KVM: VMX: EPT misconfiguration handler
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
29 #include "x86.h"
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33 #include <asm/vmx.h>
34 #include <asm/virtext.h>
35 #include <asm/mce.h>
36
37 #define __ex(x) __kvm_handle_fault_on_reboot(x)
38
39 MODULE_AUTHOR("Qumranet");
40 MODULE_LICENSE("GPL");
41
42 static int __read_mostly bypass_guest_pf = 1;
43 module_param(bypass_guest_pf, bool, S_IRUGO);
44
45 static int __read_mostly enable_vpid = 1;
46 module_param_named(vpid, enable_vpid, bool, 0444);
47
48 static int __read_mostly flexpriority_enabled = 1;
49 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
50
51 static int __read_mostly enable_ept = 1;
52 module_param_named(ept, enable_ept, bool, S_IRUGO);
53
54 static int __read_mostly enable_unrestricted_guest = 1;
55 module_param_named(unrestricted_guest,
56                         enable_unrestricted_guest, bool, S_IRUGO);
57
58 static int __read_mostly emulate_invalid_guest_state = 0;
59 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
60
61 struct vmcs {
62         u32 revision_id;
63         u32 abort;
64         char data[0];
65 };
66
67 struct vcpu_vmx {
68         struct kvm_vcpu       vcpu;
69         struct list_head      local_vcpus_link;
70         unsigned long         host_rsp;
71         int                   launched;
72         u8                    fail;
73         u32                   idt_vectoring_info;
74         struct kvm_msr_entry *guest_msrs;
75         struct kvm_msr_entry *host_msrs;
76         int                   nmsrs;
77         int                   save_nmsrs;
78         int                   msr_offset_efer;
79 #ifdef CONFIG_X86_64
80         int                   msr_offset_kernel_gs_base;
81 #endif
82         struct vmcs          *vmcs;
83         struct {
84                 int           loaded;
85                 u16           fs_sel, gs_sel, ldt_sel;
86                 int           gs_ldt_reload_needed;
87                 int           fs_reload_needed;
88                 int           guest_efer_loaded;
89         } host_state;
90         struct {
91                 int vm86_active;
92                 u8 save_iopl;
93                 struct kvm_save_segment {
94                         u16 selector;
95                         unsigned long base;
96                         u32 limit;
97                         u32 ar;
98                 } tr, es, ds, fs, gs;
99                 struct {
100                         bool pending;
101                         u8 vector;
102                         unsigned rip;
103                 } irq;
104         } rmode;
105         int vpid;
106         bool emulation_required;
107         enum emulation_result invalid_state_emulation_result;
108
109         /* Support for vnmi-less CPUs */
110         int soft_vnmi_blocked;
111         ktime_t entry_time;
112         s64 vnmi_blocked_time;
113         u32 exit_reason;
114 };
115
116 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
117 {
118         return container_of(vcpu, struct vcpu_vmx, vcpu);
119 }
120
121 static int init_rmode(struct kvm *kvm);
122 static u64 construct_eptp(unsigned long root_hpa);
123
124 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
125 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
126 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
127
128 static unsigned long *vmx_io_bitmap_a;
129 static unsigned long *vmx_io_bitmap_b;
130 static unsigned long *vmx_msr_bitmap_legacy;
131 static unsigned long *vmx_msr_bitmap_longmode;
132
133 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
134 static DEFINE_SPINLOCK(vmx_vpid_lock);
135
136 static struct vmcs_config {
137         int size;
138         int order;
139         u32 revision_id;
140         u32 pin_based_exec_ctrl;
141         u32 cpu_based_exec_ctrl;
142         u32 cpu_based_2nd_exec_ctrl;
143         u32 vmexit_ctrl;
144         u32 vmentry_ctrl;
145 } vmcs_config;
146
147 static struct vmx_capability {
148         u32 ept;
149         u32 vpid;
150 } vmx_capability;
151
152 #define VMX_SEGMENT_FIELD(seg)                                  \
153         [VCPU_SREG_##seg] = {                                   \
154                 .selector = GUEST_##seg##_SELECTOR,             \
155                 .base = GUEST_##seg##_BASE,                     \
156                 .limit = GUEST_##seg##_LIMIT,                   \
157                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
158         }
159
160 static struct kvm_vmx_segment_field {
161         unsigned selector;
162         unsigned base;
163         unsigned limit;
164         unsigned ar_bytes;
165 } kvm_vmx_segment_fields[] = {
166         VMX_SEGMENT_FIELD(CS),
167         VMX_SEGMENT_FIELD(DS),
168         VMX_SEGMENT_FIELD(ES),
169         VMX_SEGMENT_FIELD(FS),
170         VMX_SEGMENT_FIELD(GS),
171         VMX_SEGMENT_FIELD(SS),
172         VMX_SEGMENT_FIELD(TR),
173         VMX_SEGMENT_FIELD(LDTR),
174 };
175
176 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
177
178 /*
179  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
180  * away by decrementing the array size.
181  */
182 static const u32 vmx_msr_index[] = {
183 #ifdef CONFIG_X86_64
184         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
185 #endif
186         MSR_EFER, MSR_K6_STAR,
187 };
188 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
189
190 static void load_msrs(struct kvm_msr_entry *e, int n)
191 {
192         int i;
193
194         for (i = 0; i < n; ++i)
195                 wrmsrl(e[i].index, e[i].data);
196 }
197
198 static void save_msrs(struct kvm_msr_entry *e, int n)
199 {
200         int i;
201
202         for (i = 0; i < n; ++i)
203                 rdmsrl(e[i].index, e[i].data);
204 }
205
206 static inline int is_page_fault(u32 intr_info)
207 {
208         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
209                              INTR_INFO_VALID_MASK)) ==
210                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
211 }
212
213 static inline int is_no_device(u32 intr_info)
214 {
215         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
216                              INTR_INFO_VALID_MASK)) ==
217                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
218 }
219
220 static inline int is_invalid_opcode(u32 intr_info)
221 {
222         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
223                              INTR_INFO_VALID_MASK)) ==
224                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
225 }
226
227 static inline int is_external_interrupt(u32 intr_info)
228 {
229         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
230                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
231 }
232
233 static inline int is_machine_check(u32 intr_info)
234 {
235         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
236                              INTR_INFO_VALID_MASK)) ==
237                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
238 }
239
240 static inline int cpu_has_vmx_msr_bitmap(void)
241 {
242         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
243 }
244
245 static inline int cpu_has_vmx_tpr_shadow(void)
246 {
247         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
248 }
249
250 static inline int vm_need_tpr_shadow(struct kvm *kvm)
251 {
252         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
253 }
254
255 static inline int cpu_has_secondary_exec_ctrls(void)
256 {
257         return vmcs_config.cpu_based_exec_ctrl &
258                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
259 }
260
261 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
262 {
263         return vmcs_config.cpu_based_2nd_exec_ctrl &
264                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
265 }
266
267 static inline bool cpu_has_vmx_flexpriority(void)
268 {
269         return cpu_has_vmx_tpr_shadow() &&
270                 cpu_has_vmx_virtualize_apic_accesses();
271 }
272
273 static inline bool cpu_has_vmx_ept_execute_only(void)
274 {
275         return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
276 }
277
278 static inline bool cpu_has_vmx_eptp_uncacheable(void)
279 {
280         return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
281 }
282
283 static inline bool cpu_has_vmx_eptp_writeback(void)
284 {
285         return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
286 }
287
288 static inline bool cpu_has_vmx_ept_2m_page(void)
289 {
290         return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
291 }
292
293 static inline int cpu_has_vmx_invept_individual_addr(void)
294 {
295         return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
296 }
297
298 static inline int cpu_has_vmx_invept_context(void)
299 {
300         return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
301 }
302
303 static inline int cpu_has_vmx_invept_global(void)
304 {
305         return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
306 }
307
308 static inline int cpu_has_vmx_ept(void)
309 {
310         return vmcs_config.cpu_based_2nd_exec_ctrl &
311                 SECONDARY_EXEC_ENABLE_EPT;
312 }
313
314 static inline int cpu_has_vmx_unrestricted_guest(void)
315 {
316         return vmcs_config.cpu_based_2nd_exec_ctrl &
317                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
318 }
319
320 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
321 {
322         return flexpriority_enabled &&
323                 (cpu_has_vmx_virtualize_apic_accesses()) &&
324                 (irqchip_in_kernel(kvm));
325 }
326
327 static inline int cpu_has_vmx_vpid(void)
328 {
329         return vmcs_config.cpu_based_2nd_exec_ctrl &
330                 SECONDARY_EXEC_ENABLE_VPID;
331 }
332
333 static inline int cpu_has_virtual_nmis(void)
334 {
335         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
336 }
337
338 static inline bool report_flexpriority(void)
339 {
340         return flexpriority_enabled;
341 }
342
343 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
344 {
345         int i;
346
347         for (i = 0; i < vmx->nmsrs; ++i)
348                 if (vmx->guest_msrs[i].index == msr)
349                         return i;
350         return -1;
351 }
352
353 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
354 {
355     struct {
356         u64 vpid : 16;
357         u64 rsvd : 48;
358         u64 gva;
359     } operand = { vpid, 0, gva };
360
361     asm volatile (__ex(ASM_VMX_INVVPID)
362                   /* CF==1 or ZF==1 --> rc = -1 */
363                   "; ja 1f ; ud2 ; 1:"
364                   : : "a"(&operand), "c"(ext) : "cc", "memory");
365 }
366
367 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
368 {
369         struct {
370                 u64 eptp, gpa;
371         } operand = {eptp, gpa};
372
373         asm volatile (__ex(ASM_VMX_INVEPT)
374                         /* CF==1 or ZF==1 --> rc = -1 */
375                         "; ja 1f ; ud2 ; 1:\n"
376                         : : "a" (&operand), "c" (ext) : "cc", "memory");
377 }
378
379 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
380 {
381         int i;
382
383         i = __find_msr_index(vmx, msr);
384         if (i >= 0)
385                 return &vmx->guest_msrs[i];
386         return NULL;
387 }
388
389 static void vmcs_clear(struct vmcs *vmcs)
390 {
391         u64 phys_addr = __pa(vmcs);
392         u8 error;
393
394         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
395                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
396                       : "cc", "memory");
397         if (error)
398                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
399                        vmcs, phys_addr);
400 }
401
402 static void __vcpu_clear(void *arg)
403 {
404         struct vcpu_vmx *vmx = arg;
405         int cpu = raw_smp_processor_id();
406
407         if (vmx->vcpu.cpu == cpu)
408                 vmcs_clear(vmx->vmcs);
409         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
410                 per_cpu(current_vmcs, cpu) = NULL;
411         rdtscll(vmx->vcpu.arch.host_tsc);
412         list_del(&vmx->local_vcpus_link);
413         vmx->vcpu.cpu = -1;
414         vmx->launched = 0;
415 }
416
417 static void vcpu_clear(struct vcpu_vmx *vmx)
418 {
419         if (vmx->vcpu.cpu == -1)
420                 return;
421         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
422 }
423
424 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
425 {
426         if (vmx->vpid == 0)
427                 return;
428
429         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
430 }
431
432 static inline void ept_sync_global(void)
433 {
434         if (cpu_has_vmx_invept_global())
435                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
436 }
437
438 static inline void ept_sync_context(u64 eptp)
439 {
440         if (enable_ept) {
441                 if (cpu_has_vmx_invept_context())
442                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
443                 else
444                         ept_sync_global();
445         }
446 }
447
448 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
449 {
450         if (enable_ept) {
451                 if (cpu_has_vmx_invept_individual_addr())
452                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
453                                         eptp, gpa);
454                 else
455                         ept_sync_context(eptp);
456         }
457 }
458
459 static unsigned long vmcs_readl(unsigned long field)
460 {
461         unsigned long value;
462
463         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
464                       : "=a"(value) : "d"(field) : "cc");
465         return value;
466 }
467
468 static u16 vmcs_read16(unsigned long field)
469 {
470         return vmcs_readl(field);
471 }
472
473 static u32 vmcs_read32(unsigned long field)
474 {
475         return vmcs_readl(field);
476 }
477
478 static u64 vmcs_read64(unsigned long field)
479 {
480 #ifdef CONFIG_X86_64
481         return vmcs_readl(field);
482 #else
483         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
484 #endif
485 }
486
487 static noinline void vmwrite_error(unsigned long field, unsigned long value)
488 {
489         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
490                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
491         dump_stack();
492 }
493
494 static void vmcs_writel(unsigned long field, unsigned long value)
495 {
496         u8 error;
497
498         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
499                        : "=q"(error) : "a"(value), "d"(field) : "cc");
500         if (unlikely(error))
501                 vmwrite_error(field, value);
502 }
503
504 static void vmcs_write16(unsigned long field, u16 value)
505 {
506         vmcs_writel(field, value);
507 }
508
509 static void vmcs_write32(unsigned long field, u32 value)
510 {
511         vmcs_writel(field, value);
512 }
513
514 static void vmcs_write64(unsigned long field, u64 value)
515 {
516         vmcs_writel(field, value);
517 #ifndef CONFIG_X86_64
518         asm volatile ("");
519         vmcs_writel(field+1, value >> 32);
520 #endif
521 }
522
523 static void vmcs_clear_bits(unsigned long field, u32 mask)
524 {
525         vmcs_writel(field, vmcs_readl(field) & ~mask);
526 }
527
528 static void vmcs_set_bits(unsigned long field, u32 mask)
529 {
530         vmcs_writel(field, vmcs_readl(field) | mask);
531 }
532
533 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
534 {
535         u32 eb;
536
537         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
538         if (!vcpu->fpu_active)
539                 eb |= 1u << NM_VECTOR;
540         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
541                 if (vcpu->guest_debug &
542                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
543                         eb |= 1u << DB_VECTOR;
544                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
545                         eb |= 1u << BP_VECTOR;
546         }
547         if (to_vmx(vcpu)->rmode.vm86_active)
548                 eb = ~0;
549         if (enable_ept)
550                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
551         vmcs_write32(EXCEPTION_BITMAP, eb);
552 }
553
554 static void reload_tss(void)
555 {
556         /*
557          * VT restores TR but not its size.  Useless.
558          */
559         struct descriptor_table gdt;
560         struct desc_struct *descs;
561
562         kvm_get_gdt(&gdt);
563         descs = (void *)gdt.base;
564         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
565         load_TR_desc();
566 }
567
568 static void load_transition_efer(struct vcpu_vmx *vmx)
569 {
570         int efer_offset = vmx->msr_offset_efer;
571         u64 host_efer = vmx->host_msrs[efer_offset].data;
572         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
573         u64 ignore_bits;
574
575         if (efer_offset < 0)
576                 return;
577         /*
578          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
579          * outside long mode
580          */
581         ignore_bits = EFER_NX | EFER_SCE;
582 #ifdef CONFIG_X86_64
583         ignore_bits |= EFER_LMA | EFER_LME;
584         /* SCE is meaningful only in long mode on Intel */
585         if (guest_efer & EFER_LMA)
586                 ignore_bits &= ~(u64)EFER_SCE;
587 #endif
588         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
589                 return;
590
591         vmx->host_state.guest_efer_loaded = 1;
592         guest_efer &= ~ignore_bits;
593         guest_efer |= host_efer & ignore_bits;
594         wrmsrl(MSR_EFER, guest_efer);
595         vmx->vcpu.stat.efer_reload++;
596 }
597
598 static void reload_host_efer(struct vcpu_vmx *vmx)
599 {
600         if (vmx->host_state.guest_efer_loaded) {
601                 vmx->host_state.guest_efer_loaded = 0;
602                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
603         }
604 }
605
606 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
607 {
608         struct vcpu_vmx *vmx = to_vmx(vcpu);
609
610         if (vmx->host_state.loaded)
611                 return;
612
613         vmx->host_state.loaded = 1;
614         /*
615          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
616          * allow segment selectors with cpl > 0 or ti == 1.
617          */
618         vmx->host_state.ldt_sel = kvm_read_ldt();
619         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
620         vmx->host_state.fs_sel = kvm_read_fs();
621         if (!(vmx->host_state.fs_sel & 7)) {
622                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
623                 vmx->host_state.fs_reload_needed = 0;
624         } else {
625                 vmcs_write16(HOST_FS_SELECTOR, 0);
626                 vmx->host_state.fs_reload_needed = 1;
627         }
628         vmx->host_state.gs_sel = kvm_read_gs();
629         if (!(vmx->host_state.gs_sel & 7))
630                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
631         else {
632                 vmcs_write16(HOST_GS_SELECTOR, 0);
633                 vmx->host_state.gs_ldt_reload_needed = 1;
634         }
635
636 #ifdef CONFIG_X86_64
637         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
638         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
639 #else
640         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
641         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
642 #endif
643
644 #ifdef CONFIG_X86_64
645         if (is_long_mode(&vmx->vcpu))
646                 save_msrs(vmx->host_msrs +
647                           vmx->msr_offset_kernel_gs_base, 1);
648
649 #endif
650         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
651         load_transition_efer(vmx);
652 }
653
654 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
655 {
656         unsigned long flags;
657
658         if (!vmx->host_state.loaded)
659                 return;
660
661         ++vmx->vcpu.stat.host_state_reload;
662         vmx->host_state.loaded = 0;
663         if (vmx->host_state.fs_reload_needed)
664                 kvm_load_fs(vmx->host_state.fs_sel);
665         if (vmx->host_state.gs_ldt_reload_needed) {
666                 kvm_load_ldt(vmx->host_state.ldt_sel);
667                 /*
668                  * If we have to reload gs, we must take care to
669                  * preserve our gs base.
670                  */
671                 local_irq_save(flags);
672                 kvm_load_gs(vmx->host_state.gs_sel);
673 #ifdef CONFIG_X86_64
674                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
675 #endif
676                 local_irq_restore(flags);
677         }
678         reload_tss();
679         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
680         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
681         reload_host_efer(vmx);
682 }
683
684 static void vmx_load_host_state(struct vcpu_vmx *vmx)
685 {
686         preempt_disable();
687         __vmx_load_host_state(vmx);
688         preempt_enable();
689 }
690
691 /*
692  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
693  * vcpu mutex is already taken.
694  */
695 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
696 {
697         struct vcpu_vmx *vmx = to_vmx(vcpu);
698         u64 phys_addr = __pa(vmx->vmcs);
699         u64 tsc_this, delta, new_offset;
700
701         if (vcpu->cpu != cpu) {
702                 vcpu_clear(vmx);
703                 kvm_migrate_timers(vcpu);
704                 vpid_sync_vcpu_all(vmx);
705                 local_irq_disable();
706                 list_add(&vmx->local_vcpus_link,
707                          &per_cpu(vcpus_on_cpu, cpu));
708                 local_irq_enable();
709         }
710
711         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
712                 u8 error;
713
714                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
715                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
716                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
717                               : "cc");
718                 if (error)
719                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
720                                vmx->vmcs, phys_addr);
721         }
722
723         if (vcpu->cpu != cpu) {
724                 struct descriptor_table dt;
725                 unsigned long sysenter_esp;
726
727                 vcpu->cpu = cpu;
728                 /*
729                  * Linux uses per-cpu TSS and GDT, so set these when switching
730                  * processors.
731                  */
732                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
733                 kvm_get_gdt(&dt);
734                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
735
736                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
737                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
738
739                 /*
740                  * Make sure the time stamp counter is monotonous.
741                  */
742                 rdtscll(tsc_this);
743                 if (tsc_this < vcpu->arch.host_tsc) {
744                         delta = vcpu->arch.host_tsc - tsc_this;
745                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
746                         vmcs_write64(TSC_OFFSET, new_offset);
747                 }
748         }
749 }
750
751 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
752 {
753         __vmx_load_host_state(to_vmx(vcpu));
754 }
755
756 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
757 {
758         if (vcpu->fpu_active)
759                 return;
760         vcpu->fpu_active = 1;
761         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
762         if (vcpu->arch.cr0 & X86_CR0_TS)
763                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
764         update_exception_bitmap(vcpu);
765 }
766
767 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
768 {
769         if (!vcpu->fpu_active)
770                 return;
771         vcpu->fpu_active = 0;
772         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
773         update_exception_bitmap(vcpu);
774 }
775
776 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
777 {
778         return vmcs_readl(GUEST_RFLAGS);
779 }
780
781 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
782 {
783         if (to_vmx(vcpu)->rmode.vm86_active)
784                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
785         vmcs_writel(GUEST_RFLAGS, rflags);
786 }
787
788 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
789 {
790         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
791         int ret = 0;
792
793         if (interruptibility & GUEST_INTR_STATE_STI)
794                 ret |= X86_SHADOW_INT_STI;
795         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
796                 ret |= X86_SHADOW_INT_MOV_SS;
797
798         return ret & mask;
799 }
800
801 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
802 {
803         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
804         u32 interruptibility = interruptibility_old;
805
806         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
807
808         if (mask & X86_SHADOW_INT_MOV_SS)
809                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
810         if (mask & X86_SHADOW_INT_STI)
811                 interruptibility |= GUEST_INTR_STATE_STI;
812
813         if ((interruptibility != interruptibility_old))
814                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
815 }
816
817 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
818 {
819         unsigned long rip;
820
821         rip = kvm_rip_read(vcpu);
822         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
823         kvm_rip_write(vcpu, rip);
824
825         /* skipping an emulated instruction also counts */
826         vmx_set_interrupt_shadow(vcpu, 0);
827 }
828
829 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
830                                 bool has_error_code, u32 error_code)
831 {
832         struct vcpu_vmx *vmx = to_vmx(vcpu);
833         u32 intr_info = nr | INTR_INFO_VALID_MASK;
834
835         if (has_error_code) {
836                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
837                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
838         }
839
840         if (vmx->rmode.vm86_active) {
841                 vmx->rmode.irq.pending = true;
842                 vmx->rmode.irq.vector = nr;
843                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
844                 if (kvm_exception_is_soft(nr))
845                         vmx->rmode.irq.rip +=
846                                 vmx->vcpu.arch.event_exit_inst_len;
847                 intr_info |= INTR_TYPE_SOFT_INTR;
848                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
849                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
850                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
851                 return;
852         }
853
854         if (kvm_exception_is_soft(nr)) {
855                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
856                              vmx->vcpu.arch.event_exit_inst_len);
857                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
858         } else
859                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
860
861         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
862 }
863
864 /*
865  * Swap MSR entry in host/guest MSR entry array.
866  */
867 #ifdef CONFIG_X86_64
868 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
869 {
870         struct kvm_msr_entry tmp;
871
872         tmp = vmx->guest_msrs[to];
873         vmx->guest_msrs[to] = vmx->guest_msrs[from];
874         vmx->guest_msrs[from] = tmp;
875         tmp = vmx->host_msrs[to];
876         vmx->host_msrs[to] = vmx->host_msrs[from];
877         vmx->host_msrs[from] = tmp;
878 }
879 #endif
880
881 /*
882  * Set up the vmcs to automatically save and restore system
883  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
884  * mode, as fiddling with msrs is very expensive.
885  */
886 static void setup_msrs(struct vcpu_vmx *vmx)
887 {
888         int save_nmsrs;
889         unsigned long *msr_bitmap;
890
891         vmx_load_host_state(vmx);
892         save_nmsrs = 0;
893 #ifdef CONFIG_X86_64
894         if (is_long_mode(&vmx->vcpu)) {
895                 int index;
896
897                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
898                 if (index >= 0)
899                         move_msr_up(vmx, index, save_nmsrs++);
900                 index = __find_msr_index(vmx, MSR_LSTAR);
901                 if (index >= 0)
902                         move_msr_up(vmx, index, save_nmsrs++);
903                 index = __find_msr_index(vmx, MSR_CSTAR);
904                 if (index >= 0)
905                         move_msr_up(vmx, index, save_nmsrs++);
906                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
907                 if (index >= 0)
908                         move_msr_up(vmx, index, save_nmsrs++);
909                 /*
910                  * MSR_K6_STAR is only needed on long mode guests, and only
911                  * if efer.sce is enabled.
912                  */
913                 index = __find_msr_index(vmx, MSR_K6_STAR);
914                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
915                         move_msr_up(vmx, index, save_nmsrs++);
916         }
917 #endif
918         vmx->save_nmsrs = save_nmsrs;
919
920 #ifdef CONFIG_X86_64
921         vmx->msr_offset_kernel_gs_base =
922                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
923 #endif
924         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
925
926         if (cpu_has_vmx_msr_bitmap()) {
927                 if (is_long_mode(&vmx->vcpu))
928                         msr_bitmap = vmx_msr_bitmap_longmode;
929                 else
930                         msr_bitmap = vmx_msr_bitmap_legacy;
931
932                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
933         }
934 }
935
936 /*
937  * reads and returns guest's timestamp counter "register"
938  * guest_tsc = host_tsc + tsc_offset    -- 21.3
939  */
940 static u64 guest_read_tsc(void)
941 {
942         u64 host_tsc, tsc_offset;
943
944         rdtscll(host_tsc);
945         tsc_offset = vmcs_read64(TSC_OFFSET);
946         return host_tsc + tsc_offset;
947 }
948
949 /*
950  * writes 'guest_tsc' into guest's timestamp counter "register"
951  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
952  */
953 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
954 {
955         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
956 }
957
958 /*
959  * Reads an msr value (of 'msr_index') into 'pdata'.
960  * Returns 0 on success, non-0 otherwise.
961  * Assumes vcpu_load() was already called.
962  */
963 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
964 {
965         u64 data;
966         struct kvm_msr_entry *msr;
967
968         if (!pdata) {
969                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
970                 return -EINVAL;
971         }
972
973         switch (msr_index) {
974 #ifdef CONFIG_X86_64
975         case MSR_FS_BASE:
976                 data = vmcs_readl(GUEST_FS_BASE);
977                 break;
978         case MSR_GS_BASE:
979                 data = vmcs_readl(GUEST_GS_BASE);
980                 break;
981         case MSR_EFER:
982                 return kvm_get_msr_common(vcpu, msr_index, pdata);
983 #endif
984         case MSR_IA32_TSC:
985                 data = guest_read_tsc();
986                 break;
987         case MSR_IA32_SYSENTER_CS:
988                 data = vmcs_read32(GUEST_SYSENTER_CS);
989                 break;
990         case MSR_IA32_SYSENTER_EIP:
991                 data = vmcs_readl(GUEST_SYSENTER_EIP);
992                 break;
993         case MSR_IA32_SYSENTER_ESP:
994                 data = vmcs_readl(GUEST_SYSENTER_ESP);
995                 break;
996         default:
997                 vmx_load_host_state(to_vmx(vcpu));
998                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
999                 if (msr) {
1000                         data = msr->data;
1001                         break;
1002                 }
1003                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1004         }
1005
1006         *pdata = data;
1007         return 0;
1008 }
1009
1010 /*
1011  * Writes msr value into into the appropriate "register".
1012  * Returns 0 on success, non-0 otherwise.
1013  * Assumes vcpu_load() was already called.
1014  */
1015 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1016 {
1017         struct vcpu_vmx *vmx = to_vmx(vcpu);
1018         struct kvm_msr_entry *msr;
1019         u64 host_tsc;
1020         int ret = 0;
1021
1022         switch (msr_index) {
1023         case MSR_EFER:
1024                 vmx_load_host_state(vmx);
1025                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1026                 break;
1027 #ifdef CONFIG_X86_64
1028         case MSR_FS_BASE:
1029                 vmcs_writel(GUEST_FS_BASE, data);
1030                 break;
1031         case MSR_GS_BASE:
1032                 vmcs_writel(GUEST_GS_BASE, data);
1033                 break;
1034 #endif
1035         case MSR_IA32_SYSENTER_CS:
1036                 vmcs_write32(GUEST_SYSENTER_CS, data);
1037                 break;
1038         case MSR_IA32_SYSENTER_EIP:
1039                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1040                 break;
1041         case MSR_IA32_SYSENTER_ESP:
1042                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1043                 break;
1044         case MSR_IA32_TSC:
1045                 rdtscll(host_tsc);
1046                 guest_write_tsc(data, host_tsc);
1047                 break;
1048         case MSR_IA32_CR_PAT:
1049                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1050                         vmcs_write64(GUEST_IA32_PAT, data);
1051                         vcpu->arch.pat = data;
1052                         break;
1053                 }
1054                 /* Otherwise falls through to kvm_set_msr_common */
1055         default:
1056                 vmx_load_host_state(vmx);
1057                 msr = find_msr_entry(vmx, msr_index);
1058                 if (msr) {
1059                         msr->data = data;
1060                         break;
1061                 }
1062                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1063         }
1064
1065         return ret;
1066 }
1067
1068 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1069 {
1070         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1071         switch (reg) {
1072         case VCPU_REGS_RSP:
1073                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1074                 break;
1075         case VCPU_REGS_RIP:
1076                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1077                 break;
1078         case VCPU_EXREG_PDPTR:
1079                 if (enable_ept)
1080                         ept_save_pdptrs(vcpu);
1081                 break;
1082         default:
1083                 break;
1084         }
1085 }
1086
1087 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1088 {
1089         int old_debug = vcpu->guest_debug;
1090         unsigned long flags;
1091
1092         vcpu->guest_debug = dbg->control;
1093         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1094                 vcpu->guest_debug = 0;
1095
1096         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1097                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1098         else
1099                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1100
1101         flags = vmcs_readl(GUEST_RFLAGS);
1102         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1103                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1104         else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1105                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1106         vmcs_writel(GUEST_RFLAGS, flags);
1107
1108         update_exception_bitmap(vcpu);
1109
1110         return 0;
1111 }
1112
1113 static __init int cpu_has_kvm_support(void)
1114 {
1115         return cpu_has_vmx();
1116 }
1117
1118 static __init int vmx_disabled_by_bios(void)
1119 {
1120         u64 msr;
1121
1122         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1123         return (msr & (FEATURE_CONTROL_LOCKED |
1124                        FEATURE_CONTROL_VMXON_ENABLED))
1125             == FEATURE_CONTROL_LOCKED;
1126         /* locked but not enabled */
1127 }
1128
1129 static void hardware_enable(void *garbage)
1130 {
1131         int cpu = raw_smp_processor_id();
1132         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1133         u64 old;
1134
1135         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1136         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1137         if ((old & (FEATURE_CONTROL_LOCKED |
1138                     FEATURE_CONTROL_VMXON_ENABLED))
1139             != (FEATURE_CONTROL_LOCKED |
1140                 FEATURE_CONTROL_VMXON_ENABLED))
1141                 /* enable and lock */
1142                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1143                        FEATURE_CONTROL_LOCKED |
1144                        FEATURE_CONTROL_VMXON_ENABLED);
1145         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1146         asm volatile (ASM_VMX_VMXON_RAX
1147                       : : "a"(&phys_addr), "m"(phys_addr)
1148                       : "memory", "cc");
1149 }
1150
1151 static void vmclear_local_vcpus(void)
1152 {
1153         int cpu = raw_smp_processor_id();
1154         struct vcpu_vmx *vmx, *n;
1155
1156         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1157                                  local_vcpus_link)
1158                 __vcpu_clear(vmx);
1159 }
1160
1161
1162 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1163  * tricks.
1164  */
1165 static void kvm_cpu_vmxoff(void)
1166 {
1167         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1168         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1169 }
1170
1171 static void hardware_disable(void *garbage)
1172 {
1173         vmclear_local_vcpus();
1174         kvm_cpu_vmxoff();
1175 }
1176
1177 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1178                                       u32 msr, u32 *result)
1179 {
1180         u32 vmx_msr_low, vmx_msr_high;
1181         u32 ctl = ctl_min | ctl_opt;
1182
1183         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1184
1185         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1186         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1187
1188         /* Ensure minimum (required) set of control bits are supported. */
1189         if (ctl_min & ~ctl)
1190                 return -EIO;
1191
1192         *result = ctl;
1193         return 0;
1194 }
1195
1196 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1197 {
1198         u32 vmx_msr_low, vmx_msr_high;
1199         u32 min, opt, min2, opt2;
1200         u32 _pin_based_exec_control = 0;
1201         u32 _cpu_based_exec_control = 0;
1202         u32 _cpu_based_2nd_exec_control = 0;
1203         u32 _vmexit_control = 0;
1204         u32 _vmentry_control = 0;
1205
1206         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1207         opt = PIN_BASED_VIRTUAL_NMIS;
1208         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1209                                 &_pin_based_exec_control) < 0)
1210                 return -EIO;
1211
1212         min = CPU_BASED_HLT_EXITING |
1213 #ifdef CONFIG_X86_64
1214               CPU_BASED_CR8_LOAD_EXITING |
1215               CPU_BASED_CR8_STORE_EXITING |
1216 #endif
1217               CPU_BASED_CR3_LOAD_EXITING |
1218               CPU_BASED_CR3_STORE_EXITING |
1219               CPU_BASED_USE_IO_BITMAPS |
1220               CPU_BASED_MOV_DR_EXITING |
1221               CPU_BASED_USE_TSC_OFFSETING |
1222               CPU_BASED_INVLPG_EXITING;
1223         opt = CPU_BASED_TPR_SHADOW |
1224               CPU_BASED_USE_MSR_BITMAPS |
1225               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1226         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1227                                 &_cpu_based_exec_control) < 0)
1228                 return -EIO;
1229 #ifdef CONFIG_X86_64
1230         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1231                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1232                                            ~CPU_BASED_CR8_STORE_EXITING;
1233 #endif
1234         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1235                 min2 = 0;
1236                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1237                         SECONDARY_EXEC_WBINVD_EXITING |
1238                         SECONDARY_EXEC_ENABLE_VPID |
1239                         SECONDARY_EXEC_ENABLE_EPT |
1240                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
1241                 if (adjust_vmx_controls(min2, opt2,
1242                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1243                                         &_cpu_based_2nd_exec_control) < 0)
1244                         return -EIO;
1245         }
1246 #ifndef CONFIG_X86_64
1247         if (!(_cpu_based_2nd_exec_control &
1248                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1249                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1250 #endif
1251         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1252                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1253                    enabled */
1254                 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1255                          CPU_BASED_CR3_STORE_EXITING |
1256                          CPU_BASED_INVLPG_EXITING);
1257                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1258                                         &_cpu_based_exec_control) < 0)
1259                         return -EIO;
1260                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1261                       vmx_capability.ept, vmx_capability.vpid);
1262         }
1263
1264         min = 0;
1265 #ifdef CONFIG_X86_64
1266         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1267 #endif
1268         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1269         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1270                                 &_vmexit_control) < 0)
1271                 return -EIO;
1272
1273         min = 0;
1274         opt = VM_ENTRY_LOAD_IA32_PAT;
1275         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1276                                 &_vmentry_control) < 0)
1277                 return -EIO;
1278
1279         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1280
1281         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1282         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1283                 return -EIO;
1284
1285 #ifdef CONFIG_X86_64
1286         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1287         if (vmx_msr_high & (1u<<16))
1288                 return -EIO;
1289 #endif
1290
1291         /* Require Write-Back (WB) memory type for VMCS accesses. */
1292         if (((vmx_msr_high >> 18) & 15) != 6)
1293                 return -EIO;
1294
1295         vmcs_conf->size = vmx_msr_high & 0x1fff;
1296         vmcs_conf->order = get_order(vmcs_config.size);
1297         vmcs_conf->revision_id = vmx_msr_low;
1298
1299         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1300         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1301         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1302         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1303         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1304
1305         return 0;
1306 }
1307
1308 static struct vmcs *alloc_vmcs_cpu(int cpu)
1309 {
1310         int node = cpu_to_node(cpu);
1311         struct page *pages;
1312         struct vmcs *vmcs;
1313
1314         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1315         if (!pages)
1316                 return NULL;
1317         vmcs = page_address(pages);
1318         memset(vmcs, 0, vmcs_config.size);
1319         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1320         return vmcs;
1321 }
1322
1323 static struct vmcs *alloc_vmcs(void)
1324 {
1325         return alloc_vmcs_cpu(raw_smp_processor_id());
1326 }
1327
1328 static void free_vmcs(struct vmcs *vmcs)
1329 {
1330         free_pages((unsigned long)vmcs, vmcs_config.order);
1331 }
1332
1333 static void free_kvm_area(void)
1334 {
1335         int cpu;
1336
1337         for_each_online_cpu(cpu)
1338                 free_vmcs(per_cpu(vmxarea, cpu));
1339 }
1340
1341 static __init int alloc_kvm_area(void)
1342 {
1343         int cpu;
1344
1345         for_each_online_cpu(cpu) {
1346                 struct vmcs *vmcs;
1347
1348                 vmcs = alloc_vmcs_cpu(cpu);
1349                 if (!vmcs) {
1350                         free_kvm_area();
1351                         return -ENOMEM;
1352                 }
1353
1354                 per_cpu(vmxarea, cpu) = vmcs;
1355         }
1356         return 0;
1357 }
1358
1359 static __init int hardware_setup(void)
1360 {
1361         if (setup_vmcs_config(&vmcs_config) < 0)
1362                 return -EIO;
1363
1364         if (boot_cpu_has(X86_FEATURE_NX))
1365                 kvm_enable_efer_bits(EFER_NX);
1366
1367         if (!cpu_has_vmx_vpid())
1368                 enable_vpid = 0;
1369
1370         if (!cpu_has_vmx_ept()) {
1371                 enable_ept = 0;
1372                 enable_unrestricted_guest = 0;
1373         }
1374
1375         if (!cpu_has_vmx_unrestricted_guest())
1376                 enable_unrestricted_guest = 0;
1377
1378         if (!cpu_has_vmx_flexpriority())
1379                 flexpriority_enabled = 0;
1380
1381         if (!cpu_has_vmx_tpr_shadow())
1382                 kvm_x86_ops->update_cr8_intercept = NULL;
1383
1384         return alloc_kvm_area();
1385 }
1386
1387 static __exit void hardware_unsetup(void)
1388 {
1389         free_kvm_area();
1390 }
1391
1392 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1393 {
1394         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1395
1396         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1397                 vmcs_write16(sf->selector, save->selector);
1398                 vmcs_writel(sf->base, save->base);
1399                 vmcs_write32(sf->limit, save->limit);
1400                 vmcs_write32(sf->ar_bytes, save->ar);
1401         } else {
1402                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1403                         << AR_DPL_SHIFT;
1404                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1405         }
1406 }
1407
1408 static void enter_pmode(struct kvm_vcpu *vcpu)
1409 {
1410         unsigned long flags;
1411         struct vcpu_vmx *vmx = to_vmx(vcpu);
1412
1413         vmx->emulation_required = 1;
1414         vmx->rmode.vm86_active = 0;
1415
1416         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1417         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1418         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1419
1420         flags = vmcs_readl(GUEST_RFLAGS);
1421         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1422         flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1423         vmcs_writel(GUEST_RFLAGS, flags);
1424
1425         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1426                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1427
1428         update_exception_bitmap(vcpu);
1429
1430         if (emulate_invalid_guest_state)
1431                 return;
1432
1433         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1434         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1435         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1436         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1437
1438         vmcs_write16(GUEST_SS_SELECTOR, 0);
1439         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1440
1441         vmcs_write16(GUEST_CS_SELECTOR,
1442                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1443         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1444 }
1445
1446 static gva_t rmode_tss_base(struct kvm *kvm)
1447 {
1448         if (!kvm->arch.tss_addr) {
1449                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1450                                  kvm->memslots[0].npages - 3;
1451                 return base_gfn << PAGE_SHIFT;
1452         }
1453         return kvm->arch.tss_addr;
1454 }
1455
1456 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1457 {
1458         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1459
1460         save->selector = vmcs_read16(sf->selector);
1461         save->base = vmcs_readl(sf->base);
1462         save->limit = vmcs_read32(sf->limit);
1463         save->ar = vmcs_read32(sf->ar_bytes);
1464         vmcs_write16(sf->selector, save->base >> 4);
1465         vmcs_write32(sf->base, save->base & 0xfffff);
1466         vmcs_write32(sf->limit, 0xffff);
1467         vmcs_write32(sf->ar_bytes, 0xf3);
1468 }
1469
1470 static void enter_rmode(struct kvm_vcpu *vcpu)
1471 {
1472         unsigned long flags;
1473         struct vcpu_vmx *vmx = to_vmx(vcpu);
1474
1475         if (enable_unrestricted_guest)
1476                 return;
1477
1478         vmx->emulation_required = 1;
1479         vmx->rmode.vm86_active = 1;
1480
1481         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1482         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1483
1484         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1485         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1486
1487         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1488         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1489
1490         flags = vmcs_readl(GUEST_RFLAGS);
1491         vmx->rmode.save_iopl
1492                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1493
1494         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1495
1496         vmcs_writel(GUEST_RFLAGS, flags);
1497         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1498         update_exception_bitmap(vcpu);
1499
1500         if (emulate_invalid_guest_state)
1501                 goto continue_rmode;
1502
1503         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1504         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1505         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1506
1507         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1508         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1509         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1510                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1511         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1512
1513         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1514         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1515         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1516         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1517
1518 continue_rmode:
1519         kvm_mmu_reset_context(vcpu);
1520         init_rmode(vcpu->kvm);
1521 }
1522
1523 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1524 {
1525         struct vcpu_vmx *vmx = to_vmx(vcpu);
1526         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1527
1528         vcpu->arch.shadow_efer = efer;
1529         if (!msr)
1530                 return;
1531         if (efer & EFER_LMA) {
1532                 vmcs_write32(VM_ENTRY_CONTROLS,
1533                              vmcs_read32(VM_ENTRY_CONTROLS) |
1534                              VM_ENTRY_IA32E_MODE);
1535                 msr->data = efer;
1536         } else {
1537                 vmcs_write32(VM_ENTRY_CONTROLS,
1538                              vmcs_read32(VM_ENTRY_CONTROLS) &
1539                              ~VM_ENTRY_IA32E_MODE);
1540
1541                 msr->data = efer & ~EFER_LME;
1542         }
1543         setup_msrs(vmx);
1544 }
1545
1546 #ifdef CONFIG_X86_64
1547
1548 static void enter_lmode(struct kvm_vcpu *vcpu)
1549 {
1550         u32 guest_tr_ar;
1551
1552         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1553         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1554                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1555                        __func__);
1556                 vmcs_write32(GUEST_TR_AR_BYTES,
1557                              (guest_tr_ar & ~AR_TYPE_MASK)
1558                              | AR_TYPE_BUSY_64_TSS);
1559         }
1560         vcpu->arch.shadow_efer |= EFER_LMA;
1561         vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1562 }
1563
1564 static void exit_lmode(struct kvm_vcpu *vcpu)
1565 {
1566         vcpu->arch.shadow_efer &= ~EFER_LMA;
1567
1568         vmcs_write32(VM_ENTRY_CONTROLS,
1569                      vmcs_read32(VM_ENTRY_CONTROLS)
1570                      & ~VM_ENTRY_IA32E_MODE);
1571 }
1572
1573 #endif
1574
1575 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1576 {
1577         vpid_sync_vcpu_all(to_vmx(vcpu));
1578         if (enable_ept)
1579                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1580 }
1581
1582 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1583 {
1584         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1585         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1586 }
1587
1588 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1589 {
1590         if (!test_bit(VCPU_EXREG_PDPTR,
1591                       (unsigned long *)&vcpu->arch.regs_dirty))
1592                 return;
1593
1594         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1595                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1596                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1597                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1598                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1599         }
1600 }
1601
1602 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1603 {
1604         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1605                 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1606                 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1607                 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1608                 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1609         }
1610
1611         __set_bit(VCPU_EXREG_PDPTR,
1612                   (unsigned long *)&vcpu->arch.regs_avail);
1613         __set_bit(VCPU_EXREG_PDPTR,
1614                   (unsigned long *)&vcpu->arch.regs_dirty);
1615 }
1616
1617 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1618
1619 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1620                                         unsigned long cr0,
1621                                         struct kvm_vcpu *vcpu)
1622 {
1623         if (!(cr0 & X86_CR0_PG)) {
1624                 /* From paging/starting to nonpaging */
1625                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1626                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1627                              (CPU_BASED_CR3_LOAD_EXITING |
1628                               CPU_BASED_CR3_STORE_EXITING));
1629                 vcpu->arch.cr0 = cr0;
1630                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1631                 *hw_cr0 &= ~X86_CR0_WP;
1632         } else if (!is_paging(vcpu)) {
1633                 /* From nonpaging to paging */
1634                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1635                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1636                              ~(CPU_BASED_CR3_LOAD_EXITING |
1637                                CPU_BASED_CR3_STORE_EXITING));
1638                 vcpu->arch.cr0 = cr0;
1639                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1640                 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1641                         *hw_cr0 &= ~X86_CR0_WP;
1642         }
1643 }
1644
1645 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1646                                         struct kvm_vcpu *vcpu)
1647 {
1648         if (!is_paging(vcpu)) {
1649                 *hw_cr4 &= ~X86_CR4_PAE;
1650                 *hw_cr4 |= X86_CR4_PSE;
1651         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1652                 *hw_cr4 &= ~X86_CR4_PAE;
1653 }
1654
1655 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1656 {
1657         struct vcpu_vmx *vmx = to_vmx(vcpu);
1658         unsigned long hw_cr0;
1659
1660         if (enable_unrestricted_guest)
1661                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1662                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1663         else
1664                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1665
1666         vmx_fpu_deactivate(vcpu);
1667
1668         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1669                 enter_pmode(vcpu);
1670
1671         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1672                 enter_rmode(vcpu);
1673
1674 #ifdef CONFIG_X86_64
1675         if (vcpu->arch.shadow_efer & EFER_LME) {
1676                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1677                         enter_lmode(vcpu);
1678                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1679                         exit_lmode(vcpu);
1680         }
1681 #endif
1682
1683         if (enable_ept)
1684                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1685
1686         vmcs_writel(CR0_READ_SHADOW, cr0);
1687         vmcs_writel(GUEST_CR0, hw_cr0);
1688         vcpu->arch.cr0 = cr0;
1689
1690         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1691                 vmx_fpu_activate(vcpu);
1692 }
1693
1694 static u64 construct_eptp(unsigned long root_hpa)
1695 {
1696         u64 eptp;
1697
1698         /* TODO write the value reading from MSR */
1699         eptp = VMX_EPT_DEFAULT_MT |
1700                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1701         eptp |= (root_hpa & PAGE_MASK);
1702
1703         return eptp;
1704 }
1705
1706 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1707 {
1708         unsigned long guest_cr3;
1709         u64 eptp;
1710
1711         guest_cr3 = cr3;
1712         if (enable_ept) {
1713                 eptp = construct_eptp(cr3);
1714                 vmcs_write64(EPT_POINTER, eptp);
1715                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1716                         VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1717         }
1718
1719         vmx_flush_tlb(vcpu);
1720         vmcs_writel(GUEST_CR3, guest_cr3);
1721         if (vcpu->arch.cr0 & X86_CR0_PE)
1722                 vmx_fpu_deactivate(vcpu);
1723 }
1724
1725 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1726 {
1727         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1728                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1729
1730         vcpu->arch.cr4 = cr4;
1731         if (enable_ept)
1732                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1733
1734         vmcs_writel(CR4_READ_SHADOW, cr4);
1735         vmcs_writel(GUEST_CR4, hw_cr4);
1736 }
1737
1738 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1739 {
1740         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1741
1742         return vmcs_readl(sf->base);
1743 }
1744
1745 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1746                             struct kvm_segment *var, int seg)
1747 {
1748         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1749         u32 ar;
1750
1751         var->base = vmcs_readl(sf->base);
1752         var->limit = vmcs_read32(sf->limit);
1753         var->selector = vmcs_read16(sf->selector);
1754         ar = vmcs_read32(sf->ar_bytes);
1755         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1756                 ar = 0;
1757         var->type = ar & 15;
1758         var->s = (ar >> 4) & 1;
1759         var->dpl = (ar >> 5) & 3;
1760         var->present = (ar >> 7) & 1;
1761         var->avl = (ar >> 12) & 1;
1762         var->l = (ar >> 13) & 1;
1763         var->db = (ar >> 14) & 1;
1764         var->g = (ar >> 15) & 1;
1765         var->unusable = (ar >> 16) & 1;
1766 }
1767
1768 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1769 {
1770         struct kvm_segment kvm_seg;
1771
1772         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1773                 return 0;
1774
1775         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1776                 return 3;
1777
1778         vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1779         return kvm_seg.selector & 3;
1780 }
1781
1782 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1783 {
1784         u32 ar;
1785
1786         if (var->unusable)
1787                 ar = 1 << 16;
1788         else {
1789                 ar = var->type & 15;
1790                 ar |= (var->s & 1) << 4;
1791                 ar |= (var->dpl & 3) << 5;
1792                 ar |= (var->present & 1) << 7;
1793                 ar |= (var->avl & 1) << 12;
1794                 ar |= (var->l & 1) << 13;
1795                 ar |= (var->db & 1) << 14;
1796                 ar |= (var->g & 1) << 15;
1797         }
1798         if (ar == 0) /* a 0 value means unusable */
1799                 ar = AR_UNUSABLE_MASK;
1800
1801         return ar;
1802 }
1803
1804 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1805                             struct kvm_segment *var, int seg)
1806 {
1807         struct vcpu_vmx *vmx = to_vmx(vcpu);
1808         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1809         u32 ar;
1810
1811         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1812                 vmx->rmode.tr.selector = var->selector;
1813                 vmx->rmode.tr.base = var->base;
1814                 vmx->rmode.tr.limit = var->limit;
1815                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1816                 return;
1817         }
1818         vmcs_writel(sf->base, var->base);
1819         vmcs_write32(sf->limit, var->limit);
1820         vmcs_write16(sf->selector, var->selector);
1821         if (vmx->rmode.vm86_active && var->s) {
1822                 /*
1823                  * Hack real-mode segments into vm86 compatibility.
1824                  */
1825                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1826                         vmcs_writel(sf->base, 0xf0000);
1827                 ar = 0xf3;
1828         } else
1829                 ar = vmx_segment_access_rights(var);
1830
1831         /*
1832          *   Fix the "Accessed" bit in AR field of segment registers for older
1833          * qemu binaries.
1834          *   IA32 arch specifies that at the time of processor reset the
1835          * "Accessed" bit in the AR field of segment registers is 1. And qemu
1836          * is setting it to 0 in the usedland code. This causes invalid guest
1837          * state vmexit when "unrestricted guest" mode is turned on.
1838          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
1839          * tree. Newer qemu binaries with that qemu fix would not need this
1840          * kvm hack.
1841          */
1842         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1843                 ar |= 0x1; /* Accessed */
1844
1845         vmcs_write32(sf->ar_bytes, ar);
1846 }
1847
1848 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1849 {
1850         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1851
1852         *db = (ar >> 14) & 1;
1853         *l = (ar >> 13) & 1;
1854 }
1855
1856 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1857 {
1858         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1859         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1860 }
1861
1862 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1863 {
1864         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1865         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1866 }
1867
1868 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1869 {
1870         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1871         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1872 }
1873
1874 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1875 {
1876         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1877         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1878 }
1879
1880 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1881 {
1882         struct kvm_segment var;
1883         u32 ar;
1884
1885         vmx_get_segment(vcpu, &var, seg);
1886         ar = vmx_segment_access_rights(&var);
1887
1888         if (var.base != (var.selector << 4))
1889                 return false;
1890         if (var.limit != 0xffff)
1891                 return false;
1892         if (ar != 0xf3)
1893                 return false;
1894
1895         return true;
1896 }
1897
1898 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1899 {
1900         struct kvm_segment cs;
1901         unsigned int cs_rpl;
1902
1903         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1904         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1905
1906         if (cs.unusable)
1907                 return false;
1908         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1909                 return false;
1910         if (!cs.s)
1911                 return false;
1912         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1913                 if (cs.dpl > cs_rpl)
1914                         return false;
1915         } else {
1916                 if (cs.dpl != cs_rpl)
1917                         return false;
1918         }
1919         if (!cs.present)
1920                 return false;
1921
1922         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1923         return true;
1924 }
1925
1926 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1927 {
1928         struct kvm_segment ss;
1929         unsigned int ss_rpl;
1930
1931         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1932         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1933
1934         if (ss.unusable)
1935                 return true;
1936         if (ss.type != 3 && ss.type != 7)
1937                 return false;
1938         if (!ss.s)
1939                 return false;
1940         if (ss.dpl != ss_rpl) /* DPL != RPL */
1941                 return false;
1942         if (!ss.present)
1943                 return false;
1944
1945         return true;
1946 }
1947
1948 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1949 {
1950         struct kvm_segment var;
1951         unsigned int rpl;
1952
1953         vmx_get_segment(vcpu, &var, seg);
1954         rpl = var.selector & SELECTOR_RPL_MASK;
1955
1956         if (var.unusable)
1957                 return true;
1958         if (!var.s)
1959                 return false;
1960         if (!var.present)
1961                 return false;
1962         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1963                 if (var.dpl < rpl) /* DPL < RPL */
1964                         return false;
1965         }
1966
1967         /* TODO: Add other members to kvm_segment_field to allow checking for other access
1968          * rights flags
1969          */
1970         return true;
1971 }
1972
1973 static bool tr_valid(struct kvm_vcpu *vcpu)
1974 {
1975         struct kvm_segment tr;
1976
1977         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1978
1979         if (tr.unusable)
1980                 return false;
1981         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
1982                 return false;
1983         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1984                 return false;
1985         if (!tr.present)
1986                 return false;
1987
1988         return true;
1989 }
1990
1991 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1992 {
1993         struct kvm_segment ldtr;
1994
1995         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1996
1997         if (ldtr.unusable)
1998                 return true;
1999         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2000                 return false;
2001         if (ldtr.type != 2)
2002                 return false;
2003         if (!ldtr.present)
2004                 return false;
2005
2006         return true;
2007 }
2008
2009 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2010 {
2011         struct kvm_segment cs, ss;
2012
2013         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2014         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2015
2016         return ((cs.selector & SELECTOR_RPL_MASK) ==
2017                  (ss.selector & SELECTOR_RPL_MASK));
2018 }
2019
2020 /*
2021  * Check if guest state is valid. Returns true if valid, false if
2022  * not.
2023  * We assume that registers are always usable
2024  */
2025 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2026 {
2027         /* real mode guest state checks */
2028         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2029                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2030                         return false;
2031                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2032                         return false;
2033                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2034                         return false;
2035                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2036                         return false;
2037                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2038                         return false;
2039                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2040                         return false;
2041         } else {
2042         /* protected mode guest state checks */
2043                 if (!cs_ss_rpl_check(vcpu))
2044                         return false;
2045                 if (!code_segment_valid(vcpu))
2046                         return false;
2047                 if (!stack_segment_valid(vcpu))
2048                         return false;
2049                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2050                         return false;
2051                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2052                         return false;
2053                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2054                         return false;
2055                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2056                         return false;
2057                 if (!tr_valid(vcpu))
2058                         return false;
2059                 if (!ldtr_valid(vcpu))
2060                         return false;
2061         }
2062         /* TODO:
2063          * - Add checks on RIP
2064          * - Add checks on RFLAGS
2065          */
2066
2067         return true;
2068 }
2069
2070 static int init_rmode_tss(struct kvm *kvm)
2071 {
2072         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2073         u16 data = 0;
2074         int ret = 0;
2075         int r;
2076
2077         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2078         if (r < 0)
2079                 goto out;
2080         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2081         r = kvm_write_guest_page(kvm, fn++, &data,
2082                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2083         if (r < 0)
2084                 goto out;
2085         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2086         if (r < 0)
2087                 goto out;
2088         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2089         if (r < 0)
2090                 goto out;
2091         data = ~0;
2092         r = kvm_write_guest_page(kvm, fn, &data,
2093                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2094                                  sizeof(u8));
2095         if (r < 0)
2096                 goto out;
2097
2098         ret = 1;
2099 out:
2100         return ret;
2101 }
2102
2103 static int init_rmode_identity_map(struct kvm *kvm)
2104 {
2105         int i, r, ret;
2106         pfn_t identity_map_pfn;
2107         u32 tmp;
2108
2109         if (!enable_ept)
2110                 return 1;
2111         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2112                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2113                         "haven't been allocated!\n");
2114                 return 0;
2115         }
2116         if (likely(kvm->arch.ept_identity_pagetable_done))
2117                 return 1;
2118         ret = 0;
2119         identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
2120         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2121         if (r < 0)
2122                 goto out;
2123         /* Set up identity-mapping pagetable for EPT in real mode */
2124         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2125                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2126                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2127                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2128                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2129                 if (r < 0)
2130                         goto out;
2131         }
2132         kvm->arch.ept_identity_pagetable_done = true;
2133         ret = 1;
2134 out:
2135         return ret;
2136 }
2137
2138 static void seg_setup(int seg)
2139 {
2140         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2141         unsigned int ar;
2142
2143         vmcs_write16(sf->selector, 0);
2144         vmcs_writel(sf->base, 0);
2145         vmcs_write32(sf->limit, 0xffff);
2146         if (enable_unrestricted_guest) {
2147                 ar = 0x93;
2148                 if (seg == VCPU_SREG_CS)
2149                         ar |= 0x08; /* code segment */
2150         } else
2151                 ar = 0xf3;
2152
2153         vmcs_write32(sf->ar_bytes, ar);
2154 }
2155
2156 static int alloc_apic_access_page(struct kvm *kvm)
2157 {
2158         struct kvm_userspace_memory_region kvm_userspace_mem;
2159         int r = 0;
2160
2161         down_write(&kvm->slots_lock);
2162         if (kvm->arch.apic_access_page)
2163                 goto out;
2164         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2165         kvm_userspace_mem.flags = 0;
2166         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2167         kvm_userspace_mem.memory_size = PAGE_SIZE;
2168         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2169         if (r)
2170                 goto out;
2171
2172         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2173 out:
2174         up_write(&kvm->slots_lock);
2175         return r;
2176 }
2177
2178 static int alloc_identity_pagetable(struct kvm *kvm)
2179 {
2180         struct kvm_userspace_memory_region kvm_userspace_mem;
2181         int r = 0;
2182
2183         down_write(&kvm->slots_lock);
2184         if (kvm->arch.ept_identity_pagetable)
2185                 goto out;
2186         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2187         kvm_userspace_mem.flags = 0;
2188         kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2189         kvm_userspace_mem.memory_size = PAGE_SIZE;
2190         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2191         if (r)
2192                 goto out;
2193
2194         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2195                         VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2196 out:
2197         up_write(&kvm->slots_lock);
2198         return r;
2199 }
2200
2201 static void allocate_vpid(struct vcpu_vmx *vmx)
2202 {
2203         int vpid;
2204
2205         vmx->vpid = 0;
2206         if (!enable_vpid)
2207                 return;
2208         spin_lock(&vmx_vpid_lock);
2209         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2210         if (vpid < VMX_NR_VPIDS) {
2211                 vmx->vpid = vpid;
2212                 __set_bit(vpid, vmx_vpid_bitmap);
2213         }
2214         spin_unlock(&vmx_vpid_lock);
2215 }
2216
2217 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2218 {
2219         int f = sizeof(unsigned long);
2220
2221         if (!cpu_has_vmx_msr_bitmap())
2222                 return;
2223
2224         /*
2225          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2226          * have the write-low and read-high bitmap offsets the wrong way round.
2227          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2228          */
2229         if (msr <= 0x1fff) {
2230                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2231                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2232         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2233                 msr &= 0x1fff;
2234                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2235                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2236         }
2237 }
2238
2239 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2240 {
2241         if (!longmode_only)
2242                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2243         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2244 }
2245
2246 /*
2247  * Sets up the vmcs for emulated real mode.
2248  */
2249 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2250 {
2251         u32 host_sysenter_cs, msr_low, msr_high;
2252         u32 junk;
2253         u64 host_pat, tsc_this, tsc_base;
2254         unsigned long a;
2255         struct descriptor_table dt;
2256         int i;
2257         unsigned long kvm_vmx_return;
2258         u32 exec_control;
2259
2260         /* I/O */
2261         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2262         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2263
2264         if (cpu_has_vmx_msr_bitmap())
2265                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2266
2267         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2268
2269         /* Control */
2270         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2271                 vmcs_config.pin_based_exec_ctrl);
2272
2273         exec_control = vmcs_config.cpu_based_exec_ctrl;
2274         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2275                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2276 #ifdef CONFIG_X86_64
2277                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2278                                 CPU_BASED_CR8_LOAD_EXITING;
2279 #endif
2280         }
2281         if (!enable_ept)
2282                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2283                                 CPU_BASED_CR3_LOAD_EXITING  |
2284                                 CPU_BASED_INVLPG_EXITING;
2285         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2286
2287         if (cpu_has_secondary_exec_ctrls()) {
2288                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2289                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2290                         exec_control &=
2291                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2292                 if (vmx->vpid == 0)
2293                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2294                 if (!enable_ept)
2295                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2296                 if (!enable_unrestricted_guest)
2297                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2298                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2299         }
2300
2301         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2302         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2303         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2304
2305         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2306         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2307         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2308
2309         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2310         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2311         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2312         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2313         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2314         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2315 #ifdef CONFIG_X86_64
2316         rdmsrl(MSR_FS_BASE, a);
2317         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2318         rdmsrl(MSR_GS_BASE, a);
2319         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2320 #else
2321         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2322         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2323 #endif
2324
2325         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2326
2327         kvm_get_idt(&dt);
2328         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2329
2330         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2331         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2332         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2333         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2334         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2335
2336         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2337         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2338         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2339         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2340         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2341         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2342
2343         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2344                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2345                 host_pat = msr_low | ((u64) msr_high << 32);
2346                 vmcs_write64(HOST_IA32_PAT, host_pat);
2347         }
2348         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2349                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2350                 host_pat = msr_low | ((u64) msr_high << 32);
2351                 /* Write the default value follow host pat */
2352                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2353                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2354                 vmx->vcpu.arch.pat = host_pat;
2355         }
2356
2357         for (i = 0; i < NR_VMX_MSR; ++i) {
2358                 u32 index = vmx_msr_index[i];
2359                 u32 data_low, data_high;
2360                 u64 data;
2361                 int j = vmx->nmsrs;
2362
2363                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2364                         continue;
2365                 if (wrmsr_safe(index, data_low, data_high) < 0)
2366                         continue;
2367                 data = data_low | ((u64)data_high << 32);
2368                 vmx->host_msrs[j].index = index;
2369                 vmx->host_msrs[j].reserved = 0;
2370                 vmx->host_msrs[j].data = data;
2371                 vmx->guest_msrs[j] = vmx->host_msrs[j];
2372                 ++vmx->nmsrs;
2373         }
2374
2375         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2376
2377         /* 22.2.1, 20.8.1 */
2378         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2379
2380         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2381         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2382
2383         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2384         rdtscll(tsc_this);
2385         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2386                 tsc_base = tsc_this;
2387
2388         guest_write_tsc(0, tsc_base);
2389
2390         return 0;
2391 }
2392
2393 static int init_rmode(struct kvm *kvm)
2394 {
2395         if (!init_rmode_tss(kvm))
2396                 return 0;
2397         if (!init_rmode_identity_map(kvm))
2398                 return 0;
2399         return 1;
2400 }
2401
2402 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2403 {
2404         struct vcpu_vmx *vmx = to_vmx(vcpu);
2405         u64 msr;
2406         int ret;
2407
2408         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2409         down_read(&vcpu->kvm->slots_lock);
2410         if (!init_rmode(vmx->vcpu.kvm)) {
2411                 ret = -ENOMEM;
2412                 goto out;
2413         }
2414
2415         vmx->rmode.vm86_active = 0;
2416
2417         vmx->soft_vnmi_blocked = 0;
2418
2419         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2420         kvm_set_cr8(&vmx->vcpu, 0);
2421         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2422         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2423                 msr |= MSR_IA32_APICBASE_BSP;
2424         kvm_set_apic_base(&vmx->vcpu, msr);
2425
2426         fx_init(&vmx->vcpu);
2427
2428         seg_setup(VCPU_SREG_CS);
2429         /*
2430          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2431          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2432          */
2433         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2434                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2435                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2436         } else {
2437                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2438                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2439         }
2440
2441         seg_setup(VCPU_SREG_DS);
2442         seg_setup(VCPU_SREG_ES);
2443         seg_setup(VCPU_SREG_FS);
2444         seg_setup(VCPU_SREG_GS);
2445         seg_setup(VCPU_SREG_SS);
2446
2447         vmcs_write16(GUEST_TR_SELECTOR, 0);
2448         vmcs_writel(GUEST_TR_BASE, 0);
2449         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2450         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2451
2452         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2453         vmcs_writel(GUEST_LDTR_BASE, 0);
2454         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2455         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2456
2457         vmcs_write32(GUEST_SYSENTER_CS, 0);
2458         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2459         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2460
2461         vmcs_writel(GUEST_RFLAGS, 0x02);
2462         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2463                 kvm_rip_write(vcpu, 0xfff0);
2464         else
2465                 kvm_rip_write(vcpu, 0);
2466         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2467
2468         vmcs_writel(GUEST_DR7, 0x400);
2469
2470         vmcs_writel(GUEST_GDTR_BASE, 0);
2471         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2472
2473         vmcs_writel(GUEST_IDTR_BASE, 0);
2474         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2475
2476         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2477         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2478         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2479
2480         /* Special registers */
2481         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2482
2483         setup_msrs(vmx);
2484
2485         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2486
2487         if (cpu_has_vmx_tpr_shadow()) {
2488                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2489                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2490                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2491                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2492                 vmcs_write32(TPR_THRESHOLD, 0);
2493         }
2494
2495         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2496                 vmcs_write64(APIC_ACCESS_ADDR,
2497                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2498
2499         if (vmx->vpid != 0)
2500                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2501
2502         vmx->vcpu.arch.cr0 = 0x60000010;
2503         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2504         vmx_set_cr4(&vmx->vcpu, 0);
2505         vmx_set_efer(&vmx->vcpu, 0);
2506         vmx_fpu_activate(&vmx->vcpu);
2507         update_exception_bitmap(&vmx->vcpu);
2508
2509         vpid_sync_vcpu_all(vmx);
2510
2511         ret = 0;
2512
2513         /* HACK: Don't enable emulation on guest boot/reset */
2514         vmx->emulation_required = 0;
2515
2516 out:
2517         up_read(&vcpu->kvm->slots_lock);
2518         return ret;
2519 }
2520
2521 static void enable_irq_window(struct kvm_vcpu *vcpu)
2522 {
2523         u32 cpu_based_vm_exec_control;
2524
2525         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2526         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2527         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2528 }
2529
2530 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2531 {
2532         u32 cpu_based_vm_exec_control;
2533
2534         if (!cpu_has_virtual_nmis()) {
2535                 enable_irq_window(vcpu);
2536                 return;
2537         }
2538
2539         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2540         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2541         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2542 }
2543
2544 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2545 {
2546         struct vcpu_vmx *vmx = to_vmx(vcpu);
2547         uint32_t intr;
2548         int irq = vcpu->arch.interrupt.nr;
2549
2550         KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2551
2552         ++vcpu->stat.irq_injections;
2553         if (vmx->rmode.vm86_active) {
2554                 vmx->rmode.irq.pending = true;
2555                 vmx->rmode.irq.vector = irq;
2556                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2557                 if (vcpu->arch.interrupt.soft)
2558                         vmx->rmode.irq.rip +=
2559                                 vmx->vcpu.arch.event_exit_inst_len;
2560                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2561                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2562                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2563                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2564                 return;
2565         }
2566         intr = irq | INTR_INFO_VALID_MASK;
2567         if (vcpu->arch.interrupt.soft) {
2568                 intr |= INTR_TYPE_SOFT_INTR;
2569                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2570                              vmx->vcpu.arch.event_exit_inst_len);
2571         } else
2572                 intr |= INTR_TYPE_EXT_INTR;
2573         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2574 }
2575
2576 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2577 {
2578         struct vcpu_vmx *vmx = to_vmx(vcpu);
2579
2580         if (!cpu_has_virtual_nmis()) {
2581                 /*
2582                  * Tracking the NMI-blocked state in software is built upon
2583                  * finding the next open IRQ window. This, in turn, depends on
2584                  * well-behaving guests: They have to keep IRQs disabled at
2585                  * least as long as the NMI handler runs. Otherwise we may
2586                  * cause NMI nesting, maybe breaking the guest. But as this is
2587                  * highly unlikely, we can live with the residual risk.
2588                  */
2589                 vmx->soft_vnmi_blocked = 1;
2590                 vmx->vnmi_blocked_time = 0;
2591         }
2592
2593         ++vcpu->stat.nmi_injections;
2594         if (vmx->rmode.vm86_active) {
2595                 vmx->rmode.irq.pending = true;
2596                 vmx->rmode.irq.vector = NMI_VECTOR;
2597                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2598                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2599                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2600                              INTR_INFO_VALID_MASK);
2601                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2602                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2603                 return;
2604         }
2605         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2606                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2607 }
2608
2609 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2610 {
2611         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2612                 return 0;
2613
2614         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2615                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2616                                 GUEST_INTR_STATE_NMI));
2617 }
2618
2619 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2620 {
2621         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2622                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2623                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2624 }
2625
2626 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2627 {
2628         int ret;
2629         struct kvm_userspace_memory_region tss_mem = {
2630                 .slot = TSS_PRIVATE_MEMSLOT,
2631                 .guest_phys_addr = addr,
2632                 .memory_size = PAGE_SIZE * 3,
2633                 .flags = 0,
2634         };
2635
2636         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2637         if (ret)
2638                 return ret;
2639         kvm->arch.tss_addr = addr;
2640         return 0;
2641 }
2642
2643 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2644                                   int vec, u32 err_code)
2645 {
2646         /*
2647          * Instruction with address size override prefix opcode 0x67
2648          * Cause the #SS fault with 0 error code in VM86 mode.
2649          */
2650         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2651                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2652                         return 1;
2653         /*
2654          * Forward all other exceptions that are valid in real mode.
2655          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2656          *        the required debugging infrastructure rework.
2657          */
2658         switch (vec) {
2659         case DB_VECTOR:
2660                 if (vcpu->guest_debug &
2661                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2662                         return 0;
2663                 kvm_queue_exception(vcpu, vec);
2664                 return 1;
2665         case BP_VECTOR:
2666                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2667                         return 0;
2668                 /* fall through */
2669         case DE_VECTOR:
2670         case OF_VECTOR:
2671         case BR_VECTOR:
2672         case UD_VECTOR:
2673         case DF_VECTOR:
2674         case SS_VECTOR:
2675         case GP_VECTOR:
2676         case MF_VECTOR:
2677                 kvm_queue_exception(vcpu, vec);
2678                 return 1;
2679         }
2680         return 0;
2681 }
2682
2683 /*
2684  * Trigger machine check on the host. We assume all the MSRs are already set up
2685  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2686  * We pass a fake environment to the machine check handler because we want
2687  * the guest to be always treated like user space, no matter what context
2688  * it used internally.
2689  */
2690 static void kvm_machine_check(void)
2691 {
2692 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2693         struct pt_regs regs = {
2694                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2695                 .flags = X86_EFLAGS_IF,
2696         };
2697
2698         do_machine_check(&regs, 0);
2699 #endif
2700 }
2701
2702 static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2703 {
2704         /* already handled by vcpu_run */
2705         return 1;
2706 }
2707
2708 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2709 {
2710         struct vcpu_vmx *vmx = to_vmx(vcpu);
2711         u32 intr_info, ex_no, error_code;
2712         unsigned long cr2, rip, dr6;
2713         u32 vect_info;
2714         enum emulation_result er;
2715
2716         vect_info = vmx->idt_vectoring_info;
2717         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2718
2719         if (is_machine_check(intr_info))
2720                 return handle_machine_check(vcpu, kvm_run);
2721
2722         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2723                                                 !is_page_fault(intr_info))
2724                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2725                        "intr info 0x%x\n", __func__, vect_info, intr_info);
2726
2727         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2728                 return 1;  /* already handled by vmx_vcpu_run() */
2729
2730         if (is_no_device(intr_info)) {
2731                 vmx_fpu_activate(vcpu);
2732                 return 1;
2733         }
2734
2735         if (is_invalid_opcode(intr_info)) {
2736                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2737                 if (er != EMULATE_DONE)
2738                         kvm_queue_exception(vcpu, UD_VECTOR);
2739                 return 1;
2740         }
2741
2742         error_code = 0;
2743         rip = kvm_rip_read(vcpu);
2744         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2745                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2746         if (is_page_fault(intr_info)) {
2747                 /* EPT won't cause page fault directly */
2748                 if (enable_ept)
2749                         BUG();
2750                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2751                 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2752                             (u32)((u64)cr2 >> 32), handler);
2753                 if (kvm_event_needs_reinjection(vcpu))
2754                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2755                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2756         }
2757
2758         if (vmx->rmode.vm86_active &&
2759             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2760                                                                 error_code)) {
2761                 if (vcpu->arch.halt_request) {
2762                         vcpu->arch.halt_request = 0;
2763                         return kvm_emulate_halt(vcpu);
2764                 }
2765                 return 1;
2766         }
2767
2768         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2769         switch (ex_no) {
2770         case DB_VECTOR:
2771                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2772                 if (!(vcpu->guest_debug &
2773                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2774                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2775                         kvm_queue_exception(vcpu, DB_VECTOR);
2776                         return 1;
2777                 }
2778                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2779                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2780                 /* fall through */
2781         case BP_VECTOR:
2782                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2783                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2784                 kvm_run->debug.arch.exception = ex_no;
2785                 break;
2786         default:
2787                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2788                 kvm_run->ex.exception = ex_no;
2789                 kvm_run->ex.error_code = error_code;
2790                 break;
2791         }
2792         return 0;
2793 }
2794
2795 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2796                                      struct kvm_run *kvm_run)
2797 {
2798         ++vcpu->stat.irq_exits;
2799         KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2800         return 1;
2801 }
2802
2803 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2804 {
2805         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2806         return 0;
2807 }
2808
2809 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2810 {
2811         unsigned long exit_qualification;
2812         int size, in, string;
2813         unsigned port;
2814
2815         ++vcpu->stat.io_exits;
2816         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2817         string = (exit_qualification & 16) != 0;
2818
2819         if (string) {
2820                 if (emulate_instruction(vcpu,
2821                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2822                         return 0;
2823                 return 1;
2824         }
2825
2826         size = (exit_qualification & 7) + 1;
2827         in = (exit_qualification & 8) != 0;
2828         port = exit_qualification >> 16;
2829
2830         skip_emulated_instruction(vcpu);
2831         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2832 }
2833
2834 static void
2835 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2836 {
2837         /*
2838          * Patch in the VMCALL instruction:
2839          */
2840         hypercall[0] = 0x0f;
2841         hypercall[1] = 0x01;
2842         hypercall[2] = 0xc1;
2843 }
2844
2845 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2846 {
2847         unsigned long exit_qualification;
2848         int cr;
2849         int reg;
2850
2851         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2852         cr = exit_qualification & 15;
2853         reg = (exit_qualification >> 8) & 15;
2854         switch ((exit_qualification >> 4) & 3) {
2855         case 0: /* mov to cr */
2856                 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2857                             (u32)kvm_register_read(vcpu, reg),
2858                             (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2859                             handler);
2860                 switch (cr) {
2861                 case 0:
2862                         kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2863                         skip_emulated_instruction(vcpu);
2864                         return 1;
2865                 case 3:
2866                         kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2867                         skip_emulated_instruction(vcpu);
2868                         return 1;
2869                 case 4:
2870                         kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2871                         skip_emulated_instruction(vcpu);
2872                         return 1;
2873                 case 8: {
2874                                 u8 cr8_prev = kvm_get_cr8(vcpu);
2875                                 u8 cr8 = kvm_register_read(vcpu, reg);
2876                                 kvm_set_cr8(vcpu, cr8);
2877                                 skip_emulated_instruction(vcpu);
2878                                 if (irqchip_in_kernel(vcpu->kvm))
2879                                         return 1;
2880                                 if (cr8_prev <= cr8)
2881                                         return 1;
2882                                 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2883                                 return 0;
2884                         }
2885                 };
2886                 break;
2887         case 2: /* clts */
2888                 vmx_fpu_deactivate(vcpu);
2889                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2890                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2891                 vmx_fpu_activate(vcpu);
2892                 KVMTRACE_0D(CLTS, vcpu, handler);
2893                 skip_emulated_instruction(vcpu);
2894                 return 1;
2895         case 1: /*mov from cr*/
2896                 switch (cr) {
2897                 case 3:
2898                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2899                         KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2900                                     (u32)kvm_register_read(vcpu, reg),
2901                                     (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2902                                     handler);
2903                         skip_emulated_instruction(vcpu);
2904                         return 1;
2905                 case 8:
2906                         kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2907                         KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2908                                     (u32)kvm_register_read(vcpu, reg), handler);
2909                         skip_emulated_instruction(vcpu);
2910                         return 1;
2911                 }
2912                 break;
2913         case 3: /* lmsw */
2914                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2915
2916                 skip_emulated_instruction(vcpu);
2917                 return 1;
2918         default:
2919                 break;
2920         }
2921         kvm_run->exit_reason = 0;
2922         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2923                (int)(exit_qualification >> 4) & 3, cr);
2924         return 0;
2925 }
2926
2927 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2928 {
2929         unsigned long exit_qualification;
2930         unsigned long val;
2931         int dr, reg;
2932
2933         dr = vmcs_readl(GUEST_DR7);
2934         if (dr & DR7_GD) {
2935                 /*
2936                  * As the vm-exit takes precedence over the debug trap, we
2937                  * need to emulate the latter, either for the host or the
2938                  * guest debugging itself.
2939                  */
2940                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2941                         kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2942                         kvm_run->debug.arch.dr7 = dr;
2943                         kvm_run->debug.arch.pc =
2944                                 vmcs_readl(GUEST_CS_BASE) +
2945                                 vmcs_readl(GUEST_RIP);
2946                         kvm_run->debug.arch.exception = DB_VECTOR;
2947                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2948                         return 0;
2949                 } else {
2950                         vcpu->arch.dr7 &= ~DR7_GD;
2951                         vcpu->arch.dr6 |= DR6_BD;
2952                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2953                         kvm_queue_exception(vcpu, DB_VECTOR);
2954                         return 1;
2955                 }
2956         }
2957
2958         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2959         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2960         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2961         if (exit_qualification & TYPE_MOV_FROM_DR) {
2962                 switch (dr) {
2963                 case 0 ... 3:
2964                         val = vcpu->arch.db[dr];
2965                         break;
2966                 case 6:
2967                         val = vcpu->arch.dr6;
2968                         break;
2969                 case 7:
2970                         val = vcpu->arch.dr7;
2971                         break;
2972                 default:
2973                         val = 0;
2974                 }
2975                 kvm_register_write(vcpu, reg, val);
2976                 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2977         } else {
2978                 val = vcpu->arch.regs[reg];
2979                 switch (dr) {
2980                 case 0 ... 3:
2981                         vcpu->arch.db[dr] = val;
2982                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2983                                 vcpu->arch.eff_db[dr] = val;
2984                         break;
2985                 case 4 ... 5:
2986                         if (vcpu->arch.cr4 & X86_CR4_DE)
2987                                 kvm_queue_exception(vcpu, UD_VECTOR);
2988                         break;
2989                 case 6:
2990                         if (val & 0xffffffff00000000ULL) {
2991                                 kvm_queue_exception(vcpu, GP_VECTOR);
2992                                 break;
2993                         }
2994                         vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2995                         break;
2996                 case 7:
2997                         if (val & 0xffffffff00000000ULL) {
2998                                 kvm_queue_exception(vcpu, GP_VECTOR);
2999                                 break;
3000                         }
3001                         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3002                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3003                                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3004                                 vcpu->arch.switch_db_regs =
3005                                         (val & DR7_BP_EN_MASK);
3006                         }
3007                         break;
3008                 }
3009                 KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
3010         }
3011         skip_emulated_instruction(vcpu);
3012         return 1;
3013 }
3014
3015 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3016 {
3017         kvm_emulate_cpuid(vcpu);
3018         return 1;
3019 }
3020
3021 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3022 {
3023         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3024         u64 data;
3025
3026         if (vmx_get_msr(vcpu, ecx, &data)) {
3027                 kvm_inject_gp(vcpu, 0);
3028                 return 1;
3029         }
3030
3031         KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
3032                     handler);
3033
3034         /* FIXME: handling of bits 32:63 of rax, rdx */
3035         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3036         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3037         skip_emulated_instruction(vcpu);
3038         return 1;
3039 }
3040
3041 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3042 {
3043         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3044         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3045                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3046
3047         KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
3048                     handler);
3049
3050         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3051                 kvm_inject_gp(vcpu, 0);
3052                 return 1;
3053         }
3054
3055         skip_emulated_instruction(vcpu);
3056         return 1;
3057 }
3058
3059 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
3060                                       struct kvm_run *kvm_run)
3061 {
3062         return 1;
3063 }
3064
3065 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
3066                                    struct kvm_run *kvm_run)
3067 {
3068         u32 cpu_based_vm_exec_control;
3069
3070         /* clear pending irq */
3071         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3072         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3073         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3074
3075         KVMTRACE_0D(PEND_INTR, vcpu, handler);
3076         ++vcpu->stat.irq_window_exits;
3077
3078         /*
3079          * If the user space waits to inject interrupts, exit as soon as
3080          * possible
3081          */
3082         if (!irqchip_in_kernel(vcpu->kvm) &&
3083             kvm_run->request_interrupt_window &&
3084             !kvm_cpu_has_interrupt(vcpu)) {
3085                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3086                 return 0;
3087         }
3088         return 1;
3089 }
3090
3091 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3092 {
3093         skip_emulated_instruction(vcpu);
3094         return kvm_emulate_halt(vcpu);
3095 }
3096
3097 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3098 {
3099         skip_emulated_instruction(vcpu);
3100         kvm_emulate_hypercall(vcpu);
3101         return 1;
3102 }
3103
3104 static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3105 {
3106         kvm_queue_exception(vcpu, UD_VECTOR);
3107         return 1;
3108 }
3109
3110 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3111 {
3112         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3113
3114         kvm_mmu_invlpg(vcpu, exit_qualification);
3115         skip_emulated_instruction(vcpu);
3116         return 1;
3117 }
3118
3119 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3120 {
3121         skip_emulated_instruction(vcpu);
3122         /* TODO: Add support for VT-d/pass-through device */
3123         return 1;
3124 }
3125
3126 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3127 {
3128         unsigned long exit_qualification;
3129         enum emulation_result er;
3130         unsigned long offset;
3131
3132         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3133         offset = exit_qualification & 0xffful;
3134
3135         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3136
3137         if (er !=  EMULATE_DONE) {
3138                 printk(KERN_ERR
3139                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3140                        offset);
3141                 return -ENOTSUPP;
3142         }
3143         return 1;
3144 }
3145
3146 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3147 {
3148         struct vcpu_vmx *vmx = to_vmx(vcpu);
3149         unsigned long exit_qualification;
3150         u16 tss_selector;
3151         int reason, type, idt_v;
3152
3153         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3154         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3155
3156         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3157
3158         reason = (u32)exit_qualification >> 30;
3159         if (reason == TASK_SWITCH_GATE && idt_v) {
3160                 switch (type) {
3161                 case INTR_TYPE_NMI_INTR:
3162                         vcpu->arch.nmi_injected = false;
3163                         if (cpu_has_virtual_nmis())
3164                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3165                                               GUEST_INTR_STATE_NMI);
3166                         break;
3167                 case INTR_TYPE_EXT_INTR:
3168                 case INTR_TYPE_SOFT_INTR:
3169                         kvm_clear_interrupt_queue(vcpu);
3170                         break;
3171                 case INTR_TYPE_HARD_EXCEPTION:
3172                 case INTR_TYPE_SOFT_EXCEPTION:
3173                         kvm_clear_exception_queue(vcpu);
3174                         break;
3175                 default:
3176                         break;
3177                 }
3178         }
3179         tss_selector = exit_qualification;
3180
3181         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3182                        type != INTR_TYPE_EXT_INTR &&
3183                        type != INTR_TYPE_NMI_INTR))
3184                 skip_emulated_instruction(vcpu);
3185
3186         if (!kvm_task_switch(vcpu, tss_selector, reason))
3187                 return 0;
3188
3189         /* clear all local breakpoint enable flags */
3190         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3191
3192         /*
3193          * TODO: What about debug traps on tss switch?
3194          *       Are we supposed to inject them and update dr6?
3195          */
3196
3197         return 1;
3198 }
3199
3200 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3201 {
3202         unsigned long exit_qualification;
3203         gpa_t gpa;
3204         int gla_validity;
3205
3206         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3207
3208         if (exit_qualification & (1 << 6)) {
3209                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3210                 return -ENOTSUPP;
3211         }
3212
3213         gla_validity = (exit_qualification >> 7) & 0x3;
3214         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3215                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3216                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3217                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3218                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3219                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3220                         (long unsigned int)exit_qualification);
3221                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3222                 kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3223                 return 0;
3224         }
3225
3226         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3227         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3228 }
3229
3230 static u64 ept_rsvd_mask(u64 spte, int level)
3231 {
3232         int i;
3233         u64 mask = 0;
3234
3235         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3236                 mask |= (1ULL << i);
3237
3238         if (level > 2)
3239                 /* bits 7:3 reserved */
3240                 mask |= 0xf8;
3241         else if (level == 2) {
3242                 if (spte & (1ULL << 7))
3243                         /* 2MB ref, bits 20:12 reserved */
3244                         mask |= 0x1ff000;
3245                 else
3246                         /* bits 6:3 reserved */
3247                         mask |= 0x78;
3248         }
3249
3250         return mask;
3251 }
3252
3253 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3254                                        int level)
3255 {
3256         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3257
3258         /* 010b (write-only) */
3259         WARN_ON((spte & 0x7) == 0x2);
3260
3261         /* 110b (write/execute) */
3262         WARN_ON((spte & 0x7) == 0x6);
3263
3264         /* 100b (execute-only) and value not supported by logical processor */
3265         if (!cpu_has_vmx_ept_execute_only())
3266                 WARN_ON((spte & 0x7) == 0x4);
3267
3268         /* not 000b */
3269         if ((spte & 0x7)) {
3270                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3271
3272                 if (rsvd_bits != 0) {
3273                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3274                                          __func__, rsvd_bits);
3275                         WARN_ON(1);
3276                 }
3277
3278                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3279                         u64 ept_mem_type = (spte & 0x38) >> 3;
3280
3281                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3282                             ept_mem_type == 7) {
3283                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3284                                                 __func__, ept_mem_type);
3285                                 WARN_ON(1);
3286                         }
3287                 }
3288         }
3289 }
3290
3291 static int handle_ept_misconfig(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3292 {
3293         u64 sptes[4];
3294         int nr_sptes, i;
3295         gpa_t gpa;
3296
3297         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3298
3299         printk(KERN_ERR "EPT: Misconfiguration.\n");
3300         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3301
3302         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3303
3304         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3305                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3306
3307         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3308         kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3309
3310         return 0;
3311 }
3312
3313 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3314 {
3315         u32 cpu_based_vm_exec_control;
3316
3317         /* clear pending NMI */
3318         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3319         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3320         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3321         ++vcpu->stat.nmi_window_exits;
3322
3323         return 1;
3324 }
3325
3326 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3327                                 struct kvm_run *kvm_run)
3328 {
3329         struct vcpu_vmx *vmx = to_vmx(vcpu);
3330         enum emulation_result err = EMULATE_DONE;
3331
3332         local_irq_enable();
3333         preempt_enable();
3334
3335         while (!guest_state_valid(vcpu)) {
3336                 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3337
3338                 if (err == EMULATE_DO_MMIO)
3339                         break;
3340
3341                 if (err != EMULATE_DONE) {
3342                         kvm_report_emulation_failure(vcpu, "emulation failure");
3343                         break;
3344                 }
3345
3346                 if (signal_pending(current))
3347                         break;
3348                 if (need_resched())
3349                         schedule();
3350         }
3351
3352         preempt_disable();
3353         local_irq_disable();
3354
3355         vmx->invalid_state_emulation_result = err;
3356 }
3357
3358 /*
3359  * The exit handlers return 1 if the exit was handled fully and guest execution
3360  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3361  * to be done to userspace and return 0.
3362  */
3363 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3364                                       struct kvm_run *kvm_run) = {
3365         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3366         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3367         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3368         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3369         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3370         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3371         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3372         [EXIT_REASON_CPUID]                   = handle_cpuid,
3373         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3374         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3375         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3376         [EXIT_REASON_HLT]                     = handle_halt,
3377         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3378         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3379         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3380         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3381         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3382         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3383         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3384         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3385         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3386         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3387         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3388         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3389         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3390         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3391         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3392         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3393         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3394         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3395 };
3396
3397 static const int kvm_vmx_max_exit_handlers =
3398         ARRAY_SIZE(kvm_vmx_exit_handlers);
3399
3400 /*
3401  * The guest has exited.  See if we can fix it or if we need userspace
3402  * assistance.
3403  */
3404 static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3405 {
3406         struct vcpu_vmx *vmx = to_vmx(vcpu);
3407         u32 exit_reason = vmx->exit_reason;
3408         u32 vectoring_info = vmx->idt_vectoring_info;
3409
3410         KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3411                     (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3412
3413         /* If we need to emulate an MMIO from handle_invalid_guest_state
3414          * we just return 0 */
3415         if (vmx->emulation_required && emulate_invalid_guest_state) {
3416                 if (guest_state_valid(vcpu))
3417                         vmx->emulation_required = 0;
3418                 return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3419         }
3420
3421         /* Access CR3 don't cause VMExit in paging mode, so we need
3422          * to sync with guest real CR3. */
3423         if (enable_ept && is_paging(vcpu))
3424                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3425
3426         if (unlikely(vmx->fail)) {
3427                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3428                 kvm_run->fail_entry.hardware_entry_failure_reason
3429                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3430                 return 0;
3431         }
3432
3433         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3434                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3435                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3436                         exit_reason != EXIT_REASON_TASK_SWITCH))
3437                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3438                        "(0x%x) and exit reason is 0x%x\n",
3439                        __func__, vectoring_info, exit_reason);
3440
3441         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3442                 if (vmx_interrupt_allowed(vcpu)) {
3443                         vmx->soft_vnmi_blocked = 0;
3444                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3445                            vcpu->arch.nmi_pending) {
3446                         /*
3447                          * This CPU don't support us in finding the end of an
3448                          * NMI-blocked window if the guest runs with IRQs
3449                          * disabled. So we pull the trigger after 1 s of
3450                          * futile waiting, but inform the user about this.
3451                          */
3452                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3453                                "state on VCPU %d after 1 s timeout\n",
3454                                __func__, vcpu->vcpu_id);
3455                         vmx->soft_vnmi_blocked = 0;
3456                 }
3457         }
3458
3459         if (exit_reason < kvm_vmx_max_exit_handlers
3460             && kvm_vmx_exit_handlers[exit_reason])
3461                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3462         else {
3463                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3464                 kvm_run->hw.hardware_exit_reason = exit_reason;
3465         }
3466         return 0;
3467 }
3468
3469 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3470 {
3471         if (irr == -1 || tpr < irr) {
3472                 vmcs_write32(TPR_THRESHOLD, 0);
3473                 return;
3474         }
3475
3476         vmcs_write32(TPR_THRESHOLD, irr);
3477 }
3478
3479 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3480 {
3481         u32 exit_intr_info;
3482         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3483         bool unblock_nmi;
3484         u8 vector;
3485         int type;
3486         bool idtv_info_valid;
3487
3488         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3489
3490         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3491
3492         /* Handle machine checks before interrupts are enabled */
3493         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3494             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3495                 && is_machine_check(exit_intr_info)))
3496                 kvm_machine_check();
3497
3498         /* We need to handle NMIs before interrupts are enabled */
3499         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3500             (exit_intr_info & INTR_INFO_VALID_MASK)) {
3501                 KVMTRACE_0D(NMI, &vmx->vcpu, handler);
3502                 asm("int $2");
3503         }
3504
3505         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3506
3507         if (cpu_has_virtual_nmis()) {
3508                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3509                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3510                 /*
3511                  * SDM 3: 27.7.1.2 (September 2008)
3512                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3513                  * a guest IRET fault.
3514                  * SDM 3: 23.2.2 (September 2008)
3515                  * Bit 12 is undefined in any of the following cases:
3516                  *  If the VM exit sets the valid bit in the IDT-vectoring
3517                  *   information field.
3518                  *  If the VM exit is due to a double fault.
3519                  */
3520                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3521                     vector != DF_VECTOR && !idtv_info_valid)
3522                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3523                                       GUEST_INTR_STATE_NMI);
3524         } else if (unlikely(vmx->soft_vnmi_blocked))
3525                 vmx->vnmi_blocked_time +=
3526                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3527
3528         vmx->vcpu.arch.nmi_injected = false;
3529         kvm_clear_exception_queue(&vmx->vcpu);
3530         kvm_clear_interrupt_queue(&vmx->vcpu);
3531
3532         if (!idtv_info_valid)
3533                 return;
3534
3535         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3536         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3537
3538         switch (type) {
3539         case INTR_TYPE_NMI_INTR:
3540                 vmx->vcpu.arch.nmi_injected = true;
3541                 /*
3542                  * SDM 3: 27.7.1.2 (September 2008)
3543                  * Clear bit "block by NMI" before VM entry if a NMI
3544                  * delivery faulted.
3545                  */
3546                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3547                                 GUEST_INTR_STATE_NMI);
3548                 break;
3549         case INTR_TYPE_SOFT_EXCEPTION:
3550                 vmx->vcpu.arch.event_exit_inst_len =
3551                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3552                 /* fall through */
3553         case INTR_TYPE_HARD_EXCEPTION:
3554                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3555                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3556                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3557                 } else
3558                         kvm_queue_exception(&vmx->vcpu, vector);
3559                 break;
3560         case INTR_TYPE_SOFT_INTR:
3561                 vmx->vcpu.arch.event_exit_inst_len =
3562                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3563                 /* fall through */
3564         case INTR_TYPE_EXT_INTR:
3565                 kvm_queue_interrupt(&vmx->vcpu, vector,
3566                         type == INTR_TYPE_SOFT_INTR);
3567                 break;
3568         default:
3569                 break;
3570         }
3571 }
3572
3573 /*
3574  * Failure to inject an interrupt should give us the information
3575  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3576  * when fetching the interrupt redirection bitmap in the real-mode
3577  * tss, this doesn't happen.  So we do it ourselves.
3578  */
3579 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3580 {
3581         vmx->rmode.irq.pending = 0;
3582         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3583                 return;
3584         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3585         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3586                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3587                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3588                 return;
3589         }
3590         vmx->idt_vectoring_info =
3591                 VECTORING_INFO_VALID_MASK
3592                 | INTR_TYPE_EXT_INTR
3593                 | vmx->rmode.irq.vector;
3594 }
3595
3596 #ifdef CONFIG_X86_64
3597 #define R "r"
3598 #define Q "q"
3599 #else
3600 #define R "e"
3601 #define Q "l"
3602 #endif
3603
3604 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3605 {
3606         struct vcpu_vmx *vmx = to_vmx(vcpu);
3607
3608         if (enable_ept && is_paging(vcpu)) {
3609                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3610                 ept_load_pdptrs(vcpu);
3611         }
3612         /* Record the guest's net vcpu time for enforced NMI injections. */
3613         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3614                 vmx->entry_time = ktime_get();
3615
3616         /* Handle invalid guest state instead of entering VMX */
3617         if (vmx->emulation_required && emulate_invalid_guest_state) {
3618                 handle_invalid_guest_state(vcpu, kvm_run);
3619                 return;
3620         }
3621
3622         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3623                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3624         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3625                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3626
3627         /* When single-stepping over STI and MOV SS, we must clear the
3628          * corresponding interruptibility bits in the guest state. Otherwise
3629          * vmentry fails as it then expects bit 14 (BS) in pending debug
3630          * exceptions being set, but that's not correct for the guest debugging
3631          * case. */
3632         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3633                 vmx_set_interrupt_shadow(vcpu, 0);
3634
3635         /*
3636          * Loading guest fpu may have cleared host cr0.ts
3637          */
3638         vmcs_writel(HOST_CR0, read_cr0());
3639
3640         set_debugreg(vcpu->arch.dr6, 6);
3641
3642         asm(
3643                 /* Store host registers */
3644                 "push %%"R"dx; push %%"R"bp;"
3645                 "push %%"R"cx \n\t"
3646                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3647                 "je 1f \n\t"
3648                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3649                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3650                 "1: \n\t"
3651                 /* Check if vmlaunch of vmresume is needed */
3652                 "cmpl $0, %c[launched](%0) \n\t"
3653                 /* Load guest registers.  Don't clobber flags. */
3654                 "mov %c[cr2](%0), %%"R"ax \n\t"
3655                 "mov %%"R"ax, %%cr2 \n\t"
3656                 "mov %c[rax](%0), %%"R"ax \n\t"
3657                 "mov %c[rbx](%0), %%"R"bx \n\t"
3658                 "mov %c[rdx](%0), %%"R"dx \n\t"
3659                 "mov %c[rsi](%0), %%"R"si \n\t"
3660                 "mov %c[rdi](%0), %%"R"di \n\t"
3661                 "mov %c[rbp](%0), %%"R"bp \n\t"
3662 #ifdef CONFIG_X86_64
3663                 "mov %c[r8](%0),  %%r8  \n\t"
3664                 "mov %c[r9](%0),  %%r9  \n\t"
3665                 "mov %c[r10](%0), %%r10 \n\t"
3666                 "mov %c[r11](%0), %%r11 \n\t"
3667                 "mov %c[r12](%0), %%r12 \n\t"
3668                 "mov %c[r13](%0), %%r13 \n\t"
3669                 "mov %c[r14](%0), %%r14 \n\t"
3670                 "mov %c[r15](%0), %%r15 \n\t"
3671 #endif
3672                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3673
3674                 /* Enter guest mode */
3675                 "jne .Llaunched \n\t"
3676                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3677                 "jmp .Lkvm_vmx_return \n\t"
3678                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3679                 ".Lkvm_vmx_return: "
3680                 /* Save guest registers, load host registers, keep flags */
3681                 "xchg %0,     (%%"R"sp) \n\t"
3682                 "mov %%"R"ax, %c[rax](%0) \n\t"
3683                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3684                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3685                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3686                 "mov %%"R"si, %c[rsi](%0) \n\t"
3687                 "mov %%"R"di, %c[rdi](%0) \n\t"
3688                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3689 #ifdef CONFIG_X86_64
3690                 "mov %%r8,  %c[r8](%0) \n\t"
3691                 "mov %%r9,  %c[r9](%0) \n\t"
3692                 "mov %%r10, %c[r10](%0) \n\t"
3693                 "mov %%r11, %c[r11](%0) \n\t"
3694                 "mov %%r12, %c[r12](%0) \n\t"
3695                 "mov %%r13, %c[r13](%0) \n\t"
3696                 "mov %%r14, %c[r14](%0) \n\t"
3697                 "mov %%r15, %c[r15](%0) \n\t"
3698 #endif
3699                 "mov %%cr2, %%"R"ax   \n\t"
3700                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3701
3702                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3703                 "setbe %c[fail](%0) \n\t"
3704               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3705                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3706                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3707                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3708                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3709                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3710                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3711                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3712                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3713                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3714                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3715 #ifdef CONFIG_X86_64
3716                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3717                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3718                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3719                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3720                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3721                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3722                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3723                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3724 #endif
3725                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3726               : "cc", "memory"
3727                 , R"bx", R"di", R"si"
3728 #ifdef CONFIG_X86_64
3729                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3730 #endif
3731               );
3732
3733         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3734                                   | (1 << VCPU_EXREG_PDPTR));
3735         vcpu->arch.regs_dirty = 0;
3736
3737         get_debugreg(vcpu->arch.dr6, 6);
3738
3739         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3740         if (vmx->rmode.irq.pending)
3741                 fixup_rmode_irq(vmx);
3742
3743         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3744         vmx->launched = 1;
3745
3746         vmx_complete_interrupts(vmx);
3747 }
3748
3749 #undef R
3750 #undef Q
3751
3752 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3753 {
3754         struct vcpu_vmx *vmx = to_vmx(vcpu);
3755
3756         if (vmx->vmcs) {
3757                 vcpu_clear(vmx);
3758                 free_vmcs(vmx->vmcs);
3759                 vmx->vmcs = NULL;
3760         }
3761 }
3762
3763 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3764 {
3765         struct vcpu_vmx *vmx = to_vmx(vcpu);
3766
3767         spin_lock(&vmx_vpid_lock);
3768         if (vmx->vpid != 0)
3769                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3770         spin_unlock(&vmx_vpid_lock);
3771         vmx_free_vmcs(vcpu);
3772         kfree(vmx->host_msrs);
3773         kfree(vmx->guest_msrs);
3774         kvm_vcpu_uninit(vcpu);
3775         kmem_cache_free(kvm_vcpu_cache, vmx);
3776 }
3777
3778 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3779 {
3780         int err;
3781         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3782         int cpu;
3783
3784         if (!vmx)
3785                 return ERR_PTR(-ENOMEM);
3786
3787         allocate_vpid(vmx);
3788
3789         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3790         if (err)
3791                 goto free_vcpu;
3792
3793         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3794         if (!vmx->guest_msrs) {
3795                 err = -ENOMEM;
3796                 goto uninit_vcpu;
3797         }
3798
3799         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3800         if (!vmx->host_msrs)
3801                 goto free_guest_msrs;
3802
3803         vmx->vmcs = alloc_vmcs();
3804         if (!vmx->vmcs)
3805                 goto free_msrs;
3806
3807         vmcs_clear(vmx->vmcs);
3808
3809         cpu = get_cpu();
3810         vmx_vcpu_load(&vmx->vcpu, cpu);
3811         err = vmx_vcpu_setup(vmx);
3812         vmx_vcpu_put(&vmx->vcpu);
3813         put_cpu();
3814         if (err)
3815                 goto free_vmcs;
3816         if (vm_need_virtualize_apic_accesses(kvm))
3817                 if (alloc_apic_access_page(kvm) != 0)
3818                         goto free_vmcs;
3819
3820         if (enable_ept)
3821                 if (alloc_identity_pagetable(kvm) != 0)
3822                         goto free_vmcs;
3823
3824         return &vmx->vcpu;
3825
3826 free_vmcs:
3827         free_vmcs(vmx->vmcs);
3828 free_msrs:
3829         kfree(vmx->host_msrs);
3830 free_guest_msrs:
3831         kfree(vmx->guest_msrs);
3832 uninit_vcpu:
3833         kvm_vcpu_uninit(&vmx->vcpu);
3834 free_vcpu:
3835         kmem_cache_free(kvm_vcpu_cache, vmx);
3836         return ERR_PTR(err);
3837 }
3838
3839 static void __init vmx_check_processor_compat(void *rtn)
3840 {
3841         struct vmcs_config vmcs_conf;
3842
3843         *(int *)rtn = 0;
3844         if (setup_vmcs_config(&vmcs_conf) < 0)
3845                 *(int *)rtn = -EIO;
3846         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3847                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3848                                 smp_processor_id());
3849                 *(int *)rtn = -EIO;
3850         }
3851 }
3852
3853 static int get_ept_level(void)
3854 {
3855         return VMX_EPT_DEFAULT_GAW + 1;
3856 }
3857
3858 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3859 {
3860         u64 ret;
3861
3862         /* For VT-d and EPT combination
3863          * 1. MMIO: always map as UC
3864          * 2. EPT with VT-d:
3865          *   a. VT-d without snooping control feature: can't guarantee the
3866          *      result, try to trust guest.
3867          *   b. VT-d with snooping control feature: snooping control feature of
3868          *      VT-d engine can guarantee the cache correctness. Just set it
3869          *      to WB to keep consistent with host. So the same as item 3.
3870          * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3871          *    consistent with host MTRR
3872          */
3873         if (is_mmio)
3874                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3875         else if (vcpu->kvm->arch.iommu_domain &&
3876                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3877                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3878                       VMX_EPT_MT_EPTE_SHIFT;
3879         else
3880                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3881                         | VMX_EPT_IGMT_BIT;
3882
3883         return ret;
3884 }
3885
3886 static struct kvm_x86_ops vmx_x86_ops = {
3887         .cpu_has_kvm_support = cpu_has_kvm_support,
3888         .disabled_by_bios = vmx_disabled_by_bios,
3889         .hardware_setup = hardware_setup,
3890         .hardware_unsetup = hardware_unsetup,
3891         .check_processor_compatibility = vmx_check_processor_compat,
3892         .hardware_enable = hardware_enable,
3893         .hardware_disable = hardware_disable,
3894         .cpu_has_accelerated_tpr = report_flexpriority,
3895
3896         .vcpu_create = vmx_create_vcpu,
3897         .vcpu_free = vmx_free_vcpu,
3898         .vcpu_reset = vmx_vcpu_reset,
3899
3900         .prepare_guest_switch = vmx_save_host_state,
3901         .vcpu_load = vmx_vcpu_load,
3902         .vcpu_put = vmx_vcpu_put,
3903
3904         .set_guest_debug = set_guest_debug,
3905         .get_msr = vmx_get_msr,
3906         .set_msr = vmx_set_msr,
3907         .get_segment_base = vmx_get_segment_base,
3908         .get_segment = vmx_get_segment,
3909         .set_segment = vmx_set_segment,
3910         .get_cpl = vmx_get_cpl,
3911         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3912         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3913         .set_cr0 = vmx_set_cr0,
3914         .set_cr3 = vmx_set_cr3,
3915         .set_cr4 = vmx_set_cr4,
3916         .set_efer = vmx_set_efer,
3917         .get_idt = vmx_get_idt,
3918         .set_idt = vmx_set_idt,
3919         .get_gdt = vmx_get_gdt,
3920         .set_gdt = vmx_set_gdt,
3921         .cache_reg = vmx_cache_reg,
3922         .get_rflags = vmx_get_rflags,
3923         .set_rflags = vmx_set_rflags,
3924
3925         .tlb_flush = vmx_flush_tlb,
3926
3927         .run = vmx_vcpu_run,
3928         .handle_exit = vmx_handle_exit,
3929         .skip_emulated_instruction = skip_emulated_instruction,
3930         .set_interrupt_shadow = vmx_set_interrupt_shadow,
3931         .get_interrupt_shadow = vmx_get_interrupt_shadow,
3932         .patch_hypercall = vmx_patch_hypercall,
3933         .set_irq = vmx_inject_irq,
3934         .set_nmi = vmx_inject_nmi,
3935         .queue_exception = vmx_queue_exception,
3936         .interrupt_allowed = vmx_interrupt_allowed,
3937         .nmi_allowed = vmx_nmi_allowed,
3938         .enable_nmi_window = enable_nmi_window,
3939         .enable_irq_window = enable_irq_window,
3940         .update_cr8_intercept = update_cr8_intercept,
3941
3942         .set_tss_addr = vmx_set_tss_addr,
3943         .get_tdp_level = get_ept_level,
3944         .get_mt_mask = vmx_get_mt_mask,
3945 };
3946
3947 static int __init vmx_init(void)
3948 {
3949         int r;
3950
3951         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3952         if (!vmx_io_bitmap_a)
3953                 return -ENOMEM;
3954
3955         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3956         if (!vmx_io_bitmap_b) {
3957                 r = -ENOMEM;
3958                 goto out;
3959         }
3960
3961         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
3962         if (!vmx_msr_bitmap_legacy) {
3963                 r = -ENOMEM;
3964                 goto out1;
3965         }
3966
3967         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
3968         if (!vmx_msr_bitmap_longmode) {
3969                 r = -ENOMEM;
3970                 goto out2;
3971         }
3972
3973         /*
3974          * Allow direct access to the PC debug port (it is often used for I/O
3975          * delays, but the vmexits simply slow things down).
3976          */
3977         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
3978         clear_bit(0x80, vmx_io_bitmap_a);
3979
3980         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
3981
3982         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
3983         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3984
3985         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3986
3987         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3988         if (r)
3989                 goto out3;
3990
3991         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
3992         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
3993         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
3994         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
3995         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
3996         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
3997
3998         if (enable_ept) {
3999                 bypass_guest_pf = 0;
4000                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4001                         VMX_EPT_WRITABLE_MASK);
4002                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4003                                 VMX_EPT_EXECUTABLE_MASK);
4004                 kvm_enable_tdp();
4005         } else
4006                 kvm_disable_tdp();
4007
4008         if (bypass_guest_pf)
4009                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4010
4011         ept_sync_global();
4012
4013         return 0;
4014
4015 out3:
4016         free_page((unsigned long)vmx_msr_bitmap_longmode);
4017 out2:
4018         free_page((unsigned long)vmx_msr_bitmap_legacy);
4019 out1:
4020         free_page((unsigned long)vmx_io_bitmap_b);
4021 out:
4022         free_page((unsigned long)vmx_io_bitmap_a);
4023         return r;
4024 }
4025
4026 static void __exit vmx_exit(void)
4027 {
4028         free_page((unsigned long)vmx_msr_bitmap_legacy);
4029         free_page((unsigned long)vmx_msr_bitmap_longmode);
4030         free_page((unsigned long)vmx_io_bitmap_b);
4031         free_page((unsigned long)vmx_io_bitmap_a);
4032
4033         kvm_exit();
4034 }
4035
4036 module_init(vmx_init)
4037 module_exit(vmx_exit)