCRS:
1949                 r = cpu_has_xsave;
1950                 break;
1951         default:
1952                 r = 0;
1953                 break;
1954         }
1955         return r;
1956
1957 }
1958
1959 long kvm_arch_dev_ioctl(struct file *filp,
1960                         unsigned int ioctl, unsigned long arg)
1961 {
1962         void __user *argp = (void __user *)arg;
1963         long r;
1964
1965         switch (ioctl) {
1966         case KVM_GET_MSR_INDEX_LIST: {
1967                 struct kvm_msr_list __user *user_msr_list = argp;
1968                 struct kvm_msr_list msr_list;
1969                 unsigned n;
1970
1971                 r = -EFAULT;
1972                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1973                         goto out;
1974                 n = msr_list.nmsrs;
1975                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1976                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1977                         goto out;
1978                 r = -E2BIG;
1979                 if (n < msr_list.nmsrs)
1980                         goto out;
1981                 r = -EFAULT;
1982                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1983                                  num_msrs_to_save * sizeof(u32)))
1984                         goto out;
1985                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1986                                  &emulated_msrs,
1987                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1988                         goto out;
1989                 r = 0;
1990                 break;
1991         }
1992         case KVM_GET_SUPPORTED_CPUID: {
1993                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1994                 struct kvm_cpuid2 cpuid;
1995
1996                 r = -EFAULT;
1997                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1998                         goto out;
1999                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2000                                                       cpuid_arg->entries);
2001                 if (r)
2002                         goto out;
2003
2004                 r = -EFAULT;
2005                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2006                         goto out;
2007                 r = 0;
2008                 break;
2009         }
2010         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2011                 u64 mce_cap;
2012
2013                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2014                 r = -EFAULT;
2015                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2016                         goto out;
2017                 r = 0;
2018                 break;
2019         }
2020         default:
2021                 r = -EINVAL;
2022         }
2023 out:
2024         return r;
2025 }
2026
2027 static void wbinvd_ipi(void *garbage)
2028 {
2029         wbinvd();
2030 }
2031
2032 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2033 {
2034         return vcpu->kvm->arch.iommu_domain &&
2035                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2036 }
2037
2038 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2039 {
2040         /* Address WBINVD may be executed by guest */
2041         if (need_emulate_wbinvd(vcpu)) {
2042                 if (kvm_x86_ops->has_wbinvd_exit())
2043                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2044                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2045                         smp_call_function_single(vcpu->cpu,
2046                                         wbinvd_ipi, NULL, 1);
2047         }
2048
2049         kvm_x86_ops->vcpu_load(vcpu, cpu);
2050         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2051                 /* Make sure TSC doesn't go backwards */
2052                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2053                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2054                 if (tsc_delta < 0)
2055                         mark_tsc_unstable("KVM discovered backwards TSC");
2056                 if (check_tsc_unstable()) {
2057                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2058                         vcpu->arch.tsc_catchup = 1;
2059                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2060                 }
2061                 if (vcpu->cpu != cpu)
2062                         kvm_migrate_timers(vcpu);
2063                 vcpu->cpu = cpu;
2064         }
2065 }
2066
2067 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2068 {
2069         kvm_x86_ops->vcpu_put(vcpu);
2070         kvm_put_guest_fpu(vcpu);
2071         vcpu->arch.last_host_tsc = native_read_tsc();
2072 }
2073
2074 static int is_efer_nx(void)
2075 {
2076         unsigned long long efer = 0;
2077
2078         rdmsrl_safe(MSR_EFER, &efer);
2079         return efer & EFER_NX;
2080 }
2081
2082 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2083 {
2084         int i;
2085         struct kvm_cpuid_entry2 *e, *entry;
2086
2087         entry = NULL;
2088         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2089                 e = &vcpu->arch.cpuid_entries[i];
2090                 if (e->function == 0x80000001) {
2091                         entry = e;
2092                         break;
2093                 }
2094         }
2095         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2096                 entry->edx &= ~(1 << 20);
2097                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2098         }
2099 }
2100
2101 /* when an old userspace process fills a new kernel module */
2102 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2103                                     struct kvm_cpuid *cpuid,
2104                                     struct kvm_cpuid_entry __user *entries)
2105 {
2106         int r, i;
2107         struct kvm_cpuid_entry *cpuid_entries;
2108
2109         r = -E2BIG;
2110         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2111                 goto out;
2112         r = -ENOMEM;
2113         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2114         if (!cpuid_entries)
2115                 goto out;
2116         r = -EFAULT;
2117         if (copy_from_user(cpuid_entries, entries,
2118                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2119                 goto out_free;
2120         for (i = 0; i < cpuid->nent; i++) {
2121                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2122                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2123                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2124                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2125                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2126                 vcpu->arch.cpuid_entries[i].index = 0;
2127                 vcpu->arch.cpuid_entries[i].flags = 0;
2128                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2129                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2130                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2131         }
2132         vcpu->arch.cpuid_nent = cpuid->nent;
2133         cpuid_fix_nx_cap(vcpu);
2134         r = 0;
2135         kvm_apic_set_version(vcpu);
2136         kvm_x86_ops->cpuid_update(vcpu);
2137         update_cpuid(vcpu);
2138
2139 out_free:
2140         vfree(cpuid_entries);
2141 out:
2142         return r;
2143 }
2144
2145 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2146                                      struct kvm_cpuid2 *cpuid,
2147                                      struct kvm_cpuid_entry2 __user *entries)
2148 {
2149         int r;
2150
2151         r = -E2BIG;
2152         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2153                 goto out;
2154         r = -EFAULT;
2155         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2156                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2157                 goto out;
2158         vcpu->arch.cpuid_nent = cpuid->nent;
2159         kvm_apic_set_version(vcpu);
2160         kvm_x86_ops->cpuid_update(vcpu);
2161         update_cpuid(vcpu);
2162         return 0;
2163
2164 out:
2165         return r;
2166 }
2167
2168 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2169                                      struct kvm_cpuid2 *cpuid,
2170                                      struct kvm_cpuid_entry2 __user *entries)
2171 {
2172         int r;
2173
2174         r = -E2BIG;
2175         if (cpuid->nent < vcpu->arch.cpuid_nent)
2176                 goto out;
2177         r = -EFAULT;
2178         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2179                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2180                 goto out;
2181         return 0;
2182
2183 out:
2184         cpuid->nent = vcpu->arch.cpuid_nent;
2185         return r;
2186 }
2187
2188 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2189                            u32 index)
2190 {
2191         entry->function = function;
2192         entry->index = index;
2193         cpuid_count(entry->function, entry->index,
2194                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2195         entry->flags = 0;
2196 }
2197
2198 #define F(x) bit(X86_FEATURE_##x)
2199
2200 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2201                          u32 index, int *nent, int maxnent)
2202 {
2203         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2204 #ifdef CONFIG_X86_64
2205         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2206                                 ? F(GBPAGES) : 0;
2207         unsigned f_lm = F(LM);
2208 #else
2209         unsigned f_gbpages = 0;
2210         unsigned f_lm = 0;
2211 #endif
2212         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2213
2214         /* cpuid 1.edx */
2215         const u32 kvm_supported_word0_x86_features =
2216                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2217                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2218                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2219                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2220                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2221                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2222                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2223                 0 /* HTT, TM, Reserved, PBE */;
2224         /* cpuid 0x80000001.edx */
2225         const u32 kvm_supported_word1_x86_features =
2226                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2227                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2228                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2229                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2230                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2231                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2232                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2233                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2234         /* cpuid 1.ecx */
2235         const u32 kvm_supported_word4_x86_features =
2236                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2237                 0 /* DS-CPL, VMX, SMX, EST */ |
2238                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2239                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2240                 0 /* Reserved, DCA */ | F(XMM4_1) |
2241                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2242                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2243                 F(F16C);
2244         /* cpuid 0x80000001.ecx */
2245         const u32 kvm_supported_word6_x86_features =
2246                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2247                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2248                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2249                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2250
2251         /* all calls to cpuid_count() should be made on the same cpu */
2252         get_cpu();
2253         do_cpuid_1_ent(entry, function, index);
2254         ++*nent;
2255
2256         switch (function) {
2257         case 0:
2258                 entry->eax = min(entry->eax, (u32)0xd);
2259                 break;
2260         case 1:
2261                 entry->edx &= kvm_supported_word0_x86_features;
2262                 entry->ecx &= kvm_supported_word4_x86_features;
2263                 /* we support x2apic emulation even if host does not support
2264                  * it since we emulate x2apic in software */
2265                 entry->ecx |= F(X2APIC);
2266                 break;
2267         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2268          * may return different values. This forces us to get_cpu() before
2269          * issuing the first command, and also to emulate this annoying behavior
2270          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2271         case 2: {
2272                 int t, times = entry->eax & 0xff;
2273
2274                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2275                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2276                 for (t = 1; t < times && *nent < maxnent; ++t) {
2277                         do_cpuid_1_ent(&entry[t], function, 0);
2278                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2279                         ++*nent;
2280                 }
2281                 break;
2282         }
2283         /* function 4 and 0xb have additional index. */
2284         case 4: {
2285                 int i, cache_type;
2286
2287                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2288                 /* read more entries until cache_type is zero */
2289                 for (i = 1; *nent < maxnent; ++i) {
2290                         cache_type = entry[i - 1].eax & 0x1f;
2291                         if (!cache_type)
2292                                 break;
2293                         do_cpuid_1_ent(&entry[i], function, i);
2294                         entry[i].flags |=
2295                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2296                         ++*nent;
2297                 }
2298                 break;
2299         }
2300         case 0xb: {
2301                 int i, level_type;
2302
2303                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2304                 /* read more entries until level_type is zero */
2305                 for (i = 1; *nent < maxnent; ++i) {
2306                         level_type = entry[i - 1].ecx & 0xff00;
2307                         if (!level_type)
2308                                 break;
2309                         do_cpuid_1_ent(&entry[i], function, i);
2310                         entry[i].flags |=
2311                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2312                         ++*nent;
2313                 }
2314                 break;
2315         }
2316         case 0xd: {
2317                 int i;
2318
2319                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2320                 for (i = 1; *nent < maxnent; ++i) {
2321                         if (entry[i - 1].eax == 0 && i != 2)
2322                                 break;
2323                         do_cpuid_1_ent(&entry[i], function, i);
2324                         entry[i].flags |=
2325                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2326                         ++*nent;
2327                 }
2328                 break;
2329         }
2330         case KVM_CPUID_SIGNATURE: {
2331                 char signature[12] = "KVMKVMKVM\0\0";
2332                 u32 *sigptr = (u32 *)signature;
2333                 entry->eax = 0;
2334                 entry->ebx = sigptr[0];
2335                 entry->ecx = sigptr[1];
2336                 entry->edx = sigptr[2];
2337                 break;
2338         }
2339         case KVM_CPUID_FEATURES:
2340                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2341                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2342                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2343                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2344                 entry->ebx = 0;
2345                 entry->ecx = 0;
2346                 entry->edx = 0;
2347                 break;
2348         case 0x80000000:
2349                 entry->eax = min(entry->eax, 0x8000001a);
2350                 break;
2351         case 0x80000001:
2352                 entry->edx &= kvm_supported_word1_x86_features;
2353                 entry->ecx &= kvm_supported_word6_x86_features;
2354                 break;
2355         }
2356
2357         kvm_x86_ops->set_supported_cpuid(function, entry);
2358
2359         put_cpu();
2360 }
2361
2362 #undef F
2363
2364 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2365                                      struct kvm_cpuid_entry2 __user *entries)
2366 {
2367         struct kvm_cpuid_entry2 *cpuid_entries;
2368         int limit, nent = 0, r = -E2BIG;
2369         u32 func;
2370
2371         if (cpuid->nent < 1)
2372                 goto out;
2373         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2374                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2375         r = -ENOMEM;
2376         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2377         if (!cpuid_entries)
2378                 goto out;
2379
2380         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2381         limit = cpuid_entries[0].eax;
2382         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2383                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2384                              &nent, cpuid->nent);
2385         r = -E2BIG;
2386         if (nent >= cpuid->nent)
2387                 goto out_free;
2388
2389         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2390         limit = cpuid_entries[nent - 1].eax;
2391         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2392                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2393                              &nent, cpuid->nent);
2394
2395
2396
2397         r = -E2BIG;
2398         if (nent >= cpuid->nent)
2399                 goto out_free;
2400
2401         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2402                      cpuid->nent);
2403
2404         r = -E2BIG;
2405         if (nent >= cpuid->nent)
2406                 goto out_free;
2407
2408         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2409                      cpuid->nent);
2410
2411         r = -E2BIG;
2412         if (nent >= cpuid->nent)
2413                 goto out_free;
2414
2415         r = -EFAULT;
2416         if (copy_to_user(entries, cpuid_entries,
2417                          nent * sizeof(struct kvm_cpuid_entry2)))
2418                 goto out_free;
2419         cpuid->nent = nent;
2420         r = 0;
2421
2422 out_free:
2423         vfree(cpuid_entries);
2424 out:
2425         return r;
2426 }
2427
2428 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2429                                     struct kvm_lapic_state *s)
2430 {
2431         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2432
2433         return 0;
2434 }
2435
2436 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2437                                     struct kvm_lapic_state *s)
2438 {
2439         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2440         kvm_apic_post_state_restore(vcpu);
2441         update_cr8_intercept(vcpu);
2442
2443         return 0;
2444 }
2445
2446 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2447                                     struct kvm_interrupt *irq)
2448 {
2449         if (irq->irq < 0 || irq->irq >= 256)
2450                 return -EINVAL;
2451         if (irqchip_in_kernel(vcpu->kvm))
2452                 return -ENXIO;
2453
2454         kvm_queue_interrupt(vcpu, irq->irq, false);
2455         kvm_make_request(KVM_REQ_EVENT, vcpu);
2456
2457         return 0;
2458 }
2459
2460 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2461 {
2462         kvm_inject_nmi(vcpu);
2463
2464         return 0;
2465 }
2466
2467 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2468                                            struct kvm_tpr_access_ctl *tac)
2469 {
2470         if (tac->flags)
2471                 return -EINVAL;
2472         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2473         return 0;
2474 }
2475
2476 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2477                                         u64 mcg_cap)
2478 {
2479         int r;
2480         unsigned bank_num = mcg_cap & 0xff, bank;
2481
2482         r = -EINVAL;
2483         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2484                 goto out;
2485         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2486                 goto out;
2487         r = 0;
2488         vcpu->arch.mcg_cap = mcg_cap;
2489         /* Init IA32_MCG_CTL to all 1s */
2490         if (mcg_cap & MCG_CTL_P)
2491                 vcpu->arch.mcg_ctl = ~(u64)0;
2492         /* Init IA32_MCi_CTL to all 1s */
2493         for (bank = 0; bank < bank_num; bank++)
2494                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2495 out:
2496         return r;
2497 }
2498
2499 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2500                                       struct kvm_x86_mce *mce)
2501 {
2502         u64 mcg_cap = vcpu->arch.mcg_cap;
2503         unsigned bank_num = mcg_cap & 0xff;
2504         u64 *banks = vcpu->arch.mce_banks;
2505
2506         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2507                 return -EINVAL;
2508         /*
2509          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2510          * reporting is disabled
2511          */
2512         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2513             vcpu->arch.mcg_ctl != ~(u64)0)
2514                 return 0;
2515         banks += 4 * mce->bank;
2516         /*
2517          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2518          * reporting is disabled for the bank
2519          */
2520         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2521                 return 0;
2522         if (mce->status & MCI_STATUS_UC) {
2523                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2524                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2525                         printk(KERN_DEBUG "kvm: set_mce: "
2526                                "injects mce exception while "
2527                                "previous one is in progress!\n");
2528                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2529                         return 0;
2530                 }
2531                 if (banks[1] & MCI_STATUS_VAL)
2532                         mce->status |= MCI_STATUS_OVER;
2533                 banks[2] = mce->addr;
2534                 banks[3] = mce->misc;
2535                 vcpu->arch.mcg_status = mce->mcg_status;
2536                 banks[1] = mce->status;
2537                 kvm_queue_exception(vcpu, MC_VECTOR);
2538         } else if (!(banks[1] & MCI_STATUS_VAL)
2539                    || !(banks[1] & MCI_STATUS_UC)) {
2540                 if (banks[1] & MCI_STATUS_VAL)
2541                         mce->status |= MCI_STATUS_OVER;
2542                 banks[2] = mce->addr;
2543                 banks[3] = mce->misc;
2544                 banks[1] = mce->status;
2545         } else
2546                 banks[1] |= MCI_STATUS_OVER;
2547         return 0;
2548 }
2549
2550 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2551                                                struct kvm_vcpu_events *events)
2552 {
2553         events->exception.injected =
2554                 vcpu->arch.exception.pending &&
2555                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2556         events->exception.nr = vcpu->arch.exception.nr;
2557         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2558         events->exception.pad = 0;
2559         events->exception.error_code = vcpu->arch.exception.error_code;
2560
2561         events->interrupt.injected =
2562                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2563         events->interrupt.nr = vcpu->arch.interrupt.nr;
2564         events->interrupt.soft = 0;
2565         events->interrupt.shadow =
2566                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2567                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2568
2569         events->nmi.injected = vcpu->arch.nmi_injected;
2570         events->nmi.pending = vcpu->arch.nmi_pending;
2571         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2572         events->nmi.pad = 0;
2573
2574         events->sipi_vector = vcpu->arch.sipi_vector;
2575
2576         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2577                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2578                          | KVM_VCPUEVENT_VALID_SHADOW);
2579         memset(&events->reserved, 0, sizeof(events->reserved));
2580 }
2581
2582 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2583                                               struct kvm_vcpu_events *events)
2584 {
2585         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2586                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2587                               | KVM_VCPUEVENT_VALID_SHADOW))
2588                 return -EINVAL;
2589
2590         vcpu->arch.exception.pending = events->exception.injected;
2591         vcpu->arch.exception.nr = events->exception.nr;
2592         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2593         vcpu->arch.exception.error_code = events->exception.error_code;
2594
2595         vcpu->arch.interrupt.pending = events->interrupt.injected;
2596         vcpu->arch.interrupt.nr = events->interrupt.nr;
2597         vcpu->arch.interrupt.soft = events->interrupt.soft;
2598         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2599                 kvm_pic_clear_isr_ack(vcpu->kvm);
2600         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2601                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2602                                                   events->interrupt.shadow);
2603
2604         vcpu->arch.nmi_injected = events->nmi.injected;
2605         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2606                 vcpu->arch.nmi_pending = events->nmi.pending;
2607         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2608
2609         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2610                 vcpu->arch.sipi_vector = events->sipi_vector;
2611
2612         kvm_make_request(KVM_REQ_EVENT, vcpu);
2613
2614         return 0;
2615 }
2616
2617 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2618                                              struct kvm_debugregs *dbgregs)
2619 {
2620         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2621         dbgregs->dr6 = vcpu->arch.dr6;
2622         dbgregs->dr7 = vcpu->arch.dr7;
2623         dbgregs->flags = 0;
2624         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2625 }
2626
2627 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2628                                             struct kvm_debugregs *dbgregs)
2629 {
2630         if (dbgregs->flags)
2631                 return -EINVAL;
2632
2633         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2634         vcpu->arch.dr6 = dbgregs->dr6;
2635         vcpu->arch.dr7 = dbgregs->dr7;
2636
2637         return 0;
2638 }
2639
2640 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2641                                          struct kvm_xsave *guest_xsave)
2642 {
2643         if (cpu_has_xsave)
2644                 memcpy(guest_xsave->region,
2645                         &vcpu->arch.guest_fpu.state->xsave,
2646                         xstate_size);
2647         else {
2648                 memcpy(guest_xsave->region,
2649                         &vcpu->arch.guest_fpu.state->fxsave,
2650                         sizeof(struct i387_fxsave_struct));
2651                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2652                         XSTATE_FPSSE;
2653         }
2654 }
2655
2656 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2657                                         struct kvm_xsave *guest_xsave)
2658 {
2659         u64 xstate_bv =
2660                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2661
2662         if (cpu_has_xsave)
2663                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2664                         guest_xsave->region, xstate_size);
2665         else {
2666                 if (xstate_bv & ~XSTATE_FPSSE)
2667                         return -EINVAL;
2668                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2669                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2670         }
2671         return 0;
2672 }
2673
2674 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2675                                         struct kvm_xcrs *guest_xcrs)
2676 {
2677         if (!cpu_has_xsave) {
2678                 guest_xcrs->nr_xcrs = 0;
2679                 return;
2680         }
2681
2682         guest_xcrs->nr_xcrs = 1;
2683         guest_xcrs->flags = 0;
2684         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2685         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2686 }
2687
2688 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2689                                        struct kvm_xcrs *guest_xcrs)
2690 {
2691         int i, r = 0;
2692
2693         if (!cpu_has_xsave)
2694                 return -EINVAL;
2695
2696         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2697                 return -EINVAL;
2698
2699         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2700                 /* Only support XCR0 currently */
2701                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2702                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2703                                 guest_xcrs->xcrs[0].value);
2704                         break;
2705                 }
2706         if (r)
2707                 r = -EINVAL;
2708         return r;
2709 }
2710
2711 long kvm_arch_vcpu_ioctl(struct file *filp,
2712                          unsigned int ioctl, unsigned long arg)
2713 {
2714         struct kvm_vcpu *vcpu = filp->private_data;
2715         void __user *argp = (void __user *)arg;
2716         int r;
2717         union {
2718                 struct kvm_lapic_state *lapic;
2719                 struct kvm_xsave *xsave;
2720                 struct kvm_xcrs *xcrs;
2721                 void *buffer;
2722         } u;
2723
2724         u.buffer = NULL;
2725         switch (ioctl) {
2726         case KVM_GET_LAPIC: {
2727                 r = -EINVAL;
2728                 if (!vcpu->arch.apic)
2729                         goto out;
2730                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2731
2732                 r = -ENOMEM;
2733                 if (!u.lapic)
2734                         goto out;
2735                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2736                 if (r)
2737                         goto out;
2738                 r = -EFAULT;
2739                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2740                         goto out;
2741                 r = 0;
2742                 break;
2743         }
2744         case KVM_SET_LAPIC: {
2745                 r = -EINVAL;
2746                 if (!vcpu->arch.apic)
2747                         goto out;
2748                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2749                 r = -ENOMEM;
2750                 if (!u.lapic)
2751                         goto out;
2752                 r = -EFAULT;
2753                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2754                         goto out;
2755                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2756                 if (r)
2757                         goto out;
2758                 r = 0;
2759                 break;
2760         }
2761         case KVM_INTERRUPT: {
2762                 struct kvm_interrupt irq;
2763
2764                 r = -EFAULT;
2765                 if (copy_from_user(&irq, argp, sizeof irq))
2766                         goto out;
2767                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2768                 if (r)
2769                         goto out;
2770                 r = 0;
2771                 break;
2772         }
2773         case KVM_NMI: {
2774                 r = kvm_vcpu_ioctl_nmi(vcpu);
2775                 if (r)
2776                         goto out;
2777                 r = 0;
2778                 break;
2779         }
2780         case KVM_SET_CPUID: {
2781                 struct kvm_cpuid __user *cpuid_arg = argp;
2782                 struct kvm_cpuid cpuid;
2783
2784                 r = -EFAULT;
2785                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2786                         goto out;
2787                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2788                 if (r)
2789                         goto out;
2790                 break;
2791         }
2792         case KVM_SET_CPUID2: {
2793                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2794                 struct kvm_cpuid2 cpuid;
2795
2796                 r = -EFAULT;
2797                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2798                         goto out;
2799                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2800                                               cpuid_arg->entries);
2801                 if (r)
2802                         goto out;
2803                 break;
2804         }
2805         case KVM_GET_CPUID2: {
2806                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2807                 struct kvm_cpuid2 cpuid;
2808
2809                 r = -EFAULT;
2810                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2811                         goto out;
2812                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2813                                               cpuid_arg->entries);
2814                 if (r)
2815                         goto out;
2816                 r = -EFAULT;
2817                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2818                         goto out;
2819                 r = 0;
2820                 break;
2821         }
2822         case KVM_GET_MSRS:
2823                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2824                 break;
2825         case KVM_SET_MSRS:
2826                 r = msr_io(vcpu, argp, do_set_msr, 0);
2827                 break;
2828         case KVM_TPR_ACCESS_REPORTING: {
2829                 struct kvm_tpr_access_ctl tac;
2830
2831                 r = -EFAULT;
2832                 if (copy_from_user(&tac, argp, sizeof tac))
2833                         goto out;
2834                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2835                 if (r)
2836                         goto out;
2837                 r = -EFAULT;
2838                 if (copy_to_user(argp, &tac, sizeof tac))
2839                         goto out;
2840                 r = 0;
2841                 break;
2842         };
2843         case KVM_SET_VAPIC_ADDR: {
2844                 struct kvm_vapic_addr va;
2845
2846                 r = -EINVAL;
2847                 if (!irqchip_in_kernel(vcpu->kvm))
2848                         goto out;
2849                 r = -EFAULT;
2850                 if (copy_from_user(&va, argp, sizeof va))
2851                         goto out;
2852                 r = 0;
2853                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2854                 break;
2855         }
2856         case KVM_X86_SETUP_MCE: {
2857                 u64 mcg_cap;
2858
2859                 r = -EFAULT;
2860                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2861                         goto out;
2862                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2863                 break;
2864         }
2865         case KVM_X86_SET_MCE: {
2866                 struct kvm_x86_mce mce;
2867
2868                 r = -EFAULT;
2869                 if (copy_from_user(&mce, argp, sizeof mce))
2870                         goto out;
2871                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2872                 break;
2873         }
2874         case KVM_GET_VCPU_EVENTS: {
2875                 struct kvm_vcpu_events events;
2876
2877                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2878
2879                 r = -EFAULT;
2880                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2881                         break;
2882                 r = 0;
2883                 break;
2884         }
2885         case KVM_SET_VCPU_EVENTS: {
2886                 struct kvm_vcpu_events events;
2887
2888                 r = -EFAULT;
2889                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2890                         break;
2891
2892                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2893                 break;
2894         }
2895         case KVM_GET_DEBUGREGS: {
2896                 struct kvm_debugregs dbgregs;
2897
2898                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2899
2900                 r = -EFAULT;
2901                 if (copy_to_user(argp, &dbgregs,
2902                                  sizeof(struct kvm_debugregs)))
2903                         break;
2904                 r = 0;
2905                 break;
2906         }
2907         case KVM_SET_DEBUGREGS: {
2908                 struct kvm_debugregs dbgregs;
2909
2910                 r = -EFAULT;
2911                 if (copy_from_user(&dbgregs, argp,
2912                                    sizeof(struct kvm_debugregs)))
2913                         break;
2914
2915                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2916                 break;
2917         }
2918         case KVM_GET_XSAVE: {
2919                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2920                 r = -ENOMEM;
2921                 if (!u.xsave)
2922                         break;
2923
2924                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2925
2926                 r = -EFAULT;
2927                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2928                         break;
2929                 r = 0;
2930                 break;
2931         }
2932         case KVM_SET_XSAVE: {
2933                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2934                 r = -ENOMEM;
2935                 if (!u.xsave)
2936                         break;
2937
2938                 r = -EFAULT;
2939                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2940                         break;
2941
2942                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2943                 break;
2944         }
2945         case KVM_GET_XCRS: {
2946                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2947                 r = -ENOMEM;
2948                 if (!u.xcrs)
2949                         break;
2950
2951                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2952
2953                 r = -EFAULT;
2954                 if (copy_to_user(argp, u.xcrs,
2955                                  sizeof(struct kvm_xcrs)))
2956                         break;
2957                 r = 0;
2958                 break;
2959         }
2960         case KVM_SET_XCRS: {
2961                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2962                 r = -ENOMEM;
2963                 if (!u.xcrs)
2964                         break;
2965
2966                 r = -EFAULT;
2967                 if (copy_from_user(u.xcrs, argp,
2968                                    sizeof(struct kvm_xcrs)))
2969                         break;
2970
2971                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2972                 break;
2973         }
2974         default:
2975                 r = -EINVAL;
2976         }
2977 out:
2978         kfree(u.buffer);
2979         return r;
2980 }
2981
2982 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2983 {
2984         int ret;
2985
2986         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2987                 return -1;
2988         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2989         return ret;
2990 }
2991
2992 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2993                                               u64 ident_addr)
2994 {
2995         kvm->arch.ept_identity_map_addr = ident_addr;
2996         return 0;
2997 }
2998
2999 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3000                                           u32 kvm_nr_mmu_pages)
3001 {
3002         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3003                 return -EINVAL;
3004
3005         mutex_lock(&kvm->slots_lock);
3006         spin_lock(&kvm->mmu_lock);
3007
3008         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3009         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3010
3011         spin_unlock(&kvm->mmu_lock);
3012         mutex_unlock(&kvm->slots_lock);
3013         return 0;
3014 }
3015
3016 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3017 {
3018         return kvm->arch.n_max_mmu_pages;
3019 }
3020
3021 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3022 {
3023         int r;
3024
3025         r = 0;
3026         switch (chip->chip_id) {
3027         case KVM_IRQCHIP_PIC_MASTER:
3028                 memcpy(&chip->chip.pic,
3029                         &pic_irqchip(kvm)->pics[0],
3030                         sizeof(struct kvm_pic_state));
3031                 break;
3032         case KVM_IRQCHIP_PIC_SLAVE:
3033                 memcpy(&chip->chip.pic,
3034                         &pic_irqchip(kvm)->pics[1],
3035                         sizeof(struct kvm_pic_state));
3036                 break;
3037         case KVM_IRQCHIP_IOAPIC:
3038                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3039                 break;
3040         default:
3041                 r = -EINVAL;
3042                 break;
3043         }
3044         return r;
3045 }
3046
3047 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3048 {
3049         int r;
3050
3051         r = 0;
3052         switch (chip->chip_id) {
3053         case KVM_IRQCHIP_PIC_MASTER:
3054                 spin_lock(&pic_irqchip(kvm)->lock);
3055                 memcpy(&pic_irqchip(kvm)->pics[0],
3056                         &chip->chip.pic,
3057                         sizeof(struct kvm_pic_state));
3058                 spin_unlock(&pic_irqchip(kvm)->lock);
3059                 break;
3060         case KVM_IRQCHIP_PIC_SLAVE:
3061                 spin_lock(&pic_irqchip(kvm)->lock);
3062                 memcpy(&pic_irqchip(kvm)->pics[1],
3063                         &chip->chip.pic,
3064                         sizeof(struct kvm_pic_state));
3065                 spin_unlock(&pic_irqchip(kvm)->lock);
3066                 break;
3067         case KVM_IRQCHIP_IOAPIC:
3068                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3069                 break;
3070         default:
3071                 r = -EINVAL;
3072                 break;
3073         }
3074         kvm_pic_update_irq(pic_irqchip(kvm));
3075         return r;
3076 }
3077
3078 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3079 {
3080         int r = 0;
3081
3082         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3083         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3084         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3085         return r;
3086 }
3087
3088 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3089 {
3090         int r = 0;
3091
3092         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3093         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3094         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3095         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3096         return r;
3097 }
3098
3099 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3100 {
3101         int r = 0;
3102
3103         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3104         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3105                 sizeof(ps->channels));
3106         ps->flags = kvm->arch.vpit->pit_state.flags;
3107         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3108         memset(&ps->reserved, 0, sizeof(ps->reserved));
3109         return r;
3110 }
3111
3112 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3113 {
3114         int r = 0, start = 0;
3115         u32 prev_legacy, cur_legacy;
3116         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3117         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3118         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3119         if (!prev_legacy && cur_legacy)
3120                 start = 1;
3121         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3122                sizeof(kvm->arch.vpit->pit_state.channels));
3123         kvm->arch.vpit->pit_state.flags = ps->flags;
3124         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3125         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3126         return r;
3127 }
3128
3129 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3130                                  struct kvm_reinject_control *control)
3131 {
3132         if (!kvm->arch.vpit)
3133                 return -ENXIO;
3134         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3135         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3136         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3137         return 0;
3138 }
3139
3140 /*
3141  * Get (and clear) the dirty memory log for a memory slot.
3142  */
3143 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3144                                       struct kvm_dirty_log *log)
3145 {
3146         int r, i;
3147         struct kvm_memory_slot *memslot;
3148         unsigned long n;
3149         unsigned long is_dirty = 0;
3150
3151         mutex_lock(&kvm->slots_lock);
3152
3153         r = -EINVAL;
3154         if (log->slot >= KVM_MEMORY_SLOTS)
3155                 goto out;
3156
3157         memslot = &kvm->memslots->memslots[log->slot];
3158         r = -ENOENT;
3159         if (!memslot->dirty_bitmap)
3160                 goto out;
3161
3162         n = kvm_dirty_bitmap_bytes(memslot);
3163
3164         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3165                 is_dirty = memslot->dirty_bitmap[i];
3166
3167         /* If nothing is dirty, don't bother messing with page tables. */
3168         if (is_dirty) {
3169                 struct kvm_memslots *slots, *old_slots;
3170                 unsigned long *dirty_bitmap;
3171
3172                 r = -ENOMEM;
3173                 dirty_bitmap = vmalloc(n);
3174                 if (!dirty_bitmap)
3175                         goto out;
3176                 memset(dirty_bitmap, 0, n);
3177
3178                 r = -ENOMEM;
3179                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3180                 if (!slots) {
3181                         vfree(dirty_bitmap);
3182                         goto out;
3183                 }
3184                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3185                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3186
3187                 old_slots = kvm->memslots;
3188                 rcu_assign_pointer(kvm->memslots, slots);
3189                 synchronize_srcu_expedited(&kvm->srcu);
3190                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3191                 kfree(old_slots);
3192
3193                 spin_lock(&kvm->mmu_lock);
3194                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3195                 spin_unlock(&kvm->mmu_lock);
3196
3197                 r = -EFAULT;
3198                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
3199                         vfree(dirty_bitmap);
3200                         goto out;
3201                 }
3202                 vfree(dirty_bitmap);
3203         } else {
3204                 r = -EFAULT;
3205                 if (clear_user(log->dirty_bitmap, n))
3206                         goto out;
3207         }
3208
3209         r = 0;
3210 out:
3211         mutex_unlock(&kvm->slots_lock);
3212         return r;
3213 }
3214
3215 long kvm_arch_vm_ioctl(struct file *filp,
3216                        unsigned int ioctl, unsigned long arg)
3217 {
3218         struct kvm *kvm = filp->private_data;
3219         void __user *argp = (void __user *)arg;
3220         int r = -ENOTTY;
3221         /*
3222          * This union makes it completely explicit to gcc-3.x
3223          * that these two variables' stack usage should be
3224          * combined, not added together.
3225          */
3226         union {
3227                 struct kvm_pit_state ps;
3228                 struct kvm_pit_state2 ps2;
3229                 struct kvm_pit_config pit_config;
3230         } u;
3231
3232         switch (ioctl) {
3233         case KVM_SET_TSS_ADDR:
3234                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3235                 if (r < 0)
3236                         goto out;
3237                 break;
3238         case KVM_SET_IDENTITY_MAP_ADDR: {
3239                 u64 ident_addr;
3240
3241                 r = -EFAULT;
3242                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3243                         goto out;
3244                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3245                 if (r < 0)
3246                         goto out;
3247                 break;
3248         }
3249         case KVM_SET_NR_MMU_PAGES:
3250                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3251                 if (r)
3252                         goto out;
3253                 break;
3254         case KVM_GET_NR_MMU_PAGES:
3255                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3256                 break;
3257         case KVM_CREATE_IRQCHIP: {
3258                 struct kvm_pic *vpic;
3259
3260                 mutex_lock(&kvm->lock);
3261                 r = -EEXIST;
3262                 if (kvm->arch.vpic)
3263                         goto create_irqchip_unlock;
3264                 r = -ENOMEM;
3265                 vpic = kvm_create_pic(kvm);
3266                 if (vpic) {
3267                         r = kvm_ioapic_init(kvm);
3268                         if (r) {
3269                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3270                                                           &vpic->dev);
3271                                 kfree(vpic);
3272                                 goto create_irqchip_unlock;
3273                         }
3274                 } else
3275                         goto create_irqchip_unlock;
3276                 smp_wmb();
3277                 kvm->arch.vpic = vpic;
3278                 smp_wmb();
3279                 r = kvm_setup_default_irq_routing(kvm);
3280                 if (r) {
3281                         mutex_lock(&kvm->irq_lock);
3282                         kvm_ioapic_destroy(kvm);
3283                         kvm_destroy_pic(kvm);
3284                         mutex_unlock(&kvm->irq_lock);
3285                 }
3286         create_irqchip_unlock:
3287                 mutex_unlock(&kvm->lock);
3288                 break;
3289         }
3290         case KVM_CREATE_PIT:
3291                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3292                 goto create_pit;
3293         case KVM_CREATE_PIT2:
3294                 r = -EFAULT;
3295                 if (copy_from_user(&u.pit_config, argp,
3296                                    sizeof(struct kvm_pit_config)))
3297                         goto out;
3298         create_pit:
3299                 mutex_lock(&kvm->slots_lock);
3300                 r = -EEXIST;
3301                 if (kvm->arch.vpit)
3302                         goto create_pit_unlock;
3303                 r = -ENOMEM;
3304                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3305                 if (kvm->arch.vpit)
3306                         r = 0;
3307         create_pit_unlock:
3308                 mutex_unlock(&kvm->slots_lock);
3309                 break;
3310         case KVM_IRQ_LINE_STATUS:
3311         case KVM_IRQ_LINE: {
3312                 struct kvm_irq_level irq_event;
3313
3314                 r = -EFAULT;
3315                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3316                         goto out;
3317                 r = -ENXIO;
3318                 if (irqchip_in_kernel(kvm)) {
3319                         __s32 status;
3320                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3321                                         irq_event.irq, irq_event.level);
3322                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3323                                 r = -EFAULT;
3324                                 irq_event.status = status;
3325                                 if (copy_to_user(argp, &irq_event,
3326                                                         sizeof irq_event))
3327                                         goto out;
3328                         }
3329                         r = 0;
3330                 }
3331                 break;
3332         }
3333         case KVM_GET_IRQCHIP: {
3334                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3335                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3336
3337                 r = -ENOMEM;
3338                 if (!chip)
3339                         goto out;
3340                 r = -EFAULT;
3341                 if (copy_from_user(chip, argp, sizeof *chip))
3342                         goto get_irqchip_out;
3343                 r = -ENXIO;
3344                 if (!irqchip_in_kernel(kvm))
3345                         goto get_irqchip_out;
3346                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3347                 if (r)
3348                         goto get_irqchip_out;
3349                 r = -EFAULT;
3350                 if (copy_to_user(argp, chip, sizeof *chip))
3351                         goto get_irqchip_out;
3352                 r = 0;
3353         get_irqchip_out:
3354                 kfree(chip);
3355                 if (r)
3356                         goto out;
3357                 break;
3358         }
3359         case KVM_SET_IRQCHIP: {
3360                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3361                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3362
3363                 r = -ENOMEM;
3364                 if (!chip)
3365                         goto out;
3366                 r = -EFAULT;
3367                 if (copy_from_user(chip, argp, sizeof *chip))
3368                         goto set_irqchip_out;
3369                 r = -ENXIO;
3370                 if (!irqchip_in_kernel(kvm))
3371                         goto set_irqchip_out;
3372                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3373                 if (r)
3374                         goto set_irqchip_out;
3375                 r = 0;
3376         set_irqchip_out:
3377                 kfree(chip);
3378                 if (r)
3379                         goto out;
3380                 break;
3381         }
3382         case KVM_GET_PIT: {
3383                 r = -EFAULT;
3384                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3385                         goto out;
3386                 r = -ENXIO;
3387                 if (!kvm->arch.vpit)
3388                         goto out;
3389                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3390                 if (r)
3391                         goto out;
3392                 r = -EFAULT;
3393                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3394                         goto out;
3395                 r = 0;
3396                 break;
3397         }
3398         case KVM_SET_PIT: {
3399                 r = -EFAULT;
3400                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3401                         goto out;
3402                 r = -ENXIO;
3403                 if (!kvm->arch.vpit)
3404                         goto out;
3405                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3406                 if (r)
3407                         goto out;
3408                 r = 0;
3409                 break;
3410         }
3411         case KVM_GET_PIT2: {
3412                 r = -ENXIO;
3413                 if (!kvm->arch.vpit)
3414                         goto out;
3415                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3416                 if (r)
3417                         goto out;
3418                 r = -EFAULT;
3419                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3420                         goto out;
3421                 r = 0;
3422                 break;
3423         }
3424         case KVM_SET_PIT2: {
3425                 r = -EFAULT;
3426                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3427                         goto out;
3428                 r = -ENXIO;
3429                 if (!kvm->arch.vpit)
3430                         goto out;
3431                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3432                 if (r)
3433                         goto out;
3434                 r = 0;
3435                 break;
3436         }
3437         case KVM_REINJECT_CONTROL: {
3438                 struct kvm_reinject_control control;
3439                 r =  -EFAULT;
3440                 if (copy_from_user(&control, argp, sizeof(control)))
3441                         goto out;
3442                 r = kvm_vm_ioctl_reinject(kvm, &control);
3443                 if (r)
3444                         goto out;
3445                 r = 0;
3446                 break;
3447         }
3448         case KVM_XEN_HVM_CONFIG: {
3449                 r = -EFAULT;
3450                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3451                                    sizeof(struct kvm_xen_hvm_config)))
3452                         goto out;
3453                 r = -EINVAL;
3454                 if (kvm->arch.xen_hvm_config.flags)
3455                         goto out;
3456                 r = 0;
3457                 break;
3458         }
3459         case KVM_SET_CLOCK: {
3460                 struct kvm_clock_data user_ns;
3461                 u64 now_ns;
3462                 s64 delta;
3463
3464                 r = -EFAULT;
3465                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3466                         goto out;
3467
3468                 r = -EINVAL;
3469                 if (user_ns.flags)
3470                         goto out;
3471
3472                 r = 0;
3473                 local_irq_disable();
3474                 now_ns = get_kernel_ns();
3475                 delta = user_ns.clock - now_ns;
3476                 local_irq_enable();
3477                 kvm->arch.kvmclock_offset = delta;
3478                 break;
3479         }
3480         case KVM_GET_CLOCK: {
3481                 struct kvm_clock_data user_ns;
3482                 u64 now_ns;
3483
3484                 local_irq_disable();
3485                 now_ns = get_kernel_ns();
3486                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3487                 local_irq_enable();
3488                 user_ns.flags = 0;
3489                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3490
3491                 r = -EFAULT;
3492                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3493                         goto out;
3494                 r = 0;
3495                 break;
3496         }
3497
3498         default:
3499                 ;
3500         }
3501 out:
3502         return r;
3503 }
3504
3505 static void kvm_init_msr_list(void)
3506 {
3507         u32 dummy[2];
3508         unsigned i, j;
3509
3510         /* skip the first msrs in the list. KVM-specific */
3511         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3512                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3513                         continue;
3514                 if (j < i)
3515                         msrs_to_save[j] = msrs_to_save[i];
3516                 j++;
3517         }
3518         num_msrs_to_save = j;
3519 }
3520
3521 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3522                            const void *v)
3523 {
3524         if (vcpu->arch.apic &&
3525             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3526                 return 0;
3527
3528         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3529 }
3530
3531 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3532 {
3533         if (vcpu->arch.apic &&
3534             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3535                 return 0;
3536
3537         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3538 }
3539
3540 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3541                         struct kvm_segment *var, int seg)
3542 {
3543         kvm_x86_ops->set_segment(vcpu, var, seg);
3544 }
3545
3546 void kvm_get_segment(struct kvm_vcpu *vcpu,
3547                      struct kvm_segment *var, int seg)
3548 {
3549         kvm_x86_ops->get_segment(vcpu, var, seg);
3550 }
3551
3552 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3553 {
3554         return gpa;
3555 }
3556
3557 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3558 {
3559         gpa_t t_gpa;
3560         u32 error;
3561
3562         BUG_ON(!mmu_is_nested(vcpu));
3563
3564         /* NPT walks are always user-walks */
3565         access |= PFERR_USER_MASK;
3566         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
3567         if (t_gpa == UNMAPPED_GVA)
3568                 vcpu->arch.fault.nested = true;
3569
3570         return t_gpa;
3571 }
3572
3573 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3574 {
3575         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3576         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3577 }
3578
3579  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3580 {
3581         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3582         access |= PFERR_FETCH_MASK;
3583         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3584 }
3585
3586 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3587 {
3588         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3589         access |= PFERR_WRITE_MASK;
3590         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3591 }
3592
3593 /* uses this to access any guest's mapped memory without checking CPL */
3594 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3595 {
3596         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
3597 }
3598
3599 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3600                                       struct kvm_vcpu *vcpu, u32 access,
3601                                       u32 *error)
3602 {
3603         void *data = val;
3604         int r = X86EMUL_CONTINUE;
3605
3606         while (bytes) {
3607                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3608                                                             error);
3609                 unsigned offset = addr & (PAGE_SIZE-1);
3610                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3611                 int ret;
3612
3613                 if (gpa == UNMAPPED_GVA) {
3614                         r = X86EMUL_PROPAGATE_FAULT;
3615                         goto out;
3616                 }
3617                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3618                 if (ret < 0) {
3619                         r = X86EMUL_IO_NEEDED;
3620                         goto out;
3621                 }
3622
3623                 bytes -= toread;
3624                 data += toread;
3625                 addr += toread;
3626         }
3627 out:
3628         return r;
3629 }
3630
3631 /* used for instruction fetching */
3632 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3633                                 struct kvm_vcpu *vcpu, u32 *error)
3634 {
3635         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3636         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3637                                           access | PFERR_FETCH_MASK, error);
3638 }
3639
3640 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3641                                struct kvm_vcpu *vcpu, u32 *error)
3642 {
3643         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3644         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3645                                           error);
3646 }
3647
3648 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3649                                struct kvm_vcpu *vcpu, u32 *error)
3650 {
3651         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3652 }
3653
3654 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3655                                        unsigned int bytes,
3656                                        struct kvm_vcpu *vcpu,
3657                                        u32 *error)
3658 {
3659         void *data = val;
3660         int r = X86EMUL_CONTINUE;
3661
3662         while (bytes) {
3663                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3664                                                              PFERR_WRITE_MASK,
3665                                                              error);
3666                 unsigned offset = addr & (PAGE_SIZE-1);
3667                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3668                 int ret;
3669
3670                 if (gpa == UNMAPPED_GVA) {
3671                         r = X86EMUL_PROPAGATE_FAULT;
3672                         goto out;
3673                 }
3674                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3675                 if (ret < 0) {
3676                         r = X86EMUL_IO_NEEDED;
3677                         goto out;
3678                 }
3679
3680                 bytes -= towrite;
3681                 data += towrite;
3682                 addr += towrite;
3683         }
3684 out:
3685         return r;
3686 }
3687
3688 static int emulator_read_emulated(unsigned long addr,
3689                                   void *val,
3690                                   unsigned int bytes,
3691                                   unsigned int *error_code,
3692                                   struct kvm_vcpu *vcpu)
3693 {
3694         gpa_t                 gpa;
3695
3696         if (vcpu->mmio_read_completed) {
3697                 memcpy(val, vcpu->mmio_data, bytes);
3698                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3699                                vcpu->mmio_phys_addr, *(u64 *)val);
3700                 vcpu->mmio_read_completed = 0;
3701                 return X86EMUL_CONTINUE;
3702         }
3703
3704         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3705
3706         if (gpa == UNMAPPED_GVA)
3707                 return X86EMUL_PROPAGATE_FAULT;
3708
3709         /* For APIC access vmexit */
3710         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3711                 goto mmio;
3712
3713         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3714                                 == X86EMUL_CONTINUE)
3715                 return X86EMUL_CONTINUE;
3716
3717 mmio:
3718         /*
3719          * Is this MMIO handled locally?
3720          */
3721         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3722                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3723                 return X86EMUL_CONTINUE;
3724         }
3725
3726         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3727
3728         vcpu->mmio_needed = 1;
3729         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3730         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3731         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3732         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3733
3734         return X86EMUL_IO_NEEDED;
3735 }
3736
3737 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3738                           const void *val, int bytes)
3739 {
3740         int ret;
3741
3742         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3743         if (ret < 0)
3744                 return 0;
3745         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3746         return 1;
3747 }
3748
3749 static int emulator_write_emulated_onepage(unsigned long addr,
3750                                            const void *val,
3751                                            unsigned int bytes,
3752                                            unsigned int *error_code,
3753                                            struct kvm_vcpu *vcpu)
3754 {
3755         gpa_t                 gpa;
3756
3757         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3758
3759         if (gpa == UNMAPPED_GVA)
3760                 return X86EMUL_PROPAGATE_FAULT;
3761
3762         /* For APIC access vmexit */
3763         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3764                 goto mmio;
3765
3766         if (emulator_write_phys(vcpu, gpa, val, bytes))
3767                 return X86EMUL_CONTINUE;
3768
3769 mmio:
3770         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3771         /*
3772          * Is this MMIO handled locally?
3773          */
3774         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3775                 return X86EMUL_CONTINUE;
3776
3777         vcpu->mmio_needed = 1;
3778         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3779         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3780         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3781         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3782         memcpy(vcpu->run->mmio.data, val, bytes);
3783
3784         return X86EMUL_CONTINUE;
3785 }
3786
3787 int emulator_write_emulated(unsigned long addr,
3788                             const void *val,
3789                             unsigned int bytes,
3790                             unsigned int *error_code,
3791                             struct kvm_vcpu *vcpu)
3792 {
3793         /* Crossing a page boundary? */
3794         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3795                 int rc, now;
3796
3797                 now = -addr & ~PAGE_MASK;
3798                 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3799                                                      vcpu);
3800                 if (rc != X86EMUL_CONTINUE)
3801                         return rc;
3802                 addr += now;
3803                 val += now;
3804                 bytes -= now;
3805         }
3806         return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3807                                                vcpu);
3808 }
3809
3810 #define CMPXCHG_TYPE(t, ptr, old, new) \
3811         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3812
3813 #ifdef CONFIG_X86_64
3814 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3815 #else
3816 #  define CMPXCHG64(ptr, old, new) \
3817         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3818 #endif
3819
3820 static int emulator_cmpxchg_emulated(unsigned long addr,
3821                                      const void *old,
3822                                      const void *new,
3823                                      unsigned int bytes,
3824                                      unsigned int *error_code,
3825                                      struct kvm_vcpu *vcpu)
3826 {
3827         gpa_t gpa;
3828         struct page *page;
3829         char *kaddr;
3830         bool exchanged;
3831
3832         /* guests cmpxchg8b have to be emulated atomically */
3833         if (bytes > 8 || (bytes & (bytes - 1)))
3834                 goto emul_write;
3835
3836         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3837
3838         if (gpa == UNMAPPED_GVA ||
3839             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3840                 goto emul_write;
3841
3842         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3843                 goto emul_write;
3844
3845         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3846         if (is_error_page(page)) {
3847                 kvm_release_page_clean(page);
3848                 goto emul_write;
3849         }
3850
3851         kaddr = kmap_atomic(page, KM_USER0);
3852         kaddr += offset_in_page(gpa);
3853         switch (bytes) {
3854         case 1:
3855                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3856                 break;
3857         case 2:
3858                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3859                 break;
3860         case 4:
3861                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3862                 break;
3863         case 8:
3864                 exchanged = CMPXCHG64(kaddr, old, new);
3865                 break;
3866         default:
3867                 BUG();
3868         }
3869         kunmap_atomic(kaddr, KM_USER0);
3870         kvm_release_page_dirty(page);
3871
3872         if (!exchanged)
3873                 return X86EMUL_CMPXCHG_FAILED;
3874
3875         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3876
3877         return X86EMUL_CONTINUE;
3878
3879 emul_write:
3880         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3881
3882         return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3883 }
3884
3885 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3886 {
3887         /* TODO: String I/O for in kernel device */
3888         int r;
3889
3890         if (vcpu->arch.pio.in)
3891                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3892                                     vcpu->arch.pio.size, pd);
3893         else
3894                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3895                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3896                                      pd);
3897         return r;
3898 }
3899
3900
3901 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3902                              unsigned int count, struct kvm_vcpu *vcpu)
3903 {
3904         if (vcpu->arch.pio.count)
3905                 goto data_avail;
3906
3907         trace_kvm_pio(0, port, size, 1);
3908
3909         vcpu->arch.pio.port = port;
3910         vcpu->arch.pio.in = 1;
3911         vcpu->arch.pio.count  = count;
3912         vcpu->arch.pio.size = size;
3913
3914         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3915         data_avail:
3916                 memcpy(val, vcpu->arch.pio_data, size * count);
3917                 vcpu->arch.pio.count = 0;
3918                 return 1;
3919         }
3920
3921         vcpu->run->exit_reason = KVM_EXIT_IO;
3922         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3923         vcpu->run->io.size = size;
3924         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3925         vcpu->run->io.count = count;
3926         vcpu->run->io.port = port;
3927
3928         return 0;
3929 }
3930
3931 static int emulator_pio_out_emulated(int size, unsigned short port,
3932                               const void *val, unsigned int count,
3933                               struct kvm_vcpu *vcpu)
3934 {
3935         trace_kvm_pio(1, port, size, 1);
3936
3937         vcpu->arch.pio.port = port;
3938         vcpu->arch.pio.in = 0;
3939         vcpu->arch.pio.count = count;
3940         vcpu->arch.pio.size = size;
3941
3942         memcpy(vcpu->arch.pio_data, val, size * count);
3943
3944         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3945                 vcpu->arch.pio.count = 0;
3946                 return 1;
3947         }
3948
3949         vcpu->run->exit_reason = KVM_EXIT_IO;
3950         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3951         vcpu->run->io.size = size;
3952         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3953         vcpu->run->io.count = count;
3954         vcpu->run->io.port = port;
3955
3956         return 0;
3957 }
3958
3959 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3960 {
3961         return kvm_x86_ops->get_segment_base(vcpu, seg);
3962 }
3963
3964 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3965 {
3966         kvm_mmu_invlpg(vcpu, address);
3967         return X86EMUL_CONTINUE;
3968 }
3969
3970 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3971 {
3972         if (!need_emulate_wbinvd(vcpu))
3973                 return X86EMUL_CONTINUE;
3974
3975         if (kvm_x86_ops->has_wbinvd_exit()) {
3976                 preempt_disable();
3977                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3978                                 wbinvd_ipi, NULL, 1);
3979                 preempt_enable();
3980                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3981         }
3982         wbinvd();
3983         return X86EMUL_CONTINUE;
3984 }
3985 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3986
3987 int emulate_clts(struct kvm_vcpu *vcpu)
3988 {
3989         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3990         kvm_x86_ops->fpu_activate(vcpu);
3991         return X86EMUL_CONTINUE;
3992 }
3993
3994 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3995 {
3996         return _kvm_get_dr(vcpu, dr, dest);
3997 }
3998
3999 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4000 {
4001
4002         return __kvm_set_dr(vcpu, dr, value);
4003 }
4004
4005 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4006 {
4007         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4008 }
4009
4010 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4011 {
4012         unsigned long value;
4013
4014         switch (cr) {
4015         case 0:
4016                 value = kvm_read_cr0(vcpu);
4017                 break;
4018         case 2:
4019                 value = vcpu->arch.cr2;
4020                 break;
4021         case 3:
4022                 value = vcpu->arch.cr3;
4023                 break;
4024         case 4:
4025                 value = kvm_read_cr4(vcpu);
4026                 break;
4027         case 8:
4028                 value = kvm_get_cr8(vcpu);
4029                 break;
4030         default:
4031                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4032                 return 0;
4033         }
4034
4035         return value;
4036 }
4037
4038 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4039 {
4040         int res = 0;
4041
4042         switch (cr) {
4043         case 0:
4044                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4045                 break;
4046         case 2:
4047                 vcpu->arch.cr2 = val;
4048                 break;
4049         case 3:
4050                 res = kvm_set_cr3(vcpu, val);
4051                 break;
4052         case 4:
4053                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4054                 break;
4055         case 8:
4056                 res = __kvm_set_cr8(vcpu, val & 0xfUL);
4057                 break;
4058         default:
4059                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4060                 res = -1;
4061         }
4062
4063         return res;
4064 }
4065
4066 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4067 {
4068         return kvm_x86_ops->get_cpl(vcpu);
4069 }
4070
4071 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4072 {
4073         kvm_x86_ops->get_gdt(vcpu, dt);
4074 }
4075
4076 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4077 {
4078         kvm_x86_ops->get_idt(vcpu, dt);
4079 }
4080
4081 static unsigned long emulator_get_cached_segment_base(int seg,
4082                                                       struct kvm_vcpu *vcpu)
4083 {
4084         return get_segment_base(vcpu, seg);
4085 }
4086
4087 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4088                                            struct kvm_vcpu *vcpu)
4089 {
4090         struct kvm_segment var;
4091
4092         kvm_get_segment(vcpu, &var, seg);
4093
4094         if (var.unusable)
4095                 return false;
4096
4097         if (var.g)
4098                 var.limit >>= 12;
4099         set_desc_limit(desc, var.limit);
4100         set_desc_base(desc, (unsigned long)var.base);
4101         desc->type = var.type;
4102         desc->s = var.s;
4103         desc->dpl = var.dpl;
4104         desc->p = var.present;
4105         desc->avl = var.avl;
4106         desc->l = var.l;
4107         desc->d = var.db;
4108         desc->g = var.g;
4109
4110         return true;
4111 }
4112
4113 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4114                                            struct kvm_vcpu *vcpu)
4115 {
4116         struct kvm_segment var;
4117
4118         /* needed to preserve selector */
4119         kvm_get_segment(vcpu, &var, seg);
4120
4121         var.base = get_desc_base(desc);
4122         var.limit = get_desc_limit(desc);
4123         if (desc->g)
4124                 var.limit = (var.limit << 12) | 0xfff;
4125         var.type = desc->type;
4126         var.present = desc->p;
4127         var.dpl = desc->dpl;
4128         var.db = desc->d;
4129         var.s = desc->s;
4130         var.l = desc->l;
4131         var.g = desc->g;
4132         var.avl = desc->avl;
4133         var.present = desc->p;
4134         var.unusable = !var.present;
4135         var.padding = 0;
4136
4137         kvm_set_segment(vcpu, &var, seg);
4138         return;
4139 }
4140
4141 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4142 {
4143         struct kvm_segment kvm_seg;
4144
4145         kvm_get_segment(vcpu, &kvm_seg, seg);
4146         return kvm_seg.selector;
4147 }
4148
4149 static void emulator_set_segment_selector(u16 sel, int seg,
4150                                           struct kvm_vcpu *vcpu)
4151 {
4152         struct kvm_segment kvm_seg;
4153
4154         kvm_get_segment(vcpu, &kvm_seg, seg);
4155         kvm_seg.selector = sel;
4156         kvm_set_segment(vcpu, &kvm_seg, seg);
4157 }
4158
4159 static struct x86_emulate_ops emulate_ops = {
4160         .read_std            = kvm_read_guest_virt_system,
4161         .write_std           = kvm_write_guest_virt_system,
4162         .fetch               = kvm_fetch_guest_virt,
4163         .read_emulated       = emulator_read_emulated,
4164         .write_emulated      = emulator_write_emulated,
4165         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4166         .pio_in_emulated     = emulator_pio_in_emulated,
4167         .pio_out_emulated    = emulator_pio_out_emulated,
4168         .get_cached_descriptor = emulator_get_cached_descriptor,
4169         .set_cached_descriptor = emulator_set_cached_descriptor,
4170         .get_segment_selector = emulator_get_segment_selector,
4171         .set_segment_selector = emulator_set_segment_selector,
4172         .get_cached_segment_base = emulator_get_cached_segment_base,
4173         .get_gdt             = emulator_get_gdt,
4174         .get_idt             = emulator_get_idt,
4175         .get_cr              = emulator_get_cr,
4176         .set_cr              = emulator_set_cr,
4177         .cpl                 = emulator_get_cpl,
4178         .get_dr              = emulator_get_dr,
4179         .set_dr              = emulator_set_dr,
4180         .set_msr             = kvm_set_msr,
4181         .get_msr             = kvm_get_msr,
4182 };
4183
4184 static void cache_all_regs(struct kvm_vcpu *vcpu)
4185 {
4186         kvm_register_read(vcpu, VCPU_REGS_RAX);
4187         kvm_register_read(vcpu, VCPU_REGS_RSP);
4188         kvm_register_read(vcpu, VCPU_REGS_RIP);
4189         vcpu->arch.regs_dirty = ~0;
4190 }
4191
4192 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4193 {
4194         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4195         /*
4196          * an sti; sti; sequence only disable interrupts for the first
4197          * instruction. So, if the last instruction, be it emulated or
4198          * not, left the system with the INT_STI flag enabled, it
4199          * means that the last instruction is an sti. We should not
4200          * leave the flag on in this case. The same goes for mov ss
4201          */
4202         if (!(int_shadow & mask))
4203                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4204 }
4205
4206 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4207 {
4208         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4209         if (ctxt->exception == PF_VECTOR)
4210                 kvm_propagate_fault(vcpu);
4211         else if (ctxt->error_code_valid)
4212                 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4213         else
4214                 kvm_queue_exception(vcpu, ctxt->exception);
4215 }
4216
4217 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4218 {
4219         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4220         int cs_db, cs_l;
4221
4222         cache_all_regs(vcpu);
4223
4224         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4225
4226         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4227         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4228         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4229         vcpu->arch.emulate_ctxt.mode =
4230                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4231                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4232                 ? X86EMUL_MODE_VM86 : cs_l
4233                 ? X86EMUL_MODE_PROT64 : cs_db
4234                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4235         memset(c, 0, sizeof(struct decode_cache));
4236         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4237 }
4238
4239 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4240 {
4241         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4242         int ret;
4243
4244         init_emulate_ctxt(vcpu);
4245
4246         vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4247         vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4248         vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4249         ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4250
4251         if (ret != X86EMUL_CONTINUE)
4252                 return EMULATE_FAIL;
4253
4254         vcpu->arch.emulate_ctxt.eip = c->eip;
4255         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4256         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4257         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4258
4259         if (irq == NMI_VECTOR)
4260                 vcpu->arch.nmi_pending = false;
4261         else
4262                 vcpu->arch.interrupt.pending = false;
4263
4264         return EMULATE_DONE;
4265 }
4266 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4267
4268 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4269 {
4270         ++vcpu->stat.insn_emulation_fail;
4271         trace_kvm_emulate_insn_failed(vcpu);
4272         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4273         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4274         vcpu->run->internal.ndata = 0;
4275         kvm_queue_exception(vcpu, UD_VECTOR);
4276         return EMULATE_FAIL;
4277 }
4278
4279 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4280 {
4281         gpa_t gpa;
4282
4283         if (tdp_enabled)
4284                 return false;
4285
4286         /*
4287          * if emulation was due to access to shadowed page table
4288          * and it failed try to unshadow page and re-entetr the
4289          * guest to let CPU execute the instruction.
4290          */
4291         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4292                 return true;
4293
4294         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4295
4296         if (gpa == UNMAPPED_GVA)
4297                 return true; /* let cpu generate fault */
4298
4299         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4300                 return true;
4301
4302         return false;
4303 }
4304
4305 int emulate_instruction(struct kvm_vcpu *vcpu,
4306                         unsigned long cr2,
4307                         u16 error_code,
4308                         int emulation_type)
4309 {
4310         int r;
4311         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4312
4313         kvm_clear_exception_queue(vcpu);
4314         vcpu->arch.mmio_fault_cr2 = cr2;
4315         /*
4316          * TODO: fix emulate.c to use guest_read/write_register
4317          * instead of direct ->regs accesses, can save hundred cycles
4318          * on Intel for instructions that don't read/change RSP, for
4319          * for example.
4320          */
4321         cache_all_regs(vcpu);
4322
4323         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4324                 init_emulate_ctxt(vcpu);
4325                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4326                 vcpu->arch.emulate_ctxt.exception = -1;
4327                 vcpu->arch.emulate_ctxt.perm_ok = false;
4328
4329                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4330                 if (r == X86EMUL_PROPAGATE_FAULT)
4331                         goto done;
4332
4333                 trace_kvm_emulate_insn_start(vcpu);
4334
4335                 /* Only allow emulation of specific instructions on #UD
4336                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
4337                 if (emulation_type & EMULTYPE_TRAP_UD) {
4338                         if (!c->twobyte)
4339                                 return EMULATE_FAIL;
4340                         switch (c->b) {
4341                         case 0x01: /* VMMCALL */
4342                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4343                                         return EMULATE_FAIL;
4344                                 break;
4345                         case 0x34: /* sysenter */
4346                         case 0x35: /* sysexit */
4347                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4348                                         return EMULATE_FAIL;
4349                                 break;
4350                         case 0x05: /* syscall */
4351                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4352                                         return EMULATE_FAIL;
4353                                 break;
4354                         default:
4355                                 return EMULATE_FAIL;
4356                         }
4357
4358                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4359                                 return EMULATE_FAIL;
4360                 }
4361
4362                 ++vcpu->stat.insn_emulation;
4363                 if (r)  {
4364                         if (reexecute_instruction(vcpu, cr2))
4365                                 return EMULATE_DONE;
4366                         if (emulation_type & EMULTYPE_SKIP)
4367                                 return EMULATE_FAIL;
4368                         return handle_emulation_failure(vcpu);
4369                 }
4370         }
4371
4372         if (emulation_type & EMULTYPE_SKIP) {
4373                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4374                 return EMULATE_DONE;
4375         }
4376
4377         /* this is needed for vmware backdor interface to work since it
4378            changes registers values  during IO operation */
4379         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4380
4381 restart:
4382         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4383
4384         if (r == EMULATION_FAILED) {
4385                 if (reexecute_instruction(vcpu, cr2))
4386                         return EMULATE_DONE;
4387
4388                 return handle_emulation_failure(vcpu);
4389         }
4390
4391 done:
4392         if (vcpu->arch.emulate_ctxt.exception >= 0) {
4393                 inject_emulated_exception(vcpu);
4394                 r = EMULATE_DONE;
4395         } else if (vcpu->arch.pio.count) {
4396                 if (!vcpu->arch.pio.in)
4397                         vcpu->arch.pio.count = 0;
4398                 r = EMULATE_DO_MMIO;
4399         } else if (vcpu->mmio_needed) {
4400                 if (vcpu->mmio_is_write)
4401                         vcpu->mmio_needed = 0;
4402                 r = EMULATE_DO_MMIO;
4403         } else if (r == EMULATION_RESTART)
4404                 goto restart;
4405         else
4406                 r = EMULATE_DONE;
4407
4408         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4409         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4410         kvm_make_request(KVM_REQ_EVENT, vcpu);
4411         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4412         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4413
4414         return r;
4415 }
4416 EXPORT_SYMBOL_GPL(emulate_instruction);
4417
4418 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4419 {
4420         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4421         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4422         /* do not return to emulator after return from userspace */
4423         vcpu->arch.pio.count = 0;
4424         return ret;
4425 }
4426 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4427
4428 static void tsc_bad(void *info)
4429 {
4430         __this_cpu_write(cpu_tsc_khz, 0);
4431 }
4432
4433 static void tsc_khz_changed(void *data)
4434 {
4435         struct cpufreq_freqs *freq = data;
4436         unsigned long khz = 0;
4437
4438         if (data)
4439                 khz = freq->new;
4440         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4441                 khz = cpufreq_quick_get(raw_smp_processor_id());
4442         if (!khz)
4443                 khz = tsc_khz;
4444         __this_cpu_write(cpu_tsc_khz, khz);
4445 }
4446
4447 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4448                                      void *data)
4449 {
4450         struct cpufreq_freqs *freq = data;
4451         struct kvm *kvm;
4452         struct kvm_vcpu *vcpu;
4453         int i, send_ipi = 0;
4454
4455         /*
4456          * We allow guests to temporarily run on slowing clocks,
4457          * provided we notify them after, or to run on accelerating
4458          * clocks, provided we notify them before.  Thus time never
4459          * goes backwards.
4460          *
4461          * However, we have a problem.  We can't atomically update
4462          * the frequency of a given CPU from this function; it is
4463          * merely a notifier, which can be called from any CPU.
4464          * Changing the TSC frequency at arbitrary points in time
4465          * requires a recomputation of local variables related to
4466          * the TSC for each VCPU.  We must flag these local variables
4467          * to be updated and be sure the update takes place with the
4468          * new frequency before any guests proceed.
4469          *
4470          * Unfortunately, the combination of hotplug CPU and frequency
4471          * change creates an intractable locking scenario; the order
4472          * of when these callouts happen is undefined with respect to
4473          * CPU hotplug, and they can race with each other.  As such,
4474          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4475          * undefined; you can actually have a CPU frequency change take
4476          * place in between the computation of X and the setting of the
4477          * variable.  To protect against this problem, all updates of
4478          * the per_cpu tsc_khz variable are done in an interrupt
4479          * protected IPI, and all callers wishing to update the value
4480          * must wait for a synchronous IPI to complete (which is trivial
4481          * if the caller is on the CPU already).  This establishes the
4482          * necessary total order on variable updates.
4483          *
4484          * Note that because a guest time update may take place
4485          * anytime after the setting of the VCPU's request bit, the
4486          * correct TSC value must be set before the request.  However,
4487          * to ensure the update actually makes it to any guest which
4488          * starts running in hardware virtualization between the set
4489          * and the acquisition of the spinlock, we must also ping the
4490          * CPU after setting the request bit.
4491          *
4492          */
4493
4494         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4495                 return 0;
4496         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4497                 return 0;
4498
4499         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4500
4501         spin_lock(&kvm_lock);
4502         list_for_each_entry(kvm, &vm_list, vm_list) {
4503                 kvm_for_each_vcpu(i, vcpu, kvm) {
4504                         if (vcpu->cpu != freq->cpu)
4505                                 continue;
4506                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4507                         if (vcpu->cpu != smp_processor_id())
4508                                 send_ipi = 1;
4509                 }
4510         }
4511         spin_unlock(&kvm_lock);
4512
4513         if (freq->old < freq->new && send_ipi) {
4514                 /*
4515                  * We upscale the frequency.  Must make the guest
4516                  * doesn't see old kvmclock values while running with
4517                  * the new frequency, otherwise we risk the guest sees
4518                  * time go backwards.
4519                  *
4520                  * In case we update the frequency for another cpu
4521                  * (which might be in guest context) send an interrupt
4522                  * to kick the cpu out of guest context.  Next time
4523                  * guest context is entered kvmclock will be updated,
4524                  * so the guest will not see stale values.
4525                  */
4526                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4527         }
4528         return 0;
4529 }
4530
4531 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4532         .notifier_call  = kvmclock_cpufreq_notifier
4533 };
4534
4535 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4536                                         unsigned long action, void *hcpu)
4537 {
4538         unsigned int cpu = (unsigned long)hcpu;
4539
4540         switch (action) {
4541                 case CPU_ONLINE:
4542                 case CPU_DOWN_FAILED:
4543                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4544                         break;
4545                 case CPU_DOWN_PREPARE:
4546                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4547                         break;
4548         }
4549         return NOTIFY_OK;
4550 }
4551
4552 static struct notifier_block kvmclock_cpu_notifier_block = {
4553         .notifier_call  = kvmclock_cpu_notifier,
4554         .priority = -INT_MAX
4555 };
4556
4557 static void kvm_timer_init(void)
4558 {
4559         int cpu;
4560
4561         max_tsc_khz = tsc_khz;
4562         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4563         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4564 #ifdef CONFIG_CPU_FREQ
4565                 struct cpufreq_policy policy;
4566                 memset(&policy, 0, sizeof(policy));
4567                 cpu = get_cpu();
4568                 cpufreq_get_policy(&policy, cpu);
4569                 if (policy.cpuinfo.max_freq)
4570                         max_tsc_khz = policy.cpuinfo.max_freq;
4571                 put_cpu();
4572 #endif
4573                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4574                                           CPUFREQ_TRANSITION_NOTIFIER);
4575         }
4576         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4577         for_each_online_cpu(cpu)
4578                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4579 }
4580
4581 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4582
4583 static int kvm_is_in_guest(void)
4584 {
4585         return percpu_read(current_vcpu) != NULL;
4586 }
4587
4588 static int kvm_is_user_mode(void)
4589 {
4590         int user_mode = 3;
4591
4592         if (percpu_read(current_vcpu))
4593                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4594
4595         return user_mode != 0;
4596 }
4597
4598 static unsigned long kvm_get_guest_ip(void)
4599 {
4600         unsigned long ip = 0;
4601
4602         if (percpu_read(current_vcpu))
4603                 ip = kvm_rip_read(percpu_read(current_vcpu));
4604
4605         return ip;
4606 }
4607
4608 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4609         .is_in_guest            = kvm_is_in_guest,
4610         .is_user_mode           = kvm_is_user_mode,
4611         .get_guest_ip           = kvm_get_guest_ip,
4612 };
4613
4614 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4615 {
4616         percpu_write(current_vcpu, vcpu);
4617 }
4618 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4619
4620 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4621 {
4622         percpu_write(current_vcpu, NULL);
4623 }
4624 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4625
4626 int kvm_arch_init(void *opaque)
4627 {
4628         int r;
4629         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4630
4631         if (kvm_x86_ops) {
4632                 printk(KERN_ERR "kvm: already loaded the other module\n");
4633                 r = -EEXIST;
4634                 goto out;
4635         }
4636
4637         if (!ops->cpu_has_kvm_support()) {
4638                 printk(KERN_ERR "kvm: no hardware support\n");
4639                 r = -EOPNOTSUPP;
4640                 goto out;
4641         }
4642         if (ops->disabled_by_bios()) {
4643                 printk(KERN_ERR "kvm: disabled by bios\n");
4644                 r = -EOPNOTSUPP;
4645                 goto out;
4646         }
4647
4648         r = kvm_mmu_module_init();
4649         if (r)
4650                 goto out;
4651
4652         kvm_init_msr_list();
4653
4654         kvm_x86_ops = ops;
4655         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4656         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4657         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4658                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4659
4660         kvm_timer_init();
4661
4662         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4663
4664         if (cpu_has_xsave)
4665                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4666
4667         return 0;
4668
4669 out:
4670         return r;
4671 }
4672
4673 void kvm_arch_exit(void)
4674 {
4675         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4676
4677         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4678                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4679                                             CPUFREQ_TRANSITION_NOTIFIER);
4680         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4681         kvm_x86_ops = NULL;
4682         kvm_mmu_module_exit();
4683 }
4684
4685 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4686 {
4687         ++vcpu->stat.halt_exits;
4688         if (irqchip_in_kernel(vcpu->kvm)) {
4689                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4690                 return 1;
4691         } else {
4692                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4693                 return 0;
4694         }
4695 }
4696 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4697
4698 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4699                            unsigned long a1)
4700 {
4701         if (is_long_mode(vcpu))
4702                 return a0;
4703         else
4704                 return a0 | ((gpa_t)a1 << 32);
4705 }
4706
4707 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4708 {
4709         u64 param, ingpa, outgpa, ret;
4710         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4711         bool fast, longmode;
4712         int cs_db, cs_l;
4713
4714         /*
4715          * hypercall generates UD from non zero cpl and real mode
4716          * per HYPER-V spec
4717          */
4718         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4719                 kvm_queue_exception(vcpu, UD_VECTOR);
4720                 return 0;
4721         }
4722
4723         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4724         longmode = is_long_mode(vcpu) && cs_l == 1;
4725
4726         if (!longmode) {
4727                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4728                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4729                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4730                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4731                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4732                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4733         }
4734 #ifdef CONFIG_X86_64
4735         else {
4736                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4737                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4738                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4739         }
4740 #endif
4741
4742         code = param & 0xffff;
4743         fast = (param >> 16) & 0x1;
4744         rep_cnt = (param >> 32) & 0xfff;
4745         rep_idx = (param >> 48) & 0xfff;
4746
4747         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4748
4749         switch (code) {
4750         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4751                 kvm_vcpu_on_spin(vcpu);
4752                 break;
4753         default:
4754                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4755                 break;
4756         }
4757
4758         ret = res | (((u64)rep_done & 0xfff) << 32);
4759         if (longmode) {
4760                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4761         } else {
4762                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4763                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4764         }
4765
4766         return 1;
4767 }
4768
4769 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4770 {
4771         unsigned long nr, a0, a1, a2, a3, ret;
4772         int r = 1;
4773
4774         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4775                 return kvm_hv_hypercall(vcpu);
4776
4777         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4778         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4779         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4780         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4781         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4782
4783         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4784
4785         if (!is_long_mode(vcpu)) {
4786                 nr &= 0xFFFFFFFF;
4787                 a0 &= 0xFFFFFFFF;
4788                 a1 &= 0xFFFFFFFF;
4789                 a2 &= 0xFFFFFFFF;
4790                 a3 &= 0xFFFFFFFF;
4791         }
4792
4793         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4794                 ret = -KVM_EPERM;
4795                 goto out;
4796         }
4797
4798         switch (nr) {
4799         case KVM_HC_VAPIC_POLL_IRQ:
4800                 ret = 0;
4801                 break;
4802         case KVM_HC_MMU_OP:
4803                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4804                 break;
4805         default:
4806                 ret = -KVM_ENOSYS;
4807                 break;
4808         }
4809 out:
4810         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4811         ++vcpu->stat.hypercalls;
4812         return r;
4813 }
4814 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4815
4816 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4817 {
4818         char instruction[3];
4819         unsigned long rip = kvm_rip_read(vcpu);
4820
4821         /*
4822          * Blow out the MMU to ensure that no other VCPU has an active mapping
4823          * to ensure that the updated hypercall appears atomically across all
4824          * VCPUs.
4825          */
4826         kvm_mmu_zap_all(vcpu->kvm);
4827
4828         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4829
4830         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4831 }
4832
4833 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4834 {
4835         struct desc_ptr dt = { limit, base };
4836
4837         kvm_x86_ops->set_gdt(vcpu, &dt);
4838 }
4839
4840 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4841 {
4842         struct desc_ptr dt = { limit, base };
4843
4844         kvm_x86_ops->set_idt(vcpu, &dt);
4845 }
4846
4847 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4848 {
4849         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4850         int j, nent = vcpu->arch.cpuid_nent;
4851
4852         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4853         /* when no next entry is found, the current entry[i] is reselected */
4854         for (j = i + 1; ; j = (j + 1) % nent) {
4855                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4856                 if (ej->function == e->function) {
4857                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4858                         return j;
4859                 }
4860         }
4861         return 0; /* silence gcc, even though control never reaches here */
4862 }
4863
4864 /* find an entry with matching function, matching index (if needed), and that
4865  * should be read next (if it's stateful) */
4866 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4867         u32 function, u32 index)
4868 {
4869         if (e->function != function)
4870                 return 0;
4871         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4872                 return 0;
4873         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4874             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4875                 return 0;
4876         return 1;
4877 }
4878
4879 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4880                                               u32 function, u32 index)
4881 {
4882         int i;
4883         struct kvm_cpuid_entry2 *best = NULL;
4884
4885         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4886                 struct kvm_cpuid_entry2 *e;
4887
4888                 e = &vcpu->arch.cpuid_entries[i];
4889                 if (is_matching_cpuid_entry(e, function, index)) {
4890                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4891                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4892                         best = e;
4893                         break;
4894                 }
4895                 /*
4896                  * Both basic or both extended?
4897                  */
4898                 if (((e->function ^ function) & 0x80000000) == 0)
4899                         if (!best || e->function > best->function)
4900                                 best = e;
4901         }
4902         return best;
4903 }
4904 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4905
4906 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4907 {
4908         struct kvm_cpuid_entry2 *best;
4909
4910         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4911         if (!best || best->eax < 0x80000008)
4912                 goto not_found;
4913         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4914         if (best)
4915                 return best->eax & 0xff;
4916 not_found:
4917         return 36;
4918 }
4919
4920 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4921 {
4922         u32 function, index;
4923         struct kvm_cpuid_entry2 *best;
4924
4925         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4926         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4927         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4928         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4929         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4930         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4931         best = kvm_find_cpuid_entry(vcpu, function, index);
4932         if (best) {
4933                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4934                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4935                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4936                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4937         }
4938         kvm_x86_ops->skip_emulated_instruction(vcpu);
4939         trace_kvm_cpuid(function,
4940                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4941                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4942                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4943                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4944 }
4945 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4946
4947 /*
4948  * Check if userspace requested an interrupt window, and that the
4949  * interrupt window is open.
4950  *
4951  * No need to exit to userspace if we already have an interrupt queued.
4952  */
4953 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4954 {
4955         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4956                 vcpu->run->request_interrupt_window &&
4957                 kvm_arch_interrupt_allowed(vcpu));
4958 }
4959
4960 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4961 {
4962         struct kvm_run *kvm_run = vcpu->run;
4963
4964         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4965         kvm_run->cr8 = kvm_get_cr8(vcpu);
4966         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4967         if (irqchip_in_kernel(vcpu->kvm))
4968                 kvm_run->ready_for_interrupt_injection = 1;
4969         else
4970                 kvm_run->ready_for_interrupt_injection =
4971                         kvm_arch_interrupt_allowed(vcpu) &&
4972                         !kvm_cpu_has_interrupt(vcpu) &&
4973                         !kvm_event_needs_reinjection(vcpu);
4974 }
4975
4976 static void vapic_enter(struct kvm_vcpu *vcpu)
4977 {
4978         struct kvm_lapic *apic = vcpu->arch.apic;
4979         struct page *page;
4980
4981         if (!apic || !apic->vapic_addr)
4982                 return;
4983
4984         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4985
4986         vcpu->arch.apic->vapic_page = page;
4987 }
4988
4989 static void vapic_exit(struct kvm_vcpu *vcpu)
4990 {
4991         struct kvm_lapic *apic = vcpu->arch.apic;
4992         int idx;
4993
4994         if (!apic || !apic->vapic_addr)
4995                 return;
4996
4997         idx = srcu_read_lock(&vcpu->kvm->srcu);
4998         kvm_release_page_dirty(apic->vapic_page);
4999         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5000         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5001 }
5002
5003 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5004 {
5005         int max_irr, tpr;
5006
5007         if (!kvm_x86_ops->update_cr8_intercept)
5008                 return;
5009
5010         if (!vcpu->arch.apic)
5011                 return;
5012
5013         if (!vcpu->arch.apic->vapic_addr)
5014                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5015         else
5016                 max_irr = -1;
5017
5018         if (max_irr != -1)
5019                 max_irr >>= 4;
5020
5021         tpr = kvm_lapic_get_cr8(vcpu);
5022
5023         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5024 }
5025
5026 static void inject_pending_event(struct kvm_vcpu *vcpu)
5027 {
5028         /* try to reinject previous events if any */
5029         if (vcpu->arch.exception.pending) {
5030                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5031                                         vcpu->arch.exception.has_error_code,
5032                                         vcpu->arch.exception.error_code);
5033                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5034                                           vcpu->arch.exception.has_error_code,
5035                                           vcpu->arch.exception.error_code,
5036                                           vcpu->arch.exception.reinject);
5037                 return;
5038         }
5039
5040         if (vcpu->arch.nmi_injected) {
5041                 kvm_x86_ops->set_nmi(vcpu);
5042                 return;
5043         }
5044
5045         if (vcpu->arch.interrupt.pending) {
5046                 kvm_x86_ops->set_irq(vcpu);
5047                 return;
5048         }
5049
5050         /* try to inject new event if pending */
5051         if (vcpu->arch.nmi_pending) {
5052                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5053                         vcpu->arch.nmi_pending = false;
5054                         vcpu->arch.nmi_injected = true;
5055                         kvm_x86_ops->set_nmi(vcpu);
5056                 }
5057         } else if (kvm_cpu_has_interrupt(vcpu)) {
5058                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5059                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5060                                             false);
5061                         kvm_x86_ops->set_irq(vcpu);
5062                 }
5063         }
5064 }
5065
5066 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5067 {
5068         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5069                         !vcpu->guest_xcr0_loaded) {
5070                 /* kvm_set_xcr() also depends on this */
5071                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5072                 vcpu->guest_xcr0_loaded = 1;
5073         }
5074 }
5075
5076 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5077 {
5078         if (vcpu->guest_xcr0_loaded) {
5079                 if (vcpu->arch.xcr0 != host_xcr0)
5080                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5081                 vcpu->guest_xcr0_loaded = 0;
5082         }
5083 }
5084
5085 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5086 {
5087         int r;
5088         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5089                 vcpu->run->request_interrupt_window;
5090
5091         if (vcpu->requests) {
5092                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5093                         kvm_mmu_unload(vcpu);
5094                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5095                         __kvm_migrate_timers(vcpu);
5096                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5097                         r = kvm_guest_time_update(vcpu);
5098                         if (unlikely(r))
5099                                 goto out;
5100                 }
5101                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5102                         kvm_mmu_sync_roots(vcpu);
5103                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5104                         kvm_x86_ops->tlb_flush(vcpu);
5105                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5106                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5107                         r = 0;
5108                         goto out;
5109                 }
5110                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5111                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5112                         r = 0;
5113                         goto out;
5114                 }
5115                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5116                         vcpu->fpu_active = 0;
5117                         kvm_x86_ops->fpu_deactivate(vcpu);
5118                 }
5119         }
5120
5121         r = kvm_mmu_reload(vcpu);
5122         if (unlikely(r))
5123                 goto out;
5124
5125         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5126                 inject_pending_event(vcpu);
5127
5128                 /* enable NMI/IRQ window open exits if needed */
5129                 if (vcpu->arch.nmi_pending)
5130                         kvm_x86_ops->enable_nmi_window(vcpu);
5131                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5132                         kvm_x86_ops->enable_irq_window(vcpu);
5133
5134                 if (kvm_lapic_enabled(vcpu)) {
5135                         update_cr8_intercept(vcpu);
5136                         kvm_lapic_sync_to_vapic(vcpu);
5137                 }
5138         }
5139
5140         preempt_disable();
5141
5142         kvm_x86_ops->prepare_guest_switch(vcpu);
5143         if (vcpu->fpu_active)
5144                 kvm_load_guest_fpu(vcpu);
5145         kvm_load_guest_xcr0(vcpu);
5146
5147         atomic_set(&vcpu->guest_mode, 1);
5148         smp_wmb();
5149
5150         local_irq_disable();
5151
5152         if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5153             || need_resched() || signal_pending(current)) {
5154                 atomic_set(&vcpu->guest_mode, 0);
5155                 smp_wmb();
5156                 local_irq_enable();
5157                 preempt_enable();
5158                 kvm_x86_ops->cancel_injection(vcpu);
5159                 r = 1;
5160                 goto out;
5161         }
5162
5163         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5164
5165         kvm_guest_enter();
5166
5167         if (unlikely(vcpu->arch.switch_db_regs)) {
5168                 set_debugreg(0, 7);
5169                 set_debugreg(vcpu->arch.eff_db[0], 0);
5170                 set_debugreg(vcpu->arch.eff_db[1], 1);
5171                 set_debugreg(vcpu->arch.eff_db[2], 2);
5172                 set_debugreg(vcpu->arch.eff_db[3], 3);
5173         }
5174
5175         trace_kvm_entry(vcpu->vcpu_id);
5176         kvm_x86_ops->run(vcpu);
5177
5178         /*
5179          * If the guest has used debug registers, at least dr7
5180          * will be disabled while returning to the host.
5181          * If we don't have active breakpoints in the host, we don't
5182          * care about the messed up debug address registers. But if
5183          * we have some of them active, restore the old state.
5184          */
5185         if (hw_breakpoint_active())
5186                 hw_breakpoint_restore();
5187
5188         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5189
5190         atomic_set(&vcpu->guest_mode, 0);
5191         smp_wmb();
5192         local_irq_enable();
5193
5194         ++vcpu->stat.exits;
5195
5196         /*
5197          * We must have an instruction between local_irq_enable() and
5198          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5199          * the interrupt shadow.  The stat.exits increment will do nicely.
5200          * But we need to prevent reordering, hence this barrier():
5201          */
5202         barrier();
5203
5204         kvm_guest_exit();
5205
5206         preempt_enable();
5207
5208         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5209
5210         /*
5211          * Profile KVM exit RIPs:
5212          */
5213         if (unlikely(prof_on == KVM_PROFILING)) {
5214                 unsigned long rip = kvm_rip_read(vcpu);
5215                 profile_hit(KVM_PROFILING, (void *)rip);
5216         }
5217
5218
5219         kvm_lapic_sync_from_vapic(vcpu);
5220
5221         r = kvm_x86_ops->handle_exit(vcpu);
5222 out:
5223         return r;
5224 }
5225
5226
5227 static int __vcpu_run(struct kvm_vcpu *vcpu)
5228 {
5229         int r;
5230         struct kvm *kvm = vcpu->kvm;
5231
5232         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5233                 pr_debug("vcpu %d received sipi with vector # %x\n",
5234                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5235                 kvm_lapic_reset(vcpu);
5236                 r = kvm_arch_vcpu_reset(vcpu);
5237                 if (r)
5238                         return r;
5239                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5240         }
5241
5242         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5243         vapic_enter(vcpu);
5244
5245         r = 1;
5246         while (r > 0) {
5247                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
5248                         r = vcpu_enter_guest(vcpu);
5249                 else {
5250                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5251                         kvm_vcpu_block(vcpu);
5252                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5253                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5254                         {
5255                                 switch(vcpu->arch.mp_state) {
5256                                 case KVM_MP_STATE_HALTED:
5257                                         vcpu->arch.mp_state =
5258                                                 KVM_MP_STATE_RUNNABLE;
5259                                 case KVM_MP_STATE_RUNNABLE:
5260                                         break;
5261                                 case KVM_MP_STATE_SIPI_RECEIVED:
5262                                 default:
5263                                         r = -EINTR;
5264                                         break;
5265                                 }
5266                         }
5267                 }
5268
5269                 if (r <= 0)
5270                         break;
5271
5272                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5273                 if (kvm_cpu_has_pending_timer(vcpu))
5274                         kvm_inject_pending_timer_irqs(vcpu);
5275
5276                 if (dm_request_for_irq_injection(vcpu)) {
5277                         r = -EINTR;
5278                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5279                         ++vcpu->stat.request_irq_exits;
5280                 }
5281                 if (signal_pending(current)) {
5282                         r = -EINTR;
5283                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5284                         ++vcpu->stat.signal_exits;
5285                 }
5286                 if (need_resched()) {
5287                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5288                         kvm_resched(vcpu);
5289                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5290                 }
5291         }
5292
5293         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5294
5295         vapic_exit(vcpu);
5296
5297         return r;
5298 }
5299
5300 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5301 {
5302         int r;
5303         sigset_t sigsaved;
5304
5305         if (vcpu->sigset_active)
5306                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5307
5308         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5309                 kvm_vcpu_block(vcpu);
5310                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5311                 r = -EAGAIN;
5312                 goto out;
5313         }
5314
5315         /* re-sync apic's tpr */
5316         if (!irqchip_in_kernel(vcpu->kvm))
5317                 kvm_set_cr8(vcpu, kvm_run->cr8);
5318
5319         if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5320                 if (vcpu->mmio_needed) {
5321                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5322                         vcpu->mmio_read_completed = 1;
5323                         vcpu->mmio_needed = 0;
5324                 }
5325                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5326                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5327                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5328                 if (r != EMULATE_DONE) {
5329                         r = 0;
5330                         goto out;
5331                 }
5332         }
5333         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5334                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5335                                      kvm_run->hypercall.ret);
5336
5337         r = __vcpu_run(vcpu);
5338
5339 out:
5340         post_kvm_run_save(vcpu);
5341         if (vcpu->sigset_active)
5342                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5343
5344         return r;
5345 }
5346
5347 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5348 {
5349         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5350         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5351         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5352         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5353         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5354         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5355         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5356         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5357 #ifdef CONFIG_X86_64
5358         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5359         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5360         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5361         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5362         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5363         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5364         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5365         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5366 #endif
5367
5368         regs->rip = kvm_rip_read(vcpu);
5369         regs->rflags = kvm_get_rflags(vcpu);
5370
5371         return 0;
5372 }
5373
5374 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5375 {
5376         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5377         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5378         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5379         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5380         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5381         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5382         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5383         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5384 #ifdef CONFIG_X86_64
5385         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5386         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5387         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5388         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5389         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5390         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5391         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5392         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5393 #endif
5394
5395         kvm_rip_write(vcpu, regs->rip);
5396         kvm_set_rflags(vcpu, regs->rflags);
5397
5398         vcpu->arch.exception.pending = false;
5399
5400         kvm_make_request(KVM_REQ_EVENT, vcpu);
5401
5402         return 0;
5403 }
5404
5405 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5406 {
5407         struct kvm_segment cs;
5408
5409         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5410         *db = cs.db;
5411         *l = cs.l;
5412 }
5413 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5414
5415 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5416                                   struct kvm_sregs *sregs)
5417 {
5418         struct desc_ptr dt;
5419
5420         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5421         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5422         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5423         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5424         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5425         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5426
5427         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5428         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5429
5430         kvm_x86_ops->get_idt(vcpu, &dt);
5431         sregs->idt.limit = dt.size;
5432         sregs->idt.base = dt.address;
5433         kvm_x86_ops->get_gdt(vcpu, &dt);
5434         sregs->gdt.limit = dt.size;
5435         sregs->gdt.base = dt.address;
5436
5437         sregs->cr0 = kvm_read_cr0(vcpu);
5438         sregs->cr2 = vcpu->arch.cr2;
5439         sregs->cr3 = vcpu->arch.cr3;
5440         sregs->cr4 = kvm_read_cr4(vcpu);
5441         sregs->cr8 = kvm_get_cr8(vcpu);
5442         sregs->efer = vcpu->arch.efer;
5443         sregs->apic_base = kvm_get_apic_base(vcpu);
5444
5445         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5446
5447         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5448                 set_bit(vcpu->arch.interrupt.nr,
5449                         (unsigned long *)sregs->interrupt_bitmap);
5450
5451         return 0;
5452 }
5453
5454 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5455                                     struct kvm_mp_state *mp_state)
5456 {
5457         mp_state->mp_state = vcpu->arch.mp_state;
5458         return 0;
5459 }
5460
5461 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5462                                     struct kvm_mp_state *mp_state)
5463 {
5464         vcpu->arch.mp_state = mp_state->mp_state;
5465         kvm_make_request(KVM_REQ_EVENT, vcpu);
5466         return 0;
5467 }
5468
5469 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5470                     bool has_error_code, u32 error_code)
5471 {
5472         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5473         int ret;
5474
5475         init_emulate_ctxt(vcpu);
5476
5477         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5478                                    tss_selector, reason, has_error_code,
5479                                    error_code);
5480
5481         if (ret)
5482                 return EMULATE_FAIL;
5483
5484         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5485         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5486         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5487         kvm_make_request(KVM_REQ_EVENT, vcpu);
5488         return EMULATE_DONE;
5489 }
5490 EXPORT_SYMBOL_GPL(kvm_task_switch);
5491
5492 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5493                                   struct kvm_sregs *sregs)
5494 {
5495         int mmu_reset_needed = 0;
5496         int pending_vec, max_bits;
5497         struct desc_ptr dt;
5498
5499         dt.size = sregs->idt.limit;
5500         dt.address = sregs->idt.base;
5501         kvm_x86_ops->set_idt(vcpu, &dt);
5502         dt.size = sregs->gdt.limit;
5503         dt.address = sregs->gdt.base;
5504         kvm_x86_ops->set_gdt(vcpu, &dt);
5505
5506         vcpu->arch.cr2 = sregs->cr2;
5507         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5508         vcpu->arch.cr3 = sregs->cr3;
5509
5510         kvm_set_cr8(vcpu, sregs->cr8);
5511
5512         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5513         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5514         kvm_set_apic_base(vcpu, sregs->apic_base);
5515
5516         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5517         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5518         vcpu->arch.cr0 = sregs->cr0;
5519
5520         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5521         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5522         if (sregs->cr4 & X86_CR4_OSXSAVE)
5523                 update_cpuid(vcpu);
5524         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5525                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
5526                 mmu_reset_needed = 1;
5527         }
5528
5529         if (mmu_reset_needed)
5530                 kvm_mmu_reset_context(vcpu);
5531
5532         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5533         pending_vec = find_first_bit(
5534                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5535         if (pending_vec < max_bits) {
5536                 kvm_queue_interrupt(vcpu, pending_vec, false);
5537                 pr_debug("Set back pending irq %d\n", pending_vec);
5538                 if (irqchip_in_kernel(vcpu->kvm))
5539                         kvm_pic_clear_isr_ack(vcpu->kvm);
5540         }
5541
5542         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5543         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5544         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5545         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5546         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5547         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5548
5549         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5550         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5551
5552         update_cr8_intercept(vcpu);
5553
5554         /* Older userspace won't unhalt the vcpu on reset. */
5555         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5556             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5557             !is_protmode(vcpu))
5558                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5559
5560         kvm_make_request(KVM_REQ_EVENT, vcpu);
5561
5562         return 0;
5563 }
5564
5565 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5566                                         struct kvm_guest_debug *dbg)
5567 {
5568         unsigned long rflags;
5569         int i, r;
5570
5571         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5572                 r = -EBUSY;
5573                 if (vcpu->arch.exception.pending)
5574                         goto out;
5575                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5576                         kvm_queue_exception(vcpu, DB_VECTOR);
5577                 else
5578                         kvm_queue_exception(vcpu, BP_VECTOR);
5579         }
5580
5581         /*
5582          * Read rflags as long as potentially injected trace flags are still
5583          * filtered out.
5584          */
5585         rflags = kvm_get_rflags(vcpu);
5586
5587         vcpu->guest_debug = dbg->control;
5588         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5589                 vcpu->guest_debug = 0;
5590
5591         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5592                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5593                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5594                 vcpu->arch.switch_db_regs =
5595                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5596         } else {
5597                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5598                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5599                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5600         }
5601
5602         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5603                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5604                         get_segment_base(vcpu, VCPU_SREG_CS);
5605
5606         /*
5607          * Trigger an rflags update that will inject or remove the trace
5608          * flags.
5609          */
5610         kvm_set_rflags(vcpu, rflags);
5611
5612         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5613
5614         r = 0;
5615
5616 out:
5617
5618         return r;
5619 }
5620
5621 /*
5622  * Translate a guest virtual address to a guest physical address.
5623  */
5624 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5625                                     struct kvm_translation *tr)
5626 {
5627         unsigned long vaddr = tr->linear_address;
5628         gpa_t gpa;
5629         int idx;
5630
5631         idx = srcu_read_lock(&vcpu->kvm->srcu);
5632         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5633         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5634         tr->physical_address = gpa;
5635         tr->valid = gpa != UNMAPPED_GVA;
5636         tr->writeable = 1;
5637         tr->usermode = 0;
5638
5639         return 0;
5640 }
5641
5642 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5643 {
5644         struct i387_fxsave_struct *fxsave =
5645                         &vcpu->arch.guest_fpu.state->fxsave;
5646
5647         memcpy(fpu->fpr, fxsave->st_space, 128);
5648         fpu->fcw = fxsave->cwd;
5649         fpu->fsw = fxsave->swd;
5650         fpu->ftwx = fxsave->twd;
5651         fpu->last_opcode = fxsave->fop;
5652         fpu->last_ip = fxsave->rip;
5653         fpu->last_dp = fxsave->rdp;
5654         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5655
5656         return 0;
5657 }
5658
5659 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5660 {
5661         struct i387_fxsave_struct *fxsave =
5662                         &vcpu->arch.guest_fpu.state->fxsave;
5663
5664         memcpy(fxsave->st_space, fpu->fpr, 128);
5665         fxsave->cwd = fpu->fcw;
5666         fxsave->swd = fpu->fsw;
5667         fxsave->twd = fpu->ftwx;
5668         fxsave->fop = fpu->last_opcode;
5669         fxsave->rip = fpu->last_ip;
5670         fxsave->rdp = fpu->last_dp;
5671         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5672
5673         return 0;
5674 }
5675
5676 int fx_init(struct kvm_vcpu *vcpu)
5677 {
5678         int err;
5679
5680         err = fpu_alloc(&vcpu->arch.guest_fpu);
5681         if (err)
5682                 return err;
5683
5684         fpu_finit(&vcpu->arch.guest_fpu);
5685
5686         /*
5687          * Ensure guest xcr0 is valid for loading
5688          */
5689         vcpu->arch.xcr0 = XSTATE_FP;
5690
5691         vcpu->arch.cr0 |= X86_CR0_ET;
5692
5693         return 0;
5694 }
5695 EXPORT_SYMBOL_GPL(fx_init);
5696
5697 static void fx_free(struct kvm_vcpu *vcpu)
5698 {
5699         fpu_free(&vcpu->arch.guest_fpu);
5700 }
5701
5702 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5703 {
5704         if (vcpu->guest_fpu_loaded)
5705                 return;
5706
5707         /*
5708          * Restore all possible states in the guest,
5709          * and assume host would use all available bits.
5710          * Guest xcr0 would be loaded later.
5711          */
5712         kvm_put_guest_xcr0(vcpu);
5713         vcpu->guest_fpu_loaded = 1;
5714         unlazy_fpu(current);
5715         fpu_restore_checking(&vcpu->arch.guest_fpu);
5716         trace_kvm_fpu(1);
5717 }
5718
5719 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5720 {
5721         kvm_put_guest_xcr0(vcpu);
5722
5723         if (!vcpu->guest_fpu_loaded)
5724                 return;
5725
5726         vcpu->guest_fpu_loaded = 0;
5727         fpu_save_init(&vcpu->arch.guest_fpu);
5728         ++vcpu->stat.fpu_reload;
5729         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5730         trace_kvm_fpu(0);
5731 }
5732
5733 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5734 {
5735         if (vcpu->arch.time_page) {
5736                 kvm_release_page_dirty(vcpu->arch.time_page);
5737                 vcpu->arch.time_page = NULL;
5738         }
5739
5740         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5741         fx_free(vcpu);
5742         kvm_x86_ops->vcpu_free(vcpu);
5743 }
5744
5745 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5746                                                 unsigned int id)
5747 {
5748         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5749                 printk_once(KERN_WARNING
5750                 "kvm: SMP vm created on host with unstable TSC; "
5751                 "guest TSC will not be reliable\n");
5752         return kvm_x86_ops->vcpu_create(kvm, id);
5753 }
5754
5755 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5756 {
5757         int r;
5758
5759         vcpu->arch.mtrr_state.have_fixed = 1;
5760         vcpu_load(vcpu);
5761         r = kvm_arch_vcpu_reset(vcpu);
5762         if (r == 0)
5763                 r = kvm_mmu_setup(vcpu);
5764         vcpu_put(vcpu);
5765         if (r < 0)
5766                 goto free_vcpu;
5767
5768         return 0;
5769 free_vcpu:
5770         kvm_x86_ops->vcpu_free(vcpu);
5771         return r;
5772 }
5773
5774 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5775 {
5776         vcpu_load(vcpu);
5777         kvm_mmu_unload(vcpu);
5778         vcpu_put(vcpu);
5779
5780         fx_free(vcpu);
5781         kvm_x86_ops->vcpu_free(vcpu);
5782 }
5783
5784 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5785 {
5786         vcpu->arch.nmi_pending = false;
5787         vcpu->arch.nmi_injected = false;
5788
5789         vcpu->arch.switch_db_regs = 0;
5790         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5791         vcpu->arch.dr6 = DR6_FIXED_1;
5792         vcpu->arch.dr7 = DR7_FIXED_1;
5793
5794         kvm_make_request(KVM_REQ_EVENT, vcpu);
5795
5796         return kvm_x86_ops->vcpu_reset(vcpu);
5797 }
5798
5799 int kvm_arch_hardware_enable(void *garbage)
5800 {
5801         struct kvm *kvm;
5802         struct kvm_vcpu *vcpu;
5803         int i;
5804
5805         kvm_shared_msr_cpu_online();
5806         list_for_each_entry(kvm, &vm_list, vm_list)
5807                 kvm_for_each_vcpu(i, vcpu, kvm)
5808                         if (vcpu->cpu == smp_processor_id())
5809                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5810         return kvm_x86_ops->hardware_enable(garbage);
5811 }
5812
5813 void kvm_arch_hardware_disable(void *garbage)
5814 {
5815         kvm_x86_ops->hardware_disable(garbage);
5816         drop_user_return_notifiers(garbage);
5817 }
5818
5819 int kvm_arch_hardware_setup(void)
5820 {
5821         return kvm_x86_ops->hardware_setup();
5822 }
5823
5824 void kvm_arch_hardware_unsetup(void)
5825 {
5826         kvm_x86_ops->hardware_unsetup();
5827 }
5828
5829 void kvm_arch_check_processor_compat(void *rtn)
5830 {
5831         kvm_x86_ops->check_processor_compatibility(rtn);
5832 }
5833
5834 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5835 {
5836         struct page *page;
5837         struct kvm *kvm;
5838         int r;
5839
5840         BUG_ON(vcpu->kvm == NULL);
5841         kvm = vcpu->kvm;
5842
5843         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5844         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5845         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5846         vcpu->arch.mmu.translate_gpa = translate_gpa;
5847         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5848         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5849                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5850         else
5851                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5852
5853         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5854         if (!page) {
5855                 r = -ENOMEM;
5856                 goto fail;
5857         }
5858         vcpu->arch.pio_data = page_address(page);
5859
5860         if (!kvm->arch.virtual_tsc_khz)
5861                 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5862
5863         r = kvm_mmu_create(vcpu);
5864         if (r < 0)
5865                 goto fail_free_pio_data;
5866
5867         if (irqchip_in_kernel(kvm)) {
5868                 r = kvm_create_lapic(vcpu);
5869                 if (r < 0)
5870                         goto fail_mmu_destroy;
5871         }
5872
5873         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5874                                        GFP_KERNEL);
5875         if (!vcpu->arch.mce_banks) {
5876                 r = -ENOMEM;
5877                 goto fail_free_lapic;
5878         }
5879         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5880
5881         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5882                 goto fail_free_mce_banks;
5883
5884         return 0;
5885 fail_free_mce_banks:
5886         kfree(vcpu->arch.mce_banks);
5887 fail_free_lapic:
5888         kvm_free_lapic(vcpu);
5889 fail_mmu_destroy:
5890         kvm_mmu_destroy(vcpu);
5891 fail_free_pio_data:
5892         free_page((unsigned long)vcpu->arch.pio_data);
5893 fail:
5894         return r;
5895 }
5896
5897 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5898 {
5899         int idx;
5900
5901         kfree(vcpu->arch.mce_banks);
5902         kvm_free_lapic(vcpu);
5903         idx = srcu_read_lock(&vcpu->kvm->srcu);
5904         kvm_mmu_destroy(vcpu);
5905         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5906         free_page((unsigned long)vcpu->arch.pio_data);
5907 }
5908
5909 struct  kvm *kvm_arch_create_vm(void)
5910 {
5911         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5912
5913         if (!kvm)
5914                 return ERR_PTR(-ENOMEM);
5915
5916         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5917         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5918
5919         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5920         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5921
5922         spin_lock_init(&kvm->arch.tsc_write_lock);
5923
5924         return kvm;
5925 }
5926
5927 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5928 {
5929         vcpu_load(vcpu);
5930         kvm_mmu_unload(vcpu);
5931         vcpu_put(vcpu);
5932 }
5933
5934 static void kvm_free_vcpus(struct kvm *kvm)
5935 {
5936         unsigned int i;
5937         struct kvm_vcpu *vcpu;
5938
5939         /*
5940          * Unpin any mmu pages first.
5941          */
5942         kvm_for_each_vcpu(i, vcpu, kvm)
5943                 kvm_unload_vcpu_mmu(vcpu);
5944         kvm_for_each_vcpu(i, vcpu, kvm)
5945                 kvm_arch_vcpu_free(vcpu);
5946
5947         mutex_lock(&kvm->lock);
5948         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5949                 kvm->vcpus[i] = NULL;
5950
5951         atomic_set(&kvm->online_vcpus, 0);
5952         mutex_unlock(&kvm->lock);
5953 }
5954
5955 void kvm_arch_sync_events(struct kvm *kvm)
5956 {
5957         kvm_free_all_assigned_devices(kvm);
5958         kvm_free_pit(kvm);
5959 }
5960
5961 void kvm_arch_destroy_vm(struct kvm *kvm)
5962 {
5963         kvm_iommu_unmap_guest(kvm);
5964         kfree(kvm->arch.vpic);
5965         kfree(kvm->arch.vioapic);
5966         kvm_free_vcpus(kvm);
5967         kvm_free_physmem(kvm);
5968         if (kvm->arch.apic_access_page)
5969                 put_page(kvm->arch.apic_access_page);
5970         if (kvm->arch.ept_identity_pagetable)
5971                 put_page(kvm->arch.ept_identity_pagetable);
5972         cleanup_srcu_struct(&kvm->srcu);
5973         kfree(kvm);
5974 }
5975
5976 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5977                                 struct kvm_memory_slot *memslot,
5978                                 struct kvm_memory_slot old,
5979                                 struct kvm_userspace_memory_region *mem,
5980                                 int user_alloc)
5981 {
5982         int npages = memslot->npages;
5983         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5984
5985         /* Prevent internal slot pages from being moved by fork()/COW. */
5986         if (memslot->id >= KVM_MEMORY_SLOTS)
5987                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5988
5989         /*To keep backward compatibility with older userspace,
5990          *x86 needs to hanlde !user_alloc case.
5991          */
5992         if (!user_alloc) {
5993                 if (npages && !old.rmap) {
5994                         unsigned long userspace_addr;
5995
5996                         down_write(&current->mm->mmap_sem);
5997                         userspace_addr = do_mmap(NULL, 0,
5998                                                  npages * PAGE_SIZE,
5999                                                  PROT_READ | PROT_WRITE,
6000                                                  map_flags,
6001                                                  0);
6002                         up_write(&current->mm->mmap_sem);
6003
6004                         if (IS_ERR((void *)userspace_addr))
6005                                 return PTR_ERR((void *)userspace_addr);
6006
6007                         memslot->userspace_addr = userspace_addr;
6008                 }
6009         }
6010
6011
6012         return 0;
6013 }
6014
6015 void kvm_arch_commit_memory_region(struct kvm *kvm,
6016                                 struct kvm_userspace_memory_region *mem,
6017                                 struct kvm_memory_slot old,
6018                                 int user_alloc)
6019 {
6020
6021         int npages = mem->memory_size >> PAGE_SHIFT;
6022
6023         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6024                 int ret;
6025
6026                 down_write(&current->mm->mmap_sem);
6027                 ret = do_munmap(current->mm, old.userspace_addr,
6028                                 old.npages * PAGE_SIZE);
6029                 up_write(&current->mm->mmap_sem);
6030                 if (ret < 0)
6031                         printk(KERN_WARNING
6032                                "kvm_vm_ioctl_set_memory_region: "
6033                                "failed to munmap memory\n");
6034         }
6035
6036         spin_lock(&kvm->mmu_lock);
6037         if (!kvm->arch.n_requested_mmu_pages) {
6038                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6039                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6040         }
6041
6042         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6043         spin_unlock(&kvm->mmu_lock);
6044 }
6045
6046 void kvm_arch_flush_shadow(struct kvm *kvm)
6047 {
6048         kvm_mmu_zap_all(kvm);
6049         kvm_reload_remote_mmus(kvm);
6050 }
6051
6052 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6053 {
6054         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
6055                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6056                 || vcpu->arch.nmi_pending ||
6057                 (kvm_arch_interrupt_allowed(vcpu) &&
6058                  kvm_cpu_has_interrupt(vcpu));
6059 }
6060
6061 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6062 {
6063         int me;
6064         int cpu = vcpu->cpu;
6065
6066         if (waitqueue_active(&vcpu->wq)) {
6067                 wake_up_interruptible(&vcpu->wq);
6068                 ++vcpu->stat.halt_wakeup;
6069         }
6070
6071         me = get_cpu();
6072         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6073                 if (atomic_xchg(&vcpu->guest_mode, 0))
6074                         smp_send_reschedule(cpu);
6075         put_cpu();
6076 }
6077
6078 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6079 {
6080         return kvm_x86_ops->interrupt_allowed(vcpu);
6081 }
6082
6083 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6084 {
6085         unsigned long current_rip = kvm_rip_read(vcpu) +
6086                 get_segment_base(vcpu, VCPU_SREG_CS);
6087
6088         return current_rip == linear_rip;
6089 }
6090 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6091
6092 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6093 {
6094         unsigned long rflags;
6095
6096         rflags = kvm_x86_ops->get_rflags(vcpu);
6097         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6098                 rflags &= ~X86_EFLAGS_TF;
6099         return rflags;
6100 }
6101 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6102
6103 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6104 {
6105         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6106             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6107                 rflags |= X86_EFLAGS_TF;
6108         kvm_x86_ops->set_rflags(vcpu, rflags);
6109         kvm_make_request(KVM_REQ_EVENT, vcpu);
6110 }
6111 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6112
6113 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6114 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6115 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6116 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6117 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6118 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6119 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6120 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6121 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6122 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6123 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6124 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);