KVM: VMX: Initialize vm86 TSS only once.
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
52
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
55
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64                         enable_unrestricted_guest, bool, S_IRUGO);
65
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
71
72 static int __read_mostly yield_on_hlt = 1;
73 module_param(yield_on_hlt, bool, S_IRUGO);
74
75 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
76         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
77 #define KVM_GUEST_CR0_MASK                                              \
78         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
79 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
80         (X86_CR0_WP | X86_CR0_NE)
81 #define KVM_VM_CR0_ALWAYS_ON                                            \
82         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
83 #define KVM_CR4_GUEST_OWNED_BITS                                      \
84         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
85          | X86_CR4_OSXMMEXCPT)
86
87 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
88 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
89
90 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
91
92 /*
93  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
94  * ple_gap:    upper bound on the amount of time between two successive
95  *             executions of PAUSE in a loop. Also indicate if ple enabled.
96  *             According to test, this time is usually smaller than 128 cycles.
97  * ple_window: upper bound on the amount of time a guest is allowed to execute
98  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
99  *             less than 2^12 cycles
100  * Time is measured based on a counter that runs at the same rate as the TSC,
101  * refer SDM volume 3b section 21.6.13 & 22.1.3.
102  */
103 #define KVM_VMX_DEFAULT_PLE_GAP    128
104 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
105 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
106 module_param(ple_gap, int, S_IRUGO);
107
108 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
109 module_param(ple_window, int, S_IRUGO);
110
111 #define NR_AUTOLOAD_MSRS 1
112
113 struct vmcs {
114         u32 revision_id;
115         u32 abort;
116         char data[0];
117 };
118
119 struct shared_msr_entry {
120         unsigned index;
121         u64 data;
122         u64 mask;
123 };
124
125 struct vcpu_vmx {
126         struct kvm_vcpu       vcpu;
127         struct list_head      local_vcpus_link;
128         unsigned long         host_rsp;
129         int                   launched;
130         u8                    fail;
131         u32                   exit_intr_info;
132         u32                   idt_vectoring_info;
133         struct shared_msr_entry *guest_msrs;
134         int                   nmsrs;
135         int                   save_nmsrs;
136 #ifdef CONFIG_X86_64
137         u64                   msr_host_kernel_gs_base;
138         u64                   msr_guest_kernel_gs_base;
139 #endif
140         struct vmcs          *vmcs;
141         struct msr_autoload {
142                 unsigned nr;
143                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
144                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
145         } msr_autoload;
146         struct {
147                 int           loaded;
148                 u16           fs_sel, gs_sel, ldt_sel;
149                 int           gs_ldt_reload_needed;
150                 int           fs_reload_needed;
151         } host_state;
152         struct {
153                 int vm86_active;
154                 ulong save_rflags;
155                 struct kvm_save_segment {
156                         u16 selector;
157                         unsigned long base;
158                         u32 limit;
159                         u32 ar;
160                 } tr, es, ds, fs, gs;
161         } rmode;
162         int vpid;
163         bool emulation_required;
164
165         /* Support for vnmi-less CPUs */
166         int soft_vnmi_blocked;
167         ktime_t entry_time;
168         s64 vnmi_blocked_time;
169         u32 exit_reason;
170
171         bool rdtscp_enabled;
172 };
173
174 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
175 {
176         return container_of(vcpu, struct vcpu_vmx, vcpu);
177 }
178
179 static u64 construct_eptp(unsigned long root_hpa);
180 static void kvm_cpu_vmxon(u64 addr);
181 static void kvm_cpu_vmxoff(void);
182 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
183
184 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
185 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
186 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
187 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
188
189 static unsigned long *vmx_io_bitmap_a;
190 static unsigned long *vmx_io_bitmap_b;
191 static unsigned long *vmx_msr_bitmap_legacy;
192 static unsigned long *vmx_msr_bitmap_longmode;
193
194 static bool cpu_has_load_ia32_efer;
195
196 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
197 static DEFINE_SPINLOCK(vmx_vpid_lock);
198
199 static struct vmcs_config {
200         int size;
201         int order;
202         u32 revision_id;
203         u32 pin_based_exec_ctrl;
204         u32 cpu_based_exec_ctrl;
205         u32 cpu_based_2nd_exec_ctrl;
206         u32 vmexit_ctrl;
207         u32 vmentry_ctrl;
208 } vmcs_config;
209
210 static struct vmx_capability {
211         u32 ept;
212         u32 vpid;
213 } vmx_capability;
214
215 #define VMX_SEGMENT_FIELD(seg)                                  \
216         [VCPU_SREG_##seg] = {                                   \
217                 .selector = GUEST_##seg##_SELECTOR,             \
218                 .base = GUEST_##seg##_BASE,                     \
219                 .limit = GUEST_##seg##_LIMIT,                   \
220                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
221         }
222
223 static struct kvm_vmx_segment_field {
224         unsigned selector;
225         unsigned base;
226         unsigned limit;
227         unsigned ar_bytes;
228 } kvm_vmx_segment_fields[] = {
229         VMX_SEGMENT_FIELD(CS),
230         VMX_SEGMENT_FIELD(DS),
231         VMX_SEGMENT_FIELD(ES),
232         VMX_SEGMENT_FIELD(FS),
233         VMX_SEGMENT_FIELD(GS),
234         VMX_SEGMENT_FIELD(SS),
235         VMX_SEGMENT_FIELD(TR),
236         VMX_SEGMENT_FIELD(LDTR),
237 };
238
239 static u64 host_efer;
240
241 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
242
243 /*
244  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
245  * away by decrementing the array size.
246  */
247 static const u32 vmx_msr_index[] = {
248 #ifdef CONFIG_X86_64
249         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
250 #endif
251         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
252 };
253 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
254
255 static inline bool is_page_fault(u32 intr_info)
256 {
257         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
258                              INTR_INFO_VALID_MASK)) ==
259                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
260 }
261
262 static inline bool is_no_device(u32 intr_info)
263 {
264         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
265                              INTR_INFO_VALID_MASK)) ==
266                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
267 }
268
269 static inline bool is_invalid_opcode(u32 intr_info)
270 {
271         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
272                              INTR_INFO_VALID_MASK)) ==
273                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
274 }
275
276 static inline bool is_external_interrupt(u32 intr_info)
277 {
278         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
279                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
280 }
281
282 static inline bool is_machine_check(u32 intr_info)
283 {
284         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
285                              INTR_INFO_VALID_MASK)) ==
286                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
287 }
288
289 static inline bool cpu_has_vmx_msr_bitmap(void)
290 {
291         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
292 }
293
294 static inline bool cpu_has_vmx_tpr_shadow(void)
295 {
296         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
297 }
298
299 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
300 {
301         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
302 }
303
304 static inline bool cpu_has_secondary_exec_ctrls(void)
305 {
306         return vmcs_config.cpu_based_exec_ctrl &
307                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
308 }
309
310 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
311 {
312         return vmcs_config.cpu_based_2nd_exec_ctrl &
313                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
314 }
315
316 static inline bool cpu_has_vmx_flexpriority(void)
317 {
318         return cpu_has_vmx_tpr_shadow() &&
319                 cpu_has_vmx_virtualize_apic_accesses();
320 }
321
322 static inline bool cpu_has_vmx_ept_execute_only(void)
323 {
324         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
325 }
326
327 static inline bool cpu_has_vmx_eptp_uncacheable(void)
328 {
329         return vmx_capability.ept & VMX_EPTP_UC_BIT;
330 }
331
332 static inline bool cpu_has_vmx_eptp_writeback(void)
333 {
334         return vmx_capability.ept & VMX_EPTP_WB_BIT;
335 }
336
337 static inline bool cpu_has_vmx_ept_2m_page(void)
338 {
339         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
340 }
341
342 static inline bool cpu_has_vmx_ept_1g_page(void)
343 {
344         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
345 }
346
347 static inline bool cpu_has_vmx_ept_4levels(void)
348 {
349         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
350 }
351
352 static inline bool cpu_has_vmx_invept_individual_addr(void)
353 {
354         return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
355 }
356
357 static inline bool cpu_has_vmx_invept_context(void)
358 {
359         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
360 }
361
362 static inline bool cpu_has_vmx_invept_global(void)
363 {
364         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
365 }
366
367 static inline bool cpu_has_vmx_invvpid_single(void)
368 {
369         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
370 }
371
372 static inline bool cpu_has_vmx_invvpid_global(void)
373 {
374         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
375 }
376
377 static inline bool cpu_has_vmx_ept(void)
378 {
379         return vmcs_config.cpu_based_2nd_exec_ctrl &
380                 SECONDARY_EXEC_ENABLE_EPT;
381 }
382
383 static inline bool cpu_has_vmx_unrestricted_guest(void)
384 {
385         return vmcs_config.cpu_based_2nd_exec_ctrl &
386                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
387 }
388
389 static inline bool cpu_has_vmx_ple(void)
390 {
391         return vmcs_config.cpu_based_2nd_exec_ctrl &
392                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
393 }
394
395 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
396 {
397         return flexpriority_enabled && irqchip_in_kernel(kvm);
398 }
399
400 static inline bool cpu_has_vmx_vpid(void)
401 {
402         return vmcs_config.cpu_based_2nd_exec_ctrl &
403                 SECONDARY_EXEC_ENABLE_VPID;
404 }
405
406 static inline bool cpu_has_vmx_rdtscp(void)
407 {
408         return vmcs_config.cpu_based_2nd_exec_ctrl &
409                 SECONDARY_EXEC_RDTSCP;
410 }
411
412 static inline bool cpu_has_virtual_nmis(void)
413 {
414         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
415 }
416
417 static inline bool cpu_has_vmx_wbinvd_exit(void)
418 {
419         return vmcs_config.cpu_based_2nd_exec_ctrl &
420                 SECONDARY_EXEC_WBINVD_EXITING;
421 }
422
423 static inline bool report_flexpriority(void)
424 {
425         return flexpriority_enabled;
426 }
427
428 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
429 {
430         int i;
431
432         for (i = 0; i < vmx->nmsrs; ++i)
433                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
434                         return i;
435         return -1;
436 }
437
438 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
439 {
440     struct {
441         u64 vpid : 16;
442         u64 rsvd : 48;
443         u64 gva;
444     } operand = { vpid, 0, gva };
445
446     asm volatile (__ex(ASM_VMX_INVVPID)
447                   /* CF==1 or ZF==1 --> rc = -1 */
448                   "; ja 1f ; ud2 ; 1:"
449                   : : "a"(&operand), "c"(ext) : "cc", "memory");
450 }
451
452 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
453 {
454         struct {
455                 u64 eptp, gpa;
456         } operand = {eptp, gpa};
457
458         asm volatile (__ex(ASM_VMX_INVEPT)
459                         /* CF==1 or ZF==1 --> rc = -1 */
460                         "; ja 1f ; ud2 ; 1:\n"
461                         : : "a" (&operand), "c" (ext) : "cc", "memory");
462 }
463
464 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
465 {
466         int i;
467
468         i = __find_msr_index(vmx, msr);
469         if (i >= 0)
470                 return &vmx->guest_msrs[i];
471         return NULL;
472 }
473
474 static void vmcs_clear(struct vmcs *vmcs)
475 {
476         u64 phys_addr = __pa(vmcs);
477         u8 error;
478
479         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
480                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
481                       : "cc", "memory");
482         if (error)
483                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
484                        vmcs, phys_addr);
485 }
486
487 static void vmcs_load(struct vmcs *vmcs)
488 {
489         u64 phys_addr = __pa(vmcs);
490         u8 error;
491
492         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
493                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
494                         : "cc", "memory");
495         if (error)
496                 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
497                        vmcs, phys_addr);
498 }
499
500 static void __vcpu_clear(void *arg)
501 {
502         struct vcpu_vmx *vmx = arg;
503         int cpu = raw_smp_processor_id();
504
505         if (vmx->vcpu.cpu == cpu)
506                 vmcs_clear(vmx->vmcs);
507         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
508                 per_cpu(current_vmcs, cpu) = NULL;
509         list_del(&vmx->local_vcpus_link);
510         vmx->vcpu.cpu = -1;
511         vmx->launched = 0;
512 }
513
514 static void vcpu_clear(struct vcpu_vmx *vmx)
515 {
516         if (vmx->vcpu.cpu == -1)
517                 return;
518         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
519 }
520
521 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
522 {
523         if (vmx->vpid == 0)
524                 return;
525
526         if (cpu_has_vmx_invvpid_single())
527                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
528 }
529
530 static inline void vpid_sync_vcpu_global(void)
531 {
532         if (cpu_has_vmx_invvpid_global())
533                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
534 }
535
536 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
537 {
538         if (cpu_has_vmx_invvpid_single())
539                 vpid_sync_vcpu_single(vmx);
540         else
541                 vpid_sync_vcpu_global();
542 }
543
544 static inline void ept_sync_global(void)
545 {
546         if (cpu_has_vmx_invept_global())
547                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
548 }
549
550 static inline void ept_sync_context(u64 eptp)
551 {
552         if (enable_ept) {
553                 if (cpu_has_vmx_invept_context())
554                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
555                 else
556                         ept_sync_global();
557         }
558 }
559
560 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
561 {
562         if (enable_ept) {
563                 if (cpu_has_vmx_invept_individual_addr())
564                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
565                                         eptp, gpa);
566                 else
567                         ept_sync_context(eptp);
568         }
569 }
570
571 static unsigned long vmcs_readl(unsigned long field)
572 {
573         unsigned long value = 0;
574
575         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
576                       : "+a"(value) : "d"(field) : "cc");
577         return value;
578 }
579
580 static u16 vmcs_read16(unsigned long field)
581 {
582         return vmcs_readl(field);
583 }
584
585 static u32 vmcs_read32(unsigned long field)
586 {
587         return vmcs_readl(field);
588 }
589
590 static u64 vmcs_read64(unsigned long field)
591 {
592 #ifdef CONFIG_X86_64
593         return vmcs_readl(field);
594 #else
595         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
596 #endif
597 }
598
599 static noinline void vmwrite_error(unsigned long field, unsigned long value)
600 {
601         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
602                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
603         dump_stack();
604 }
605
606 static void vmcs_writel(unsigned long field, unsigned long value)
607 {
608         u8 error;
609
610         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
611                        : "=q"(error) : "a"(value), "d"(field) : "cc");
612         if (unlikely(error))
613                 vmwrite_error(field, value);
614 }
615
616 static void vmcs_write16(unsigned long field, u16 value)
617 {
618         vmcs_writel(field, value);
619 }
620
621 static void vmcs_write32(unsigned long field, u32 value)
622 {
623         vmcs_writel(field, value);
624 }
625
626 static void vmcs_write64(unsigned long field, u64 value)
627 {
628         vmcs_writel(field, value);
629 #ifndef CONFIG_X86_64
630         asm volatile ("");
631         vmcs_writel(field+1, value >> 32);
632 #endif
633 }
634
635 static void vmcs_clear_bits(unsigned long field, u32 mask)
636 {
637         vmcs_writel(field, vmcs_readl(field) & ~mask);
638 }
639
640 static void vmcs_set_bits(unsigned long field, u32 mask)
641 {
642         vmcs_writel(field, vmcs_readl(field) | mask);
643 }
644
645 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
646 {
647         u32 eb;
648
649         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
650              (1u << NM_VECTOR) | (1u << DB_VECTOR);
651         if ((vcpu->guest_debug &
652              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
653             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
654                 eb |= 1u << BP_VECTOR;
655         if (to_vmx(vcpu)->rmode.vm86_active)
656                 eb = ~0;
657         if (enable_ept)
658                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
659         if (vcpu->fpu_active)
660                 eb &= ~(1u << NM_VECTOR);
661         vmcs_write32(EXCEPTION_BITMAP, eb);
662 }
663
664 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
665 {
666         unsigned i;
667         struct msr_autoload *m = &vmx->msr_autoload;
668
669         if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
670                 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
671                 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
672                 return;
673         }
674
675         for (i = 0; i < m->nr; ++i)
676                 if (m->guest[i].index == msr)
677                         break;
678
679         if (i == m->nr)
680                 return;
681         --m->nr;
682         m->guest[i] = m->guest[m->nr];
683         m->host[i] = m->host[m->nr];
684         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
685         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
686 }
687
688 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
689                                   u64 guest_val, u64 host_val)
690 {
691         unsigned i;
692         struct msr_autoload *m = &vmx->msr_autoload;
693
694         if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
695                 vmcs_write64(GUEST_IA32_EFER, guest_val);
696                 vmcs_write64(HOST_IA32_EFER, host_val);
697                 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
698                 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
699                 return;
700         }
701
702         for (i = 0; i < m->nr; ++i)
703                 if (m->guest[i].index == msr)
704                         break;
705
706         if (i == m->nr) {
707                 ++m->nr;
708                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
709                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
710         }
711
712         m->guest[i].index = msr;
713         m->guest[i].value = guest_val;
714         m->host[i].index = msr;
715         m->host[i].value = host_val;
716 }
717
718 static void reload_tss(void)
719 {
720         /*
721          * VT restores TR but not its size.  Useless.
722          */
723         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
724         struct desc_struct *descs;
725
726         descs = (void *)gdt->address;
727         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
728         load_TR_desc();
729 }
730
731 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
732 {
733         u64 guest_efer;
734         u64 ignore_bits;
735
736         guest_efer = vmx->vcpu.arch.efer;
737
738         /*
739          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
740          * outside long mode
741          */
742         ignore_bits = EFER_NX | EFER_SCE;
743 #ifdef CONFIG_X86_64
744         ignore_bits |= EFER_LMA | EFER_LME;
745         /* SCE is meaningful only in long mode on Intel */
746         if (guest_efer & EFER_LMA)
747                 ignore_bits &= ~(u64)EFER_SCE;
748 #endif
749         guest_efer &= ~ignore_bits;
750         guest_efer |= host_efer & ignore_bits;
751         vmx->guest_msrs[efer_offset].data = guest_efer;
752         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
753
754         clear_atomic_switch_msr(vmx, MSR_EFER);
755         /* On ept, can't emulate nx, and must switch nx atomically */
756         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
757                 guest_efer = vmx->vcpu.arch.efer;
758                 if (!(guest_efer & EFER_LMA))
759                         guest_efer &= ~EFER_LME;
760                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
761                 return false;
762         }
763
764         return true;
765 }
766
767 static unsigned long segment_base(u16 selector)
768 {
769         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
770         struct desc_struct *d;
771         unsigned long table_base;
772         unsigned long v;
773
774         if (!(selector & ~3))
775                 return 0;
776
777         table_base = gdt->address;
778
779         if (selector & 4) {           /* from ldt */
780                 u16 ldt_selector = kvm_read_ldt();
781
782                 if (!(ldt_selector & ~3))
783                         return 0;
784
785                 table_base = segment_base(ldt_selector);
786         }
787         d = (struct desc_struct *)(table_base + (selector & ~7));
788         v = get_desc_base(d);
789 #ifdef CONFIG_X86_64
790        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
791                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
792 #endif
793         return v;
794 }
795
796 static inline unsigned long kvm_read_tr_base(void)
797 {
798         u16 tr;
799         asm("str %0" : "=g"(tr));
800         return segment_base(tr);
801 }
802
803 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
804 {
805         struct vcpu_vmx *vmx = to_vmx(vcpu);
806         int i;
807
808         if (vmx->host_state.loaded)
809                 return;
810
811         vmx->host_state.loaded = 1;
812         /*
813          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
814          * allow segment selectors with cpl > 0 or ti == 1.
815          */
816         vmx->host_state.ldt_sel = kvm_read_ldt();
817         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
818         savesegment(fs, vmx->host_state.fs_sel);
819         if (!(vmx->host_state.fs_sel & 7)) {
820                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
821                 vmx->host_state.fs_reload_needed = 0;
822         } else {
823                 vmcs_write16(HOST_FS_SELECTOR, 0);
824                 vmx->host_state.fs_reload_needed = 1;
825         }
826         savesegment(gs, vmx->host_state.gs_sel);
827         if (!(vmx->host_state.gs_sel & 7))
828                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
829         else {
830                 vmcs_write16(HOST_GS_SELECTOR, 0);
831                 vmx->host_state.gs_ldt_reload_needed = 1;
832         }
833
834 #ifdef CONFIG_X86_64
835         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
836         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
837 #else
838         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
839         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
840 #endif
841
842 #ifdef CONFIG_X86_64
843         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
844         if (is_long_mode(&vmx->vcpu))
845                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
846 #endif
847         for (i = 0; i < vmx->save_nmsrs; ++i)
848                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
849                                    vmx->guest_msrs[i].data,
850                                    vmx->guest_msrs[i].mask);
851 }
852
853 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
854 {
855         if (!vmx->host_state.loaded)
856                 return;
857
858         ++vmx->vcpu.stat.host_state_reload;
859         vmx->host_state.loaded = 0;
860 #ifdef CONFIG_X86_64
861         if (is_long_mode(&vmx->vcpu))
862                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
863 #endif
864         if (vmx->host_state.gs_ldt_reload_needed) {
865                 kvm_load_ldt(vmx->host_state.ldt_sel);
866 #ifdef CONFIG_X86_64
867                 load_gs_index(vmx->host_state.gs_sel);
868 #else
869                 loadsegment(gs, vmx->host_state.gs_sel);
870 #endif
871         }
872         if (vmx->host_state.fs_reload_needed)
873                 loadsegment(fs, vmx->host_state.fs_sel);
874         reload_tss();
875 #ifdef CONFIG_X86_64
876         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
877 #endif
878         if (current_thread_info()->status & TS_USEDFPU)
879                 clts();
880         load_gdt(&__get_cpu_var(host_gdt));
881 }
882
883 static void vmx_load_host_state(struct vcpu_vmx *vmx)
884 {
885         preempt_disable();
886         __vmx_load_host_state(vmx);
887         preempt_enable();
888 }
889
890 /*
891  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
892  * vcpu mutex is already taken.
893  */
894 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
895 {
896         struct vcpu_vmx *vmx = to_vmx(vcpu);
897         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
898
899         if (!vmm_exclusive)
900                 kvm_cpu_vmxon(phys_addr);
901         else if (vcpu->cpu != cpu)
902                 vcpu_clear(vmx);
903
904         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
905                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
906                 vmcs_load(vmx->vmcs);
907         }
908
909         if (vcpu->cpu != cpu) {
910                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
911                 unsigned long sysenter_esp;
912
913                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
914                 local_irq_disable();
915                 list_add(&vmx->local_vcpus_link,
916                          &per_cpu(vcpus_on_cpu, cpu));
917                 local_irq_enable();
918
919                 /*
920                  * Linux uses per-cpu TSS and GDT, so set these when switching
921                  * processors.
922                  */
923                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
924                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
925
926                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
927                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
928         }
929 }
930
931 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
932 {
933         __vmx_load_host_state(to_vmx(vcpu));
934         if (!vmm_exclusive) {
935                 __vcpu_clear(to_vmx(vcpu));
936                 kvm_cpu_vmxoff();
937         }
938 }
939
940 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
941 {
942         ulong cr0;
943
944         if (vcpu->fpu_active)
945                 return;
946         vcpu->fpu_active = 1;
947         cr0 = vmcs_readl(GUEST_CR0);
948         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
949         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
950         vmcs_writel(GUEST_CR0, cr0);
951         update_exception_bitmap(vcpu);
952         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
953         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
954 }
955
956 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
957
958 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
959 {
960         vmx_decache_cr0_guest_bits(vcpu);
961         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
962         update_exception_bitmap(vcpu);
963         vcpu->arch.cr0_guest_owned_bits = 0;
964         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
965         vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
966 }
967
968 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
969 {
970         unsigned long rflags, save_rflags;
971
972         rflags = vmcs_readl(GUEST_RFLAGS);
973         if (to_vmx(vcpu)->rmode.vm86_active) {
974                 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
975                 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
976                 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
977         }
978         return rflags;
979 }
980
981 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
982 {
983         if (to_vmx(vcpu)->rmode.vm86_active) {
984                 to_vmx(vcpu)->rmode.save_rflags = rflags;
985                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
986         }
987         vmcs_writel(GUEST_RFLAGS, rflags);
988 }
989
990 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
991 {
992         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
993         int ret = 0;
994
995         if (interruptibility & GUEST_INTR_STATE_STI)
996                 ret |= KVM_X86_SHADOW_INT_STI;
997         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
998                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
999
1000         return ret & mask;
1001 }
1002
1003 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1004 {
1005         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1006         u32 interruptibility = interruptibility_old;
1007
1008         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1009
1010         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1011                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1012         else if (mask & KVM_X86_SHADOW_INT_STI)
1013                 interruptibility |= GUEST_INTR_STATE_STI;
1014
1015         if ((interruptibility != interruptibility_old))
1016                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1017 }
1018
1019 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1020 {
1021         unsigned long rip;
1022
1023         rip = kvm_rip_read(vcpu);
1024         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1025         kvm_rip_write(vcpu, rip);
1026
1027         /* skipping an emulated instruction also counts */
1028         vmx_set_interrupt_shadow(vcpu, 0);
1029 }
1030
1031 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1032 {
1033         /* Ensure that we clear the HLT state in the VMCS.  We don't need to
1034          * explicitly skip the instruction because if the HLT state is set, then
1035          * the instruction is already executing and RIP has already been
1036          * advanced. */
1037         if (!yield_on_hlt &&
1038             vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1039                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1040 }
1041
1042 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1043                                 bool has_error_code, u32 error_code,
1044                                 bool reinject)
1045 {
1046         struct vcpu_vmx *vmx = to_vmx(vcpu);
1047         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1048
1049         if (has_error_code) {
1050                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1051                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1052         }
1053
1054         if (vmx->rmode.vm86_active) {
1055                 if (kvm_inject_realmode_interrupt(vcpu, nr) != EMULATE_DONE)
1056                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1057                 return;
1058         }
1059
1060         if (kvm_exception_is_soft(nr)) {
1061                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1062                              vmx->vcpu.arch.event_exit_inst_len);
1063                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1064         } else
1065                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1066
1067         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1068         vmx_clear_hlt(vcpu);
1069 }
1070
1071 static bool vmx_rdtscp_supported(void)
1072 {
1073         return cpu_has_vmx_rdtscp();
1074 }
1075
1076 /*
1077  * Swap MSR entry in host/guest MSR entry array.
1078  */
1079 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1080 {
1081         struct shared_msr_entry tmp;
1082
1083         tmp = vmx->guest_msrs[to];
1084         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1085         vmx->guest_msrs[from] = tmp;
1086 }
1087
1088 /*
1089  * Set up the vmcs to automatically save and restore system
1090  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1091  * mode, as fiddling with msrs is very expensive.
1092  */
1093 static void setup_msrs(struct vcpu_vmx *vmx)
1094 {
1095         int save_nmsrs, index;
1096         unsigned long *msr_bitmap;
1097
1098         vmx_load_host_state(vmx);
1099         save_nmsrs = 0;
1100 #ifdef CONFIG_X86_64
1101         if (is_long_mode(&vmx->vcpu)) {
1102                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1103                 if (index >= 0)
1104                         move_msr_up(vmx, index, save_nmsrs++);
1105                 index = __find_msr_index(vmx, MSR_LSTAR);
1106                 if (index >= 0)
1107                         move_msr_up(vmx, index, save_nmsrs++);
1108                 index = __find_msr_index(vmx, MSR_CSTAR);
1109                 if (index >= 0)
1110                         move_msr_up(vmx, index, save_nmsrs++);
1111                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1112                 if (index >= 0 && vmx->rdtscp_enabled)
1113                         move_msr_up(vmx, index, save_nmsrs++);
1114                 /*
1115                  * MSR_STAR is only needed on long mode guests, and only
1116                  * if efer.sce is enabled.
1117                  */
1118                 index = __find_msr_index(vmx, MSR_STAR);
1119                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1120                         move_msr_up(vmx, index, save_nmsrs++);
1121         }
1122 #endif
1123         index = __find_msr_index(vmx, MSR_EFER);
1124         if (index >= 0 && update_transition_efer(vmx, index))
1125                 move_msr_up(vmx, index, save_nmsrs++);
1126
1127         vmx->save_nmsrs = save_nmsrs;
1128
1129         if (cpu_has_vmx_msr_bitmap()) {
1130                 if (is_long_mode(&vmx->vcpu))
1131                         msr_bitmap = vmx_msr_bitmap_longmode;
1132                 else
1133                         msr_bitmap = vmx_msr_bitmap_legacy;
1134
1135                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1136         }
1137 }
1138
1139 /*
1140  * reads and returns guest's timestamp counter "register"
1141  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1142  */
1143 static u64 guest_read_tsc(void)
1144 {
1145         u64 host_tsc, tsc_offset;
1146
1147         rdtscll(host_tsc);
1148         tsc_offset = vmcs_read64(TSC_OFFSET);
1149         return host_tsc + tsc_offset;
1150 }
1151
1152 /*
1153  * writes 'offset' into guest's timestamp counter offset register
1154  */
1155 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1156 {
1157         vmcs_write64(TSC_OFFSET, offset);
1158 }
1159
1160 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1161 {
1162         u64 offset = vmcs_read64(TSC_OFFSET);
1163         vmcs_write64(TSC_OFFSET, offset + adjustment);
1164 }
1165
1166 /*
1167  * Reads an msr value (of 'msr_index') into 'pdata'.
1168  * Returns 0 on success, non-0 otherwise.
1169  * Assumes vcpu_load() was already called.
1170  */
1171 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1172 {
1173         u64 data;
1174         struct shared_msr_entry *msr;
1175
1176         if (!pdata) {
1177                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1178                 return -EINVAL;
1179         }
1180
1181         switch (msr_index) {
1182 #ifdef CONFIG_X86_64
1183         case MSR_FS_BASE:
1184                 data = vmcs_readl(GUEST_FS_BASE);
1185                 break;
1186         case MSR_GS_BASE:
1187                 data = vmcs_readl(GUEST_GS_BASE);
1188                 break;
1189         case MSR_KERNEL_GS_BASE:
1190                 vmx_load_host_state(to_vmx(vcpu));
1191                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1192                 break;
1193 #endif
1194         case MSR_EFER:
1195                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1196         case MSR_IA32_TSC:
1197                 data = guest_read_tsc();
1198                 break;
1199         case MSR_IA32_SYSENTER_CS:
1200                 data = vmcs_read32(GUEST_SYSENTER_CS);
1201                 break;
1202         case MSR_IA32_SYSENTER_EIP:
1203                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1204                 break;
1205         case MSR_IA32_SYSENTER_ESP:
1206                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1207                 break;
1208         case MSR_TSC_AUX:
1209                 if (!to_vmx(vcpu)->rdtscp_enabled)
1210                         return 1;
1211                 /* Otherwise falls through */
1212         default:
1213                 vmx_load_host_state(to_vmx(vcpu));
1214                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1215                 if (msr) {
1216                         vmx_load_host_state(to_vmx(vcpu));
1217                         data = msr->data;
1218                         break;
1219                 }
1220                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1221         }
1222
1223         *pdata = data;
1224         return 0;
1225 }
1226
1227 /*
1228  * Writes msr value into into the appropriate "register".
1229  * Returns 0 on success, non-0 otherwise.
1230  * Assumes vcpu_load() was already called.
1231  */
1232 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1233 {
1234         struct vcpu_vmx *vmx = to_vmx(vcpu);
1235         struct shared_msr_entry *msr;
1236         int ret = 0;
1237
1238         switch (msr_index) {
1239         case MSR_EFER:
1240                 vmx_load_host_state(vmx);
1241                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1242                 break;
1243 #ifdef CONFIG_X86_64
1244         case MSR_FS_BASE:
1245                 vmcs_writel(GUEST_FS_BASE, data);
1246                 break;
1247         case MSR_GS_BASE:
1248                 vmcs_writel(GUEST_GS_BASE, data);
1249                 break;
1250         case MSR_KERNEL_GS_BASE:
1251                 vmx_load_host_state(vmx);
1252                 vmx->msr_guest_kernel_gs_base = data;
1253                 break;
1254 #endif
1255         case MSR_IA32_SYSENTER_CS:
1256                 vmcs_write32(GUEST_SYSENTER_CS, data);
1257                 break;
1258         case MSR_IA32_SYSENTER_EIP:
1259                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1260                 break;
1261         case MSR_IA32_SYSENTER_ESP:
1262                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1263                 break;
1264         case MSR_IA32_TSC:
1265                 kvm_write_tsc(vcpu, data);
1266                 break;
1267         case MSR_IA32_CR_PAT:
1268                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1269                         vmcs_write64(GUEST_IA32_PAT, data);
1270                         vcpu->arch.pat = data;
1271                         break;
1272                 }
1273                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1274                 break;
1275         case MSR_TSC_AUX:
1276                 if (!vmx->rdtscp_enabled)
1277                         return 1;
1278                 /* Check reserved bit, higher 32 bits should be zero */
1279                 if ((data >> 32) != 0)
1280                         return 1;
1281                 /* Otherwise falls through */
1282         default:
1283                 msr = find_msr_entry(vmx, msr_index);
1284                 if (msr) {
1285                         vmx_load_host_state(vmx);
1286                         msr->data = data;
1287                         break;
1288                 }
1289                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1290         }
1291
1292         return ret;
1293 }
1294
1295 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1296 {
1297         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1298         switch (reg) {
1299         case VCPU_REGS_RSP:
1300                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1301                 break;
1302         case VCPU_REGS_RIP:
1303                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1304                 break;
1305         case VCPU_EXREG_PDPTR:
1306                 if (enable_ept)
1307                         ept_save_pdptrs(vcpu);
1308                 break;
1309         default:
1310                 break;
1311         }
1312 }
1313
1314 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1315 {
1316         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1317                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1318         else
1319                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1320
1321         update_exception_bitmap(vcpu);
1322 }
1323
1324 static __init int cpu_has_kvm_support(void)
1325 {
1326         return cpu_has_vmx();
1327 }
1328
1329 static __init int vmx_disabled_by_bios(void)
1330 {
1331         u64 msr;
1332
1333         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1334         if (msr & FEATURE_CONTROL_LOCKED) {
1335                 /* launched w/ TXT and VMX disabled */
1336                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1337                         && tboot_enabled())
1338                         return 1;
1339                 /* launched w/o TXT and VMX only enabled w/ TXT */
1340                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1341                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1342                         && !tboot_enabled()) {
1343                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1344                                 "activate TXT before enabling KVM\n");
1345                         return 1;
1346                 }
1347                 /* launched w/o TXT and VMX disabled */
1348                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1349                         && !tboot_enabled())
1350                         return 1;
1351         }
1352
1353         return 0;
1354 }
1355
1356 static void kvm_cpu_vmxon(u64 addr)
1357 {
1358         asm volatile (ASM_VMX_VMXON_RAX
1359                         : : "a"(&addr), "m"(addr)
1360                         : "memory", "cc");
1361 }
1362
1363 static int hardware_enable(void *garbage)
1364 {
1365         int cpu = raw_smp_processor_id();
1366         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1367         u64 old, test_bits;
1368
1369         if (read_cr4() & X86_CR4_VMXE)
1370                 return -EBUSY;
1371
1372         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1373         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1374
1375         test_bits = FEATURE_CONTROL_LOCKED;
1376         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1377         if (tboot_enabled())
1378                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1379
1380         if ((old & test_bits) != test_bits) {
1381                 /* enable and lock */
1382                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1383         }
1384         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1385
1386         if (vmm_exclusive) {
1387                 kvm_cpu_vmxon(phys_addr);
1388                 ept_sync_global();
1389         }
1390
1391         store_gdt(&__get_cpu_var(host_gdt));
1392
1393         return 0;
1394 }
1395
1396 static void vmclear_local_vcpus(void)
1397 {
1398         int cpu = raw_smp_processor_id();
1399         struct vcpu_vmx *vmx, *n;
1400
1401         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1402                                  local_vcpus_link)
1403                 __vcpu_clear(vmx);
1404 }
1405
1406
1407 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1408  * tricks.
1409  */
1410 static void kvm_cpu_vmxoff(void)
1411 {
1412         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1413 }
1414
1415 static void hardware_disable(void *garbage)
1416 {
1417         if (vmm_exclusive) {
1418                 vmclear_local_vcpus();
1419                 kvm_cpu_vmxoff();
1420         }
1421         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1422 }
1423
1424 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1425                                       u32 msr, u32 *result)
1426 {
1427         u32 vmx_msr_low, vmx_msr_high;
1428         u32 ctl = ctl_min | ctl_opt;
1429
1430         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1431
1432         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1433         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1434
1435         /* Ensure minimum (required) set of control bits are supported. */
1436         if (ctl_min & ~ctl)
1437                 return -EIO;
1438
1439         *result = ctl;
1440         return 0;
1441 }
1442
1443 static __init bool allow_1_setting(u32 msr, u32 ctl)
1444 {
1445         u32 vmx_msr_low, vmx_msr_high;
1446
1447         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1448         return vmx_msr_high & ctl;
1449 }
1450
1451 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1452 {
1453         u32 vmx_msr_low, vmx_msr_high;
1454         u32 min, opt, min2, opt2;
1455         u32 _pin_based_exec_control = 0;
1456         u32 _cpu_based_exec_control = 0;
1457         u32 _cpu_based_2nd_exec_control = 0;
1458         u32 _vmexit_control = 0;
1459         u32 _vmentry_control = 0;
1460
1461         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1462         opt = PIN_BASED_VIRTUAL_NMIS;
1463         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1464                                 &_pin_based_exec_control) < 0)
1465                 return -EIO;
1466
1467         min =
1468 #ifdef CONFIG_X86_64
1469               CPU_BASED_CR8_LOAD_EXITING |
1470               CPU_BASED_CR8_STORE_EXITING |
1471 #endif
1472               CPU_BASED_CR3_LOAD_EXITING |
1473               CPU_BASED_CR3_STORE_EXITING |
1474               CPU_BASED_USE_IO_BITMAPS |
1475               CPU_BASED_MOV_DR_EXITING |
1476               CPU_BASED_USE_TSC_OFFSETING |
1477               CPU_BASED_MWAIT_EXITING |
1478               CPU_BASED_MONITOR_EXITING |
1479               CPU_BASED_INVLPG_EXITING;
1480
1481         if (yield_on_hlt)
1482                 min |= CPU_BASED_HLT_EXITING;
1483
1484         opt = CPU_BASED_TPR_SHADOW |
1485               CPU_BASED_USE_MSR_BITMAPS |
1486               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1487         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1488                                 &_cpu_based_exec_control) < 0)
1489                 return -EIO;
1490 #ifdef CONFIG_X86_64
1491         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1492                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1493                                            ~CPU_BASED_CR8_STORE_EXITING;
1494 #endif
1495         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1496                 min2 = 0;
1497                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1498                         SECONDARY_EXEC_WBINVD_EXITING |
1499                         SECONDARY_EXEC_ENABLE_VPID |
1500                         SECONDARY_EXEC_ENABLE_EPT |
1501                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1502                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1503                         SECONDARY_EXEC_RDTSCP;
1504                 if (adjust_vmx_controls(min2, opt2,
1505                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1506                                         &_cpu_based_2nd_exec_control) < 0)
1507                         return -EIO;
1508         }
1509 #ifndef CONFIG_X86_64
1510         if (!(_cpu_based_2nd_exec_control &
1511                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1512                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1513 #endif
1514         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1515                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1516                    enabled */
1517                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1518                                              CPU_BASED_CR3_STORE_EXITING |
1519                                              CPU_BASED_INVLPG_EXITING);
1520                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1521                       vmx_capability.ept, vmx_capability.vpid);
1522         }
1523
1524         min = 0;
1525 #ifdef CONFIG_X86_64
1526         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1527 #endif
1528         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1529         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1530                                 &_vmexit_control) < 0)
1531                 return -EIO;
1532
1533         min = 0;
1534         opt = VM_ENTRY_LOAD_IA32_PAT;
1535         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1536                                 &_vmentry_control) < 0)
1537                 return -EIO;
1538
1539         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1540
1541         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1542         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1543                 return -EIO;
1544
1545 #ifdef CONFIG_X86_64
1546         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1547         if (vmx_msr_high & (1u<<16))
1548                 return -EIO;
1549 #endif
1550
1551         /* Require Write-Back (WB) memory type for VMCS accesses. */
1552         if (((vmx_msr_high >> 18) & 15) != 6)
1553                 return -EIO;
1554
1555         vmcs_conf->size = vmx_msr_high & 0x1fff;
1556         vmcs_conf->order = get_order(vmcs_config.size);
1557         vmcs_conf->revision_id = vmx_msr_low;
1558
1559         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1560         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1561         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1562         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1563         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1564
1565         cpu_has_load_ia32_efer =
1566                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
1567                                 VM_ENTRY_LOAD_IA32_EFER)
1568                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
1569                                    VM_EXIT_LOAD_IA32_EFER);
1570
1571         return 0;
1572 }
1573
1574 static struct vmcs *alloc_vmcs_cpu(int cpu)
1575 {
1576         int node = cpu_to_node(cpu);
1577         struct page *pages;
1578         struct vmcs *vmcs;
1579
1580         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1581         if (!pages)
1582                 return NULL;
1583         vmcs = page_address(pages);
1584         memset(vmcs, 0, vmcs_config.size);
1585         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1586         return vmcs;
1587 }
1588
1589 static struct vmcs *alloc_vmcs(void)
1590 {
1591         return alloc_vmcs_cpu(raw_smp_processor_id());
1592 }
1593
1594 static void free_vmcs(struct vmcs *vmcs)
1595 {
1596         free_pages((unsigned long)vmcs, vmcs_config.order);
1597 }
1598
1599 static void free_kvm_area(void)
1600 {
1601         int cpu;
1602
1603         for_each_possible_cpu(cpu) {
1604                 free_vmcs(per_cpu(vmxarea, cpu));
1605                 per_cpu(vmxarea, cpu) = NULL;
1606         }
1607 }
1608
1609 static __init int alloc_kvm_area(void)
1610 {
1611         int cpu;
1612
1613         for_each_possible_cpu(cpu) {
1614                 struct vmcs *vmcs;
1615
1616                 vmcs = alloc_vmcs_cpu(cpu);
1617                 if (!vmcs) {
1618                         free_kvm_area();
1619                         return -ENOMEM;
1620                 }
1621
1622                 per_cpu(vmxarea, cpu) = vmcs;
1623         }
1624         return 0;
1625 }
1626
1627 static __init int hardware_setup(void)
1628 {
1629         if (setup_vmcs_config(&vmcs_config) < 0)
1630                 return -EIO;
1631
1632         if (boot_cpu_has(X86_FEATURE_NX))
1633                 kvm_enable_efer_bits(EFER_NX);
1634
1635         if (!cpu_has_vmx_vpid())
1636                 enable_vpid = 0;
1637
1638         if (!cpu_has_vmx_ept() ||
1639             !cpu_has_vmx_ept_4levels()) {
1640                 enable_ept = 0;
1641                 enable_unrestricted_guest = 0;
1642         }
1643
1644         if (!cpu_has_vmx_unrestricted_guest())
1645                 enable_unrestricted_guest = 0;
1646
1647         if (!cpu_has_vmx_flexpriority())
1648                 flexpriority_enabled = 0;
1649
1650         if (!cpu_has_vmx_tpr_shadow())
1651                 kvm_x86_ops->update_cr8_intercept = NULL;
1652
1653         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1654                 kvm_disable_largepages();
1655
1656         if (!cpu_has_vmx_ple())
1657                 ple_gap = 0;
1658
1659         return alloc_kvm_area();
1660 }
1661
1662 static __exit void hardware_unsetup(void)
1663 {
1664         free_kvm_area();
1665 }
1666
1667 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1668 {
1669         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1670
1671         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1672                 vmcs_write16(sf->selector, save->selector);
1673                 vmcs_writel(sf->base, save->base);
1674                 vmcs_write32(sf->limit, save->limit);
1675                 vmcs_write32(sf->ar_bytes, save->ar);
1676         } else {
1677                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1678                         << AR_DPL_SHIFT;
1679                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1680         }
1681 }
1682
1683 static void enter_pmode(struct kvm_vcpu *vcpu)
1684 {
1685         unsigned long flags;
1686         struct vcpu_vmx *vmx = to_vmx(vcpu);
1687
1688         vmx->emulation_required = 1;
1689         vmx->rmode.vm86_active = 0;
1690
1691         vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
1692         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1693         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1694         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1695
1696         flags = vmcs_readl(GUEST_RFLAGS);
1697         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1698         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1699         vmcs_writel(GUEST_RFLAGS, flags);
1700
1701         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1702                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1703
1704         update_exception_bitmap(vcpu);
1705
1706         if (emulate_invalid_guest_state)
1707                 return;
1708
1709         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1710         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1711         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1712         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1713
1714         vmcs_write16(GUEST_SS_SELECTOR, 0);
1715         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1716
1717         vmcs_write16(GUEST_CS_SELECTOR,
1718                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1719         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1720 }
1721
1722 static gva_t rmode_tss_base(struct kvm *kvm)
1723 {
1724         if (!kvm->arch.tss_addr) {
1725                 struct kvm_memslots *slots;
1726                 gfn_t base_gfn;
1727
1728                 slots = kvm_memslots(kvm);
1729                 base_gfn = slots->memslots[0].base_gfn +
1730                                  kvm->memslots->memslots[0].npages - 3;
1731                 return base_gfn << PAGE_SHIFT;
1732         }
1733         return kvm->arch.tss_addr;
1734 }
1735
1736 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1737 {
1738         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1739
1740         save->selector = vmcs_read16(sf->selector);
1741         save->base = vmcs_readl(sf->base);
1742         save->limit = vmcs_read32(sf->limit);
1743         save->ar = vmcs_read32(sf->ar_bytes);
1744         vmcs_write16(sf->selector, save->base >> 4);
1745         vmcs_write32(sf->base, save->base & 0xffff0);
1746         vmcs_write32(sf->limit, 0xffff);
1747         vmcs_write32(sf->ar_bytes, 0xf3);
1748         if (save->base & 0xf)
1749                 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
1750                             " aligned when entering protected mode (seg=%d)",
1751                             seg);
1752 }
1753
1754 static void enter_rmode(struct kvm_vcpu *vcpu)
1755 {
1756         unsigned long flags;
1757         struct vcpu_vmx *vmx = to_vmx(vcpu);
1758
1759         if (enable_unrestricted_guest)
1760                 return;
1761
1762         vmx->emulation_required = 1;
1763         vmx->rmode.vm86_active = 1;
1764
1765         vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
1766         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1767         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1768
1769         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1770         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1771
1772         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1773         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1774
1775         flags = vmcs_readl(GUEST_RFLAGS);
1776         vmx->rmode.save_rflags = flags;
1777
1778         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1779
1780         vmcs_writel(GUEST_RFLAGS, flags);
1781         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1782         update_exception_bitmap(vcpu);
1783
1784         if (emulate_invalid_guest_state)
1785                 goto continue_rmode;
1786
1787         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1788         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1789         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1790
1791         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1792         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1793         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1794                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1795         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1796
1797         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1798         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1799         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1800         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1801
1802 continue_rmode:
1803         kvm_mmu_reset_context(vcpu);
1804 }
1805
1806 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1807 {
1808         struct vcpu_vmx *vmx = to_vmx(vcpu);
1809         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1810
1811         if (!msr)
1812                 return;
1813
1814         /*
1815          * Force kernel_gs_base reloading before EFER changes, as control
1816          * of this msr depends on is_long_mode().
1817          */
1818         vmx_load_host_state(to_vmx(vcpu));
1819         vcpu->arch.efer = efer;
1820         if (efer & EFER_LMA) {
1821                 vmcs_write32(VM_ENTRY_CONTROLS,
1822                              vmcs_read32(VM_ENTRY_CONTROLS) |
1823                              VM_ENTRY_IA32E_MODE);
1824                 msr->data = efer;
1825         } else {
1826                 vmcs_write32(VM_ENTRY_CONTROLS,
1827                              vmcs_read32(VM_ENTRY_CONTROLS) &
1828                              ~VM_ENTRY_IA32E_MODE);
1829
1830                 msr->data = efer & ~EFER_LME;
1831         }
1832         setup_msrs(vmx);
1833 }
1834
1835 #ifdef CONFIG_X86_64
1836
1837 static void enter_lmode(struct kvm_vcpu *vcpu)
1838 {
1839         u32 guest_tr_ar;
1840
1841         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1842         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1843                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1844                        __func__);
1845                 vmcs_write32(GUEST_TR_AR_BYTES,
1846                              (guest_tr_ar & ~AR_TYPE_MASK)
1847                              | AR_TYPE_BUSY_64_TSS);
1848         }
1849         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1850 }
1851
1852 static void exit_lmode(struct kvm_vcpu *vcpu)
1853 {
1854         vmcs_write32(VM_ENTRY_CONTROLS,
1855                      vmcs_read32(VM_ENTRY_CONTROLS)
1856                      & ~VM_ENTRY_IA32E_MODE);
1857         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1858 }
1859
1860 #endif
1861
1862 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1863 {
1864         vpid_sync_context(to_vmx(vcpu));
1865         if (enable_ept) {
1866                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1867                         return;
1868                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1869         }
1870 }
1871
1872 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1873 {
1874         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1875
1876         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1877         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1878 }
1879
1880 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
1881 {
1882         if (enable_ept && is_paging(vcpu))
1883                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
1884         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1885 }
1886
1887 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1888 {
1889         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1890
1891         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1892         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1893 }
1894
1895 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1896 {
1897         if (!test_bit(VCPU_EXREG_PDPTR,
1898                       (unsigned long *)&vcpu->arch.regs_dirty))
1899                 return;
1900
1901         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1902                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
1903                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
1904                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
1905                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1906         }
1907 }
1908
1909 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1910 {
1911         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1912                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1913                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1914                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1915                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1916         }
1917
1918         __set_bit(VCPU_EXREG_PDPTR,
1919                   (unsigned long *)&vcpu->arch.regs_avail);
1920         __set_bit(VCPU_EXREG_PDPTR,
1921                   (unsigned long *)&vcpu->arch.regs_dirty);
1922 }
1923
1924 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1925
1926 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1927                                         unsigned long cr0,
1928                                         struct kvm_vcpu *vcpu)
1929 {
1930         vmx_decache_cr3(vcpu);
1931         if (!(cr0 & X86_CR0_PG)) {
1932                 /* From paging/starting to nonpaging */
1933                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1934                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1935                              (CPU_BASED_CR3_LOAD_EXITING |
1936                               CPU_BASED_CR3_STORE_EXITING));
1937                 vcpu->arch.cr0 = cr0;
1938                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1939         } else if (!is_paging(vcpu)) {
1940                 /* From nonpaging to paging */
1941                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1942                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1943                              ~(CPU_BASED_CR3_LOAD_EXITING |
1944                                CPU_BASED_CR3_STORE_EXITING));
1945                 vcpu->arch.cr0 = cr0;
1946                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1947         }
1948
1949         if (!(cr0 & X86_CR0_WP))
1950                 *hw_cr0 &= ~X86_CR0_WP;
1951 }
1952
1953 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1954 {
1955         struct vcpu_vmx *vmx = to_vmx(vcpu);
1956         unsigned long hw_cr0;
1957
1958         if (enable_unrestricted_guest)
1959                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1960                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1961         else
1962                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1963
1964         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1965                 enter_pmode(vcpu);
1966
1967         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1968                 enter_rmode(vcpu);
1969
1970 #ifdef CONFIG_X86_64
1971         if (vcpu->arch.efer & EFER_LME) {
1972                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1973                         enter_lmode(vcpu);
1974                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1975                         exit_lmode(vcpu);
1976         }
1977 #endif
1978
1979         if (enable_ept)
1980                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1981
1982         if (!vcpu->fpu_active)
1983                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
1984
1985         vmcs_writel(CR0_READ_SHADOW, cr0);
1986         vmcs_writel(GUEST_CR0, hw_cr0);
1987         vcpu->arch.cr0 = cr0;
1988 }
1989
1990 static u64 construct_eptp(unsigned long root_hpa)
1991 {
1992         u64 eptp;
1993
1994         /* TODO write the value reading from MSR */
1995         eptp = VMX_EPT_DEFAULT_MT |
1996                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1997         eptp |= (root_hpa & PAGE_MASK);
1998
1999         return eptp;
2000 }
2001
2002 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2003 {
2004         unsigned long guest_cr3;
2005         u64 eptp;
2006
2007         guest_cr3 = cr3;
2008         if (enable_ept) {
2009                 eptp = construct_eptp(cr3);
2010                 vmcs_write64(EPT_POINTER, eptp);
2011                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2012                         vcpu->kvm->arch.ept_identity_map_addr;
2013                 ept_load_pdptrs(vcpu);
2014         }
2015
2016         vmx_flush_tlb(vcpu);
2017         vmcs_writel(GUEST_CR3, guest_cr3);
2018 }
2019
2020 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2021 {
2022         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2023                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2024
2025         vcpu->arch.cr4 = cr4;
2026         if (enable_ept) {
2027                 if (!is_paging(vcpu)) {
2028                         hw_cr4 &= ~X86_CR4_PAE;
2029                         hw_cr4 |= X86_CR4_PSE;
2030                 } else if (!(cr4 & X86_CR4_PAE)) {
2031                         hw_cr4 &= ~X86_CR4_PAE;
2032                 }
2033         }
2034
2035         vmcs_writel(CR4_READ_SHADOW, cr4);
2036         vmcs_writel(GUEST_CR4, hw_cr4);
2037 }
2038
2039 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2040                             struct kvm_segment *var, int seg)
2041 {
2042         struct vcpu_vmx *vmx = to_vmx(vcpu);
2043         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2044         struct kvm_save_segment *save;
2045         u32 ar;
2046
2047         if (vmx->rmode.vm86_active
2048             && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2049                 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2050                 || seg == VCPU_SREG_GS)
2051             && !emulate_invalid_guest_state) {
2052                 switch (seg) {
2053                 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2054                 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2055                 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2056                 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2057                 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2058                 default: BUG();
2059                 }
2060                 var->selector = save->selector;
2061                 var->base = save->base;
2062                 var->limit = save->limit;
2063                 ar = save->ar;
2064                 if (seg == VCPU_SREG_TR
2065                     || var->selector == vmcs_read16(sf->selector))
2066                         goto use_saved_rmode_seg;
2067         }
2068         var->base = vmcs_readl(sf->base);
2069         var->limit = vmcs_read32(sf->limit);
2070         var->selector = vmcs_read16(sf->selector);
2071         ar = vmcs_read32(sf->ar_bytes);
2072 use_saved_rmode_seg:
2073         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2074                 ar = 0;
2075         var->type = ar & 15;
2076         var->s = (ar >> 4) & 1;
2077         var->dpl = (ar >> 5) & 3;
2078         var->present = (ar >> 7) & 1;
2079         var->avl = (ar >> 12) & 1;
2080         var->l = (ar >> 13) & 1;
2081         var->db = (ar >> 14) & 1;
2082         var->g = (ar >> 15) & 1;
2083         var->unusable = (ar >> 16) & 1;
2084 }
2085
2086 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2087 {
2088         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2089         struct kvm_segment s;
2090
2091         if (to_vmx(vcpu)->rmode.vm86_active) {
2092                 vmx_get_segment(vcpu, &s, seg);
2093                 return s.base;
2094         }
2095         return vmcs_readl(sf->base);
2096 }
2097
2098 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2099 {
2100         if (!is_protmode(vcpu))
2101                 return 0;
2102
2103         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
2104                 return 3;
2105
2106         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
2107 }
2108
2109 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2110 {
2111         u32 ar;
2112
2113         if (var->unusable)
2114                 ar = 1 << 16;
2115         else {
2116                 ar = var->type & 15;
2117                 ar |= (var->s & 1) << 4;
2118                 ar |= (var->dpl & 3) << 5;
2119                 ar |= (var->present & 1) << 7;
2120                 ar |= (var->avl & 1) << 12;
2121                 ar |= (var->l & 1) << 13;
2122                 ar |= (var->db & 1) << 14;
2123                 ar |= (var->g & 1) << 15;
2124         }
2125         if (ar == 0) /* a 0 value means unusable */
2126                 ar = AR_UNUSABLE_MASK;
2127
2128         return ar;
2129 }
2130
2131 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2132                             struct kvm_segment *var, int seg)
2133 {
2134         struct vcpu_vmx *vmx = to_vmx(vcpu);
2135         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2136         u32 ar;
2137
2138         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2139                 vmcs_write16(sf->selector, var->selector);
2140                 vmx->rmode.tr.selector = var->selector;
2141                 vmx->rmode.tr.base = var->base;
2142                 vmx->rmode.tr.limit = var->limit;
2143                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2144                 return;
2145         }
2146         vmcs_writel(sf->base, var->base);
2147         vmcs_write32(sf->limit, var->limit);
2148         vmcs_write16(sf->selector, var->selector);
2149         if (vmx->rmode.vm86_active && var->s) {
2150                 /*
2151                  * Hack real-mode segments into vm86 compatibility.
2152                  */
2153                 if (var->base == 0xffff0000 && var->selector == 0xf000)
2154                         vmcs_writel(sf->base, 0xf0000);
2155                 ar = 0xf3;
2156         } else
2157                 ar = vmx_segment_access_rights(var);
2158
2159         /*
2160          *   Fix the "Accessed" bit in AR field of segment registers for older
2161          * qemu binaries.
2162          *   IA32 arch specifies that at the time of processor reset the
2163          * "Accessed" bit in the AR field of segment registers is 1. And qemu
2164          * is setting it to 0 in the usedland code. This causes invalid guest
2165          * state vmexit when "unrestricted guest" mode is turned on.
2166          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
2167          * tree. Newer qemu binaries with that qemu fix would not need this
2168          * kvm hack.
2169          */
2170         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2171                 ar |= 0x1; /* Accessed */
2172
2173         vmcs_write32(sf->ar_bytes, ar);
2174 }
2175
2176 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2177 {
2178         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
2179
2180         *db = (ar >> 14) & 1;
2181         *l = (ar >> 13) & 1;
2182 }
2183
2184 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2185 {
2186         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2187         dt->address = vmcs_readl(GUEST_IDTR_BASE);
2188 }
2189
2190 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2191 {
2192         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2193         vmcs_writel(GUEST_IDTR_BASE, dt->address);
2194 }
2195
2196 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2197 {
2198         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2199         dt->address = vmcs_readl(GUEST_GDTR_BASE);
2200 }
2201
2202 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2203 {
2204         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2205         vmcs_writel(GUEST_GDTR_BASE, dt->address);
2206 }
2207
2208 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2209 {
2210         struct kvm_segment var;
2211         u32 ar;
2212
2213         vmx_get_segment(vcpu, &var, seg);
2214         ar = vmx_segment_access_rights(&var);
2215
2216         if (var.base != (var.selector << 4))
2217                 return false;
2218         if (var.limit != 0xffff)
2219                 return false;
2220         if (ar != 0xf3)
2221                 return false;
2222
2223         return true;
2224 }
2225
2226 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2227 {
2228         struct kvm_segment cs;
2229         unsigned int cs_rpl;
2230
2231         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2232         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2233
2234         if (cs.unusable)
2235                 return false;
2236         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2237                 return false;
2238         if (!cs.s)
2239                 return false;
2240         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2241                 if (cs.dpl > cs_rpl)
2242                         return false;
2243         } else {
2244                 if (cs.dpl != cs_rpl)
2245                         return false;
2246         }
2247         if (!cs.present)
2248                 return false;
2249
2250         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2251         return true;
2252 }
2253
2254 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2255 {
2256         struct kvm_segment ss;
2257         unsigned int ss_rpl;
2258
2259         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2260         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2261
2262         if (ss.unusable)
2263                 return true;
2264         if (ss.type != 3 && ss.type != 7)
2265                 return false;
2266         if (!ss.s)
2267                 return false;
2268         if (ss.dpl != ss_rpl) /* DPL != RPL */
2269                 return false;
2270         if (!ss.present)
2271                 return false;
2272
2273         return true;
2274 }
2275
2276 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2277 {
2278         struct kvm_segment var;
2279         unsigned int rpl;
2280
2281         vmx_get_segment(vcpu, &var, seg);
2282         rpl = var.selector & SELECTOR_RPL_MASK;
2283
2284         if (var.unusable)
2285                 return true;
2286         if (!var.s)
2287                 return false;
2288         if (!var.present)
2289                 return false;
2290         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2291                 if (var.dpl < rpl) /* DPL < RPL */
2292                         return false;
2293         }
2294
2295         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2296          * rights flags
2297          */
2298         return true;
2299 }
2300
2301 static bool tr_valid(struct kvm_vcpu *vcpu)
2302 {
2303         struct kvm_segment tr;
2304
2305         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2306
2307         if (tr.unusable)
2308                 return false;
2309         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2310                 return false;
2311         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2312                 return false;
2313         if (!tr.present)
2314                 return false;
2315
2316         return true;
2317 }
2318
2319 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2320 {
2321         struct kvm_segment ldtr;
2322
2323         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2324
2325         if (ldtr.unusable)
2326                 return true;
2327         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2328                 return false;
2329         if (ldtr.type != 2)
2330                 return false;
2331         if (!ldtr.present)
2332                 return false;
2333
2334         return true;
2335 }
2336
2337 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2338 {
2339         struct kvm_segment cs, ss;
2340
2341         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2342         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2343
2344         return ((cs.selector & SELECTOR_RPL_MASK) ==
2345                  (ss.selector & SELECTOR_RPL_MASK));
2346 }
2347
2348 /*
2349  * Check if guest state is valid. Returns true if valid, false if
2350  * not.
2351  * We assume that registers are always usable
2352  */
2353 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2354 {
2355         /* real mode guest state checks */
2356         if (!is_protmode(vcpu)) {
2357                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2358                         return false;
2359                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2360                         return false;
2361                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2362                         return false;
2363                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2364                         return false;
2365                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2366                         return false;
2367                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2368                         return false;
2369         } else {
2370         /* protected mode guest state checks */
2371                 if (!cs_ss_rpl_check(vcpu))
2372                         return false;
2373                 if (!code_segment_valid(vcpu))
2374                         return false;
2375                 if (!stack_segment_valid(vcpu))
2376                         return false;
2377                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2378                         return false;
2379                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2380                         return false;
2381                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2382                         return false;
2383                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2384                         return false;
2385                 if (!tr_valid(vcpu))
2386                         return false;
2387                 if (!ldtr_valid(vcpu))
2388                         return false;
2389         }
2390         /* TODO:
2391          * - Add checks on RIP
2392          * - Add checks on RFLAGS
2393          */
2394
2395         return true;
2396 }
2397
2398 static int init_rmode_tss(struct kvm *kvm)
2399 {
2400         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2401         u16 data = 0;
2402         int ret = 0;
2403         int r;
2404
2405         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2406         if (r < 0)
2407                 goto out;
2408         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2409         r = kvm_write_guest_page(kvm, fn++, &data,
2410                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2411         if (r < 0)
2412                 goto out;
2413         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2414         if (r < 0)
2415                 goto out;
2416         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2417         if (r < 0)
2418                 goto out;
2419         data = ~0;
2420         r = kvm_write_guest_page(kvm, fn, &data,
2421                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2422                                  sizeof(u8));
2423         if (r < 0)
2424                 goto out;
2425
2426         ret = 1;
2427 out:
2428         return ret;
2429 }
2430
2431 static int init_rmode_identity_map(struct kvm *kvm)
2432 {
2433         int i, r, ret;
2434         pfn_t identity_map_pfn;
2435         u32 tmp;
2436
2437         if (!enable_ept)
2438                 return 1;
2439         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2440                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2441                         "haven't been allocated!\n");
2442                 return 0;
2443         }
2444         if (likely(kvm->arch.ept_identity_pagetable_done))
2445                 return 1;
2446         ret = 0;
2447         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2448         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2449         if (r < 0)
2450                 goto out;
2451         /* Set up identity-mapping pagetable for EPT in real mode */
2452         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2453                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2454                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2455                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2456                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2457                 if (r < 0)
2458                         goto out;
2459         }
2460         kvm->arch.ept_identity_pagetable_done = true;
2461         ret = 1;
2462 out:
2463         return ret;
2464 }
2465
2466 static void seg_setup(int seg)
2467 {
2468         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2469         unsigned int ar;
2470
2471         vmcs_write16(sf->selector, 0);
2472         vmcs_writel(sf->base, 0);
2473         vmcs_write32(sf->limit, 0xffff);
2474         if (enable_unrestricted_guest) {
2475                 ar = 0x93;
2476                 if (seg == VCPU_SREG_CS)
2477                         ar |= 0x08; /* code segment */
2478         } else
2479                 ar = 0xf3;
2480
2481         vmcs_write32(sf->ar_bytes, ar);
2482 }
2483
2484 static int alloc_apic_access_page(struct kvm *kvm)
2485 {
2486         struct kvm_userspace_memory_region kvm_userspace_mem;
2487         int r = 0;
2488
2489         mutex_lock(&kvm->slots_lock);
2490         if (kvm->arch.apic_access_page)
2491                 goto out;
2492         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2493         kvm_userspace_mem.flags = 0;
2494         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2495         kvm_userspace_mem.memory_size = PAGE_SIZE;
2496         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2497         if (r)
2498                 goto out;
2499
2500         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2501 out:
2502         mutex_unlock(&kvm->slots_lock);
2503         return r;
2504 }
2505
2506 static int alloc_identity_pagetable(struct kvm *kvm)
2507 {
2508         struct kvm_userspace_memory_region kvm_userspace_mem;
2509         int r = 0;
2510
2511         mutex_lock(&kvm->slots_lock);
2512         if (kvm->arch.ept_identity_pagetable)
2513                 goto out;
2514         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2515         kvm_userspace_mem.flags = 0;
2516         kvm_userspace_mem.guest_phys_addr =
2517                 kvm->arch.ept_identity_map_addr;
2518         kvm_userspace_mem.memory_size = PAGE_SIZE;
2519         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2520         if (r)
2521                 goto out;
2522
2523         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2524                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2525 out:
2526         mutex_unlock(&kvm->slots_lock);
2527         return r;
2528 }
2529
2530 static void allocate_vpid(struct vcpu_vmx *vmx)
2531 {
2532         int vpid;
2533
2534         vmx->vpid = 0;
2535         if (!enable_vpid)
2536                 return;
2537         spin_lock(&vmx_vpid_lock);
2538         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2539         if (vpid < VMX_NR_VPIDS) {
2540                 vmx->vpid = vpid;
2541                 __set_bit(vpid, vmx_vpid_bitmap);
2542         }
2543         spin_unlock(&vmx_vpid_lock);
2544 }
2545
2546 static void free_vpid(struct vcpu_vmx *vmx)
2547 {
2548         if (!enable_vpid)
2549                 return;
2550         spin_lock(&vmx_vpid_lock);
2551         if (vmx->vpid != 0)
2552                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2553         spin_unlock(&vmx_vpid_lock);
2554 }
2555
2556 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2557 {
2558         int f = sizeof(unsigned long);
2559
2560         if (!cpu_has_vmx_msr_bitmap())
2561                 return;
2562
2563         /*
2564          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2565          * have the write-low and read-high bitmap offsets the wrong way round.
2566          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2567          */
2568         if (msr <= 0x1fff) {
2569                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2570                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2571         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2572                 msr &= 0x1fff;
2573                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2574                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2575         }
2576 }
2577
2578 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2579 {
2580         if (!longmode_only)
2581                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2582         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2583 }
2584
2585 /*
2586  * Sets up the vmcs for emulated real mode.
2587  */
2588 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2589 {
2590         u32 host_sysenter_cs, msr_low, msr_high;
2591         u32 junk;
2592         u64 host_pat;
2593         unsigned long a;
2594         struct desc_ptr dt;
2595         int i;
2596         unsigned long kvm_vmx_return;
2597         u32 exec_control;
2598
2599         /* I/O */
2600         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2601         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2602
2603         if (cpu_has_vmx_msr_bitmap())
2604                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2605
2606         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2607
2608         /* Control */
2609         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2610                 vmcs_config.pin_based_exec_ctrl);
2611
2612         exec_control = vmcs_config.cpu_based_exec_ctrl;
2613         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2614                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2615 #ifdef CONFIG_X86_64
2616                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2617                                 CPU_BASED_CR8_LOAD_EXITING;
2618 #endif
2619         }
2620         if (!enable_ept)
2621                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2622                                 CPU_BASED_CR3_LOAD_EXITING  |
2623                                 CPU_BASED_INVLPG_EXITING;
2624         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2625
2626         if (cpu_has_secondary_exec_ctrls()) {
2627                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2628                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2629                         exec_control &=
2630                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2631                 if (vmx->vpid == 0)
2632                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2633                 if (!enable_ept) {
2634                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2635                         enable_unrestricted_guest = 0;
2636                 }
2637                 if (!enable_unrestricted_guest)
2638                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2639                 if (!ple_gap)
2640                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2641                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2642         }
2643
2644         if (ple_gap) {
2645                 vmcs_write32(PLE_GAP, ple_gap);
2646                 vmcs_write32(PLE_WINDOW, ple_window);
2647         }
2648
2649         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2650         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2651         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2652
2653         vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
2654         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2655         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2656
2657         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2658         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2659         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2660         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
2661         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
2662         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2663 #ifdef CONFIG_X86_64
2664         rdmsrl(MSR_FS_BASE, a);
2665         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2666         rdmsrl(MSR_GS_BASE, a);
2667         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2668 #else
2669         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2670         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2671 #endif
2672
2673         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2674
2675         native_store_idt(&dt);
2676         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
2677
2678         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2679         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2680         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2681         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2682         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2683         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2684         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2685
2686         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2687         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2688         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2689         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2690         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2691         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2692
2693         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2694                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2695                 host_pat = msr_low | ((u64) msr_high << 32);
2696                 vmcs_write64(HOST_IA32_PAT, host_pat);
2697         }
2698         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2699                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2700                 host_pat = msr_low | ((u64) msr_high << 32);
2701                 /* Write the default value follow host pat */
2702                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2703                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2704                 vmx->vcpu.arch.pat = host_pat;
2705         }
2706
2707         for (i = 0; i < NR_VMX_MSR; ++i) {
2708                 u32 index = vmx_msr_index[i];
2709                 u32 data_low, data_high;
2710                 int j = vmx->nmsrs;
2711
2712                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2713                         continue;
2714                 if (wrmsr_safe(index, data_low, data_high) < 0)
2715                         continue;
2716                 vmx->guest_msrs[j].index = i;
2717                 vmx->guest_msrs[j].data = 0;
2718                 vmx->guest_msrs[j].mask = -1ull;
2719                 ++vmx->nmsrs;
2720         }
2721
2722         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2723
2724         /* 22.2.1, 20.8.1 */
2725         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2726
2727         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2728         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2729         if (enable_ept)
2730                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2731         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2732
2733         kvm_write_tsc(&vmx->vcpu, 0);
2734
2735         return 0;
2736 }
2737
2738 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2739 {
2740         struct vcpu_vmx *vmx = to_vmx(vcpu);
2741         u64 msr;
2742         int ret;
2743
2744         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2745
2746         vmx->rmode.vm86_active = 0;
2747
2748         vmx->soft_vnmi_blocked = 0;
2749
2750         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2751         kvm_set_cr8(&vmx->vcpu, 0);
2752         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2753         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2754                 msr |= MSR_IA32_APICBASE_BSP;
2755         kvm_set_apic_base(&vmx->vcpu, msr);
2756
2757         ret = fx_init(&vmx->vcpu);
2758         if (ret != 0)
2759                 goto out;
2760
2761         seg_setup(VCPU_SREG_CS);
2762         /*
2763          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2764          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2765          */
2766         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2767                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2768                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2769         } else {
2770                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2771                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2772         }
2773
2774         seg_setup(VCPU_SREG_DS);
2775         seg_setup(VCPU_SREG_ES);
2776         seg_setup(VCPU_SREG_FS);
2777         seg_setup(VCPU_SREG_GS);
2778         seg_setup(VCPU_SREG_SS);
2779
2780         vmcs_write16(GUEST_TR_SELECTOR, 0);
2781         vmcs_writel(GUEST_TR_BASE, 0);
2782         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2783         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2784
2785         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2786         vmcs_writel(GUEST_LDTR_BASE, 0);
2787         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2788         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2789
2790         vmcs_write32(GUEST_SYSENTER_CS, 0);
2791         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2792         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2793
2794         vmcs_writel(GUEST_RFLAGS, 0x02);
2795         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2796                 kvm_rip_write(vcpu, 0xfff0);
2797         else
2798                 kvm_rip_write(vcpu, 0);
2799         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2800
2801         vmcs_writel(GUEST_DR7, 0x400);
2802
2803         vmcs_writel(GUEST_GDTR_BASE, 0);
2804         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2805
2806         vmcs_writel(GUEST_IDTR_BASE, 0);
2807         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2808
2809         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2810         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2811         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2812
2813         /* Special registers */
2814         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2815
2816         setup_msrs(vmx);
2817
2818         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2819
2820         if (cpu_has_vmx_tpr_shadow()) {
2821                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2822                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2823                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2824                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2825                 vmcs_write32(TPR_THRESHOLD, 0);
2826         }
2827
2828         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2829                 vmcs_write64(APIC_ACCESS_ADDR,
2830                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2831
2832         if (vmx->vpid != 0)
2833                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2834
2835         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2836         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2837         vmx_set_cr4(&vmx->vcpu, 0);
2838         vmx_set_efer(&vmx->vcpu, 0);
2839         vmx_fpu_activate(&vmx->vcpu);
2840         update_exception_bitmap(&vmx->vcpu);
2841
2842         vpid_sync_context(vmx);
2843
2844         ret = 0;
2845
2846         /* HACK: Don't enable emulation on guest boot/reset */
2847         vmx->emulation_required = 0;
2848
2849 out:
2850         return ret;
2851 }
2852
2853 static void enable_irq_window(struct kvm_vcpu *vcpu)
2854 {
2855         u32 cpu_based_vm_exec_control;
2856
2857         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2858         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2859         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2860 }
2861
2862 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2863 {
2864         u32 cpu_based_vm_exec_control;
2865
2866         if (!cpu_has_virtual_nmis()) {
2867                 enable_irq_window(vcpu);
2868                 return;
2869         }
2870
2871         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
2872                 enable_irq_window(vcpu);
2873                 return;
2874         }
2875         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2876         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2877         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2878 }
2879
2880 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2881 {
2882         struct vcpu_vmx *vmx = to_vmx(vcpu);
2883         uint32_t intr;
2884         int irq = vcpu->arch.interrupt.nr;
2885
2886         trace_kvm_inj_virq(irq);
2887
2888         ++vcpu->stat.irq_injections;
2889         if (vmx->rmode.vm86_active) {
2890                 if (kvm_inject_realmode_interrupt(vcpu, irq) != EMULATE_DONE)
2891                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2892                 return;
2893         }
2894         intr = irq | INTR_INFO_VALID_MASK;
2895         if (vcpu->arch.interrupt.soft) {
2896                 intr |= INTR_TYPE_SOFT_INTR;
2897                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2898                              vmx->vcpu.arch.event_exit_inst_len);
2899         } else
2900                 intr |= INTR_TYPE_EXT_INTR;
2901         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2902         vmx_clear_hlt(vcpu);
2903 }
2904
2905 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2906 {
2907         struct vcpu_vmx *vmx = to_vmx(vcpu);
2908
2909         if (!cpu_has_virtual_nmis()) {
2910                 /*
2911                  * Tracking the NMI-blocked state in software is built upon
2912                  * finding the next open IRQ window. This, in turn, depends on
2913                  * well-behaving guests: They have to keep IRQs disabled at
2914                  * least as long as the NMI handler runs. Otherwise we may
2915                  * cause NMI nesting, maybe breaking the guest. But as this is
2916                  * highly unlikely, we can live with the residual risk.
2917                  */
2918                 vmx->soft_vnmi_blocked = 1;
2919                 vmx->vnmi_blocked_time = 0;
2920         }
2921
2922         ++vcpu->stat.nmi_injections;
2923         if (vmx->rmode.vm86_active) {
2924                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR) != EMULATE_DONE)
2925                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2926                 return;
2927         }
2928         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2929                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2930         vmx_clear_hlt(vcpu);
2931 }
2932
2933 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2934 {
2935         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2936                 return 0;
2937
2938         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2939                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
2940                    | GUEST_INTR_STATE_NMI));
2941 }
2942
2943 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2944 {
2945         if (!cpu_has_virtual_nmis())
2946                 return to_vmx(vcpu)->soft_vnmi_blocked;
2947         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
2948 }
2949
2950 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2951 {
2952         struct vcpu_vmx *vmx = to_vmx(vcpu);
2953
2954         if (!cpu_has_virtual_nmis()) {
2955                 if (vmx->soft_vnmi_blocked != masked) {
2956                         vmx->soft_vnmi_blocked = masked;
2957                         vmx->vnmi_blocked_time = 0;
2958                 }
2959         } else {
2960                 if (masked)
2961                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2962                                       GUEST_INTR_STATE_NMI);
2963                 else
2964                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2965                                         GUEST_INTR_STATE_NMI);
2966         }
2967 }
2968
2969 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2970 {
2971         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2972                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2973                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2974 }
2975
2976 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2977 {
2978         int ret;
2979         struct kvm_userspace_memory_region tss_mem = {
2980                 .slot = TSS_PRIVATE_MEMSLOT,
2981                 .guest_phys_addr = addr,
2982                 .memory_size = PAGE_SIZE * 3,
2983                 .flags = 0,
2984         };
2985
2986         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2987         if (ret)
2988                 return ret;
2989         kvm->arch.tss_addr = addr;
2990         if (!init_rmode_tss(kvm))
2991                 return  -ENOMEM;
2992
2993         return 0;
2994 }
2995
2996 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2997                                   int vec, u32 err_code)
2998 {
2999         /*
3000          * Instruction with address size override prefix opcode 0x67
3001          * Cause the #SS fault with 0 error code in VM86 mode.
3002          */
3003         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3004                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3005                         return 1;
3006         /*
3007          * Forward all other exceptions that are valid in real mode.
3008          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3009          *        the required debugging infrastructure rework.
3010          */
3011         switch (vec) {
3012         case DB_VECTOR:
3013                 if (vcpu->guest_debug &
3014                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3015                         return 0;
3016                 kvm_queue_exception(vcpu, vec);
3017                 return 1;
3018         case BP_VECTOR:
3019                 /*
3020                  * Update instruction length as we may reinject the exception
3021                  * from user space while in guest debugging mode.
3022                  */
3023                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3024                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3025                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3026                         return 0;
3027                 /* fall through */
3028         case DE_VECTOR:
3029         case OF_VECTOR:
3030         case BR_VECTOR:
3031         case UD_VECTOR:
3032         case DF_VECTOR:
3033         case SS_VECTOR:
3034         case GP_VECTOR:
3035         case MF_VECTOR:
3036                 kvm_queue_exception(vcpu, vec);
3037                 return 1;
3038         }
3039         return 0;
3040 }
3041
3042 /*
3043  * Trigger machine check on the host. We assume all the MSRs are already set up
3044  * by the CPU and that we still run on the same CPU as the MCE occurred on.
3045  * We pass a fake environment to the machine check handler because we want
3046  * the guest to be always treated like user space, no matter what context
3047  * it used internally.
3048  */
3049 static void kvm_machine_check(void)
3050 {
3051 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3052         struct pt_regs regs = {
3053                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3054                 .flags = X86_EFLAGS_IF,
3055         };
3056
3057         do_machine_check(&regs, 0);
3058 #endif
3059 }
3060
3061 static int handle_machine_check(struct kvm_vcpu *vcpu)
3062 {
3063         /* already handled by vcpu_run */
3064         return 1;
3065 }
3066
3067 static int handle_exception(struct kvm_vcpu *vcpu)
3068 {
3069         struct vcpu_vmx *vmx = to_vmx(vcpu);
3070         struct kvm_run *kvm_run = vcpu->run;
3071         u32 intr_info, ex_no, error_code;
3072         unsigned long cr2, rip, dr6;
3073         u32 vect_info;
3074         enum emulation_result er;
3075
3076         vect_info = vmx->idt_vectoring_info;
3077         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3078
3079         if (is_machine_check(intr_info))
3080                 return handle_machine_check(vcpu);
3081
3082         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3083             !is_page_fault(intr_info)) {
3084                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3085                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3086                 vcpu->run->internal.ndata = 2;
3087                 vcpu->run->internal.data[0] = vect_info;
3088                 vcpu->run->internal.data[1] = intr_info;
3089                 return 0;
3090         }
3091
3092         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3093                 return 1;  /* already handled by vmx_vcpu_run() */
3094
3095         if (is_no_device(intr_info)) {
3096                 vmx_fpu_activate(vcpu);
3097                 return 1;
3098         }
3099
3100         if (is_invalid_opcode(intr_info)) {
3101                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3102                 if (er != EMULATE_DONE)
3103                         kvm_queue_exception(vcpu, UD_VECTOR);
3104                 return 1;
3105         }
3106
3107         error_code = 0;
3108         rip = kvm_rip_read(vcpu);
3109         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3110                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3111         if (is_page_fault(intr_info)) {
3112                 /* EPT won't cause page fault directly */
3113                 if (enable_ept)
3114                         BUG();
3115                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3116                 trace_kvm_page_fault(cr2, error_code);
3117
3118                 if (kvm_event_needs_reinjection(vcpu))
3119                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
3120                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3121         }
3122
3123         if (vmx->rmode.vm86_active &&
3124             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3125                                                                 error_code)) {
3126                 if (vcpu->arch.halt_request) {
3127                         vcpu->arch.halt_request = 0;
3128                         return kvm_emulate_halt(vcpu);
3129                 }
3130                 return 1;
3131         }
3132
3133         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3134         switch (ex_no) {
3135         case DB_VECTOR:
3136                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3137                 if (!(vcpu->guest_debug &
3138                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3139                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3140                         kvm_queue_exception(vcpu, DB_VECTOR);
3141                         return 1;
3142                 }
3143                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3144                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3145                 /* fall through */
3146         case BP_VECTOR:
3147                 /*
3148                  * Update instruction length as we may reinject #BP from
3149                  * user space while in guest debugging mode. Reading it for
3150                  * #DB as well causes no harm, it is not used in that case.
3151                  */
3152                 vmx->vcpu.arch.event_exit_inst_len =
3153                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3154                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3155                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3156                 kvm_run->debug.arch.exception = ex_no;
3157                 break;
3158         default:
3159                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3160                 kvm_run->ex.exception = ex_no;
3161                 kvm_run->ex.error_code = error_code;
3162                 break;
3163         }
3164         return 0;
3165 }
3166
3167 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3168 {
3169         ++vcpu->stat.irq_exits;
3170         return 1;
3171 }
3172
3173 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3174 {
3175         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3176         return 0;
3177 }
3178
3179 static int handle_io(struct kvm_vcpu *vcpu)
3180 {
3181         unsigned long exit_qualification;
3182         int size, in, string;
3183         unsigned port;
3184
3185         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3186         string = (exit_qualification & 16) != 0;
3187         in = (exit_qualification & 8) != 0;
3188
3189         ++vcpu->stat.io_exits;
3190
3191         if (string || in)
3192                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3193
3194         port = exit_qualification >> 16;
3195         size = (exit_qualification & 7) + 1;
3196         skip_emulated_instruction(vcpu);
3197
3198         return kvm_fast_pio_out(vcpu, size, port);
3199 }
3200
3201 static void
3202 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3203 {
3204         /*
3205          * Patch in the VMCALL instruction:
3206          */
3207         hypercall[0] = 0x0f;
3208         hypercall[1] = 0x01;
3209         hypercall[2] = 0xc1;
3210 }
3211
3212 static int handle_cr(struct kvm_vcpu *vcpu)
3213 {
3214         unsigned long exit_qualification, val;
3215         int cr;
3216         int reg;
3217         int err;
3218
3219         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3220         cr = exit_qualification & 15;
3221         reg = (exit_qualification >> 8) & 15;
3222         switch ((exit_qualification >> 4) & 3) {
3223         case 0: /* mov to cr */
3224                 val = kvm_register_read(vcpu, reg);
3225                 trace_kvm_cr_write(cr, val);
3226                 switch (cr) {
3227                 case 0:
3228                         err = kvm_set_cr0(vcpu, val);
3229                         kvm_complete_insn_gp(vcpu, err);
3230                         return 1;
3231                 case 3:
3232                         err = kvm_set_cr3(vcpu, val);
3233                         kvm_complete_insn_gp(vcpu, err);
3234                         return 1;
3235                 case 4:
3236                         err = kvm_set_cr4(vcpu, val);
3237                         kvm_complete_insn_gp(vcpu, err);
3238                         return 1;
3239                 case 8: {
3240                                 u8 cr8_prev = kvm_get_cr8(vcpu);
3241                                 u8 cr8 = kvm_register_read(vcpu, reg);
3242                                 err = kvm_set_cr8(vcpu, cr8);
3243                                 kvm_complete_insn_gp(vcpu, err);
3244                                 if (irqchip_in_kernel(vcpu->kvm))
3245                                         return 1;
3246                                 if (cr8_prev <= cr8)
3247                                         return 1;
3248                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3249                                 return 0;
3250                         }
3251                 };
3252                 break;
3253         case 2: /* clts */
3254                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3255                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3256                 skip_emulated_instruction(vcpu);
3257                 vmx_fpu_activate(vcpu);
3258                 return 1;
3259         case 1: /*mov from cr*/
3260                 switch (cr) {
3261                 case 3:
3262                         val = kvm_read_cr3(vcpu);
3263                         kvm_register_write(vcpu, reg, val);
3264                         trace_kvm_cr_read(cr, val);
3265                         skip_emulated_instruction(vcpu);
3266                         return 1;
3267                 case 8:
3268                         val = kvm_get_cr8(vcpu);
3269                         kvm_register_write(vcpu, reg, val);
3270                         trace_kvm_cr_read(cr, val);
3271                         skip_emulated_instruction(vcpu);
3272                         return 1;
3273                 }
3274                 break;
3275         case 3: /* lmsw */
3276                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3277                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3278                 kvm_lmsw(vcpu, val);
3279
3280                 skip_emulated_instruction(vcpu);
3281                 return 1;
3282         default:
3283                 break;
3284         }
3285         vcpu->run->exit_reason = 0;
3286         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3287                (int)(exit_qualification >> 4) & 3, cr);
3288         return 0;
3289 }
3290
3291 static int handle_dr(struct kvm_vcpu *vcpu)
3292 {
3293         unsigned long exit_qualification;
3294         int dr, reg;
3295
3296         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3297         if (!kvm_require_cpl(vcpu, 0))
3298                 return 1;
3299         dr = vmcs_readl(GUEST_DR7);
3300         if (dr & DR7_GD) {
3301                 /*
3302                  * As the vm-exit takes precedence over the debug trap, we
3303                  * need to emulate the latter, either for the host or the
3304                  * guest debugging itself.
3305                  */
3306                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3307                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3308                         vcpu->run->debug.arch.dr7 = dr;
3309                         vcpu->run->debug.arch.pc =
3310                                 vmcs_readl(GUEST_CS_BASE) +
3311                                 vmcs_readl(GUEST_RIP);
3312                         vcpu->run->debug.arch.exception = DB_VECTOR;
3313                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3314                         return 0;
3315                 } else {
3316                         vcpu->arch.dr7 &= ~DR7_GD;
3317                         vcpu->arch.dr6 |= DR6_BD;
3318                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3319                         kvm_queue_exception(vcpu, DB_VECTOR);
3320                         return 1;
3321                 }
3322         }
3323
3324         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3325         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3326         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3327         if (exit_qualification & TYPE_MOV_FROM_DR) {
3328                 unsigned long val;
3329                 if (!kvm_get_dr(vcpu, dr, &val))
3330                         kvm_register_write(vcpu, reg, val);
3331         } else
3332                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3333         skip_emulated_instruction(vcpu);
3334         return 1;
3335 }
3336
3337 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3338 {
3339         vmcs_writel(GUEST_DR7, val);
3340 }
3341
3342 static int handle_cpuid(struct kvm_vcpu *vcpu)
3343 {
3344         kvm_emulate_cpuid(vcpu);
3345         return 1;
3346 }
3347
3348 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3349 {
3350         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3351         u64 data;
3352
3353         if (vmx_get_msr(vcpu, ecx, &data)) {
3354                 trace_kvm_msr_read_ex(ecx);
3355                 kvm_inject_gp(vcpu, 0);
3356                 return 1;
3357         }
3358
3359         trace_kvm_msr_read(ecx, data);
3360
3361         /* FIXME: handling of bits 32:63 of rax, rdx */
3362         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3363         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3364         skip_emulated_instruction(vcpu);
3365         return 1;
3366 }
3367
3368 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3369 {
3370         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3371         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3372                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3373
3374         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3375                 trace_kvm_msr_write_ex(ecx, data);
3376                 kvm_inject_gp(vcpu, 0);
3377                 return 1;
3378         }
3379
3380         trace_kvm_msr_write(ecx, data);
3381         skip_emulated_instruction(vcpu);
3382         return 1;
3383 }
3384
3385 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3386 {
3387         kvm_make_request(KVM_REQ_EVENT, vcpu);
3388         return 1;
3389 }
3390
3391 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3392 {
3393         u32 cpu_based_vm_exec_control;
3394
3395         /* clear pending irq */
3396         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3397         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3398         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3399
3400         kvm_make_request(KVM_REQ_EVENT, vcpu);
3401
3402         ++vcpu->stat.irq_window_exits;
3403
3404         /*
3405          * If the user space waits to inject interrupts, exit as soon as
3406          * possible
3407          */
3408         if (!irqchip_in_kernel(vcpu->kvm) &&
3409             vcpu->run->request_interrupt_window &&
3410             !kvm_cpu_has_interrupt(vcpu)) {
3411                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3412                 return 0;
3413         }
3414         return 1;
3415 }
3416
3417 static int handle_halt(struct kvm_vcpu *vcpu)
3418 {
3419         skip_emulated_instruction(vcpu);
3420         return kvm_emulate_halt(vcpu);
3421 }
3422
3423 static int handle_vmcall(struct kvm_vcpu *vcpu)
3424 {
3425         skip_emulated_instruction(vcpu);
3426         kvm_emulate_hypercall(vcpu);
3427         return 1;
3428 }
3429
3430 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3431 {
3432         kvm_queue_exception(vcpu, UD_VECTOR);
3433         return 1;
3434 }
3435
3436 static int handle_invd(struct kvm_vcpu *vcpu)
3437 {
3438         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3439 }
3440
3441 static int handle_invlpg(struct kvm_vcpu *vcpu)
3442 {
3443         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3444
3445         kvm_mmu_invlpg(vcpu, exit_qualification);
3446         skip_emulated_instruction(vcpu);
3447         return 1;
3448 }
3449
3450 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3451 {
3452         skip_emulated_instruction(vcpu);
3453         kvm_emulate_wbinvd(vcpu);
3454         return 1;
3455 }
3456
3457 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3458 {
3459         u64 new_bv = kvm_read_edx_eax(vcpu);
3460         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3461
3462         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3463                 skip_emulated_instruction(vcpu);
3464         return 1;
3465 }
3466
3467 static int handle_apic_access(struct kvm_vcpu *vcpu)
3468 {
3469         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3470 }
3471
3472 static int handle_task_switch(struct kvm_vcpu *vcpu)
3473 {
3474         struct vcpu_vmx *vmx = to_vmx(vcpu);
3475         unsigned long exit_qualification;
3476         bool has_error_code = false;
3477         u32 error_code = 0;
3478         u16 tss_selector;
3479         int reason, type, idt_v;
3480
3481         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3482         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3483
3484         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3485
3486         reason = (u32)exit_qualification >> 30;
3487         if (reason == TASK_SWITCH_GATE && idt_v) {
3488                 switch (type) {
3489                 case INTR_TYPE_NMI_INTR:
3490                         vcpu->arch.nmi_injected = false;
3491                         if (cpu_has_virtual_nmis())
3492                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3493                                               GUEST_INTR_STATE_NMI);
3494                         break;
3495                 case INTR_TYPE_EXT_INTR:
3496                 case INTR_TYPE_SOFT_INTR:
3497                         kvm_clear_interrupt_queue(vcpu);
3498                         break;
3499                 case INTR_TYPE_HARD_EXCEPTION:
3500                         if (vmx->idt_vectoring_info &
3501                             VECTORING_INFO_DELIVER_CODE_MASK) {
3502                                 has_error_code = true;
3503                                 error_code =
3504                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
3505                         }
3506                         /* fall through */
3507                 case INTR_TYPE_SOFT_EXCEPTION:
3508                         kvm_clear_exception_queue(vcpu);
3509                         break;
3510                 default:
3511                         break;
3512                 }
3513         }
3514         tss_selector = exit_qualification;
3515
3516         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3517                        type != INTR_TYPE_EXT_INTR &&
3518                        type != INTR_TYPE_NMI_INTR))
3519                 skip_emulated_instruction(vcpu);
3520
3521         if (kvm_task_switch(vcpu, tss_selector, reason,
3522                                 has_error_code, error_code) == EMULATE_FAIL) {
3523                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3524                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3525                 vcpu->run->internal.ndata = 0;
3526                 return 0;
3527         }
3528
3529         /* clear all local breakpoint enable flags */
3530         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3531
3532         /*
3533          * TODO: What about debug traps on tss switch?
3534          *       Are we supposed to inject them and update dr6?
3535          */
3536
3537         return 1;
3538 }
3539
3540 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3541 {
3542         unsigned long exit_qualification;
3543         gpa_t gpa;
3544         int gla_validity;
3545
3546         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3547
3548         if (exit_qualification & (1 << 6)) {
3549                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3550                 return -EINVAL;
3551         }
3552
3553         gla_validity = (exit_qualification >> 7) & 0x3;
3554         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3555                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3556                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3557                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3558                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3559                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3560                         (long unsigned int)exit_qualification);
3561                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3562                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3563                 return 0;
3564         }
3565
3566         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3567         trace_kvm_page_fault(gpa, exit_qualification);
3568         return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
3569 }
3570
3571 static u64 ept_rsvd_mask(u64 spte, int level)
3572 {
3573         int i;
3574         u64 mask = 0;
3575
3576         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3577                 mask |= (1ULL << i);
3578
3579         if (level > 2)
3580                 /* bits 7:3 reserved */
3581                 mask |= 0xf8;
3582         else if (level == 2) {
3583                 if (spte & (1ULL << 7))
3584                         /* 2MB ref, bits 20:12 reserved */
3585                         mask |= 0x1ff000;
3586                 else
3587                         /* bits 6:3 reserved */
3588                         mask |= 0x78;
3589         }
3590
3591         return mask;
3592 }
3593
3594 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3595                                        int level)
3596 {
3597         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3598
3599         /* 010b (write-only) */
3600         WARN_ON((spte & 0x7) == 0x2);
3601
3602         /* 110b (write/execute) */
3603         WARN_ON((spte & 0x7) == 0x6);
3604
3605         /* 100b (execute-only) and value not supported by logical processor */
3606         if (!cpu_has_vmx_ept_execute_only())
3607                 WARN_ON((spte & 0x7) == 0x4);
3608
3609         /* not 000b */
3610         if ((spte & 0x7)) {
3611                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3612
3613                 if (rsvd_bits != 0) {
3614                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3615                                          __func__, rsvd_bits);
3616                         WARN_ON(1);
3617                 }
3618
3619                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3620                         u64 ept_mem_type = (spte & 0x38) >> 3;
3621
3622                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3623                             ept_mem_type == 7) {
3624                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3625                                                 __func__, ept_mem_type);
3626                                 WARN_ON(1);
3627                         }
3628                 }
3629         }
3630 }
3631
3632 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3633 {
3634         u64 sptes[4];
3635         int nr_sptes, i;
3636         gpa_t gpa;
3637
3638         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3639
3640         printk(KERN_ERR "EPT: Misconfiguration.\n");
3641         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3642
3643         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3644
3645         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3646                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3647
3648         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3649         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3650
3651         return 0;
3652 }
3653
3654 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3655 {
3656         u32 cpu_based_vm_exec_control;
3657
3658         /* clear pending NMI */
3659         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3660         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3661         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3662         ++vcpu->stat.nmi_window_exits;
3663         kvm_make_request(KVM_REQ_EVENT, vcpu);
3664
3665         return 1;
3666 }
3667
3668 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3669 {
3670         struct vcpu_vmx *vmx = to_vmx(vcpu);
3671         enum emulation_result err = EMULATE_DONE;
3672         int ret = 1;
3673         u32 cpu_exec_ctrl;
3674         bool intr_window_requested;
3675
3676         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3677         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
3678
3679         while (!guest_state_valid(vcpu)) {
3680                 if (intr_window_requested
3681                     && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
3682                         return handle_interrupt_window(&vmx->vcpu);
3683
3684                 err = emulate_instruction(vcpu, 0);
3685
3686                 if (err == EMULATE_DO_MMIO) {
3687                         ret = 0;
3688                         goto out;
3689                 }
3690
3691                 if (err != EMULATE_DONE)
3692                         return 0;
3693
3694                 if (signal_pending(current))
3695                         goto out;
3696                 if (need_resched())
3697                         schedule();
3698         }
3699
3700         vmx->emulation_required = 0;
3701 out:
3702         return ret;
3703 }
3704
3705 /*
3706  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3707  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3708  */
3709 static int handle_pause(struct kvm_vcpu *vcpu)
3710 {
3711         skip_emulated_instruction(vcpu);
3712         kvm_vcpu_on_spin(vcpu);
3713
3714         return 1;
3715 }
3716
3717 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3718 {
3719         kvm_queue_exception(vcpu, UD_VECTOR);
3720         return 1;
3721 }
3722
3723 /*
3724  * The exit handlers return 1 if the exit was handled fully and guest execution
3725  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3726  * to be done to userspace and return 0.
3727  */
3728 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3729         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3730         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3731         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3732         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3733         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3734         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3735         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3736         [EXIT_REASON_CPUID]                   = handle_cpuid,
3737         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3738         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3739         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3740         [EXIT_REASON_HLT]                     = handle_halt,
3741         [EXIT_REASON_INVD]                    = handle_invd,
3742         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3743         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3744         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3745         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3746         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3747         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3748         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3749         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3750         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3751         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3752         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3753         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3754         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3755         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3756         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
3757         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3758         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3759         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3760         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3761         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3762         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3763         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3764 };
3765
3766 static const int kvm_vmx_max_exit_handlers =
3767         ARRAY_SIZE(kvm_vmx_exit_handlers);
3768
3769 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3770 {
3771         *info1 = vmcs_readl(EXIT_QUALIFICATION);
3772         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
3773 }
3774
3775 /*
3776  * The guest has exited.  See if we can fix it or if we need userspace
3777  * assistance.
3778  */
3779 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3780 {
3781         struct vcpu_vmx *vmx = to_vmx(vcpu);
3782         u32 exit_reason = vmx->exit_reason;
3783         u32 vectoring_info = vmx->idt_vectoring_info;
3784
3785         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
3786
3787         /* If guest state is invalid, start emulating */
3788         if (vmx->emulation_required && emulate_invalid_guest_state)
3789                 return handle_invalid_guest_state(vcpu);
3790
3791         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
3792                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3793                 vcpu->run->fail_entry.hardware_entry_failure_reason
3794                         = exit_reason;
3795                 return 0;
3796         }
3797
3798         if (unlikely(vmx->fail)) {
3799                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3800                 vcpu->run->fail_entry.hardware_entry_failure_reason
3801                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3802                 return 0;
3803         }
3804
3805         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3806                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3807                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3808                         exit_reason != EXIT_REASON_TASK_SWITCH))
3809                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3810                        "(0x%x) and exit reason is 0x%x\n",
3811                        __func__, vectoring_info, exit_reason);
3812
3813         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3814                 if (vmx_interrupt_allowed(vcpu)) {
3815                         vmx->soft_vnmi_blocked = 0;
3816                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3817                            vcpu->arch.nmi_pending) {
3818                         /*
3819                          * This CPU don't support us in finding the end of an
3820                          * NMI-blocked window if the guest runs with IRQs
3821                          * disabled. So we pull the trigger after 1 s of
3822                          * futile waiting, but inform the user about this.
3823                          */
3824                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3825                                "state on VCPU %d after 1 s timeout\n",
3826                                __func__, vcpu->vcpu_id);
3827                         vmx->soft_vnmi_blocked = 0;
3828                 }
3829         }
3830
3831         if (exit_reason < kvm_vmx_max_exit_handlers
3832             && kvm_vmx_exit_handlers[exit_reason])
3833                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3834         else {
3835                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3836                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3837         }
3838         return 0;
3839 }
3840
3841 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3842 {
3843         if (irr == -1 || tpr < irr) {
3844                 vmcs_write32(TPR_THRESHOLD, 0);
3845                 return;
3846         }
3847
3848         vmcs_write32(TPR_THRESHOLD, irr);
3849 }
3850
3851 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
3852 {
3853         u32 exit_intr_info = vmx->exit_intr_info;
3854
3855         /* Handle machine checks before interrupts are enabled */
3856         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3857             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3858                 && is_machine_check(exit_intr_info)))
3859                 kvm_machine_check();
3860
3861         /* We need to handle NMIs before interrupts are enabled */
3862         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3863             (exit_intr_info & INTR_INFO_VALID_MASK)) {
3864                 kvm_before_handle_nmi(&vmx->vcpu);
3865                 asm("int $2");
3866                 kvm_after_handle_nmi(&vmx->vcpu);
3867         }
3868 }
3869
3870 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
3871 {
3872         u32 exit_intr_info = vmx->exit_intr_info;
3873         bool unblock_nmi;
3874         u8 vector;
3875         bool idtv_info_valid;
3876
3877         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3878
3879         if (cpu_has_virtual_nmis()) {
3880                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3881                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3882                 /*
3883                  * SDM 3: 27.7.1.2 (September 2008)
3884                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3885                  * a guest IRET fault.
3886                  * SDM 3: 23.2.2 (September 2008)
3887                  * Bit 12 is undefined in any of the following cases:
3888                  *  If the VM exit sets the valid bit in the IDT-vectoring
3889                  *   information field.
3890                  *  If the VM exit is due to a double fault.
3891                  */
3892                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3893                     vector != DF_VECTOR && !idtv_info_valid)
3894                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3895                                       GUEST_INTR_STATE_NMI);
3896         } else if (unlikely(vmx->soft_vnmi_blocked))
3897                 vmx->vnmi_blocked_time +=
3898                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3899 }
3900
3901 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
3902                                       u32 idt_vectoring_info,
3903                                       int instr_len_field,
3904                                       int error_code_field)
3905 {
3906         u8 vector;
3907         int type;
3908         bool idtv_info_valid;
3909
3910         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3911
3912         vmx->vcpu.arch.nmi_injected = false;
3913         kvm_clear_exception_queue(&vmx->vcpu);
3914         kvm_clear_interrupt_queue(&vmx->vcpu);
3915
3916         if (!idtv_info_valid)
3917                 return;
3918
3919         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
3920
3921         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3922         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3923
3924         switch (type) {
3925         case INTR_TYPE_NMI_INTR:
3926                 vmx->vcpu.arch.nmi_injected = true;
3927                 /*
3928                  * SDM 3: 27.7.1.2 (September 2008)
3929                  * Clear bit "block by NMI" before VM entry if a NMI
3930                  * delivery faulted.
3931                  */
3932                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3933                                 GUEST_INTR_STATE_NMI);
3934                 break;
3935         case INTR_TYPE_SOFT_EXCEPTION:
3936                 vmx->vcpu.arch.event_exit_inst_len =
3937                         vmcs_read32(instr_len_field);
3938                 /* fall through */
3939         case INTR_TYPE_HARD_EXCEPTION:
3940                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3941                         u32 err = vmcs_read32(error_code_field);
3942                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3943                 } else
3944                         kvm_queue_exception(&vmx->vcpu, vector);
3945                 break;
3946         case INTR_TYPE_SOFT_INTR:
3947                 vmx->vcpu.arch.event_exit_inst_len =
3948                         vmcs_read32(instr_len_field);
3949                 /* fall through */
3950         case INTR_TYPE_EXT_INTR:
3951                 kvm_queue_interrupt(&vmx->vcpu, vector,
3952                         type == INTR_TYPE_SOFT_INTR);
3953                 break;
3954         default:
3955                 break;
3956         }
3957 }
3958
3959 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3960 {
3961         __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
3962                                   VM_EXIT_INSTRUCTION_LEN,
3963                                   IDT_VECTORING_ERROR_CODE);
3964 }
3965
3966 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
3967 {
3968         __vmx_complete_interrupts(to_vmx(vcpu),
3969                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
3970                                   VM_ENTRY_INSTRUCTION_LEN,
3971                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
3972
3973         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
3974 }
3975
3976 #ifdef CONFIG_X86_64
3977 #define R "r"
3978 #define Q "q"
3979 #else
3980 #define R "e"
3981 #define Q "l"
3982 #endif
3983
3984 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
3985 {
3986         struct vcpu_vmx *vmx = to_vmx(vcpu);
3987
3988         /* Record the guest's net vcpu time for enforced NMI injections. */
3989         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3990                 vmx->entry_time = ktime_get();
3991
3992         /* Don't enter VMX if guest state is invalid, let the exit handler
3993            start emulation until we arrive back to a valid state */
3994         if (vmx->emulation_required && emulate_invalid_guest_state)
3995                 return;
3996
3997         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3998                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3999         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
4000                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
4001
4002         /* When single-stepping over STI and MOV SS, we must clear the
4003          * corresponding interruptibility bits in the guest state. Otherwise
4004          * vmentry fails as it then expects bit 14 (BS) in pending debug
4005          * exceptions being set, but that's not correct for the guest debugging
4006          * case. */
4007         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4008                 vmx_set_interrupt_shadow(vcpu, 0);
4009
4010         asm(
4011                 /* Store host registers */
4012                 "push %%"R"dx; push %%"R"bp;"
4013                 "push %%"R"cx \n\t" /* placeholder for guest rcx */
4014                 "push %%"R"cx \n\t"
4015                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
4016                 "je 1f \n\t"
4017                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4018                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
4019                 "1: \n\t"
4020                 /* Reload cr2 if changed */
4021                 "mov %c[cr2](%0), %%"R"ax \n\t"
4022                 "mov %%cr2, %%"R"dx \n\t"
4023                 "cmp %%"R"ax, %%"R"dx \n\t"
4024                 "je 2f \n\t"
4025                 "mov %%"R"ax, %%cr2 \n\t"
4026                 "2: \n\t"
4027                 /* Check if vmlaunch of vmresume is needed */
4028                 "cmpl $0, %c[launched](%0) \n\t"
4029                 /* Load guest registers.  Don't clobber flags. */
4030                 "mov %c[rax](%0), %%"R"ax \n\t"
4031                 "mov %c[rbx](%0), %%"R"bx \n\t"
4032                 "mov %c[rdx](%0), %%"R"dx \n\t"
4033                 "mov %c[rsi](%0), %%"R"si \n\t"
4034                 "mov %c[rdi](%0), %%"R"di \n\t"
4035                 "mov %c[rbp](%0), %%"R"bp \n\t"
4036 #ifdef CONFIG_X86_64
4037                 "mov %c[r8](%0),  %%r8  \n\t"
4038                 "mov %c[r9](%0),  %%r9  \n\t"
4039                 "mov %c[r10](%0), %%r10 \n\t"
4040                 "mov %c[r11](%0), %%r11 \n\t"
4041                 "mov %c[r12](%0), %%r12 \n\t"
4042                 "mov %c[r13](%0), %%r13 \n\t"
4043                 "mov %c[r14](%0), %%r14 \n\t"
4044                 "mov %c[r15](%0), %%r15 \n\t"
4045 #endif
4046                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
4047
4048                 /* Enter guest mode */
4049                 "jne .Llaunched \n\t"
4050                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
4051                 "jmp .Lkvm_vmx_return \n\t"
4052                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
4053                 ".Lkvm_vmx_return: "
4054                 /* Save guest registers, load host registers, keep flags */
4055                 "mov %0, %c[wordsize](%%"R"sp) \n\t"
4056                 "pop %0 \n\t"
4057                 "mov %%"R"ax, %c[rax](%0) \n\t"
4058                 "mov %%"R"bx, %c[rbx](%0) \n\t"
4059                 "pop"Q" %c[rcx](%0) \n\t"
4060                 "mov %%"R"dx, %c[rdx](%0) \n\t"
4061                 "mov %%"R"si, %c[rsi](%0) \n\t"
4062                 "mov %%"R"di, %c[rdi](%0) \n\t"
4063                 "mov %%"R"bp, %c[rbp](%0) \n\t"
4064 #ifdef CONFIG_X86_64
4065                 "mov %%r8,  %c[r8](%0) \n\t"
4066                 "mov %%r9,  %c[r9](%0) \n\t"
4067                 "mov %%r10, %c[r10](%0) \n\t"
4068                 "mov %%r11, %c[r11](%0) \n\t"
4069                 "mov %%r12, %c[r12](%0) \n\t"
4070                 "mov %%r13, %c[r13](%0) \n\t"
4071                 "mov %%r14, %c[r14](%0) \n\t"
4072                 "mov %%r15, %c[r15](%0) \n\t"
4073 #endif
4074                 "mov %%cr2, %%"R"ax   \n\t"
4075                 "mov %%"R"ax, %c[cr2](%0) \n\t"
4076
4077                 "pop  %%"R"bp; pop  %%"R"dx \n\t"
4078                 "setbe %c[fail](%0) \n\t"
4079               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
4080                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
4081                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
4082                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4083                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4084                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4085                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4086                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4087                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4088                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4089                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4090 #ifdef CONFIG_X86_64
4091                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4092                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4093                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4094                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4095                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4096                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4097                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4098                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4099 #endif
4100                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
4101                 [wordsize]"i"(sizeof(ulong))
4102               : "cc", "memory"
4103                 , R"ax", R"bx", R"di", R"si"
4104 #ifdef CONFIG_X86_64
4105                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4106 #endif
4107               );
4108
4109         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4110                                   | (1 << VCPU_EXREG_PDPTR)
4111                                   | (1 << VCPU_EXREG_CR3));
4112         vcpu->arch.regs_dirty = 0;
4113
4114         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4115
4116         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4117         vmx->launched = 1;
4118
4119         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
4120         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4121
4122         vmx_complete_atomic_exit(vmx);
4123         vmx_recover_nmi_blocking(vmx);
4124         vmx_complete_interrupts(vmx);
4125 }
4126
4127 #undef R
4128 #undef Q
4129
4130 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
4131 {
4132         struct vcpu_vmx *vmx = to_vmx(vcpu);
4133
4134         if (vmx->vmcs) {
4135                 vcpu_clear(vmx);
4136                 free_vmcs(vmx->vmcs);
4137                 vmx->vmcs = NULL;
4138         }
4139 }
4140
4141 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4142 {
4143         struct vcpu_vmx *vmx = to_vmx(vcpu);
4144
4145         free_vpid(vmx);
4146         vmx_free_vmcs(vcpu);
4147         kfree(vmx->guest_msrs);
4148         kvm_vcpu_uninit(vcpu);
4149         kmem_cache_free(kvm_vcpu_cache, vmx);
4150 }
4151
4152 static inline void vmcs_init(struct vmcs *vmcs)
4153 {
4154         u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
4155
4156         if (!vmm_exclusive)
4157                 kvm_cpu_vmxon(phys_addr);
4158
4159         vmcs_clear(vmcs);
4160
4161         if (!vmm_exclusive)
4162                 kvm_cpu_vmxoff();
4163 }
4164
4165 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4166 {
4167         int err;
4168         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4169         int cpu;
4170
4171         if (!vmx)
4172                 return ERR_PTR(-ENOMEM);
4173
4174         allocate_vpid(vmx);
4175
4176         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4177         if (err)
4178                 goto free_vcpu;
4179
4180         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4181         if (!vmx->guest_msrs) {
4182                 err = -ENOMEM;
4183                 goto uninit_vcpu;
4184         }
4185
4186         vmx->vmcs = alloc_vmcs();
4187         if (!vmx->vmcs)
4188                 goto free_msrs;
4189
4190         vmcs_init(vmx->vmcs);
4191
4192         cpu = get_cpu();
4193         vmx_vcpu_load(&vmx->vcpu, cpu);
4194         vmx->vcpu.cpu = cpu;
4195         err = vmx_vcpu_setup(vmx);
4196         vmx_vcpu_put(&vmx->vcpu);
4197         put_cpu();
4198         if (err)
4199                 goto free_vmcs;
4200         if (vm_need_virtualize_apic_accesses(kvm))
4201                 if (alloc_apic_access_page(kvm) != 0)
4202                         goto free_vmcs;
4203
4204         if (enable_ept) {
4205                 if (!kvm->arch.ept_identity_map_addr)
4206                         kvm->arch.ept_identity_map_addr =
4207                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4208                 err = -ENOMEM;
4209                 if (alloc_identity_pagetable(kvm) != 0)
4210                         goto free_vmcs;
4211                 if (!init_rmode_identity_map(kvm))
4212                         goto free_vmcs;
4213         }
4214
4215         return &vmx->vcpu;
4216
4217 free_vmcs:
4218         free_vmcs(vmx->vmcs);
4219 free_msrs:
4220         kfree(vmx->guest_msrs);
4221 uninit_vcpu:
4222         kvm_vcpu_uninit(&vmx->vcpu);
4223 free_vcpu:
4224         free_vpid(vmx);
4225         kmem_cache_free(kvm_vcpu_cache, vmx);
4226         return ERR_PTR(err);
4227 }
4228
4229 static void __init vmx_check_processor_compat(void *rtn)
4230 {
4231         struct vmcs_config vmcs_conf;
4232
4233         *(int *)rtn = 0;
4234         if (setup_vmcs_config(&vmcs_conf) < 0)
4235                 *(int *)rtn = -EIO;
4236         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4237                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4238                                 smp_processor_id());
4239                 *(int *)rtn = -EIO;
4240         }
4241 }
4242
4243 static int get_ept_level(void)
4244 {
4245         return VMX_EPT_DEFAULT_GAW + 1;
4246 }
4247
4248 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4249 {
4250         u64 ret;
4251
4252         /* For VT-d and EPT combination
4253          * 1. MMIO: always map as UC
4254          * 2. EPT with VT-d:
4255          *   a. VT-d without snooping control feature: can't guarantee the
4256          *      result, try to trust guest.
4257          *   b. VT-d with snooping control feature: snooping control feature of
4258          *      VT-d engine can guarantee the cache correctness. Just set it
4259          *      to WB to keep consistent with host. So the same as item 3.
4260          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4261          *    consistent with host MTRR
4262          */
4263         if (is_mmio)
4264                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4265         else if (vcpu->kvm->arch.iommu_domain &&
4266                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4267                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4268                       VMX_EPT_MT_EPTE_SHIFT;
4269         else
4270                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4271                         | VMX_EPT_IPAT_BIT;
4272
4273         return ret;
4274 }
4275
4276 #define _ER(x) { EXIT_REASON_##x, #x }
4277
4278 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4279         _ER(EXCEPTION_NMI),
4280         _ER(EXTERNAL_INTERRUPT),
4281         _ER(TRIPLE_FAULT),
4282         _ER(PENDING_INTERRUPT),
4283         _ER(NMI_WINDOW),
4284         _ER(TASK_SWITCH),
4285         _ER(CPUID),
4286         _ER(HLT),
4287         _ER(INVLPG),
4288         _ER(RDPMC),
4289         _ER(RDTSC),
4290         _ER(VMCALL),
4291         _ER(VMCLEAR),
4292         _ER(VMLAUNCH),
4293         _ER(VMPTRLD),
4294         _ER(VMPTRST),
4295         _ER(VMREAD),
4296         _ER(VMRESUME),
4297         _ER(VMWRITE),
4298         _ER(VMOFF),
4299         _ER(VMON),
4300         _ER(CR_ACCESS),
4301         _ER(DR_ACCESS),
4302         _ER(IO_INSTRUCTION),
4303         _ER(MSR_READ),
4304         _ER(MSR_WRITE),
4305         _ER(MWAIT_INSTRUCTION),
4306         _ER(MONITOR_INSTRUCTION),
4307         _ER(PAUSE_INSTRUCTION),
4308         _ER(MCE_DURING_VMENTRY),
4309         _ER(TPR_BELOW_THRESHOLD),
4310         _ER(APIC_ACCESS),
4311         _ER(EPT_VIOLATION),
4312         _ER(EPT_MISCONFIG),
4313         _ER(WBINVD),
4314         { -1, NULL }
4315 };
4316
4317 #undef _ER
4318
4319 static int vmx_get_lpage_level(void)
4320 {
4321         if (enable_ept && !cpu_has_vmx_ept_1g_page())
4322                 return PT_DIRECTORY_LEVEL;
4323         else
4324                 /* For shadow and EPT supported 1GB page */
4325                 return PT_PDPE_LEVEL;
4326 }
4327
4328 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4329 {
4330         struct kvm_cpuid_entry2 *best;
4331         struct vcpu_vmx *vmx = to_vmx(vcpu);
4332         u32 exec_control;
4333
4334         vmx->rdtscp_enabled = false;
4335         if (vmx_rdtscp_supported()) {
4336                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4337                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4338                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4339                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4340                                 vmx->rdtscp_enabled = true;
4341                         else {
4342                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4343                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4344                                                 exec_control);
4345                         }
4346                 }
4347         }
4348 }
4349
4350 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4351 {
4352 }
4353
4354 static struct kvm_x86_ops vmx_x86_ops = {
4355         .cpu_has_kvm_support = cpu_has_kvm_support,
4356         .disabled_by_bios = vmx_disabled_by_bios,
4357         .hardware_setup = hardware_setup,
4358         .hardware_unsetup = hardware_unsetup,
4359         .check_processor_compatibility = vmx_check_processor_compat,
4360         .hardware_enable = hardware_enable,
4361         .hardware_disable = hardware_disable,
4362         .cpu_has_accelerated_tpr = report_flexpriority,
4363
4364         .vcpu_create = vmx_create_vcpu,
4365         .vcpu_free = vmx_free_vcpu,
4366         .vcpu_reset = vmx_vcpu_reset,
4367
4368         .prepare_guest_switch = vmx_save_host_state,
4369         .vcpu_load = vmx_vcpu_load,
4370         .vcpu_put = vmx_vcpu_put,
4371
4372         .set_guest_debug = set_guest_debug,
4373         .get_msr = vmx_get_msr,
4374         .set_msr = vmx_set_msr,
4375         .get_segment_base = vmx_get_segment_base,
4376         .get_segment = vmx_get_segment,
4377         .set_segment = vmx_set_segment,
4378         .get_cpl = vmx_get_cpl,
4379         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4380         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4381         .decache_cr3 = vmx_decache_cr3,
4382         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4383         .set_cr0 = vmx_set_cr0,
4384         .set_cr3 = vmx_set_cr3,
4385         .set_cr4 = vmx_set_cr4,
4386         .set_efer = vmx_set_efer,
4387         .get_idt = vmx_get_idt,
4388         .set_idt = vmx_set_idt,
4389         .get_gdt = vmx_get_gdt,
4390         .set_gdt = vmx_set_gdt,
4391         .set_dr7 = vmx_set_dr7,
4392         .cache_reg = vmx_cache_reg,
4393         .get_rflags = vmx_get_rflags,
4394         .set_rflags = vmx_set_rflags,
4395         .fpu_activate = vmx_fpu_activate,
4396         .fpu_deactivate = vmx_fpu_deactivate,
4397
4398         .tlb_flush = vmx_flush_tlb,
4399
4400         .run = vmx_vcpu_run,
4401         .handle_exit = vmx_handle_exit,
4402         .skip_emulated_instruction = skip_emulated_instruction,
4403         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4404         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4405         .patch_hypercall = vmx_patch_hypercall,
4406         .set_irq = vmx_inject_irq,
4407         .set_nmi = vmx_inject_nmi,
4408         .queue_exception = vmx_queue_exception,
4409         .cancel_injection = vmx_cancel_injection,
4410         .interrupt_allowed = vmx_interrupt_allowed,
4411         .nmi_allowed = vmx_nmi_allowed,
4412         .get_nmi_mask = vmx_get_nmi_mask,
4413         .set_nmi_mask = vmx_set_nmi_mask,
4414         .enable_nmi_window = enable_nmi_window,
4415         .enable_irq_window = enable_irq_window,
4416         .update_cr8_intercept = update_cr8_intercept,
4417
4418         .set_tss_addr = vmx_set_tss_addr,
4419         .get_tdp_level = get_ept_level,
4420         .get_mt_mask = vmx_get_mt_mask,
4421
4422         .get_exit_info = vmx_get_exit_info,
4423         .exit_reasons_str = vmx_exit_reasons_str,
4424
4425         .get_lpage_level = vmx_get_lpage_level,
4426
4427         .cpuid_update = vmx_cpuid_update,
4428
4429         .rdtscp_supported = vmx_rdtscp_supported,
4430
4431         .set_supported_cpuid = vmx_set_supported_cpuid,
4432
4433         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
4434
4435         .write_tsc_offset = vmx_write_tsc_offset,
4436         .adjust_tsc_offset = vmx_adjust_tsc_offset,
4437
4438         .set_tdp_cr3 = vmx_set_cr3,
4439 };
4440
4441 static int __init vmx_init(void)
4442 {
4443         int r, i;
4444
4445         rdmsrl_safe(MSR_EFER, &host_efer);
4446
4447         for (i = 0; i < NR_VMX_MSR; ++i)
4448                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4449
4450         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4451         if (!vmx_io_bitmap_a)
4452                 return -ENOMEM;
4453
4454         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4455         if (!vmx_io_bitmap_b) {
4456                 r = -ENOMEM;
4457                 goto out;
4458         }
4459
4460         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4461         if (!vmx_msr_bitmap_legacy) {
4462                 r = -ENOMEM;
4463                 goto out1;
4464         }
4465
4466         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4467         if (!vmx_msr_bitmap_longmode) {
4468                 r = -ENOMEM;
4469                 goto out2;
4470         }
4471
4472         /*
4473          * Allow direct access to the PC debug port (it is often used for I/O
4474          * delays, but the vmexits simply slow things down).
4475          */
4476         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4477         clear_bit(0x80, vmx_io_bitmap_a);
4478
4479         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4480
4481         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4482         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4483
4484         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4485
4486         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
4487                      __alignof__(struct vcpu_vmx), THIS_MODULE);
4488         if (r)
4489                 goto out3;
4490
4491         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4492         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4493         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4494         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4495         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4496         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4497
4498         if (enable_ept) {
4499                 bypass_guest_pf = 0;
4500                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4501                                 VMX_EPT_EXECUTABLE_MASK);
4502                 kvm_enable_tdp();
4503         } else
4504                 kvm_disable_tdp();
4505
4506         if (bypass_guest_pf)
4507                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4508
4509         return 0;
4510
4511 out3:
4512         free_page((unsigned long)vmx_msr_bitmap_longmode);
4513 out2:
4514         free_page((unsigned long)vmx_msr_bitmap_legacy);
4515 out1:
4516         free_page((unsigned long)vmx_io_bitmap_b);
4517 out:
4518         free_page((unsigned long)vmx_io_bitmap_a);
4519         return r;
4520 }
4521
4522 static void __exit vmx_exit(void)
4523 {
4524         free_page((unsigned long)vmx_msr_bitmap_legacy);
4525         free_page((unsigned long)vmx_msr_bitmap_longmode);
4526         free_page((unsigned long)vmx_io_bitmap_b);
4527         free_page((unsigned long)vmx_io_bitmap_a);
4528
4529         kvm_exit();
4530 }
4531
4532 module_init(vmx_init)
4533 module_exit(vmx_exit)