Merge branch 'iommu/largepages' into amd-iommu/2.6.35
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <linux/slab.h>
43 #include <trace/events/kvm.h>
44 #undef TRACE_INCLUDE_FILE
45 #define CREATE_TRACE_POINTS
46 #include "trace.h"
47
48 #include <asm/debugreg.h>
49 #include <asm/uaccess.h>
50 #include <asm/msr.h>
51 #include <asm/desc.h>
52 #include <asm/mtrr.h>
53 #include <asm/mce.h>
54
55 #define MAX_IO_MSRS 256
56 #define CR0_RESERVED_BITS                                               \
57         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
58                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
59                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
60 #define CR4_RESERVED_BITS                                               \
61         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
62                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
63                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
64                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
65
66 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
67
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
70
71 /* EFER defaults:
72  * - enable syscall per default because its emulated by KVM
73  * - enable LME and LMA per default on 64 bit KVM
74  */
75 #ifdef CONFIG_X86_64
76 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
77 #else
78 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
79 #endif
80
81 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
82 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83
84 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
85 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
86                                     struct kvm_cpuid_entry2 __user *entries);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 int ignore_msrs = 0;
92 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 #define KVM_NR_SHARED_MSRS 16
95
96 struct kvm_shared_msrs_global {
97         int nr;
98         u32 msrs[KVM_NR_SHARED_MSRS];
99 };
100
101 struct kvm_shared_msrs {
102         struct user_return_notifier urn;
103         bool registered;
104         struct kvm_shared_msr_values {
105                 u64 host;
106                 u64 curr;
107         } values[KVM_NR_SHARED_MSRS];
108 };
109
110 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
111 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
112
113 struct kvm_stats_debugfs_item debugfs_entries[] = {
114         { "pf_fixed", VCPU_STAT(pf_fixed) },
115         { "pf_guest", VCPU_STAT(pf_guest) },
116         { "tlb_flush", VCPU_STAT(tlb_flush) },
117         { "invlpg", VCPU_STAT(invlpg) },
118         { "exits", VCPU_STAT(exits) },
119         { "io_exits", VCPU_STAT(io_exits) },
120         { "mmio_exits", VCPU_STAT(mmio_exits) },
121         { "signal_exits", VCPU_STAT(signal_exits) },
122         { "irq_window", VCPU_STAT(irq_window_exits) },
123         { "nmi_window", VCPU_STAT(nmi_window_exits) },
124         { "halt_exits", VCPU_STAT(halt_exits) },
125         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
126         { "hypercalls", VCPU_STAT(hypercalls) },
127         { "request_irq", VCPU_STAT(request_irq_exits) },
128         { "irq_exits", VCPU_STAT(irq_exits) },
129         { "host_state_reload", VCPU_STAT(host_state_reload) },
130         { "efer_reload", VCPU_STAT(efer_reload) },
131         { "fpu_reload", VCPU_STAT(fpu_reload) },
132         { "insn_emulation", VCPU_STAT(insn_emulation) },
133         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
134         { "irq_injections", VCPU_STAT(irq_injections) },
135         { "nmi_injections", VCPU_STAT(nmi_injections) },
136         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
137         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
138         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
139         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
140         { "mmu_flooded", VM_STAT(mmu_flooded) },
141         { "mmu_recycled", VM_STAT(mmu_recycled) },
142         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
143         { "mmu_unsync", VM_STAT(mmu_unsync) },
144         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
145         { "largepages", VM_STAT(lpages) },
146         { NULL }
147 };
148
149 static void kvm_on_user_return(struct user_return_notifier *urn)
150 {
151         unsigned slot;
152         struct kvm_shared_msrs *locals
153                 = container_of(urn, struct kvm_shared_msrs, urn);
154         struct kvm_shared_msr_values *values;
155
156         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
157                 values = &locals->values[slot];
158                 if (values->host != values->curr) {
159                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
160                         values->curr = values->host;
161                 }
162         }
163         locals->registered = false;
164         user_return_notifier_unregister(urn);
165 }
166
167 static void shared_msr_update(unsigned slot, u32 msr)
168 {
169         struct kvm_shared_msrs *smsr;
170         u64 value;
171
172         smsr = &__get_cpu_var(shared_msrs);
173         /* only read, and nobody should modify it at this time,
174          * so don't need lock */
175         if (slot >= shared_msrs_global.nr) {
176                 printk(KERN_ERR "kvm: invalid MSR slot!");
177                 return;
178         }
179         rdmsrl_safe(msr, &value);
180         smsr->values[slot].host = value;
181         smsr->values[slot].curr = value;
182 }
183
184 void kvm_define_shared_msr(unsigned slot, u32 msr)
185 {
186         if (slot >= shared_msrs_global.nr)
187                 shared_msrs_global.nr = slot + 1;
188         shared_msrs_global.msrs[slot] = msr;
189         /* we need ensured the shared_msr_global have been updated */
190         smp_wmb();
191 }
192 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
193
194 static void kvm_shared_msr_cpu_online(void)
195 {
196         unsigned i;
197
198         for (i = 0; i < shared_msrs_global.nr; ++i)
199                 shared_msr_update(i, shared_msrs_global.msrs[i]);
200 }
201
202 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
203 {
204         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
205
206         if (((value ^ smsr->values[slot].curr) & mask) == 0)
207                 return;
208         smsr->values[slot].curr = value;
209         wrmsrl(shared_msrs_global.msrs[slot], value);
210         if (!smsr->registered) {
211                 smsr->urn.on_user_return = kvm_on_user_return;
212                 user_return_notifier_register(&smsr->urn);
213                 smsr->registered = true;
214         }
215 }
216 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
217
218 static void drop_user_return_notifiers(void *ignore)
219 {
220         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221
222         if (smsr->registered)
223                 kvm_on_user_return(&smsr->urn);
224 }
225
226 unsigned long segment_base(u16 selector)
227 {
228         struct descriptor_table gdt;
229         struct desc_struct *d;
230         unsigned long table_base;
231         unsigned long v;
232
233         if (selector == 0)
234                 return 0;
235
236         kvm_get_gdt(&gdt);
237         table_base = gdt.base;
238
239         if (selector & 4) {           /* from ldt */
240                 u16 ldt_selector = kvm_read_ldt();
241
242                 table_base = segment_base(ldt_selector);
243         }
244         d = (struct desc_struct *)(table_base + (selector & ~7));
245         v = get_desc_base(d);
246 #ifdef CONFIG_X86_64
247         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
248                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
249 #endif
250         return v;
251 }
252 EXPORT_SYMBOL_GPL(segment_base);
253
254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 {
256         if (irqchip_in_kernel(vcpu->kvm))
257                 return vcpu->arch.apic_base;
258         else
259                 return vcpu->arch.apic_base;
260 }
261 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
262
263 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
264 {
265         /* TODO: reserve bits check */
266         if (irqchip_in_kernel(vcpu->kvm))
267                 kvm_lapic_set_base(vcpu, data);
268         else
269                 vcpu->arch.apic_base = data;
270 }
271 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
272
273 #define EXCPT_BENIGN            0
274 #define EXCPT_CONTRIBUTORY      1
275 #define EXCPT_PF                2
276
277 static int exception_class(int vector)
278 {
279         switch (vector) {
280         case PF_VECTOR:
281                 return EXCPT_PF;
282         case DE_VECTOR:
283         case TS_VECTOR:
284         case NP_VECTOR:
285         case SS_VECTOR:
286         case GP_VECTOR:
287                 return EXCPT_CONTRIBUTORY;
288         default:
289                 break;
290         }
291         return EXCPT_BENIGN;
292 }
293
294 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
295                 unsigned nr, bool has_error, u32 error_code)
296 {
297         u32 prev_nr;
298         int class1, class2;
299
300         if (!vcpu->arch.exception.pending) {
301         queue:
302                 vcpu->arch.exception.pending = true;
303                 vcpu->arch.exception.has_error_code = has_error;
304                 vcpu->arch.exception.nr = nr;
305                 vcpu->arch.exception.error_code = error_code;
306                 return;
307         }
308
309         /* to check exception */
310         prev_nr = vcpu->arch.exception.nr;
311         if (prev_nr == DF_VECTOR) {
312                 /* triple fault -> shutdown */
313                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
314                 return;
315         }
316         class1 = exception_class(prev_nr);
317         class2 = exception_class(nr);
318         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
319                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
320                 /* generate double fault per SDM Table 5-5 */
321                 vcpu->arch.exception.pending = true;
322                 vcpu->arch.exception.has_error_code = true;
323                 vcpu->arch.exception.nr = DF_VECTOR;
324                 vcpu->arch.exception.error_code = 0;
325         } else
326                 /* replace previous exception with a new one in a hope
327                    that instruction re-execution will regenerate lost
328                    exception */
329                 goto queue;
330 }
331
332 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
333 {
334         kvm_multiple_exception(vcpu, nr, false, 0);
335 }
336 EXPORT_SYMBOL_GPL(kvm_queue_exception);
337
338 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
339                            u32 error_code)
340 {
341         ++vcpu->stat.pf_guest;
342         vcpu->arch.cr2 = addr;
343         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
344 }
345
346 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
347 {
348         vcpu->arch.nmi_pending = 1;
349 }
350 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
351
352 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
353 {
354         kvm_multiple_exception(vcpu, nr, true, error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
357
358 /*
359  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
360  * a #GP and return false.
361  */
362 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
363 {
364         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
365                 return true;
366         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
367         return false;
368 }
369 EXPORT_SYMBOL_GPL(kvm_require_cpl);
370
371 /*
372  * Load the pae pdptrs.  Return true is they are all valid.
373  */
374 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
375 {
376         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
377         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
378         int i;
379         int ret;
380         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
381
382         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
383                                   offset * sizeof(u64), sizeof(pdpte));
384         if (ret < 0) {
385                 ret = 0;
386                 goto out;
387         }
388         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
389                 if (is_present_gpte(pdpte[i]) &&
390                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
391                         ret = 0;
392                         goto out;
393                 }
394         }
395         ret = 1;
396
397         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
398         __set_bit(VCPU_EXREG_PDPTR,
399                   (unsigned long *)&vcpu->arch.regs_avail);
400         __set_bit(VCPU_EXREG_PDPTR,
401                   (unsigned long *)&vcpu->arch.regs_dirty);
402 out:
403
404         return ret;
405 }
406 EXPORT_SYMBOL_GPL(load_pdptrs);
407
408 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
409 {
410         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
411         bool changed = true;
412         int r;
413
414         if (is_long_mode(vcpu) || !is_pae(vcpu))
415                 return false;
416
417         if (!test_bit(VCPU_EXREG_PDPTR,
418                       (unsigned long *)&vcpu->arch.regs_avail))
419                 return true;
420
421         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
422         if (r < 0)
423                 goto out;
424         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
425 out:
426
427         return changed;
428 }
429
430 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
431 {
432         cr0 |= X86_CR0_ET;
433
434 #ifdef CONFIG_X86_64
435         if (cr0 & 0xffffffff00000000UL) {
436                 kvm_inject_gp(vcpu, 0);
437                 return;
438         }
439 #endif
440
441         cr0 &= ~CR0_RESERVED_BITS;
442
443         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
444                 kvm_inject_gp(vcpu, 0);
445                 return;
446         }
447
448         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
449                 kvm_inject_gp(vcpu, 0);
450                 return;
451         }
452
453         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
454 #ifdef CONFIG_X86_64
455                 if ((vcpu->arch.efer & EFER_LME)) {
456                         int cs_db, cs_l;
457
458                         if (!is_pae(vcpu)) {
459                                 kvm_inject_gp(vcpu, 0);
460                                 return;
461                         }
462                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
463                         if (cs_l) {
464                                 kvm_inject_gp(vcpu, 0);
465                                 return;
466
467                         }
468                 } else
469 #endif
470                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
471                         kvm_inject_gp(vcpu, 0);
472                         return;
473                 }
474
475         }
476
477         kvm_x86_ops->set_cr0(vcpu, cr0);
478         vcpu->arch.cr0 = cr0;
479
480         kvm_mmu_reset_context(vcpu);
481         return;
482 }
483 EXPORT_SYMBOL_GPL(kvm_set_cr0);
484
485 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
486 {
487         kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
488 }
489 EXPORT_SYMBOL_GPL(kvm_lmsw);
490
491 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
492 {
493         unsigned long old_cr4 = kvm_read_cr4(vcpu);
494         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
495
496         if (cr4 & CR4_RESERVED_BITS) {
497                 kvm_inject_gp(vcpu, 0);
498                 return;
499         }
500
501         if (is_long_mode(vcpu)) {
502                 if (!(cr4 & X86_CR4_PAE)) {
503                         kvm_inject_gp(vcpu, 0);
504                         return;
505                 }
506         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
507                    && ((cr4 ^ old_cr4) & pdptr_bits)
508                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
509                 kvm_inject_gp(vcpu, 0);
510                 return;
511         }
512
513         if (cr4 & X86_CR4_VMXE) {
514                 kvm_inject_gp(vcpu, 0);
515                 return;
516         }
517         kvm_x86_ops->set_cr4(vcpu, cr4);
518         vcpu->arch.cr4 = cr4;
519         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
520         kvm_mmu_reset_context(vcpu);
521 }
522 EXPORT_SYMBOL_GPL(kvm_set_cr4);
523
524 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
525 {
526         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
527                 kvm_mmu_sync_roots(vcpu);
528                 kvm_mmu_flush_tlb(vcpu);
529                 return;
530         }
531
532         if (is_long_mode(vcpu)) {
533                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
534                         kvm_inject_gp(vcpu, 0);
535                         return;
536                 }
537         } else {
538                 if (is_pae(vcpu)) {
539                         if (cr3 & CR3_PAE_RESERVED_BITS) {
540                                 kvm_inject_gp(vcpu, 0);
541                                 return;
542                         }
543                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
544                                 kvm_inject_gp(vcpu, 0);
545                                 return;
546                         }
547                 }
548                 /*
549                  * We don't check reserved bits in nonpae mode, because
550                  * this isn't enforced, and VMware depends on this.
551                  */
552         }
553
554         /*
555          * Does the new cr3 value map to physical memory? (Note, we
556          * catch an invalid cr3 even in real-mode, because it would
557          * cause trouble later on when we turn on paging anyway.)
558          *
559          * A real CPU would silently accept an invalid cr3 and would
560          * attempt to use it - with largely undefined (and often hard
561          * to debug) behavior on the guest side.
562          */
563         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
564                 kvm_inject_gp(vcpu, 0);
565         else {
566                 vcpu->arch.cr3 = cr3;
567                 vcpu->arch.mmu.new_cr3(vcpu);
568         }
569 }
570 EXPORT_SYMBOL_GPL(kvm_set_cr3);
571
572 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
573 {
574         if (cr8 & CR8_RESERVED_BITS) {
575                 kvm_inject_gp(vcpu, 0);
576                 return;
577         }
578         if (irqchip_in_kernel(vcpu->kvm))
579                 kvm_lapic_set_tpr(vcpu, cr8);
580         else
581                 vcpu->arch.cr8 = cr8;
582 }
583 EXPORT_SYMBOL_GPL(kvm_set_cr8);
584
585 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
586 {
587         if (irqchip_in_kernel(vcpu->kvm))
588                 return kvm_lapic_get_cr8(vcpu);
589         else
590                 return vcpu->arch.cr8;
591 }
592 EXPORT_SYMBOL_GPL(kvm_get_cr8);
593
594 static inline u32 bit(int bitno)
595 {
596         return 1 << (bitno & 31);
597 }
598
599 /*
600  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
601  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
602  *
603  * This list is modified at module load time to reflect the
604  * capabilities of the host cpu. This capabilities test skips MSRs that are
605  * kvm-specific. Those are put in the beginning of the list.
606  */
607
608 #define KVM_SAVE_MSRS_BEGIN     5
609 static u32 msrs_to_save[] = {
610         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
611         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
612         HV_X64_MSR_APIC_ASSIST_PAGE,
613         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
614         MSR_K6_STAR,
615 #ifdef CONFIG_X86_64
616         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
617 #endif
618         MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
619 };
620
621 static unsigned num_msrs_to_save;
622
623 static u32 emulated_msrs[] = {
624         MSR_IA32_MISC_ENABLE,
625 };
626
627 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
628 {
629         if (efer & efer_reserved_bits) {
630                 kvm_inject_gp(vcpu, 0);
631                 return;
632         }
633
634         if (is_paging(vcpu)
635             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
636                 kvm_inject_gp(vcpu, 0);
637                 return;
638         }
639
640         if (efer & EFER_FFXSR) {
641                 struct kvm_cpuid_entry2 *feat;
642
643                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
644                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
645                         kvm_inject_gp(vcpu, 0);
646                         return;
647                 }
648         }
649
650         if (efer & EFER_SVME) {
651                 struct kvm_cpuid_entry2 *feat;
652
653                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
654                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
655                         kvm_inject_gp(vcpu, 0);
656                         return;
657                 }
658         }
659
660         kvm_x86_ops->set_efer(vcpu, efer);
661
662         efer &= ~EFER_LMA;
663         efer |= vcpu->arch.efer & EFER_LMA;
664
665         vcpu->arch.efer = efer;
666
667         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
668         kvm_mmu_reset_context(vcpu);
669 }
670
671 void kvm_enable_efer_bits(u64 mask)
672 {
673        efer_reserved_bits &= ~mask;
674 }
675 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
676
677
678 /*
679  * Writes msr value into into the appropriate "register".
680  * Returns 0 on success, non-0 otherwise.
681  * Assumes vcpu_load() was already called.
682  */
683 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
684 {
685         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
686 }
687
688 /*
689  * Adapt set_msr() to msr_io()'s calling convention
690  */
691 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
692 {
693         return kvm_set_msr(vcpu, index, *data);
694 }
695
696 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
697 {
698         static int version;
699         struct pvclock_wall_clock wc;
700         struct timespec boot;
701
702         if (!wall_clock)
703                 return;
704
705         version++;
706
707         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
708
709         /*
710          * The guest calculates current wall clock time by adding
711          * system time (updated by kvm_write_guest_time below) to the
712          * wall clock specified here.  guest system time equals host
713          * system time for us, thus we must fill in host boot time here.
714          */
715         getboottime(&boot);
716
717         wc.sec = boot.tv_sec;
718         wc.nsec = boot.tv_nsec;
719         wc.version = version;
720
721         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
722
723         version++;
724         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
725 }
726
727 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
728 {
729         uint32_t quotient, remainder;
730
731         /* Don't try to replace with do_div(), this one calculates
732          * "(dividend << 32) / divisor" */
733         __asm__ ( "divl %4"
734                   : "=a" (quotient), "=d" (remainder)
735                   : "0" (0), "1" (dividend), "r" (divisor) );
736         return quotient;
737 }
738
739 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
740 {
741         uint64_t nsecs = 1000000000LL;
742         int32_t  shift = 0;
743         uint64_t tps64;
744         uint32_t tps32;
745
746         tps64 = tsc_khz * 1000LL;
747         while (tps64 > nsecs*2) {
748                 tps64 >>= 1;
749                 shift--;
750         }
751
752         tps32 = (uint32_t)tps64;
753         while (tps32 <= (uint32_t)nsecs) {
754                 tps32 <<= 1;
755                 shift++;
756         }
757
758         hv_clock->tsc_shift = shift;
759         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
760
761         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
762                  __func__, tsc_khz, hv_clock->tsc_shift,
763                  hv_clock->tsc_to_system_mul);
764 }
765
766 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
767
768 static void kvm_write_guest_time(struct kvm_vcpu *v)
769 {
770         struct timespec ts;
771         unsigned long flags;
772         struct kvm_vcpu_arch *vcpu = &v->arch;
773         void *shared_kaddr;
774         unsigned long this_tsc_khz;
775
776         if ((!vcpu->time_page))
777                 return;
778
779         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
780         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
781                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
782                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
783         }
784         put_cpu_var(cpu_tsc_khz);
785
786         /* Keep irq disabled to prevent changes to the clock */
787         local_irq_save(flags);
788         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
789         ktime_get_ts(&ts);
790         monotonic_to_bootbased(&ts);
791         local_irq_restore(flags);
792
793         /* With all the info we got, fill in the values */
794
795         vcpu->hv_clock.system_time = ts.tv_nsec +
796                                      (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
797
798         /*
799          * The interface expects us to write an even number signaling that the
800          * update is finished. Since the guest won't see the intermediate
801          * state, we just increase by 2 at the end.
802          */
803         vcpu->hv_clock.version += 2;
804
805         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
806
807         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
808                sizeof(vcpu->hv_clock));
809
810         kunmap_atomic(shared_kaddr, KM_USER0);
811
812         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
813 }
814
815 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
816 {
817         struct kvm_vcpu_arch *vcpu = &v->arch;
818
819         if (!vcpu->time_page)
820                 return 0;
821         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
822         return 1;
823 }
824
825 static bool msr_mtrr_valid(unsigned msr)
826 {
827         switch (msr) {
828         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
829         case MSR_MTRRfix64K_00000:
830         case MSR_MTRRfix16K_80000:
831         case MSR_MTRRfix16K_A0000:
832         case MSR_MTRRfix4K_C0000:
833         case MSR_MTRRfix4K_C8000:
834         case MSR_MTRRfix4K_D0000:
835         case MSR_MTRRfix4K_D8000:
836         case MSR_MTRRfix4K_E0000:
837         case MSR_MTRRfix4K_E8000:
838         case MSR_MTRRfix4K_F0000:
839         case MSR_MTRRfix4K_F8000:
840         case MSR_MTRRdefType:
841         case MSR_IA32_CR_PAT:
842                 return true;
843         case 0x2f8:
844                 return true;
845         }
846         return false;
847 }
848
849 static bool valid_pat_type(unsigned t)
850 {
851         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
852 }
853
854 static bool valid_mtrr_type(unsigned t)
855 {
856         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
857 }
858
859 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
860 {
861         int i;
862
863         if (!msr_mtrr_valid(msr))
864                 return false;
865
866         if (msr == MSR_IA32_CR_PAT) {
867                 for (i = 0; i < 8; i++)
868                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
869                                 return false;
870                 return true;
871         } else if (msr == MSR_MTRRdefType) {
872                 if (data & ~0xcff)
873                         return false;
874                 return valid_mtrr_type(data & 0xff);
875         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
876                 for (i = 0; i < 8 ; i++)
877                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
878                                 return false;
879                 return true;
880         }
881
882         /* variable MTRRs */
883         return valid_mtrr_type(data & 0xff);
884 }
885
886 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
887 {
888         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
889
890         if (!mtrr_valid(vcpu, msr, data))
891                 return 1;
892
893         if (msr == MSR_MTRRdefType) {
894                 vcpu->arch.mtrr_state.def_type = data;
895                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
896         } else if (msr == MSR_MTRRfix64K_00000)
897                 p[0] = data;
898         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
899                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
900         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
901                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
902         else if (msr == MSR_IA32_CR_PAT)
903                 vcpu->arch.pat = data;
904         else {  /* Variable MTRRs */
905                 int idx, is_mtrr_mask;
906                 u64 *pt;
907
908                 idx = (msr - 0x200) / 2;
909                 is_mtrr_mask = msr - 0x200 - 2 * idx;
910                 if (!is_mtrr_mask)
911                         pt =
912                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
913                 else
914                         pt =
915                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
916                 *pt = data;
917         }
918
919         kvm_mmu_reset_context(vcpu);
920         return 0;
921 }
922
923 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
924 {
925         u64 mcg_cap = vcpu->arch.mcg_cap;
926         unsigned bank_num = mcg_cap & 0xff;
927
928         switch (msr) {
929         case MSR_IA32_MCG_STATUS:
930                 vcpu->arch.mcg_status = data;
931                 break;
932         case MSR_IA32_MCG_CTL:
933                 if (!(mcg_cap & MCG_CTL_P))
934                         return 1;
935                 if (data != 0 && data != ~(u64)0)
936                         return -1;
937                 vcpu->arch.mcg_ctl = data;
938                 break;
939         default:
940                 if (msr >= MSR_IA32_MC0_CTL &&
941                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
942                         u32 offset = msr - MSR_IA32_MC0_CTL;
943                         /* only 0 or all 1s can be written to IA32_MCi_CTL
944                          * some Linux kernels though clear bit 10 in bank 4 to
945                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
946                          * this to avoid an uncatched #GP in the guest
947                          */
948                         if ((offset & 0x3) == 0 &&
949                             data != 0 && (data | (1 << 10)) != ~(u64)0)
950                                 return -1;
951                         vcpu->arch.mce_banks[offset] = data;
952                         break;
953                 }
954                 return 1;
955         }
956         return 0;
957 }
958
959 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
960 {
961         struct kvm *kvm = vcpu->kvm;
962         int lm = is_long_mode(vcpu);
963         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
964                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
965         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
966                 : kvm->arch.xen_hvm_config.blob_size_32;
967         u32 page_num = data & ~PAGE_MASK;
968         u64 page_addr = data & PAGE_MASK;
969         u8 *page;
970         int r;
971
972         r = -E2BIG;
973         if (page_num >= blob_size)
974                 goto out;
975         r = -ENOMEM;
976         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
977         if (!page)
978                 goto out;
979         r = -EFAULT;
980         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
981                 goto out_free;
982         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
983                 goto out_free;
984         r = 0;
985 out_free:
986         kfree(page);
987 out:
988         return r;
989 }
990
991 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
992 {
993         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
994 }
995
996 static bool kvm_hv_msr_partition_wide(u32 msr)
997 {
998         bool r = false;
999         switch (msr) {
1000         case HV_X64_MSR_GUEST_OS_ID:
1001         case HV_X64_MSR_HYPERCALL:
1002                 r = true;
1003                 break;
1004         }
1005
1006         return r;
1007 }
1008
1009 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1010 {
1011         struct kvm *kvm = vcpu->kvm;
1012
1013         switch (msr) {
1014         case HV_X64_MSR_GUEST_OS_ID:
1015                 kvm->arch.hv_guest_os_id = data;
1016                 /* setting guest os id to zero disables hypercall page */
1017                 if (!kvm->arch.hv_guest_os_id)
1018                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1019                 break;
1020         case HV_X64_MSR_HYPERCALL: {
1021                 u64 gfn;
1022                 unsigned long addr;
1023                 u8 instructions[4];
1024
1025                 /* if guest os id is not set hypercall should remain disabled */
1026                 if (!kvm->arch.hv_guest_os_id)
1027                         break;
1028                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1029                         kvm->arch.hv_hypercall = data;
1030                         break;
1031                 }
1032                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1033                 addr = gfn_to_hva(kvm, gfn);
1034                 if (kvm_is_error_hva(addr))
1035                         return 1;
1036                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1037                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1038                 if (copy_to_user((void __user *)addr, instructions, 4))
1039                         return 1;
1040                 kvm->arch.hv_hypercall = data;
1041                 break;
1042         }
1043         default:
1044                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1045                           "data 0x%llx\n", msr, data);
1046                 return 1;
1047         }
1048         return 0;
1049 }
1050
1051 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1052 {
1053         switch (msr) {
1054         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1055                 unsigned long addr;
1056
1057                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1058                         vcpu->arch.hv_vapic = data;
1059                         break;
1060                 }
1061                 addr = gfn_to_hva(vcpu->kvm, data >>
1062                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1063                 if (kvm_is_error_hva(addr))
1064                         return 1;
1065                 if (clear_user((void __user *)addr, PAGE_SIZE))
1066                         return 1;
1067                 vcpu->arch.hv_vapic = data;
1068                 break;
1069         }
1070         case HV_X64_MSR_EOI:
1071                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1072         case HV_X64_MSR_ICR:
1073                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1074         case HV_X64_MSR_TPR:
1075                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1076         default:
1077                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1078                           "data 0x%llx\n", msr, data);
1079                 return 1;
1080         }
1081
1082         return 0;
1083 }
1084
1085 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1086 {
1087         switch (msr) {
1088         case MSR_EFER:
1089                 set_efer(vcpu, data);
1090                 break;
1091         case MSR_K7_HWCR:
1092                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1093                 if (data != 0) {
1094                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1095                                 data);
1096                         return 1;
1097                 }
1098                 break;
1099         case MSR_FAM10H_MMIO_CONF_BASE:
1100                 if (data != 0) {
1101                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1102                                 "0x%llx\n", data);
1103                         return 1;
1104                 }
1105                 break;
1106         case MSR_AMD64_NB_CFG:
1107                 break;
1108         case MSR_IA32_DEBUGCTLMSR:
1109                 if (!data) {
1110                         /* We support the non-activated case already */
1111                         break;
1112                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1113                         /* Values other than LBR and BTF are vendor-specific,
1114                            thus reserved and should throw a #GP */
1115                         return 1;
1116                 }
1117                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1118                         __func__, data);
1119                 break;
1120         case MSR_IA32_UCODE_REV:
1121         case MSR_IA32_UCODE_WRITE:
1122         case MSR_VM_HSAVE_PA:
1123         case MSR_AMD64_PATCH_LOADER:
1124                 break;
1125         case 0x200 ... 0x2ff:
1126                 return set_msr_mtrr(vcpu, msr, data);
1127         case MSR_IA32_APICBASE:
1128                 kvm_set_apic_base(vcpu, data);
1129                 break;
1130         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1131                 return kvm_x2apic_msr_write(vcpu, msr, data);
1132         case MSR_IA32_MISC_ENABLE:
1133                 vcpu->arch.ia32_misc_enable_msr = data;
1134                 break;
1135         case MSR_KVM_WALL_CLOCK:
1136                 vcpu->kvm->arch.wall_clock = data;
1137                 kvm_write_wall_clock(vcpu->kvm, data);
1138                 break;
1139         case MSR_KVM_SYSTEM_TIME: {
1140                 if (vcpu->arch.time_page) {
1141                         kvm_release_page_dirty(vcpu->arch.time_page);
1142                         vcpu->arch.time_page = NULL;
1143                 }
1144
1145                 vcpu->arch.time = data;
1146
1147                 /* we verify if the enable bit is set... */
1148                 if (!(data & 1))
1149                         break;
1150
1151                 /* ...but clean it before doing the actual write */
1152                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1153
1154                 vcpu->arch.time_page =
1155                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1156
1157                 if (is_error_page(vcpu->arch.time_page)) {
1158                         kvm_release_page_clean(vcpu->arch.time_page);
1159                         vcpu->arch.time_page = NULL;
1160                 }
1161
1162                 kvm_request_guest_time_update(vcpu);
1163                 break;
1164         }
1165         case MSR_IA32_MCG_CTL:
1166         case MSR_IA32_MCG_STATUS:
1167         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1168                 return set_msr_mce(vcpu, msr, data);
1169
1170         /* Performance counters are not protected by a CPUID bit,
1171          * so we should check all of them in the generic path for the sake of
1172          * cross vendor migration.
1173          * Writing a zero into the event select MSRs disables them,
1174          * which we perfectly emulate ;-). Any other value should be at least
1175          * reported, some guests depend on them.
1176          */
1177         case MSR_P6_EVNTSEL0:
1178         case MSR_P6_EVNTSEL1:
1179         case MSR_K7_EVNTSEL0:
1180         case MSR_K7_EVNTSEL1:
1181         case MSR_K7_EVNTSEL2:
1182         case MSR_K7_EVNTSEL3:
1183                 if (data != 0)
1184                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1185                                 "0x%x data 0x%llx\n", msr, data);
1186                 break;
1187         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1188          * so we ignore writes to make it happy.
1189          */
1190         case MSR_P6_PERFCTR0:
1191         case MSR_P6_PERFCTR1:
1192         case MSR_K7_PERFCTR0:
1193         case MSR_K7_PERFCTR1:
1194         case MSR_K7_PERFCTR2:
1195         case MSR_K7_PERFCTR3:
1196                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1197                         "0x%x data 0x%llx\n", msr, data);
1198                 break;
1199         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1200                 if (kvm_hv_msr_partition_wide(msr)) {
1201                         int r;
1202                         mutex_lock(&vcpu->kvm->lock);
1203                         r = set_msr_hyperv_pw(vcpu, msr, data);
1204                         mutex_unlock(&vcpu->kvm->lock);
1205                         return r;
1206                 } else
1207                         return set_msr_hyperv(vcpu, msr, data);
1208                 break;
1209         default:
1210                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1211                         return xen_hvm_config(vcpu, data);
1212                 if (!ignore_msrs) {
1213                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1214                                 msr, data);
1215                         return 1;
1216                 } else {
1217                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1218                                 msr, data);
1219                         break;
1220                 }
1221         }
1222         return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1225
1226
1227 /*
1228  * Reads an msr value (of 'msr_index') into 'pdata'.
1229  * Returns 0 on success, non-0 otherwise.
1230  * Assumes vcpu_load() was already called.
1231  */
1232 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1233 {
1234         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1235 }
1236
1237 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1238 {
1239         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1240
1241         if (!msr_mtrr_valid(msr))
1242                 return 1;
1243
1244         if (msr == MSR_MTRRdefType)
1245                 *pdata = vcpu->arch.mtrr_state.def_type +
1246                          (vcpu->arch.mtrr_state.enabled << 10);
1247         else if (msr == MSR_MTRRfix64K_00000)
1248                 *pdata = p[0];
1249         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1250                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1251         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1252                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1253         else if (msr == MSR_IA32_CR_PAT)
1254                 *pdata = vcpu->arch.pat;
1255         else {  /* Variable MTRRs */
1256                 int idx, is_mtrr_mask;
1257                 u64 *pt;
1258
1259                 idx = (msr - 0x200) / 2;
1260                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1261                 if (!is_mtrr_mask)
1262                         pt =
1263                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1264                 else
1265                         pt =
1266                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1267                 *pdata = *pt;
1268         }
1269
1270         return 0;
1271 }
1272
1273 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1274 {
1275         u64 data;
1276         u64 mcg_cap = vcpu->arch.mcg_cap;
1277         unsigned bank_num = mcg_cap & 0xff;
1278
1279         switch (msr) {
1280         case MSR_IA32_P5_MC_ADDR:
1281         case MSR_IA32_P5_MC_TYPE:
1282                 data = 0;
1283                 break;
1284         case MSR_IA32_MCG_CAP:
1285                 data = vcpu->arch.mcg_cap;
1286                 break;
1287         case MSR_IA32_MCG_CTL:
1288                 if (!(mcg_cap & MCG_CTL_P))
1289                         return 1;
1290                 data = vcpu->arch.mcg_ctl;
1291                 break;
1292         case MSR_IA32_MCG_STATUS:
1293                 data = vcpu->arch.mcg_status;
1294                 break;
1295         default:
1296                 if (msr >= MSR_IA32_MC0_CTL &&
1297                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1298                         u32 offset = msr - MSR_IA32_MC0_CTL;
1299                         data = vcpu->arch.mce_banks[offset];
1300                         break;
1301                 }
1302                 return 1;
1303         }
1304         *pdata = data;
1305         return 0;
1306 }
1307
1308 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1309 {
1310         u64 data = 0;
1311         struct kvm *kvm = vcpu->kvm;
1312
1313         switch (msr) {
1314         case HV_X64_MSR_GUEST_OS_ID:
1315                 data = kvm->arch.hv_guest_os_id;
1316                 break;
1317         case HV_X64_MSR_HYPERCALL:
1318                 data = kvm->arch.hv_hypercall;
1319                 break;
1320         default:
1321                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1322                 return 1;
1323         }
1324
1325         *pdata = data;
1326         return 0;
1327 }
1328
1329 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1330 {
1331         u64 data = 0;
1332
1333         switch (msr) {
1334         case HV_X64_MSR_VP_INDEX: {
1335                 int r;
1336                 struct kvm_vcpu *v;
1337                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1338                         if (v == vcpu)
1339                                 data = r;
1340                 break;
1341         }
1342         case HV_X64_MSR_EOI:
1343                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1344         case HV_X64_MSR_ICR:
1345                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1346         case HV_X64_MSR_TPR:
1347                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1348         default:
1349                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1350                 return 1;
1351         }
1352         *pdata = data;
1353         return 0;
1354 }
1355
1356 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1357 {
1358         u64 data;
1359
1360         switch (msr) {
1361         case MSR_IA32_PLATFORM_ID:
1362         case MSR_IA32_UCODE_REV:
1363         case MSR_IA32_EBL_CR_POWERON:
1364         case MSR_IA32_DEBUGCTLMSR:
1365         case MSR_IA32_LASTBRANCHFROMIP:
1366         case MSR_IA32_LASTBRANCHTOIP:
1367         case MSR_IA32_LASTINTFROMIP:
1368         case MSR_IA32_LASTINTTOIP:
1369         case MSR_K8_SYSCFG:
1370         case MSR_K7_HWCR:
1371         case MSR_VM_HSAVE_PA:
1372         case MSR_P6_PERFCTR0:
1373         case MSR_P6_PERFCTR1:
1374         case MSR_P6_EVNTSEL0:
1375         case MSR_P6_EVNTSEL1:
1376         case MSR_K7_EVNTSEL0:
1377         case MSR_K7_PERFCTR0:
1378         case MSR_K8_INT_PENDING_MSG:
1379         case MSR_AMD64_NB_CFG:
1380         case MSR_FAM10H_MMIO_CONF_BASE:
1381                 data = 0;
1382                 break;
1383         case MSR_MTRRcap:
1384                 data = 0x500 | KVM_NR_VAR_MTRR;
1385                 break;
1386         case 0x200 ... 0x2ff:
1387                 return get_msr_mtrr(vcpu, msr, pdata);
1388         case 0xcd: /* fsb frequency */
1389                 data = 3;
1390                 break;
1391         case MSR_IA32_APICBASE:
1392                 data = kvm_get_apic_base(vcpu);
1393                 break;
1394         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1395                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1396                 break;
1397         case MSR_IA32_MISC_ENABLE:
1398                 data = vcpu->arch.ia32_misc_enable_msr;
1399                 break;
1400         case MSR_IA32_PERF_STATUS:
1401                 /* TSC increment by tick */
1402                 data = 1000ULL;
1403                 /* CPU multiplier */
1404                 data |= (((uint64_t)4ULL) << 40);
1405                 break;
1406         case MSR_EFER:
1407                 data = vcpu->arch.efer;
1408                 break;
1409         case MSR_KVM_WALL_CLOCK:
1410                 data = vcpu->kvm->arch.wall_clock;
1411                 break;
1412         case MSR_KVM_SYSTEM_TIME:
1413                 data = vcpu->arch.time;
1414                 break;
1415         case MSR_IA32_P5_MC_ADDR:
1416         case MSR_IA32_P5_MC_TYPE:
1417         case MSR_IA32_MCG_CAP:
1418         case MSR_IA32_MCG_CTL:
1419         case MSR_IA32_MCG_STATUS:
1420         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1421                 return get_msr_mce(vcpu, msr, pdata);
1422         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1423                 if (kvm_hv_msr_partition_wide(msr)) {
1424                         int r;
1425                         mutex_lock(&vcpu->kvm->lock);
1426                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1427                         mutex_unlock(&vcpu->kvm->lock);
1428                         return r;
1429                 } else
1430                         return get_msr_hyperv(vcpu, msr, pdata);
1431                 break;
1432         default:
1433                 if (!ignore_msrs) {
1434                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1435                         return 1;
1436                 } else {
1437                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1438                         data = 0;
1439                 }
1440                 break;
1441         }
1442         *pdata = data;
1443         return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1446
1447 /*
1448  * Read or write a bunch of msrs. All parameters are kernel addresses.
1449  *
1450  * @return number of msrs set successfully.
1451  */
1452 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1453                     struct kvm_msr_entry *entries,
1454                     int (*do_msr)(struct kvm_vcpu *vcpu,
1455                                   unsigned index, u64 *data))
1456 {
1457         int i, idx;
1458
1459         vcpu_load(vcpu);
1460
1461         idx = srcu_read_lock(&vcpu->kvm->srcu);
1462         for (i = 0; i < msrs->nmsrs; ++i)
1463                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1464                         break;
1465         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1466
1467         vcpu_put(vcpu);
1468
1469         return i;
1470 }
1471
1472 /*
1473  * Read or write a bunch of msrs. Parameters are user addresses.
1474  *
1475  * @return number of msrs set successfully.
1476  */
1477 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1478                   int (*do_msr)(struct kvm_vcpu *vcpu,
1479                                 unsigned index, u64 *data),
1480                   int writeback)
1481 {
1482         struct kvm_msrs msrs;
1483         struct kvm_msr_entry *entries;
1484         int r, n;
1485         unsigned size;
1486
1487         r = -EFAULT;
1488         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1489                 goto out;
1490
1491         r = -E2BIG;
1492         if (msrs.nmsrs >= MAX_IO_MSRS)
1493                 goto out;
1494
1495         r = -ENOMEM;
1496         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1497         entries = vmalloc(size);
1498         if (!entries)
1499                 goto out;
1500
1501         r = -EFAULT;
1502         if (copy_from_user(entries, user_msrs->entries, size))
1503                 goto out_free;
1504
1505         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1506         if (r < 0)
1507                 goto out_free;
1508
1509         r = -EFAULT;
1510         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1511                 goto out_free;
1512
1513         r = n;
1514
1515 out_free:
1516         vfree(entries);
1517 out:
1518         return r;
1519 }
1520
1521 int kvm_dev_ioctl_check_extension(long ext)
1522 {
1523         int r;
1524
1525         switch (ext) {
1526         case KVM_CAP_IRQCHIP:
1527         case KVM_CAP_HLT:
1528         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1529         case KVM_CAP_SET_TSS_ADDR:
1530         case KVM_CAP_EXT_CPUID:
1531         case KVM_CAP_CLOCKSOURCE:
1532         case KVM_CAP_PIT:
1533         case KVM_CAP_NOP_IO_DELAY:
1534         case KVM_CAP_MP_STATE:
1535         case KVM_CAP_SYNC_MMU:
1536         case KVM_CAP_REINJECT_CONTROL:
1537         case KVM_CAP_IRQ_INJECT_STATUS:
1538         case KVM_CAP_ASSIGN_DEV_IRQ:
1539         case KVM_CAP_IRQFD:
1540         case KVM_CAP_IOEVENTFD:
1541         case KVM_CAP_PIT2:
1542         case KVM_CAP_PIT_STATE2:
1543         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1544         case KVM_CAP_XEN_HVM:
1545         case KVM_CAP_ADJUST_CLOCK:
1546         case KVM_CAP_VCPU_EVENTS:
1547         case KVM_CAP_HYPERV:
1548         case KVM_CAP_HYPERV_VAPIC:
1549         case KVM_CAP_HYPERV_SPIN:
1550         case KVM_CAP_PCI_SEGMENT:
1551         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1552                 r = 1;
1553                 break;
1554         case KVM_CAP_COALESCED_MMIO:
1555                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1556                 break;
1557         case KVM_CAP_VAPIC:
1558                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1559                 break;
1560         case KVM_CAP_NR_VCPUS:
1561                 r = KVM_MAX_VCPUS;
1562                 break;
1563         case KVM_CAP_NR_MEMSLOTS:
1564                 r = KVM_MEMORY_SLOTS;
1565                 break;
1566         case KVM_CAP_PV_MMU:    /* obsolete */
1567                 r = 0;
1568                 break;
1569         case KVM_CAP_IOMMU:
1570                 r = iommu_found();
1571                 break;
1572         case KVM_CAP_MCE:
1573                 r = KVM_MAX_MCE_BANKS;
1574                 break;
1575         default:
1576                 r = 0;
1577                 break;
1578         }
1579         return r;
1580
1581 }
1582
1583 long kvm_arch_dev_ioctl(struct file *filp,
1584                         unsigned int ioctl, unsigned long arg)
1585 {
1586         void __user *argp = (void __user *)arg;
1587         long r;
1588
1589         switch (ioctl) {
1590         case KVM_GET_MSR_INDEX_LIST: {
1591                 struct kvm_msr_list __user *user_msr_list = argp;
1592                 struct kvm_msr_list msr_list;
1593                 unsigned n;
1594
1595                 r = -EFAULT;
1596                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1597                         goto out;
1598                 n = msr_list.nmsrs;
1599                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1600                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1601                         goto out;
1602                 r = -E2BIG;
1603                 if (n < msr_list.nmsrs)
1604                         goto out;
1605                 r = -EFAULT;
1606                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1607                                  num_msrs_to_save * sizeof(u32)))
1608                         goto out;
1609                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1610                                  &emulated_msrs,
1611                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1612                         goto out;
1613                 r = 0;
1614                 break;
1615         }
1616         case KVM_GET_SUPPORTED_CPUID: {
1617                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1618                 struct kvm_cpuid2 cpuid;
1619
1620                 r = -EFAULT;
1621                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1622                         goto out;
1623                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1624                                                       cpuid_arg->entries);
1625                 if (r)
1626                         goto out;
1627
1628                 r = -EFAULT;
1629                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1630                         goto out;
1631                 r = 0;
1632                 break;
1633         }
1634         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1635                 u64 mce_cap;
1636
1637                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1638                 r = -EFAULT;
1639                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1640                         goto out;
1641                 r = 0;
1642                 break;
1643         }
1644         default:
1645                 r = -EINVAL;
1646         }
1647 out:
1648         return r;
1649 }
1650
1651 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1652 {
1653         kvm_x86_ops->vcpu_load(vcpu, cpu);
1654         if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1655                 unsigned long khz = cpufreq_quick_get(cpu);
1656                 if (!khz)
1657                         khz = tsc_khz;
1658                 per_cpu(cpu_tsc_khz, cpu) = khz;
1659         }
1660         kvm_request_guest_time_update(vcpu);
1661 }
1662
1663 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1664 {
1665         kvm_put_guest_fpu(vcpu);
1666         kvm_x86_ops->vcpu_put(vcpu);
1667 }
1668
1669 static int is_efer_nx(void)
1670 {
1671         unsigned long long efer = 0;
1672
1673         rdmsrl_safe(MSR_EFER, &efer);
1674         return efer & EFER_NX;
1675 }
1676
1677 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1678 {
1679         int i;
1680         struct kvm_cpuid_entry2 *e, *entry;
1681
1682         entry = NULL;
1683         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1684                 e = &vcpu->arch.cpuid_entries[i];
1685                 if (e->function == 0x80000001) {
1686                         entry = e;
1687                         break;
1688                 }
1689         }
1690         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1691                 entry->edx &= ~(1 << 20);
1692                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1693         }
1694 }
1695
1696 /* when an old userspace process fills a new kernel module */
1697 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1698                                     struct kvm_cpuid *cpuid,
1699                                     struct kvm_cpuid_entry __user *entries)
1700 {
1701         int r, i;
1702         struct kvm_cpuid_entry *cpuid_entries;
1703
1704         r = -E2BIG;
1705         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1706                 goto out;
1707         r = -ENOMEM;
1708         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1709         if (!cpuid_entries)
1710                 goto out;
1711         r = -EFAULT;
1712         if (copy_from_user(cpuid_entries, entries,
1713                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1714                 goto out_free;
1715         for (i = 0; i < cpuid->nent; i++) {
1716                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1717                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1718                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1719                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1720                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1721                 vcpu->arch.cpuid_entries[i].index = 0;
1722                 vcpu->arch.cpuid_entries[i].flags = 0;
1723                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1724                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1725                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1726         }
1727         vcpu->arch.cpuid_nent = cpuid->nent;
1728         cpuid_fix_nx_cap(vcpu);
1729         r = 0;
1730         kvm_apic_set_version(vcpu);
1731         kvm_x86_ops->cpuid_update(vcpu);
1732
1733 out_free:
1734         vfree(cpuid_entries);
1735 out:
1736         return r;
1737 }
1738
1739 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1740                                      struct kvm_cpuid2 *cpuid,
1741                                      struct kvm_cpuid_entry2 __user *entries)
1742 {
1743         int r;
1744
1745         r = -E2BIG;
1746         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1747                 goto out;
1748         r = -EFAULT;
1749         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1750                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1751                 goto out;
1752         vcpu->arch.cpuid_nent = cpuid->nent;
1753         kvm_apic_set_version(vcpu);
1754         kvm_x86_ops->cpuid_update(vcpu);
1755         return 0;
1756
1757 out:
1758         return r;
1759 }
1760
1761 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1762                                      struct kvm_cpuid2 *cpuid,
1763                                      struct kvm_cpuid_entry2 __user *entries)
1764 {
1765         int r;
1766
1767         r = -E2BIG;
1768         if (cpuid->nent < vcpu->arch.cpuid_nent)
1769                 goto out;
1770         r = -EFAULT;
1771         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1772                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1773                 goto out;
1774         return 0;
1775
1776 out:
1777         cpuid->nent = vcpu->arch.cpuid_nent;
1778         return r;
1779 }
1780
1781 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1782                            u32 index)
1783 {
1784         entry->function = function;
1785         entry->index = index;
1786         cpuid_count(entry->function, entry->index,
1787                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1788         entry->flags = 0;
1789 }
1790
1791 #define F(x) bit(X86_FEATURE_##x)
1792
1793 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1794                          u32 index, int *nent, int maxnent)
1795 {
1796         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1797 #ifdef CONFIG_X86_64
1798         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1799                                 ? F(GBPAGES) : 0;
1800         unsigned f_lm = F(LM);
1801 #else
1802         unsigned f_gbpages = 0;
1803         unsigned f_lm = 0;
1804 #endif
1805         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1806
1807         /* cpuid 1.edx */
1808         const u32 kvm_supported_word0_x86_features =
1809                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1810                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1811                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1812                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1813                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1814                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1815                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1816                 0 /* HTT, TM, Reserved, PBE */;
1817         /* cpuid 0x80000001.edx */
1818         const u32 kvm_supported_word1_x86_features =
1819                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1820                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1821                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1822                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1823                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1824                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1825                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1826                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1827         /* cpuid 1.ecx */
1828         const u32 kvm_supported_word4_x86_features =
1829                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1830                 0 /* DS-CPL, VMX, SMX, EST */ |
1831                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1832                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1833                 0 /* Reserved, DCA */ | F(XMM4_1) |
1834                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1835                 0 /* Reserved, XSAVE, OSXSAVE */;
1836         /* cpuid 0x80000001.ecx */
1837         const u32 kvm_supported_word6_x86_features =
1838                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1839                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1840                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1841                 0 /* SKINIT */ | 0 /* WDT */;
1842
1843         /* all calls to cpuid_count() should be made on the same cpu */
1844         get_cpu();
1845         do_cpuid_1_ent(entry, function, index);
1846         ++*nent;
1847
1848         switch (function) {
1849         case 0:
1850                 entry->eax = min(entry->eax, (u32)0xb);
1851                 break;
1852         case 1:
1853                 entry->edx &= kvm_supported_word0_x86_features;
1854                 entry->ecx &= kvm_supported_word4_x86_features;
1855                 /* we support x2apic emulation even if host does not support
1856                  * it since we emulate x2apic in software */
1857                 entry->ecx |= F(X2APIC);
1858                 break;
1859         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1860          * may return different values. This forces us to get_cpu() before
1861          * issuing the first command, and also to emulate this annoying behavior
1862          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1863         case 2: {
1864                 int t, times = entry->eax & 0xff;
1865
1866                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1867                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1868                 for (t = 1; t < times && *nent < maxnent; ++t) {
1869                         do_cpuid_1_ent(&entry[t], function, 0);
1870                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1871                         ++*nent;
1872                 }
1873                 break;
1874         }
1875         /* function 4 and 0xb have additional index. */
1876         case 4: {
1877                 int i, cache_type;
1878
1879                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1880                 /* read more entries until cache_type is zero */
1881                 for (i = 1; *nent < maxnent; ++i) {
1882                         cache_type = entry[i - 1].eax & 0x1f;
1883                         if (!cache_type)
1884                                 break;
1885                         do_cpuid_1_ent(&entry[i], function, i);
1886                         entry[i].flags |=
1887                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1888                         ++*nent;
1889                 }
1890                 break;
1891         }
1892         case 0xb: {
1893                 int i, level_type;
1894
1895                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1896                 /* read more entries until level_type is zero */
1897                 for (i = 1; *nent < maxnent; ++i) {
1898                         level_type = entry[i - 1].ecx & 0xff00;
1899                         if (!level_type)
1900                                 break;
1901                         do_cpuid_1_ent(&entry[i], function, i);
1902                         entry[i].flags |=
1903                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1904                         ++*nent;
1905                 }
1906                 break;
1907         }
1908         case 0x80000000:
1909                 entry->eax = min(entry->eax, 0x8000001a);
1910                 break;
1911         case 0x80000001:
1912                 entry->edx &= kvm_supported_word1_x86_features;
1913                 entry->ecx &= kvm_supported_word6_x86_features;
1914                 break;
1915         }
1916         put_cpu();
1917 }
1918
1919 #undef F
1920
1921 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1922                                      struct kvm_cpuid_entry2 __user *entries)
1923 {
1924         struct kvm_cpuid_entry2 *cpuid_entries;
1925         int limit, nent = 0, r = -E2BIG;
1926         u32 func;
1927
1928         if (cpuid->nent < 1)
1929                 goto out;
1930         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1931                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1932         r = -ENOMEM;
1933         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1934         if (!cpuid_entries)
1935                 goto out;
1936
1937         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1938         limit = cpuid_entries[0].eax;
1939         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1940                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1941                              &nent, cpuid->nent);
1942         r = -E2BIG;
1943         if (nent >= cpuid->nent)
1944                 goto out_free;
1945
1946         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1947         limit = cpuid_entries[nent - 1].eax;
1948         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1949                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1950                              &nent, cpuid->nent);
1951         r = -E2BIG;
1952         if (nent >= cpuid->nent)
1953                 goto out_free;
1954
1955         r = -EFAULT;
1956         if (copy_to_user(entries, cpuid_entries,
1957                          nent * sizeof(struct kvm_cpuid_entry2)))
1958                 goto out_free;
1959         cpuid->nent = nent;
1960         r = 0;
1961
1962 out_free:
1963         vfree(cpuid_entries);
1964 out:
1965         return r;
1966 }
1967
1968 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1969                                     struct kvm_lapic_state *s)
1970 {
1971         vcpu_load(vcpu);
1972         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1973         vcpu_put(vcpu);
1974
1975         return 0;
1976 }
1977
1978 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1979                                     struct kvm_lapic_state *s)
1980 {
1981         vcpu_load(vcpu);
1982         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1983         kvm_apic_post_state_restore(vcpu);
1984         update_cr8_intercept(vcpu);
1985         vcpu_put(vcpu);
1986
1987         return 0;
1988 }
1989
1990 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1991                                     struct kvm_interrupt *irq)
1992 {
1993         if (irq->irq < 0 || irq->irq >= 256)
1994                 return -EINVAL;
1995         if (irqchip_in_kernel(vcpu->kvm))
1996                 return -ENXIO;
1997         vcpu_load(vcpu);
1998
1999         kvm_queue_interrupt(vcpu, irq->irq, false);
2000
2001         vcpu_put(vcpu);
2002
2003         return 0;
2004 }
2005
2006 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2007 {
2008         vcpu_load(vcpu);
2009         kvm_inject_nmi(vcpu);
2010         vcpu_put(vcpu);
2011
2012         return 0;
2013 }
2014
2015 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2016                                            struct kvm_tpr_access_ctl *tac)
2017 {
2018         if (tac->flags)
2019                 return -EINVAL;
2020         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2021         return 0;
2022 }
2023
2024 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2025                                         u64 mcg_cap)
2026 {
2027         int r;
2028         unsigned bank_num = mcg_cap & 0xff, bank;
2029
2030         r = -EINVAL;
2031         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2032                 goto out;
2033         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2034                 goto out;
2035         r = 0;
2036         vcpu->arch.mcg_cap = mcg_cap;
2037         /* Init IA32_MCG_CTL to all 1s */
2038         if (mcg_cap & MCG_CTL_P)
2039                 vcpu->arch.mcg_ctl = ~(u64)0;
2040         /* Init IA32_MCi_CTL to all 1s */
2041         for (bank = 0; bank < bank_num; bank++)
2042                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2043 out:
2044         return r;
2045 }
2046
2047 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2048                                       struct kvm_x86_mce *mce)
2049 {
2050         u64 mcg_cap = vcpu->arch.mcg_cap;
2051         unsigned bank_num = mcg_cap & 0xff;
2052         u64 *banks = vcpu->arch.mce_banks;
2053
2054         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2055                 return -EINVAL;
2056         /*
2057          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2058          * reporting is disabled
2059          */
2060         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2061             vcpu->arch.mcg_ctl != ~(u64)0)
2062                 return 0;
2063         banks += 4 * mce->bank;
2064         /*
2065          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2066          * reporting is disabled for the bank
2067          */
2068         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2069                 return 0;
2070         if (mce->status & MCI_STATUS_UC) {
2071                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2072                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2073                         printk(KERN_DEBUG "kvm: set_mce: "
2074                                "injects mce exception while "
2075                                "previous one is in progress!\n");
2076                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2077                         return 0;
2078                 }
2079                 if (banks[1] & MCI_STATUS_VAL)
2080                         mce->status |= MCI_STATUS_OVER;
2081                 banks[2] = mce->addr;
2082                 banks[3] = mce->misc;
2083                 vcpu->arch.mcg_status = mce->mcg_status;
2084                 banks[1] = mce->status;
2085                 kvm_queue_exception(vcpu, MC_VECTOR);
2086         } else if (!(banks[1] & MCI_STATUS_VAL)
2087                    || !(banks[1] & MCI_STATUS_UC)) {
2088                 if (banks[1] & MCI_STATUS_VAL)
2089                         mce->status |= MCI_STATUS_OVER;
2090                 banks[2] = mce->addr;
2091                 banks[3] = mce->misc;
2092                 banks[1] = mce->status;
2093         } else
2094                 banks[1] |= MCI_STATUS_OVER;
2095         return 0;
2096 }
2097
2098 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2099                                                struct kvm_vcpu_events *events)
2100 {
2101         vcpu_load(vcpu);
2102
2103         events->exception.injected = vcpu->arch.exception.pending;
2104         events->exception.nr = vcpu->arch.exception.nr;
2105         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2106         events->exception.error_code = vcpu->arch.exception.error_code;
2107
2108         events->interrupt.injected = vcpu->arch.interrupt.pending;
2109         events->interrupt.nr = vcpu->arch.interrupt.nr;
2110         events->interrupt.soft = vcpu->arch.interrupt.soft;
2111
2112         events->nmi.injected = vcpu->arch.nmi_injected;
2113         events->nmi.pending = vcpu->arch.nmi_pending;
2114         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2115
2116         events->sipi_vector = vcpu->arch.sipi_vector;
2117
2118         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2119                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
2120
2121         vcpu_put(vcpu);
2122 }
2123
2124 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2125                                               struct kvm_vcpu_events *events)
2126 {
2127         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2128                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
2129                 return -EINVAL;
2130
2131         vcpu_load(vcpu);
2132
2133         vcpu->arch.exception.pending = events->exception.injected;
2134         vcpu->arch.exception.nr = events->exception.nr;
2135         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2136         vcpu->arch.exception.error_code = events->exception.error_code;
2137
2138         vcpu->arch.interrupt.pending = events->interrupt.injected;
2139         vcpu->arch.interrupt.nr = events->interrupt.nr;
2140         vcpu->arch.interrupt.soft = events->interrupt.soft;
2141         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2142                 kvm_pic_clear_isr_ack(vcpu->kvm);
2143
2144         vcpu->arch.nmi_injected = events->nmi.injected;
2145         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2146                 vcpu->arch.nmi_pending = events->nmi.pending;
2147         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2148
2149         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2150                 vcpu->arch.sipi_vector = events->sipi_vector;
2151
2152         vcpu_put(vcpu);
2153
2154         return 0;
2155 }
2156
2157 long kvm_arch_vcpu_ioctl(struct file *filp,
2158                          unsigned int ioctl, unsigned long arg)
2159 {
2160         struct kvm_vcpu *vcpu = filp->private_data;
2161         void __user *argp = (void __user *)arg;
2162         int r;
2163         struct kvm_lapic_state *lapic = NULL;
2164
2165         switch (ioctl) {
2166         case KVM_GET_LAPIC: {
2167                 r = -EINVAL;
2168                 if (!vcpu->arch.apic)
2169                         goto out;
2170                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2171
2172                 r = -ENOMEM;
2173                 if (!lapic)
2174                         goto out;
2175                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2176                 if (r)
2177                         goto out;
2178                 r = -EFAULT;
2179                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2180                         goto out;
2181                 r = 0;
2182                 break;
2183         }
2184         case KVM_SET_LAPIC: {
2185                 r = -EINVAL;
2186                 if (!vcpu->arch.apic)
2187                         goto out;
2188                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2189                 r = -ENOMEM;
2190                 if (!lapic)
2191                         goto out;
2192                 r = -EFAULT;
2193                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2194                         goto out;
2195                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2196                 if (r)
2197                         goto out;
2198                 r = 0;
2199                 break;
2200         }
2201         case KVM_INTERRUPT: {
2202                 struct kvm_interrupt irq;
2203
2204                 r = -EFAULT;
2205                 if (copy_from_user(&irq, argp, sizeof irq))
2206                         goto out;
2207                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2208                 if (r)
2209                         goto out;
2210                 r = 0;
2211                 break;
2212         }
2213         case KVM_NMI: {
2214                 r = kvm_vcpu_ioctl_nmi(vcpu);
2215                 if (r)
2216                         goto out;
2217                 r = 0;
2218                 break;
2219         }
2220         case KVM_SET_CPUID: {
2221                 struct kvm_cpuid __user *cpuid_arg = argp;
2222                 struct kvm_cpuid cpuid;
2223
2224                 r = -EFAULT;
2225                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2226                         goto out;
2227                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2228                 if (r)
2229                         goto out;
2230                 break;
2231         }
2232         case KVM_SET_CPUID2: {
2233                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2234                 struct kvm_cpuid2 cpuid;
2235
2236                 r = -EFAULT;
2237                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2238                         goto out;
2239                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2240                                               cpuid_arg->entries);
2241                 if (r)
2242                         goto out;
2243                 break;
2244         }
2245         case KVM_GET_CPUID2: {
2246                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2247                 struct kvm_cpuid2 cpuid;
2248
2249                 r = -EFAULT;
2250                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2251                         goto out;
2252                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2253                                               cpuid_arg->entries);
2254                 if (r)
2255                         goto out;
2256                 r = -EFAULT;
2257                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2258                         goto out;
2259                 r = 0;
2260                 break;
2261         }
2262         case KVM_GET_MSRS:
2263                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2264                 break;
2265         case KVM_SET_MSRS:
2266                 r = msr_io(vcpu, argp, do_set_msr, 0);
2267                 break;
2268         case KVM_TPR_ACCESS_REPORTING: {
2269                 struct kvm_tpr_access_ctl tac;
2270
2271                 r = -EFAULT;
2272                 if (copy_from_user(&tac, argp, sizeof tac))
2273                         goto out;
2274                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2275                 if (r)
2276                         goto out;
2277                 r = -EFAULT;
2278                 if (copy_to_user(argp, &tac, sizeof tac))
2279                         goto out;
2280                 r = 0;
2281                 break;
2282         };
2283         case KVM_SET_VAPIC_ADDR: {
2284                 struct kvm_vapic_addr va;
2285
2286                 r = -EINVAL;
2287                 if (!irqchip_in_kernel(vcpu->kvm))
2288                         goto out;
2289                 r = -EFAULT;
2290                 if (copy_from_user(&va, argp, sizeof va))
2291                         goto out;
2292                 r = 0;
2293                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2294                 break;
2295         }
2296         case KVM_X86_SETUP_MCE: {
2297                 u64 mcg_cap;
2298
2299                 r = -EFAULT;
2300                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2301                         goto out;
2302                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2303                 break;
2304         }
2305         case KVM_X86_SET_MCE: {
2306                 struct kvm_x86_mce mce;
2307
2308                 r = -EFAULT;
2309                 if (copy_from_user(&mce, argp, sizeof mce))
2310                         goto out;
2311                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2312                 break;
2313         }
2314         case KVM_GET_VCPU_EVENTS: {
2315                 struct kvm_vcpu_events events;
2316
2317                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2318
2319                 r = -EFAULT;
2320                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2321                         break;
2322                 r = 0;
2323                 break;
2324         }
2325         case KVM_SET_VCPU_EVENTS: {
2326                 struct kvm_vcpu_events events;
2327
2328                 r = -EFAULT;
2329                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2330                         break;
2331
2332                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2333                 break;
2334         }
2335         default:
2336                 r = -EINVAL;
2337         }
2338 out:
2339         kfree(lapic);
2340         return r;
2341 }
2342
2343 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2344 {
2345         int ret;
2346
2347         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2348                 return -1;
2349         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2350         return ret;
2351 }
2352
2353 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2354                                               u64 ident_addr)
2355 {
2356         kvm->arch.ept_identity_map_addr = ident_addr;
2357         return 0;
2358 }
2359
2360 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2361                                           u32 kvm_nr_mmu_pages)
2362 {
2363         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2364                 return -EINVAL;
2365
2366         mutex_lock(&kvm->slots_lock);
2367         spin_lock(&kvm->mmu_lock);
2368
2369         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2370         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2371
2372         spin_unlock(&kvm->mmu_lock);
2373         mutex_unlock(&kvm->slots_lock);
2374         return 0;
2375 }
2376
2377 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2378 {
2379         return kvm->arch.n_alloc_mmu_pages;
2380 }
2381
2382 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2383 {
2384         int i;
2385         struct kvm_mem_alias *alias;
2386         struct kvm_mem_aliases *aliases;
2387
2388         aliases = rcu_dereference(kvm->arch.aliases);
2389
2390         for (i = 0; i < aliases->naliases; ++i) {
2391                 alias = &aliases->aliases[i];
2392                 if (alias->flags & KVM_ALIAS_INVALID)
2393                         continue;
2394                 if (gfn >= alias->base_gfn
2395                     && gfn < alias->base_gfn + alias->npages)
2396                         return alias->target_gfn + gfn - alias->base_gfn;
2397         }
2398         return gfn;
2399 }
2400
2401 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2402 {
2403         int i;
2404         struct kvm_mem_alias *alias;
2405         struct kvm_mem_aliases *aliases;
2406
2407         aliases = rcu_dereference(kvm->arch.aliases);
2408
2409         for (i = 0; i < aliases->naliases; ++i) {
2410                 alias = &aliases->aliases[i];
2411                 if (gfn >= alias->base_gfn
2412                     && gfn < alias->base_gfn + alias->npages)
2413                         return alias->target_gfn + gfn - alias->base_gfn;
2414         }
2415         return gfn;
2416 }
2417
2418 /*
2419  * Set a new alias region.  Aliases map a portion of physical memory into
2420  * another portion.  This is useful for memory windows, for example the PC
2421  * VGA region.
2422  */
2423 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2424                                          struct kvm_memory_alias *alias)
2425 {
2426         int r, n;
2427         struct kvm_mem_alias *p;
2428         struct kvm_mem_aliases *aliases, *old_aliases;
2429
2430         r = -EINVAL;
2431         /* General sanity checks */
2432         if (alias->memory_size & (PAGE_SIZE - 1))
2433                 goto out;
2434         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2435                 goto out;
2436         if (alias->slot >= KVM_ALIAS_SLOTS)
2437                 goto out;
2438         if (alias->guest_phys_addr + alias->memory_size
2439             < alias->guest_phys_addr)
2440                 goto out;
2441         if (alias->target_phys_addr + alias->memory_size
2442             < alias->target_phys_addr)
2443                 goto out;
2444
2445         r = -ENOMEM;
2446         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2447         if (!aliases)
2448                 goto out;
2449
2450         mutex_lock(&kvm->slots_lock);
2451
2452         /* invalidate any gfn reference in case of deletion/shrinking */
2453         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2454         aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2455         old_aliases = kvm->arch.aliases;
2456         rcu_assign_pointer(kvm->arch.aliases, aliases);
2457         synchronize_srcu_expedited(&kvm->srcu);
2458         kvm_mmu_zap_all(kvm);
2459         kfree(old_aliases);
2460
2461         r = -ENOMEM;
2462         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2463         if (!aliases)
2464                 goto out_unlock;
2465
2466         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2467
2468         p = &aliases->aliases[alias->slot];
2469         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2470         p->npages = alias->memory_size >> PAGE_SHIFT;
2471         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2472         p->flags &= ~(KVM_ALIAS_INVALID);
2473
2474         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2475                 if (aliases->aliases[n - 1].npages)
2476                         break;
2477         aliases->naliases = n;
2478
2479         old_aliases = kvm->arch.aliases;
2480         rcu_assign_pointer(kvm->arch.aliases, aliases);
2481         synchronize_srcu_expedited(&kvm->srcu);
2482         kfree(old_aliases);
2483         r = 0;
2484
2485 out_unlock:
2486         mutex_unlock(&kvm->slots_lock);
2487 out:
2488         return r;
2489 }
2490
2491 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2492 {
2493         int r;
2494
2495         r = 0;
2496         switch (chip->chip_id) {
2497         case KVM_IRQCHIP_PIC_MASTER:
2498                 memcpy(&chip->chip.pic,
2499                         &pic_irqchip(kvm)->pics[0],
2500                         sizeof(struct kvm_pic_state));
2501                 break;
2502         case KVM_IRQCHIP_PIC_SLAVE:
2503                 memcpy(&chip->chip.pic,
2504                         &pic_irqchip(kvm)->pics[1],
2505                         sizeof(struct kvm_pic_state));
2506                 break;
2507         case KVM_IRQCHIP_IOAPIC:
2508                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2509                 break;
2510         default:
2511                 r = -EINVAL;
2512                 break;
2513         }
2514         return r;
2515 }
2516
2517 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2518 {
2519         int r;
2520
2521         r = 0;
2522         switch (chip->chip_id) {
2523         case KVM_IRQCHIP_PIC_MASTER:
2524                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2525                 memcpy(&pic_irqchip(kvm)->pics[0],
2526                         &chip->chip.pic,
2527                         sizeof(struct kvm_pic_state));
2528                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2529                 break;
2530         case KVM_IRQCHIP_PIC_SLAVE:
2531                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2532                 memcpy(&pic_irqchip(kvm)->pics[1],
2533                         &chip->chip.pic,
2534                         sizeof(struct kvm_pic_state));
2535                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2536                 break;
2537         case KVM_IRQCHIP_IOAPIC:
2538                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2539                 break;
2540         default:
2541                 r = -EINVAL;
2542                 break;
2543         }
2544         kvm_pic_update_irq(pic_irqchip(kvm));
2545         return r;
2546 }
2547
2548 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2549 {
2550         int r = 0;
2551
2552         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2553         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2554         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2555         return r;
2556 }
2557
2558 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2559 {
2560         int r = 0;
2561
2562         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2563         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2564         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2565         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2566         return r;
2567 }
2568
2569 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2570 {
2571         int r = 0;
2572
2573         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2574         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2575                 sizeof(ps->channels));
2576         ps->flags = kvm->arch.vpit->pit_state.flags;
2577         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2578         return r;
2579 }
2580
2581 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2582 {
2583         int r = 0, start = 0;
2584         u32 prev_legacy, cur_legacy;
2585         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2586         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2587         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2588         if (!prev_legacy && cur_legacy)
2589                 start = 1;
2590         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2591                sizeof(kvm->arch.vpit->pit_state.channels));
2592         kvm->arch.vpit->pit_state.flags = ps->flags;
2593         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2594         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2595         return r;
2596 }
2597
2598 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2599                                  struct kvm_reinject_control *control)
2600 {
2601         if (!kvm->arch.vpit)
2602                 return -ENXIO;
2603         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2604         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2605         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2606         return 0;
2607 }
2608
2609 /*
2610  * Get (and clear) the dirty memory log for a memory slot.
2611  */
2612 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2613                                       struct kvm_dirty_log *log)
2614 {
2615         int r, i;
2616         struct kvm_memory_slot *memslot;
2617         unsigned long n;
2618         unsigned long is_dirty = 0;
2619         unsigned long *dirty_bitmap = NULL;
2620
2621         mutex_lock(&kvm->slots_lock);
2622
2623         r = -EINVAL;
2624         if (log->slot >= KVM_MEMORY_SLOTS)
2625                 goto out;
2626
2627         memslot = &kvm->memslots->memslots[log->slot];
2628         r = -ENOENT;
2629         if (!memslot->dirty_bitmap)
2630                 goto out;
2631
2632         n = kvm_dirty_bitmap_bytes(memslot);
2633
2634         r = -ENOMEM;
2635         dirty_bitmap = vmalloc(n);
2636         if (!dirty_bitmap)
2637                 goto out;
2638         memset(dirty_bitmap, 0, n);
2639
2640         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2641                 is_dirty = memslot->dirty_bitmap[i];
2642
2643         /* If nothing is dirty, don't bother messing with page tables. */
2644         if (is_dirty) {
2645                 struct kvm_memslots *slots, *old_slots;
2646
2647                 spin_lock(&kvm->mmu_lock);
2648                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2649                 spin_unlock(&kvm->mmu_lock);
2650
2651                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2652                 if (!slots)
2653                         goto out_free;
2654
2655                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2656                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2657
2658                 old_slots = kvm->memslots;
2659                 rcu_assign_pointer(kvm->memslots, slots);
2660                 synchronize_srcu_expedited(&kvm->srcu);
2661                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2662                 kfree(old_slots);
2663         }
2664
2665         r = 0;
2666         if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2667                 r = -EFAULT;
2668 out_free:
2669         vfree(dirty_bitmap);
2670 out:
2671         mutex_unlock(&kvm->slots_lock);
2672         return r;
2673 }
2674
2675 long kvm_arch_vm_ioctl(struct file *filp,
2676                        unsigned int ioctl, unsigned long arg)
2677 {
2678         struct kvm *kvm = filp->private_data;
2679         void __user *argp = (void __user *)arg;
2680         int r = -ENOTTY;
2681         /*
2682          * This union makes it completely explicit to gcc-3.x
2683          * that these two variables' stack usage should be
2684          * combined, not added together.
2685          */
2686         union {
2687                 struct kvm_pit_state ps;
2688                 struct kvm_pit_state2 ps2;
2689                 struct kvm_memory_alias alias;
2690                 struct kvm_pit_config pit_config;
2691         } u;
2692
2693         switch (ioctl) {
2694         case KVM_SET_TSS_ADDR:
2695                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2696                 if (r < 0)
2697                         goto out;
2698                 break;
2699         case KVM_SET_IDENTITY_MAP_ADDR: {
2700                 u64 ident_addr;
2701
2702                 r = -EFAULT;
2703                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2704                         goto out;
2705                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2706                 if (r < 0)
2707                         goto out;
2708                 break;
2709         }
2710         case KVM_SET_MEMORY_REGION: {
2711                 struct kvm_memory_region kvm_mem;
2712                 struct kvm_userspace_memory_region kvm_userspace_mem;
2713
2714                 r = -EFAULT;
2715                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2716                         goto out;
2717                 kvm_userspace_mem.slot = kvm_mem.slot;
2718                 kvm_userspace_mem.flags = kvm_mem.flags;
2719                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2720                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2721                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2722                 if (r)
2723                         goto out;
2724                 break;
2725         }
2726         case KVM_SET_NR_MMU_PAGES:
2727                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2728                 if (r)
2729                         goto out;
2730                 break;
2731         case KVM_GET_NR_MMU_PAGES:
2732                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2733                 break;
2734         case KVM_SET_MEMORY_ALIAS:
2735                 r = -EFAULT;
2736                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2737                         goto out;
2738                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2739                 if (r)
2740                         goto out;
2741                 break;
2742         case KVM_CREATE_IRQCHIP: {
2743                 struct kvm_pic *vpic;
2744
2745                 mutex_lock(&kvm->lock);
2746                 r = -EEXIST;
2747                 if (kvm->arch.vpic)
2748                         goto create_irqchip_unlock;
2749                 r = -ENOMEM;
2750                 vpic = kvm_create_pic(kvm);
2751                 if (vpic) {
2752                         r = kvm_ioapic_init(kvm);
2753                         if (r) {
2754                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
2755                                                           &vpic->dev);
2756                                 kfree(vpic);
2757                                 goto create_irqchip_unlock;
2758                         }
2759                 } else
2760                         goto create_irqchip_unlock;
2761                 smp_wmb();
2762                 kvm->arch.vpic = vpic;
2763                 smp_wmb();
2764                 r = kvm_setup_default_irq_routing(kvm);
2765                 if (r) {
2766                         mutex_lock(&kvm->irq_lock);
2767                         kvm_ioapic_destroy(kvm);
2768                         kvm_destroy_pic(kvm);
2769                         mutex_unlock(&kvm->irq_lock);
2770                 }
2771         create_irqchip_unlock:
2772                 mutex_unlock(&kvm->lock);
2773                 break;
2774         }
2775         case KVM_CREATE_PIT:
2776                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2777                 goto create_pit;
2778         case KVM_CREATE_PIT2:
2779                 r = -EFAULT;
2780                 if (copy_from_user(&u.pit_config, argp,
2781                                    sizeof(struct kvm_pit_config)))
2782                         goto out;
2783         create_pit:
2784                 mutex_lock(&kvm->slots_lock);
2785                 r = -EEXIST;
2786                 if (kvm->arch.vpit)
2787                         goto create_pit_unlock;
2788                 r = -ENOMEM;
2789                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2790                 if (kvm->arch.vpit)
2791                         r = 0;
2792         create_pit_unlock:
2793                 mutex_unlock(&kvm->slots_lock);
2794                 break;
2795         case KVM_IRQ_LINE_STATUS:
2796         case KVM_IRQ_LINE: {
2797                 struct kvm_irq_level irq_event;
2798
2799                 r = -EFAULT;
2800                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2801                         goto out;
2802                 if (irqchip_in_kernel(kvm)) {
2803                         __s32 status;
2804                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2805                                         irq_event.irq, irq_event.level);
2806                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2807                                 irq_event.status = status;
2808                                 if (copy_to_user(argp, &irq_event,
2809                                                         sizeof irq_event))
2810                                         goto out;
2811                         }
2812                         r = 0;
2813                 }
2814                 break;
2815         }
2816         case KVM_GET_IRQCHIP: {
2817                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2818                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2819
2820                 r = -ENOMEM;
2821                 if (!chip)
2822                         goto out;
2823                 r = -EFAULT;
2824                 if (copy_from_user(chip, argp, sizeof *chip))
2825                         goto get_irqchip_out;
2826                 r = -ENXIO;
2827                 if (!irqchip_in_kernel(kvm))
2828                         goto get_irqchip_out;
2829                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2830                 if (r)
2831                         goto get_irqchip_out;
2832                 r = -EFAULT;
2833                 if (copy_to_user(argp, chip, sizeof *chip))
2834                         goto get_irqchip_out;
2835                 r = 0;
2836         get_irqchip_out:
2837                 kfree(chip);
2838                 if (r)
2839                         goto out;
2840                 break;
2841         }
2842         case KVM_SET_IRQCHIP: {
2843                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2844                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2845
2846                 r = -ENOMEM;
2847                 if (!chip)
2848                         goto out;
2849                 r = -EFAULT;
2850                 if (copy_from_user(chip, argp, sizeof *chip))
2851                         goto set_irqchip_out;
2852                 r = -ENXIO;
2853                 if (!irqchip_in_kernel(kvm))
2854                         goto set_irqchip_out;
2855                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2856                 if (r)
2857                         goto set_irqchip_out;
2858                 r = 0;
2859         set_irqchip_out:
2860                 kfree(chip);
2861                 if (r)
2862                         goto out;
2863                 break;
2864         }
2865         case KVM_GET_PIT: {
2866                 r = -EFAULT;
2867                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2868                         goto out;
2869                 r = -ENXIO;
2870                 if (!kvm->arch.vpit)
2871                         goto out;
2872                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2873                 if (r)
2874                         goto out;
2875                 r = -EFAULT;
2876                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2877                         goto out;
2878                 r = 0;
2879                 break;
2880         }
2881         case KVM_SET_PIT: {
2882                 r = -EFAULT;
2883                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2884                         goto out;
2885                 r = -ENXIO;
2886                 if (!kvm->arch.vpit)
2887                         goto out;
2888                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2889                 if (r)
2890                         goto out;
2891                 r = 0;
2892                 break;
2893         }
2894         case KVM_GET_PIT2: {
2895                 r = -ENXIO;
2896                 if (!kvm->arch.vpit)
2897                         goto out;
2898                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2899                 if (r)
2900                         goto out;
2901                 r = -EFAULT;
2902                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2903                         goto out;
2904                 r = 0;
2905                 break;
2906         }
2907         case KVM_SET_PIT2: {
2908                 r = -EFAULT;
2909                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2910                         goto out;
2911                 r = -ENXIO;
2912                 if (!kvm->arch.vpit)
2913                         goto out;
2914                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2915                 if (r)
2916                         goto out;
2917                 r = 0;
2918                 break;
2919         }
2920         case KVM_REINJECT_CONTROL: {
2921                 struct kvm_reinject_control control;
2922                 r =  -EFAULT;
2923                 if (copy_from_user(&control, argp, sizeof(control)))
2924                         goto out;
2925                 r = kvm_vm_ioctl_reinject(kvm, &control);
2926                 if (r)
2927                         goto out;
2928                 r = 0;
2929                 break;
2930         }
2931         case KVM_XEN_HVM_CONFIG: {
2932                 r = -EFAULT;
2933                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2934                                    sizeof(struct kvm_xen_hvm_config)))
2935                         goto out;
2936                 r = -EINVAL;
2937                 if (kvm->arch.xen_hvm_config.flags)
2938                         goto out;
2939                 r = 0;
2940                 break;
2941         }
2942         case KVM_SET_CLOCK: {
2943                 struct timespec now;
2944                 struct kvm_clock_data user_ns;
2945                 u64 now_ns;
2946                 s64 delta;
2947
2948                 r = -EFAULT;
2949                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2950                         goto out;
2951
2952                 r = -EINVAL;
2953                 if (user_ns.flags)
2954                         goto out;
2955
2956                 r = 0;
2957                 ktime_get_ts(&now);
2958                 now_ns = timespec_to_ns(&now);
2959                 delta = user_ns.clock - now_ns;
2960                 kvm->arch.kvmclock_offset = delta;
2961                 break;
2962         }
2963         case KVM_GET_CLOCK: {
2964                 struct timespec now;
2965                 struct kvm_clock_data user_ns;
2966                 u64 now_ns;
2967
2968                 ktime_get_ts(&now);
2969                 now_ns = timespec_to_ns(&now);
2970                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2971                 user_ns.flags = 0;
2972
2973                 r = -EFAULT;
2974                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2975                         goto out;
2976                 r = 0;
2977                 break;
2978         }
2979
2980         default:
2981                 ;
2982         }
2983 out:
2984         return r;
2985 }
2986
2987 static void kvm_init_msr_list(void)
2988 {
2989         u32 dummy[2];
2990         unsigned i, j;
2991
2992         /* skip the first msrs in the list. KVM-specific */
2993         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
2994                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2995                         continue;
2996                 if (j < i)
2997                         msrs_to_save[j] = msrs_to_save[i];
2998                 j++;
2999         }
3000         num_msrs_to_save = j;
3001 }
3002
3003 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3004                            const void *v)
3005 {
3006         if (vcpu->arch.apic &&
3007             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3008                 return 0;
3009
3010         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3011 }
3012
3013 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3014 {
3015         if (vcpu->arch.apic &&
3016             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3017                 return 0;
3018
3019         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3020 }
3021
3022 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3023 {
3024         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3025         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3026 }
3027
3028  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3029 {
3030         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3031         access |= PFERR_FETCH_MASK;
3032         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3033 }
3034
3035 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3036 {
3037         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3038         access |= PFERR_WRITE_MASK;
3039         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3040 }
3041
3042 /* uses this to access any guest's mapped memory without checking CPL */
3043 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3044 {
3045         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3046 }
3047
3048 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3049                                       struct kvm_vcpu *vcpu, u32 access,
3050                                       u32 *error)
3051 {
3052         void *data = val;
3053         int r = X86EMUL_CONTINUE;
3054
3055         while (bytes) {
3056                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3057                 unsigned offset = addr & (PAGE_SIZE-1);
3058                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3059                 int ret;
3060
3061                 if (gpa == UNMAPPED_GVA) {
3062                         r = X86EMUL_PROPAGATE_FAULT;
3063                         goto out;
3064                 }
3065                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3066                 if (ret < 0) {
3067                         r = X86EMUL_UNHANDLEABLE;
3068                         goto out;
3069                 }
3070
3071                 bytes -= toread;
3072                 data += toread;
3073                 addr += toread;
3074         }
3075 out:
3076         return r;
3077 }
3078
3079 /* used for instruction fetching */
3080 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3081                                 struct kvm_vcpu *vcpu, u32 *error)
3082 {
3083         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3084         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3085                                           access | PFERR_FETCH_MASK, error);
3086 }
3087
3088 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3089                                struct kvm_vcpu *vcpu, u32 *error)
3090 {
3091         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3092         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3093                                           error);
3094 }
3095
3096 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3097                                struct kvm_vcpu *vcpu, u32 *error)
3098 {
3099         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3100 }
3101
3102 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
3103                                 struct kvm_vcpu *vcpu, u32 *error)
3104 {
3105         void *data = val;
3106         int r = X86EMUL_CONTINUE;
3107
3108         while (bytes) {
3109                 gpa_t gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error);
3110                 unsigned offset = addr & (PAGE_SIZE-1);
3111                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3112                 int ret;
3113
3114                 if (gpa == UNMAPPED_GVA) {
3115                         r = X86EMUL_PROPAGATE_FAULT;
3116                         goto out;
3117                 }
3118                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3119                 if (ret < 0) {
3120                         r = X86EMUL_UNHANDLEABLE;
3121                         goto out;
3122                 }
3123
3124                 bytes -= towrite;
3125                 data += towrite;
3126                 addr += towrite;
3127         }
3128 out:
3129         return r;
3130 }
3131
3132
3133 static int emulator_read_emulated(unsigned long addr,
3134                                   void *val,
3135                                   unsigned int bytes,
3136                                   struct kvm_vcpu *vcpu)
3137 {
3138         gpa_t                 gpa;
3139         u32 error_code;
3140
3141         if (vcpu->mmio_read_completed) {
3142                 memcpy(val, vcpu->mmio_data, bytes);
3143                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3144                                vcpu->mmio_phys_addr, *(u64 *)val);
3145                 vcpu->mmio_read_completed = 0;
3146                 return X86EMUL_CONTINUE;
3147         }
3148
3149         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3150
3151         if (gpa == UNMAPPED_GVA) {
3152                 kvm_inject_page_fault(vcpu, addr, error_code);
3153                 return X86EMUL_PROPAGATE_FAULT;
3154         }
3155
3156         /* For APIC access vmexit */
3157         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3158                 goto mmio;
3159
3160         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3161                                 == X86EMUL_CONTINUE)
3162                 return X86EMUL_CONTINUE;
3163
3164 mmio:
3165         /*
3166          * Is this MMIO handled locally?
3167          */
3168         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3169                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3170                 return X86EMUL_CONTINUE;
3171         }
3172
3173         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3174
3175         vcpu->mmio_needed = 1;
3176         vcpu->mmio_phys_addr = gpa;
3177         vcpu->mmio_size = bytes;
3178         vcpu->mmio_is_write = 0;
3179
3180         return X86EMUL_UNHANDLEABLE;
3181 }
3182
3183 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3184                           const void *val, int bytes)
3185 {
3186         int ret;
3187
3188         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3189         if (ret < 0)
3190                 return 0;
3191         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3192         return 1;
3193 }
3194
3195 static int emulator_write_emulated_onepage(unsigned long addr,
3196                                            const void *val,
3197                                            unsigned int bytes,
3198                                            struct kvm_vcpu *vcpu)
3199 {
3200         gpa_t                 gpa;
3201         u32 error_code;
3202
3203         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3204
3205         if (gpa == UNMAPPED_GVA) {
3206                 kvm_inject_page_fault(vcpu, addr, error_code);
3207                 return X86EMUL_PROPAGATE_FAULT;
3208         }
3209
3210         /* For APIC access vmexit */
3211         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3212                 goto mmio;
3213
3214         if (emulator_write_phys(vcpu, gpa, val, bytes))
3215                 return X86EMUL_CONTINUE;
3216
3217 mmio:
3218         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3219         /*
3220          * Is this MMIO handled locally?
3221          */
3222         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3223                 return X86EMUL_CONTINUE;
3224
3225         vcpu->mmio_needed = 1;
3226         vcpu->mmio_phys_addr = gpa;
3227         vcpu->mmio_size = bytes;
3228         vcpu->mmio_is_write = 1;
3229         memcpy(vcpu->mmio_data, val, bytes);
3230
3231         return X86EMUL_CONTINUE;
3232 }
3233
3234 int emulator_write_emulated(unsigned long addr,
3235                                    const void *val,
3236                                    unsigned int bytes,
3237                                    struct kvm_vcpu *vcpu)
3238 {
3239         /* Crossing a page boundary? */
3240         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3241                 int rc, now;
3242
3243                 now = -addr & ~PAGE_MASK;
3244                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3245                 if (rc != X86EMUL_CONTINUE)
3246                         return rc;
3247                 addr += now;
3248                 val += now;
3249                 bytes -= now;
3250         }
3251         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3252 }
3253 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3254
3255 static int emulator_cmpxchg_emulated(unsigned long addr,
3256                                      const void *old,
3257                                      const void *new,
3258                                      unsigned int bytes,
3259                                      struct kvm_vcpu *vcpu)
3260 {
3261         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3262 #ifndef CONFIG_X86_64
3263         /* guests cmpxchg8b have to be emulated atomically */
3264         if (bytes == 8) {
3265                 gpa_t gpa;
3266                 struct page *page;
3267                 char *kaddr;
3268                 u64 val;
3269
3270                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3271
3272                 if (gpa == UNMAPPED_GVA ||
3273                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3274                         goto emul_write;
3275
3276                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3277                         goto emul_write;
3278
3279                 val = *(u64 *)new;
3280
3281                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3282
3283                 kaddr = kmap_atomic(page, KM_USER0);
3284                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
3285                 kunmap_atomic(kaddr, KM_USER0);
3286                 kvm_release_page_dirty(page);
3287         }
3288 emul_write:
3289 #endif
3290
3291         return emulator_write_emulated(addr, new, bytes, vcpu);
3292 }
3293
3294 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3295 {
3296         return kvm_x86_ops->get_segment_base(vcpu, seg);
3297 }
3298
3299 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3300 {
3301         kvm_mmu_invlpg(vcpu, address);
3302         return X86EMUL_CONTINUE;
3303 }
3304
3305 int emulate_clts(struct kvm_vcpu *vcpu)
3306 {
3307         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3308         kvm_x86_ops->fpu_activate(vcpu);
3309         return X86EMUL_CONTINUE;
3310 }
3311
3312 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3313 {
3314         return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
3315 }
3316
3317 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3318 {
3319         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3320
3321         return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
3322 }
3323
3324 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3325 {
3326         u8 opcodes[4];
3327         unsigned long rip = kvm_rip_read(vcpu);
3328         unsigned long rip_linear;
3329
3330         if (!printk_ratelimit())
3331                 return;
3332
3333         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3334
3335         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
3336
3337         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3338                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3339 }
3340 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3341
3342 static struct x86_emulate_ops emulate_ops = {
3343         .read_std            = kvm_read_guest_virt_system,
3344         .fetch               = kvm_fetch_guest_virt,
3345         .read_emulated       = emulator_read_emulated,
3346         .write_emulated      = emulator_write_emulated,
3347         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
3348 };
3349
3350 static void cache_all_regs(struct kvm_vcpu *vcpu)
3351 {
3352         kvm_register_read(vcpu, VCPU_REGS_RAX);
3353         kvm_register_read(vcpu, VCPU_REGS_RSP);
3354         kvm_register_read(vcpu, VCPU_REGS_RIP);
3355         vcpu->arch.regs_dirty = ~0;
3356 }
3357
3358 int emulate_instruction(struct kvm_vcpu *vcpu,
3359                         unsigned long cr2,
3360                         u16 error_code,
3361                         int emulation_type)
3362 {
3363         int r, shadow_mask;
3364         struct decode_cache *c;
3365         struct kvm_run *run = vcpu->run;
3366
3367         kvm_clear_exception_queue(vcpu);
3368         vcpu->arch.mmio_fault_cr2 = cr2;
3369         /*
3370          * TODO: fix emulate.c to use guest_read/write_register
3371          * instead of direct ->regs accesses, can save hundred cycles
3372          * on Intel for instructions that don't read/change RSP, for
3373          * for example.
3374          */
3375         cache_all_regs(vcpu);
3376
3377         vcpu->mmio_is_write = 0;
3378         vcpu->arch.pio.string = 0;
3379
3380         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3381                 int cs_db, cs_l;
3382                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3383
3384                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3385                 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3386                 vcpu->arch.emulate_ctxt.mode =
3387                         (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3388                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3389                         ? X86EMUL_MODE_VM86 : cs_l
3390                         ? X86EMUL_MODE_PROT64 : cs_db
3391                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3392
3393                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3394
3395                 /* Only allow emulation of specific instructions on #UD
3396                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
3397                 c = &vcpu->arch.emulate_ctxt.decode;
3398                 if (emulation_type & EMULTYPE_TRAP_UD) {
3399                         if (!c->twobyte)
3400                                 return EMULATE_FAIL;
3401                         switch (c->b) {
3402                         case 0x01: /* VMMCALL */
3403                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3404                                         return EMULATE_FAIL;
3405                                 break;
3406                         case 0x34: /* sysenter */
3407                         case 0x35: /* sysexit */
3408                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3409                                         return EMULATE_FAIL;
3410                                 break;
3411                         case 0x05: /* syscall */
3412                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3413                                         return EMULATE_FAIL;
3414                                 break;
3415                         default:
3416                                 return EMULATE_FAIL;
3417                         }
3418
3419                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3420                                 return EMULATE_FAIL;
3421                 }
3422
3423                 ++vcpu->stat.insn_emulation;
3424                 if (r)  {
3425                         ++vcpu->stat.insn_emulation_fail;
3426                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3427                                 return EMULATE_DONE;
3428                         return EMULATE_FAIL;
3429                 }
3430         }
3431
3432         if (emulation_type & EMULTYPE_SKIP) {
3433                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3434                 return EMULATE_DONE;
3435         }
3436
3437         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3438         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3439
3440         if (r == 0)
3441                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3442
3443         if (vcpu->arch.pio.string)
3444                 return EMULATE_DO_MMIO;
3445
3446         if ((r || vcpu->mmio_is_write) && run) {
3447                 run->exit_reason = KVM_EXIT_MMIO;
3448                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3449                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3450                 run->mmio.len = vcpu->mmio_size;
3451                 run->mmio.is_write = vcpu->mmio_is_write;
3452         }
3453
3454         if (r) {
3455                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3456                         return EMULATE_DONE;
3457                 if (!vcpu->mmio_needed) {
3458                         kvm_report_emulation_failure(vcpu, "mmio");
3459                         return EMULATE_FAIL;
3460                 }
3461                 return EMULATE_DO_MMIO;
3462         }
3463
3464         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3465
3466         if (vcpu->mmio_is_write) {
3467                 vcpu->mmio_needed = 0;
3468                 return EMULATE_DO_MMIO;
3469         }
3470
3471         return EMULATE_DONE;
3472 }
3473 EXPORT_SYMBOL_GPL(emulate_instruction);
3474
3475 static int pio_copy_data(struct kvm_vcpu *vcpu)
3476 {
3477         void *p = vcpu->arch.pio_data;
3478         gva_t q = vcpu->arch.pio.guest_gva;
3479         unsigned bytes;
3480         int ret;
3481         u32 error_code;
3482
3483         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3484         if (vcpu->arch.pio.in)
3485                 ret = kvm_write_guest_virt(q, p, bytes, vcpu, &error_code);
3486         else
3487                 ret = kvm_read_guest_virt(q, p, bytes, vcpu, &error_code);
3488
3489         if (ret == X86EMUL_PROPAGATE_FAULT)
3490                 kvm_inject_page_fault(vcpu, q, error_code);
3491
3492         return ret;
3493 }
3494
3495 int complete_pio(struct kvm_vcpu *vcpu)
3496 {
3497         struct kvm_pio_request *io = &vcpu->arch.pio;
3498         long delta;
3499         int r;
3500         unsigned long val;
3501
3502         if (!io->string) {
3503                 if (io->in) {
3504                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3505                         memcpy(&val, vcpu->arch.pio_data, io->size);
3506                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3507                 }
3508         } else {
3509                 if (io->in) {
3510                         r = pio_copy_data(vcpu);
3511                         if (r)
3512                                 goto out;
3513                 }
3514
3515                 delta = 1;
3516                 if (io->rep) {
3517                         delta *= io->cur_count;
3518                         /*
3519                          * The size of the register should really depend on
3520                          * current address size.
3521                          */
3522                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3523                         val -= delta;
3524                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3525                 }
3526                 if (io->down)
3527                         delta = -delta;
3528                 delta *= io->size;
3529                 if (io->in) {
3530                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3531                         val += delta;
3532                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3533                 } else {
3534                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3535                         val += delta;
3536                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3537                 }
3538         }
3539 out:
3540         io->count -= io->cur_count;
3541         io->cur_count = 0;
3542
3543         return 0;
3544 }
3545
3546 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3547 {
3548         /* TODO: String I/O for in kernel device */
3549         int r;
3550
3551         if (vcpu->arch.pio.in)
3552                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3553                                     vcpu->arch.pio.size, pd);
3554         else
3555                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3556                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3557                                      pd);
3558         return r;
3559 }
3560
3561 static int pio_string_write(struct kvm_vcpu *vcpu)
3562 {
3563         struct kvm_pio_request *io = &vcpu->arch.pio;
3564         void *pd = vcpu->arch.pio_data;
3565         int i, r = 0;
3566
3567         for (i = 0; i < io->cur_count; i++) {
3568                 if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3569                                      io->port, io->size, pd)) {
3570                         r = -EOPNOTSUPP;
3571                         break;
3572                 }
3573                 pd += io->size;
3574         }
3575         return r;
3576 }
3577
3578 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3579 {
3580         unsigned long val;
3581
3582         trace_kvm_pio(!in, port, size, 1);
3583
3584         vcpu->run->exit_reason = KVM_EXIT_IO;
3585         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3586         vcpu->run->io.size = vcpu->arch.pio.size = size;
3587         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3588         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3589         vcpu->run->io.port = vcpu->arch.pio.port = port;
3590         vcpu->arch.pio.in = in;
3591         vcpu->arch.pio.string = 0;
3592         vcpu->arch.pio.down = 0;
3593         vcpu->arch.pio.rep = 0;
3594
3595         if (!vcpu->arch.pio.in) {
3596                 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3597                 memcpy(vcpu->arch.pio_data, &val, 4);
3598         }
3599
3600         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3601                 complete_pio(vcpu);
3602                 return 1;
3603         }
3604         return 0;
3605 }
3606 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3607
3608 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3609                   int size, unsigned long count, int down,
3610                   gva_t address, int rep, unsigned port)
3611 {
3612         unsigned now, in_page;
3613         int ret = 0;
3614
3615         trace_kvm_pio(!in, port, size, count);
3616
3617         vcpu->run->exit_reason = KVM_EXIT_IO;
3618         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3619         vcpu->run->io.size = vcpu->arch.pio.size = size;
3620         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3621         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3622         vcpu->run->io.port = vcpu->arch.pio.port = port;
3623         vcpu->arch.pio.in = in;
3624         vcpu->arch.pio.string = 1;
3625         vcpu->arch.pio.down = down;
3626         vcpu->arch.pio.rep = rep;
3627
3628         if (!count) {
3629                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3630                 return 1;
3631         }
3632
3633         if (!down)
3634                 in_page = PAGE_SIZE - offset_in_page(address);
3635         else
3636                 in_page = offset_in_page(address) + size;
3637         now = min(count, (unsigned long)in_page / size);
3638         if (!now)
3639                 now = 1;
3640         if (down) {
3641                 /*
3642                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3643                  */
3644                 pr_unimpl(vcpu, "guest string pio down\n");
3645                 kvm_inject_gp(vcpu, 0);
3646                 return 1;
3647         }
3648         vcpu->run->io.count = now;
3649         vcpu->arch.pio.cur_count = now;
3650
3651         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3652                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3653
3654         vcpu->arch.pio.guest_gva = address;
3655
3656         if (!vcpu->arch.pio.in) {
3657                 /* string PIO write */
3658                 ret = pio_copy_data(vcpu);
3659                 if (ret == X86EMUL_PROPAGATE_FAULT)
3660                         return 1;
3661                 if (ret == 0 && !pio_string_write(vcpu)) {
3662                         complete_pio(vcpu);
3663                         if (vcpu->arch.pio.count == 0)
3664                                 ret = 1;
3665                 }
3666         }
3667         /* no string PIO read support yet */
3668
3669         return ret;
3670 }
3671 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3672
3673 static void bounce_off(void *info)
3674 {
3675         /* nothing */
3676 }
3677
3678 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3679                                      void *data)
3680 {
3681         struct cpufreq_freqs *freq = data;
3682         struct kvm *kvm;
3683         struct kvm_vcpu *vcpu;
3684         int i, send_ipi = 0;
3685
3686         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3687                 return 0;
3688         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3689                 return 0;
3690         per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3691
3692         spin_lock(&kvm_lock);
3693         list_for_each_entry(kvm, &vm_list, vm_list) {
3694                 kvm_for_each_vcpu(i, vcpu, kvm) {
3695                         if (vcpu->cpu != freq->cpu)
3696                                 continue;
3697                         if (!kvm_request_guest_time_update(vcpu))
3698                                 continue;
3699                         if (vcpu->cpu != smp_processor_id())
3700                                 send_ipi++;
3701                 }
3702         }
3703         spin_unlock(&kvm_lock);
3704
3705         if (freq->old < freq->new && send_ipi) {
3706                 /*
3707                  * We upscale the frequency.  Must make the guest
3708                  * doesn't see old kvmclock values while running with
3709                  * the new frequency, otherwise we risk the guest sees
3710                  * time go backwards.
3711                  *
3712                  * In case we update the frequency for another cpu
3713                  * (which might be in guest context) send an interrupt
3714                  * to kick the cpu out of guest context.  Next time
3715                  * guest context is entered kvmclock will be updated,
3716                  * so the guest will not see stale values.
3717                  */
3718                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3719         }
3720         return 0;
3721 }
3722
3723 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3724         .notifier_call  = kvmclock_cpufreq_notifier
3725 };
3726
3727 static void kvm_timer_init(void)
3728 {
3729         int cpu;
3730
3731         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3732                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3733                                           CPUFREQ_TRANSITION_NOTIFIER);
3734                 for_each_online_cpu(cpu) {
3735                         unsigned long khz = cpufreq_get(cpu);
3736                         if (!khz)
3737                                 khz = tsc_khz;
3738                         per_cpu(cpu_tsc_khz, cpu) = khz;
3739                 }
3740         } else {
3741                 for_each_possible_cpu(cpu)
3742                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3743         }
3744 }
3745
3746 int kvm_arch_init(void *opaque)
3747 {
3748         int r;
3749         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3750
3751         if (kvm_x86_ops) {
3752                 printk(KERN_ERR "kvm: already loaded the other module\n");
3753                 r = -EEXIST;
3754                 goto out;
3755         }
3756
3757         if (!ops->cpu_has_kvm_support()) {
3758                 printk(KERN_ERR "kvm: no hardware support\n");
3759                 r = -EOPNOTSUPP;
3760                 goto out;
3761         }
3762         if (ops->disabled_by_bios()) {
3763                 printk(KERN_ERR "kvm: disabled by bios\n");
3764                 r = -EOPNOTSUPP;
3765                 goto out;
3766         }
3767
3768         r = kvm_mmu_module_init();
3769         if (r)
3770                 goto out;
3771
3772         kvm_init_msr_list();
3773
3774         kvm_x86_ops = ops;
3775         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3776         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3777         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3778                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3779
3780         kvm_timer_init();
3781
3782         return 0;
3783
3784 out:
3785         return r;
3786 }
3787
3788 void kvm_arch_exit(void)
3789 {
3790         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3791                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3792                                             CPUFREQ_TRANSITION_NOTIFIER);
3793         kvm_x86_ops = NULL;
3794         kvm_mmu_module_exit();
3795 }
3796
3797 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3798 {
3799         ++vcpu->stat.halt_exits;
3800         if (irqchip_in_kernel(vcpu->kvm)) {
3801                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3802                 return 1;
3803         } else {
3804                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3805                 return 0;
3806         }
3807 }
3808 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3809
3810 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3811                            unsigned long a1)
3812 {
3813         if (is_long_mode(vcpu))
3814                 return a0;
3815         else
3816                 return a0 | ((gpa_t)a1 << 32);
3817 }
3818
3819 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
3820 {
3821         u64 param, ingpa, outgpa, ret;
3822         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
3823         bool fast, longmode;
3824         int cs_db, cs_l;
3825
3826         /*
3827          * hypercall generates UD from non zero cpl and real mode
3828          * per HYPER-V spec
3829          */
3830         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
3831                 kvm_queue_exception(vcpu, UD_VECTOR);
3832                 return 0;
3833         }
3834
3835         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3836         longmode = is_long_mode(vcpu) && cs_l == 1;
3837
3838         if (!longmode) {
3839                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
3840                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
3841                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
3842                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
3843                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
3844                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
3845         }
3846 #ifdef CONFIG_X86_64
3847         else {
3848                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
3849                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
3850                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
3851         }
3852 #endif
3853
3854         code = param & 0xffff;
3855         fast = (param >> 16) & 0x1;
3856         rep_cnt = (param >> 32) & 0xfff;
3857         rep_idx = (param >> 48) & 0xfff;
3858
3859         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
3860
3861         switch (code) {
3862         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
3863                 kvm_vcpu_on_spin(vcpu);
3864                 break;
3865         default:
3866                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
3867                 break;
3868         }
3869
3870         ret = res | (((u64)rep_done & 0xfff) << 32);
3871         if (longmode) {
3872                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3873         } else {
3874                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
3875                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
3876         }
3877
3878         return 1;
3879 }
3880
3881 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3882 {
3883         unsigned long nr, a0, a1, a2, a3, ret;
3884         int r = 1;
3885
3886         if (kvm_hv_hypercall_enabled(vcpu->kvm))
3887                 return kvm_hv_hypercall(vcpu);
3888
3889         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3890         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3891         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3892         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3893         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3894
3895         trace_kvm_hypercall(nr, a0, a1, a2, a3);
3896
3897         if (!is_long_mode(vcpu)) {
3898                 nr &= 0xFFFFFFFF;
3899                 a0 &= 0xFFFFFFFF;
3900                 a1 &= 0xFFFFFFFF;
3901                 a2 &= 0xFFFFFFFF;
3902                 a3 &= 0xFFFFFFFF;
3903         }
3904
3905         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3906                 ret = -KVM_EPERM;
3907                 goto out;
3908         }
3909
3910         switch (nr) {
3911         case KVM_HC_VAPIC_POLL_IRQ:
3912                 ret = 0;
3913                 break;
3914         case KVM_HC_MMU_OP:
3915                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3916                 break;
3917         default:
3918                 ret = -KVM_ENOSYS;
3919                 break;
3920         }
3921 out:
3922         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3923         ++vcpu->stat.hypercalls;
3924         return r;
3925 }
3926 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3927
3928 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3929 {
3930         char instruction[3];
3931         unsigned long rip = kvm_rip_read(vcpu);
3932
3933         /*
3934          * Blow out the MMU to ensure that no other VCPU has an active mapping
3935          * to ensure that the updated hypercall appears atomically across all
3936          * VCPUs.
3937          */
3938         kvm_mmu_zap_all(vcpu->kvm);
3939
3940         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3941
3942         return emulator_write_emulated(rip, instruction, 3, vcpu);
3943 }
3944
3945 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3946 {
3947         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3948 }
3949
3950 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3951 {
3952         struct descriptor_table dt = { limit, base };
3953
3954         kvm_x86_ops->set_gdt(vcpu, &dt);
3955 }
3956
3957 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3958 {
3959         struct descriptor_table dt = { limit, base };
3960
3961         kvm_x86_ops->set_idt(vcpu, &dt);
3962 }
3963
3964 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3965                    unsigned long *rflags)
3966 {
3967         kvm_lmsw(vcpu, msw);
3968         *rflags = kvm_get_rflags(vcpu);
3969 }
3970
3971 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3972 {
3973         unsigned long value;
3974
3975         switch (cr) {
3976         case 0:
3977                 value = kvm_read_cr0(vcpu);
3978                 break;
3979         case 2:
3980                 value = vcpu->arch.cr2;
3981                 break;
3982         case 3:
3983                 value = vcpu->arch.cr3;
3984                 break;
3985         case 4:
3986                 value = kvm_read_cr4(vcpu);
3987                 break;
3988         case 8:
3989                 value = kvm_get_cr8(vcpu);
3990                 break;
3991         default:
3992                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3993                 return 0;
3994         }
3995
3996         return value;
3997 }
3998
3999 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
4000                      unsigned long *rflags)
4001 {
4002         switch (cr) {
4003         case 0:
4004                 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4005                 *rflags = kvm_get_rflags(vcpu);
4006                 break;
4007         case 2:
4008                 vcpu->arch.cr2 = val;
4009                 break;
4010         case 3:
4011                 kvm_set_cr3(vcpu, val);
4012                 break;
4013         case 4:
4014                 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4015                 break;
4016         case 8:
4017                 kvm_set_cr8(vcpu, val & 0xfUL);
4018                 break;
4019         default:
4020                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4021         }
4022 }
4023
4024 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4025 {
4026         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4027         int j, nent = vcpu->arch.cpuid_nent;
4028
4029         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4030         /* when no next entry is found, the current entry[i] is reselected */
4031         for (j = i + 1; ; j = (j + 1) % nent) {
4032                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4033                 if (ej->function == e->function) {
4034                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4035                         return j;
4036                 }
4037         }
4038         return 0; /* silence gcc, even though control never reaches here */
4039 }
4040
4041 /* find an entry with matching function, matching index (if needed), and that
4042  * should be read next (if it's stateful) */
4043 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4044         u32 function, u32 index)
4045 {
4046         if (e->function != function)
4047                 return 0;
4048         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4049                 return 0;
4050         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4051             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4052                 return 0;
4053         return 1;
4054 }
4055
4056 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4057                                               u32 function, u32 index)
4058 {
4059         int i;
4060         struct kvm_cpuid_entry2 *best = NULL;
4061
4062         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4063                 struct kvm_cpuid_entry2 *e;
4064
4065                 e = &vcpu->arch.cpuid_entries[i];
4066                 if (is_matching_cpuid_entry(e, function, index)) {
4067                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4068                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4069                         best = e;
4070                         break;
4071                 }
4072                 /*
4073                  * Both basic or both extended?
4074                  */
4075                 if (((e->function ^ function) & 0x80000000) == 0)
4076                         if (!best || e->function > best->function)
4077                                 best = e;
4078         }
4079         return best;
4080 }
4081 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4082
4083 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4084 {
4085         struct kvm_cpuid_entry2 *best;
4086
4087         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4088         if (best)
4089                 return best->eax & 0xff;
4090         return 36;
4091 }
4092
4093 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4094 {
4095         u32 function, index;
4096         struct kvm_cpuid_entry2 *best;
4097
4098         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4099         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4100         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4101         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4102         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4103         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4104         best = kvm_find_cpuid_entry(vcpu, function, index);
4105         if (best) {
4106                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4107                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4108                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4109                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4110         }
4111         kvm_x86_ops->skip_emulated_instruction(vcpu);
4112         trace_kvm_cpuid(function,
4113                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4114                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4115                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4116                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4117 }
4118 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4119
4120 /*
4121  * Check if userspace requested an interrupt window, and that the
4122  * interrupt window is open.
4123  *
4124  * No need to exit to userspace if we already have an interrupt queued.
4125  */
4126 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4127 {
4128         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4129                 vcpu->run->request_interrupt_window &&
4130                 kvm_arch_interrupt_allowed(vcpu));
4131 }
4132
4133 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4134 {
4135         struct kvm_run *kvm_run = vcpu->run;
4136
4137         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4138         kvm_run->cr8 = kvm_get_cr8(vcpu);
4139         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4140         if (irqchip_in_kernel(vcpu->kvm))
4141                 kvm_run->ready_for_interrupt_injection = 1;
4142         else
4143                 kvm_run->ready_for_interrupt_injection =
4144                         kvm_arch_interrupt_allowed(vcpu) &&
4145                         !kvm_cpu_has_interrupt(vcpu) &&
4146                         !kvm_event_needs_reinjection(vcpu);
4147 }
4148
4149 static void vapic_enter(struct kvm_vcpu *vcpu)
4150 {
4151         struct kvm_lapic *apic = vcpu->arch.apic;
4152         struct page *page;
4153
4154         if (!apic || !apic->vapic_addr)
4155                 return;
4156
4157         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4158
4159         vcpu->arch.apic->vapic_page = page;
4160 }
4161
4162 static void vapic_exit(struct kvm_vcpu *vcpu)
4163 {
4164         struct kvm_lapic *apic = vcpu->arch.apic;
4165         int idx;
4166
4167         if (!apic || !apic->vapic_addr)
4168                 return;
4169
4170         idx = srcu_read_lock(&vcpu->kvm->srcu);
4171         kvm_release_page_dirty(apic->vapic_page);
4172         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4173         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4174 }
4175
4176 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4177 {
4178         int max_irr, tpr;
4179
4180         if (!kvm_x86_ops->update_cr8_intercept)
4181                 return;
4182
4183         if (!vcpu->arch.apic)
4184                 return;
4185
4186         if (!vcpu->arch.apic->vapic_addr)
4187                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4188         else
4189                 max_irr = -1;
4190
4191         if (max_irr != -1)
4192                 max_irr >>= 4;
4193
4194         tpr = kvm_lapic_get_cr8(vcpu);
4195
4196         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4197 }
4198
4199 static void inject_pending_event(struct kvm_vcpu *vcpu)
4200 {
4201         /* try to reinject previous events if any */
4202         if (vcpu->arch.exception.pending) {
4203                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4204                                           vcpu->arch.exception.has_error_code,
4205                                           vcpu->arch.exception.error_code);
4206                 return;
4207         }
4208
4209         if (vcpu->arch.nmi_injected) {
4210                 kvm_x86_ops->set_nmi(vcpu);
4211                 return;
4212         }
4213
4214         if (vcpu->arch.interrupt.pending) {
4215                 kvm_x86_ops->set_irq(vcpu);
4216                 return;
4217         }
4218
4219         /* try to inject new event if pending */
4220         if (vcpu->arch.nmi_pending) {
4221                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4222                         vcpu->arch.nmi_pending = false;
4223                         vcpu->arch.nmi_injected = true;
4224                         kvm_x86_ops->set_nmi(vcpu);
4225                 }
4226         } else if (kvm_cpu_has_interrupt(vcpu)) {
4227                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4228                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4229                                             false);
4230                         kvm_x86_ops->set_irq(vcpu);
4231                 }
4232         }
4233 }
4234
4235 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4236 {
4237         int r;
4238         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4239                 vcpu->run->request_interrupt_window;
4240
4241         if (vcpu->requests)
4242                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4243                         kvm_mmu_unload(vcpu);
4244
4245         r = kvm_mmu_reload(vcpu);
4246         if (unlikely(r))
4247                 goto out;
4248
4249         if (vcpu->requests) {
4250                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4251                         __kvm_migrate_timers(vcpu);
4252                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4253                         kvm_write_guest_time(vcpu);
4254                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4255                         kvm_mmu_sync_roots(vcpu);
4256                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4257                         kvm_x86_ops->tlb_flush(vcpu);
4258                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4259                                        &vcpu->requests)) {
4260                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4261                         r = 0;
4262                         goto out;
4263                 }
4264                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4265                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4266                         r = 0;
4267                         goto out;
4268                 }
4269                 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4270                         vcpu->fpu_active = 0;
4271                         kvm_x86_ops->fpu_deactivate(vcpu);
4272                 }
4273         }
4274
4275         preempt_disable();
4276
4277         kvm_x86_ops->prepare_guest_switch(vcpu);
4278         if (vcpu->fpu_active)
4279                 kvm_load_guest_fpu(vcpu);
4280
4281         local_irq_disable();
4282
4283         clear_bit(KVM_REQ_KICK, &vcpu->requests);
4284         smp_mb__after_clear_bit();
4285
4286         if (vcpu->requests || need_resched() || signal_pending(current)) {
4287                 set_bit(KVM_REQ_KICK, &vcpu->requests);
4288                 local_irq_enable();
4289                 preempt_enable();
4290                 r = 1;
4291                 goto out;
4292         }
4293
4294         inject_pending_event(vcpu);
4295
4296         /* enable NMI/IRQ window open exits if needed */
4297         if (vcpu->arch.nmi_pending)
4298                 kvm_x86_ops->enable_nmi_window(vcpu);
4299         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4300                 kvm_x86_ops->enable_irq_window(vcpu);
4301
4302         if (kvm_lapic_enabled(vcpu)) {
4303                 update_cr8_intercept(vcpu);
4304                 kvm_lapic_sync_to_vapic(vcpu);
4305         }
4306
4307         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4308
4309         kvm_guest_enter();
4310
4311         if (unlikely(vcpu->arch.switch_db_regs)) {
4312                 set_debugreg(0, 7);
4313                 set_debugreg(vcpu->arch.eff_db[0], 0);
4314                 set_debugreg(vcpu->arch.eff_db[1], 1);
4315                 set_debugreg(vcpu->arch.eff_db[2], 2);
4316                 set_debugreg(vcpu->arch.eff_db[3], 3);
4317         }
4318
4319         trace_kvm_entry(vcpu->vcpu_id);
4320         kvm_x86_ops->run(vcpu);
4321
4322         /*
4323          * If the guest has used debug registers, at least dr7
4324          * will be disabled while returning to the host.
4325          * If we don't have active breakpoints in the host, we don't
4326          * care about the messed up debug address registers. But if
4327          * we have some of them active, restore the old state.
4328          */
4329         if (hw_breakpoint_active())
4330                 hw_breakpoint_restore();
4331
4332         set_bit(KVM_REQ_KICK, &vcpu->requests);
4333         local_irq_enable();
4334
4335         ++vcpu->stat.exits;
4336
4337         /*
4338          * We must have an instruction between local_irq_enable() and
4339          * kvm_guest_exit(), so the timer interrupt isn't delayed by
4340          * the interrupt shadow.  The stat.exits increment will do nicely.
4341          * But we need to prevent reordering, hence this barrier():
4342          */
4343         barrier();
4344
4345         kvm_guest_exit();
4346
4347         preempt_enable();
4348
4349         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4350
4351         /*
4352          * Profile KVM exit RIPs:
4353          */
4354         if (unlikely(prof_on == KVM_PROFILING)) {
4355                 unsigned long rip = kvm_rip_read(vcpu);
4356                 profile_hit(KVM_PROFILING, (void *)rip);
4357         }
4358
4359
4360         kvm_lapic_sync_from_vapic(vcpu);
4361
4362         r = kvm_x86_ops->handle_exit(vcpu);
4363 out:
4364         return r;
4365 }
4366
4367
4368 static int __vcpu_run(struct kvm_vcpu *vcpu)
4369 {
4370         int r;
4371         struct kvm *kvm = vcpu->kvm;
4372
4373         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4374                 pr_debug("vcpu %d received sipi with vector # %x\n",
4375                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
4376                 kvm_lapic_reset(vcpu);
4377                 r = kvm_arch_vcpu_reset(vcpu);
4378                 if (r)
4379                         return r;
4380                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4381         }
4382
4383         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4384         vapic_enter(vcpu);
4385
4386         r = 1;
4387         while (r > 0) {
4388                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4389                         r = vcpu_enter_guest(vcpu);
4390                 else {
4391                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4392                         kvm_vcpu_block(vcpu);
4393                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4394                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4395                         {
4396                                 switch(vcpu->arch.mp_state) {
4397                                 case KVM_MP_STATE_HALTED:
4398                                         vcpu->arch.mp_state =
4399                                                 KVM_MP_STATE_RUNNABLE;
4400                                 case KVM_MP_STATE_RUNNABLE:
4401                                         break;
4402                                 case KVM_MP_STATE_SIPI_RECEIVED:
4403                                 default:
4404                                         r = -EINTR;
4405                                         break;
4406                                 }
4407                         }
4408                 }
4409
4410                 if (r <= 0)
4411                         break;
4412
4413                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4414                 if (kvm_cpu_has_pending_timer(vcpu))
4415                         kvm_inject_pending_timer_irqs(vcpu);
4416
4417                 if (dm_request_for_irq_injection(vcpu)) {
4418                         r = -EINTR;
4419                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4420                         ++vcpu->stat.request_irq_exits;
4421                 }
4422                 if (signal_pending(current)) {
4423                         r = -EINTR;
4424                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4425                         ++vcpu->stat.signal_exits;
4426                 }
4427                 if (need_resched()) {
4428                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4429                         kvm_resched(vcpu);
4430                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4431                 }
4432         }
4433
4434         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4435         post_kvm_run_save(vcpu);
4436
4437         vapic_exit(vcpu);
4438
4439         return r;
4440 }
4441
4442 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4443 {
4444         int r;
4445         sigset_t sigsaved;
4446
4447         vcpu_load(vcpu);
4448
4449         if (vcpu->sigset_active)
4450                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4451
4452         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4453                 kvm_vcpu_block(vcpu);
4454                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4455                 r = -EAGAIN;
4456                 goto out;
4457         }
4458
4459         /* re-sync apic's tpr */
4460         if (!irqchip_in_kernel(vcpu->kvm))
4461                 kvm_set_cr8(vcpu, kvm_run->cr8);
4462
4463         if (vcpu->arch.pio.cur_count) {
4464                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4465                 r = complete_pio(vcpu);
4466                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4467                 if (r)
4468                         goto out;
4469         }
4470         if (vcpu->mmio_needed) {
4471                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4472                 vcpu->mmio_read_completed = 1;
4473                 vcpu->mmio_needed = 0;
4474
4475                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4476                 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4477                                         EMULTYPE_NO_DECODE);
4478                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4479                 if (r == EMULATE_DO_MMIO) {
4480                         /*
4481                          * Read-modify-write.  Back to userspace.
4482                          */
4483                         r = 0;
4484                         goto out;
4485                 }
4486         }
4487         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4488                 kvm_register_write(vcpu, VCPU_REGS_RAX,
4489                                      kvm_run->hypercall.ret);
4490
4491         r = __vcpu_run(vcpu);
4492
4493 out:
4494         if (vcpu->sigset_active)
4495                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4496
4497         vcpu_put(vcpu);
4498         return r;
4499 }
4500
4501 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4502 {
4503         vcpu_load(vcpu);
4504
4505         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4506         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4507         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4508         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4509         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4510         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4511         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4512         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4513 #ifdef CONFIG_X86_64
4514         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4515         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4516         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4517         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4518         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4519         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4520         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4521         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4522 #endif
4523
4524         regs->rip = kvm_rip_read(vcpu);
4525         regs->rflags = kvm_get_rflags(vcpu);
4526
4527         vcpu_put(vcpu);
4528
4529         return 0;
4530 }
4531
4532 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4533 {
4534         vcpu_load(vcpu);
4535
4536         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4537         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4538         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4539         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4540         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4541         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4542         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4543         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4544 #ifdef CONFIG_X86_64
4545         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4546         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4547         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4548         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4549         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4550         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4551         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4552         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4553 #endif
4554
4555         kvm_rip_write(vcpu, regs->rip);
4556         kvm_set_rflags(vcpu, regs->rflags);
4557
4558         vcpu->arch.exception.pending = false;
4559
4560         vcpu_put(vcpu);
4561
4562         return 0;
4563 }
4564
4565 void kvm_get_segment(struct kvm_vcpu *vcpu,
4566                      struct kvm_segment *var, int seg)
4567 {
4568         kvm_x86_ops->get_segment(vcpu, var, seg);
4569 }
4570
4571 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4572 {
4573         struct kvm_segment cs;
4574
4575         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4576         *db = cs.db;
4577         *l = cs.l;
4578 }
4579 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4580
4581 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4582                                   struct kvm_sregs *sregs)
4583 {
4584         struct descriptor_table dt;
4585
4586         vcpu_load(vcpu);
4587
4588         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4589         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4590         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4591         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4592         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4593         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4594
4595         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4596         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4597
4598         kvm_x86_ops->get_idt(vcpu, &dt);
4599         sregs->idt.limit = dt.limit;
4600         sregs->idt.base = dt.base;
4601         kvm_x86_ops->get_gdt(vcpu, &dt);
4602         sregs->gdt.limit = dt.limit;
4603         sregs->gdt.base = dt.base;
4604
4605         sregs->cr0 = kvm_read_cr0(vcpu);
4606         sregs->cr2 = vcpu->arch.cr2;
4607         sregs->cr3 = vcpu->arch.cr3;
4608         sregs->cr4 = kvm_read_cr4(vcpu);
4609         sregs->cr8 = kvm_get_cr8(vcpu);
4610         sregs->efer = vcpu->arch.efer;
4611         sregs->apic_base = kvm_get_apic_base(vcpu);
4612
4613         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4614
4615         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4616                 set_bit(vcpu->arch.interrupt.nr,
4617                         (unsigned long *)sregs->interrupt_bitmap);
4618
4619         vcpu_put(vcpu);
4620
4621         return 0;
4622 }
4623
4624 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4625                                     struct kvm_mp_state *mp_state)
4626 {
4627         vcpu_load(vcpu);
4628         mp_state->mp_state = vcpu->arch.mp_state;
4629         vcpu_put(vcpu);
4630         return 0;
4631 }
4632
4633 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4634                                     struct kvm_mp_state *mp_state)
4635 {
4636         vcpu_load(vcpu);
4637         vcpu->arch.mp_state = mp_state->mp_state;
4638         vcpu_put(vcpu);
4639         return 0;
4640 }
4641
4642 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4643                         struct kvm_segment *var, int seg)
4644 {
4645         kvm_x86_ops->set_segment(vcpu, var, seg);
4646 }
4647
4648 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4649                                    struct kvm_segment *kvm_desct)
4650 {
4651         kvm_desct->base = get_desc_base(seg_desc);
4652         kvm_desct->limit = get_desc_limit(seg_desc);
4653         if (seg_desc->g) {
4654                 kvm_desct->limit <<= 12;
4655                 kvm_desct->limit |= 0xfff;
4656         }
4657         kvm_desct->selector = selector;
4658         kvm_desct->type = seg_desc->type;
4659         kvm_desct->present = seg_desc->p;
4660         kvm_desct->dpl = seg_desc->dpl;
4661         kvm_desct->db = seg_desc->d;
4662         kvm_desct->s = seg_desc->s;
4663         kvm_desct->l = seg_desc->l;
4664         kvm_desct->g = seg_desc->g;
4665         kvm_desct->avl = seg_desc->avl;
4666         if (!selector)
4667                 kvm_desct->unusable = 1;
4668         else
4669                 kvm_desct->unusable = 0;
4670         kvm_desct->padding = 0;
4671 }
4672
4673 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4674                                           u16 selector,
4675                                           struct descriptor_table *dtable)
4676 {
4677         if (selector & 1 << 2) {
4678                 struct kvm_segment kvm_seg;
4679
4680                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4681
4682                 if (kvm_seg.unusable)
4683                         dtable->limit = 0;
4684                 else
4685                         dtable->limit = kvm_seg.limit;
4686                 dtable->base = kvm_seg.base;
4687         }
4688         else
4689                 kvm_x86_ops->get_gdt(vcpu, dtable);
4690 }
4691
4692 /* allowed just for 8 bytes segments */
4693 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4694                                          struct desc_struct *seg_desc)
4695 {
4696         struct descriptor_table dtable;
4697         u16 index = selector >> 3;
4698         int ret;
4699         u32 err;
4700         gva_t addr;
4701
4702         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4703
4704         if (dtable.limit < index * 8 + 7) {
4705                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4706                 return X86EMUL_PROPAGATE_FAULT;
4707         }
4708         addr = dtable.base + index * 8;
4709         ret = kvm_read_guest_virt_system(addr, seg_desc, sizeof(*seg_desc),
4710                                          vcpu,  &err);
4711         if (ret == X86EMUL_PROPAGATE_FAULT)
4712                 kvm_inject_page_fault(vcpu, addr, err);
4713
4714        return ret;
4715 }
4716
4717 /* allowed just for 8 bytes segments */
4718 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4719                                          struct desc_struct *seg_desc)
4720 {
4721         struct descriptor_table dtable;
4722         u16 index = selector >> 3;
4723
4724         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4725
4726         if (dtable.limit < index * 8 + 7)
4727                 return 1;
4728         return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu, NULL);
4729 }
4730
4731 static gpa_t get_tss_base_addr_write(struct kvm_vcpu *vcpu,
4732                                struct desc_struct *seg_desc)
4733 {
4734         u32 base_addr = get_desc_base(seg_desc);
4735
4736         return kvm_mmu_gva_to_gpa_write(vcpu, base_addr, NULL);
4737 }
4738
4739 static gpa_t get_tss_base_addr_read(struct kvm_vcpu *vcpu,
4740                              struct desc_struct *seg_desc)
4741 {
4742         u32 base_addr = get_desc_base(seg_desc);
4743
4744         return kvm_mmu_gva_to_gpa_read(vcpu, base_addr, NULL);
4745 }
4746
4747 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4748 {
4749         struct kvm_segment kvm_seg;
4750
4751         kvm_get_segment(vcpu, &kvm_seg, seg);
4752         return kvm_seg.selector;
4753 }
4754
4755 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4756 {
4757         struct kvm_segment segvar = {
4758                 .base = selector << 4,
4759                 .limit = 0xffff,
4760                 .selector = selector,
4761                 .type = 3,
4762                 .present = 1,
4763                 .dpl = 3,
4764                 .db = 0,
4765                 .s = 1,
4766                 .l = 0,
4767                 .g = 0,
4768                 .avl = 0,
4769                 .unusable = 0,
4770         };
4771         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4772         return X86EMUL_CONTINUE;
4773 }
4774
4775 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4776 {
4777         return (seg != VCPU_SREG_LDTR) &&
4778                 (seg != VCPU_SREG_TR) &&
4779                 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4780 }
4781
4782 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg)
4783 {
4784         struct kvm_segment kvm_seg;
4785         struct desc_struct seg_desc;
4786         u8 dpl, rpl, cpl;
4787         unsigned err_vec = GP_VECTOR;
4788         u32 err_code = 0;
4789         bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
4790         int ret;
4791
4792         if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
4793                 return kvm_load_realmode_segment(vcpu, selector, seg);
4794
4795         /* NULL selector is not valid for TR, CS and SS */
4796         if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
4797             && null_selector)
4798                 goto exception;
4799
4800         /* TR should be in GDT only */
4801         if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
4802                 goto exception;
4803
4804         ret = load_guest_segment_descriptor(vcpu, selector, &seg_desc);
4805         if (ret)
4806                 return ret;
4807
4808         seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
4809
4810         if (null_selector) { /* for NULL selector skip all following checks */
4811                 kvm_seg.unusable = 1;
4812                 goto load;
4813         }
4814
4815         err_code = selector & 0xfffc;
4816         err_vec = GP_VECTOR;
4817
4818         /* can't load system descriptor into segment selecor */
4819         if (seg <= VCPU_SREG_GS && !kvm_seg.s)
4820                 goto exception;
4821
4822         if (!kvm_seg.present) {
4823                 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
4824                 goto exception;
4825         }
4826
4827         rpl = selector & 3;
4828         dpl = kvm_seg.dpl;
4829         cpl = kvm_x86_ops->get_cpl(vcpu);
4830
4831         switch (seg) {
4832         case VCPU_SREG_SS:
4833                 /*
4834                  * segment is not a writable data segment or segment
4835                  * selector's RPL != CPL or segment selector's RPL != CPL
4836                  */
4837                 if (rpl != cpl || (kvm_seg.type & 0xa) != 0x2 || dpl != cpl)
4838                         goto exception;
4839                 break;
4840         case VCPU_SREG_CS:
4841                 if (!(kvm_seg.type & 8))
4842                         goto exception;
4843
4844                 if (kvm_seg.type & 4) {
4845                         /* conforming */
4846                         if (dpl > cpl)
4847                                 goto exception;
4848                 } else {
4849                         /* nonconforming */
4850                         if (rpl > cpl || dpl != cpl)
4851                                 goto exception;
4852                 }
4853                 /* CS(RPL) <- CPL */
4854                 selector = (selector & 0xfffc) | cpl;
4855             break;
4856         case VCPU_SREG_TR:
4857                 if (kvm_seg.s || (kvm_seg.type != 1 && kvm_seg.type != 9))
4858                         goto exception;
4859                 break;
4860         case VCPU_SREG_LDTR:
4861                 if (kvm_seg.s || kvm_seg.type != 2)
4862                         goto exception;
4863                 break;
4864         default: /*  DS, ES, FS, or GS */
4865                 /*
4866                  * segment is not a data or readable code segment or
4867                  * ((segment is a data or nonconforming code segment)
4868                  * and (both RPL and CPL > DPL))
4869                  */
4870                 if ((kvm_seg.type & 0xa) == 0x8 ||
4871                     (((kvm_seg.type & 0xc) != 0xc) && (rpl > dpl && cpl > dpl)))
4872                         goto exception;
4873                 break;
4874         }
4875
4876         if (!kvm_seg.unusable && kvm_seg.s) {
4877                 /* mark segment as accessed */
4878                 kvm_seg.type |= 1;
4879                 seg_desc.type |= 1;
4880                 save_guest_segment_descriptor(vcpu, selector, &seg_desc);
4881         }
4882 load:
4883         kvm_set_segment(vcpu, &kvm_seg, seg);
4884         return X86EMUL_CONTINUE;
4885 exception:
4886         kvm_queue_exception_e(vcpu, err_vec, err_code);
4887         return X86EMUL_PROPAGATE_FAULT;
4888 }
4889
4890 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4891                                 struct tss_segment_32 *tss)
4892 {
4893         tss->cr3 = vcpu->arch.cr3;
4894         tss->eip = kvm_rip_read(vcpu);
4895         tss->eflags = kvm_get_rflags(vcpu);
4896         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4897         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4898         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4899         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4900         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4901         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4902         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4903         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4904         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4905         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4906         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4907         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4908         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4909         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4910         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4911 }
4912
4913 static void kvm_load_segment_selector(struct kvm_vcpu *vcpu, u16 sel, int seg)
4914 {
4915         struct kvm_segment kvm_seg;
4916         kvm_get_segment(vcpu, &kvm_seg, seg);
4917         kvm_seg.selector = sel;
4918         kvm_set_segment(vcpu, &kvm_seg, seg);
4919 }
4920
4921 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4922                                   struct tss_segment_32 *tss)
4923 {
4924         kvm_set_cr3(vcpu, tss->cr3);
4925
4926         kvm_rip_write(vcpu, tss->eip);
4927         kvm_set_rflags(vcpu, tss->eflags | 2);
4928
4929         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4930         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4931         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4932         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4933         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4934         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4935         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4936         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4937
4938         /*
4939          * SDM says that segment selectors are loaded before segment
4940          * descriptors
4941          */
4942         kvm_load_segment_selector(vcpu, tss->ldt_selector, VCPU_SREG_LDTR);
4943         kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
4944         kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
4945         kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
4946         kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
4947         kvm_load_segment_selector(vcpu, tss->fs, VCPU_SREG_FS);
4948         kvm_load_segment_selector(vcpu, tss->gs, VCPU_SREG_GS);
4949
4950         /*
4951          * Now load segment descriptors. If fault happenes at this stage
4952          * it is handled in a context of new task
4953          */
4954         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, VCPU_SREG_LDTR))
4955                 return 1;
4956
4957         if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
4958                 return 1;
4959
4960         if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
4961                 return 1;
4962
4963         if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
4964                 return 1;
4965
4966         if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
4967                 return 1;
4968
4969         if (kvm_load_segment_descriptor(vcpu, tss->fs, VCPU_SREG_FS))
4970                 return 1;
4971
4972         if (kvm_load_segment_descriptor(vcpu, tss->gs, VCPU_SREG_GS))
4973                 return 1;
4974         return 0;
4975 }
4976
4977 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4978                                 struct tss_segment_16 *tss)
4979 {
4980         tss->ip = kvm_rip_read(vcpu);
4981         tss->flag = kvm_get_rflags(vcpu);
4982         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4983         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4984         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4985         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4986         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4987         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4988         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4989         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4990
4991         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4992         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4993         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4994         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4995         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4996 }
4997
4998 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4999                                  struct tss_segment_16 *tss)
5000 {
5001         kvm_rip_write(vcpu, tss->ip);
5002         kvm_set_rflags(vcpu, tss->flag | 2);
5003         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
5004         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
5005         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
5006         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
5007         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
5008         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
5009         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
5010         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
5011
5012         /*
5013          * SDM says that segment selectors are loaded before segment
5014          * descriptors
5015          */
5016         kvm_load_segment_selector(vcpu, tss->ldt, VCPU_SREG_LDTR);
5017         kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
5018         kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
5019         kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
5020         kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
5021
5022         /*
5023          * Now load segment descriptors. If fault happenes at this stage
5024          * it is handled in a context of new task
5025          */
5026         if (kvm_load_segment_descriptor(vcpu, tss->ldt, VCPU_SREG_LDTR))
5027                 return 1;
5028
5029         if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
5030                 return 1;
5031
5032         if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
5033                 return 1;
5034
5035         if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
5036                 return 1;
5037
5038         if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
5039                 return 1;
5040         return 0;
5041 }
5042
5043 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
5044                               u16 old_tss_sel, u32 old_tss_base,
5045                               struct desc_struct *nseg_desc)
5046 {
5047         struct tss_segment_16 tss_segment_16;
5048         int ret = 0;
5049
5050         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
5051                            sizeof tss_segment_16))
5052                 goto out;
5053
5054         save_state_to_tss16(vcpu, &tss_segment_16);
5055
5056         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
5057                             sizeof tss_segment_16))
5058                 goto out;
5059
5060         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
5061                            &tss_segment_16, sizeof tss_segment_16))
5062                 goto out;
5063
5064         if (old_tss_sel != 0xffff) {
5065                 tss_segment_16.prev_task_link = old_tss_sel;
5066
5067                 if (kvm_write_guest(vcpu->kvm,
5068                                     get_tss_base_addr_write(vcpu, nseg_desc),
5069                                     &tss_segment_16.prev_task_link,
5070                                     sizeof tss_segment_16.prev_task_link))
5071                         goto out;
5072         }
5073
5074         if (load_state_from_tss16(vcpu, &tss_segment_16))
5075                 goto out;
5076
5077         ret = 1;
5078 out:
5079         return ret;
5080 }
5081
5082 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
5083                        u16 old_tss_sel, u32 old_tss_base,
5084                        struct desc_struct *nseg_desc)
5085 {
5086         struct tss_segment_32 tss_segment_32;
5087         int ret = 0;
5088
5089         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
5090                            sizeof tss_segment_32))
5091                 goto out;
5092
5093         save_state_to_tss32(vcpu, &tss_segment_32);
5094
5095         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
5096                             sizeof tss_segment_32))
5097                 goto out;
5098
5099         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
5100                            &tss_segment_32, sizeof tss_segment_32))
5101                 goto out;
5102
5103         if (old_tss_sel != 0xffff) {
5104                 tss_segment_32.prev_task_link = old_tss_sel;
5105
5106                 if (kvm_write_guest(vcpu->kvm,
5107                                     get_tss_base_addr_write(vcpu, nseg_desc),
5108                                     &tss_segment_32.prev_task_link,
5109                                     sizeof tss_segment_32.prev_task_link))
5110                         goto out;
5111         }
5112
5113         if (load_state_from_tss32(vcpu, &tss_segment_32))
5114                 goto out;
5115
5116         ret = 1;
5117 out:
5118         return ret;
5119 }
5120
5121 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
5122 {
5123         struct kvm_segment tr_seg;
5124         struct desc_struct cseg_desc;
5125         struct desc_struct nseg_desc;
5126         int ret = 0;
5127         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
5128         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
5129         u32 desc_limit;
5130
5131         old_tss_base = kvm_mmu_gva_to_gpa_write(vcpu, old_tss_base, NULL);
5132
5133         /* FIXME: Handle errors. Failure to read either TSS or their
5134          * descriptors should generate a pagefault.
5135          */
5136         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
5137                 goto out;
5138
5139         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
5140                 goto out;
5141
5142         if (reason != TASK_SWITCH_IRET) {
5143                 int cpl;
5144
5145                 cpl = kvm_x86_ops->get_cpl(vcpu);
5146                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
5147                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5148                         return 1;
5149                 }
5150         }
5151
5152         desc_limit = get_desc_limit(&nseg_desc);
5153         if (!nseg_desc.p ||
5154             ((desc_limit < 0x67 && (nseg_desc.type & 8)) ||
5155              desc_limit < 0x2b)) {
5156                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
5157                 return 1;
5158         }
5159
5160         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
5161                 cseg_desc.type &= ~(1 << 1); //clear the B flag
5162                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
5163         }
5164
5165         if (reason == TASK_SWITCH_IRET) {
5166                 u32 eflags = kvm_get_rflags(vcpu);
5167                 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
5168         }
5169
5170         /* set back link to prev task only if NT bit is set in eflags
5171            note that old_tss_sel is not used afetr this point */
5172         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
5173                 old_tss_sel = 0xffff;
5174
5175         if (nseg_desc.type & 8)
5176                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
5177                                          old_tss_base, &nseg_desc);
5178         else
5179                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
5180                                          old_tss_base, &nseg_desc);
5181
5182         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
5183                 u32 eflags = kvm_get_rflags(vcpu);
5184                 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
5185         }
5186
5187         if (reason != TASK_SWITCH_IRET) {
5188                 nseg_desc.type |= (1 << 1);
5189                 save_guest_segment_descriptor(vcpu, tss_selector,
5190                                               &nseg_desc);
5191         }
5192
5193         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
5194         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
5195         tr_seg.type = 11;
5196         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
5197 out:
5198         return ret;
5199 }
5200 EXPORT_SYMBOL_GPL(kvm_task_switch);
5201
5202 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5203                                   struct kvm_sregs *sregs)
5204 {
5205         int mmu_reset_needed = 0;
5206         int pending_vec, max_bits;
5207         struct descriptor_table dt;
5208
5209         vcpu_load(vcpu);
5210
5211         dt.limit = sregs->idt.limit;
5212         dt.base = sregs->idt.base;
5213         kvm_x86_ops->set_idt(vcpu, &dt);
5214         dt.limit = sregs->gdt.limit;
5215         dt.base = sregs->gdt.base;
5216         kvm_x86_ops->set_gdt(vcpu, &dt);
5217
5218         vcpu->arch.cr2 = sregs->cr2;
5219         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5220         vcpu->arch.cr3 = sregs->cr3;
5221
5222         kvm_set_cr8(vcpu, sregs->cr8);
5223
5224         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5225         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5226         kvm_set_apic_base(vcpu, sregs->apic_base);
5227
5228         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5229         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5230         vcpu->arch.cr0 = sregs->cr0;
5231
5232         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5233         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5234         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5235                 load_pdptrs(vcpu, vcpu->arch.cr3);
5236                 mmu_reset_needed = 1;
5237         }
5238
5239         if (mmu_reset_needed)
5240                 kvm_mmu_reset_context(vcpu);
5241
5242         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5243         pending_vec = find_first_bit(
5244                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5245         if (pending_vec < max_bits) {
5246                 kvm_queue_interrupt(vcpu, pending_vec, false);
5247                 pr_debug("Set back pending irq %d\n", pending_vec);
5248                 if (irqchip_in_kernel(vcpu->kvm))
5249                         kvm_pic_clear_isr_ack(vcpu->kvm);
5250         }
5251
5252         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5253         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5254         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5255         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5256         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5257         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5258
5259         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5260         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5261
5262         update_cr8_intercept(vcpu);
5263
5264         /* Older userspace won't unhalt the vcpu on reset. */
5265         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5266             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5267             !is_protmode(vcpu))
5268                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5269
5270         vcpu_put(vcpu);
5271
5272         return 0;
5273 }
5274
5275 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5276                                         struct kvm_guest_debug *dbg)
5277 {
5278         unsigned long rflags;
5279         int i, r;
5280
5281         vcpu_load(vcpu);
5282
5283         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5284                 r = -EBUSY;
5285                 if (vcpu->arch.exception.pending)
5286                         goto unlock_out;
5287                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5288                         kvm_queue_exception(vcpu, DB_VECTOR);
5289                 else
5290                         kvm_queue_exception(vcpu, BP_VECTOR);
5291         }
5292
5293         /*
5294          * Read rflags as long as potentially injected trace flags are still
5295          * filtered out.
5296          */
5297         rflags = kvm_get_rflags(vcpu);
5298
5299         vcpu->guest_debug = dbg->control;
5300         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5301                 vcpu->guest_debug = 0;
5302
5303         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5304                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5305                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5306                 vcpu->arch.switch_db_regs =
5307                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5308         } else {
5309                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5310                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5311                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5312         }
5313
5314         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5315                 vcpu->arch.singlestep_cs =
5316                         get_segment_selector(vcpu, VCPU_SREG_CS);
5317                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
5318         }
5319
5320         /*
5321          * Trigger an rflags update that will inject or remove the trace
5322          * flags.
5323          */
5324         kvm_set_rflags(vcpu, rflags);
5325
5326         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5327
5328         r = 0;
5329
5330 unlock_out:
5331         vcpu_put(vcpu);
5332
5333         return r;
5334 }
5335
5336 /*
5337  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
5338  * we have asm/x86/processor.h
5339  */
5340 struct fxsave {
5341         u16     cwd;
5342         u16     swd;
5343         u16     twd;
5344         u16     fop;
5345         u64     rip;
5346         u64     rdp;
5347         u32     mxcsr;
5348         u32     mxcsr_mask;
5349         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
5350 #ifdef CONFIG_X86_64
5351         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
5352 #else
5353         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
5354 #endif
5355 };
5356
5357 /*
5358  * Translate a guest virtual address to a guest physical address.
5359  */
5360 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5361                                     struct kvm_translation *tr)
5362 {
5363         unsigned long vaddr = tr->linear_address;
5364         gpa_t gpa;
5365         int idx;
5366
5367         vcpu_load(vcpu);
5368         idx = srcu_read_lock(&vcpu->kvm->srcu);
5369         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5370         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5371         tr->physical_address = gpa;
5372         tr->valid = gpa != UNMAPPED_GVA;
5373         tr->writeable = 1;
5374         tr->usermode = 0;
5375         vcpu_put(vcpu);
5376
5377         return 0;
5378 }
5379
5380 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5381 {
5382         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5383
5384         vcpu_load(vcpu);
5385
5386         memcpy(fpu->fpr, fxsave->st_space, 128);
5387         fpu->fcw = fxsave->cwd;
5388         fpu->fsw = fxsave->swd;
5389         fpu->ftwx = fxsave->twd;
5390         fpu->last_opcode = fxsave->fop;
5391         fpu->last_ip = fxsave->rip;
5392         fpu->last_dp = fxsave->rdp;
5393         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5394
5395         vcpu_put(vcpu);
5396
5397         return 0;
5398 }
5399
5400 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5401 {
5402         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5403
5404         vcpu_load(vcpu);
5405
5406         memcpy(fxsave->st_space, fpu->fpr, 128);
5407         fxsave->cwd = fpu->fcw;
5408         fxsave->swd = fpu->fsw;
5409         fxsave->twd = fpu->ftwx;
5410         fxsave->fop = fpu->last_opcode;
5411         fxsave->rip = fpu->last_ip;
5412         fxsave->rdp = fpu->last_dp;
5413         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5414
5415         vcpu_put(vcpu);
5416
5417         return 0;
5418 }
5419
5420 void fx_init(struct kvm_vcpu *vcpu)
5421 {
5422         unsigned after_mxcsr_mask;
5423
5424         /*
5425          * Touch the fpu the first time in non atomic context as if
5426          * this is the first fpu instruction the exception handler
5427          * will fire before the instruction returns and it'll have to
5428          * allocate ram with GFP_KERNEL.
5429          */
5430         if (!used_math())
5431                 kvm_fx_save(&vcpu->arch.host_fx_image);
5432
5433         /* Initialize guest FPU by resetting ours and saving into guest's */
5434         preempt_disable();
5435         kvm_fx_save(&vcpu->arch.host_fx_image);
5436         kvm_fx_finit();
5437         kvm_fx_save(&vcpu->arch.guest_fx_image);
5438         kvm_fx_restore(&vcpu->arch.host_fx_image);
5439         preempt_enable();
5440
5441         vcpu->arch.cr0 |= X86_CR0_ET;
5442         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5443         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5444         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5445                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5446 }
5447 EXPORT_SYMBOL_GPL(fx_init);
5448
5449 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5450 {
5451         if (vcpu->guest_fpu_loaded)
5452                 return;
5453
5454         vcpu->guest_fpu_loaded = 1;
5455         kvm_fx_save(&vcpu->arch.host_fx_image);
5456         kvm_fx_restore(&vcpu->arch.guest_fx_image);
5457         trace_kvm_fpu(1);
5458 }
5459
5460 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5461 {
5462         if (!vcpu->guest_fpu_loaded)
5463                 return;
5464
5465         vcpu->guest_fpu_loaded = 0;
5466         kvm_fx_save(&vcpu->arch.guest_fx_image);
5467         kvm_fx_restore(&vcpu->arch.host_fx_image);
5468         ++vcpu->stat.fpu_reload;
5469         set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5470         trace_kvm_fpu(0);
5471 }
5472
5473 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5474 {
5475         if (vcpu->arch.time_page) {
5476                 kvm_release_page_dirty(vcpu->arch.time_page);
5477                 vcpu->arch.time_page = NULL;
5478         }
5479
5480         kvm_x86_ops->vcpu_free(vcpu);
5481 }
5482
5483 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5484                                                 unsigned int id)
5485 {
5486         return kvm_x86_ops->vcpu_create(kvm, id);
5487 }
5488
5489 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5490 {
5491         int r;
5492
5493         /* We do fxsave: this must be aligned. */
5494         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5495
5496         vcpu->arch.mtrr_state.have_fixed = 1;
5497         vcpu_load(vcpu);
5498         r = kvm_arch_vcpu_reset(vcpu);
5499         if (r == 0)
5500                 r = kvm_mmu_setup(vcpu);
5501         vcpu_put(vcpu);
5502         if (r < 0)
5503                 goto free_vcpu;
5504
5505         return 0;
5506 free_vcpu:
5507         kvm_x86_ops->vcpu_free(vcpu);
5508         return r;
5509 }
5510
5511 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5512 {
5513         vcpu_load(vcpu);
5514         kvm_mmu_unload(vcpu);
5515         vcpu_put(vcpu);
5516
5517         kvm_x86_ops->vcpu_free(vcpu);
5518 }
5519
5520 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5521 {
5522         vcpu->arch.nmi_pending = false;
5523         vcpu->arch.nmi_injected = false;
5524
5525         vcpu->arch.switch_db_regs = 0;
5526         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5527         vcpu->arch.dr6 = DR6_FIXED_1;
5528         vcpu->arch.dr7 = DR7_FIXED_1;
5529
5530         return kvm_x86_ops->vcpu_reset(vcpu);
5531 }
5532
5533 int kvm_arch_hardware_enable(void *garbage)
5534 {
5535         /*
5536          * Since this may be called from a hotplug notifcation,
5537          * we can't get the CPU frequency directly.
5538          */
5539         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5540                 int cpu = raw_smp_processor_id();
5541                 per_cpu(cpu_tsc_khz, cpu) = 0;
5542         }
5543
5544         kvm_shared_msr_cpu_online();
5545
5546         return kvm_x86_ops->hardware_enable(garbage);
5547 }
5548
5549 void kvm_arch_hardware_disable(void *garbage)
5550 {
5551         kvm_x86_ops->hardware_disable(garbage);
5552         drop_user_return_notifiers(garbage);
5553 }
5554
5555 int kvm_arch_hardware_setup(void)
5556 {
5557         return kvm_x86_ops->hardware_setup();
5558 }
5559
5560 void kvm_arch_hardware_unsetup(void)
5561 {
5562         kvm_x86_ops->hardware_unsetup();
5563 }
5564
5565 void kvm_arch_check_processor_compat(void *rtn)
5566 {
5567         kvm_x86_ops->check_processor_compatibility(rtn);
5568 }
5569
5570 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5571 {
5572         struct page *page;
5573         struct kvm *kvm;
5574         int r;
5575
5576         BUG_ON(vcpu->kvm == NULL);
5577         kvm = vcpu->kvm;
5578
5579         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5580         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5581                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5582         else
5583                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5584
5585         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5586         if (!page) {
5587                 r = -ENOMEM;
5588                 goto fail;
5589         }
5590         vcpu->arch.pio_data = page_address(page);
5591
5592         r = kvm_mmu_create(vcpu);
5593         if (r < 0)
5594                 goto fail_free_pio_data;
5595
5596         if (irqchip_in_kernel(kvm)) {
5597                 r = kvm_create_lapic(vcpu);
5598                 if (r < 0)
5599                         goto fail_mmu_destroy;
5600         }
5601
5602         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5603                                        GFP_KERNEL);
5604         if (!vcpu->arch.mce_banks) {
5605                 r = -ENOMEM;
5606                 goto fail_free_lapic;
5607         }
5608         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5609
5610         return 0;
5611 fail_free_lapic:
5612         kvm_free_lapic(vcpu);
5613 fail_mmu_destroy:
5614         kvm_mmu_destroy(vcpu);
5615 fail_free_pio_data:
5616         free_page((unsigned long)vcpu->arch.pio_data);
5617 fail:
5618         return r;
5619 }
5620
5621 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5622 {
5623         int idx;
5624
5625         kfree(vcpu->arch.mce_banks);
5626         kvm_free_lapic(vcpu);
5627         idx = srcu_read_lock(&vcpu->kvm->srcu);
5628         kvm_mmu_destroy(vcpu);
5629         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5630         free_page((unsigned long)vcpu->arch.pio_data);
5631 }
5632
5633 struct  kvm *kvm_arch_create_vm(void)
5634 {
5635         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5636
5637         if (!kvm)
5638                 return ERR_PTR(-ENOMEM);
5639
5640         kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5641         if (!kvm->arch.aliases) {
5642                 kfree(kvm);
5643                 return ERR_PTR(-ENOMEM);
5644         }
5645
5646         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5647         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5648
5649         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5650         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5651
5652         rdtscll(kvm->arch.vm_init_tsc);
5653
5654         return kvm;
5655 }
5656
5657 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5658 {
5659         vcpu_load(vcpu);
5660         kvm_mmu_unload(vcpu);
5661         vcpu_put(vcpu);
5662 }
5663
5664 static void kvm_free_vcpus(struct kvm *kvm)
5665 {
5666         unsigned int i;
5667         struct kvm_vcpu *vcpu;
5668
5669         /*
5670          * Unpin any mmu pages first.
5671          */
5672         kvm_for_each_vcpu(i, vcpu, kvm)
5673                 kvm_unload_vcpu_mmu(vcpu);
5674         kvm_for_each_vcpu(i, vcpu, kvm)
5675                 kvm_arch_vcpu_free(vcpu);
5676
5677         mutex_lock(&kvm->lock);
5678         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5679                 kvm->vcpus[i] = NULL;
5680
5681         atomic_set(&kvm->online_vcpus, 0);
5682         mutex_unlock(&kvm->lock);
5683 }
5684
5685 void kvm_arch_sync_events(struct kvm *kvm)
5686 {
5687         kvm_free_all_assigned_devices(kvm);
5688 }
5689
5690 void kvm_arch_destroy_vm(struct kvm *kvm)
5691 {
5692         kvm_iommu_unmap_guest(kvm);
5693         kvm_free_pit(kvm);
5694         kfree(kvm->arch.vpic);
5695         kfree(kvm->arch.vioapic);
5696         kvm_free_vcpus(kvm);
5697         kvm_free_physmem(kvm);
5698         if (kvm->arch.apic_access_page)
5699                 put_page(kvm->arch.apic_access_page);
5700         if (kvm->arch.ept_identity_pagetable)
5701                 put_page(kvm->arch.ept_identity_pagetable);
5702         cleanup_srcu_struct(&kvm->srcu);
5703         kfree(kvm->arch.aliases);
5704         kfree(kvm);
5705 }
5706
5707 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5708                                 struct kvm_memory_slot *memslot,
5709                                 struct kvm_memory_slot old,
5710                                 struct kvm_userspace_memory_region *mem,
5711                                 int user_alloc)
5712 {
5713         int npages = memslot->npages;
5714
5715         /*To keep backward compatibility with older userspace,
5716          *x86 needs to hanlde !user_alloc case.
5717          */
5718         if (!user_alloc) {
5719                 if (npages && !old.rmap) {
5720                         unsigned long userspace_addr;
5721
5722                         down_write(&current->mm->mmap_sem);
5723                         userspace_addr = do_mmap(NULL, 0,
5724                                                  npages * PAGE_SIZE,
5725                                                  PROT_READ | PROT_WRITE,
5726                                                  MAP_PRIVATE | MAP_ANONYMOUS,
5727                                                  0);
5728                         up_write(&current->mm->mmap_sem);
5729
5730                         if (IS_ERR((void *)userspace_addr))
5731                                 return PTR_ERR((void *)userspace_addr);
5732
5733                         memslot->userspace_addr = userspace_addr;
5734                 }
5735         }
5736
5737
5738         return 0;
5739 }
5740
5741 void kvm_arch_commit_memory_region(struct kvm *kvm,
5742                                 struct kvm_userspace_memory_region *mem,
5743                                 struct kvm_memory_slot old,
5744                                 int user_alloc)
5745 {
5746
5747         int npages = mem->memory_size >> PAGE_SHIFT;
5748
5749         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5750                 int ret;
5751
5752                 down_write(&current->mm->mmap_sem);
5753                 ret = do_munmap(current->mm, old.userspace_addr,
5754                                 old.npages * PAGE_SIZE);
5755                 up_write(&current->mm->mmap_sem);
5756                 if (ret < 0)
5757                         printk(KERN_WARNING
5758                                "kvm_vm_ioctl_set_memory_region: "
5759                                "failed to munmap memory\n");
5760         }
5761
5762         spin_lock(&kvm->mmu_lock);
5763         if (!kvm->arch.n_requested_mmu_pages) {
5764                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5765                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5766         }
5767
5768         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5769         spin_unlock(&kvm->mmu_lock);
5770 }
5771
5772 void kvm_arch_flush_shadow(struct kvm *kvm)
5773 {
5774         kvm_mmu_zap_all(kvm);
5775         kvm_reload_remote_mmus(kvm);
5776 }
5777
5778 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5779 {
5780         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5781                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5782                 || vcpu->arch.nmi_pending ||
5783                 (kvm_arch_interrupt_allowed(vcpu) &&
5784                  kvm_cpu_has_interrupt(vcpu));
5785 }
5786
5787 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5788 {
5789         int me;
5790         int cpu = vcpu->cpu;
5791
5792         if (waitqueue_active(&vcpu->wq)) {
5793                 wake_up_interruptible(&vcpu->wq);
5794                 ++vcpu->stat.halt_wakeup;
5795         }
5796
5797         me = get_cpu();
5798         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5799                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5800                         smp_send_reschedule(cpu);
5801         put_cpu();
5802 }
5803
5804 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5805 {
5806         return kvm_x86_ops->interrupt_allowed(vcpu);
5807 }
5808
5809 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5810 {
5811         unsigned long rflags;
5812
5813         rflags = kvm_x86_ops->get_rflags(vcpu);
5814         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5815                 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5816         return rflags;
5817 }
5818 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5819
5820 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5821 {
5822         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5823             vcpu->arch.singlestep_cs ==
5824                         get_segment_selector(vcpu, VCPU_SREG_CS) &&
5825             vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5826                 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5827         kvm_x86_ops->set_rflags(vcpu, rflags);
5828 }
5829 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5830
5831 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5832 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5833 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5834 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5840 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5841 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);