Merge branch 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
37
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
47
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
50
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
53
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
56
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59                         enable_unrestricted_guest, bool, S_IRUGO);
60
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
63
64 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
65         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
66 #define KVM_GUEST_CR0_MASK                                              \
67         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
68 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
69         (X86_CR0_WP | X86_CR0_NE)
70 #define KVM_VM_CR0_ALWAYS_ON                                            \
71         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
72 #define KVM_CR4_GUEST_OWNED_BITS                                      \
73         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
74          | X86_CR4_OSXMMEXCPT)
75
76 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
77 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
78
79 /*
80  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
81  * ple_gap:    upper bound on the amount of time between two successive
82  *             executions of PAUSE in a loop. Also indicate if ple enabled.
83  *             According to test, this time is usually small than 41 cycles.
84  * ple_window: upper bound on the amount of time a guest is allowed to execute
85  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
86  *             less than 2^12 cycles
87  * Time is measured based on a counter that runs at the same rate as the TSC,
88  * refer SDM volume 3b section 21.6.13 & 22.1.3.
89  */
90 #define KVM_VMX_DEFAULT_PLE_GAP    41
91 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
92 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
93 module_param(ple_gap, int, S_IRUGO);
94
95 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
96 module_param(ple_window, int, S_IRUGO);
97
98 struct vmcs {
99         u32 revision_id;
100         u32 abort;
101         char data[0];
102 };
103
104 struct shared_msr_entry {
105         unsigned index;
106         u64 data;
107         u64 mask;
108 };
109
110 struct vcpu_vmx {
111         struct kvm_vcpu       vcpu;
112         struct list_head      local_vcpus_link;
113         unsigned long         host_rsp;
114         int                   launched;
115         u8                    fail;
116         u32                   idt_vectoring_info;
117         struct shared_msr_entry *guest_msrs;
118         int                   nmsrs;
119         int                   save_nmsrs;
120 #ifdef CONFIG_X86_64
121         u64                   msr_host_kernel_gs_base;
122         u64                   msr_guest_kernel_gs_base;
123 #endif
124         struct vmcs          *vmcs;
125         struct {
126                 int           loaded;
127                 u16           fs_sel, gs_sel, ldt_sel;
128                 int           gs_ldt_reload_needed;
129                 int           fs_reload_needed;
130         } host_state;
131         struct {
132                 int vm86_active;
133                 u8 save_iopl;
134                 struct kvm_save_segment {
135                         u16 selector;
136                         unsigned long base;
137                         u32 limit;
138                         u32 ar;
139                 } tr, es, ds, fs, gs;
140                 struct {
141                         bool pending;
142                         u8 vector;
143                         unsigned rip;
144                 } irq;
145         } rmode;
146         int vpid;
147         bool emulation_required;
148
149         /* Support for vnmi-less CPUs */
150         int soft_vnmi_blocked;
151         ktime_t entry_time;
152         s64 vnmi_blocked_time;
153         u32 exit_reason;
154
155         bool rdtscp_enabled;
156 };
157
158 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
159 {
160         return container_of(vcpu, struct vcpu_vmx, vcpu);
161 }
162
163 static int init_rmode(struct kvm *kvm);
164 static u64 construct_eptp(unsigned long root_hpa);
165
166 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
167 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
168 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
169
170 static unsigned long *vmx_io_bitmap_a;
171 static unsigned long *vmx_io_bitmap_b;
172 static unsigned long *vmx_msr_bitmap_legacy;
173 static unsigned long *vmx_msr_bitmap_longmode;
174
175 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
176 static DEFINE_SPINLOCK(vmx_vpid_lock);
177
178 static struct vmcs_config {
179         int size;
180         int order;
181         u32 revision_id;
182         u32 pin_based_exec_ctrl;
183         u32 cpu_based_exec_ctrl;
184         u32 cpu_based_2nd_exec_ctrl;
185         u32 vmexit_ctrl;
186         u32 vmentry_ctrl;
187 } vmcs_config;
188
189 static struct vmx_capability {
190         u32 ept;
191         u32 vpid;
192 } vmx_capability;
193
194 #define VMX_SEGMENT_FIELD(seg)                                  \
195         [VCPU_SREG_##seg] = {                                   \
196                 .selector = GUEST_##seg##_SELECTOR,             \
197                 .base = GUEST_##seg##_BASE,                     \
198                 .limit = GUEST_##seg##_LIMIT,                   \
199                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
200         }
201
202 static struct kvm_vmx_segment_field {
203         unsigned selector;
204         unsigned base;
205         unsigned limit;
206         unsigned ar_bytes;
207 } kvm_vmx_segment_fields[] = {
208         VMX_SEGMENT_FIELD(CS),
209         VMX_SEGMENT_FIELD(DS),
210         VMX_SEGMENT_FIELD(ES),
211         VMX_SEGMENT_FIELD(FS),
212         VMX_SEGMENT_FIELD(GS),
213         VMX_SEGMENT_FIELD(SS),
214         VMX_SEGMENT_FIELD(TR),
215         VMX_SEGMENT_FIELD(LDTR),
216 };
217
218 static u64 host_efer;
219
220 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
221
222 /*
223  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
224  * away by decrementing the array size.
225  */
226 static const u32 vmx_msr_index[] = {
227 #ifdef CONFIG_X86_64
228         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
229 #endif
230         MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
231 };
232 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
233
234 static inline int is_page_fault(u32 intr_info)
235 {
236         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
237                              INTR_INFO_VALID_MASK)) ==
238                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
239 }
240
241 static inline int is_no_device(u32 intr_info)
242 {
243         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
244                              INTR_INFO_VALID_MASK)) ==
245                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
246 }
247
248 static inline int is_invalid_opcode(u32 intr_info)
249 {
250         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
251                              INTR_INFO_VALID_MASK)) ==
252                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
253 }
254
255 static inline int is_external_interrupt(u32 intr_info)
256 {
257         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
258                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
259 }
260
261 static inline int is_machine_check(u32 intr_info)
262 {
263         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
264                              INTR_INFO_VALID_MASK)) ==
265                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
266 }
267
268 static inline int cpu_has_vmx_msr_bitmap(void)
269 {
270         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
271 }
272
273 static inline int cpu_has_vmx_tpr_shadow(void)
274 {
275         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
276 }
277
278 static inline int vm_need_tpr_shadow(struct kvm *kvm)
279 {
280         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
281 }
282
283 static inline int cpu_has_secondary_exec_ctrls(void)
284 {
285         return vmcs_config.cpu_based_exec_ctrl &
286                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
287 }
288
289 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
290 {
291         return vmcs_config.cpu_based_2nd_exec_ctrl &
292                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
293 }
294
295 static inline bool cpu_has_vmx_flexpriority(void)
296 {
297         return cpu_has_vmx_tpr_shadow() &&
298                 cpu_has_vmx_virtualize_apic_accesses();
299 }
300
301 static inline bool cpu_has_vmx_ept_execute_only(void)
302 {
303         return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
304 }
305
306 static inline bool cpu_has_vmx_eptp_uncacheable(void)
307 {
308         return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
309 }
310
311 static inline bool cpu_has_vmx_eptp_writeback(void)
312 {
313         return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
314 }
315
316 static inline bool cpu_has_vmx_ept_2m_page(void)
317 {
318         return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
319 }
320
321 static inline bool cpu_has_vmx_ept_1g_page(void)
322 {
323         return !!(vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT);
324 }
325
326 static inline int cpu_has_vmx_invept_individual_addr(void)
327 {
328         return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
329 }
330
331 static inline int cpu_has_vmx_invept_context(void)
332 {
333         return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
334 }
335
336 static inline int cpu_has_vmx_invept_global(void)
337 {
338         return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
339 }
340
341 static inline int cpu_has_vmx_ept(void)
342 {
343         return vmcs_config.cpu_based_2nd_exec_ctrl &
344                 SECONDARY_EXEC_ENABLE_EPT;
345 }
346
347 static inline int cpu_has_vmx_unrestricted_guest(void)
348 {
349         return vmcs_config.cpu_based_2nd_exec_ctrl &
350                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
351 }
352
353 static inline int cpu_has_vmx_ple(void)
354 {
355         return vmcs_config.cpu_based_2nd_exec_ctrl &
356                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
357 }
358
359 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
360 {
361         return flexpriority_enabled && irqchip_in_kernel(kvm);
362 }
363
364 static inline int cpu_has_vmx_vpid(void)
365 {
366         return vmcs_config.cpu_based_2nd_exec_ctrl &
367                 SECONDARY_EXEC_ENABLE_VPID;
368 }
369
370 static inline int cpu_has_vmx_rdtscp(void)
371 {
372         return vmcs_config.cpu_based_2nd_exec_ctrl &
373                 SECONDARY_EXEC_RDTSCP;
374 }
375
376 static inline int cpu_has_virtual_nmis(void)
377 {
378         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
379 }
380
381 static inline bool report_flexpriority(void)
382 {
383         return flexpriority_enabled;
384 }
385
386 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
387 {
388         int i;
389
390         for (i = 0; i < vmx->nmsrs; ++i)
391                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
392                         return i;
393         return -1;
394 }
395
396 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
397 {
398     struct {
399         u64 vpid : 16;
400         u64 rsvd : 48;
401         u64 gva;
402     } operand = { vpid, 0, gva };
403
404     asm volatile (__ex(ASM_VMX_INVVPID)
405                   /* CF==1 or ZF==1 --> rc = -1 */
406                   "; ja 1f ; ud2 ; 1:"
407                   : : "a"(&operand), "c"(ext) : "cc", "memory");
408 }
409
410 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
411 {
412         struct {
413                 u64 eptp, gpa;
414         } operand = {eptp, gpa};
415
416         asm volatile (__ex(ASM_VMX_INVEPT)
417                         /* CF==1 or ZF==1 --> rc = -1 */
418                         "; ja 1f ; ud2 ; 1:\n"
419                         : : "a" (&operand), "c" (ext) : "cc", "memory");
420 }
421
422 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
423 {
424         int i;
425
426         i = __find_msr_index(vmx, msr);
427         if (i >= 0)
428                 return &vmx->guest_msrs[i];
429         return NULL;
430 }
431
432 static void vmcs_clear(struct vmcs *vmcs)
433 {
434         u64 phys_addr = __pa(vmcs);
435         u8 error;
436
437         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
438                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
439                       : "cc", "memory");
440         if (error)
441                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
442                        vmcs, phys_addr);
443 }
444
445 static void __vcpu_clear(void *arg)
446 {
447         struct vcpu_vmx *vmx = arg;
448         int cpu = raw_smp_processor_id();
449
450         if (vmx->vcpu.cpu == cpu)
451                 vmcs_clear(vmx->vmcs);
452         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
453                 per_cpu(current_vmcs, cpu) = NULL;
454         rdtscll(vmx->vcpu.arch.host_tsc);
455         list_del(&vmx->local_vcpus_link);
456         vmx->vcpu.cpu = -1;
457         vmx->launched = 0;
458 }
459
460 static void vcpu_clear(struct vcpu_vmx *vmx)
461 {
462         if (vmx->vcpu.cpu == -1)
463                 return;
464         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
465 }
466
467 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
468 {
469         if (vmx->vpid == 0)
470                 return;
471
472         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
473 }
474
475 static inline void ept_sync_global(void)
476 {
477         if (cpu_has_vmx_invept_global())
478                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
479 }
480
481 static inline void ept_sync_context(u64 eptp)
482 {
483         if (enable_ept) {
484                 if (cpu_has_vmx_invept_context())
485                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
486                 else
487                         ept_sync_global();
488         }
489 }
490
491 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
492 {
493         if (enable_ept) {
494                 if (cpu_has_vmx_invept_individual_addr())
495                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
496                                         eptp, gpa);
497                 else
498                         ept_sync_context(eptp);
499         }
500 }
501
502 static unsigned long vmcs_readl(unsigned long field)
503 {
504         unsigned long value;
505
506         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
507                       : "=a"(value) : "d"(field) : "cc");
508         return value;
509 }
510
511 static u16 vmcs_read16(unsigned long field)
512 {
513         return vmcs_readl(field);
514 }
515
516 static u32 vmcs_read32(unsigned long field)
517 {
518         return vmcs_readl(field);
519 }
520
521 static u64 vmcs_read64(unsigned long field)
522 {
523 #ifdef CONFIG_X86_64
524         return vmcs_readl(field);
525 #else
526         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
527 #endif
528 }
529
530 static noinline void vmwrite_error(unsigned long field, unsigned long value)
531 {
532         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
533                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
534         dump_stack();
535 }
536
537 static void vmcs_writel(unsigned long field, unsigned long value)
538 {
539         u8 error;
540
541         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
542                        : "=q"(error) : "a"(value), "d"(field) : "cc");
543         if (unlikely(error))
544                 vmwrite_error(field, value);
545 }
546
547 static void vmcs_write16(unsigned long field, u16 value)
548 {
549         vmcs_writel(field, value);
550 }
551
552 static void vmcs_write32(unsigned long field, u32 value)
553 {
554         vmcs_writel(field, value);
555 }
556
557 static void vmcs_write64(unsigned long field, u64 value)
558 {
559         vmcs_writel(field, value);
560 #ifndef CONFIG_X86_64
561         asm volatile ("");
562         vmcs_writel(field+1, value >> 32);
563 #endif
564 }
565
566 static void vmcs_clear_bits(unsigned long field, u32 mask)
567 {
568         vmcs_writel(field, vmcs_readl(field) & ~mask);
569 }
570
571 static void vmcs_set_bits(unsigned long field, u32 mask)
572 {
573         vmcs_writel(field, vmcs_readl(field) | mask);
574 }
575
576 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
577 {
578         u32 eb;
579
580         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
581              (1u << NM_VECTOR) | (1u << DB_VECTOR);
582         if ((vcpu->guest_debug &
583              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
584             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
585                 eb |= 1u << BP_VECTOR;
586         if (to_vmx(vcpu)->rmode.vm86_active)
587                 eb = ~0;
588         if (enable_ept)
589                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
590         if (vcpu->fpu_active)
591                 eb &= ~(1u << NM_VECTOR);
592         vmcs_write32(EXCEPTION_BITMAP, eb);
593 }
594
595 static void reload_tss(void)
596 {
597         /*
598          * VT restores TR but not its size.  Useless.
599          */
600         struct descriptor_table gdt;
601         struct desc_struct *descs;
602
603         kvm_get_gdt(&gdt);
604         descs = (void *)gdt.base;
605         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
606         load_TR_desc();
607 }
608
609 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
610 {
611         u64 guest_efer;
612         u64 ignore_bits;
613
614         guest_efer = vmx->vcpu.arch.efer;
615
616         /*
617          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
618          * outside long mode
619          */
620         ignore_bits = EFER_NX | EFER_SCE;
621 #ifdef CONFIG_X86_64
622         ignore_bits |= EFER_LMA | EFER_LME;
623         /* SCE is meaningful only in long mode on Intel */
624         if (guest_efer & EFER_LMA)
625                 ignore_bits &= ~(u64)EFER_SCE;
626 #endif
627         guest_efer &= ~ignore_bits;
628         guest_efer |= host_efer & ignore_bits;
629         vmx->guest_msrs[efer_offset].data = guest_efer;
630         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
631         return true;
632 }
633
634 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
635 {
636         struct vcpu_vmx *vmx = to_vmx(vcpu);
637         int i;
638
639         if (vmx->host_state.loaded)
640                 return;
641
642         vmx->host_state.loaded = 1;
643         /*
644          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
645          * allow segment selectors with cpl > 0 or ti == 1.
646          */
647         vmx->host_state.ldt_sel = kvm_read_ldt();
648         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
649         vmx->host_state.fs_sel = kvm_read_fs();
650         if (!(vmx->host_state.fs_sel & 7)) {
651                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
652                 vmx->host_state.fs_reload_needed = 0;
653         } else {
654                 vmcs_write16(HOST_FS_SELECTOR, 0);
655                 vmx->host_state.fs_reload_needed = 1;
656         }
657         vmx->host_state.gs_sel = kvm_read_gs();
658         if (!(vmx->host_state.gs_sel & 7))
659                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
660         else {
661                 vmcs_write16(HOST_GS_SELECTOR, 0);
662                 vmx->host_state.gs_ldt_reload_needed = 1;
663         }
664
665 #ifdef CONFIG_X86_64
666         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
667         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
668 #else
669         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
670         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
671 #endif
672
673 #ifdef CONFIG_X86_64
674         if (is_long_mode(&vmx->vcpu)) {
675                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
676                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
677         }
678 #endif
679         for (i = 0; i < vmx->save_nmsrs; ++i)
680                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
681                                    vmx->guest_msrs[i].data,
682                                    vmx->guest_msrs[i].mask);
683 }
684
685 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
686 {
687         unsigned long flags;
688
689         if (!vmx->host_state.loaded)
690                 return;
691
692         ++vmx->vcpu.stat.host_state_reload;
693         vmx->host_state.loaded = 0;
694         if (vmx->host_state.fs_reload_needed)
695                 kvm_load_fs(vmx->host_state.fs_sel);
696         if (vmx->host_state.gs_ldt_reload_needed) {
697                 kvm_load_ldt(vmx->host_state.ldt_sel);
698                 /*
699                  * If we have to reload gs, we must take care to
700                  * preserve our gs base.
701                  */
702                 local_irq_save(flags);
703                 kvm_load_gs(vmx->host_state.gs_sel);
704 #ifdef CONFIG_X86_64
705                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
706 #endif
707                 local_irq_restore(flags);
708         }
709         reload_tss();
710 #ifdef CONFIG_X86_64
711         if (is_long_mode(&vmx->vcpu)) {
712                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
713                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
714         }
715 #endif
716 }
717
718 static void vmx_load_host_state(struct vcpu_vmx *vmx)
719 {
720         preempt_disable();
721         __vmx_load_host_state(vmx);
722         preempt_enable();
723 }
724
725 /*
726  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
727  * vcpu mutex is already taken.
728  */
729 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
730 {
731         struct vcpu_vmx *vmx = to_vmx(vcpu);
732         u64 phys_addr = __pa(vmx->vmcs);
733         u64 tsc_this, delta, new_offset;
734
735         if (vcpu->cpu != cpu) {
736                 vcpu_clear(vmx);
737                 kvm_migrate_timers(vcpu);
738                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
739                 local_irq_disable();
740                 list_add(&vmx->local_vcpus_link,
741                          &per_cpu(vcpus_on_cpu, cpu));
742                 local_irq_enable();
743         }
744
745         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
746                 u8 error;
747
748                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
749                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
750                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
751                               : "cc");
752                 if (error)
753                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
754                                vmx->vmcs, phys_addr);
755         }
756
757         if (vcpu->cpu != cpu) {
758                 struct descriptor_table dt;
759                 unsigned long sysenter_esp;
760
761                 vcpu->cpu = cpu;
762                 /*
763                  * Linux uses per-cpu TSS and GDT, so set these when switching
764                  * processors.
765                  */
766                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
767                 kvm_get_gdt(&dt);
768                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
769
770                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
771                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
772
773                 /*
774                  * Make sure the time stamp counter is monotonous.
775                  */
776                 rdtscll(tsc_this);
777                 if (tsc_this < vcpu->arch.host_tsc) {
778                         delta = vcpu->arch.host_tsc - tsc_this;
779                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
780                         vmcs_write64(TSC_OFFSET, new_offset);
781                 }
782         }
783 }
784
785 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
786 {
787         __vmx_load_host_state(to_vmx(vcpu));
788 }
789
790 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
791 {
792         ulong cr0;
793
794         if (vcpu->fpu_active)
795                 return;
796         vcpu->fpu_active = 1;
797         cr0 = vmcs_readl(GUEST_CR0);
798         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
799         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
800         vmcs_writel(GUEST_CR0, cr0);
801         update_exception_bitmap(vcpu);
802         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
803         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
804 }
805
806 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
807
808 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
809 {
810         vmx_decache_cr0_guest_bits(vcpu);
811         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
812         update_exception_bitmap(vcpu);
813         vcpu->arch.cr0_guest_owned_bits = 0;
814         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
815         vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
816 }
817
818 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
819 {
820         unsigned long rflags;
821
822         rflags = vmcs_readl(GUEST_RFLAGS);
823         if (to_vmx(vcpu)->rmode.vm86_active)
824                 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
825         return rflags;
826 }
827
828 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
829 {
830         if (to_vmx(vcpu)->rmode.vm86_active)
831                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
832         vmcs_writel(GUEST_RFLAGS, rflags);
833 }
834
835 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
836 {
837         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
838         int ret = 0;
839
840         if (interruptibility & GUEST_INTR_STATE_STI)
841                 ret |= X86_SHADOW_INT_STI;
842         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
843                 ret |= X86_SHADOW_INT_MOV_SS;
844
845         return ret & mask;
846 }
847
848 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
849 {
850         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
851         u32 interruptibility = interruptibility_old;
852
853         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
854
855         if (mask & X86_SHADOW_INT_MOV_SS)
856                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
857         if (mask & X86_SHADOW_INT_STI)
858                 interruptibility |= GUEST_INTR_STATE_STI;
859
860         if ((interruptibility != interruptibility_old))
861                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
862 }
863
864 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
865 {
866         unsigned long rip;
867
868         rip = kvm_rip_read(vcpu);
869         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
870         kvm_rip_write(vcpu, rip);
871
872         /* skipping an emulated instruction also counts */
873         vmx_set_interrupt_shadow(vcpu, 0);
874 }
875
876 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
877                                 bool has_error_code, u32 error_code)
878 {
879         struct vcpu_vmx *vmx = to_vmx(vcpu);
880         u32 intr_info = nr | INTR_INFO_VALID_MASK;
881
882         if (has_error_code) {
883                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
884                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
885         }
886
887         if (vmx->rmode.vm86_active) {
888                 vmx->rmode.irq.pending = true;
889                 vmx->rmode.irq.vector = nr;
890                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
891                 if (kvm_exception_is_soft(nr))
892                         vmx->rmode.irq.rip +=
893                                 vmx->vcpu.arch.event_exit_inst_len;
894                 intr_info |= INTR_TYPE_SOFT_INTR;
895                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
896                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
897                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
898                 return;
899         }
900
901         if (kvm_exception_is_soft(nr)) {
902                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
903                              vmx->vcpu.arch.event_exit_inst_len);
904                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
905         } else
906                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
907
908         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
909 }
910
911 static bool vmx_rdtscp_supported(void)
912 {
913         return cpu_has_vmx_rdtscp();
914 }
915
916 /*
917  * Swap MSR entry in host/guest MSR entry array.
918  */
919 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
920 {
921         struct shared_msr_entry tmp;
922
923         tmp = vmx->guest_msrs[to];
924         vmx->guest_msrs[to] = vmx->guest_msrs[from];
925         vmx->guest_msrs[from] = tmp;
926 }
927
928 /*
929  * Set up the vmcs to automatically save and restore system
930  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
931  * mode, as fiddling with msrs is very expensive.
932  */
933 static void setup_msrs(struct vcpu_vmx *vmx)
934 {
935         int save_nmsrs, index;
936         unsigned long *msr_bitmap;
937
938         vmx_load_host_state(vmx);
939         save_nmsrs = 0;
940 #ifdef CONFIG_X86_64
941         if (is_long_mode(&vmx->vcpu)) {
942                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
943                 if (index >= 0)
944                         move_msr_up(vmx, index, save_nmsrs++);
945                 index = __find_msr_index(vmx, MSR_LSTAR);
946                 if (index >= 0)
947                         move_msr_up(vmx, index, save_nmsrs++);
948                 index = __find_msr_index(vmx, MSR_CSTAR);
949                 if (index >= 0)
950                         move_msr_up(vmx, index, save_nmsrs++);
951                 index = __find_msr_index(vmx, MSR_TSC_AUX);
952                 if (index >= 0 && vmx->rdtscp_enabled)
953                         move_msr_up(vmx, index, save_nmsrs++);
954                 /*
955                  * MSR_K6_STAR is only needed on long mode guests, and only
956                  * if efer.sce is enabled.
957                  */
958                 index = __find_msr_index(vmx, MSR_K6_STAR);
959                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
960                         move_msr_up(vmx, index, save_nmsrs++);
961         }
962 #endif
963         index = __find_msr_index(vmx, MSR_EFER);
964         if (index >= 0 && update_transition_efer(vmx, index))
965                 move_msr_up(vmx, index, save_nmsrs++);
966
967         vmx->save_nmsrs = save_nmsrs;
968
969         if (cpu_has_vmx_msr_bitmap()) {
970                 if (is_long_mode(&vmx->vcpu))
971                         msr_bitmap = vmx_msr_bitmap_longmode;
972                 else
973                         msr_bitmap = vmx_msr_bitmap_legacy;
974
975                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
976         }
977 }
978
979 /*
980  * reads and returns guest's timestamp counter "register"
981  * guest_tsc = host_tsc + tsc_offset    -- 21.3
982  */
983 static u64 guest_read_tsc(void)
984 {
985         u64 host_tsc, tsc_offset;
986
987         rdtscll(host_tsc);
988         tsc_offset = vmcs_read64(TSC_OFFSET);
989         return host_tsc + tsc_offset;
990 }
991
992 /*
993  * writes 'guest_tsc' into guest's timestamp counter "register"
994  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
995  */
996 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
997 {
998         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
999 }
1000
1001 /*
1002  * Reads an msr value (of 'msr_index') into 'pdata'.
1003  * Returns 0 on success, non-0 otherwise.
1004  * Assumes vcpu_load() was already called.
1005  */
1006 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1007 {
1008         u64 data;
1009         struct shared_msr_entry *msr;
1010
1011         if (!pdata) {
1012                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1013                 return -EINVAL;
1014         }
1015
1016         switch (msr_index) {
1017 #ifdef CONFIG_X86_64
1018         case MSR_FS_BASE:
1019                 data = vmcs_readl(GUEST_FS_BASE);
1020                 break;
1021         case MSR_GS_BASE:
1022                 data = vmcs_readl(GUEST_GS_BASE);
1023                 break;
1024         case MSR_KERNEL_GS_BASE:
1025                 vmx_load_host_state(to_vmx(vcpu));
1026                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1027                 break;
1028 #endif
1029         case MSR_EFER:
1030                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1031         case MSR_IA32_TSC:
1032                 data = guest_read_tsc();
1033                 break;
1034         case MSR_IA32_SYSENTER_CS:
1035                 data = vmcs_read32(GUEST_SYSENTER_CS);
1036                 break;
1037         case MSR_IA32_SYSENTER_EIP:
1038                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1039                 break;
1040         case MSR_IA32_SYSENTER_ESP:
1041                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1042                 break;
1043         case MSR_TSC_AUX:
1044                 if (!to_vmx(vcpu)->rdtscp_enabled)
1045                         return 1;
1046                 /* Otherwise falls through */
1047         default:
1048                 vmx_load_host_state(to_vmx(vcpu));
1049                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1050                 if (msr) {
1051                         vmx_load_host_state(to_vmx(vcpu));
1052                         data = msr->data;
1053                         break;
1054                 }
1055                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1056         }
1057
1058         *pdata = data;
1059         return 0;
1060 }
1061
1062 /*
1063  * Writes msr value into into the appropriate "register".
1064  * Returns 0 on success, non-0 otherwise.
1065  * Assumes vcpu_load() was already called.
1066  */
1067 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1068 {
1069         struct vcpu_vmx *vmx = to_vmx(vcpu);
1070         struct shared_msr_entry *msr;
1071         u64 host_tsc;
1072         int ret = 0;
1073
1074         switch (msr_index) {
1075         case MSR_EFER:
1076                 vmx_load_host_state(vmx);
1077                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1078                 break;
1079 #ifdef CONFIG_X86_64
1080         case MSR_FS_BASE:
1081                 vmcs_writel(GUEST_FS_BASE, data);
1082                 break;
1083         case MSR_GS_BASE:
1084                 vmcs_writel(GUEST_GS_BASE, data);
1085                 break;
1086         case MSR_KERNEL_GS_BASE:
1087                 vmx_load_host_state(vmx);
1088                 vmx->msr_guest_kernel_gs_base = data;
1089                 break;
1090 #endif
1091         case MSR_IA32_SYSENTER_CS:
1092                 vmcs_write32(GUEST_SYSENTER_CS, data);
1093                 break;
1094         case MSR_IA32_SYSENTER_EIP:
1095                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1096                 break;
1097         case MSR_IA32_SYSENTER_ESP:
1098                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1099                 break;
1100         case MSR_IA32_TSC:
1101                 rdtscll(host_tsc);
1102                 guest_write_tsc(data, host_tsc);
1103                 break;
1104         case MSR_IA32_CR_PAT:
1105                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1106                         vmcs_write64(GUEST_IA32_PAT, data);
1107                         vcpu->arch.pat = data;
1108                         break;
1109                 }
1110                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1111                 break;
1112         case MSR_TSC_AUX:
1113                 if (!vmx->rdtscp_enabled)
1114                         return 1;
1115                 /* Check reserved bit, higher 32 bits should be zero */
1116                 if ((data >> 32) != 0)
1117                         return 1;
1118                 /* Otherwise falls through */
1119         default:
1120                 msr = find_msr_entry(vmx, msr_index);
1121                 if (msr) {
1122                         vmx_load_host_state(vmx);
1123                         msr->data = data;
1124                         break;
1125                 }
1126                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1127         }
1128
1129         return ret;
1130 }
1131
1132 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1133 {
1134         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1135         switch (reg) {
1136         case VCPU_REGS_RSP:
1137                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1138                 break;
1139         case VCPU_REGS_RIP:
1140                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1141                 break;
1142         case VCPU_EXREG_PDPTR:
1143                 if (enable_ept)
1144                         ept_save_pdptrs(vcpu);
1145                 break;
1146         default:
1147                 break;
1148         }
1149 }
1150
1151 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1152 {
1153         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1154                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1155         else
1156                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1157
1158         update_exception_bitmap(vcpu);
1159 }
1160
1161 static __init int cpu_has_kvm_support(void)
1162 {
1163         return cpu_has_vmx();
1164 }
1165
1166 static __init int vmx_disabled_by_bios(void)
1167 {
1168         u64 msr;
1169
1170         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1171         return (msr & (FEATURE_CONTROL_LOCKED |
1172                        FEATURE_CONTROL_VMXON_ENABLED))
1173             == FEATURE_CONTROL_LOCKED;
1174         /* locked but not enabled */
1175 }
1176
1177 static int hardware_enable(void *garbage)
1178 {
1179         int cpu = raw_smp_processor_id();
1180         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1181         u64 old;
1182
1183         if (read_cr4() & X86_CR4_VMXE)
1184                 return -EBUSY;
1185
1186         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1187         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1188         if ((old & (FEATURE_CONTROL_LOCKED |
1189                     FEATURE_CONTROL_VMXON_ENABLED))
1190             != (FEATURE_CONTROL_LOCKED |
1191                 FEATURE_CONTROL_VMXON_ENABLED))
1192                 /* enable and lock */
1193                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1194                        FEATURE_CONTROL_LOCKED |
1195                        FEATURE_CONTROL_VMXON_ENABLED);
1196         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1197         asm volatile (ASM_VMX_VMXON_RAX
1198                       : : "a"(&phys_addr), "m"(phys_addr)
1199                       : "memory", "cc");
1200
1201         ept_sync_global();
1202
1203         return 0;
1204 }
1205
1206 static void vmclear_local_vcpus(void)
1207 {
1208         int cpu = raw_smp_processor_id();
1209         struct vcpu_vmx *vmx, *n;
1210
1211         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1212                                  local_vcpus_link)
1213                 __vcpu_clear(vmx);
1214 }
1215
1216
1217 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1218  * tricks.
1219  */
1220 static void kvm_cpu_vmxoff(void)
1221 {
1222         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1223         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1224 }
1225
1226 static void hardware_disable(void *garbage)
1227 {
1228         vmclear_local_vcpus();
1229         kvm_cpu_vmxoff();
1230 }
1231
1232 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1233                                       u32 msr, u32 *result)
1234 {
1235         u32 vmx_msr_low, vmx_msr_high;
1236         u32 ctl = ctl_min | ctl_opt;
1237
1238         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1239
1240         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1241         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1242
1243         /* Ensure minimum (required) set of control bits are supported. */
1244         if (ctl_min & ~ctl)
1245                 return -EIO;
1246
1247         *result = ctl;
1248         return 0;
1249 }
1250
1251 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1252 {
1253         u32 vmx_msr_low, vmx_msr_high;
1254         u32 min, opt, min2, opt2;
1255         u32 _pin_based_exec_control = 0;
1256         u32 _cpu_based_exec_control = 0;
1257         u32 _cpu_based_2nd_exec_control = 0;
1258         u32 _vmexit_control = 0;
1259         u32 _vmentry_control = 0;
1260
1261         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1262         opt = PIN_BASED_VIRTUAL_NMIS;
1263         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1264                                 &_pin_based_exec_control) < 0)
1265                 return -EIO;
1266
1267         min = CPU_BASED_HLT_EXITING |
1268 #ifdef CONFIG_X86_64
1269               CPU_BASED_CR8_LOAD_EXITING |
1270               CPU_BASED_CR8_STORE_EXITING |
1271 #endif
1272               CPU_BASED_CR3_LOAD_EXITING |
1273               CPU_BASED_CR3_STORE_EXITING |
1274               CPU_BASED_USE_IO_BITMAPS |
1275               CPU_BASED_MOV_DR_EXITING |
1276               CPU_BASED_USE_TSC_OFFSETING |
1277               CPU_BASED_MWAIT_EXITING |
1278               CPU_BASED_MONITOR_EXITING |
1279               CPU_BASED_INVLPG_EXITING;
1280         opt = CPU_BASED_TPR_SHADOW |
1281               CPU_BASED_USE_MSR_BITMAPS |
1282               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1283         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1284                                 &_cpu_based_exec_control) < 0)
1285                 return -EIO;
1286 #ifdef CONFIG_X86_64
1287         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1288                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1289                                            ~CPU_BASED_CR8_STORE_EXITING;
1290 #endif
1291         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1292                 min2 = 0;
1293                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1294                         SECONDARY_EXEC_WBINVD_EXITING |
1295                         SECONDARY_EXEC_ENABLE_VPID |
1296                         SECONDARY_EXEC_ENABLE_EPT |
1297                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1298                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1299                         SECONDARY_EXEC_RDTSCP;
1300                 if (adjust_vmx_controls(min2, opt2,
1301                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1302                                         &_cpu_based_2nd_exec_control) < 0)
1303                         return -EIO;
1304         }
1305 #ifndef CONFIG_X86_64
1306         if (!(_cpu_based_2nd_exec_control &
1307                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1308                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1309 #endif
1310         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1311                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1312                    enabled */
1313                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1314                                              CPU_BASED_CR3_STORE_EXITING |
1315                                              CPU_BASED_INVLPG_EXITING);
1316                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1317                       vmx_capability.ept, vmx_capability.vpid);
1318         }
1319
1320         min = 0;
1321 #ifdef CONFIG_X86_64
1322         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1323 #endif
1324         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1325         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1326                                 &_vmexit_control) < 0)
1327                 return -EIO;
1328
1329         min = 0;
1330         opt = VM_ENTRY_LOAD_IA32_PAT;
1331         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1332                                 &_vmentry_control) < 0)
1333                 return -EIO;
1334
1335         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1336
1337         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1338         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1339                 return -EIO;
1340
1341 #ifdef CONFIG_X86_64
1342         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1343         if (vmx_msr_high & (1u<<16))
1344                 return -EIO;
1345 #endif
1346
1347         /* Require Write-Back (WB) memory type for VMCS accesses. */
1348         if (((vmx_msr_high >> 18) & 15) != 6)
1349                 return -EIO;
1350
1351         vmcs_conf->size = vmx_msr_high & 0x1fff;
1352         vmcs_conf->order = get_order(vmcs_config.size);
1353         vmcs_conf->revision_id = vmx_msr_low;
1354
1355         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1356         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1357         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1358         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1359         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1360
1361         return 0;
1362 }
1363
1364 static struct vmcs *alloc_vmcs_cpu(int cpu)
1365 {
1366         int node = cpu_to_node(cpu);
1367         struct page *pages;
1368         struct vmcs *vmcs;
1369
1370         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1371         if (!pages)
1372                 return NULL;
1373         vmcs = page_address(pages);
1374         memset(vmcs, 0, vmcs_config.size);
1375         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1376         return vmcs;
1377 }
1378
1379 static struct vmcs *alloc_vmcs(void)
1380 {
1381         return alloc_vmcs_cpu(raw_smp_processor_id());
1382 }
1383
1384 static void free_vmcs(struct vmcs *vmcs)
1385 {
1386         free_pages((unsigned long)vmcs, vmcs_config.order);
1387 }
1388
1389 static void free_kvm_area(void)
1390 {
1391         int cpu;
1392
1393         for_each_possible_cpu(cpu) {
1394                 free_vmcs(per_cpu(vmxarea, cpu));
1395                 per_cpu(vmxarea, cpu) = NULL;
1396         }
1397 }
1398
1399 static __init int alloc_kvm_area(void)
1400 {
1401         int cpu;
1402
1403         for_each_possible_cpu(cpu) {
1404                 struct vmcs *vmcs;
1405
1406                 vmcs = alloc_vmcs_cpu(cpu);
1407                 if (!vmcs) {
1408                         free_kvm_area();
1409                         return -ENOMEM;
1410                 }
1411
1412                 per_cpu(vmxarea, cpu) = vmcs;
1413         }
1414         return 0;
1415 }
1416
1417 static __init int hardware_setup(void)
1418 {
1419         if (setup_vmcs_config(&vmcs_config) < 0)
1420                 return -EIO;
1421
1422         if (boot_cpu_has(X86_FEATURE_NX))
1423                 kvm_enable_efer_bits(EFER_NX);
1424
1425         if (!cpu_has_vmx_vpid())
1426                 enable_vpid = 0;
1427
1428         if (!cpu_has_vmx_ept()) {
1429                 enable_ept = 0;
1430                 enable_unrestricted_guest = 0;
1431         }
1432
1433         if (!cpu_has_vmx_unrestricted_guest())
1434                 enable_unrestricted_guest = 0;
1435
1436         if (!cpu_has_vmx_flexpriority())
1437                 flexpriority_enabled = 0;
1438
1439         if (!cpu_has_vmx_tpr_shadow())
1440                 kvm_x86_ops->update_cr8_intercept = NULL;
1441
1442         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1443                 kvm_disable_largepages();
1444
1445         if (!cpu_has_vmx_ple())
1446                 ple_gap = 0;
1447
1448         return alloc_kvm_area();
1449 }
1450
1451 static __exit void hardware_unsetup(void)
1452 {
1453         free_kvm_area();
1454 }
1455
1456 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1457 {
1458         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1459
1460         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1461                 vmcs_write16(sf->selector, save->selector);
1462                 vmcs_writel(sf->base, save->base);
1463                 vmcs_write32(sf->limit, save->limit);
1464                 vmcs_write32(sf->ar_bytes, save->ar);
1465         } else {
1466                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1467                         << AR_DPL_SHIFT;
1468                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1469         }
1470 }
1471
1472 static void enter_pmode(struct kvm_vcpu *vcpu)
1473 {
1474         unsigned long flags;
1475         struct vcpu_vmx *vmx = to_vmx(vcpu);
1476
1477         vmx->emulation_required = 1;
1478         vmx->rmode.vm86_active = 0;
1479
1480         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1481         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1482         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1483
1484         flags = vmcs_readl(GUEST_RFLAGS);
1485         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1486         flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1487         vmcs_writel(GUEST_RFLAGS, flags);
1488
1489         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1490                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1491
1492         update_exception_bitmap(vcpu);
1493
1494         if (emulate_invalid_guest_state)
1495                 return;
1496
1497         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1498         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1499         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1500         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1501
1502         vmcs_write16(GUEST_SS_SELECTOR, 0);
1503         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1504
1505         vmcs_write16(GUEST_CS_SELECTOR,
1506                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1507         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1508 }
1509
1510 static gva_t rmode_tss_base(struct kvm *kvm)
1511 {
1512         if (!kvm->arch.tss_addr) {
1513                 struct kvm_memslots *slots;
1514                 gfn_t base_gfn;
1515
1516                 slots = rcu_dereference(kvm->memslots);
1517                 base_gfn = kvm->memslots->memslots[0].base_gfn +
1518                                  kvm->memslots->memslots[0].npages - 3;
1519                 return base_gfn << PAGE_SHIFT;
1520         }
1521         return kvm->arch.tss_addr;
1522 }
1523
1524 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1525 {
1526         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1527
1528         save->selector = vmcs_read16(sf->selector);
1529         save->base = vmcs_readl(sf->base);
1530         save->limit = vmcs_read32(sf->limit);
1531         save->ar = vmcs_read32(sf->ar_bytes);
1532         vmcs_write16(sf->selector, save->base >> 4);
1533         vmcs_write32(sf->base, save->base & 0xfffff);
1534         vmcs_write32(sf->limit, 0xffff);
1535         vmcs_write32(sf->ar_bytes, 0xf3);
1536 }
1537
1538 static void enter_rmode(struct kvm_vcpu *vcpu)
1539 {
1540         unsigned long flags;
1541         struct vcpu_vmx *vmx = to_vmx(vcpu);
1542
1543         if (enable_unrestricted_guest)
1544                 return;
1545
1546         vmx->emulation_required = 1;
1547         vmx->rmode.vm86_active = 1;
1548
1549         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1550         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1551
1552         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1553         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1554
1555         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1556         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1557
1558         flags = vmcs_readl(GUEST_RFLAGS);
1559         vmx->rmode.save_iopl
1560                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1561
1562         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1563
1564         vmcs_writel(GUEST_RFLAGS, flags);
1565         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1566         update_exception_bitmap(vcpu);
1567
1568         if (emulate_invalid_guest_state)
1569                 goto continue_rmode;
1570
1571         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1572         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1573         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1574
1575         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1576         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1577         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1578                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1579         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1580
1581         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1582         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1583         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1584         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1585
1586 continue_rmode:
1587         kvm_mmu_reset_context(vcpu);
1588         init_rmode(vcpu->kvm);
1589 }
1590
1591 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1592 {
1593         struct vcpu_vmx *vmx = to_vmx(vcpu);
1594         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1595
1596         if (!msr)
1597                 return;
1598
1599         /*
1600          * Force kernel_gs_base reloading before EFER changes, as control
1601          * of this msr depends on is_long_mode().
1602          */
1603         vmx_load_host_state(to_vmx(vcpu));
1604         vcpu->arch.efer = efer;
1605         if (efer & EFER_LMA) {
1606                 vmcs_write32(VM_ENTRY_CONTROLS,
1607                              vmcs_read32(VM_ENTRY_CONTROLS) |
1608                              VM_ENTRY_IA32E_MODE);
1609                 msr->data = efer;
1610         } else {
1611                 vmcs_write32(VM_ENTRY_CONTROLS,
1612                              vmcs_read32(VM_ENTRY_CONTROLS) &
1613                              ~VM_ENTRY_IA32E_MODE);
1614
1615                 msr->data = efer & ~EFER_LME;
1616         }
1617         setup_msrs(vmx);
1618 }
1619
1620 #ifdef CONFIG_X86_64
1621
1622 static void enter_lmode(struct kvm_vcpu *vcpu)
1623 {
1624         u32 guest_tr_ar;
1625
1626         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1627         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1628                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1629                        __func__);
1630                 vmcs_write32(GUEST_TR_AR_BYTES,
1631                              (guest_tr_ar & ~AR_TYPE_MASK)
1632                              | AR_TYPE_BUSY_64_TSS);
1633         }
1634         vcpu->arch.efer |= EFER_LMA;
1635         vmx_set_efer(vcpu, vcpu->arch.efer);
1636 }
1637
1638 static void exit_lmode(struct kvm_vcpu *vcpu)
1639 {
1640         vcpu->arch.efer &= ~EFER_LMA;
1641
1642         vmcs_write32(VM_ENTRY_CONTROLS,
1643                      vmcs_read32(VM_ENTRY_CONTROLS)
1644                      & ~VM_ENTRY_IA32E_MODE);
1645 }
1646
1647 #endif
1648
1649 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1650 {
1651         vpid_sync_vcpu_all(to_vmx(vcpu));
1652         if (enable_ept)
1653                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1654 }
1655
1656 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1657 {
1658         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1659
1660         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1661         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1662 }
1663
1664 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1665 {
1666         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1667
1668         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1669         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1670 }
1671
1672 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1673 {
1674         if (!test_bit(VCPU_EXREG_PDPTR,
1675                       (unsigned long *)&vcpu->arch.regs_dirty))
1676                 return;
1677
1678         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1679                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1680                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1681                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1682                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1683         }
1684 }
1685
1686 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1687 {
1688         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1689                 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1690                 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1691                 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1692                 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1693         }
1694
1695         __set_bit(VCPU_EXREG_PDPTR,
1696                   (unsigned long *)&vcpu->arch.regs_avail);
1697         __set_bit(VCPU_EXREG_PDPTR,
1698                   (unsigned long *)&vcpu->arch.regs_dirty);
1699 }
1700
1701 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1702
1703 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1704                                         unsigned long cr0,
1705                                         struct kvm_vcpu *vcpu)
1706 {
1707         if (!(cr0 & X86_CR0_PG)) {
1708                 /* From paging/starting to nonpaging */
1709                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1710                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1711                              (CPU_BASED_CR3_LOAD_EXITING |
1712                               CPU_BASED_CR3_STORE_EXITING));
1713                 vcpu->arch.cr0 = cr0;
1714                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1715         } else if (!is_paging(vcpu)) {
1716                 /* From nonpaging to paging */
1717                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1718                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1719                              ~(CPU_BASED_CR3_LOAD_EXITING |
1720                                CPU_BASED_CR3_STORE_EXITING));
1721                 vcpu->arch.cr0 = cr0;
1722                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1723         }
1724
1725         if (!(cr0 & X86_CR0_WP))
1726                 *hw_cr0 &= ~X86_CR0_WP;
1727 }
1728
1729 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1730 {
1731         struct vcpu_vmx *vmx = to_vmx(vcpu);
1732         unsigned long hw_cr0;
1733
1734         if (enable_unrestricted_guest)
1735                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1736                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1737         else
1738                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1739
1740         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1741                 enter_pmode(vcpu);
1742
1743         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1744                 enter_rmode(vcpu);
1745
1746 #ifdef CONFIG_X86_64
1747         if (vcpu->arch.efer & EFER_LME) {
1748                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1749                         enter_lmode(vcpu);
1750                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1751                         exit_lmode(vcpu);
1752         }
1753 #endif
1754
1755         if (enable_ept)
1756                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1757
1758         if (!vcpu->fpu_active)
1759                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
1760
1761         vmcs_writel(CR0_READ_SHADOW, cr0);
1762         vmcs_writel(GUEST_CR0, hw_cr0);
1763         vcpu->arch.cr0 = cr0;
1764 }
1765
1766 static u64 construct_eptp(unsigned long root_hpa)
1767 {
1768         u64 eptp;
1769
1770         /* TODO write the value reading from MSR */
1771         eptp = VMX_EPT_DEFAULT_MT |
1772                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1773         eptp |= (root_hpa & PAGE_MASK);
1774
1775         return eptp;
1776 }
1777
1778 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1779 {
1780         unsigned long guest_cr3;
1781         u64 eptp;
1782
1783         guest_cr3 = cr3;
1784         if (enable_ept) {
1785                 eptp = construct_eptp(cr3);
1786                 vmcs_write64(EPT_POINTER, eptp);
1787                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1788                         vcpu->kvm->arch.ept_identity_map_addr;
1789                 ept_load_pdptrs(vcpu);
1790         }
1791
1792         vmx_flush_tlb(vcpu);
1793         vmcs_writel(GUEST_CR3, guest_cr3);
1794 }
1795
1796 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1797 {
1798         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1799                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1800
1801         vcpu->arch.cr4 = cr4;
1802         if (enable_ept) {
1803                 if (!is_paging(vcpu)) {
1804                         hw_cr4 &= ~X86_CR4_PAE;
1805                         hw_cr4 |= X86_CR4_PSE;
1806                 } else if (!(cr4 & X86_CR4_PAE)) {
1807                         hw_cr4 &= ~X86_CR4_PAE;
1808                 }
1809         }
1810
1811         vmcs_writel(CR4_READ_SHADOW, cr4);
1812         vmcs_writel(GUEST_CR4, hw_cr4);
1813 }
1814
1815 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1816 {
1817         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1818
1819         return vmcs_readl(sf->base);
1820 }
1821
1822 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1823                             struct kvm_segment *var, int seg)
1824 {
1825         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1826         u32 ar;
1827
1828         var->base = vmcs_readl(sf->base);
1829         var->limit = vmcs_read32(sf->limit);
1830         var->selector = vmcs_read16(sf->selector);
1831         ar = vmcs_read32(sf->ar_bytes);
1832         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1833                 ar = 0;
1834         var->type = ar & 15;
1835         var->s = (ar >> 4) & 1;
1836         var->dpl = (ar >> 5) & 3;
1837         var->present = (ar >> 7) & 1;
1838         var->avl = (ar >> 12) & 1;
1839         var->l = (ar >> 13) & 1;
1840         var->db = (ar >> 14) & 1;
1841         var->g = (ar >> 15) & 1;
1842         var->unusable = (ar >> 16) & 1;
1843 }
1844
1845 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1846 {
1847         if (!is_protmode(vcpu))
1848                 return 0;
1849
1850         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1851                 return 3;
1852
1853         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1854 }
1855
1856 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1857 {
1858         u32 ar;
1859
1860         if (var->unusable)
1861                 ar = 1 << 16;
1862         else {
1863                 ar = var->type & 15;
1864                 ar |= (var->s & 1) << 4;
1865                 ar |= (var->dpl & 3) << 5;
1866                 ar |= (var->present & 1) << 7;
1867                 ar |= (var->avl & 1) << 12;
1868                 ar |= (var->l & 1) << 13;
1869                 ar |= (var->db & 1) << 14;
1870                 ar |= (var->g & 1) << 15;
1871         }
1872         if (ar == 0) /* a 0 value means unusable */
1873                 ar = AR_UNUSABLE_MASK;
1874
1875         return ar;
1876 }
1877
1878 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1879                             struct kvm_segment *var, int seg)
1880 {
1881         struct vcpu_vmx *vmx = to_vmx(vcpu);
1882         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1883         u32 ar;
1884
1885         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1886                 vmx->rmode.tr.selector = var->selector;
1887                 vmx->rmode.tr.base = var->base;
1888                 vmx->rmode.tr.limit = var->limit;
1889                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1890                 return;
1891         }
1892         vmcs_writel(sf->base, var->base);
1893         vmcs_write32(sf->limit, var->limit);
1894         vmcs_write16(sf->selector, var->selector);
1895         if (vmx->rmode.vm86_active && var->s) {
1896                 /*
1897                  * Hack real-mode segments into vm86 compatibility.
1898                  */
1899                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1900                         vmcs_writel(sf->base, 0xf0000);
1901                 ar = 0xf3;
1902         } else
1903                 ar = vmx_segment_access_rights(var);
1904
1905         /*
1906          *   Fix the "Accessed" bit in AR field of segment registers for older
1907          * qemu binaries.
1908          *   IA32 arch specifies that at the time of processor reset the
1909          * "Accessed" bit in the AR field of segment registers is 1. And qemu
1910          * is setting it to 0 in the usedland code. This causes invalid guest
1911          * state vmexit when "unrestricted guest" mode is turned on.
1912          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
1913          * tree. Newer qemu binaries with that qemu fix would not need this
1914          * kvm hack.
1915          */
1916         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1917                 ar |= 0x1; /* Accessed */
1918
1919         vmcs_write32(sf->ar_bytes, ar);
1920 }
1921
1922 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1923 {
1924         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1925
1926         *db = (ar >> 14) & 1;
1927         *l = (ar >> 13) & 1;
1928 }
1929
1930 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1931 {
1932         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1933         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1934 }
1935
1936 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1937 {
1938         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1939         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1940 }
1941
1942 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1943 {
1944         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1945         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1946 }
1947
1948 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1949 {
1950         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1951         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1952 }
1953
1954 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1955 {
1956         struct kvm_segment var;
1957         u32 ar;
1958
1959         vmx_get_segment(vcpu, &var, seg);
1960         ar = vmx_segment_access_rights(&var);
1961
1962         if (var.base != (var.selector << 4))
1963                 return false;
1964         if (var.limit != 0xffff)
1965                 return false;
1966         if (ar != 0xf3)
1967                 return false;
1968
1969         return true;
1970 }
1971
1972 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1973 {
1974         struct kvm_segment cs;
1975         unsigned int cs_rpl;
1976
1977         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1978         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1979
1980         if (cs.unusable)
1981                 return false;
1982         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1983                 return false;
1984         if (!cs.s)
1985                 return false;
1986         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1987                 if (cs.dpl > cs_rpl)
1988                         return false;
1989         } else {
1990                 if (cs.dpl != cs_rpl)
1991                         return false;
1992         }
1993         if (!cs.present)
1994                 return false;
1995
1996         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1997         return true;
1998 }
1999
2000 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2001 {
2002         struct kvm_segment ss;
2003         unsigned int ss_rpl;
2004
2005         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2006         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2007
2008         if (ss.unusable)
2009                 return true;
2010         if (ss.type != 3 && ss.type != 7)
2011                 return false;
2012         if (!ss.s)
2013                 return false;
2014         if (ss.dpl != ss_rpl) /* DPL != RPL */
2015                 return false;
2016         if (!ss.present)
2017                 return false;
2018
2019         return true;
2020 }
2021
2022 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2023 {
2024         struct kvm_segment var;
2025         unsigned int rpl;
2026
2027         vmx_get_segment(vcpu, &var, seg);
2028         rpl = var.selector & SELECTOR_RPL_MASK;
2029
2030         if (var.unusable)
2031                 return true;
2032         if (!var.s)
2033                 return false;
2034         if (!var.present)
2035                 return false;
2036         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2037                 if (var.dpl < rpl) /* DPL < RPL */
2038                         return false;
2039         }
2040
2041         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2042          * rights flags
2043          */
2044         return true;
2045 }
2046
2047 static bool tr_valid(struct kvm_vcpu *vcpu)
2048 {
2049         struct kvm_segment tr;
2050
2051         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2052
2053         if (tr.unusable)
2054                 return false;
2055         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2056                 return false;
2057         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2058                 return false;
2059         if (!tr.present)
2060                 return false;
2061
2062         return true;
2063 }
2064
2065 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2066 {
2067         struct kvm_segment ldtr;
2068
2069         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2070
2071         if (ldtr.unusable)
2072                 return true;
2073         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2074                 return false;
2075         if (ldtr.type != 2)
2076                 return false;
2077         if (!ldtr.present)
2078                 return false;
2079
2080         return true;
2081 }
2082
2083 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2084 {
2085         struct kvm_segment cs, ss;
2086
2087         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2088         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2089
2090         return ((cs.selector & SELECTOR_RPL_MASK) ==
2091                  (ss.selector & SELECTOR_RPL_MASK));
2092 }
2093
2094 /*
2095  * Check if guest state is valid. Returns true if valid, false if
2096  * not.
2097  * We assume that registers are always usable
2098  */
2099 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2100 {
2101         /* real mode guest state checks */
2102         if (!is_protmode(vcpu)) {
2103                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2104                         return false;
2105                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2106                         return false;
2107                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2108                         return false;
2109                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2110                         return false;
2111                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2112                         return false;
2113                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2114                         return false;
2115         } else {
2116         /* protected mode guest state checks */
2117                 if (!cs_ss_rpl_check(vcpu))
2118                         return false;
2119                 if (!code_segment_valid(vcpu))
2120                         return false;
2121                 if (!stack_segment_valid(vcpu))
2122                         return false;
2123                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2124                         return false;
2125                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2126                         return false;
2127                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2128                         return false;
2129                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2130                         return false;
2131                 if (!tr_valid(vcpu))
2132                         return false;
2133                 if (!ldtr_valid(vcpu))
2134                         return false;
2135         }
2136         /* TODO:
2137          * - Add checks on RIP
2138          * - Add checks on RFLAGS
2139          */
2140
2141         return true;
2142 }
2143
2144 static int init_rmode_tss(struct kvm *kvm)
2145 {
2146         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2147         u16 data = 0;
2148         int ret = 0;
2149         int r;
2150
2151         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2152         if (r < 0)
2153                 goto out;
2154         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2155         r = kvm_write_guest_page(kvm, fn++, &data,
2156                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2157         if (r < 0)
2158                 goto out;
2159         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2160         if (r < 0)
2161                 goto out;
2162         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2163         if (r < 0)
2164                 goto out;
2165         data = ~0;
2166         r = kvm_write_guest_page(kvm, fn, &data,
2167                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2168                                  sizeof(u8));
2169         if (r < 0)
2170                 goto out;
2171
2172         ret = 1;
2173 out:
2174         return ret;
2175 }
2176
2177 static int init_rmode_identity_map(struct kvm *kvm)
2178 {
2179         int i, r, ret;
2180         pfn_t identity_map_pfn;
2181         u32 tmp;
2182
2183         if (!enable_ept)
2184                 return 1;
2185         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2186                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2187                         "haven't been allocated!\n");
2188                 return 0;
2189         }
2190         if (likely(kvm->arch.ept_identity_pagetable_done))
2191                 return 1;
2192         ret = 0;
2193         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2194         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2195         if (r < 0)
2196                 goto out;
2197         /* Set up identity-mapping pagetable for EPT in real mode */
2198         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2199                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2200                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2201                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2202                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2203                 if (r < 0)
2204                         goto out;
2205         }
2206         kvm->arch.ept_identity_pagetable_done = true;
2207         ret = 1;
2208 out:
2209         return ret;
2210 }
2211
2212 static void seg_setup(int seg)
2213 {
2214         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2215         unsigned int ar;
2216
2217         vmcs_write16(sf->selector, 0);
2218         vmcs_writel(sf->base, 0);
2219         vmcs_write32(sf->limit, 0xffff);
2220         if (enable_unrestricted_guest) {
2221                 ar = 0x93;
2222                 if (seg == VCPU_SREG_CS)
2223                         ar |= 0x08; /* code segment */
2224         } else
2225                 ar = 0xf3;
2226
2227         vmcs_write32(sf->ar_bytes, ar);
2228 }
2229
2230 static int alloc_apic_access_page(struct kvm *kvm)
2231 {
2232         struct kvm_userspace_memory_region kvm_userspace_mem;
2233         int r = 0;
2234
2235         mutex_lock(&kvm->slots_lock);
2236         if (kvm->arch.apic_access_page)
2237                 goto out;
2238         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2239         kvm_userspace_mem.flags = 0;
2240         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2241         kvm_userspace_mem.memory_size = PAGE_SIZE;
2242         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2243         if (r)
2244                 goto out;
2245
2246         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2247 out:
2248         mutex_unlock(&kvm->slots_lock);
2249         return r;
2250 }
2251
2252 static int alloc_identity_pagetable(struct kvm *kvm)
2253 {
2254         struct kvm_userspace_memory_region kvm_userspace_mem;
2255         int r = 0;
2256
2257         mutex_lock(&kvm->slots_lock);
2258         if (kvm->arch.ept_identity_pagetable)
2259                 goto out;
2260         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2261         kvm_userspace_mem.flags = 0;
2262         kvm_userspace_mem.guest_phys_addr =
2263                 kvm->arch.ept_identity_map_addr;
2264         kvm_userspace_mem.memory_size = PAGE_SIZE;
2265         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2266         if (r)
2267                 goto out;
2268
2269         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2270                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2271 out:
2272         mutex_unlock(&kvm->slots_lock);
2273         return r;
2274 }
2275
2276 static void allocate_vpid(struct vcpu_vmx *vmx)
2277 {
2278         int vpid;
2279
2280         vmx->vpid = 0;
2281         if (!enable_vpid)
2282                 return;
2283         spin_lock(&vmx_vpid_lock);
2284         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2285         if (vpid < VMX_NR_VPIDS) {
2286                 vmx->vpid = vpid;
2287                 __set_bit(vpid, vmx_vpid_bitmap);
2288         }
2289         spin_unlock(&vmx_vpid_lock);
2290 }
2291
2292 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2293 {
2294         int f = sizeof(unsigned long);
2295
2296         if (!cpu_has_vmx_msr_bitmap())
2297                 return;
2298
2299         /*
2300          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2301          * have the write-low and read-high bitmap offsets the wrong way round.
2302          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2303          */
2304         if (msr <= 0x1fff) {
2305                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2306                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2307         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2308                 msr &= 0x1fff;
2309                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2310                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2311         }
2312 }
2313
2314 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2315 {
2316         if (!longmode_only)
2317                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2318         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2319 }
2320
2321 /*
2322  * Sets up the vmcs for emulated real mode.
2323  */
2324 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2325 {
2326         u32 host_sysenter_cs, msr_low, msr_high;
2327         u32 junk;
2328         u64 host_pat, tsc_this, tsc_base;
2329         unsigned long a;
2330         struct descriptor_table dt;
2331         int i;
2332         unsigned long kvm_vmx_return;
2333         u32 exec_control;
2334
2335         /* I/O */
2336         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2337         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2338
2339         if (cpu_has_vmx_msr_bitmap())
2340                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2341
2342         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2343
2344         /* Control */
2345         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2346                 vmcs_config.pin_based_exec_ctrl);
2347
2348         exec_control = vmcs_config.cpu_based_exec_ctrl;
2349         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2350                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2351 #ifdef CONFIG_X86_64
2352                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2353                                 CPU_BASED_CR8_LOAD_EXITING;
2354 #endif
2355         }
2356         if (!enable_ept)
2357                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2358                                 CPU_BASED_CR3_LOAD_EXITING  |
2359                                 CPU_BASED_INVLPG_EXITING;
2360         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2361
2362         if (cpu_has_secondary_exec_ctrls()) {
2363                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2364                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2365                         exec_control &=
2366                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2367                 if (vmx->vpid == 0)
2368                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2369                 if (!enable_ept) {
2370                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2371                         enable_unrestricted_guest = 0;
2372                 }
2373                 if (!enable_unrestricted_guest)
2374                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2375                 if (!ple_gap)
2376                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2377                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2378         }
2379
2380         if (ple_gap) {
2381                 vmcs_write32(PLE_GAP, ple_gap);
2382                 vmcs_write32(PLE_WINDOW, ple_window);
2383         }
2384
2385         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2386         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2387         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2388
2389         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2390         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2391         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2392
2393         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2394         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2395         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2396         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2397         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2398         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2399 #ifdef CONFIG_X86_64
2400         rdmsrl(MSR_FS_BASE, a);
2401         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2402         rdmsrl(MSR_GS_BASE, a);
2403         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2404 #else
2405         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2406         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2407 #endif
2408
2409         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2410
2411         kvm_get_idt(&dt);
2412         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2413
2414         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2415         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2416         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2417         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2418         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2419
2420         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2421         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2422         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2423         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2424         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2425         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2426
2427         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2428                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2429                 host_pat = msr_low | ((u64) msr_high << 32);
2430                 vmcs_write64(HOST_IA32_PAT, host_pat);
2431         }
2432         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2433                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2434                 host_pat = msr_low | ((u64) msr_high << 32);
2435                 /* Write the default value follow host pat */
2436                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2437                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2438                 vmx->vcpu.arch.pat = host_pat;
2439         }
2440
2441         for (i = 0; i < NR_VMX_MSR; ++i) {
2442                 u32 index = vmx_msr_index[i];
2443                 u32 data_low, data_high;
2444                 int j = vmx->nmsrs;
2445
2446                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2447                         continue;
2448                 if (wrmsr_safe(index, data_low, data_high) < 0)
2449                         continue;
2450                 vmx->guest_msrs[j].index = i;
2451                 vmx->guest_msrs[j].data = 0;
2452                 vmx->guest_msrs[j].mask = -1ull;
2453                 ++vmx->nmsrs;
2454         }
2455
2456         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2457
2458         /* 22.2.1, 20.8.1 */
2459         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2460
2461         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2462         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2463         if (enable_ept)
2464                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2465         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2466
2467         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2468         rdtscll(tsc_this);
2469         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2470                 tsc_base = tsc_this;
2471
2472         guest_write_tsc(0, tsc_base);
2473
2474         return 0;
2475 }
2476
2477 static int init_rmode(struct kvm *kvm)
2478 {
2479         if (!init_rmode_tss(kvm))
2480                 return 0;
2481         if (!init_rmode_identity_map(kvm))
2482                 return 0;
2483         return 1;
2484 }
2485
2486 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2487 {
2488         struct vcpu_vmx *vmx = to_vmx(vcpu);
2489         u64 msr;
2490         int ret, idx;
2491
2492         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2493         idx = srcu_read_lock(&vcpu->kvm->srcu);
2494         if (!init_rmode(vmx->vcpu.kvm)) {
2495                 ret = -ENOMEM;
2496                 goto out;
2497         }
2498
2499         vmx->rmode.vm86_active = 0;
2500
2501         vmx->soft_vnmi_blocked = 0;
2502
2503         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2504         kvm_set_cr8(&vmx->vcpu, 0);
2505         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2506         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2507                 msr |= MSR_IA32_APICBASE_BSP;
2508         kvm_set_apic_base(&vmx->vcpu, msr);
2509
2510         fx_init(&vmx->vcpu);
2511
2512         seg_setup(VCPU_SREG_CS);
2513         /*
2514          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2515          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2516          */
2517         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2518                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2519                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2520         } else {
2521                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2522                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2523         }
2524
2525         seg_setup(VCPU_SREG_DS);
2526         seg_setup(VCPU_SREG_ES);
2527         seg_setup(VCPU_SREG_FS);
2528         seg_setup(VCPU_SREG_GS);
2529         seg_setup(VCPU_SREG_SS);
2530
2531         vmcs_write16(GUEST_TR_SELECTOR, 0);
2532         vmcs_writel(GUEST_TR_BASE, 0);
2533         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2534         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2535
2536         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2537         vmcs_writel(GUEST_LDTR_BASE, 0);
2538         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2539         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2540
2541         vmcs_write32(GUEST_SYSENTER_CS, 0);
2542         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2543         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2544
2545         vmcs_writel(GUEST_RFLAGS, 0x02);
2546         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2547                 kvm_rip_write(vcpu, 0xfff0);
2548         else
2549                 kvm_rip_write(vcpu, 0);
2550         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2551
2552         vmcs_writel(GUEST_DR7, 0x400);
2553
2554         vmcs_writel(GUEST_GDTR_BASE, 0);
2555         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2556
2557         vmcs_writel(GUEST_IDTR_BASE, 0);
2558         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2559
2560         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2561         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2562         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2563
2564         /* Special registers */
2565         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2566
2567         setup_msrs(vmx);
2568
2569         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2570
2571         if (cpu_has_vmx_tpr_shadow()) {
2572                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2573                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2574                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2575                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2576                 vmcs_write32(TPR_THRESHOLD, 0);
2577         }
2578
2579         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2580                 vmcs_write64(APIC_ACCESS_ADDR,
2581                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2582
2583         if (vmx->vpid != 0)
2584                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2585
2586         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2587         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2588         vmx_set_cr4(&vmx->vcpu, 0);
2589         vmx_set_efer(&vmx->vcpu, 0);
2590         vmx_fpu_activate(&vmx->vcpu);
2591         update_exception_bitmap(&vmx->vcpu);
2592
2593         vpid_sync_vcpu_all(vmx);
2594
2595         ret = 0;
2596
2597         /* HACK: Don't enable emulation on guest boot/reset */
2598         vmx->emulation_required = 0;
2599
2600 out:
2601         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2602         return ret;
2603 }
2604
2605 static void enable_irq_window(struct kvm_vcpu *vcpu)
2606 {
2607         u32 cpu_based_vm_exec_control;
2608
2609         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2610         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2611         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2612 }
2613
2614 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2615 {
2616         u32 cpu_based_vm_exec_control;
2617
2618         if (!cpu_has_virtual_nmis()) {
2619                 enable_irq_window(vcpu);
2620                 return;
2621         }
2622
2623         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2624         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2625         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2626 }
2627
2628 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2629 {
2630         struct vcpu_vmx *vmx = to_vmx(vcpu);
2631         uint32_t intr;
2632         int irq = vcpu->arch.interrupt.nr;
2633
2634         trace_kvm_inj_virq(irq);
2635
2636         ++vcpu->stat.irq_injections;
2637         if (vmx->rmode.vm86_active) {
2638                 vmx->rmode.irq.pending = true;
2639                 vmx->rmode.irq.vector = irq;
2640                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2641                 if (vcpu->arch.interrupt.soft)
2642                         vmx->rmode.irq.rip +=
2643                                 vmx->vcpu.arch.event_exit_inst_len;
2644                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2645                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2646                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2647                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2648                 return;
2649         }
2650         intr = irq | INTR_INFO_VALID_MASK;
2651         if (vcpu->arch.interrupt.soft) {
2652                 intr |= INTR_TYPE_SOFT_INTR;
2653                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2654                              vmx->vcpu.arch.event_exit_inst_len);
2655         } else
2656                 intr |= INTR_TYPE_EXT_INTR;
2657         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2658 }
2659
2660 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2661 {
2662         struct vcpu_vmx *vmx = to_vmx(vcpu);
2663
2664         if (!cpu_has_virtual_nmis()) {
2665                 /*
2666                  * Tracking the NMI-blocked state in software is built upon
2667                  * finding the next open IRQ window. This, in turn, depends on
2668                  * well-behaving guests: They have to keep IRQs disabled at
2669                  * least as long as the NMI handler runs. Otherwise we may
2670                  * cause NMI nesting, maybe breaking the guest. But as this is
2671                  * highly unlikely, we can live with the residual risk.
2672                  */
2673                 vmx->soft_vnmi_blocked = 1;
2674                 vmx->vnmi_blocked_time = 0;
2675         }
2676
2677         ++vcpu->stat.nmi_injections;
2678         if (vmx->rmode.vm86_active) {
2679                 vmx->rmode.irq.pending = true;
2680                 vmx->rmode.irq.vector = NMI_VECTOR;
2681                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2682                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2683                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2684                              INTR_INFO_VALID_MASK);
2685                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2686                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2687                 return;
2688         }
2689         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2690                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2691 }
2692
2693 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2694 {
2695         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2696                 return 0;
2697
2698         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2699                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2700                                 GUEST_INTR_STATE_NMI));
2701 }
2702
2703 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2704 {
2705         if (!cpu_has_virtual_nmis())
2706                 return to_vmx(vcpu)->soft_vnmi_blocked;
2707         else
2708                 return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2709                           GUEST_INTR_STATE_NMI);
2710 }
2711
2712 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2713 {
2714         struct vcpu_vmx *vmx = to_vmx(vcpu);
2715
2716         if (!cpu_has_virtual_nmis()) {
2717                 if (vmx->soft_vnmi_blocked != masked) {
2718                         vmx->soft_vnmi_blocked = masked;
2719                         vmx->vnmi_blocked_time = 0;
2720                 }
2721         } else {
2722                 if (masked)
2723                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2724                                       GUEST_INTR_STATE_NMI);
2725                 else
2726                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2727                                         GUEST_INTR_STATE_NMI);
2728         }
2729 }
2730
2731 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2732 {
2733         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2734                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2735                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2736 }
2737
2738 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2739 {
2740         int ret;
2741         struct kvm_userspace_memory_region tss_mem = {
2742                 .slot = TSS_PRIVATE_MEMSLOT,
2743                 .guest_phys_addr = addr,
2744                 .memory_size = PAGE_SIZE * 3,
2745                 .flags = 0,
2746         };
2747
2748         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2749         if (ret)
2750                 return ret;
2751         kvm->arch.tss_addr = addr;
2752         return 0;
2753 }
2754
2755 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2756                                   int vec, u32 err_code)
2757 {
2758         /*
2759          * Instruction with address size override prefix opcode 0x67
2760          * Cause the #SS fault with 0 error code in VM86 mode.
2761          */
2762         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2763                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2764                         return 1;
2765         /*
2766          * Forward all other exceptions that are valid in real mode.
2767          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2768          *        the required debugging infrastructure rework.
2769          */
2770         switch (vec) {
2771         case DB_VECTOR:
2772                 if (vcpu->guest_debug &
2773                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2774                         return 0;
2775                 kvm_queue_exception(vcpu, vec);
2776                 return 1;
2777         case BP_VECTOR:
2778                 /*
2779                  * Update instruction length as we may reinject the exception
2780                  * from user space while in guest debugging mode.
2781                  */
2782                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
2783                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2784                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2785                         return 0;
2786                 /* fall through */
2787         case DE_VECTOR:
2788         case OF_VECTOR:
2789         case BR_VECTOR:
2790         case UD_VECTOR:
2791         case DF_VECTOR:
2792         case SS_VECTOR:
2793         case GP_VECTOR:
2794         case MF_VECTOR:
2795                 kvm_queue_exception(vcpu, vec);
2796                 return 1;
2797         }
2798         return 0;
2799 }
2800
2801 /*
2802  * Trigger machine check on the host. We assume all the MSRs are already set up
2803  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2804  * We pass a fake environment to the machine check handler because we want
2805  * the guest to be always treated like user space, no matter what context
2806  * it used internally.
2807  */
2808 static void kvm_machine_check(void)
2809 {
2810 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2811         struct pt_regs regs = {
2812                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2813                 .flags = X86_EFLAGS_IF,
2814         };
2815
2816         do_machine_check(&regs, 0);
2817 #endif
2818 }
2819
2820 static int handle_machine_check(struct kvm_vcpu *vcpu)
2821 {
2822         /* already handled by vcpu_run */
2823         return 1;
2824 }
2825
2826 static int handle_exception(struct kvm_vcpu *vcpu)
2827 {
2828         struct vcpu_vmx *vmx = to_vmx(vcpu);
2829         struct kvm_run *kvm_run = vcpu->run;
2830         u32 intr_info, ex_no, error_code;
2831         unsigned long cr2, rip, dr6;
2832         u32 vect_info;
2833         enum emulation_result er;
2834
2835         vect_info = vmx->idt_vectoring_info;
2836         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2837
2838         if (is_machine_check(intr_info))
2839                 return handle_machine_check(vcpu);
2840
2841         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2842             !is_page_fault(intr_info)) {
2843                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2844                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
2845                 vcpu->run->internal.ndata = 2;
2846                 vcpu->run->internal.data[0] = vect_info;
2847                 vcpu->run->internal.data[1] = intr_info;
2848                 return 0;
2849         }
2850
2851         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2852                 return 1;  /* already handled by vmx_vcpu_run() */
2853
2854         if (is_no_device(intr_info)) {
2855                 vmx_fpu_activate(vcpu);
2856                 return 1;
2857         }
2858
2859         if (is_invalid_opcode(intr_info)) {
2860                 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
2861                 if (er != EMULATE_DONE)
2862                         kvm_queue_exception(vcpu, UD_VECTOR);
2863                 return 1;
2864         }
2865
2866         error_code = 0;
2867         rip = kvm_rip_read(vcpu);
2868         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2869                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2870         if (is_page_fault(intr_info)) {
2871                 /* EPT won't cause page fault directly */
2872                 if (enable_ept)
2873                         BUG();
2874                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2875                 trace_kvm_page_fault(cr2, error_code);
2876
2877                 if (kvm_event_needs_reinjection(vcpu))
2878                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2879                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2880         }
2881
2882         if (vmx->rmode.vm86_active &&
2883             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2884                                                                 error_code)) {
2885                 if (vcpu->arch.halt_request) {
2886                         vcpu->arch.halt_request = 0;
2887                         return kvm_emulate_halt(vcpu);
2888                 }
2889                 return 1;
2890         }
2891
2892         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2893         switch (ex_no) {
2894         case DB_VECTOR:
2895                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2896                 if (!(vcpu->guest_debug &
2897                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2898                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2899                         kvm_queue_exception(vcpu, DB_VECTOR);
2900                         return 1;
2901                 }
2902                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2903                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2904                 /* fall through */
2905         case BP_VECTOR:
2906                 /*
2907                  * Update instruction length as we may reinject #BP from
2908                  * user space while in guest debugging mode. Reading it for
2909                  * #DB as well causes no harm, it is not used in that case.
2910                  */
2911                 vmx->vcpu.arch.event_exit_inst_len =
2912                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2913                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2914                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2915                 kvm_run->debug.arch.exception = ex_no;
2916                 break;
2917         default:
2918                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2919                 kvm_run->ex.exception = ex_no;
2920                 kvm_run->ex.error_code = error_code;
2921                 break;
2922         }
2923         return 0;
2924 }
2925
2926 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
2927 {
2928         ++vcpu->stat.irq_exits;
2929         return 1;
2930 }
2931
2932 static int handle_triple_fault(struct kvm_vcpu *vcpu)
2933 {
2934         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2935         return 0;
2936 }
2937
2938 static int handle_io(struct kvm_vcpu *vcpu)
2939 {
2940         unsigned long exit_qualification;
2941         int size, in, string;
2942         unsigned port;
2943
2944         ++vcpu->stat.io_exits;
2945         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2946         string = (exit_qualification & 16) != 0;
2947
2948         if (string) {
2949                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
2950                         return 0;
2951                 return 1;
2952         }
2953
2954         size = (exit_qualification & 7) + 1;
2955         in = (exit_qualification & 8) != 0;
2956         port = exit_qualification >> 16;
2957
2958         skip_emulated_instruction(vcpu);
2959         return kvm_emulate_pio(vcpu, in, size, port);
2960 }
2961
2962 static void
2963 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2964 {
2965         /*
2966          * Patch in the VMCALL instruction:
2967          */
2968         hypercall[0] = 0x0f;
2969         hypercall[1] = 0x01;
2970         hypercall[2] = 0xc1;
2971 }
2972
2973 static int handle_cr(struct kvm_vcpu *vcpu)
2974 {
2975         unsigned long exit_qualification, val;
2976         int cr;
2977         int reg;
2978
2979         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2980         cr = exit_qualification & 15;
2981         reg = (exit_qualification >> 8) & 15;
2982         switch ((exit_qualification >> 4) & 3) {
2983         case 0: /* mov to cr */
2984                 val = kvm_register_read(vcpu, reg);
2985                 trace_kvm_cr_write(cr, val);
2986                 switch (cr) {
2987                 case 0:
2988                         kvm_set_cr0(vcpu, val);
2989                         skip_emulated_instruction(vcpu);
2990                         return 1;
2991                 case 3:
2992                         kvm_set_cr3(vcpu, val);
2993                         skip_emulated_instruction(vcpu);
2994                         return 1;
2995                 case 4:
2996                         kvm_set_cr4(vcpu, val);
2997                         skip_emulated_instruction(vcpu);
2998                         return 1;
2999                 case 8: {
3000                                 u8 cr8_prev = kvm_get_cr8(vcpu);
3001                                 u8 cr8 = kvm_register_read(vcpu, reg);
3002                                 kvm_set_cr8(vcpu, cr8);
3003                                 skip_emulated_instruction(vcpu);
3004                                 if (irqchip_in_kernel(vcpu->kvm))
3005                                         return 1;
3006                                 if (cr8_prev <= cr8)
3007                                         return 1;
3008                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3009                                 return 0;
3010                         }
3011                 };
3012                 break;
3013         case 2: /* clts */
3014                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3015                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3016                 skip_emulated_instruction(vcpu);
3017                 vmx_fpu_activate(vcpu);
3018                 return 1;
3019         case 1: /*mov from cr*/
3020                 switch (cr) {
3021                 case 3:
3022                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
3023                         trace_kvm_cr_read(cr, vcpu->arch.cr3);
3024                         skip_emulated_instruction(vcpu);
3025                         return 1;
3026                 case 8:
3027                         val = kvm_get_cr8(vcpu);
3028                         kvm_register_write(vcpu, reg, val);
3029                         trace_kvm_cr_read(cr, val);
3030                         skip_emulated_instruction(vcpu);
3031                         return 1;
3032                 }
3033                 break;
3034         case 3: /* lmsw */
3035                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3036                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3037                 kvm_lmsw(vcpu, val);
3038
3039                 skip_emulated_instruction(vcpu);
3040                 return 1;
3041         default:
3042                 break;
3043         }
3044         vcpu->run->exit_reason = 0;
3045         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3046                (int)(exit_qualification >> 4) & 3, cr);
3047         return 0;
3048 }
3049
3050 static int check_dr_alias(struct kvm_vcpu *vcpu)
3051 {
3052         if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
3053                 kvm_queue_exception(vcpu, UD_VECTOR);
3054                 return -1;
3055         }
3056         return 0;
3057 }
3058
3059 static int handle_dr(struct kvm_vcpu *vcpu)
3060 {
3061         unsigned long exit_qualification;
3062         unsigned long val;
3063         int dr, reg;
3064
3065         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3066         if (!kvm_require_cpl(vcpu, 0))
3067                 return 1;
3068         dr = vmcs_readl(GUEST_DR7);
3069         if (dr & DR7_GD) {
3070                 /*
3071                  * As the vm-exit takes precedence over the debug trap, we
3072                  * need to emulate the latter, either for the host or the
3073                  * guest debugging itself.
3074                  */
3075                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3076                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3077                         vcpu->run->debug.arch.dr7 = dr;
3078                         vcpu->run->debug.arch.pc =
3079                                 vmcs_readl(GUEST_CS_BASE) +
3080                                 vmcs_readl(GUEST_RIP);
3081                         vcpu->run->debug.arch.exception = DB_VECTOR;
3082                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3083                         return 0;
3084                 } else {
3085                         vcpu->arch.dr7 &= ~DR7_GD;
3086                         vcpu->arch.dr6 |= DR6_BD;
3087                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3088                         kvm_queue_exception(vcpu, DB_VECTOR);
3089                         return 1;
3090                 }
3091         }
3092
3093         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3094         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3095         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3096         if (exit_qualification & TYPE_MOV_FROM_DR) {
3097                 switch (dr) {
3098                 case 0 ... 3:
3099                         val = vcpu->arch.db[dr];
3100                         break;
3101                 case 4:
3102                         if (check_dr_alias(vcpu) < 0)
3103                                 return 1;
3104                         /* fall through */
3105                 case 6:
3106                         val = vcpu->arch.dr6;
3107                         break;
3108                 case 5:
3109                         if (check_dr_alias(vcpu) < 0)
3110                                 return 1;
3111                         /* fall through */
3112                 default: /* 7 */
3113                         val = vcpu->arch.dr7;
3114                         break;
3115                 }
3116                 kvm_register_write(vcpu, reg, val);
3117         } else {
3118                 val = vcpu->arch.regs[reg];
3119                 switch (dr) {
3120                 case 0 ... 3:
3121                         vcpu->arch.db[dr] = val;
3122                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
3123                                 vcpu->arch.eff_db[dr] = val;
3124                         break;
3125                 case 4:
3126                         if (check_dr_alias(vcpu) < 0)
3127                                 return 1;
3128                         /* fall through */
3129                 case 6:
3130                         if (val & 0xffffffff00000000ULL) {
3131                                 kvm_inject_gp(vcpu, 0);
3132                                 return 1;
3133                         }
3134                         vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3135                         break;
3136                 case 5:
3137                         if (check_dr_alias(vcpu) < 0)
3138                                 return 1;
3139                         /* fall through */
3140                 default: /* 7 */
3141                         if (val & 0xffffffff00000000ULL) {
3142                                 kvm_inject_gp(vcpu, 0);
3143                                 return 1;
3144                         }
3145                         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3146                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3147                                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3148                                 vcpu->arch.switch_db_regs =
3149                                         (val & DR7_BP_EN_MASK);
3150                         }
3151                         break;
3152                 }
3153         }
3154         skip_emulated_instruction(vcpu);
3155         return 1;
3156 }
3157
3158 static int handle_cpuid(struct kvm_vcpu *vcpu)
3159 {
3160         kvm_emulate_cpuid(vcpu);
3161         return 1;
3162 }
3163
3164 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3165 {
3166         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3167         u64 data;
3168
3169         if (vmx_get_msr(vcpu, ecx, &data)) {
3170                 trace_kvm_msr_read_ex(ecx);
3171                 kvm_inject_gp(vcpu, 0);
3172                 return 1;
3173         }
3174
3175         trace_kvm_msr_read(ecx, data);
3176
3177         /* FIXME: handling of bits 32:63 of rax, rdx */
3178         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3179         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3180         skip_emulated_instruction(vcpu);
3181         return 1;
3182 }
3183
3184 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3185 {
3186         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3187         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3188                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3189
3190         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3191                 trace_kvm_msr_write_ex(ecx, data);
3192                 kvm_inject_gp(vcpu, 0);
3193                 return 1;
3194         }
3195
3196         trace_kvm_msr_write(ecx, data);
3197         skip_emulated_instruction(vcpu);
3198         return 1;
3199 }
3200
3201 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3202 {
3203         return 1;
3204 }
3205
3206 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3207 {
3208         u32 cpu_based_vm_exec_control;
3209
3210         /* clear pending irq */
3211         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3212         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3213         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3214
3215         ++vcpu->stat.irq_window_exits;
3216
3217         /*
3218          * If the user space waits to inject interrupts, exit as soon as
3219          * possible
3220          */
3221         if (!irqchip_in_kernel(vcpu->kvm) &&
3222             vcpu->run->request_interrupt_window &&
3223             !kvm_cpu_has_interrupt(vcpu)) {
3224                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3225                 return 0;
3226         }
3227         return 1;
3228 }
3229
3230 static int handle_halt(struct kvm_vcpu *vcpu)
3231 {
3232         skip_emulated_instruction(vcpu);
3233         return kvm_emulate_halt(vcpu);
3234 }
3235
3236 static int handle_vmcall(struct kvm_vcpu *vcpu)
3237 {
3238         skip_emulated_instruction(vcpu);
3239         kvm_emulate_hypercall(vcpu);
3240         return 1;
3241 }
3242
3243 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3244 {
3245         kvm_queue_exception(vcpu, UD_VECTOR);
3246         return 1;
3247 }
3248
3249 static int handle_invlpg(struct kvm_vcpu *vcpu)
3250 {
3251         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3252
3253         kvm_mmu_invlpg(vcpu, exit_qualification);
3254         skip_emulated_instruction(vcpu);
3255         return 1;
3256 }
3257
3258 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3259 {
3260         skip_emulated_instruction(vcpu);
3261         /* TODO: Add support for VT-d/pass-through device */
3262         return 1;
3263 }
3264
3265 static int handle_apic_access(struct kvm_vcpu *vcpu)
3266 {
3267         unsigned long exit_qualification;
3268         enum emulation_result er;
3269         unsigned long offset;
3270
3271         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3272         offset = exit_qualification & 0xffful;
3273
3274         er = emulate_instruction(vcpu, 0, 0, 0);
3275
3276         if (er !=  EMULATE_DONE) {
3277                 printk(KERN_ERR
3278                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3279                        offset);
3280                 return -ENOEXEC;
3281         }
3282         return 1;
3283 }
3284
3285 static int handle_task_switch(struct kvm_vcpu *vcpu)
3286 {
3287         struct vcpu_vmx *vmx = to_vmx(vcpu);
3288         unsigned long exit_qualification;
3289         u16 tss_selector;
3290         int reason, type, idt_v;
3291
3292         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3293         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3294
3295         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3296
3297         reason = (u32)exit_qualification >> 30;
3298         if (reason == TASK_SWITCH_GATE && idt_v) {
3299                 switch (type) {
3300                 case INTR_TYPE_NMI_INTR:
3301                         vcpu->arch.nmi_injected = false;
3302                         if (cpu_has_virtual_nmis())
3303                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3304                                               GUEST_INTR_STATE_NMI);
3305                         break;
3306                 case INTR_TYPE_EXT_INTR:
3307                 case INTR_TYPE_SOFT_INTR:
3308                         kvm_clear_interrupt_queue(vcpu);
3309                         break;
3310                 case INTR_TYPE_HARD_EXCEPTION:
3311                 case INTR_TYPE_SOFT_EXCEPTION:
3312                         kvm_clear_exception_queue(vcpu);
3313                         break;
3314                 default:
3315                         break;
3316                 }
3317         }
3318         tss_selector = exit_qualification;
3319
3320         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3321                        type != INTR_TYPE_EXT_INTR &&
3322                        type != INTR_TYPE_NMI_INTR))
3323                 skip_emulated_instruction(vcpu);
3324
3325         if (!kvm_task_switch(vcpu, tss_selector, reason))
3326                 return 0;
3327
3328         /* clear all local breakpoint enable flags */
3329         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3330
3331         /*
3332          * TODO: What about debug traps on tss switch?
3333          *       Are we supposed to inject them and update dr6?
3334          */
3335
3336         return 1;
3337 }
3338
3339 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3340 {
3341         unsigned long exit_qualification;
3342         gpa_t gpa;
3343         int gla_validity;
3344
3345         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3346
3347         if (exit_qualification & (1 << 6)) {
3348                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3349                 return -EINVAL;
3350         }
3351
3352         gla_validity = (exit_qualification >> 7) & 0x3;
3353         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3354                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3355                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3356                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3357                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3358                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3359                         (long unsigned int)exit_qualification);
3360                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3361                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3362                 return 0;
3363         }
3364
3365         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3366         trace_kvm_page_fault(gpa, exit_qualification);
3367         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3368 }
3369
3370 static u64 ept_rsvd_mask(u64 spte, int level)
3371 {
3372         int i;
3373         u64 mask = 0;
3374
3375         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3376                 mask |= (1ULL << i);
3377
3378         if (level > 2)
3379                 /* bits 7:3 reserved */
3380                 mask |= 0xf8;
3381         else if (level == 2) {
3382                 if (spte & (1ULL << 7))
3383                         /* 2MB ref, bits 20:12 reserved */
3384                         mask |= 0x1ff000;
3385                 else
3386                         /* bits 6:3 reserved */
3387                         mask |= 0x78;
3388         }
3389
3390         return mask;
3391 }
3392
3393 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3394                                        int level)
3395 {
3396         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3397
3398         /* 010b (write-only) */
3399         WARN_ON((spte & 0x7) == 0x2);
3400
3401         /* 110b (write/execute) */
3402         WARN_ON((spte & 0x7) == 0x6);
3403
3404         /* 100b (execute-only) and value not supported by logical processor */
3405         if (!cpu_has_vmx_ept_execute_only())
3406                 WARN_ON((spte & 0x7) == 0x4);
3407
3408         /* not 000b */
3409         if ((spte & 0x7)) {
3410                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3411
3412                 if (rsvd_bits != 0) {
3413                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3414                                          __func__, rsvd_bits);
3415                         WARN_ON(1);
3416                 }
3417
3418                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3419                         u64 ept_mem_type = (spte & 0x38) >> 3;
3420
3421                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3422                             ept_mem_type == 7) {
3423                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3424                                                 __func__, ept_mem_type);
3425                                 WARN_ON(1);
3426                         }
3427                 }
3428         }
3429 }
3430
3431 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3432 {
3433         u64 sptes[4];
3434         int nr_sptes, i;
3435         gpa_t gpa;
3436
3437         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3438
3439         printk(KERN_ERR "EPT: Misconfiguration.\n");
3440         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3441
3442         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3443
3444         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3445                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3446
3447         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3448         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3449
3450         return 0;
3451 }
3452
3453 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3454 {
3455         u32 cpu_based_vm_exec_control;
3456
3457         /* clear pending NMI */
3458         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3459         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3460         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3461         ++vcpu->stat.nmi_window_exits;
3462
3463         return 1;
3464 }
3465
3466 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3467 {
3468         struct vcpu_vmx *vmx = to_vmx(vcpu);
3469         enum emulation_result err = EMULATE_DONE;
3470         int ret = 1;
3471
3472         while (!guest_state_valid(vcpu)) {
3473                 err = emulate_instruction(vcpu, 0, 0, 0);
3474
3475                 if (err == EMULATE_DO_MMIO) {
3476                         ret = 0;
3477                         goto out;
3478                 }
3479
3480                 if (err != EMULATE_DONE) {
3481                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3482                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3483                         vcpu->run->internal.ndata = 0;
3484                         ret = 0;
3485                         goto out;
3486                 }
3487
3488                 if (signal_pending(current))
3489                         goto out;
3490                 if (need_resched())
3491                         schedule();
3492         }
3493
3494         vmx->emulation_required = 0;
3495 out:
3496         return ret;
3497 }
3498
3499 /*
3500  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3501  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3502  */
3503 static int handle_pause(struct kvm_vcpu *vcpu)
3504 {
3505         skip_emulated_instruction(vcpu);
3506         kvm_vcpu_on_spin(vcpu);
3507
3508         return 1;
3509 }
3510
3511 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3512 {
3513         kvm_queue_exception(vcpu, UD_VECTOR);
3514         return 1;
3515 }
3516
3517 /*
3518  * The exit handlers return 1 if the exit was handled fully and guest execution
3519  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3520  * to be done to userspace and return 0.
3521  */
3522 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3523         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3524         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3525         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3526         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3527         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3528         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3529         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3530         [EXIT_REASON_CPUID]                   = handle_cpuid,
3531         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3532         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3533         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3534         [EXIT_REASON_HLT]                     = handle_halt,
3535         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3536         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3537         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3538         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3539         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3540         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3541         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3542         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3543         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3544         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3545         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3546         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3547         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3548         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3549         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3550         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3551         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3552         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3553         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3554         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3555         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3556 };
3557
3558 static const int kvm_vmx_max_exit_handlers =
3559         ARRAY_SIZE(kvm_vmx_exit_handlers);
3560
3561 /*
3562  * The guest has exited.  See if we can fix it or if we need userspace
3563  * assistance.
3564  */
3565 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3566 {
3567         struct vcpu_vmx *vmx = to_vmx(vcpu);
3568         u32 exit_reason = vmx->exit_reason;
3569         u32 vectoring_info = vmx->idt_vectoring_info;
3570
3571         trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3572
3573         /* If guest state is invalid, start emulating */
3574         if (vmx->emulation_required && emulate_invalid_guest_state)
3575                 return handle_invalid_guest_state(vcpu);
3576
3577         /* Access CR3 don't cause VMExit in paging mode, so we need
3578          * to sync with guest real CR3. */
3579         if (enable_ept && is_paging(vcpu))
3580                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3581
3582         if (unlikely(vmx->fail)) {
3583                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3584                 vcpu->run->fail_entry.hardware_entry_failure_reason
3585                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3586                 return 0;
3587         }
3588
3589         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3590                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3591                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3592                         exit_reason != EXIT_REASON_TASK_SWITCH))
3593                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3594                        "(0x%x) and exit reason is 0x%x\n",
3595                        __func__, vectoring_info, exit_reason);
3596
3597         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3598                 if (vmx_interrupt_allowed(vcpu)) {
3599                         vmx->soft_vnmi_blocked = 0;
3600                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3601                            vcpu->arch.nmi_pending) {
3602                         /*
3603                          * This CPU don't support us in finding the end of an
3604                          * NMI-blocked window if the guest runs with IRQs
3605                          * disabled. So we pull the trigger after 1 s of
3606                          * futile waiting, but inform the user about this.
3607                          */
3608                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3609                                "state on VCPU %d after 1 s timeout\n",
3610                                __func__, vcpu->vcpu_id);
3611                         vmx->soft_vnmi_blocked = 0;
3612                 }
3613         }
3614
3615         if (exit_reason < kvm_vmx_max_exit_handlers
3616             && kvm_vmx_exit_handlers[exit_reason])
3617                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3618         else {
3619                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3620                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3621         }
3622         return 0;
3623 }
3624
3625 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3626 {
3627         if (irr == -1 || tpr < irr) {
3628                 vmcs_write32(TPR_THRESHOLD, 0);
3629                 return;
3630         }
3631
3632         vmcs_write32(TPR_THRESHOLD, irr);
3633 }
3634
3635 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3636 {
3637         u32 exit_intr_info;
3638         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3639         bool unblock_nmi;
3640         u8 vector;
3641         int type;
3642         bool idtv_info_valid;
3643
3644         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3645
3646         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3647
3648         /* Handle machine checks before interrupts are enabled */
3649         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3650             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3651                 && is_machine_check(exit_intr_info)))
3652                 kvm_machine_check();
3653
3654         /* We need to handle NMIs before interrupts are enabled */
3655         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3656             (exit_intr_info & INTR_INFO_VALID_MASK))
3657                 asm("int $2");
3658
3659         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3660
3661         if (cpu_has_virtual_nmis()) {
3662                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3663                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3664                 /*
3665                  * SDM 3: 27.7.1.2 (September 2008)
3666                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3667                  * a guest IRET fault.
3668                  * SDM 3: 23.2.2 (September 2008)
3669                  * Bit 12 is undefined in any of the following cases:
3670                  *  If the VM exit sets the valid bit in the IDT-vectoring
3671                  *   information field.
3672                  *  If the VM exit is due to a double fault.
3673                  */
3674                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3675                     vector != DF_VECTOR && !idtv_info_valid)
3676                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3677                                       GUEST_INTR_STATE_NMI);
3678         } else if (unlikely(vmx->soft_vnmi_blocked))
3679                 vmx->vnmi_blocked_time +=
3680                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3681
3682         vmx->vcpu.arch.nmi_injected = false;
3683         kvm_clear_exception_queue(&vmx->vcpu);
3684         kvm_clear_interrupt_queue(&vmx->vcpu);
3685
3686         if (!idtv_info_valid)
3687                 return;
3688
3689         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3690         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3691
3692         switch (type) {
3693         case INTR_TYPE_NMI_INTR:
3694                 vmx->vcpu.arch.nmi_injected = true;
3695                 /*
3696                  * SDM 3: 27.7.1.2 (September 2008)
3697                  * Clear bit "block by NMI" before VM entry if a NMI
3698                  * delivery faulted.
3699                  */
3700                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3701                                 GUEST_INTR_STATE_NMI);
3702                 break;
3703         case INTR_TYPE_SOFT_EXCEPTION:
3704                 vmx->vcpu.arch.event_exit_inst_len =
3705                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3706                 /* fall through */
3707         case INTR_TYPE_HARD_EXCEPTION:
3708                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3709                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3710                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3711                 } else
3712                         kvm_queue_exception(&vmx->vcpu, vector);
3713                 break;
3714         case INTR_TYPE_SOFT_INTR:
3715                 vmx->vcpu.arch.event_exit_inst_len =
3716                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3717                 /* fall through */
3718         case INTR_TYPE_EXT_INTR:
3719                 kvm_queue_interrupt(&vmx->vcpu, vector,
3720                         type == INTR_TYPE_SOFT_INTR);
3721                 break;
3722         default:
3723                 break;
3724         }
3725 }
3726
3727 /*
3728  * Failure to inject an interrupt should give us the information
3729  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3730  * when fetching the interrupt redirection bitmap in the real-mode
3731  * tss, this doesn't happen.  So we do it ourselves.
3732  */
3733 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3734 {
3735         vmx->rmode.irq.pending = 0;
3736         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3737                 return;
3738         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3739         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3740                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3741                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3742                 return;
3743         }
3744         vmx->idt_vectoring_info =
3745                 VECTORING_INFO_VALID_MASK
3746                 | INTR_TYPE_EXT_INTR
3747                 | vmx->rmode.irq.vector;
3748 }
3749
3750 #ifdef CONFIG_X86_64
3751 #define R "r"
3752 #define Q "q"
3753 #else
3754 #define R "e"
3755 #define Q "l"
3756 #endif
3757
3758 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3759 {
3760         struct vcpu_vmx *vmx = to_vmx(vcpu);
3761
3762         /* Record the guest's net vcpu time for enforced NMI injections. */
3763         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3764                 vmx->entry_time = ktime_get();
3765
3766         /* Don't enter VMX if guest state is invalid, let the exit handler
3767            start emulation until we arrive back to a valid state */
3768         if (vmx->emulation_required && emulate_invalid_guest_state)
3769                 return;
3770
3771         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3772                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3773         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3774                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3775
3776         /* When single-stepping over STI and MOV SS, we must clear the
3777          * corresponding interruptibility bits in the guest state. Otherwise
3778          * vmentry fails as it then expects bit 14 (BS) in pending debug
3779          * exceptions being set, but that's not correct for the guest debugging
3780          * case. */
3781         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3782                 vmx_set_interrupt_shadow(vcpu, 0);
3783
3784         /*
3785          * Loading guest fpu may have cleared host cr0.ts
3786          */
3787         vmcs_writel(HOST_CR0, read_cr0());
3788
3789         asm(
3790                 /* Store host registers */
3791                 "push %%"R"dx; push %%"R"bp;"
3792                 "push %%"R"cx \n\t"
3793                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3794                 "je 1f \n\t"
3795                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3796                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3797                 "1: \n\t"
3798                 /* Reload cr2 if changed */
3799                 "mov %c[cr2](%0), %%"R"ax \n\t"
3800                 "mov %%cr2, %%"R"dx \n\t"
3801                 "cmp %%"R"ax, %%"R"dx \n\t"
3802                 "je 2f \n\t"
3803                 "mov %%"R"ax, %%cr2 \n\t"
3804                 "2: \n\t"
3805                 /* Check if vmlaunch of vmresume is needed */
3806                 "cmpl $0, %c[launched](%0) \n\t"
3807                 /* Load guest registers.  Don't clobber flags. */
3808                 "mov %c[rax](%0), %%"R"ax \n\t"
3809                 "mov %c[rbx](%0), %%"R"bx \n\t"
3810                 "mov %c[rdx](%0), %%"R"dx \n\t"
3811                 "mov %c[rsi](%0), %%"R"si \n\t"
3812                 "mov %c[rdi](%0), %%"R"di \n\t"
3813                 "mov %c[rbp](%0), %%"R"bp \n\t"
3814 #ifdef CONFIG_X86_64
3815                 "mov %c[r8](%0),  %%r8  \n\t"
3816                 "mov %c[r9](%0),  %%r9  \n\t"
3817                 "mov %c[r10](%0), %%r10 \n\t"
3818                 "mov %c[r11](%0), %%r11 \n\t"
3819                 "mov %c[r12](%0), %%r12 \n\t"
3820                 "mov %c[r13](%0), %%r13 \n\t"
3821                 "mov %c[r14](%0), %%r14 \n\t"
3822                 "mov %c[r15](%0), %%r15 \n\t"
3823 #endif
3824                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3825
3826                 /* Enter guest mode */
3827                 "jne .Llaunched \n\t"
3828                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3829                 "jmp .Lkvm_vmx_return \n\t"
3830                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3831                 ".Lkvm_vmx_return: "
3832                 /* Save guest registers, load host registers, keep flags */
3833                 "xchg %0,     (%%"R"sp) \n\t"
3834                 "mov %%"R"ax, %c[rax](%0) \n\t"
3835                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3836                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3837                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3838                 "mov %%"R"si, %c[rsi](%0) \n\t"
3839                 "mov %%"R"di, %c[rdi](%0) \n\t"
3840                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3841 #ifdef CONFIG_X86_64
3842                 "mov %%r8,  %c[r8](%0) \n\t"
3843                 "mov %%r9,  %c[r9](%0) \n\t"
3844                 "mov %%r10, %c[r10](%0) \n\t"
3845                 "mov %%r11, %c[r11](%0) \n\t"
3846                 "mov %%r12, %c[r12](%0) \n\t"
3847                 "mov %%r13, %c[r13](%0) \n\t"
3848                 "mov %%r14, %c[r14](%0) \n\t"
3849                 "mov %%r15, %c[r15](%0) \n\t"
3850 #endif
3851                 "mov %%cr2, %%"R"ax   \n\t"
3852                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3853
3854                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3855                 "setbe %c[fail](%0) \n\t"
3856               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3857                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3858                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3859                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3860                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3861                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3862                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3863                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3864                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3865                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3866                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3867 #ifdef CONFIG_X86_64
3868                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3869                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3870                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3871                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3872                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3873                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3874                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3875                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3876 #endif
3877                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3878               : "cc", "memory"
3879                 , R"bx", R"di", R"si"
3880 #ifdef CONFIG_X86_64
3881                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3882 #endif
3883               );
3884
3885         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3886                                   | (1 << VCPU_EXREG_PDPTR));
3887         vcpu->arch.regs_dirty = 0;
3888
3889         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3890         if (vmx->rmode.irq.pending)
3891                 fixup_rmode_irq(vmx);
3892
3893         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3894         vmx->launched = 1;
3895
3896         vmx_complete_interrupts(vmx);
3897 }
3898
3899 #undef R
3900 #undef Q
3901
3902 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3903 {
3904         struct vcpu_vmx *vmx = to_vmx(vcpu);
3905
3906         if (vmx->vmcs) {
3907                 vcpu_clear(vmx);
3908                 free_vmcs(vmx->vmcs);
3909                 vmx->vmcs = NULL;
3910         }
3911 }
3912
3913 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3914 {
3915         struct vcpu_vmx *vmx = to_vmx(vcpu);
3916
3917         spin_lock(&vmx_vpid_lock);
3918         if (vmx->vpid != 0)
3919                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3920         spin_unlock(&vmx_vpid_lock);
3921         vmx_free_vmcs(vcpu);
3922         kfree(vmx->guest_msrs);
3923         kvm_vcpu_uninit(vcpu);
3924         kmem_cache_free(kvm_vcpu_cache, vmx);
3925 }
3926
3927 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3928 {
3929         int err;
3930         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3931         int cpu;
3932
3933         if (!vmx)
3934                 return ERR_PTR(-ENOMEM);
3935
3936         allocate_vpid(vmx);
3937
3938         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3939         if (err)
3940                 goto free_vcpu;
3941
3942         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3943         if (!vmx->guest_msrs) {
3944                 err = -ENOMEM;
3945                 goto uninit_vcpu;
3946         }
3947
3948         vmx->vmcs = alloc_vmcs();
3949         if (!vmx->vmcs)
3950                 goto free_msrs;
3951
3952         vmcs_clear(vmx->vmcs);
3953
3954         cpu = get_cpu();
3955         vmx_vcpu_load(&vmx->vcpu, cpu);
3956         err = vmx_vcpu_setup(vmx);
3957         vmx_vcpu_put(&vmx->vcpu);
3958         put_cpu();
3959         if (err)
3960                 goto free_vmcs;
3961         if (vm_need_virtualize_apic_accesses(kvm))
3962                 if (alloc_apic_access_page(kvm) != 0)
3963                         goto free_vmcs;
3964
3965         if (enable_ept) {
3966                 if (!kvm->arch.ept_identity_map_addr)
3967                         kvm->arch.ept_identity_map_addr =
3968                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3969                 if (alloc_identity_pagetable(kvm) != 0)
3970                         goto free_vmcs;
3971         }
3972
3973         return &vmx->vcpu;
3974
3975 free_vmcs:
3976         free_vmcs(vmx->vmcs);
3977 free_msrs:
3978         kfree(vmx->guest_msrs);
3979 uninit_vcpu:
3980         kvm_vcpu_uninit(&vmx->vcpu);
3981 free_vcpu:
3982         kmem_cache_free(kvm_vcpu_cache, vmx);
3983         return ERR_PTR(err);
3984 }
3985
3986 static void __init vmx_check_processor_compat(void *rtn)
3987 {
3988         struct vmcs_config vmcs_conf;
3989
3990         *(int *)rtn = 0;
3991         if (setup_vmcs_config(&vmcs_conf) < 0)
3992                 *(int *)rtn = -EIO;
3993         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3994                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3995                                 smp_processor_id());
3996                 *(int *)rtn = -EIO;
3997         }
3998 }
3999
4000 static int get_ept_level(void)
4001 {
4002         return VMX_EPT_DEFAULT_GAW + 1;
4003 }
4004
4005 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4006 {
4007         u64 ret;
4008
4009         /* For VT-d and EPT combination
4010          * 1. MMIO: always map as UC
4011          * 2. EPT with VT-d:
4012          *   a. VT-d without snooping control feature: can't guarantee the
4013          *      result, try to trust guest.
4014          *   b. VT-d with snooping control feature: snooping control feature of
4015          *      VT-d engine can guarantee the cache correctness. Just set it
4016          *      to WB to keep consistent with host. So the same as item 3.
4017          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4018          *    consistent with host MTRR
4019          */
4020         if (is_mmio)
4021                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4022         else if (vcpu->kvm->arch.iommu_domain &&
4023                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4024                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4025                       VMX_EPT_MT_EPTE_SHIFT;
4026         else
4027                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4028                         | VMX_EPT_IPAT_BIT;
4029
4030         return ret;
4031 }
4032
4033 #define _ER(x) { EXIT_REASON_##x, #x }
4034
4035 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4036         _ER(EXCEPTION_NMI),
4037         _ER(EXTERNAL_INTERRUPT),
4038         _ER(TRIPLE_FAULT),
4039         _ER(PENDING_INTERRUPT),
4040         _ER(NMI_WINDOW),
4041         _ER(TASK_SWITCH),
4042         _ER(CPUID),
4043         _ER(HLT),
4044         _ER(INVLPG),
4045         _ER(RDPMC),
4046         _ER(RDTSC),
4047         _ER(VMCALL),
4048         _ER(VMCLEAR),
4049         _ER(VMLAUNCH),
4050         _ER(VMPTRLD),
4051         _ER(VMPTRST),
4052         _ER(VMREAD),
4053         _ER(VMRESUME),
4054         _ER(VMWRITE),
4055         _ER(VMOFF),
4056         _ER(VMON),
4057         _ER(CR_ACCESS),
4058         _ER(DR_ACCESS),
4059         _ER(IO_INSTRUCTION),
4060         _ER(MSR_READ),
4061         _ER(MSR_WRITE),
4062         _ER(MWAIT_INSTRUCTION),
4063         _ER(MONITOR_INSTRUCTION),
4064         _ER(PAUSE_INSTRUCTION),
4065         _ER(MCE_DURING_VMENTRY),
4066         _ER(TPR_BELOW_THRESHOLD),
4067         _ER(APIC_ACCESS),
4068         _ER(EPT_VIOLATION),
4069         _ER(EPT_MISCONFIG),
4070         _ER(WBINVD),
4071         { -1, NULL }
4072 };
4073
4074 #undef _ER
4075
4076 static int vmx_get_lpage_level(void)
4077 {
4078         if (enable_ept && !cpu_has_vmx_ept_1g_page())
4079                 return PT_DIRECTORY_LEVEL;
4080         else
4081                 /* For shadow and EPT supported 1GB page */
4082                 return PT_PDPE_LEVEL;
4083 }
4084
4085 static inline u32 bit(int bitno)
4086 {
4087         return 1 << (bitno & 31);
4088 }
4089
4090 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4091 {
4092         struct kvm_cpuid_entry2 *best;
4093         struct vcpu_vmx *vmx = to_vmx(vcpu);
4094         u32 exec_control;
4095
4096         vmx->rdtscp_enabled = false;
4097         if (vmx_rdtscp_supported()) {
4098                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4099                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4100                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4101                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4102                                 vmx->rdtscp_enabled = true;
4103                         else {
4104                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4105                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4106                                                 exec_control);
4107                         }
4108                 }
4109         }
4110 }
4111
4112 static struct kvm_x86_ops vmx_x86_ops = {
4113         .cpu_has_kvm_support = cpu_has_kvm_support,
4114         .disabled_by_bios = vmx_disabled_by_bios,
4115         .hardware_setup = hardware_setup,
4116         .hardware_unsetup = hardware_unsetup,
4117         .check_processor_compatibility = vmx_check_processor_compat,
4118         .hardware_enable = hardware_enable,
4119         .hardware_disable = hardware_disable,
4120         .cpu_has_accelerated_tpr = report_flexpriority,
4121
4122         .vcpu_create = vmx_create_vcpu,
4123         .vcpu_free = vmx_free_vcpu,
4124         .vcpu_reset = vmx_vcpu_reset,
4125
4126         .prepare_guest_switch = vmx_save_host_state,
4127         .vcpu_load = vmx_vcpu_load,
4128         .vcpu_put = vmx_vcpu_put,
4129
4130         .set_guest_debug = set_guest_debug,
4131         .get_msr = vmx_get_msr,
4132         .set_msr = vmx_set_msr,
4133         .get_segment_base = vmx_get_segment_base,
4134         .get_segment = vmx_get_segment,
4135         .set_segment = vmx_set_segment,
4136         .get_cpl = vmx_get_cpl,
4137         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4138         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4139         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4140         .set_cr0 = vmx_set_cr0,
4141         .set_cr3 = vmx_set_cr3,
4142         .set_cr4 = vmx_set_cr4,
4143         .set_efer = vmx_set_efer,
4144         .get_idt = vmx_get_idt,
4145         .set_idt = vmx_set_idt,
4146         .get_gdt = vmx_get_gdt,
4147         .set_gdt = vmx_set_gdt,
4148         .cache_reg = vmx_cache_reg,
4149         .get_rflags = vmx_get_rflags,
4150         .set_rflags = vmx_set_rflags,
4151         .fpu_activate = vmx_fpu_activate,
4152         .fpu_deactivate = vmx_fpu_deactivate,
4153
4154         .tlb_flush = vmx_flush_tlb,
4155
4156         .run = vmx_vcpu_run,
4157         .handle_exit = vmx_handle_exit,
4158         .skip_emulated_instruction = skip_emulated_instruction,
4159         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4160         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4161         .patch_hypercall = vmx_patch_hypercall,
4162         .set_irq = vmx_inject_irq,
4163         .set_nmi = vmx_inject_nmi,
4164         .queue_exception = vmx_queue_exception,
4165         .interrupt_allowed = vmx_interrupt_allowed,
4166         .nmi_allowed = vmx_nmi_allowed,
4167         .get_nmi_mask = vmx_get_nmi_mask,
4168         .set_nmi_mask = vmx_set_nmi_mask,
4169         .enable_nmi_window = enable_nmi_window,
4170         .enable_irq_window = enable_irq_window,
4171         .update_cr8_intercept = update_cr8_intercept,
4172
4173         .set_tss_addr = vmx_set_tss_addr,
4174         .get_tdp_level = get_ept_level,
4175         .get_mt_mask = vmx_get_mt_mask,
4176
4177         .exit_reasons_str = vmx_exit_reasons_str,
4178         .get_lpage_level = vmx_get_lpage_level,
4179
4180         .cpuid_update = vmx_cpuid_update,
4181
4182         .rdtscp_supported = vmx_rdtscp_supported,
4183 };
4184
4185 static int __init vmx_init(void)
4186 {
4187         int r, i;
4188
4189         rdmsrl_safe(MSR_EFER, &host_efer);
4190
4191         for (i = 0; i < NR_VMX_MSR; ++i)
4192                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4193
4194         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4195         if (!vmx_io_bitmap_a)
4196                 return -ENOMEM;
4197
4198         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4199         if (!vmx_io_bitmap_b) {
4200                 r = -ENOMEM;
4201                 goto out;
4202         }
4203
4204         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4205         if (!vmx_msr_bitmap_legacy) {
4206                 r = -ENOMEM;
4207                 goto out1;
4208         }
4209
4210         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4211         if (!vmx_msr_bitmap_longmode) {
4212                 r = -ENOMEM;
4213                 goto out2;
4214         }
4215
4216         /*
4217          * Allow direct access to the PC debug port (it is often used for I/O
4218          * delays, but the vmexits simply slow things down).
4219          */
4220         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4221         clear_bit(0x80, vmx_io_bitmap_a);
4222
4223         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4224
4225         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4226         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4227
4228         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4229
4230         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4231         if (r)
4232                 goto out3;
4233
4234         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4235         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4236         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4237         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4238         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4239         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4240
4241         if (enable_ept) {
4242                 bypass_guest_pf = 0;
4243                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4244                         VMX_EPT_WRITABLE_MASK);
4245                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4246                                 VMX_EPT_EXECUTABLE_MASK);
4247                 kvm_enable_tdp();
4248         } else
4249                 kvm_disable_tdp();
4250
4251         if (bypass_guest_pf)
4252                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4253
4254         return 0;
4255
4256 out3:
4257         free_page((unsigned long)vmx_msr_bitmap_longmode);
4258 out2:
4259         free_page((unsigned long)vmx_msr_bitmap_legacy);
4260 out1:
4261         free_page((unsigned long)vmx_io_bitmap_b);
4262 out:
4263         free_page((unsigned long)vmx_io_bitmap_a);
4264         return r;
4265 }
4266
4267 static void __exit vmx_exit(void)
4268 {
4269         free_page((unsigned long)vmx_msr_bitmap_legacy);
4270         free_page((unsigned long)vmx_msr_bitmap_longmode);
4271         free_page((unsigned long)vmx_io_bitmap_b);
4272         free_page((unsigned long)vmx_io_bitmap_a);
4273
4274         kvm_exit();
4275 }
4276
4277 module_init(vmx_init)
4278 module_exit(vmx_exit)