KVM: Use x86's segment descriptor struct instead of private definition
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29
30 #include <asm/io.h>
31 #include <asm/desc.h>
32
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
35
36 static int bypass_guest_pf = 1;
37 module_param(bypass_guest_pf, bool, 0);
38
39 static int enable_vpid = 1;
40 module_param(enable_vpid, bool, 0);
41
42 struct vmcs {
43         u32 revision_id;
44         u32 abort;
45         char data[0];
46 };
47
48 struct vcpu_vmx {
49         struct kvm_vcpu       vcpu;
50         int                   launched;
51         u8                    fail;
52         u32                   idt_vectoring_info;
53         struct kvm_msr_entry *guest_msrs;
54         struct kvm_msr_entry *host_msrs;
55         int                   nmsrs;
56         int                   save_nmsrs;
57         int                   msr_offset_efer;
58 #ifdef CONFIG_X86_64
59         int                   msr_offset_kernel_gs_base;
60 #endif
61         struct vmcs          *vmcs;
62         struct {
63                 int           loaded;
64                 u16           fs_sel, gs_sel, ldt_sel;
65                 int           gs_ldt_reload_needed;
66                 int           fs_reload_needed;
67                 int           guest_efer_loaded;
68         } host_state;
69         struct {
70                 struct {
71                         bool pending;
72                         u8 vector;
73                         unsigned rip;
74                 } irq;
75         } rmode;
76         int vpid;
77 };
78
79 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
80 {
81         return container_of(vcpu, struct vcpu_vmx, vcpu);
82 }
83
84 static int init_rmode_tss(struct kvm *kvm);
85
86 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
87 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
88
89 static struct page *vmx_io_bitmap_a;
90 static struct page *vmx_io_bitmap_b;
91
92 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
93 static DEFINE_SPINLOCK(vmx_vpid_lock);
94
95 static struct vmcs_config {
96         int size;
97         int order;
98         u32 revision_id;
99         u32 pin_based_exec_ctrl;
100         u32 cpu_based_exec_ctrl;
101         u32 cpu_based_2nd_exec_ctrl;
102         u32 vmexit_ctrl;
103         u32 vmentry_ctrl;
104 } vmcs_config;
105
106 #define VMX_SEGMENT_FIELD(seg)                                  \
107         [VCPU_SREG_##seg] = {                                   \
108                 .selector = GUEST_##seg##_SELECTOR,             \
109                 .base = GUEST_##seg##_BASE,                     \
110                 .limit = GUEST_##seg##_LIMIT,                   \
111                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
112         }
113
114 static struct kvm_vmx_segment_field {
115         unsigned selector;
116         unsigned base;
117         unsigned limit;
118         unsigned ar_bytes;
119 } kvm_vmx_segment_fields[] = {
120         VMX_SEGMENT_FIELD(CS),
121         VMX_SEGMENT_FIELD(DS),
122         VMX_SEGMENT_FIELD(ES),
123         VMX_SEGMENT_FIELD(FS),
124         VMX_SEGMENT_FIELD(GS),
125         VMX_SEGMENT_FIELD(SS),
126         VMX_SEGMENT_FIELD(TR),
127         VMX_SEGMENT_FIELD(LDTR),
128 };
129
130 /*
131  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
132  * away by decrementing the array size.
133  */
134 static const u32 vmx_msr_index[] = {
135 #ifdef CONFIG_X86_64
136         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
137 #endif
138         MSR_EFER, MSR_K6_STAR,
139 };
140 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
141
142 static void load_msrs(struct kvm_msr_entry *e, int n)
143 {
144         int i;
145
146         for (i = 0; i < n; ++i)
147                 wrmsrl(e[i].index, e[i].data);
148 }
149
150 static void save_msrs(struct kvm_msr_entry *e, int n)
151 {
152         int i;
153
154         for (i = 0; i < n; ++i)
155                 rdmsrl(e[i].index, e[i].data);
156 }
157
158 static inline int is_page_fault(u32 intr_info)
159 {
160         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
161                              INTR_INFO_VALID_MASK)) ==
162                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
163 }
164
165 static inline int is_no_device(u32 intr_info)
166 {
167         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
168                              INTR_INFO_VALID_MASK)) ==
169                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
170 }
171
172 static inline int is_invalid_opcode(u32 intr_info)
173 {
174         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
175                              INTR_INFO_VALID_MASK)) ==
176                 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
177 }
178
179 static inline int is_external_interrupt(u32 intr_info)
180 {
181         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
182                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
183 }
184
185 static inline int cpu_has_vmx_tpr_shadow(void)
186 {
187         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
188 }
189
190 static inline int vm_need_tpr_shadow(struct kvm *kvm)
191 {
192         return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
193 }
194
195 static inline int cpu_has_secondary_exec_ctrls(void)
196 {
197         return (vmcs_config.cpu_based_exec_ctrl &
198                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
199 }
200
201 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
202 {
203         return (vmcs_config.cpu_based_2nd_exec_ctrl &
204                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
205 }
206
207 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
208 {
209         return ((cpu_has_vmx_virtualize_apic_accesses()) &&
210                 (irqchip_in_kernel(kvm)));
211 }
212
213 static inline int cpu_has_vmx_vpid(void)
214 {
215         return (vmcs_config.cpu_based_2nd_exec_ctrl &
216                 SECONDARY_EXEC_ENABLE_VPID);
217 }
218
219 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
220 {
221         int i;
222
223         for (i = 0; i < vmx->nmsrs; ++i)
224                 if (vmx->guest_msrs[i].index == msr)
225                         return i;
226         return -1;
227 }
228
229 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
230 {
231     struct {
232         u64 vpid : 16;
233         u64 rsvd : 48;
234         u64 gva;
235     } operand = { vpid, 0, gva };
236
237     asm volatile (ASM_VMX_INVVPID
238                   /* CF==1 or ZF==1 --> rc = -1 */
239                   "; ja 1f ; ud2 ; 1:"
240                   : : "a"(&operand), "c"(ext) : "cc", "memory");
241 }
242
243 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
244 {
245         int i;
246
247         i = __find_msr_index(vmx, msr);
248         if (i >= 0)
249                 return &vmx->guest_msrs[i];
250         return NULL;
251 }
252
253 static void vmcs_clear(struct vmcs *vmcs)
254 {
255         u64 phys_addr = __pa(vmcs);
256         u8 error;
257
258         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
259                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
260                       : "cc", "memory");
261         if (error)
262                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
263                        vmcs, phys_addr);
264 }
265
266 static void __vcpu_clear(void *arg)
267 {
268         struct vcpu_vmx *vmx = arg;
269         int cpu = raw_smp_processor_id();
270
271         if (vmx->vcpu.cpu == cpu)
272                 vmcs_clear(vmx->vmcs);
273         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
274                 per_cpu(current_vmcs, cpu) = NULL;
275         rdtscll(vmx->vcpu.arch.host_tsc);
276 }
277
278 static void vcpu_clear(struct vcpu_vmx *vmx)
279 {
280         if (vmx->vcpu.cpu == -1)
281                 return;
282         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
283         vmx->launched = 0;
284 }
285
286 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
287 {
288         if (vmx->vpid == 0)
289                 return;
290
291         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
292 }
293
294 static unsigned long vmcs_readl(unsigned long field)
295 {
296         unsigned long value;
297
298         asm volatile (ASM_VMX_VMREAD_RDX_RAX
299                       : "=a"(value) : "d"(field) : "cc");
300         return value;
301 }
302
303 static u16 vmcs_read16(unsigned long field)
304 {
305         return vmcs_readl(field);
306 }
307
308 static u32 vmcs_read32(unsigned long field)
309 {
310         return vmcs_readl(field);
311 }
312
313 static u64 vmcs_read64(unsigned long field)
314 {
315 #ifdef CONFIG_X86_64
316         return vmcs_readl(field);
317 #else
318         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
319 #endif
320 }
321
322 static noinline void vmwrite_error(unsigned long field, unsigned long value)
323 {
324         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
325                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
326         dump_stack();
327 }
328
329 static void vmcs_writel(unsigned long field, unsigned long value)
330 {
331         u8 error;
332
333         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
334                        : "=q"(error) : "a"(value), "d"(field) : "cc");
335         if (unlikely(error))
336                 vmwrite_error(field, value);
337 }
338
339 static void vmcs_write16(unsigned long field, u16 value)
340 {
341         vmcs_writel(field, value);
342 }
343
344 static void vmcs_write32(unsigned long field, u32 value)
345 {
346         vmcs_writel(field, value);
347 }
348
349 static void vmcs_write64(unsigned long field, u64 value)
350 {
351 #ifdef CONFIG_X86_64
352         vmcs_writel(field, value);
353 #else
354         vmcs_writel(field, value);
355         asm volatile ("");
356         vmcs_writel(field+1, value >> 32);
357 #endif
358 }
359
360 static void vmcs_clear_bits(unsigned long field, u32 mask)
361 {
362         vmcs_writel(field, vmcs_readl(field) & ~mask);
363 }
364
365 static void vmcs_set_bits(unsigned long field, u32 mask)
366 {
367         vmcs_writel(field, vmcs_readl(field) | mask);
368 }
369
370 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
371 {
372         u32 eb;
373
374         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
375         if (!vcpu->fpu_active)
376                 eb |= 1u << NM_VECTOR;
377         if (vcpu->guest_debug.enabled)
378                 eb |= 1u << 1;
379         if (vcpu->arch.rmode.active)
380                 eb = ~0;
381         vmcs_write32(EXCEPTION_BITMAP, eb);
382 }
383
384 static void reload_tss(void)
385 {
386         /*
387          * VT restores TR but not its size.  Useless.
388          */
389         struct descriptor_table gdt;
390         struct desc_struct *descs;
391
392         get_gdt(&gdt);
393         descs = (void *)gdt.base;
394         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
395         load_TR_desc();
396 }
397
398 static void load_transition_efer(struct vcpu_vmx *vmx)
399 {
400         int efer_offset = vmx->msr_offset_efer;
401         u64 host_efer = vmx->host_msrs[efer_offset].data;
402         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
403         u64 ignore_bits;
404
405         if (efer_offset < 0)
406                 return;
407         /*
408          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
409          * outside long mode
410          */
411         ignore_bits = EFER_NX | EFER_SCE;
412 #ifdef CONFIG_X86_64
413         ignore_bits |= EFER_LMA | EFER_LME;
414         /* SCE is meaningful only in long mode on Intel */
415         if (guest_efer & EFER_LMA)
416                 ignore_bits &= ~(u64)EFER_SCE;
417 #endif
418         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
419                 return;
420
421         vmx->host_state.guest_efer_loaded = 1;
422         guest_efer &= ~ignore_bits;
423         guest_efer |= host_efer & ignore_bits;
424         wrmsrl(MSR_EFER, guest_efer);
425         vmx->vcpu.stat.efer_reload++;
426 }
427
428 static void reload_host_efer(struct vcpu_vmx *vmx)
429 {
430         if (vmx->host_state.guest_efer_loaded) {
431                 vmx->host_state.guest_efer_loaded = 0;
432                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
433         }
434 }
435
436 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
437 {
438         struct vcpu_vmx *vmx = to_vmx(vcpu);
439
440         if (vmx->host_state.loaded)
441                 return;
442
443         vmx->host_state.loaded = 1;
444         /*
445          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
446          * allow segment selectors with cpl > 0 or ti == 1.
447          */
448         vmx->host_state.ldt_sel = read_ldt();
449         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
450         vmx->host_state.fs_sel = read_fs();
451         if (!(vmx->host_state.fs_sel & 7)) {
452                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
453                 vmx->host_state.fs_reload_needed = 0;
454         } else {
455                 vmcs_write16(HOST_FS_SELECTOR, 0);
456                 vmx->host_state.fs_reload_needed = 1;
457         }
458         vmx->host_state.gs_sel = read_gs();
459         if (!(vmx->host_state.gs_sel & 7))
460                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
461         else {
462                 vmcs_write16(HOST_GS_SELECTOR, 0);
463                 vmx->host_state.gs_ldt_reload_needed = 1;
464         }
465
466 #ifdef CONFIG_X86_64
467         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
468         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
469 #else
470         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
471         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
472 #endif
473
474 #ifdef CONFIG_X86_64
475         if (is_long_mode(&vmx->vcpu))
476                 save_msrs(vmx->host_msrs +
477                           vmx->msr_offset_kernel_gs_base, 1);
478
479 #endif
480         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
481         load_transition_efer(vmx);
482 }
483
484 static void vmx_load_host_state(struct vcpu_vmx *vmx)
485 {
486         unsigned long flags;
487
488         if (!vmx->host_state.loaded)
489                 return;
490
491         ++vmx->vcpu.stat.host_state_reload;
492         vmx->host_state.loaded = 0;
493         if (vmx->host_state.fs_reload_needed)
494                 load_fs(vmx->host_state.fs_sel);
495         if (vmx->host_state.gs_ldt_reload_needed) {
496                 load_ldt(vmx->host_state.ldt_sel);
497                 /*
498                  * If we have to reload gs, we must take care to
499                  * preserve our gs base.
500                  */
501                 local_irq_save(flags);
502                 load_gs(vmx->host_state.gs_sel);
503 #ifdef CONFIG_X86_64
504                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
505 #endif
506                 local_irq_restore(flags);
507         }
508         reload_tss();
509         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
510         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
511         reload_host_efer(vmx);
512 }
513
514 /*
515  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
516  * vcpu mutex is already taken.
517  */
518 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
519 {
520         struct vcpu_vmx *vmx = to_vmx(vcpu);
521         u64 phys_addr = __pa(vmx->vmcs);
522         u64 tsc_this, delta;
523
524         if (vcpu->cpu != cpu) {
525                 vcpu_clear(vmx);
526                 kvm_migrate_apic_timer(vcpu);
527                 vpid_sync_vcpu_all(vmx);
528         }
529
530         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
531                 u8 error;
532
533                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
534                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
535                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
536                               : "cc");
537                 if (error)
538                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
539                                vmx->vmcs, phys_addr);
540         }
541
542         if (vcpu->cpu != cpu) {
543                 struct descriptor_table dt;
544                 unsigned long sysenter_esp;
545
546                 vcpu->cpu = cpu;
547                 /*
548                  * Linux uses per-cpu TSS and GDT, so set these when switching
549                  * processors.
550                  */
551                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
552                 get_gdt(&dt);
553                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
554
555                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
556                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
557
558                 /*
559                  * Make sure the time stamp counter is monotonous.
560                  */
561                 rdtscll(tsc_this);
562                 delta = vcpu->arch.host_tsc - tsc_this;
563                 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
564         }
565 }
566
567 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
568 {
569         vmx_load_host_state(to_vmx(vcpu));
570 }
571
572 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
573 {
574         if (vcpu->fpu_active)
575                 return;
576         vcpu->fpu_active = 1;
577         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
578         if (vcpu->arch.cr0 & X86_CR0_TS)
579                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
580         update_exception_bitmap(vcpu);
581 }
582
583 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
584 {
585         if (!vcpu->fpu_active)
586                 return;
587         vcpu->fpu_active = 0;
588         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
589         update_exception_bitmap(vcpu);
590 }
591
592 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
593 {
594         vcpu_clear(to_vmx(vcpu));
595 }
596
597 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
598 {
599         return vmcs_readl(GUEST_RFLAGS);
600 }
601
602 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
603 {
604         if (vcpu->arch.rmode.active)
605                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
606         vmcs_writel(GUEST_RFLAGS, rflags);
607 }
608
609 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
610 {
611         unsigned long rip;
612         u32 interruptibility;
613
614         rip = vmcs_readl(GUEST_RIP);
615         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
616         vmcs_writel(GUEST_RIP, rip);
617
618         /*
619          * We emulated an instruction, so temporary interrupt blocking
620          * should be removed, if set.
621          */
622         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
623         if (interruptibility & 3)
624                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
625                              interruptibility & ~3);
626         vcpu->arch.interrupt_window_open = 1;
627 }
628
629 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
630                                 bool has_error_code, u32 error_code)
631 {
632         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
633                      nr | INTR_TYPE_EXCEPTION
634                      | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
635                      | INTR_INFO_VALID_MASK);
636         if (has_error_code)
637                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
638 }
639
640 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
641 {
642         struct vcpu_vmx *vmx = to_vmx(vcpu);
643
644         return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
645 }
646
647 /*
648  * Swap MSR entry in host/guest MSR entry array.
649  */
650 #ifdef CONFIG_X86_64
651 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
652 {
653         struct kvm_msr_entry tmp;
654
655         tmp = vmx->guest_msrs[to];
656         vmx->guest_msrs[to] = vmx->guest_msrs[from];
657         vmx->guest_msrs[from] = tmp;
658         tmp = vmx->host_msrs[to];
659         vmx->host_msrs[to] = vmx->host_msrs[from];
660         vmx->host_msrs[from] = tmp;
661 }
662 #endif
663
664 /*
665  * Set up the vmcs to automatically save and restore system
666  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
667  * mode, as fiddling with msrs is very expensive.
668  */
669 static void setup_msrs(struct vcpu_vmx *vmx)
670 {
671         int save_nmsrs;
672
673         vmx_load_host_state(vmx);
674         save_nmsrs = 0;
675 #ifdef CONFIG_X86_64
676         if (is_long_mode(&vmx->vcpu)) {
677                 int index;
678
679                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
680                 if (index >= 0)
681                         move_msr_up(vmx, index, save_nmsrs++);
682                 index = __find_msr_index(vmx, MSR_LSTAR);
683                 if (index >= 0)
684                         move_msr_up(vmx, index, save_nmsrs++);
685                 index = __find_msr_index(vmx, MSR_CSTAR);
686                 if (index >= 0)
687                         move_msr_up(vmx, index, save_nmsrs++);
688                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
689                 if (index >= 0)
690                         move_msr_up(vmx, index, save_nmsrs++);
691                 /*
692                  * MSR_K6_STAR is only needed on long mode guests, and only
693                  * if efer.sce is enabled.
694                  */
695                 index = __find_msr_index(vmx, MSR_K6_STAR);
696                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
697                         move_msr_up(vmx, index, save_nmsrs++);
698         }
699 #endif
700         vmx->save_nmsrs = save_nmsrs;
701
702 #ifdef CONFIG_X86_64
703         vmx->msr_offset_kernel_gs_base =
704                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
705 #endif
706         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
707 }
708
709 /*
710  * reads and returns guest's timestamp counter "register"
711  * guest_tsc = host_tsc + tsc_offset    -- 21.3
712  */
713 static u64 guest_read_tsc(void)
714 {
715         u64 host_tsc, tsc_offset;
716
717         rdtscll(host_tsc);
718         tsc_offset = vmcs_read64(TSC_OFFSET);
719         return host_tsc + tsc_offset;
720 }
721
722 /*
723  * writes 'guest_tsc' into guest's timestamp counter "register"
724  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
725  */
726 static void guest_write_tsc(u64 guest_tsc)
727 {
728         u64 host_tsc;
729
730         rdtscll(host_tsc);
731         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
732 }
733
734 /*
735  * Reads an msr value (of 'msr_index') into 'pdata'.
736  * Returns 0 on success, non-0 otherwise.
737  * Assumes vcpu_load() was already called.
738  */
739 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
740 {
741         u64 data;
742         struct kvm_msr_entry *msr;
743
744         if (!pdata) {
745                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
746                 return -EINVAL;
747         }
748
749         switch (msr_index) {
750 #ifdef CONFIG_X86_64
751         case MSR_FS_BASE:
752                 data = vmcs_readl(GUEST_FS_BASE);
753                 break;
754         case MSR_GS_BASE:
755                 data = vmcs_readl(GUEST_GS_BASE);
756                 break;
757         case MSR_EFER:
758                 return kvm_get_msr_common(vcpu, msr_index, pdata);
759 #endif
760         case MSR_IA32_TIME_STAMP_COUNTER:
761                 data = guest_read_tsc();
762                 break;
763         case MSR_IA32_SYSENTER_CS:
764                 data = vmcs_read32(GUEST_SYSENTER_CS);
765                 break;
766         case MSR_IA32_SYSENTER_EIP:
767                 data = vmcs_readl(GUEST_SYSENTER_EIP);
768                 break;
769         case MSR_IA32_SYSENTER_ESP:
770                 data = vmcs_readl(GUEST_SYSENTER_ESP);
771                 break;
772         default:
773                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
774                 if (msr) {
775                         data = msr->data;
776                         break;
777                 }
778                 return kvm_get_msr_common(vcpu, msr_index, pdata);
779         }
780
781         *pdata = data;
782         return 0;
783 }
784
785 /*
786  * Writes msr value into into the appropriate "register".
787  * Returns 0 on success, non-0 otherwise.
788  * Assumes vcpu_load() was already called.
789  */
790 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
791 {
792         struct vcpu_vmx *vmx = to_vmx(vcpu);
793         struct kvm_msr_entry *msr;
794         int ret = 0;
795
796         switch (msr_index) {
797 #ifdef CONFIG_X86_64
798         case MSR_EFER:
799                 ret = kvm_set_msr_common(vcpu, msr_index, data);
800                 if (vmx->host_state.loaded) {
801                         reload_host_efer(vmx);
802                         load_transition_efer(vmx);
803                 }
804                 break;
805         case MSR_FS_BASE:
806                 vmcs_writel(GUEST_FS_BASE, data);
807                 break;
808         case MSR_GS_BASE:
809                 vmcs_writel(GUEST_GS_BASE, data);
810                 break;
811 #endif
812         case MSR_IA32_SYSENTER_CS:
813                 vmcs_write32(GUEST_SYSENTER_CS, data);
814                 break;
815         case MSR_IA32_SYSENTER_EIP:
816                 vmcs_writel(GUEST_SYSENTER_EIP, data);
817                 break;
818         case MSR_IA32_SYSENTER_ESP:
819                 vmcs_writel(GUEST_SYSENTER_ESP, data);
820                 break;
821         case MSR_IA32_TIME_STAMP_COUNTER:
822                 guest_write_tsc(data);
823                 break;
824         default:
825                 msr = find_msr_entry(vmx, msr_index);
826                 if (msr) {
827                         msr->data = data;
828                         if (vmx->host_state.loaded)
829                                 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
830                         break;
831                 }
832                 ret = kvm_set_msr_common(vcpu, msr_index, data);
833         }
834
835         return ret;
836 }
837
838 /*
839  * Sync the rsp and rip registers into the vcpu structure.  This allows
840  * registers to be accessed by indexing vcpu->arch.regs.
841  */
842 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
843 {
844         vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
845         vcpu->arch.rip = vmcs_readl(GUEST_RIP);
846 }
847
848 /*
849  * Syncs rsp and rip back into the vmcs.  Should be called after possible
850  * modification.
851  */
852 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
853 {
854         vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
855         vmcs_writel(GUEST_RIP, vcpu->arch.rip);
856 }
857
858 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
859 {
860         unsigned long dr7 = 0x400;
861         int old_singlestep;
862
863         old_singlestep = vcpu->guest_debug.singlestep;
864
865         vcpu->guest_debug.enabled = dbg->enabled;
866         if (vcpu->guest_debug.enabled) {
867                 int i;
868
869                 dr7 |= 0x200;  /* exact */
870                 for (i = 0; i < 4; ++i) {
871                         if (!dbg->breakpoints[i].enabled)
872                                 continue;
873                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
874                         dr7 |= 2 << (i*2);    /* global enable */
875                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
876                 }
877
878                 vcpu->guest_debug.singlestep = dbg->singlestep;
879         } else
880                 vcpu->guest_debug.singlestep = 0;
881
882         if (old_singlestep && !vcpu->guest_debug.singlestep) {
883                 unsigned long flags;
884
885                 flags = vmcs_readl(GUEST_RFLAGS);
886                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
887                 vmcs_writel(GUEST_RFLAGS, flags);
888         }
889
890         update_exception_bitmap(vcpu);
891         vmcs_writel(GUEST_DR7, dr7);
892
893         return 0;
894 }
895
896 static int vmx_get_irq(struct kvm_vcpu *vcpu)
897 {
898         struct vcpu_vmx *vmx = to_vmx(vcpu);
899         u32 idtv_info_field;
900
901         idtv_info_field = vmx->idt_vectoring_info;
902         if (idtv_info_field & INTR_INFO_VALID_MASK) {
903                 if (is_external_interrupt(idtv_info_field))
904                         return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
905                 else
906                         printk(KERN_DEBUG "pending exception: not handled yet\n");
907         }
908         return -1;
909 }
910
911 static __init int cpu_has_kvm_support(void)
912 {
913         unsigned long ecx = cpuid_ecx(1);
914         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
915 }
916
917 static __init int vmx_disabled_by_bios(void)
918 {
919         u64 msr;
920
921         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
922         return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
923                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
924             == MSR_IA32_FEATURE_CONTROL_LOCKED;
925         /* locked but not enabled */
926 }
927
928 static void hardware_enable(void *garbage)
929 {
930         int cpu = raw_smp_processor_id();
931         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
932         u64 old;
933
934         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
935         if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
936                     MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
937             != (MSR_IA32_FEATURE_CONTROL_LOCKED |
938                 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
939                 /* enable and lock */
940                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
941                        MSR_IA32_FEATURE_CONTROL_LOCKED |
942                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
943         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
944         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
945                       : "memory", "cc");
946 }
947
948 static void hardware_disable(void *garbage)
949 {
950         asm volatile (ASM_VMX_VMXOFF : : : "cc");
951 }
952
953 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
954                                       u32 msr, u32 *result)
955 {
956         u32 vmx_msr_low, vmx_msr_high;
957         u32 ctl = ctl_min | ctl_opt;
958
959         rdmsr(msr, vmx_msr_low, vmx_msr_high);
960
961         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
962         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
963
964         /* Ensure minimum (required) set of control bits are supported. */
965         if (ctl_min & ~ctl)
966                 return -EIO;
967
968         *result = ctl;
969         return 0;
970 }
971
972 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
973 {
974         u32 vmx_msr_low, vmx_msr_high;
975         u32 min, opt;
976         u32 _pin_based_exec_control = 0;
977         u32 _cpu_based_exec_control = 0;
978         u32 _cpu_based_2nd_exec_control = 0;
979         u32 _vmexit_control = 0;
980         u32 _vmentry_control = 0;
981
982         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
983         opt = 0;
984         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
985                                 &_pin_based_exec_control) < 0)
986                 return -EIO;
987
988         min = CPU_BASED_HLT_EXITING |
989 #ifdef CONFIG_X86_64
990               CPU_BASED_CR8_LOAD_EXITING |
991               CPU_BASED_CR8_STORE_EXITING |
992 #endif
993               CPU_BASED_USE_IO_BITMAPS |
994               CPU_BASED_MOV_DR_EXITING |
995               CPU_BASED_USE_TSC_OFFSETING;
996         opt = CPU_BASED_TPR_SHADOW |
997               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
998         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
999                                 &_cpu_based_exec_control) < 0)
1000                 return -EIO;
1001 #ifdef CONFIG_X86_64
1002         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1003                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1004                                            ~CPU_BASED_CR8_STORE_EXITING;
1005 #endif
1006         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1007                 min = 0;
1008                 opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1009                         SECONDARY_EXEC_WBINVD_EXITING |
1010                         SECONDARY_EXEC_ENABLE_VPID;
1011                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
1012                                         &_cpu_based_2nd_exec_control) < 0)
1013                         return -EIO;
1014         }
1015 #ifndef CONFIG_X86_64
1016         if (!(_cpu_based_2nd_exec_control &
1017                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1018                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1019 #endif
1020
1021         min = 0;
1022 #ifdef CONFIG_X86_64
1023         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1024 #endif
1025         opt = 0;
1026         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1027                                 &_vmexit_control) < 0)
1028                 return -EIO;
1029
1030         min = opt = 0;
1031         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1032                                 &_vmentry_control) < 0)
1033                 return -EIO;
1034
1035         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1036
1037         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1038         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1039                 return -EIO;
1040
1041 #ifdef CONFIG_X86_64
1042         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1043         if (vmx_msr_high & (1u<<16))
1044                 return -EIO;
1045 #endif
1046
1047         /* Require Write-Back (WB) memory type for VMCS accesses. */
1048         if (((vmx_msr_high >> 18) & 15) != 6)
1049                 return -EIO;
1050
1051         vmcs_conf->size = vmx_msr_high & 0x1fff;
1052         vmcs_conf->order = get_order(vmcs_config.size);
1053         vmcs_conf->revision_id = vmx_msr_low;
1054
1055         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1056         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1057         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1058         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1059         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1060
1061         return 0;
1062 }
1063
1064 static struct vmcs *alloc_vmcs_cpu(int cpu)
1065 {
1066         int node = cpu_to_node(cpu);
1067         struct page *pages;
1068         struct vmcs *vmcs;
1069
1070         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1071         if (!pages)
1072                 return NULL;
1073         vmcs = page_address(pages);
1074         memset(vmcs, 0, vmcs_config.size);
1075         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1076         return vmcs;
1077 }
1078
1079 static struct vmcs *alloc_vmcs(void)
1080 {
1081         return alloc_vmcs_cpu(raw_smp_processor_id());
1082 }
1083
1084 static void free_vmcs(struct vmcs *vmcs)
1085 {
1086         free_pages((unsigned long)vmcs, vmcs_config.order);
1087 }
1088
1089 static void free_kvm_area(void)
1090 {
1091         int cpu;
1092
1093         for_each_online_cpu(cpu)
1094                 free_vmcs(per_cpu(vmxarea, cpu));
1095 }
1096
1097 static __init int alloc_kvm_area(void)
1098 {
1099         int cpu;
1100
1101         for_each_online_cpu(cpu) {
1102                 struct vmcs *vmcs;
1103
1104                 vmcs = alloc_vmcs_cpu(cpu);
1105                 if (!vmcs) {
1106                         free_kvm_area();
1107                         return -ENOMEM;
1108                 }
1109
1110                 per_cpu(vmxarea, cpu) = vmcs;
1111         }
1112         return 0;
1113 }
1114
1115 static __init int hardware_setup(void)
1116 {
1117         if (setup_vmcs_config(&vmcs_config) < 0)
1118                 return -EIO;
1119
1120         if (boot_cpu_has(X86_FEATURE_NX))
1121                 kvm_enable_efer_bits(EFER_NX);
1122
1123         return alloc_kvm_area();
1124 }
1125
1126 static __exit void hardware_unsetup(void)
1127 {
1128         free_kvm_area();
1129 }
1130
1131 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1132 {
1133         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1134
1135         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1136                 vmcs_write16(sf->selector, save->selector);
1137                 vmcs_writel(sf->base, save->base);
1138                 vmcs_write32(sf->limit, save->limit);
1139                 vmcs_write32(sf->ar_bytes, save->ar);
1140         } else {
1141                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1142                         << AR_DPL_SHIFT;
1143                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1144         }
1145 }
1146
1147 static void enter_pmode(struct kvm_vcpu *vcpu)
1148 {
1149         unsigned long flags;
1150
1151         vcpu->arch.rmode.active = 0;
1152
1153         vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1154         vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1155         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1156
1157         flags = vmcs_readl(GUEST_RFLAGS);
1158         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1159         flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1160         vmcs_writel(GUEST_RFLAGS, flags);
1161
1162         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1163                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1164
1165         update_exception_bitmap(vcpu);
1166
1167         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1168         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1169         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1170         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1171
1172         vmcs_write16(GUEST_SS_SELECTOR, 0);
1173         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1174
1175         vmcs_write16(GUEST_CS_SELECTOR,
1176                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1177         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1178 }
1179
1180 static gva_t rmode_tss_base(struct kvm *kvm)
1181 {
1182         if (!kvm->arch.tss_addr) {
1183                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1184                                  kvm->memslots[0].npages - 3;
1185                 return base_gfn << PAGE_SHIFT;
1186         }
1187         return kvm->arch.tss_addr;
1188 }
1189
1190 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1191 {
1192         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1193
1194         save->selector = vmcs_read16(sf->selector);
1195         save->base = vmcs_readl(sf->base);
1196         save->limit = vmcs_read32(sf->limit);
1197         save->ar = vmcs_read32(sf->ar_bytes);
1198         vmcs_write16(sf->selector, save->base >> 4);
1199         vmcs_write32(sf->base, save->base & 0xfffff);
1200         vmcs_write32(sf->limit, 0xffff);
1201         vmcs_write32(sf->ar_bytes, 0xf3);
1202 }
1203
1204 static void enter_rmode(struct kvm_vcpu *vcpu)
1205 {
1206         unsigned long flags;
1207
1208         vcpu->arch.rmode.active = 1;
1209
1210         vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1211         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1212
1213         vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1214         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1215
1216         vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1217         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1218
1219         flags = vmcs_readl(GUEST_RFLAGS);
1220         vcpu->arch.rmode.save_iopl
1221                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1222
1223         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1224
1225         vmcs_writel(GUEST_RFLAGS, flags);
1226         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1227         update_exception_bitmap(vcpu);
1228
1229         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1230         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1231         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1232
1233         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1234         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1235         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1236                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1237         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1238
1239         fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1240         fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1241         fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1242         fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1243
1244         kvm_mmu_reset_context(vcpu);
1245         init_rmode_tss(vcpu->kvm);
1246 }
1247
1248 #ifdef CONFIG_X86_64
1249
1250 static void enter_lmode(struct kvm_vcpu *vcpu)
1251 {
1252         u32 guest_tr_ar;
1253
1254         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1255         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1256                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1257                        __FUNCTION__);
1258                 vmcs_write32(GUEST_TR_AR_BYTES,
1259                              (guest_tr_ar & ~AR_TYPE_MASK)
1260                              | AR_TYPE_BUSY_64_TSS);
1261         }
1262
1263         vcpu->arch.shadow_efer |= EFER_LMA;
1264
1265         find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1266         vmcs_write32(VM_ENTRY_CONTROLS,
1267                      vmcs_read32(VM_ENTRY_CONTROLS)
1268                      | VM_ENTRY_IA32E_MODE);
1269 }
1270
1271 static void exit_lmode(struct kvm_vcpu *vcpu)
1272 {
1273         vcpu->arch.shadow_efer &= ~EFER_LMA;
1274
1275         vmcs_write32(VM_ENTRY_CONTROLS,
1276                      vmcs_read32(VM_ENTRY_CONTROLS)
1277                      & ~VM_ENTRY_IA32E_MODE);
1278 }
1279
1280 #endif
1281
1282 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1283 {
1284         vpid_sync_vcpu_all(to_vmx(vcpu));
1285 }
1286
1287 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1288 {
1289         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1290         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1291 }
1292
1293 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1294 {
1295         vmx_fpu_deactivate(vcpu);
1296
1297         if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1298                 enter_pmode(vcpu);
1299
1300         if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1301                 enter_rmode(vcpu);
1302
1303 #ifdef CONFIG_X86_64
1304         if (vcpu->arch.shadow_efer & EFER_LME) {
1305                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1306                         enter_lmode(vcpu);
1307                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1308                         exit_lmode(vcpu);
1309         }
1310 #endif
1311
1312         vmcs_writel(CR0_READ_SHADOW, cr0);
1313         vmcs_writel(GUEST_CR0,
1314                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1315         vcpu->arch.cr0 = cr0;
1316
1317         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1318                 vmx_fpu_activate(vcpu);
1319 }
1320
1321 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1322 {
1323         vmx_flush_tlb(vcpu);
1324         vmcs_writel(GUEST_CR3, cr3);
1325         if (vcpu->arch.cr0 & X86_CR0_PE)
1326                 vmx_fpu_deactivate(vcpu);
1327 }
1328
1329 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1330 {
1331         vmcs_writel(CR4_READ_SHADOW, cr4);
1332         vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
1333                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1334         vcpu->arch.cr4 = cr4;
1335 }
1336
1337 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1338 {
1339         struct vcpu_vmx *vmx = to_vmx(vcpu);
1340         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1341
1342         vcpu->arch.shadow_efer = efer;
1343         if (!msr)
1344                 return;
1345         if (efer & EFER_LMA) {
1346                 vmcs_write32(VM_ENTRY_CONTROLS,
1347                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1348                                      VM_ENTRY_IA32E_MODE);
1349                 msr->data = efer;
1350
1351         } else {
1352                 vmcs_write32(VM_ENTRY_CONTROLS,
1353                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1354                                      ~VM_ENTRY_IA32E_MODE);
1355
1356                 msr->data = efer & ~EFER_LME;
1357         }
1358         setup_msrs(vmx);
1359 }
1360
1361 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1362 {
1363         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1364
1365         return vmcs_readl(sf->base);
1366 }
1367
1368 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1369                             struct kvm_segment *var, int seg)
1370 {
1371         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1372         u32 ar;
1373
1374         var->base = vmcs_readl(sf->base);
1375         var->limit = vmcs_read32(sf->limit);
1376         var->selector = vmcs_read16(sf->selector);
1377         ar = vmcs_read32(sf->ar_bytes);
1378         if (ar & AR_UNUSABLE_MASK)
1379                 ar = 0;
1380         var->type = ar & 15;
1381         var->s = (ar >> 4) & 1;
1382         var->dpl = (ar >> 5) & 3;
1383         var->present = (ar >> 7) & 1;
1384         var->avl = (ar >> 12) & 1;
1385         var->l = (ar >> 13) & 1;
1386         var->db = (ar >> 14) & 1;
1387         var->g = (ar >> 15) & 1;
1388         var->unusable = (ar >> 16) & 1;
1389 }
1390
1391 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1392 {
1393         u32 ar;
1394
1395         if (var->unusable)
1396                 ar = 1 << 16;
1397         else {
1398                 ar = var->type & 15;
1399                 ar |= (var->s & 1) << 4;
1400                 ar |= (var->dpl & 3) << 5;
1401                 ar |= (var->present & 1) << 7;
1402                 ar |= (var->avl & 1) << 12;
1403                 ar |= (var->l & 1) << 13;
1404                 ar |= (var->db & 1) << 14;
1405                 ar |= (var->g & 1) << 15;
1406         }
1407         if (ar == 0) /* a 0 value means unusable */
1408                 ar = AR_UNUSABLE_MASK;
1409
1410         return ar;
1411 }
1412
1413 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1414                             struct kvm_segment *var, int seg)
1415 {
1416         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1417         u32 ar;
1418
1419         if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1420                 vcpu->arch.rmode.tr.selector = var->selector;
1421                 vcpu->arch.rmode.tr.base = var->base;
1422                 vcpu->arch.rmode.tr.limit = var->limit;
1423                 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1424                 return;
1425         }
1426         vmcs_writel(sf->base, var->base);
1427         vmcs_write32(sf->limit, var->limit);
1428         vmcs_write16(sf->selector, var->selector);
1429         if (vcpu->arch.rmode.active && var->s) {
1430                 /*
1431                  * Hack real-mode segments into vm86 compatibility.
1432                  */
1433                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1434                         vmcs_writel(sf->base, 0xf0000);
1435                 ar = 0xf3;
1436         } else
1437                 ar = vmx_segment_access_rights(var);
1438         vmcs_write32(sf->ar_bytes, ar);
1439 }
1440
1441 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1442 {
1443         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1444
1445         *db = (ar >> 14) & 1;
1446         *l = (ar >> 13) & 1;
1447 }
1448
1449 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1450 {
1451         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1452         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1453 }
1454
1455 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1456 {
1457         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1458         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1459 }
1460
1461 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1462 {
1463         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1464         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1465 }
1466
1467 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1468 {
1469         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1470         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1471 }
1472
1473 static int init_rmode_tss(struct kvm *kvm)
1474 {
1475         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1476         u16 data = 0;
1477         int ret = 0;
1478         int r;
1479
1480         down_read(&kvm->slots_lock);
1481         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1482         if (r < 0)
1483                 goto out;
1484         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1485         r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1486         if (r < 0)
1487                 goto out;
1488         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1489         if (r < 0)
1490                 goto out;
1491         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1492         if (r < 0)
1493                 goto out;
1494         data = ~0;
1495         r = kvm_write_guest_page(kvm, fn, &data,
1496                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1497                                  sizeof(u8));
1498         if (r < 0)
1499                 goto out;
1500
1501         ret = 1;
1502 out:
1503         up_read(&kvm->slots_lock);
1504         return ret;
1505 }
1506
1507 static void seg_setup(int seg)
1508 {
1509         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1510
1511         vmcs_write16(sf->selector, 0);
1512         vmcs_writel(sf->base, 0);
1513         vmcs_write32(sf->limit, 0xffff);
1514         vmcs_write32(sf->ar_bytes, 0x93);
1515 }
1516
1517 static int alloc_apic_access_page(struct kvm *kvm)
1518 {
1519         struct kvm_userspace_memory_region kvm_userspace_mem;
1520         int r = 0;
1521
1522         down_write(&kvm->slots_lock);
1523         if (kvm->arch.apic_access_page)
1524                 goto out;
1525         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1526         kvm_userspace_mem.flags = 0;
1527         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1528         kvm_userspace_mem.memory_size = PAGE_SIZE;
1529         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1530         if (r)
1531                 goto out;
1532
1533         down_read(&current->mm->mmap_sem);
1534         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1535         up_read(&current->mm->mmap_sem);
1536 out:
1537         up_write(&kvm->slots_lock);
1538         return r;
1539 }
1540
1541 static void allocate_vpid(struct vcpu_vmx *vmx)
1542 {
1543         int vpid;
1544
1545         vmx->vpid = 0;
1546         if (!enable_vpid || !cpu_has_vmx_vpid())
1547                 return;
1548         spin_lock(&vmx_vpid_lock);
1549         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1550         if (vpid < VMX_NR_VPIDS) {
1551                 vmx->vpid = vpid;
1552                 __set_bit(vpid, vmx_vpid_bitmap);
1553         }
1554         spin_unlock(&vmx_vpid_lock);
1555 }
1556
1557 /*
1558  * Sets up the vmcs for emulated real mode.
1559  */
1560 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1561 {
1562         u32 host_sysenter_cs;
1563         u32 junk;
1564         unsigned long a;
1565         struct descriptor_table dt;
1566         int i;
1567         unsigned long kvm_vmx_return;
1568         u32 exec_control;
1569
1570         /* I/O */
1571         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1572         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1573
1574         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1575
1576         /* Control */
1577         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1578                 vmcs_config.pin_based_exec_ctrl);
1579
1580         exec_control = vmcs_config.cpu_based_exec_ctrl;
1581         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1582                 exec_control &= ~CPU_BASED_TPR_SHADOW;
1583 #ifdef CONFIG_X86_64
1584                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1585                                 CPU_BASED_CR8_LOAD_EXITING;
1586 #endif
1587         }
1588         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1589
1590         if (cpu_has_secondary_exec_ctrls()) {
1591                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1592                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1593                         exec_control &=
1594                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1595                 if (vmx->vpid == 0)
1596                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1597                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1598         }
1599
1600         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1601         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1602         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1603
1604         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1605         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1606         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1607
1608         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1609         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1610         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1611         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1612         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1613         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1614 #ifdef CONFIG_X86_64
1615         rdmsrl(MSR_FS_BASE, a);
1616         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1617         rdmsrl(MSR_GS_BASE, a);
1618         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1619 #else
1620         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1621         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1622 #endif
1623
1624         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1625
1626         get_idt(&dt);
1627         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1628
1629         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1630         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1631         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1632         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1633         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1634
1635         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1636         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1637         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1638         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1639         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1640         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1641
1642         for (i = 0; i < NR_VMX_MSR; ++i) {
1643                 u32 index = vmx_msr_index[i];
1644                 u32 data_low, data_high;
1645                 u64 data;
1646                 int j = vmx->nmsrs;
1647
1648                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1649                         continue;
1650                 if (wrmsr_safe(index, data_low, data_high) < 0)
1651                         continue;
1652                 data = data_low | ((u64)data_high << 32);
1653                 vmx->host_msrs[j].index = index;
1654                 vmx->host_msrs[j].reserved = 0;
1655                 vmx->host_msrs[j].data = data;
1656                 vmx->guest_msrs[j] = vmx->host_msrs[j];
1657                 ++vmx->nmsrs;
1658         }
1659
1660         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1661
1662         /* 22.2.1, 20.8.1 */
1663         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1664
1665         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1666         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1667
1668
1669         return 0;
1670 }
1671
1672 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1673 {
1674         struct vcpu_vmx *vmx = to_vmx(vcpu);
1675         u64 msr;
1676         int ret;
1677
1678         if (!init_rmode_tss(vmx->vcpu.kvm)) {
1679                 ret = -ENOMEM;
1680                 goto out;
1681         }
1682
1683         vmx->vcpu.arch.rmode.active = 0;
1684
1685         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1686         set_cr8(&vmx->vcpu, 0);
1687         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1688         if (vmx->vcpu.vcpu_id == 0)
1689                 msr |= MSR_IA32_APICBASE_BSP;
1690         kvm_set_apic_base(&vmx->vcpu, msr);
1691
1692         fx_init(&vmx->vcpu);
1693
1694         /*
1695          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1696          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1697          */
1698         if (vmx->vcpu.vcpu_id == 0) {
1699                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1700                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1701         } else {
1702                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
1703                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
1704         }
1705         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1706         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1707
1708         seg_setup(VCPU_SREG_DS);
1709         seg_setup(VCPU_SREG_ES);
1710         seg_setup(VCPU_SREG_FS);
1711         seg_setup(VCPU_SREG_GS);
1712         seg_setup(VCPU_SREG_SS);
1713
1714         vmcs_write16(GUEST_TR_SELECTOR, 0);
1715         vmcs_writel(GUEST_TR_BASE, 0);
1716         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1717         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1718
1719         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1720         vmcs_writel(GUEST_LDTR_BASE, 0);
1721         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1722         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1723
1724         vmcs_write32(GUEST_SYSENTER_CS, 0);
1725         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1726         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1727
1728         vmcs_writel(GUEST_RFLAGS, 0x02);
1729         if (vmx->vcpu.vcpu_id == 0)
1730                 vmcs_writel(GUEST_RIP, 0xfff0);
1731         else
1732                 vmcs_writel(GUEST_RIP, 0);
1733         vmcs_writel(GUEST_RSP, 0);
1734
1735         /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1736         vmcs_writel(GUEST_DR7, 0x400);
1737
1738         vmcs_writel(GUEST_GDTR_BASE, 0);
1739         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1740
1741         vmcs_writel(GUEST_IDTR_BASE, 0);
1742         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1743
1744         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1745         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1746         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1747
1748         guest_write_tsc(0);
1749
1750         /* Special registers */
1751         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1752
1753         setup_msrs(vmx);
1754
1755         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1756
1757         if (cpu_has_vmx_tpr_shadow()) {
1758                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1759                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1760                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1761                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
1762                 vmcs_write32(TPR_THRESHOLD, 0);
1763         }
1764
1765         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1766                 vmcs_write64(APIC_ACCESS_ADDR,
1767                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
1768
1769         if (vmx->vpid != 0)
1770                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1771
1772         vmx->vcpu.arch.cr0 = 0x60000010;
1773         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
1774         vmx_set_cr4(&vmx->vcpu, 0);
1775         vmx_set_efer(&vmx->vcpu, 0);
1776         vmx_fpu_activate(&vmx->vcpu);
1777         update_exception_bitmap(&vmx->vcpu);
1778
1779         vpid_sync_vcpu_all(vmx);
1780
1781         return 0;
1782
1783 out:
1784         return ret;
1785 }
1786
1787 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1788 {
1789         struct vcpu_vmx *vmx = to_vmx(vcpu);
1790
1791         if (vcpu->arch.rmode.active) {
1792                 vmx->rmode.irq.pending = true;
1793                 vmx->rmode.irq.vector = irq;
1794                 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1795                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1796                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1797                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1798                 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1799                 return;
1800         }
1801         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1802                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1803 }
1804
1805 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1806 {
1807         int word_index = __ffs(vcpu->arch.irq_summary);
1808         int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1809         int irq = word_index * BITS_PER_LONG + bit_index;
1810
1811         clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1812         if (!vcpu->arch.irq_pending[word_index])
1813                 clear_bit(word_index, &vcpu->arch.irq_summary);
1814         vmx_inject_irq(vcpu, irq);
1815 }
1816
1817
1818 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1819                                        struct kvm_run *kvm_run)
1820 {
1821         u32 cpu_based_vm_exec_control;
1822
1823         vcpu->arch.interrupt_window_open =
1824                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1825                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1826
1827         if (vcpu->arch.interrupt_window_open &&
1828             vcpu->arch.irq_summary &&
1829             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1830                 /*
1831                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1832                  */
1833                 kvm_do_inject_irq(vcpu);
1834
1835         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1836         if (!vcpu->arch.interrupt_window_open &&
1837             (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
1838                 /*
1839                  * Interrupts blocked.  Wait for unblock.
1840                  */
1841                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1842         else
1843                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1844         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1845 }
1846
1847 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
1848 {
1849         int ret;
1850         struct kvm_userspace_memory_region tss_mem = {
1851                 .slot = 8,
1852                 .guest_phys_addr = addr,
1853                 .memory_size = PAGE_SIZE * 3,
1854                 .flags = 0,
1855         };
1856
1857         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
1858         if (ret)
1859                 return ret;
1860         kvm->arch.tss_addr = addr;
1861         return 0;
1862 }
1863
1864 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1865 {
1866         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1867
1868         set_debugreg(dbg->bp[0], 0);
1869         set_debugreg(dbg->bp[1], 1);
1870         set_debugreg(dbg->bp[2], 2);
1871         set_debugreg(dbg->bp[3], 3);
1872
1873         if (dbg->singlestep) {
1874                 unsigned long flags;
1875
1876                 flags = vmcs_readl(GUEST_RFLAGS);
1877                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1878                 vmcs_writel(GUEST_RFLAGS, flags);
1879         }
1880 }
1881
1882 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1883                                   int vec, u32 err_code)
1884 {
1885         if (!vcpu->arch.rmode.active)
1886                 return 0;
1887
1888         /*
1889          * Instruction with address size override prefix opcode 0x67
1890          * Cause the #SS fault with 0 error code in VM86 mode.
1891          */
1892         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1893                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1894                         return 1;
1895         return 0;
1896 }
1897
1898 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1899 {
1900         struct vcpu_vmx *vmx = to_vmx(vcpu);
1901         u32 intr_info, error_code;
1902         unsigned long cr2, rip;
1903         u32 vect_info;
1904         enum emulation_result er;
1905
1906         vect_info = vmx->idt_vectoring_info;
1907         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1908
1909         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1910                                                 !is_page_fault(intr_info))
1911                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1912                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1913
1914         if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1915                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1916                 set_bit(irq, vcpu->arch.irq_pending);
1917                 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1918         }
1919
1920         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1921                 return 1;  /* already handled by vmx_vcpu_run() */
1922
1923         if (is_no_device(intr_info)) {
1924                 vmx_fpu_activate(vcpu);
1925                 return 1;
1926         }
1927
1928         if (is_invalid_opcode(intr_info)) {
1929                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1930                 if (er != EMULATE_DONE)
1931                         kvm_queue_exception(vcpu, UD_VECTOR);
1932                 return 1;
1933         }
1934
1935         error_code = 0;
1936         rip = vmcs_readl(GUEST_RIP);
1937         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
1938                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1939         if (is_page_fault(intr_info)) {
1940                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1941                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
1942         }
1943
1944         if (vcpu->arch.rmode.active &&
1945             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1946                                                                 error_code)) {
1947                 if (vcpu->arch.halt_request) {
1948                         vcpu->arch.halt_request = 0;
1949                         return kvm_emulate_halt(vcpu);
1950                 }
1951                 return 1;
1952         }
1953
1954         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
1955             (INTR_TYPE_EXCEPTION | 1)) {
1956                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1957                 return 0;
1958         }
1959         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1960         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1961         kvm_run->ex.error_code = error_code;
1962         return 0;
1963 }
1964
1965 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1966                                      struct kvm_run *kvm_run)
1967 {
1968         ++vcpu->stat.irq_exits;
1969         return 1;
1970 }
1971
1972 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1973 {
1974         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1975         return 0;
1976 }
1977
1978 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1979 {
1980         unsigned long exit_qualification;
1981         int size, down, in, string, rep;
1982         unsigned port;
1983
1984         ++vcpu->stat.io_exits;
1985         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1986         string = (exit_qualification & 16) != 0;
1987
1988         if (string) {
1989                 if (emulate_instruction(vcpu,
1990                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1991                         return 0;
1992                 return 1;
1993         }
1994
1995         size = (exit_qualification & 7) + 1;
1996         in = (exit_qualification & 8) != 0;
1997         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1998         rep = (exit_qualification & 32) != 0;
1999         port = exit_qualification >> 16;
2000
2001         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2002 }
2003
2004 static void
2005 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2006 {
2007         /*
2008          * Patch in the VMCALL instruction:
2009          */
2010         hypercall[0] = 0x0f;
2011         hypercall[1] = 0x01;
2012         hypercall[2] = 0xc1;
2013 }
2014
2015 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2016 {
2017         unsigned long exit_qualification;
2018         int cr;
2019         int reg;
2020
2021         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2022         cr = exit_qualification & 15;
2023         reg = (exit_qualification >> 8) & 15;
2024         switch ((exit_qualification >> 4) & 3) {
2025         case 0: /* mov to cr */
2026                 switch (cr) {
2027                 case 0:
2028                         vcpu_load_rsp_rip(vcpu);
2029                         set_cr0(vcpu, vcpu->arch.regs[reg]);
2030                         skip_emulated_instruction(vcpu);
2031                         return 1;
2032                 case 3:
2033                         vcpu_load_rsp_rip(vcpu);
2034                         set_cr3(vcpu, vcpu->arch.regs[reg]);
2035                         skip_emulated_instruction(vcpu);
2036                         return 1;
2037                 case 4:
2038                         vcpu_load_rsp_rip(vcpu);
2039                         set_cr4(vcpu, vcpu->arch.regs[reg]);
2040                         skip_emulated_instruction(vcpu);
2041                         return 1;
2042                 case 8:
2043                         vcpu_load_rsp_rip(vcpu);
2044                         set_cr8(vcpu, vcpu->arch.regs[reg]);
2045                         skip_emulated_instruction(vcpu);
2046                         if (irqchip_in_kernel(vcpu->kvm))
2047                                 return 1;
2048                         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2049                         return 0;
2050                 };
2051                 break;
2052         case 2: /* clts */
2053                 vcpu_load_rsp_rip(vcpu);
2054                 vmx_fpu_deactivate(vcpu);
2055                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2056                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2057                 vmx_fpu_activate(vcpu);
2058                 skip_emulated_instruction(vcpu);
2059                 return 1;
2060         case 1: /*mov from cr*/
2061                 switch (cr) {
2062                 case 3:
2063                         vcpu_load_rsp_rip(vcpu);
2064                         vcpu->arch.regs[reg] = vcpu->arch.cr3;
2065                         vcpu_put_rsp_rip(vcpu);
2066                         skip_emulated_instruction(vcpu);
2067                         return 1;
2068                 case 8:
2069                         vcpu_load_rsp_rip(vcpu);
2070                         vcpu->arch.regs[reg] = get_cr8(vcpu);
2071                         vcpu_put_rsp_rip(vcpu);
2072                         skip_emulated_instruction(vcpu);
2073                         return 1;
2074                 }
2075                 break;
2076         case 3: /* lmsw */
2077                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2078
2079                 skip_emulated_instruction(vcpu);
2080                 return 1;
2081         default:
2082                 break;
2083         }
2084         kvm_run->exit_reason = 0;
2085         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2086                (int)(exit_qualification >> 4) & 3, cr);
2087         return 0;
2088 }
2089
2090 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2091 {
2092         unsigned long exit_qualification;
2093         unsigned long val;
2094         int dr, reg;
2095
2096         /*
2097          * FIXME: this code assumes the host is debugging the guest.
2098          *        need to deal with guest debugging itself too.
2099          */
2100         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2101         dr = exit_qualification & 7;
2102         reg = (exit_qualification >> 8) & 15;
2103         vcpu_load_rsp_rip(vcpu);
2104         if (exit_qualification & 16) {
2105                 /* mov from dr */
2106                 switch (dr) {
2107                 case 6:
2108                         val = 0xffff0ff0;
2109                         break;
2110                 case 7:
2111                         val = 0x400;
2112                         break;
2113                 default:
2114                         val = 0;
2115                 }
2116                 vcpu->arch.regs[reg] = val;
2117         } else {
2118                 /* mov to dr */
2119         }
2120         vcpu_put_rsp_rip(vcpu);
2121         skip_emulated_instruction(vcpu);
2122         return 1;
2123 }
2124
2125 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2126 {
2127         kvm_emulate_cpuid(vcpu);
2128         return 1;
2129 }
2130
2131 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2132 {
2133         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2134         u64 data;
2135
2136         if (vmx_get_msr(vcpu, ecx, &data)) {
2137                 kvm_inject_gp(vcpu, 0);
2138                 return 1;
2139         }
2140
2141         /* FIXME: handling of bits 32:63 of rax, rdx */
2142         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2143         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2144         skip_emulated_instruction(vcpu);
2145         return 1;
2146 }
2147
2148 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2149 {
2150         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2151         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2152                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2153
2154         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2155                 kvm_inject_gp(vcpu, 0);
2156                 return 1;
2157         }
2158
2159         skip_emulated_instruction(vcpu);
2160         return 1;
2161 }
2162
2163 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2164                                       struct kvm_run *kvm_run)
2165 {
2166         return 1;
2167 }
2168
2169 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2170                                    struct kvm_run *kvm_run)
2171 {
2172         u32 cpu_based_vm_exec_control;
2173
2174         /* clear pending irq */
2175         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2176         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2177         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2178         /*
2179          * If the user space waits to inject interrupts, exit as soon as
2180          * possible
2181          */
2182         if (kvm_run->request_interrupt_window &&
2183             !vcpu->arch.irq_summary) {
2184                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2185                 ++vcpu->stat.irq_window_exits;
2186                 return 0;
2187         }
2188         return 1;
2189 }
2190
2191 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2192 {
2193         skip_emulated_instruction(vcpu);
2194         return kvm_emulate_halt(vcpu);
2195 }
2196
2197 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2198 {
2199         skip_emulated_instruction(vcpu);
2200         kvm_emulate_hypercall(vcpu);
2201         return 1;
2202 }
2203
2204 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2205 {
2206         skip_emulated_instruction(vcpu);
2207         /* TODO: Add support for VT-d/pass-through device */
2208         return 1;
2209 }
2210
2211 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2212 {
2213         u64 exit_qualification;
2214         enum emulation_result er;
2215         unsigned long offset;
2216
2217         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2218         offset = exit_qualification & 0xffful;
2219
2220         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2221
2222         if (er !=  EMULATE_DONE) {
2223                 printk(KERN_ERR
2224                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2225                        offset);
2226                 return -ENOTSUPP;
2227         }
2228         return 1;
2229 }
2230
2231 /*
2232  * The exit handlers return 1 if the exit was handled fully and guest execution
2233  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
2234  * to be done to userspace and return 0.
2235  */
2236 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2237                                       struct kvm_run *kvm_run) = {
2238         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
2239         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
2240         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
2241         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
2242         [EXIT_REASON_CR_ACCESS]               = handle_cr,
2243         [EXIT_REASON_DR_ACCESS]               = handle_dr,
2244         [EXIT_REASON_CPUID]                   = handle_cpuid,
2245         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
2246         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
2247         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
2248         [EXIT_REASON_HLT]                     = handle_halt,
2249         [EXIT_REASON_VMCALL]                  = handle_vmcall,
2250         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
2251         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
2252         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
2253 };
2254
2255 static const int kvm_vmx_max_exit_handlers =
2256         ARRAY_SIZE(kvm_vmx_exit_handlers);
2257
2258 /*
2259  * The guest has exited.  See if we can fix it or if we need userspace
2260  * assistance.
2261  */
2262 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2263 {
2264         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2265         struct vcpu_vmx *vmx = to_vmx(vcpu);
2266         u32 vectoring_info = vmx->idt_vectoring_info;
2267
2268         if (unlikely(vmx->fail)) {
2269                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2270                 kvm_run->fail_entry.hardware_entry_failure_reason
2271                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2272                 return 0;
2273         }
2274
2275         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2276                                 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2277                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2278                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2279         if (exit_reason < kvm_vmx_max_exit_handlers
2280             && kvm_vmx_exit_handlers[exit_reason])
2281                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2282         else {
2283                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2284                 kvm_run->hw.hardware_exit_reason = exit_reason;
2285         }
2286         return 0;
2287 }
2288
2289 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2290 {
2291         int max_irr, tpr;
2292
2293         if (!vm_need_tpr_shadow(vcpu->kvm))
2294                 return;
2295
2296         if (!kvm_lapic_enabled(vcpu) ||
2297             ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2298                 vmcs_write32(TPR_THRESHOLD, 0);
2299                 return;
2300         }
2301
2302         tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2303         vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2304 }
2305
2306 static void enable_irq_window(struct kvm_vcpu *vcpu)
2307 {
2308         u32 cpu_based_vm_exec_control;
2309
2310         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2311         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2312         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2313 }
2314
2315 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2316 {
2317         struct vcpu_vmx *vmx = to_vmx(vcpu);
2318         u32 idtv_info_field, intr_info_field;
2319         int has_ext_irq, interrupt_window_open;
2320         int vector;
2321
2322         update_tpr_threshold(vcpu);
2323
2324         has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2325         intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2326         idtv_info_field = vmx->idt_vectoring_info;
2327         if (intr_info_field & INTR_INFO_VALID_MASK) {
2328                 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2329                         /* TODO: fault when IDT_Vectoring */
2330                         if (printk_ratelimit())
2331                                 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2332                 }
2333                 if (has_ext_irq)
2334                         enable_irq_window(vcpu);
2335                 return;
2336         }
2337         if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2338                 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2339                     == INTR_TYPE_EXT_INTR
2340                     && vcpu->arch.rmode.active) {
2341                         u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2342
2343                         vmx_inject_irq(vcpu, vect);
2344                         if (unlikely(has_ext_irq))
2345                                 enable_irq_window(vcpu);
2346                         return;
2347                 }
2348
2349                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2350                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2351                                 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2352
2353                 if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
2354                         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2355                                 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2356                 if (unlikely(has_ext_irq))
2357                         enable_irq_window(vcpu);
2358                 return;
2359         }
2360         if (!has_ext_irq)
2361                 return;
2362         interrupt_window_open =
2363                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2364                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2365         if (interrupt_window_open) {
2366                 vector = kvm_cpu_get_interrupt(vcpu);
2367                 vmx_inject_irq(vcpu, vector);
2368                 kvm_timer_intr_post(vcpu, vector);
2369         } else
2370                 enable_irq_window(vcpu);
2371 }
2372
2373 /*
2374  * Failure to inject an interrupt should give us the information
2375  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
2376  * when fetching the interrupt redirection bitmap in the real-mode
2377  * tss, this doesn't happen.  So we do it ourselves.
2378  */
2379 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2380 {
2381         vmx->rmode.irq.pending = 0;
2382         if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2383                 return;
2384         vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2385         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2386                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2387                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2388                 return;
2389         }
2390         vmx->idt_vectoring_info =
2391                 VECTORING_INFO_VALID_MASK
2392                 | INTR_TYPE_EXT_INTR
2393                 | vmx->rmode.irq.vector;
2394 }
2395
2396 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2397 {
2398         struct vcpu_vmx *vmx = to_vmx(vcpu);
2399         u32 intr_info;
2400
2401         /*
2402          * Loading guest fpu may have cleared host cr0.ts
2403          */
2404         vmcs_writel(HOST_CR0, read_cr0());
2405
2406         asm(
2407                 /* Store host registers */
2408 #ifdef CONFIG_X86_64
2409                 "push %%rdx; push %%rbp;"
2410                 "push %%rcx \n\t"
2411 #else
2412                 "push %%edx; push %%ebp;"
2413                 "push %%ecx \n\t"
2414 #endif
2415                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2416                 /* Check if vmlaunch of vmresume is needed */
2417                 "cmpl $0, %c[launched](%0) \n\t"
2418                 /* Load guest registers.  Don't clobber flags. */
2419 #ifdef CONFIG_X86_64
2420                 "mov %c[cr2](%0), %%rax \n\t"
2421                 "mov %%rax, %%cr2 \n\t"
2422                 "mov %c[rax](%0), %%rax \n\t"
2423                 "mov %c[rbx](%0), %%rbx \n\t"
2424                 "mov %c[rdx](%0), %%rdx \n\t"
2425                 "mov %c[rsi](%0), %%rsi \n\t"
2426                 "mov %c[rdi](%0), %%rdi \n\t"
2427                 "mov %c[rbp](%0), %%rbp \n\t"
2428                 "mov %c[r8](%0),  %%r8  \n\t"
2429                 "mov %c[r9](%0),  %%r9  \n\t"
2430                 "mov %c[r10](%0), %%r10 \n\t"
2431                 "mov %c[r11](%0), %%r11 \n\t"
2432                 "mov %c[r12](%0), %%r12 \n\t"
2433                 "mov %c[r13](%0), %%r13 \n\t"
2434                 "mov %c[r14](%0), %%r14 \n\t"
2435                 "mov %c[r15](%0), %%r15 \n\t"
2436                 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2437 #else
2438                 "mov %c[cr2](%0), %%eax \n\t"
2439                 "mov %%eax,   %%cr2 \n\t"
2440                 "mov %c[rax](%0), %%eax \n\t"
2441                 "mov %c[rbx](%0), %%ebx \n\t"
2442                 "mov %c[rdx](%0), %%edx \n\t"
2443                 "mov %c[rsi](%0), %%esi \n\t"
2444                 "mov %c[rdi](%0), %%edi \n\t"
2445                 "mov %c[rbp](%0), %%ebp \n\t"
2446                 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2447 #endif
2448                 /* Enter guest mode */
2449                 "jne .Llaunched \n\t"
2450                 ASM_VMX_VMLAUNCH "\n\t"
2451                 "jmp .Lkvm_vmx_return \n\t"
2452                 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2453                 ".Lkvm_vmx_return: "
2454                 /* Save guest registers, load host registers, keep flags */
2455 #ifdef CONFIG_X86_64
2456                 "xchg %0,     (%%rsp) \n\t"
2457                 "mov %%rax, %c[rax](%0) \n\t"
2458                 "mov %%rbx, %c[rbx](%0) \n\t"
2459                 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2460                 "mov %%rdx, %c[rdx](%0) \n\t"
2461                 "mov %%rsi, %c[rsi](%0) \n\t"
2462                 "mov %%rdi, %c[rdi](%0) \n\t"
2463                 "mov %%rbp, %c[rbp](%0) \n\t"
2464                 "mov %%r8,  %c[r8](%0) \n\t"
2465                 "mov %%r9,  %c[r9](%0) \n\t"
2466                 "mov %%r10, %c[r10](%0) \n\t"
2467                 "mov %%r11, %c[r11](%0) \n\t"
2468                 "mov %%r12, %c[r12](%0) \n\t"
2469                 "mov %%r13, %c[r13](%0) \n\t"
2470                 "mov %%r14, %c[r14](%0) \n\t"
2471                 "mov %%r15, %c[r15](%0) \n\t"
2472                 "mov %%cr2, %%rax   \n\t"
2473                 "mov %%rax, %c[cr2](%0) \n\t"
2474
2475                 "pop  %%rbp; pop  %%rbp; pop  %%rdx \n\t"
2476 #else
2477                 "xchg %0, (%%esp) \n\t"
2478                 "mov %%eax, %c[rax](%0) \n\t"
2479                 "mov %%ebx, %c[rbx](%0) \n\t"
2480                 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2481                 "mov %%edx, %c[rdx](%0) \n\t"
2482                 "mov %%esi, %c[rsi](%0) \n\t"
2483                 "mov %%edi, %c[rdi](%0) \n\t"
2484                 "mov %%ebp, %c[rbp](%0) \n\t"
2485                 "mov %%cr2, %%eax  \n\t"
2486                 "mov %%eax, %c[cr2](%0) \n\t"
2487
2488                 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2489 #endif
2490                 "setbe %c[fail](%0) \n\t"
2491               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2492                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2493                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2494                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2495                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2496                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2497                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2498                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2499                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2500                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2501 #ifdef CONFIG_X86_64
2502                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2503                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2504                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2505                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2506                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2507                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2508                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2509                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2510 #endif
2511                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2512               : "cc", "memory"
2513 #ifdef CONFIG_X86_64
2514                 , "rbx", "rdi", "rsi"
2515                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2516 #else
2517                 , "ebx", "edi", "rsi"
2518 #endif
2519               );
2520
2521         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2522         if (vmx->rmode.irq.pending)
2523                 fixup_rmode_irq(vmx);
2524
2525         vcpu->arch.interrupt_window_open =
2526                 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2527
2528         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2529         vmx->launched = 1;
2530
2531         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2532
2533         /* We need to handle NMIs before interrupts are enabled */
2534         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2535                 asm("int $2");
2536 }
2537
2538 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2539 {
2540         struct vcpu_vmx *vmx = to_vmx(vcpu);
2541
2542         if (vmx->vmcs) {
2543                 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2544                 free_vmcs(vmx->vmcs);
2545                 vmx->vmcs = NULL;
2546         }
2547 }
2548
2549 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2550 {
2551         struct vcpu_vmx *vmx = to_vmx(vcpu);
2552
2553         spin_lock(&vmx_vpid_lock);
2554         if (vmx->vpid != 0)
2555                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2556         spin_unlock(&vmx_vpid_lock);
2557         vmx_free_vmcs(vcpu);
2558         kfree(vmx->host_msrs);
2559         kfree(vmx->guest_msrs);
2560         kvm_vcpu_uninit(vcpu);
2561         kmem_cache_free(kvm_vcpu_cache, vmx);
2562 }
2563
2564 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2565 {
2566         int err;
2567         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2568         int cpu;
2569
2570         if (!vmx)
2571                 return ERR_PTR(-ENOMEM);
2572
2573         allocate_vpid(vmx);
2574
2575         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2576         if (err)
2577                 goto free_vcpu;
2578
2579         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2580         if (!vmx->guest_msrs) {
2581                 err = -ENOMEM;
2582                 goto uninit_vcpu;
2583         }
2584
2585         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2586         if (!vmx->host_msrs)
2587                 goto free_guest_msrs;
2588
2589         vmx->vmcs = alloc_vmcs();
2590         if (!vmx->vmcs)
2591                 goto free_msrs;
2592
2593         vmcs_clear(vmx->vmcs);
2594
2595         cpu = get_cpu();
2596         vmx_vcpu_load(&vmx->vcpu, cpu);
2597         err = vmx_vcpu_setup(vmx);
2598         vmx_vcpu_put(&vmx->vcpu);
2599         put_cpu();
2600         if (err)
2601                 goto free_vmcs;
2602         if (vm_need_virtualize_apic_accesses(kvm))
2603                 if (alloc_apic_access_page(kvm) != 0)
2604                         goto free_vmcs;
2605
2606         return &vmx->vcpu;
2607
2608 free_vmcs:
2609         free_vmcs(vmx->vmcs);
2610 free_msrs:
2611         kfree(vmx->host_msrs);
2612 free_guest_msrs:
2613         kfree(vmx->guest_msrs);
2614 uninit_vcpu:
2615         kvm_vcpu_uninit(&vmx->vcpu);
2616 free_vcpu:
2617         kmem_cache_free(kvm_vcpu_cache, vmx);
2618         return ERR_PTR(err);
2619 }
2620
2621 static void __init vmx_check_processor_compat(void *rtn)
2622 {
2623         struct vmcs_config vmcs_conf;
2624
2625         *(int *)rtn = 0;
2626         if (setup_vmcs_config(&vmcs_conf) < 0)
2627                 *(int *)rtn = -EIO;
2628         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2629                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2630                                 smp_processor_id());
2631                 *(int *)rtn = -EIO;
2632         }
2633 }
2634
2635 static struct kvm_x86_ops vmx_x86_ops = {
2636         .cpu_has_kvm_support = cpu_has_kvm_support,
2637         .disabled_by_bios = vmx_disabled_by_bios,
2638         .hardware_setup = hardware_setup,
2639         .hardware_unsetup = hardware_unsetup,
2640         .check_processor_compatibility = vmx_check_processor_compat,
2641         .hardware_enable = hardware_enable,
2642         .hardware_disable = hardware_disable,
2643         .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
2644
2645         .vcpu_create = vmx_create_vcpu,
2646         .vcpu_free = vmx_free_vcpu,
2647         .vcpu_reset = vmx_vcpu_reset,
2648
2649         .prepare_guest_switch = vmx_save_host_state,
2650         .vcpu_load = vmx_vcpu_load,
2651         .vcpu_put = vmx_vcpu_put,
2652         .vcpu_decache = vmx_vcpu_decache,
2653
2654         .set_guest_debug = set_guest_debug,
2655         .guest_debug_pre = kvm_guest_debug_pre,
2656         .get_msr = vmx_get_msr,
2657         .set_msr = vmx_set_msr,
2658         .get_segment_base = vmx_get_segment_base,
2659         .get_segment = vmx_get_segment,
2660         .set_segment = vmx_set_segment,
2661         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2662         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2663         .set_cr0 = vmx_set_cr0,
2664         .set_cr3 = vmx_set_cr3,
2665         .set_cr4 = vmx_set_cr4,
2666         .set_efer = vmx_set_efer,
2667         .get_idt = vmx_get_idt,
2668         .set_idt = vmx_set_idt,
2669         .get_gdt = vmx_get_gdt,
2670         .set_gdt = vmx_set_gdt,
2671         .cache_regs = vcpu_load_rsp_rip,
2672         .decache_regs = vcpu_put_rsp_rip,
2673         .get_rflags = vmx_get_rflags,
2674         .set_rflags = vmx_set_rflags,
2675
2676         .tlb_flush = vmx_flush_tlb,
2677
2678         .run = vmx_vcpu_run,
2679         .handle_exit = kvm_handle_exit,
2680         .skip_emulated_instruction = skip_emulated_instruction,
2681         .patch_hypercall = vmx_patch_hypercall,
2682         .get_irq = vmx_get_irq,
2683         .set_irq = vmx_inject_irq,
2684         .queue_exception = vmx_queue_exception,
2685         .exception_injected = vmx_exception_injected,
2686         .inject_pending_irq = vmx_intr_assist,
2687         .inject_pending_vectors = do_interrupt_requests,
2688
2689         .set_tss_addr = vmx_set_tss_addr,
2690 };
2691
2692 static int __init vmx_init(void)
2693 {
2694         void *iova;
2695         int r;
2696
2697         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2698         if (!vmx_io_bitmap_a)
2699                 return -ENOMEM;
2700
2701         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2702         if (!vmx_io_bitmap_b) {
2703                 r = -ENOMEM;
2704                 goto out;
2705         }
2706
2707         /*
2708          * Allow direct access to the PC debug port (it is often used for I/O
2709          * delays, but the vmexits simply slow things down).
2710          */
2711         iova = kmap(vmx_io_bitmap_a);
2712         memset(iova, 0xff, PAGE_SIZE);
2713         clear_bit(0x80, iova);
2714         kunmap(vmx_io_bitmap_a);
2715
2716         iova = kmap(vmx_io_bitmap_b);
2717         memset(iova, 0xff, PAGE_SIZE);
2718         kunmap(vmx_io_bitmap_b);
2719
2720         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
2721
2722         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2723         if (r)
2724                 goto out1;
2725
2726         if (bypass_guest_pf)
2727                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2728
2729         return 0;
2730
2731 out1:
2732         __free_page(vmx_io_bitmap_b);
2733 out:
2734         __free_page(vmx_io_bitmap_a);
2735         return r;
2736 }
2737
2738 static void __exit vmx_exit(void)
2739 {
2740         __free_page(vmx_io_bitmap_b);
2741         __free_page(vmx_io_bitmap_a);
2742
2743         kvm_exit();
2744 }
2745
2746 module_init(vmx_init)
2747 module_exit(vmx_exit)