KVM: nVMX: Decoding memory operands of VMX instructions
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 #define __ex_clear(x, reg) \
47         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
48
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51
52 static int __read_mostly bypass_guest_pf = 1;
53 module_param(bypass_guest_pf, bool, S_IRUGO);
54
55 static int __read_mostly enable_vpid = 1;
56 module_param_named(vpid, enable_vpid, bool, 0444);
57
58 static int __read_mostly flexpriority_enabled = 1;
59 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
60
61 static int __read_mostly enable_ept = 1;
62 module_param_named(ept, enable_ept, bool, S_IRUGO);
63
64 static int __read_mostly enable_unrestricted_guest = 1;
65 module_param_named(unrestricted_guest,
66                         enable_unrestricted_guest, bool, S_IRUGO);
67
68 static int __read_mostly emulate_invalid_guest_state = 0;
69 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
70
71 static int __read_mostly vmm_exclusive = 1;
72 module_param(vmm_exclusive, bool, S_IRUGO);
73
74 static int __read_mostly yield_on_hlt = 1;
75 module_param(yield_on_hlt, bool, S_IRUGO);
76
77 /*
78  * If nested=1, nested virtualization is supported, i.e., guests may use
79  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
80  * use VMX instructions.
81  */
82 static int __read_mostly nested = 0;
83 module_param(nested, bool, S_IRUGO);
84
85 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
86         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
87 #define KVM_GUEST_CR0_MASK                                              \
88         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
89 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
90         (X86_CR0_WP | X86_CR0_NE)
91 #define KVM_VM_CR0_ALWAYS_ON                                            \
92         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
93 #define KVM_CR4_GUEST_OWNED_BITS                                      \
94         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
95          | X86_CR4_OSXMMEXCPT)
96
97 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
98 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
99
100 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
101
102 /*
103  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
104  * ple_gap:    upper bound on the amount of time between two successive
105  *             executions of PAUSE in a loop. Also indicate if ple enabled.
106  *             According to test, this time is usually smaller than 128 cycles.
107  * ple_window: upper bound on the amount of time a guest is allowed to execute
108  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
109  *             less than 2^12 cycles
110  * Time is measured based on a counter that runs at the same rate as the TSC,
111  * refer SDM volume 3b section 21.6.13 & 22.1.3.
112  */
113 #define KVM_VMX_DEFAULT_PLE_GAP    128
114 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
115 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
116 module_param(ple_gap, int, S_IRUGO);
117
118 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
119 module_param(ple_window, int, S_IRUGO);
120
121 #define NR_AUTOLOAD_MSRS 1
122
123 struct vmcs {
124         u32 revision_id;
125         u32 abort;
126         char data[0];
127 };
128
129 /*
130  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
131  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
132  * loaded on this CPU (so we can clear them if the CPU goes down).
133  */
134 struct loaded_vmcs {
135         struct vmcs *vmcs;
136         int cpu;
137         int launched;
138         struct list_head loaded_vmcss_on_cpu_link;
139 };
140
141 struct shared_msr_entry {
142         unsigned index;
143         u64 data;
144         u64 mask;
145 };
146
147 /*
148  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
149  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
150  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
151  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
152  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
153  * More than one of these structures may exist, if L1 runs multiple L2 guests.
154  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
155  * underlying hardware which will be used to run L2.
156  * This structure is packed to ensure that its layout is identical across
157  * machines (necessary for live migration).
158  * If there are changes in this struct, VMCS12_REVISION must be changed.
159  */
160 struct __packed vmcs12 {
161         /* According to the Intel spec, a VMCS region must start with the
162          * following two fields. Then follow implementation-specific data.
163          */
164         u32 revision_id;
165         u32 abort;
166 };
167
168 /*
169  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
170  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
171  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
172  */
173 #define VMCS12_REVISION 0x11e57ed0
174
175 /*
176  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
177  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
178  * current implementation, 4K are reserved to avoid future complications.
179  */
180 #define VMCS12_SIZE 0x1000
181
182 /*
183  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
184  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
185  */
186 struct nested_vmx {
187         /* Has the level1 guest done vmxon? */
188         bool vmxon;
189
190         /* The guest-physical address of the current VMCS L1 keeps for L2 */
191         gpa_t current_vmptr;
192         /* The host-usable pointer to the above */
193         struct page *current_vmcs12_page;
194         struct vmcs12 *current_vmcs12;
195 };
196
197 struct vcpu_vmx {
198         struct kvm_vcpu       vcpu;
199         unsigned long         host_rsp;
200         u8                    fail;
201         u8                    cpl;
202         bool                  nmi_known_unmasked;
203         u32                   exit_intr_info;
204         u32                   idt_vectoring_info;
205         ulong                 rflags;
206         struct shared_msr_entry *guest_msrs;
207         int                   nmsrs;
208         int                   save_nmsrs;
209 #ifdef CONFIG_X86_64
210         u64                   msr_host_kernel_gs_base;
211         u64                   msr_guest_kernel_gs_base;
212 #endif
213         /*
214          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
215          * non-nested (L1) guest, it always points to vmcs01. For a nested
216          * guest (L2), it points to a different VMCS.
217          */
218         struct loaded_vmcs    vmcs01;
219         struct loaded_vmcs   *loaded_vmcs;
220         bool                  __launched; /* temporary, used in vmx_vcpu_run */
221         struct msr_autoload {
222                 unsigned nr;
223                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
224                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
225         } msr_autoload;
226         struct {
227                 int           loaded;
228                 u16           fs_sel, gs_sel, ldt_sel;
229                 int           gs_ldt_reload_needed;
230                 int           fs_reload_needed;
231         } host_state;
232         struct {
233                 int vm86_active;
234                 ulong save_rflags;
235                 struct kvm_save_segment {
236                         u16 selector;
237                         unsigned long base;
238                         u32 limit;
239                         u32 ar;
240                 } tr, es, ds, fs, gs;
241         } rmode;
242         struct {
243                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
244                 struct kvm_save_segment seg[8];
245         } segment_cache;
246         int vpid;
247         bool emulation_required;
248
249         /* Support for vnmi-less CPUs */
250         int soft_vnmi_blocked;
251         ktime_t entry_time;
252         s64 vnmi_blocked_time;
253         u32 exit_reason;
254
255         bool rdtscp_enabled;
256
257         /* Support for a guest hypervisor (nested VMX) */
258         struct nested_vmx nested;
259 };
260
261 enum segment_cache_field {
262         SEG_FIELD_SEL = 0,
263         SEG_FIELD_BASE = 1,
264         SEG_FIELD_LIMIT = 2,
265         SEG_FIELD_AR = 3,
266
267         SEG_FIELD_NR = 4
268 };
269
270 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
271 {
272         return container_of(vcpu, struct vcpu_vmx, vcpu);
273 }
274
275 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
276 {
277         return to_vmx(vcpu)->nested.current_vmcs12;
278 }
279
280 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
281 {
282         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
283         if (is_error_page(page)) {
284                 kvm_release_page_clean(page);
285                 return NULL;
286         }
287         return page;
288 }
289
290 static void nested_release_page(struct page *page)
291 {
292         kvm_release_page_dirty(page);
293 }
294
295 static void nested_release_page_clean(struct page *page)
296 {
297         kvm_release_page_clean(page);
298 }
299
300 static u64 construct_eptp(unsigned long root_hpa);
301 static void kvm_cpu_vmxon(u64 addr);
302 static void kvm_cpu_vmxoff(void);
303 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
304 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
305
306 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
307 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
308 /*
309  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
310  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
311  */
312 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
313 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
314
315 static unsigned long *vmx_io_bitmap_a;
316 static unsigned long *vmx_io_bitmap_b;
317 static unsigned long *vmx_msr_bitmap_legacy;
318 static unsigned long *vmx_msr_bitmap_longmode;
319
320 static bool cpu_has_load_ia32_efer;
321
322 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
323 static DEFINE_SPINLOCK(vmx_vpid_lock);
324
325 static struct vmcs_config {
326         int size;
327         int order;
328         u32 revision_id;
329         u32 pin_based_exec_ctrl;
330         u32 cpu_based_exec_ctrl;
331         u32 cpu_based_2nd_exec_ctrl;
332         u32 vmexit_ctrl;
333         u32 vmentry_ctrl;
334 } vmcs_config;
335
336 static struct vmx_capability {
337         u32 ept;
338         u32 vpid;
339 } vmx_capability;
340
341 #define VMX_SEGMENT_FIELD(seg)                                  \
342         [VCPU_SREG_##seg] = {                                   \
343                 .selector = GUEST_##seg##_SELECTOR,             \
344                 .base = GUEST_##seg##_BASE,                     \
345                 .limit = GUEST_##seg##_LIMIT,                   \
346                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
347         }
348
349 static struct kvm_vmx_segment_field {
350         unsigned selector;
351         unsigned base;
352         unsigned limit;
353         unsigned ar_bytes;
354 } kvm_vmx_segment_fields[] = {
355         VMX_SEGMENT_FIELD(CS),
356         VMX_SEGMENT_FIELD(DS),
357         VMX_SEGMENT_FIELD(ES),
358         VMX_SEGMENT_FIELD(FS),
359         VMX_SEGMENT_FIELD(GS),
360         VMX_SEGMENT_FIELD(SS),
361         VMX_SEGMENT_FIELD(TR),
362         VMX_SEGMENT_FIELD(LDTR),
363 };
364
365 static u64 host_efer;
366
367 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
368
369 /*
370  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
371  * away by decrementing the array size.
372  */
373 static const u32 vmx_msr_index[] = {
374 #ifdef CONFIG_X86_64
375         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
376 #endif
377         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
378 };
379 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
380
381 static inline bool is_page_fault(u32 intr_info)
382 {
383         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
384                              INTR_INFO_VALID_MASK)) ==
385                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
386 }
387
388 static inline bool is_no_device(u32 intr_info)
389 {
390         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
391                              INTR_INFO_VALID_MASK)) ==
392                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
393 }
394
395 static inline bool is_invalid_opcode(u32 intr_info)
396 {
397         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
398                              INTR_INFO_VALID_MASK)) ==
399                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
400 }
401
402 static inline bool is_external_interrupt(u32 intr_info)
403 {
404         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
405                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
406 }
407
408 static inline bool is_machine_check(u32 intr_info)
409 {
410         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
411                              INTR_INFO_VALID_MASK)) ==
412                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
413 }
414
415 static inline bool cpu_has_vmx_msr_bitmap(void)
416 {
417         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
418 }
419
420 static inline bool cpu_has_vmx_tpr_shadow(void)
421 {
422         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
423 }
424
425 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
426 {
427         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
428 }
429
430 static inline bool cpu_has_secondary_exec_ctrls(void)
431 {
432         return vmcs_config.cpu_based_exec_ctrl &
433                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
434 }
435
436 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
437 {
438         return vmcs_config.cpu_based_2nd_exec_ctrl &
439                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
440 }
441
442 static inline bool cpu_has_vmx_flexpriority(void)
443 {
444         return cpu_has_vmx_tpr_shadow() &&
445                 cpu_has_vmx_virtualize_apic_accesses();
446 }
447
448 static inline bool cpu_has_vmx_ept_execute_only(void)
449 {
450         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
451 }
452
453 static inline bool cpu_has_vmx_eptp_uncacheable(void)
454 {
455         return vmx_capability.ept & VMX_EPTP_UC_BIT;
456 }
457
458 static inline bool cpu_has_vmx_eptp_writeback(void)
459 {
460         return vmx_capability.ept & VMX_EPTP_WB_BIT;
461 }
462
463 static inline bool cpu_has_vmx_ept_2m_page(void)
464 {
465         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
466 }
467
468 static inline bool cpu_has_vmx_ept_1g_page(void)
469 {
470         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
471 }
472
473 static inline bool cpu_has_vmx_ept_4levels(void)
474 {
475         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
476 }
477
478 static inline bool cpu_has_vmx_invept_individual_addr(void)
479 {
480         return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
481 }
482
483 static inline bool cpu_has_vmx_invept_context(void)
484 {
485         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
486 }
487
488 static inline bool cpu_has_vmx_invept_global(void)
489 {
490         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
491 }
492
493 static inline bool cpu_has_vmx_invvpid_single(void)
494 {
495         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
496 }
497
498 static inline bool cpu_has_vmx_invvpid_global(void)
499 {
500         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
501 }
502
503 static inline bool cpu_has_vmx_ept(void)
504 {
505         return vmcs_config.cpu_based_2nd_exec_ctrl &
506                 SECONDARY_EXEC_ENABLE_EPT;
507 }
508
509 static inline bool cpu_has_vmx_unrestricted_guest(void)
510 {
511         return vmcs_config.cpu_based_2nd_exec_ctrl &
512                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
513 }
514
515 static inline bool cpu_has_vmx_ple(void)
516 {
517         return vmcs_config.cpu_based_2nd_exec_ctrl &
518                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
519 }
520
521 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
522 {
523         return flexpriority_enabled && irqchip_in_kernel(kvm);
524 }
525
526 static inline bool cpu_has_vmx_vpid(void)
527 {
528         return vmcs_config.cpu_based_2nd_exec_ctrl &
529                 SECONDARY_EXEC_ENABLE_VPID;
530 }
531
532 static inline bool cpu_has_vmx_rdtscp(void)
533 {
534         return vmcs_config.cpu_based_2nd_exec_ctrl &
535                 SECONDARY_EXEC_RDTSCP;
536 }
537
538 static inline bool cpu_has_virtual_nmis(void)
539 {
540         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
541 }
542
543 static inline bool cpu_has_vmx_wbinvd_exit(void)
544 {
545         return vmcs_config.cpu_based_2nd_exec_ctrl &
546                 SECONDARY_EXEC_WBINVD_EXITING;
547 }
548
549 static inline bool report_flexpriority(void)
550 {
551         return flexpriority_enabled;
552 }
553
554 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
555 {
556         int i;
557
558         for (i = 0; i < vmx->nmsrs; ++i)
559                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
560                         return i;
561         return -1;
562 }
563
564 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
565 {
566     struct {
567         u64 vpid : 16;
568         u64 rsvd : 48;
569         u64 gva;
570     } operand = { vpid, 0, gva };
571
572     asm volatile (__ex(ASM_VMX_INVVPID)
573                   /* CF==1 or ZF==1 --> rc = -1 */
574                   "; ja 1f ; ud2 ; 1:"
575                   : : "a"(&operand), "c"(ext) : "cc", "memory");
576 }
577
578 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
579 {
580         struct {
581                 u64 eptp, gpa;
582         } operand = {eptp, gpa};
583
584         asm volatile (__ex(ASM_VMX_INVEPT)
585                         /* CF==1 or ZF==1 --> rc = -1 */
586                         "; ja 1f ; ud2 ; 1:\n"
587                         : : "a" (&operand), "c" (ext) : "cc", "memory");
588 }
589
590 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
591 {
592         int i;
593
594         i = __find_msr_index(vmx, msr);
595         if (i >= 0)
596                 return &vmx->guest_msrs[i];
597         return NULL;
598 }
599
600 static void vmcs_clear(struct vmcs *vmcs)
601 {
602         u64 phys_addr = __pa(vmcs);
603         u8 error;
604
605         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
606                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
607                       : "cc", "memory");
608         if (error)
609                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
610                        vmcs, phys_addr);
611 }
612
613 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
614 {
615         vmcs_clear(loaded_vmcs->vmcs);
616         loaded_vmcs->cpu = -1;
617         loaded_vmcs->launched = 0;
618 }
619
620 static void vmcs_load(struct vmcs *vmcs)
621 {
622         u64 phys_addr = __pa(vmcs);
623         u8 error;
624
625         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
626                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
627                         : "cc", "memory");
628         if (error)
629                 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
630                        vmcs, phys_addr);
631 }
632
633 static void __loaded_vmcs_clear(void *arg)
634 {
635         struct loaded_vmcs *loaded_vmcs = arg;
636         int cpu = raw_smp_processor_id();
637
638         if (loaded_vmcs->cpu != cpu)
639                 return; /* vcpu migration can race with cpu offline */
640         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
641                 per_cpu(current_vmcs, cpu) = NULL;
642         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
643         loaded_vmcs_init(loaded_vmcs);
644 }
645
646 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
647 {
648         if (loaded_vmcs->cpu != -1)
649                 smp_call_function_single(
650                         loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
651 }
652
653 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
654 {
655         if (vmx->vpid == 0)
656                 return;
657
658         if (cpu_has_vmx_invvpid_single())
659                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
660 }
661
662 static inline void vpid_sync_vcpu_global(void)
663 {
664         if (cpu_has_vmx_invvpid_global())
665                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
666 }
667
668 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
669 {
670         if (cpu_has_vmx_invvpid_single())
671                 vpid_sync_vcpu_single(vmx);
672         else
673                 vpid_sync_vcpu_global();
674 }
675
676 static inline void ept_sync_global(void)
677 {
678         if (cpu_has_vmx_invept_global())
679                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
680 }
681
682 static inline void ept_sync_context(u64 eptp)
683 {
684         if (enable_ept) {
685                 if (cpu_has_vmx_invept_context())
686                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
687                 else
688                         ept_sync_global();
689         }
690 }
691
692 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
693 {
694         if (enable_ept) {
695                 if (cpu_has_vmx_invept_individual_addr())
696                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
697                                         eptp, gpa);
698                 else
699                         ept_sync_context(eptp);
700         }
701 }
702
703 static __always_inline unsigned long vmcs_readl(unsigned long field)
704 {
705         unsigned long value;
706
707         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
708                       : "=a"(value) : "d"(field) : "cc");
709         return value;
710 }
711
712 static __always_inline u16 vmcs_read16(unsigned long field)
713 {
714         return vmcs_readl(field);
715 }
716
717 static __always_inline u32 vmcs_read32(unsigned long field)
718 {
719         return vmcs_readl(field);
720 }
721
722 static __always_inline u64 vmcs_read64(unsigned long field)
723 {
724 #ifdef CONFIG_X86_64
725         return vmcs_readl(field);
726 #else
727         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
728 #endif
729 }
730
731 static noinline void vmwrite_error(unsigned long field, unsigned long value)
732 {
733         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
734                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
735         dump_stack();
736 }
737
738 static void vmcs_writel(unsigned long field, unsigned long value)
739 {
740         u8 error;
741
742         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
743                        : "=q"(error) : "a"(value), "d"(field) : "cc");
744         if (unlikely(error))
745                 vmwrite_error(field, value);
746 }
747
748 static void vmcs_write16(unsigned long field, u16 value)
749 {
750         vmcs_writel(field, value);
751 }
752
753 static void vmcs_write32(unsigned long field, u32 value)
754 {
755         vmcs_writel(field, value);
756 }
757
758 static void vmcs_write64(unsigned long field, u64 value)
759 {
760         vmcs_writel(field, value);
761 #ifndef CONFIG_X86_64
762         asm volatile ("");
763         vmcs_writel(field+1, value >> 32);
764 #endif
765 }
766
767 static void vmcs_clear_bits(unsigned long field, u32 mask)
768 {
769         vmcs_writel(field, vmcs_readl(field) & ~mask);
770 }
771
772 static void vmcs_set_bits(unsigned long field, u32 mask)
773 {
774         vmcs_writel(field, vmcs_readl(field) | mask);
775 }
776
777 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
778 {
779         vmx->segment_cache.bitmask = 0;
780 }
781
782 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
783                                        unsigned field)
784 {
785         bool ret;
786         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
787
788         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
789                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
790                 vmx->segment_cache.bitmask = 0;
791         }
792         ret = vmx->segment_cache.bitmask & mask;
793         vmx->segment_cache.bitmask |= mask;
794         return ret;
795 }
796
797 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
798 {
799         u16 *p = &vmx->segment_cache.seg[seg].selector;
800
801         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
802                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
803         return *p;
804 }
805
806 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
807 {
808         ulong *p = &vmx->segment_cache.seg[seg].base;
809
810         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
811                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
812         return *p;
813 }
814
815 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
816 {
817         u32 *p = &vmx->segment_cache.seg[seg].limit;
818
819         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
820                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
821         return *p;
822 }
823
824 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
825 {
826         u32 *p = &vmx->segment_cache.seg[seg].ar;
827
828         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
829                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
830         return *p;
831 }
832
833 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
834 {
835         u32 eb;
836
837         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
838              (1u << NM_VECTOR) | (1u << DB_VECTOR);
839         if ((vcpu->guest_debug &
840              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
841             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
842                 eb |= 1u << BP_VECTOR;
843         if (to_vmx(vcpu)->rmode.vm86_active)
844                 eb = ~0;
845         if (enable_ept)
846                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
847         if (vcpu->fpu_active)
848                 eb &= ~(1u << NM_VECTOR);
849         vmcs_write32(EXCEPTION_BITMAP, eb);
850 }
851
852 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
853 {
854         unsigned i;
855         struct msr_autoload *m = &vmx->msr_autoload;
856
857         if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
858                 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
859                 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
860                 return;
861         }
862
863         for (i = 0; i < m->nr; ++i)
864                 if (m->guest[i].index == msr)
865                         break;
866
867         if (i == m->nr)
868                 return;
869         --m->nr;
870         m->guest[i] = m->guest[m->nr];
871         m->host[i] = m->host[m->nr];
872         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
873         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
874 }
875
876 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
877                                   u64 guest_val, u64 host_val)
878 {
879         unsigned i;
880         struct msr_autoload *m = &vmx->msr_autoload;
881
882         if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
883                 vmcs_write64(GUEST_IA32_EFER, guest_val);
884                 vmcs_write64(HOST_IA32_EFER, host_val);
885                 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
886                 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
887                 return;
888         }
889
890         for (i = 0; i < m->nr; ++i)
891                 if (m->guest[i].index == msr)
892                         break;
893
894         if (i == m->nr) {
895                 ++m->nr;
896                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
897                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
898         }
899
900         m->guest[i].index = msr;
901         m->guest[i].value = guest_val;
902         m->host[i].index = msr;
903         m->host[i].value = host_val;
904 }
905
906 static void reload_tss(void)
907 {
908         /*
909          * VT restores TR but not its size.  Useless.
910          */
911         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
912         struct desc_struct *descs;
913
914         descs = (void *)gdt->address;
915         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
916         load_TR_desc();
917 }
918
919 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
920 {
921         u64 guest_efer;
922         u64 ignore_bits;
923
924         guest_efer = vmx->vcpu.arch.efer;
925
926         /*
927          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
928          * outside long mode
929          */
930         ignore_bits = EFER_NX | EFER_SCE;
931 #ifdef CONFIG_X86_64
932         ignore_bits |= EFER_LMA | EFER_LME;
933         /* SCE is meaningful only in long mode on Intel */
934         if (guest_efer & EFER_LMA)
935                 ignore_bits &= ~(u64)EFER_SCE;
936 #endif
937         guest_efer &= ~ignore_bits;
938         guest_efer |= host_efer & ignore_bits;
939         vmx->guest_msrs[efer_offset].data = guest_efer;
940         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
941
942         clear_atomic_switch_msr(vmx, MSR_EFER);
943         /* On ept, can't emulate nx, and must switch nx atomically */
944         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
945                 guest_efer = vmx->vcpu.arch.efer;
946                 if (!(guest_efer & EFER_LMA))
947                         guest_efer &= ~EFER_LME;
948                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
949                 return false;
950         }
951
952         return true;
953 }
954
955 static unsigned long segment_base(u16 selector)
956 {
957         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
958         struct desc_struct *d;
959         unsigned long table_base;
960         unsigned long v;
961
962         if (!(selector & ~3))
963                 return 0;
964
965         table_base = gdt->address;
966
967         if (selector & 4) {           /* from ldt */
968                 u16 ldt_selector = kvm_read_ldt();
969
970                 if (!(ldt_selector & ~3))
971                         return 0;
972
973                 table_base = segment_base(ldt_selector);
974         }
975         d = (struct desc_struct *)(table_base + (selector & ~7));
976         v = get_desc_base(d);
977 #ifdef CONFIG_X86_64
978        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
979                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
980 #endif
981         return v;
982 }
983
984 static inline unsigned long kvm_read_tr_base(void)
985 {
986         u16 tr;
987         asm("str %0" : "=g"(tr));
988         return segment_base(tr);
989 }
990
991 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
992 {
993         struct vcpu_vmx *vmx = to_vmx(vcpu);
994         int i;
995
996         if (vmx->host_state.loaded)
997                 return;
998
999         vmx->host_state.loaded = 1;
1000         /*
1001          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1002          * allow segment selectors with cpl > 0 or ti == 1.
1003          */
1004         vmx->host_state.ldt_sel = kvm_read_ldt();
1005         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1006         savesegment(fs, vmx->host_state.fs_sel);
1007         if (!(vmx->host_state.fs_sel & 7)) {
1008                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1009                 vmx->host_state.fs_reload_needed = 0;
1010         } else {
1011                 vmcs_write16(HOST_FS_SELECTOR, 0);
1012                 vmx->host_state.fs_reload_needed = 1;
1013         }
1014         savesegment(gs, vmx->host_state.gs_sel);
1015         if (!(vmx->host_state.gs_sel & 7))
1016                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1017         else {
1018                 vmcs_write16(HOST_GS_SELECTOR, 0);
1019                 vmx->host_state.gs_ldt_reload_needed = 1;
1020         }
1021
1022 #ifdef CONFIG_X86_64
1023         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1024         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1025 #else
1026         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1027         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1028 #endif
1029
1030 #ifdef CONFIG_X86_64
1031         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1032         if (is_long_mode(&vmx->vcpu))
1033                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1034 #endif
1035         for (i = 0; i < vmx->save_nmsrs; ++i)
1036                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1037                                    vmx->guest_msrs[i].data,
1038                                    vmx->guest_msrs[i].mask);
1039 }
1040
1041 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1042 {
1043         if (!vmx->host_state.loaded)
1044                 return;
1045
1046         ++vmx->vcpu.stat.host_state_reload;
1047         vmx->host_state.loaded = 0;
1048 #ifdef CONFIG_X86_64
1049         if (is_long_mode(&vmx->vcpu))
1050                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1051 #endif
1052         if (vmx->host_state.gs_ldt_reload_needed) {
1053                 kvm_load_ldt(vmx->host_state.ldt_sel);
1054 #ifdef CONFIG_X86_64
1055                 load_gs_index(vmx->host_state.gs_sel);
1056 #else
1057                 loadsegment(gs, vmx->host_state.gs_sel);
1058 #endif
1059         }
1060         if (vmx->host_state.fs_reload_needed)
1061                 loadsegment(fs, vmx->host_state.fs_sel);
1062         reload_tss();
1063 #ifdef CONFIG_X86_64
1064         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1065 #endif
1066         if (current_thread_info()->status & TS_USEDFPU)
1067                 clts();
1068         load_gdt(&__get_cpu_var(host_gdt));
1069 }
1070
1071 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1072 {
1073         preempt_disable();
1074         __vmx_load_host_state(vmx);
1075         preempt_enable();
1076 }
1077
1078 /*
1079  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1080  * vcpu mutex is already taken.
1081  */
1082 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1083 {
1084         struct vcpu_vmx *vmx = to_vmx(vcpu);
1085         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1086
1087         if (!vmm_exclusive)
1088                 kvm_cpu_vmxon(phys_addr);
1089         else if (vmx->loaded_vmcs->cpu != cpu)
1090                 loaded_vmcs_clear(vmx->loaded_vmcs);
1091
1092         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1093                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1094                 vmcs_load(vmx->loaded_vmcs->vmcs);
1095         }
1096
1097         if (vmx->loaded_vmcs->cpu != cpu) {
1098                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1099                 unsigned long sysenter_esp;
1100
1101                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1102                 local_irq_disable();
1103                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1104                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1105                 local_irq_enable();
1106
1107                 /*
1108                  * Linux uses per-cpu TSS and GDT, so set these when switching
1109                  * processors.
1110                  */
1111                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1112                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1113
1114                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1115                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1116                 vmx->loaded_vmcs->cpu = cpu;
1117         }
1118 }
1119
1120 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1121 {
1122         __vmx_load_host_state(to_vmx(vcpu));
1123         if (!vmm_exclusive) {
1124                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1125                 vcpu->cpu = -1;
1126                 kvm_cpu_vmxoff();
1127         }
1128 }
1129
1130 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1131 {
1132         ulong cr0;
1133
1134         if (vcpu->fpu_active)
1135                 return;
1136         vcpu->fpu_active = 1;
1137         cr0 = vmcs_readl(GUEST_CR0);
1138         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1139         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1140         vmcs_writel(GUEST_CR0, cr0);
1141         update_exception_bitmap(vcpu);
1142         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1143         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1144 }
1145
1146 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1147
1148 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1149 {
1150         vmx_decache_cr0_guest_bits(vcpu);
1151         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1152         update_exception_bitmap(vcpu);
1153         vcpu->arch.cr0_guest_owned_bits = 0;
1154         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1155         vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1156 }
1157
1158 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1159 {
1160         unsigned long rflags, save_rflags;
1161
1162         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1163                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1164                 rflags = vmcs_readl(GUEST_RFLAGS);
1165                 if (to_vmx(vcpu)->rmode.vm86_active) {
1166                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1167                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1168                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1169                 }
1170                 to_vmx(vcpu)->rflags = rflags;
1171         }
1172         return to_vmx(vcpu)->rflags;
1173 }
1174
1175 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1176 {
1177         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1178         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1179         to_vmx(vcpu)->rflags = rflags;
1180         if (to_vmx(vcpu)->rmode.vm86_active) {
1181                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1182                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1183         }
1184         vmcs_writel(GUEST_RFLAGS, rflags);
1185 }
1186
1187 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1188 {
1189         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1190         int ret = 0;
1191
1192         if (interruptibility & GUEST_INTR_STATE_STI)
1193                 ret |= KVM_X86_SHADOW_INT_STI;
1194         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1195                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1196
1197         return ret & mask;
1198 }
1199
1200 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1201 {
1202         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1203         u32 interruptibility = interruptibility_old;
1204
1205         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1206
1207         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1208                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1209         else if (mask & KVM_X86_SHADOW_INT_STI)
1210                 interruptibility |= GUEST_INTR_STATE_STI;
1211
1212         if ((interruptibility != interruptibility_old))
1213                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1214 }
1215
1216 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1217 {
1218         unsigned long rip;
1219
1220         rip = kvm_rip_read(vcpu);
1221         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1222         kvm_rip_write(vcpu, rip);
1223
1224         /* skipping an emulated instruction also counts */
1225         vmx_set_interrupt_shadow(vcpu, 0);
1226 }
1227
1228 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1229 {
1230         /* Ensure that we clear the HLT state in the VMCS.  We don't need to
1231          * explicitly skip the instruction because if the HLT state is set, then
1232          * the instruction is already executing and RIP has already been
1233          * advanced. */
1234         if (!yield_on_hlt &&
1235             vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1236                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1237 }
1238
1239 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1240                                 bool has_error_code, u32 error_code,
1241                                 bool reinject)
1242 {
1243         struct vcpu_vmx *vmx = to_vmx(vcpu);
1244         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1245
1246         if (has_error_code) {
1247                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1248                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1249         }
1250
1251         if (vmx->rmode.vm86_active) {
1252                 int inc_eip = 0;
1253                 if (kvm_exception_is_soft(nr))
1254                         inc_eip = vcpu->arch.event_exit_inst_len;
1255                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1256                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1257                 return;
1258         }
1259
1260         if (kvm_exception_is_soft(nr)) {
1261                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1262                              vmx->vcpu.arch.event_exit_inst_len);
1263                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1264         } else
1265                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1266
1267         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1268         vmx_clear_hlt(vcpu);
1269 }
1270
1271 static bool vmx_rdtscp_supported(void)
1272 {
1273         return cpu_has_vmx_rdtscp();
1274 }
1275
1276 /*
1277  * Swap MSR entry in host/guest MSR entry array.
1278  */
1279 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1280 {
1281         struct shared_msr_entry tmp;
1282
1283         tmp = vmx->guest_msrs[to];
1284         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1285         vmx->guest_msrs[from] = tmp;
1286 }
1287
1288 /*
1289  * Set up the vmcs to automatically save and restore system
1290  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1291  * mode, as fiddling with msrs is very expensive.
1292  */
1293 static void setup_msrs(struct vcpu_vmx *vmx)
1294 {
1295         int save_nmsrs, index;
1296         unsigned long *msr_bitmap;
1297
1298         vmx_load_host_state(vmx);
1299         save_nmsrs = 0;
1300 #ifdef CONFIG_X86_64
1301         if (is_long_mode(&vmx->vcpu)) {
1302                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1303                 if (index >= 0)
1304                         move_msr_up(vmx, index, save_nmsrs++);
1305                 index = __find_msr_index(vmx, MSR_LSTAR);
1306                 if (index >= 0)
1307                         move_msr_up(vmx, index, save_nmsrs++);
1308                 index = __find_msr_index(vmx, MSR_CSTAR);
1309                 if (index >= 0)
1310                         move_msr_up(vmx, index, save_nmsrs++);
1311                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1312                 if (index >= 0 && vmx->rdtscp_enabled)
1313                         move_msr_up(vmx, index, save_nmsrs++);
1314                 /*
1315                  * MSR_STAR is only needed on long mode guests, and only
1316                  * if efer.sce is enabled.
1317                  */
1318                 index = __find_msr_index(vmx, MSR_STAR);
1319                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1320                         move_msr_up(vmx, index, save_nmsrs++);
1321         }
1322 #endif
1323         index = __find_msr_index(vmx, MSR_EFER);
1324         if (index >= 0 && update_transition_efer(vmx, index))
1325                 move_msr_up(vmx, index, save_nmsrs++);
1326
1327         vmx->save_nmsrs = save_nmsrs;
1328
1329         if (cpu_has_vmx_msr_bitmap()) {
1330                 if (is_long_mode(&vmx->vcpu))
1331                         msr_bitmap = vmx_msr_bitmap_longmode;
1332                 else
1333                         msr_bitmap = vmx_msr_bitmap_legacy;
1334
1335                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1336         }
1337 }
1338
1339 /*
1340  * reads and returns guest's timestamp counter "register"
1341  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1342  */
1343 static u64 guest_read_tsc(void)
1344 {
1345         u64 host_tsc, tsc_offset;
1346
1347         rdtscll(host_tsc);
1348         tsc_offset = vmcs_read64(TSC_OFFSET);
1349         return host_tsc + tsc_offset;
1350 }
1351
1352 /*
1353  * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1354  * ioctl. In this case the call-back should update internal vmx state to make
1355  * the changes effective.
1356  */
1357 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1358 {
1359         /* Nothing to do here */
1360 }
1361
1362 /*
1363  * writes 'offset' into guest's timestamp counter offset register
1364  */
1365 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1366 {
1367         vmcs_write64(TSC_OFFSET, offset);
1368 }
1369
1370 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1371 {
1372         u64 offset = vmcs_read64(TSC_OFFSET);
1373         vmcs_write64(TSC_OFFSET, offset + adjustment);
1374 }
1375
1376 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1377 {
1378         return target_tsc - native_read_tsc();
1379 }
1380
1381 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1382 {
1383         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1384         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1385 }
1386
1387 /*
1388  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1389  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1390  * all guests if the "nested" module option is off, and can also be disabled
1391  * for a single guest by disabling its VMX cpuid bit.
1392  */
1393 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1394 {
1395         return nested && guest_cpuid_has_vmx(vcpu);
1396 }
1397
1398 /*
1399  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1400  * returned for the various VMX controls MSRs when nested VMX is enabled.
1401  * The same values should also be used to verify that vmcs12 control fields are
1402  * valid during nested entry from L1 to L2.
1403  * Each of these control msrs has a low and high 32-bit half: A low bit is on
1404  * if the corresponding bit in the (32-bit) control field *must* be on, and a
1405  * bit in the high half is on if the corresponding bit in the control field
1406  * may be on. See also vmx_control_verify().
1407  * TODO: allow these variables to be modified (downgraded) by module options
1408  * or other means.
1409  */
1410 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1411 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1412 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1413 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1414 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1415 static __init void nested_vmx_setup_ctls_msrs(void)
1416 {
1417         /*
1418          * Note that as a general rule, the high half of the MSRs (bits in
1419          * the control fields which may be 1) should be initialized by the
1420          * intersection of the underlying hardware's MSR (i.e., features which
1421          * can be supported) and the list of features we want to expose -
1422          * because they are known to be properly supported in our code.
1423          * Also, usually, the low half of the MSRs (bits which must be 1) can
1424          * be set to 0, meaning that L1 may turn off any of these bits. The
1425          * reason is that if one of these bits is necessary, it will appear
1426          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1427          * fields of vmcs01 and vmcs02, will turn these bits off - and
1428          * nested_vmx_exit_handled() will not pass related exits to L1.
1429          * These rules have exceptions below.
1430          */
1431
1432         /* pin-based controls */
1433         /*
1434          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1435          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1436          */
1437         nested_vmx_pinbased_ctls_low = 0x16 ;
1438         nested_vmx_pinbased_ctls_high = 0x16 |
1439                 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1440                 PIN_BASED_VIRTUAL_NMIS;
1441
1442         /* exit controls */
1443         nested_vmx_exit_ctls_low = 0;
1444 #ifdef CONFIG_X86_64
1445         nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1446 #else
1447         nested_vmx_exit_ctls_high = 0;
1448 #endif
1449
1450         /* entry controls */
1451         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1452                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1453         nested_vmx_entry_ctls_low = 0;
1454         nested_vmx_entry_ctls_high &=
1455                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1456
1457         /* cpu-based controls */
1458         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1459                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1460         nested_vmx_procbased_ctls_low = 0;
1461         nested_vmx_procbased_ctls_high &=
1462                 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1463                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1464                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1465                 CPU_BASED_CR3_STORE_EXITING |
1466 #ifdef CONFIG_X86_64
1467                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1468 #endif
1469                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1470                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1471                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1472         /*
1473          * We can allow some features even when not supported by the
1474          * hardware. For example, L1 can specify an MSR bitmap - and we
1475          * can use it to avoid exits to L1 - even when L0 runs L2
1476          * without MSR bitmaps.
1477          */
1478         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1479
1480         /* secondary cpu-based controls */
1481         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1482                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1483         nested_vmx_secondary_ctls_low = 0;
1484         nested_vmx_secondary_ctls_high &=
1485                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1486 }
1487
1488 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1489 {
1490         /*
1491          * Bits 0 in high must be 0, and bits 1 in low must be 1.
1492          */
1493         return ((control & high) | low) == control;
1494 }
1495
1496 static inline u64 vmx_control_msr(u32 low, u32 high)
1497 {
1498         return low | ((u64)high << 32);
1499 }
1500
1501 /*
1502  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1503  * also let it use VMX-specific MSRs.
1504  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1505  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1506  * like all other MSRs).
1507  */
1508 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1509 {
1510         if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1511                      msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1512                 /*
1513                  * According to the spec, processors which do not support VMX
1514                  * should throw a #GP(0) when VMX capability MSRs are read.
1515                  */
1516                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1517                 return 1;
1518         }
1519
1520         switch (msr_index) {
1521         case MSR_IA32_FEATURE_CONTROL:
1522                 *pdata = 0;
1523                 break;
1524         case MSR_IA32_VMX_BASIC:
1525                 /*
1526                  * This MSR reports some information about VMX support. We
1527                  * should return information about the VMX we emulate for the
1528                  * guest, and the VMCS structure we give it - not about the
1529                  * VMX support of the underlying hardware.
1530                  */
1531                 *pdata = VMCS12_REVISION |
1532                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
1533                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
1534                 break;
1535         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1536         case MSR_IA32_VMX_PINBASED_CTLS:
1537                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
1538                                         nested_vmx_pinbased_ctls_high);
1539                 break;
1540         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1541         case MSR_IA32_VMX_PROCBASED_CTLS:
1542                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
1543                                         nested_vmx_procbased_ctls_high);
1544                 break;
1545         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1546         case MSR_IA32_VMX_EXIT_CTLS:
1547                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
1548                                         nested_vmx_exit_ctls_high);
1549                 break;
1550         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1551         case MSR_IA32_VMX_ENTRY_CTLS:
1552                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
1553                                         nested_vmx_entry_ctls_high);
1554                 break;
1555         case MSR_IA32_VMX_MISC:
1556                 *pdata = 0;
1557                 break;
1558         /*
1559          * These MSRs specify bits which the guest must keep fixed (on or off)
1560          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
1561          * We picked the standard core2 setting.
1562          */
1563 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
1564 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
1565         case MSR_IA32_VMX_CR0_FIXED0:
1566                 *pdata = VMXON_CR0_ALWAYSON;
1567                 break;
1568         case MSR_IA32_VMX_CR0_FIXED1:
1569                 *pdata = -1ULL;
1570                 break;
1571         case MSR_IA32_VMX_CR4_FIXED0:
1572                 *pdata = VMXON_CR4_ALWAYSON;
1573                 break;
1574         case MSR_IA32_VMX_CR4_FIXED1:
1575                 *pdata = -1ULL;
1576                 break;
1577         case MSR_IA32_VMX_VMCS_ENUM:
1578                 *pdata = 0x1f;
1579                 break;
1580         case MSR_IA32_VMX_PROCBASED_CTLS2:
1581                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
1582                                         nested_vmx_secondary_ctls_high);
1583                 break;
1584         case MSR_IA32_VMX_EPT_VPID_CAP:
1585                 /* Currently, no nested ept or nested vpid */
1586                 *pdata = 0;
1587                 break;
1588         default:
1589                 return 0;
1590         }
1591
1592         return 1;
1593 }
1594
1595 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1596 {
1597         if (!nested_vmx_allowed(vcpu))
1598                 return 0;
1599
1600         if (msr_index == MSR_IA32_FEATURE_CONTROL)
1601                 /* TODO: the right thing. */
1602                 return 1;
1603         /*
1604          * No need to treat VMX capability MSRs specially: If we don't handle
1605          * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
1606          */
1607         return 0;
1608 }
1609
1610 /*
1611  * Reads an msr value (of 'msr_index') into 'pdata'.
1612  * Returns 0 on success, non-0 otherwise.
1613  * Assumes vcpu_load() was already called.
1614  */
1615 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1616 {
1617         u64 data;
1618         struct shared_msr_entry *msr;
1619
1620         if (!pdata) {
1621                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1622                 return -EINVAL;
1623         }
1624
1625         switch (msr_index) {
1626 #ifdef CONFIG_X86_64
1627         case MSR_FS_BASE:
1628                 data = vmcs_readl(GUEST_FS_BASE);
1629                 break;
1630         case MSR_GS_BASE:
1631                 data = vmcs_readl(GUEST_GS_BASE);
1632                 break;
1633         case MSR_KERNEL_GS_BASE:
1634                 vmx_load_host_state(to_vmx(vcpu));
1635                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1636                 break;
1637 #endif
1638         case MSR_EFER:
1639                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1640         case MSR_IA32_TSC:
1641                 data = guest_read_tsc();
1642                 break;
1643         case MSR_IA32_SYSENTER_CS:
1644                 data = vmcs_read32(GUEST_SYSENTER_CS);
1645                 break;
1646         case MSR_IA32_SYSENTER_EIP:
1647                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1648                 break;
1649         case MSR_IA32_SYSENTER_ESP:
1650                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1651                 break;
1652         case MSR_TSC_AUX:
1653                 if (!to_vmx(vcpu)->rdtscp_enabled)
1654                         return 1;
1655                 /* Otherwise falls through */
1656         default:
1657                 vmx_load_host_state(to_vmx(vcpu));
1658                 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
1659                         return 0;
1660                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1661                 if (msr) {
1662                         vmx_load_host_state(to_vmx(vcpu));
1663                         data = msr->data;
1664                         break;
1665                 }
1666                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1667         }
1668
1669         *pdata = data;
1670         return 0;
1671 }
1672
1673 /*
1674  * Writes msr value into into the appropriate "register".
1675  * Returns 0 on success, non-0 otherwise.
1676  * Assumes vcpu_load() was already called.
1677  */
1678 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1679 {
1680         struct vcpu_vmx *vmx = to_vmx(vcpu);
1681         struct shared_msr_entry *msr;
1682         int ret = 0;
1683
1684         switch (msr_index) {
1685         case MSR_EFER:
1686                 vmx_load_host_state(vmx);
1687                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1688                 break;
1689 #ifdef CONFIG_X86_64
1690         case MSR_FS_BASE:
1691                 vmx_segment_cache_clear(vmx);
1692                 vmcs_writel(GUEST_FS_BASE, data);
1693                 break;
1694         case MSR_GS_BASE:
1695                 vmx_segment_cache_clear(vmx);
1696                 vmcs_writel(GUEST_GS_BASE, data);
1697                 break;
1698         case MSR_KERNEL_GS_BASE:
1699                 vmx_load_host_state(vmx);
1700                 vmx->msr_guest_kernel_gs_base = data;
1701                 break;
1702 #endif
1703         case MSR_IA32_SYSENTER_CS:
1704                 vmcs_write32(GUEST_SYSENTER_CS, data);
1705                 break;
1706         case MSR_IA32_SYSENTER_EIP:
1707                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1708                 break;
1709         case MSR_IA32_SYSENTER_ESP:
1710                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1711                 break;
1712         case MSR_IA32_TSC:
1713                 kvm_write_tsc(vcpu, data);
1714                 break;
1715         case MSR_IA32_CR_PAT:
1716                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1717                         vmcs_write64(GUEST_IA32_PAT, data);
1718                         vcpu->arch.pat = data;
1719                         break;
1720                 }
1721                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1722                 break;
1723         case MSR_TSC_AUX:
1724                 if (!vmx->rdtscp_enabled)
1725                         return 1;
1726                 /* Check reserved bit, higher 32 bits should be zero */
1727                 if ((data >> 32) != 0)
1728                         return 1;
1729                 /* Otherwise falls through */
1730         default:
1731                 if (vmx_set_vmx_msr(vcpu, msr_index, data))
1732                         break;
1733                 msr = find_msr_entry(vmx, msr_index);
1734                 if (msr) {
1735                         vmx_load_host_state(vmx);
1736                         msr->data = data;
1737                         break;
1738                 }
1739                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1740         }
1741
1742         return ret;
1743 }
1744
1745 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1746 {
1747         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1748         switch (reg) {
1749         case VCPU_REGS_RSP:
1750                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1751                 break;
1752         case VCPU_REGS_RIP:
1753                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1754                 break;
1755         case VCPU_EXREG_PDPTR:
1756                 if (enable_ept)
1757                         ept_save_pdptrs(vcpu);
1758                 break;
1759         default:
1760                 break;
1761         }
1762 }
1763
1764 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1765 {
1766         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1767                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1768         else
1769                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1770
1771         update_exception_bitmap(vcpu);
1772 }
1773
1774 static __init int cpu_has_kvm_support(void)
1775 {
1776         return cpu_has_vmx();
1777 }
1778
1779 static __init int vmx_disabled_by_bios(void)
1780 {
1781         u64 msr;
1782
1783         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1784         if (msr & FEATURE_CONTROL_LOCKED) {
1785                 /* launched w/ TXT and VMX disabled */
1786                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1787                         && tboot_enabled())
1788                         return 1;
1789                 /* launched w/o TXT and VMX only enabled w/ TXT */
1790                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1791                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1792                         && !tboot_enabled()) {
1793                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1794                                 "activate TXT before enabling KVM\n");
1795                         return 1;
1796                 }
1797                 /* launched w/o TXT and VMX disabled */
1798                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1799                         && !tboot_enabled())
1800                         return 1;
1801         }
1802
1803         return 0;
1804 }
1805
1806 static void kvm_cpu_vmxon(u64 addr)
1807 {
1808         asm volatile (ASM_VMX_VMXON_RAX
1809                         : : "a"(&addr), "m"(addr)
1810                         : "memory", "cc");
1811 }
1812
1813 static int hardware_enable(void *garbage)
1814 {
1815         int cpu = raw_smp_processor_id();
1816         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1817         u64 old, test_bits;
1818
1819         if (read_cr4() & X86_CR4_VMXE)
1820                 return -EBUSY;
1821
1822         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
1823         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1824
1825         test_bits = FEATURE_CONTROL_LOCKED;
1826         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1827         if (tboot_enabled())
1828                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1829
1830         if ((old & test_bits) != test_bits) {
1831                 /* enable and lock */
1832                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1833         }
1834         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1835
1836         if (vmm_exclusive) {
1837                 kvm_cpu_vmxon(phys_addr);
1838                 ept_sync_global();
1839         }
1840
1841         store_gdt(&__get_cpu_var(host_gdt));
1842
1843         return 0;
1844 }
1845
1846 static void vmclear_local_loaded_vmcss(void)
1847 {
1848         int cpu = raw_smp_processor_id();
1849         struct loaded_vmcs *v, *n;
1850
1851         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
1852                                  loaded_vmcss_on_cpu_link)
1853                 __loaded_vmcs_clear(v);
1854 }
1855
1856
1857 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1858  * tricks.
1859  */
1860 static void kvm_cpu_vmxoff(void)
1861 {
1862         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1863 }
1864
1865 static void hardware_disable(void *garbage)
1866 {
1867         if (vmm_exclusive) {
1868                 vmclear_local_loaded_vmcss();
1869                 kvm_cpu_vmxoff();
1870         }
1871         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1872 }
1873
1874 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1875                                       u32 msr, u32 *result)
1876 {
1877         u32 vmx_msr_low, vmx_msr_high;
1878         u32 ctl = ctl_min | ctl_opt;
1879
1880         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1881
1882         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1883         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1884
1885         /* Ensure minimum (required) set of control bits are supported. */
1886         if (ctl_min & ~ctl)
1887                 return -EIO;
1888
1889         *result = ctl;
1890         return 0;
1891 }
1892
1893 static __init bool allow_1_setting(u32 msr, u32 ctl)
1894 {
1895         u32 vmx_msr_low, vmx_msr_high;
1896
1897         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1898         return vmx_msr_high & ctl;
1899 }
1900
1901 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1902 {
1903         u32 vmx_msr_low, vmx_msr_high;
1904         u32 min, opt, min2, opt2;
1905         u32 _pin_based_exec_control = 0;
1906         u32 _cpu_based_exec_control = 0;
1907         u32 _cpu_based_2nd_exec_control = 0;
1908         u32 _vmexit_control = 0;
1909         u32 _vmentry_control = 0;
1910
1911         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1912         opt = PIN_BASED_VIRTUAL_NMIS;
1913         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1914                                 &_pin_based_exec_control) < 0)
1915                 return -EIO;
1916
1917         min =
1918 #ifdef CONFIG_X86_64
1919               CPU_BASED_CR8_LOAD_EXITING |
1920               CPU_BASED_CR8_STORE_EXITING |
1921 #endif
1922               CPU_BASED_CR3_LOAD_EXITING |
1923               CPU_BASED_CR3_STORE_EXITING |
1924               CPU_BASED_USE_IO_BITMAPS |
1925               CPU_BASED_MOV_DR_EXITING |
1926               CPU_BASED_USE_TSC_OFFSETING |
1927               CPU_BASED_MWAIT_EXITING |
1928               CPU_BASED_MONITOR_EXITING |
1929               CPU_BASED_INVLPG_EXITING;
1930
1931         if (yield_on_hlt)
1932                 min |= CPU_BASED_HLT_EXITING;
1933
1934         opt = CPU_BASED_TPR_SHADOW |
1935               CPU_BASED_USE_MSR_BITMAPS |
1936               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1937         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1938                                 &_cpu_based_exec_control) < 0)
1939                 return -EIO;
1940 #ifdef CONFIG_X86_64
1941         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1942                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1943                                            ~CPU_BASED_CR8_STORE_EXITING;
1944 #endif
1945         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1946                 min2 = 0;
1947                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1948                         SECONDARY_EXEC_WBINVD_EXITING |
1949                         SECONDARY_EXEC_ENABLE_VPID |
1950                         SECONDARY_EXEC_ENABLE_EPT |
1951                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1952                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1953                         SECONDARY_EXEC_RDTSCP;
1954                 if (adjust_vmx_controls(min2, opt2,
1955                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1956                                         &_cpu_based_2nd_exec_control) < 0)
1957                         return -EIO;
1958         }
1959 #ifndef CONFIG_X86_64
1960         if (!(_cpu_based_2nd_exec_control &
1961                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1962                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1963 #endif
1964         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1965                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1966                    enabled */
1967                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1968                                              CPU_BASED_CR3_STORE_EXITING |
1969                                              CPU_BASED_INVLPG_EXITING);
1970                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1971                       vmx_capability.ept, vmx_capability.vpid);
1972         }
1973
1974         min = 0;
1975 #ifdef CONFIG_X86_64
1976         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1977 #endif
1978         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1979         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1980                                 &_vmexit_control) < 0)
1981                 return -EIO;
1982
1983         min = 0;
1984         opt = VM_ENTRY_LOAD_IA32_PAT;
1985         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1986                                 &_vmentry_control) < 0)
1987                 return -EIO;
1988
1989         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1990
1991         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1992         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1993                 return -EIO;
1994
1995 #ifdef CONFIG_X86_64
1996         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1997         if (vmx_msr_high & (1u<<16))
1998                 return -EIO;
1999 #endif
2000
2001         /* Require Write-Back (WB) memory type for VMCS accesses. */
2002         if (((vmx_msr_high >> 18) & 15) != 6)
2003                 return -EIO;
2004
2005         vmcs_conf->size = vmx_msr_high & 0x1fff;
2006         vmcs_conf->order = get_order(vmcs_config.size);
2007         vmcs_conf->revision_id = vmx_msr_low;
2008
2009         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2010         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2011         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2012         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2013         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2014
2015         cpu_has_load_ia32_efer =
2016                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2017                                 VM_ENTRY_LOAD_IA32_EFER)
2018                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2019                                    VM_EXIT_LOAD_IA32_EFER);
2020
2021         return 0;
2022 }
2023
2024 static struct vmcs *alloc_vmcs_cpu(int cpu)
2025 {
2026         int node = cpu_to_node(cpu);
2027         struct page *pages;
2028         struct vmcs *vmcs;
2029
2030         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2031         if (!pages)
2032                 return NULL;
2033         vmcs = page_address(pages);
2034         memset(vmcs, 0, vmcs_config.size);
2035         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2036         return vmcs;
2037 }
2038
2039 static struct vmcs *alloc_vmcs(void)
2040 {
2041         return alloc_vmcs_cpu(raw_smp_processor_id());
2042 }
2043
2044 static void free_vmcs(struct vmcs *vmcs)
2045 {
2046         free_pages((unsigned long)vmcs, vmcs_config.order);
2047 }
2048
2049 /*
2050  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2051  */
2052 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2053 {
2054         if (!loaded_vmcs->vmcs)
2055                 return;
2056         loaded_vmcs_clear(loaded_vmcs);
2057         free_vmcs(loaded_vmcs->vmcs);
2058         loaded_vmcs->vmcs = NULL;
2059 }
2060
2061 static void free_kvm_area(void)
2062 {
2063         int cpu;
2064
2065         for_each_possible_cpu(cpu) {
2066                 free_vmcs(per_cpu(vmxarea, cpu));
2067                 per_cpu(vmxarea, cpu) = NULL;
2068         }
2069 }
2070
2071 static __init int alloc_kvm_area(void)
2072 {
2073         int cpu;
2074
2075         for_each_possible_cpu(cpu) {
2076                 struct vmcs *vmcs;
2077
2078                 vmcs = alloc_vmcs_cpu(cpu);
2079                 if (!vmcs) {
2080                         free_kvm_area();
2081                         return -ENOMEM;
2082                 }
2083
2084                 per_cpu(vmxarea, cpu) = vmcs;
2085         }
2086         return 0;
2087 }
2088
2089 static __init int hardware_setup(void)
2090 {
2091         if (setup_vmcs_config(&vmcs_config) < 0)
2092                 return -EIO;
2093
2094         if (boot_cpu_has(X86_FEATURE_NX))
2095                 kvm_enable_efer_bits(EFER_NX);
2096
2097         if (!cpu_has_vmx_vpid())
2098                 enable_vpid = 0;
2099
2100         if (!cpu_has_vmx_ept() ||
2101             !cpu_has_vmx_ept_4levels()) {
2102                 enable_ept = 0;
2103                 enable_unrestricted_guest = 0;
2104         }
2105
2106         if (!cpu_has_vmx_unrestricted_guest())
2107                 enable_unrestricted_guest = 0;
2108
2109         if (!cpu_has_vmx_flexpriority())
2110                 flexpriority_enabled = 0;
2111
2112         if (!cpu_has_vmx_tpr_shadow())
2113                 kvm_x86_ops->update_cr8_intercept = NULL;
2114
2115         if (enable_ept && !cpu_has_vmx_ept_2m_page())
2116                 kvm_disable_largepages();
2117
2118         if (!cpu_has_vmx_ple())
2119                 ple_gap = 0;
2120
2121         if (nested)
2122                 nested_vmx_setup_ctls_msrs();
2123
2124         return alloc_kvm_area();
2125 }
2126
2127 static __exit void hardware_unsetup(void)
2128 {
2129         free_kvm_area();
2130 }
2131
2132 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2133 {
2134         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2135
2136         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2137                 vmcs_write16(sf->selector, save->selector);
2138                 vmcs_writel(sf->base, save->base);
2139                 vmcs_write32(sf->limit, save->limit);
2140                 vmcs_write32(sf->ar_bytes, save->ar);
2141         } else {
2142                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2143                         << AR_DPL_SHIFT;
2144                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2145         }
2146 }
2147
2148 static void enter_pmode(struct kvm_vcpu *vcpu)
2149 {
2150         unsigned long flags;
2151         struct vcpu_vmx *vmx = to_vmx(vcpu);
2152
2153         vmx->emulation_required = 1;
2154         vmx->rmode.vm86_active = 0;
2155
2156         vmx_segment_cache_clear(vmx);
2157
2158         vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2159         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2160         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2161         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2162
2163         flags = vmcs_readl(GUEST_RFLAGS);
2164         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2165         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2166         vmcs_writel(GUEST_RFLAGS, flags);
2167
2168         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2169                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2170
2171         update_exception_bitmap(vcpu);
2172
2173         if (emulate_invalid_guest_state)
2174                 return;
2175
2176         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2177         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2178         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2179         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2180
2181         vmx_segment_cache_clear(vmx);
2182
2183         vmcs_write16(GUEST_SS_SELECTOR, 0);
2184         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2185
2186         vmcs_write16(GUEST_CS_SELECTOR,
2187                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2188         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2189 }
2190
2191 static gva_t rmode_tss_base(struct kvm *kvm)
2192 {
2193         if (!kvm->arch.tss_addr) {
2194                 struct kvm_memslots *slots;
2195                 gfn_t base_gfn;
2196
2197                 slots = kvm_memslots(kvm);
2198                 base_gfn = slots->memslots[0].base_gfn +
2199                                  kvm->memslots->memslots[0].npages - 3;
2200                 return base_gfn << PAGE_SHIFT;
2201         }
2202         return kvm->arch.tss_addr;
2203 }
2204
2205 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2206 {
2207         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2208
2209         save->selector = vmcs_read16(sf->selector);
2210         save->base = vmcs_readl(sf->base);
2211         save->limit = vmcs_read32(sf->limit);
2212         save->ar = vmcs_read32(sf->ar_bytes);
2213         vmcs_write16(sf->selector, save->base >> 4);
2214         vmcs_write32(sf->base, save->base & 0xffff0);
2215         vmcs_write32(sf->limit, 0xffff);
2216         vmcs_write32(sf->ar_bytes, 0xf3);
2217         if (save->base & 0xf)
2218                 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2219                             " aligned when entering protected mode (seg=%d)",
2220                             seg);
2221 }
2222
2223 static void enter_rmode(struct kvm_vcpu *vcpu)
2224 {
2225         unsigned long flags;
2226         struct vcpu_vmx *vmx = to_vmx(vcpu);
2227
2228         if (enable_unrestricted_guest)
2229                 return;
2230
2231         vmx->emulation_required = 1;
2232         vmx->rmode.vm86_active = 1;
2233
2234         /*
2235          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2236          * vcpu. Call it here with phys address pointing 16M below 4G.
2237          */
2238         if (!vcpu->kvm->arch.tss_addr) {
2239                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2240                              "called before entering vcpu\n");
2241                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2242                 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2243                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2244         }
2245
2246         vmx_segment_cache_clear(vmx);
2247
2248         vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2249         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2250         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2251
2252         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2253         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2254
2255         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2256         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2257
2258         flags = vmcs_readl(GUEST_RFLAGS);
2259         vmx->rmode.save_rflags = flags;
2260
2261         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2262
2263         vmcs_writel(GUEST_RFLAGS, flags);
2264         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2265         update_exception_bitmap(vcpu);
2266
2267         if (emulate_invalid_guest_state)
2268                 goto continue_rmode;
2269
2270         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2271         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2272         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2273
2274         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2275         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2276         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2277                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
2278         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2279
2280         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2281         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2282         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2283         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2284
2285 continue_rmode:
2286         kvm_mmu_reset_context(vcpu);
2287 }
2288
2289 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2290 {
2291         struct vcpu_vmx *vmx = to_vmx(vcpu);
2292         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2293
2294         if (!msr)
2295                 return;
2296
2297         /*
2298          * Force kernel_gs_base reloading before EFER changes, as control
2299          * of this msr depends on is_long_mode().
2300          */
2301         vmx_load_host_state(to_vmx(vcpu));
2302         vcpu->arch.efer = efer;
2303         if (efer & EFER_LMA) {
2304                 vmcs_write32(VM_ENTRY_CONTROLS,
2305                              vmcs_read32(VM_ENTRY_CONTROLS) |
2306                              VM_ENTRY_IA32E_MODE);
2307                 msr->data = efer;
2308         } else {
2309                 vmcs_write32(VM_ENTRY_CONTROLS,
2310                              vmcs_read32(VM_ENTRY_CONTROLS) &
2311                              ~VM_ENTRY_IA32E_MODE);
2312
2313                 msr->data = efer & ~EFER_LME;
2314         }
2315         setup_msrs(vmx);
2316 }
2317
2318 #ifdef CONFIG_X86_64
2319
2320 static void enter_lmode(struct kvm_vcpu *vcpu)
2321 {
2322         u32 guest_tr_ar;
2323
2324         vmx_segment_cache_clear(to_vmx(vcpu));
2325
2326         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2327         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2328                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
2329                        __func__);
2330                 vmcs_write32(GUEST_TR_AR_BYTES,
2331                              (guest_tr_ar & ~AR_TYPE_MASK)
2332                              | AR_TYPE_BUSY_64_TSS);
2333         }
2334         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2335 }
2336
2337 static void exit_lmode(struct kvm_vcpu *vcpu)
2338 {
2339         vmcs_write32(VM_ENTRY_CONTROLS,
2340                      vmcs_read32(VM_ENTRY_CONTROLS)
2341                      & ~VM_ENTRY_IA32E_MODE);
2342         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2343 }
2344
2345 #endif
2346
2347 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2348 {
2349         vpid_sync_context(to_vmx(vcpu));
2350         if (enable_ept) {
2351                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2352                         return;
2353                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2354         }
2355 }
2356
2357 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2358 {
2359         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2360
2361         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2362         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2363 }
2364
2365 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2366 {
2367         if (enable_ept && is_paging(vcpu))
2368                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2369         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2370 }
2371
2372 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2373 {
2374         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2375
2376         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2377         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2378 }
2379
2380 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2381 {
2382         if (!test_bit(VCPU_EXREG_PDPTR,
2383                       (unsigned long *)&vcpu->arch.regs_dirty))
2384                 return;
2385
2386         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2387                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2388                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2389                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2390                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2391         }
2392 }
2393
2394 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2395 {
2396         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2397                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2398                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2399                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2400                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2401         }
2402
2403         __set_bit(VCPU_EXREG_PDPTR,
2404                   (unsigned long *)&vcpu->arch.regs_avail);
2405         __set_bit(VCPU_EXREG_PDPTR,
2406                   (unsigned long *)&vcpu->arch.regs_dirty);
2407 }
2408
2409 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2410
2411 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2412                                         unsigned long cr0,
2413                                         struct kvm_vcpu *vcpu)
2414 {
2415         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2416                 vmx_decache_cr3(vcpu);
2417         if (!(cr0 & X86_CR0_PG)) {
2418                 /* From paging/starting to nonpaging */
2419                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2420                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2421                              (CPU_BASED_CR3_LOAD_EXITING |
2422                               CPU_BASED_CR3_STORE_EXITING));
2423                 vcpu->arch.cr0 = cr0;
2424                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2425         } else if (!is_paging(vcpu)) {
2426                 /* From nonpaging to paging */
2427                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2428                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2429                              ~(CPU_BASED_CR3_LOAD_EXITING |
2430                                CPU_BASED_CR3_STORE_EXITING));
2431                 vcpu->arch.cr0 = cr0;
2432                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2433         }
2434
2435         if (!(cr0 & X86_CR0_WP))
2436                 *hw_cr0 &= ~X86_CR0_WP;
2437 }
2438
2439 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2440 {
2441         struct vcpu_vmx *vmx = to_vmx(vcpu);
2442         unsigned long hw_cr0;
2443
2444         if (enable_unrestricted_guest)
2445                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2446                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2447         else
2448                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2449
2450         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2451                 enter_pmode(vcpu);
2452
2453         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2454                 enter_rmode(vcpu);
2455
2456 #ifdef CONFIG_X86_64
2457         if (vcpu->arch.efer & EFER_LME) {
2458                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2459                         enter_lmode(vcpu);
2460                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2461                         exit_lmode(vcpu);
2462         }
2463 #endif
2464
2465         if (enable_ept)
2466                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2467
2468         if (!vcpu->fpu_active)
2469                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2470
2471         vmcs_writel(CR0_READ_SHADOW, cr0);
2472         vmcs_writel(GUEST_CR0, hw_cr0);
2473         vcpu->arch.cr0 = cr0;
2474         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2475 }
2476
2477 static u64 construct_eptp(unsigned long root_hpa)
2478 {
2479         u64 eptp;
2480
2481         /* TODO write the value reading from MSR */
2482         eptp = VMX_EPT_DEFAULT_MT |
2483                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2484         eptp |= (root_hpa & PAGE_MASK);
2485
2486         return eptp;
2487 }
2488
2489 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2490 {
2491         unsigned long guest_cr3;
2492         u64 eptp;
2493
2494         guest_cr3 = cr3;
2495         if (enable_ept) {
2496                 eptp = construct_eptp(cr3);
2497                 vmcs_write64(EPT_POINTER, eptp);
2498                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2499                         vcpu->kvm->arch.ept_identity_map_addr;
2500                 ept_load_pdptrs(vcpu);
2501         }
2502
2503         vmx_flush_tlb(vcpu);
2504         vmcs_writel(GUEST_CR3, guest_cr3);
2505 }
2506
2507 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2508 {
2509         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2510                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2511
2512         if (cr4 & X86_CR4_VMXE) {
2513                 /*
2514                  * To use VMXON (and later other VMX instructions), a guest
2515                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
2516                  * So basically the check on whether to allow nested VMX
2517                  * is here.
2518                  */
2519                 if (!nested_vmx_allowed(vcpu))
2520                         return 1;
2521         } else if (to_vmx(vcpu)->nested.vmxon)
2522                 return 1;
2523
2524         vcpu->arch.cr4 = cr4;
2525         if (enable_ept) {
2526                 if (!is_paging(vcpu)) {
2527                         hw_cr4 &= ~X86_CR4_PAE;
2528                         hw_cr4 |= X86_CR4_PSE;
2529                 } else if (!(cr4 & X86_CR4_PAE)) {
2530                         hw_cr4 &= ~X86_CR4_PAE;
2531                 }
2532         }
2533
2534         vmcs_writel(CR4_READ_SHADOW, cr4);
2535         vmcs_writel(GUEST_CR4, hw_cr4);
2536         return 0;
2537 }
2538
2539 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2540                             struct kvm_segment *var, int seg)
2541 {
2542         struct vcpu_vmx *vmx = to_vmx(vcpu);
2543         struct kvm_save_segment *save;
2544         u32 ar;
2545
2546         if (vmx->rmode.vm86_active
2547             && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2548                 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2549                 || seg == VCPU_SREG_GS)
2550             && !emulate_invalid_guest_state) {
2551                 switch (seg) {
2552                 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2553                 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2554                 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2555                 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2556                 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2557                 default: BUG();
2558                 }
2559                 var->selector = save->selector;
2560                 var->base = save->base;
2561                 var->limit = save->limit;
2562                 ar = save->ar;
2563                 if (seg == VCPU_SREG_TR
2564                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2565                         goto use_saved_rmode_seg;
2566         }
2567         var->base = vmx_read_guest_seg_base(vmx, seg);
2568         var->limit = vmx_read_guest_seg_limit(vmx, seg);
2569         var->selector = vmx_read_guest_seg_selector(vmx, seg);
2570         ar = vmx_read_guest_seg_ar(vmx, seg);
2571 use_saved_rmode_seg:
2572         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2573                 ar = 0;
2574         var->type = ar & 15;
2575         var->s = (ar >> 4) & 1;
2576         var->dpl = (ar >> 5) & 3;
2577         var->present = (ar >> 7) & 1;
2578         var->avl = (ar >> 12) & 1;
2579         var->l = (ar >> 13) & 1;
2580         var->db = (ar >> 14) & 1;
2581         var->g = (ar >> 15) & 1;
2582         var->unusable = (ar >> 16) & 1;
2583 }
2584
2585 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2586 {
2587         struct kvm_segment s;
2588
2589         if (to_vmx(vcpu)->rmode.vm86_active) {
2590                 vmx_get_segment(vcpu, &s, seg);
2591                 return s.base;
2592         }
2593         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
2594 }
2595
2596 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2597 {
2598         if (!is_protmode(vcpu))
2599                 return 0;
2600
2601         if (!is_long_mode(vcpu)
2602             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2603                 return 3;
2604
2605         return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2606 }
2607
2608 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2609 {
2610         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
2611                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2612                 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
2613         }
2614         return to_vmx(vcpu)->cpl;
2615 }
2616
2617
2618 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2619 {
2620         u32 ar;
2621
2622         if (var->unusable)
2623                 ar = 1 << 16;
2624         else {
2625                 ar = var->type & 15;
2626                 ar |= (var->s & 1) << 4;
2627                 ar |= (var->dpl & 3) << 5;
2628                 ar |= (var->present & 1) << 7;
2629                 ar |= (var->avl & 1) << 12;
2630                 ar |= (var->l & 1) << 13;
2631                 ar |= (var->db & 1) << 14;
2632                 ar |= (var->g & 1) << 15;
2633         }
2634         if (ar == 0) /* a 0 value means unusable */
2635                 ar = AR_UNUSABLE_MASK;
2636
2637         return ar;
2638 }
2639
2640 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2641                             struct kvm_segment *var, int seg)
2642 {
2643         struct vcpu_vmx *vmx = to_vmx(vcpu);
2644         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2645         u32 ar;
2646
2647         vmx_segment_cache_clear(vmx);
2648
2649         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2650                 vmcs_write16(sf->selector, var->selector);
2651                 vmx->rmode.tr.selector = var->selector;
2652                 vmx->rmode.tr.base = var->base;
2653                 vmx->rmode.tr.limit = var->limit;
2654                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2655                 return;
2656         }
2657         vmcs_writel(sf->base, var->base);
2658         vmcs_write32(sf->limit, var->limit);
2659         vmcs_write16(sf->selector, var->selector);
2660         if (vmx->rmode.vm86_active && var->s) {
2661                 /*
2662                  * Hack real-mode segments into vm86 compatibility.
2663                  */
2664                 if (var->base == 0xffff0000 && var->selector == 0xf000)
2665                         vmcs_writel(sf->base, 0xf0000);
2666                 ar = 0xf3;
2667         } else
2668                 ar = vmx_segment_access_rights(var);
2669
2670         /*
2671          *   Fix the "Accessed" bit in AR field of segment registers for older
2672          * qemu binaries.
2673          *   IA32 arch specifies that at the time of processor reset the
2674          * "Accessed" bit in the AR field of segment registers is 1. And qemu
2675          * is setting it to 0 in the usedland code. This causes invalid guest
2676          * state vmexit when "unrestricted guest" mode is turned on.
2677          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
2678          * tree. Newer qemu binaries with that qemu fix would not need this
2679          * kvm hack.
2680          */
2681         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2682                 ar |= 0x1; /* Accessed */
2683
2684         vmcs_write32(sf->ar_bytes, ar);
2685         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2686 }
2687
2688 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2689 {
2690         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
2691
2692         *db = (ar >> 14) & 1;
2693         *l = (ar >> 13) & 1;
2694 }
2695
2696 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2697 {
2698         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2699         dt->address = vmcs_readl(GUEST_IDTR_BASE);
2700 }
2701
2702 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2703 {
2704         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2705         vmcs_writel(GUEST_IDTR_BASE, dt->address);
2706 }
2707
2708 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2709 {
2710         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2711         dt->address = vmcs_readl(GUEST_GDTR_BASE);
2712 }
2713
2714 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2715 {
2716         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2717         vmcs_writel(GUEST_GDTR_BASE, dt->address);
2718 }
2719
2720 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2721 {
2722         struct kvm_segment var;
2723         u32 ar;
2724
2725         vmx_get_segment(vcpu, &var, seg);
2726         ar = vmx_segment_access_rights(&var);
2727
2728         if (var.base != (var.selector << 4))
2729                 return false;
2730         if (var.limit != 0xffff)
2731                 return false;
2732         if (ar != 0xf3)
2733                 return false;
2734
2735         return true;
2736 }
2737
2738 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2739 {
2740         struct kvm_segment cs;
2741         unsigned int cs_rpl;
2742
2743         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2744         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2745
2746         if (cs.unusable)
2747                 return false;
2748         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2749                 return false;
2750         if (!cs.s)
2751                 return false;
2752         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2753                 if (cs.dpl > cs_rpl)
2754                         return false;
2755         } else {
2756                 if (cs.dpl != cs_rpl)
2757                         return false;
2758         }
2759         if (!cs.present)
2760                 return false;
2761
2762         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2763         return true;
2764 }
2765
2766 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2767 {
2768         struct kvm_segment ss;
2769         unsigned int ss_rpl;
2770
2771         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2772         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2773
2774         if (ss.unusable)
2775                 return true;
2776         if (ss.type != 3 && ss.type != 7)
2777                 return false;
2778         if (!ss.s)
2779                 return false;
2780         if (ss.dpl != ss_rpl) /* DPL != RPL */
2781                 return false;
2782         if (!ss.present)
2783                 return false;
2784
2785         return true;
2786 }
2787
2788 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2789 {
2790         struct kvm_segment var;
2791         unsigned int rpl;
2792
2793         vmx_get_segment(vcpu, &var, seg);
2794         rpl = var.selector & SELECTOR_RPL_MASK;
2795
2796         if (var.unusable)
2797                 return true;
2798         if (!var.s)
2799                 return false;
2800         if (!var.present)
2801                 return false;
2802         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2803                 if (var.dpl < rpl) /* DPL < RPL */
2804                         return false;
2805         }
2806
2807         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2808          * rights flags
2809          */
2810         return true;
2811 }
2812
2813 static bool tr_valid(struct kvm_vcpu *vcpu)
2814 {
2815         struct kvm_segment tr;
2816
2817         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2818
2819         if (tr.unusable)
2820                 return false;
2821         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2822                 return false;
2823         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2824                 return false;
2825         if (!tr.present)
2826                 return false;
2827
2828         return true;
2829 }
2830
2831 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2832 {
2833         struct kvm_segment ldtr;
2834
2835         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2836
2837         if (ldtr.unusable)
2838                 return true;
2839         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2840                 return false;
2841         if (ldtr.type != 2)
2842                 return false;
2843         if (!ldtr.present)
2844                 return false;
2845
2846         return true;
2847 }
2848
2849 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2850 {
2851         struct kvm_segment cs, ss;
2852
2853         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2854         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2855
2856         return ((cs.selector & SELECTOR_RPL_MASK) ==
2857                  (ss.selector & SELECTOR_RPL_MASK));
2858 }
2859
2860 /*
2861  * Check if guest state is valid. Returns true if valid, false if
2862  * not.
2863  * We assume that registers are always usable
2864  */
2865 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2866 {
2867         /* real mode guest state checks */
2868         if (!is_protmode(vcpu)) {
2869                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2870                         return false;
2871                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2872                         return false;
2873                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2874                         return false;
2875                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2876                         return false;
2877                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2878                         return false;
2879                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2880                         return false;
2881         } else {
2882         /* protected mode guest state checks */
2883                 if (!cs_ss_rpl_check(vcpu))
2884                         return false;
2885                 if (!code_segment_valid(vcpu))
2886                         return false;
2887                 if (!stack_segment_valid(vcpu))
2888                         return false;
2889                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2890                         return false;
2891                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2892                         return false;
2893                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2894                         return false;
2895                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2896                         return false;
2897                 if (!tr_valid(vcpu))
2898                         return false;
2899                 if (!ldtr_valid(vcpu))
2900                         return false;
2901         }
2902         /* TODO:
2903          * - Add checks on RIP
2904          * - Add checks on RFLAGS
2905          */
2906
2907         return true;
2908 }
2909
2910 static int init_rmode_tss(struct kvm *kvm)
2911 {
2912         gfn_t fn;
2913         u16 data = 0;
2914         int r, idx, ret = 0;
2915
2916         idx = srcu_read_lock(&kvm->srcu);
2917         fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2918         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2919         if (r < 0)
2920                 goto out;
2921         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2922         r = kvm_write_guest_page(kvm, fn++, &data,
2923                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2924         if (r < 0)
2925                 goto out;
2926         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2927         if (r < 0)
2928                 goto out;
2929         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2930         if (r < 0)
2931                 goto out;
2932         data = ~0;
2933         r = kvm_write_guest_page(kvm, fn, &data,
2934                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2935                                  sizeof(u8));
2936         if (r < 0)
2937                 goto out;
2938
2939         ret = 1;
2940 out:
2941         srcu_read_unlock(&kvm->srcu, idx);
2942         return ret;
2943 }
2944
2945 static int init_rmode_identity_map(struct kvm *kvm)
2946 {
2947         int i, idx, r, ret;
2948         pfn_t identity_map_pfn;
2949         u32 tmp;
2950
2951         if (!enable_ept)
2952                 return 1;
2953         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2954                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2955                         "haven't been allocated!\n");
2956                 return 0;
2957         }
2958         if (likely(kvm->arch.ept_identity_pagetable_done))
2959                 return 1;
2960         ret = 0;
2961         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2962         idx = srcu_read_lock(&kvm->srcu);
2963         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2964         if (r < 0)
2965                 goto out;
2966         /* Set up identity-mapping pagetable for EPT in real mode */
2967         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2968                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2969                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2970                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2971                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2972                 if (r < 0)
2973                         goto out;
2974         }
2975         kvm->arch.ept_identity_pagetable_done = true;
2976         ret = 1;
2977 out:
2978         srcu_read_unlock(&kvm->srcu, idx);
2979         return ret;
2980 }
2981
2982 static void seg_setup(int seg)
2983 {
2984         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2985         unsigned int ar;
2986
2987         vmcs_write16(sf->selector, 0);
2988         vmcs_writel(sf->base, 0);
2989         vmcs_write32(sf->limit, 0xffff);
2990         if (enable_unrestricted_guest) {
2991                 ar = 0x93;
2992                 if (seg == VCPU_SREG_CS)
2993                         ar |= 0x08; /* code segment */
2994         } else
2995                 ar = 0xf3;
2996
2997         vmcs_write32(sf->ar_bytes, ar);
2998 }
2999
3000 static int alloc_apic_access_page(struct kvm *kvm)
3001 {
3002         struct kvm_userspace_memory_region kvm_userspace_mem;
3003         int r = 0;
3004
3005         mutex_lock(&kvm->slots_lock);
3006         if (kvm->arch.apic_access_page)
3007                 goto out;
3008         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3009         kvm_userspace_mem.flags = 0;
3010         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3011         kvm_userspace_mem.memory_size = PAGE_SIZE;
3012         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3013         if (r)
3014                 goto out;
3015
3016         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3017 out:
3018         mutex_unlock(&kvm->slots_lock);
3019         return r;
3020 }
3021
3022 static int alloc_identity_pagetable(struct kvm *kvm)
3023 {
3024         struct kvm_userspace_memory_region kvm_userspace_mem;
3025         int r = 0;
3026
3027         mutex_lock(&kvm->slots_lock);
3028         if (kvm->arch.ept_identity_pagetable)
3029                 goto out;
3030         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3031         kvm_userspace_mem.flags = 0;
3032         kvm_userspace_mem.guest_phys_addr =
3033                 kvm->arch.ept_identity_map_addr;
3034         kvm_userspace_mem.memory_size = PAGE_SIZE;
3035         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3036         if (r)
3037                 goto out;
3038
3039         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3040                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3041 out:
3042         mutex_unlock(&kvm->slots_lock);
3043         return r;
3044 }
3045
3046 static void allocate_vpid(struct vcpu_vmx *vmx)
3047 {
3048         int vpid;
3049
3050         vmx->vpid = 0;
3051         if (!enable_vpid)
3052                 return;
3053         spin_lock(&vmx_vpid_lock);
3054         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3055         if (vpid < VMX_NR_VPIDS) {
3056                 vmx->vpid = vpid;
3057                 __set_bit(vpid, vmx_vpid_bitmap);
3058         }
3059         spin_unlock(&vmx_vpid_lock);
3060 }
3061
3062 static void free_vpid(struct vcpu_vmx *vmx)
3063 {
3064         if (!enable_vpid)
3065                 return;
3066         spin_lock(&vmx_vpid_lock);
3067         if (vmx->vpid != 0)
3068                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3069         spin_unlock(&vmx_vpid_lock);
3070 }
3071
3072 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3073 {
3074         int f = sizeof(unsigned long);
3075
3076         if (!cpu_has_vmx_msr_bitmap())
3077                 return;
3078
3079         /*
3080          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3081          * have the write-low and read-high bitmap offsets the wrong way round.
3082          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3083          */
3084         if (msr <= 0x1fff) {
3085                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3086                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3087         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3088                 msr &= 0x1fff;
3089                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3090                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3091         }
3092 }
3093
3094 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3095 {
3096         if (!longmode_only)
3097                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3098         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3099 }
3100
3101 /*
3102  * Sets up the vmcs for emulated real mode.
3103  */
3104 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3105 {
3106         u32 host_sysenter_cs, msr_low, msr_high;
3107         u32 junk;
3108         u64 host_pat;
3109         unsigned long a;
3110         struct desc_ptr dt;
3111         int i;
3112         unsigned long kvm_vmx_return;
3113         u32 exec_control;
3114
3115         /* I/O */
3116         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3117         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3118
3119         if (cpu_has_vmx_msr_bitmap())
3120                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3121
3122         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3123
3124         /* Control */
3125         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3126                 vmcs_config.pin_based_exec_ctrl);
3127
3128         exec_control = vmcs_config.cpu_based_exec_ctrl;
3129         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3130                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3131 #ifdef CONFIG_X86_64
3132                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3133                                 CPU_BASED_CR8_LOAD_EXITING;
3134 #endif
3135         }
3136         if (!enable_ept)
3137                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3138                                 CPU_BASED_CR3_LOAD_EXITING  |
3139                                 CPU_BASED_INVLPG_EXITING;
3140         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
3141
3142         if (cpu_has_secondary_exec_ctrls()) {
3143                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3144                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3145                         exec_control &=
3146                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3147                 if (vmx->vpid == 0)
3148                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3149                 if (!enable_ept) {
3150                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3151                         enable_unrestricted_guest = 0;
3152                 }
3153                 if (!enable_unrestricted_guest)
3154                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3155                 if (!ple_gap)
3156                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3157                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
3158         }
3159
3160         if (ple_gap) {
3161                 vmcs_write32(PLE_GAP, ple_gap);
3162                 vmcs_write32(PLE_WINDOW, ple_window);
3163         }
3164
3165         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
3166         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
3167         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
3168
3169         vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
3170         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
3171         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
3172
3173         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3174         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3175         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3176         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
3177         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
3178         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3179 #ifdef CONFIG_X86_64
3180         rdmsrl(MSR_FS_BASE, a);
3181         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3182         rdmsrl(MSR_GS_BASE, a);
3183         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3184 #else
3185         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3186         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3187 #endif
3188
3189         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3190
3191         native_store_idt(&dt);
3192         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3193
3194         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
3195         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
3196         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3197         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3198         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3199         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3200         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3201
3202         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
3203         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
3204         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
3205         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
3206         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
3207         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
3208
3209         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3210                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3211                 host_pat = msr_low | ((u64) msr_high << 32);
3212                 vmcs_write64(HOST_IA32_PAT, host_pat);
3213         }
3214         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3215                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3216                 host_pat = msr_low | ((u64) msr_high << 32);
3217                 /* Write the default value follow host pat */
3218                 vmcs_write64(GUEST_IA32_PAT, host_pat);
3219                 /* Keep arch.pat sync with GUEST_IA32_PAT */
3220                 vmx->vcpu.arch.pat = host_pat;
3221         }
3222
3223         for (i = 0; i < NR_VMX_MSR; ++i) {
3224                 u32 index = vmx_msr_index[i];
3225                 u32 data_low, data_high;
3226                 int j = vmx->nmsrs;
3227
3228                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3229                         continue;
3230                 if (wrmsr_safe(index, data_low, data_high) < 0)
3231                         continue;
3232                 vmx->guest_msrs[j].index = i;
3233                 vmx->guest_msrs[j].data = 0;
3234                 vmx->guest_msrs[j].mask = -1ull;
3235                 ++vmx->nmsrs;
3236         }
3237
3238         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3239
3240         /* 22.2.1, 20.8.1 */
3241         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3242
3243         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3244         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3245         if (enable_ept)
3246                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3247         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3248
3249         kvm_write_tsc(&vmx->vcpu, 0);
3250
3251         return 0;
3252 }
3253
3254 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3255 {
3256         struct vcpu_vmx *vmx = to_vmx(vcpu);
3257         u64 msr;
3258         int ret;
3259
3260         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3261
3262         vmx->rmode.vm86_active = 0;
3263
3264         vmx->soft_vnmi_blocked = 0;
3265
3266         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3267         kvm_set_cr8(&vmx->vcpu, 0);
3268         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3269         if (kvm_vcpu_is_bsp(&vmx->vcpu))
3270                 msr |= MSR_IA32_APICBASE_BSP;
3271         kvm_set_apic_base(&vmx->vcpu, msr);
3272
3273         ret = fx_init(&vmx->vcpu);
3274         if (ret != 0)
3275                 goto out;
3276
3277         vmx_segment_cache_clear(vmx);
3278
3279         seg_setup(VCPU_SREG_CS);
3280         /*
3281          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3282          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
3283          */
3284         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3285                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3286                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3287         } else {
3288                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3289                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3290         }
3291
3292         seg_setup(VCPU_SREG_DS);
3293         seg_setup(VCPU_SREG_ES);
3294         seg_setup(VCPU_SREG_FS);
3295         seg_setup(VCPU_SREG_GS);
3296         seg_setup(VCPU_SREG_SS);
3297
3298         vmcs_write16(GUEST_TR_SELECTOR, 0);
3299         vmcs_writel(GUEST_TR_BASE, 0);
3300         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3301         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3302
3303         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3304         vmcs_writel(GUEST_LDTR_BASE, 0);
3305         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3306         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3307
3308         vmcs_write32(GUEST_SYSENTER_CS, 0);
3309         vmcs_writel(GUEST_SYSENTER_ESP, 0);
3310         vmcs_writel(GUEST_SYSENTER_EIP, 0);
3311
3312         vmcs_writel(GUEST_RFLAGS, 0x02);
3313         if (kvm_vcpu_is_bsp(&vmx->vcpu))
3314                 kvm_rip_write(vcpu, 0xfff0);
3315         else
3316                 kvm_rip_write(vcpu, 0);
3317         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3318
3319         vmcs_writel(GUEST_DR7, 0x400);
3320
3321         vmcs_writel(GUEST_GDTR_BASE, 0);
3322         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3323
3324         vmcs_writel(GUEST_IDTR_BASE, 0);
3325         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3326
3327         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3328         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3329         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3330
3331         /* Special registers */
3332         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3333
3334         setup_msrs(vmx);
3335
3336         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
3337
3338         if (cpu_has_vmx_tpr_shadow()) {
3339                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3340                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3341                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3342                                      __pa(vmx->vcpu.arch.apic->regs));
3343                 vmcs_write32(TPR_THRESHOLD, 0);
3344         }
3345
3346         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3347                 vmcs_write64(APIC_ACCESS_ADDR,
3348                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3349
3350         if (vmx->vpid != 0)
3351                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3352
3353         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3354         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3355         vmx_set_cr4(&vmx->vcpu, 0);
3356         vmx_set_efer(&vmx->vcpu, 0);
3357         vmx_fpu_activate(&vmx->vcpu);
3358         update_exception_bitmap(&vmx->vcpu);
3359
3360         vpid_sync_context(vmx);
3361
3362         ret = 0;
3363
3364         /* HACK: Don't enable emulation on guest boot/reset */
3365         vmx->emulation_required = 0;
3366
3367 out:
3368         return ret;
3369 }
3370
3371 static void enable_irq_window(struct kvm_vcpu *vcpu)
3372 {
3373         u32 cpu_based_vm_exec_control;
3374
3375         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3376         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3377         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3378 }
3379
3380 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3381 {
3382         u32 cpu_based_vm_exec_control;
3383
3384         if (!cpu_has_virtual_nmis()) {
3385                 enable_irq_window(vcpu);
3386                 return;
3387         }
3388
3389         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3390                 enable_irq_window(vcpu);
3391                 return;
3392         }
3393         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3394         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3395         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3396 }
3397
3398 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3399 {
3400         struct vcpu_vmx *vmx = to_vmx(vcpu);
3401         uint32_t intr;
3402         int irq = vcpu->arch.interrupt.nr;
3403
3404         trace_kvm_inj_virq(irq);
3405
3406         ++vcpu->stat.irq_injections;
3407         if (vmx->rmode.vm86_active) {
3408                 int inc_eip = 0;
3409                 if (vcpu->arch.interrupt.soft)
3410                         inc_eip = vcpu->arch.event_exit_inst_len;
3411                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3412                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3413                 return;
3414         }
3415         intr = irq | INTR_INFO_VALID_MASK;
3416         if (vcpu->arch.interrupt.soft) {
3417                 intr |= INTR_TYPE_SOFT_INTR;
3418                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3419                              vmx->vcpu.arch.event_exit_inst_len);
3420         } else
3421                 intr |= INTR_TYPE_EXT_INTR;
3422         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
3423         vmx_clear_hlt(vcpu);
3424 }
3425
3426 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
3427 {
3428         struct vcpu_vmx *vmx = to_vmx(vcpu);
3429
3430         if (!cpu_has_virtual_nmis()) {
3431                 /*
3432                  * Tracking the NMI-blocked state in software is built upon
3433                  * finding the next open IRQ window. This, in turn, depends on
3434                  * well-behaving guests: They have to keep IRQs disabled at
3435                  * least as long as the NMI handler runs. Otherwise we may
3436                  * cause NMI nesting, maybe breaking the guest. But as this is
3437                  * highly unlikely, we can live with the residual risk.
3438                  */
3439                 vmx->soft_vnmi_blocked = 1;
3440                 vmx->vnmi_blocked_time = 0;
3441         }
3442
3443         ++vcpu->stat.nmi_injections;
3444         vmx->nmi_known_unmasked = false;
3445         if (vmx->rmode.vm86_active) {
3446                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
3447                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3448                 return;
3449         }
3450         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
3451                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
3452         vmx_clear_hlt(vcpu);
3453 }
3454
3455 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
3456 {
3457         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
3458                 return 0;
3459
3460         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3461                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
3462                    | GUEST_INTR_STATE_NMI));
3463 }
3464
3465 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
3466 {
3467         if (!cpu_has_virtual_nmis())
3468                 return to_vmx(vcpu)->soft_vnmi_blocked;
3469         if (to_vmx(vcpu)->nmi_known_unmasked)
3470                 return false;
3471         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3472 }
3473
3474 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3475 {
3476         struct vcpu_vmx *vmx = to_vmx(vcpu);
3477
3478         if (!cpu_has_virtual_nmis()) {
3479                 if (vmx->soft_vnmi_blocked != masked) {
3480                         vmx->soft_vnmi_blocked = masked;
3481                         vmx->vnmi_blocked_time = 0;
3482                 }
3483         } else {
3484                 vmx->nmi_known_unmasked = !masked;
3485                 if (masked)
3486                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3487                                       GUEST_INTR_STATE_NMI);
3488                 else
3489                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3490                                         GUEST_INTR_STATE_NMI);
3491         }
3492 }
3493
3494 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3495 {
3496         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
3497                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3498                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
3499 }
3500
3501 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
3502 {
3503         int ret;
3504         struct kvm_userspace_memory_region tss_mem = {
3505                 .slot = TSS_PRIVATE_MEMSLOT,
3506                 .guest_phys_addr = addr,
3507                 .memory_size = PAGE_SIZE * 3,
3508                 .flags = 0,
3509         };
3510
3511         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3512         if (ret)
3513                 return ret;
3514         kvm->arch.tss_addr = addr;
3515         if (!init_rmode_tss(kvm))
3516                 return  -ENOMEM;
3517
3518         return 0;
3519 }
3520
3521 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3522                                   int vec, u32 err_code)
3523 {
3524         /*
3525          * Instruction with address size override prefix opcode 0x67
3526          * Cause the #SS fault with 0 error code in VM86 mode.
3527          */
3528         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3529                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3530                         return 1;
3531         /*
3532          * Forward all other exceptions that are valid in real mode.
3533          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3534          *        the required debugging infrastructure rework.
3535          */
3536         switch (vec) {
3537         case DB_VECTOR:
3538                 if (vcpu->guest_debug &
3539                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3540                         return 0;
3541                 kvm_queue_exception(vcpu, vec);
3542                 return 1;
3543         case BP_VECTOR:
3544                 /*
3545                  * Update instruction length as we may reinject the exception
3546                  * from user space while in guest debugging mode.
3547                  */
3548                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3549                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3550                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3551                         return 0;
3552                 /* fall through */
3553         case DE_VECTOR:
3554         case OF_VECTOR:
3555         case BR_VECTOR:
3556         case UD_VECTOR:
3557         case DF_VECTOR:
3558         case SS_VECTOR:
3559         case GP_VECTOR:
3560         case MF_VECTOR:
3561                 kvm_queue_exception(vcpu, vec);
3562                 return 1;
3563         }
3564         return 0;
3565 }
3566
3567 /*
3568  * Trigger machine check on the host. We assume all the MSRs are already set up
3569  * by the CPU and that we still run on the same CPU as the MCE occurred on.
3570  * We pass a fake environment to the machine check handler because we want
3571  * the guest to be always treated like user space, no matter what context
3572  * it used internally.
3573  */
3574 static void kvm_machine_check(void)
3575 {
3576 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3577         struct pt_regs regs = {
3578                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3579                 .flags = X86_EFLAGS_IF,
3580         };
3581
3582         do_machine_check(&regs, 0);
3583 #endif
3584 }
3585
3586 static int handle_machine_check(struct kvm_vcpu *vcpu)
3587 {
3588         /* already handled by vcpu_run */
3589         return 1;
3590 }
3591
3592 static int handle_exception(struct kvm_vcpu *vcpu)
3593 {
3594         struct vcpu_vmx *vmx = to_vmx(vcpu);
3595         struct kvm_run *kvm_run = vcpu->run;
3596         u32 intr_info, ex_no, error_code;
3597         unsigned long cr2, rip, dr6;
3598         u32 vect_info;
3599         enum emulation_result er;
3600
3601         vect_info = vmx->idt_vectoring_info;
3602         intr_info = vmx->exit_intr_info;
3603
3604         if (is_machine_check(intr_info))
3605                 return handle_machine_check(vcpu);
3606
3607         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3608             !is_page_fault(intr_info)) {
3609                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3610                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3611                 vcpu->run->internal.ndata = 2;
3612                 vcpu->run->internal.data[0] = vect_info;
3613                 vcpu->run->internal.data[1] = intr_info;
3614                 return 0;
3615         }
3616
3617         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3618                 return 1;  /* already handled by vmx_vcpu_run() */
3619
3620         if (is_no_device(intr_info)) {
3621                 vmx_fpu_activate(vcpu);
3622                 return 1;
3623         }
3624
3625         if (is_invalid_opcode(intr_info)) {
3626                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3627                 if (er != EMULATE_DONE)
3628                         kvm_queue_exception(vcpu, UD_VECTOR);
3629                 return 1;
3630         }
3631
3632         error_code = 0;
3633         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3634                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3635         if (is_page_fault(intr_info)) {
3636                 /* EPT won't cause page fault directly */
3637                 if (enable_ept)
3638                         BUG();
3639                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3640                 trace_kvm_page_fault(cr2, error_code);
3641
3642                 if (kvm_event_needs_reinjection(vcpu))
3643                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
3644                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3645         }
3646
3647         if (vmx->rmode.vm86_active &&
3648             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3649                                                                 error_code)) {
3650                 if (vcpu->arch.halt_request) {
3651                         vcpu->arch.halt_request = 0;
3652                         return kvm_emulate_halt(vcpu);
3653                 }
3654                 return 1;
3655         }
3656
3657         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3658         switch (ex_no) {
3659         case DB_VECTOR:
3660                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3661                 if (!(vcpu->guest_debug &
3662                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3663                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3664                         kvm_queue_exception(vcpu, DB_VECTOR);
3665                         return 1;
3666                 }
3667                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3668                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3669                 /* fall through */
3670         case BP_VECTOR:
3671                 /*
3672                  * Update instruction length as we may reinject #BP from
3673                  * user space while in guest debugging mode. Reading it for
3674                  * #DB as well causes no harm, it is not used in that case.
3675                  */
3676                 vmx->vcpu.arch.event_exit_inst_len =
3677                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3678                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3679                 rip = kvm_rip_read(vcpu);
3680                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3681                 kvm_run->debug.arch.exception = ex_no;
3682                 break;
3683         default:
3684                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3685                 kvm_run->ex.exception = ex_no;
3686                 kvm_run->ex.error_code = error_code;
3687                 break;
3688         }
3689         return 0;
3690 }
3691
3692 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3693 {
3694         ++vcpu->stat.irq_exits;
3695         return 1;
3696 }
3697
3698 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3699 {
3700         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3701         return 0;
3702 }
3703
3704 static int handle_io(struct kvm_vcpu *vcpu)
3705 {
3706         unsigned long exit_qualification;
3707         int size, in, string;
3708         unsigned port;
3709
3710         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3711         string = (exit_qualification & 16) != 0;
3712         in = (exit_qualification & 8) != 0;
3713
3714         ++vcpu->stat.io_exits;
3715
3716         if (string || in)
3717                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3718
3719         port = exit_qualification >> 16;
3720         size = (exit_qualification & 7) + 1;
3721         skip_emulated_instruction(vcpu);
3722
3723         return kvm_fast_pio_out(vcpu, size, port);
3724 }
3725
3726 static void
3727 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3728 {
3729         /*
3730          * Patch in the VMCALL instruction:
3731          */
3732         hypercall[0] = 0x0f;
3733         hypercall[1] = 0x01;
3734         hypercall[2] = 0xc1;
3735 }
3736
3737 static int handle_cr(struct kvm_vcpu *vcpu)
3738 {
3739         unsigned long exit_qualification, val;
3740         int cr;
3741         int reg;
3742         int err;
3743
3744         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3745         cr = exit_qualification & 15;
3746         reg = (exit_qualification >> 8) & 15;
3747         switch ((exit_qualification >> 4) & 3) {
3748         case 0: /* mov to cr */
3749                 val = kvm_register_read(vcpu, reg);
3750                 trace_kvm_cr_write(cr, val);
3751                 switch (cr) {
3752                 case 0:
3753                         err = kvm_set_cr0(vcpu, val);
3754                         kvm_complete_insn_gp(vcpu, err);
3755                         return 1;
3756                 case 3:
3757                         err = kvm_set_cr3(vcpu, val);
3758                         kvm_complete_insn_gp(vcpu, err);
3759                         return 1;
3760                 case 4:
3761                         err = kvm_set_cr4(vcpu, val);
3762                         kvm_complete_insn_gp(vcpu, err);
3763                         return 1;
3764                 case 8: {
3765                                 u8 cr8_prev = kvm_get_cr8(vcpu);
3766                                 u8 cr8 = kvm_register_read(vcpu, reg);
3767                                 err = kvm_set_cr8(vcpu, cr8);
3768                                 kvm_complete_insn_gp(vcpu, err);
3769                                 if (irqchip_in_kernel(vcpu->kvm))
3770                                         return 1;
3771                                 if (cr8_prev <= cr8)
3772                                         return 1;
3773                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3774                                 return 0;
3775                         }
3776                 };
3777                 break;
3778         case 2: /* clts */
3779                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3780                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3781                 skip_emulated_instruction(vcpu);
3782                 vmx_fpu_activate(vcpu);
3783                 return 1;
3784         case 1: /*mov from cr*/
3785                 switch (cr) {
3786                 case 3:
3787                         val = kvm_read_cr3(vcpu);
3788                         kvm_register_write(vcpu, reg, val);
3789                         trace_kvm_cr_read(cr, val);
3790                         skip_emulated_instruction(vcpu);
3791                         return 1;
3792                 case 8:
3793                         val = kvm_get_cr8(vcpu);
3794                         kvm_register_write(vcpu, reg, val);
3795                         trace_kvm_cr_read(cr, val);
3796                         skip_emulated_instruction(vcpu);
3797                         return 1;
3798                 }
3799                 break;
3800         case 3: /* lmsw */
3801                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3802                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3803                 kvm_lmsw(vcpu, val);
3804
3805                 skip_emulated_instruction(vcpu);
3806                 return 1;
3807         default:
3808                 break;
3809         }
3810         vcpu->run->exit_reason = 0;
3811         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3812                (int)(exit_qualification >> 4) & 3, cr);
3813         return 0;
3814 }
3815
3816 static int handle_dr(struct kvm_vcpu *vcpu)
3817 {
3818         unsigned long exit_qualification;
3819         int dr, reg;
3820
3821         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3822         if (!kvm_require_cpl(vcpu, 0))
3823                 return 1;
3824         dr = vmcs_readl(GUEST_DR7);
3825         if (dr & DR7_GD) {
3826                 /*
3827                  * As the vm-exit takes precedence over the debug trap, we
3828                  * need to emulate the latter, either for the host or the
3829                  * guest debugging itself.
3830                  */
3831                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3832                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3833                         vcpu->run->debug.arch.dr7 = dr;
3834                         vcpu->run->debug.arch.pc =
3835                                 vmcs_readl(GUEST_CS_BASE) +
3836                                 vmcs_readl(GUEST_RIP);
3837                         vcpu->run->debug.arch.exception = DB_VECTOR;
3838                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3839                         return 0;
3840                 } else {
3841                         vcpu->arch.dr7 &= ~DR7_GD;
3842                         vcpu->arch.dr6 |= DR6_BD;
3843                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3844                         kvm_queue_exception(vcpu, DB_VECTOR);
3845                         return 1;
3846                 }
3847         }
3848
3849         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3850         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3851         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3852         if (exit_qualification & TYPE_MOV_FROM_DR) {
3853                 unsigned long val;
3854                 if (!kvm_get_dr(vcpu, dr, &val))
3855                         kvm_register_write(vcpu, reg, val);
3856         } else
3857                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3858         skip_emulated_instruction(vcpu);
3859         return 1;
3860 }
3861
3862 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3863 {
3864         vmcs_writel(GUEST_DR7, val);
3865 }
3866
3867 static int handle_cpuid(struct kvm_vcpu *vcpu)
3868 {
3869         kvm_emulate_cpuid(vcpu);
3870         return 1;
3871 }
3872
3873 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3874 {
3875         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3876         u64 data;
3877
3878         if (vmx_get_msr(vcpu, ecx, &data)) {
3879                 trace_kvm_msr_read_ex(ecx);
3880                 kvm_inject_gp(vcpu, 0);
3881                 return 1;
3882         }
3883
3884         trace_kvm_msr_read(ecx, data);
3885
3886         /* FIXME: handling of bits 32:63 of rax, rdx */
3887         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3888         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3889         skip_emulated_instruction(vcpu);
3890         return 1;
3891 }
3892
3893 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3894 {
3895         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3896         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3897                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3898
3899         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3900                 trace_kvm_msr_write_ex(ecx, data);
3901                 kvm_inject_gp(vcpu, 0);
3902                 return 1;
3903         }
3904
3905         trace_kvm_msr_write(ecx, data);
3906         skip_emulated_instruction(vcpu);
3907         return 1;
3908 }
3909
3910 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3911 {
3912         kvm_make_request(KVM_REQ_EVENT, vcpu);
3913         return 1;
3914 }
3915
3916 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3917 {
3918         u32 cpu_based_vm_exec_control;
3919
3920         /* clear pending irq */
3921         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3922         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3923         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3924
3925         kvm_make_request(KVM_REQ_EVENT, vcpu);
3926
3927         ++vcpu->stat.irq_window_exits;
3928
3929         /*
3930          * If the user space waits to inject interrupts, exit as soon as
3931          * possible
3932          */
3933         if (!irqchip_in_kernel(vcpu->kvm) &&
3934             vcpu->run->request_interrupt_window &&
3935             !kvm_cpu_has_interrupt(vcpu)) {
3936                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3937                 return 0;
3938         }
3939         return 1;
3940 }
3941
3942 static int handle_halt(struct kvm_vcpu *vcpu)
3943 {
3944         skip_emulated_instruction(vcpu);
3945         return kvm_emulate_halt(vcpu);
3946 }
3947
3948 static int handle_vmcall(struct kvm_vcpu *vcpu)
3949 {
3950         skip_emulated_instruction(vcpu);
3951         kvm_emulate_hypercall(vcpu);
3952         return 1;
3953 }
3954
3955 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3956 {
3957         kvm_queue_exception(vcpu, UD_VECTOR);
3958         return 1;
3959 }
3960
3961 static int handle_invd(struct kvm_vcpu *vcpu)
3962 {
3963         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3964 }
3965
3966 static int handle_invlpg(struct kvm_vcpu *vcpu)
3967 {
3968         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3969
3970         kvm_mmu_invlpg(vcpu, exit_qualification);
3971         skip_emulated_instruction(vcpu);
3972         return 1;
3973 }
3974
3975 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3976 {
3977         skip_emulated_instruction(vcpu);
3978         kvm_emulate_wbinvd(vcpu);
3979         return 1;
3980 }
3981
3982 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3983 {
3984         u64 new_bv = kvm_read_edx_eax(vcpu);
3985         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3986
3987         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3988                 skip_emulated_instruction(vcpu);
3989         return 1;
3990 }
3991
3992 static int handle_apic_access(struct kvm_vcpu *vcpu)
3993 {
3994         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3995 }
3996
3997 static int handle_task_switch(struct kvm_vcpu *vcpu)
3998 {
3999         struct vcpu_vmx *vmx = to_vmx(vcpu);
4000         unsigned long exit_qualification;
4001         bool has_error_code = false;
4002         u32 error_code = 0;
4003         u16 tss_selector;
4004         int reason, type, idt_v;
4005
4006         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4007         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4008
4009         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4010
4011         reason = (u32)exit_qualification >> 30;
4012         if (reason == TASK_SWITCH_GATE && idt_v) {
4013                 switch (type) {
4014                 case INTR_TYPE_NMI_INTR:
4015                         vcpu->arch.nmi_injected = false;
4016                         vmx_set_nmi_mask(vcpu, true);
4017                         break;
4018                 case INTR_TYPE_EXT_INTR:
4019                 case INTR_TYPE_SOFT_INTR:
4020                         kvm_clear_interrupt_queue(vcpu);
4021                         break;
4022                 case INTR_TYPE_HARD_EXCEPTION:
4023                         if (vmx->idt_vectoring_info &
4024                             VECTORING_INFO_DELIVER_CODE_MASK) {
4025                                 has_error_code = true;
4026                                 error_code =
4027                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
4028                         }
4029                         /* fall through */
4030                 case INTR_TYPE_SOFT_EXCEPTION:
4031                         kvm_clear_exception_queue(vcpu);
4032                         break;
4033                 default:
4034                         break;
4035                 }
4036         }
4037         tss_selector = exit_qualification;
4038
4039         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4040                        type != INTR_TYPE_EXT_INTR &&
4041                        type != INTR_TYPE_NMI_INTR))
4042                 skip_emulated_instruction(vcpu);
4043
4044         if (kvm_task_switch(vcpu, tss_selector, reason,
4045                                 has_error_code, error_code) == EMULATE_FAIL) {
4046                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4047                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4048                 vcpu->run->internal.ndata = 0;
4049                 return 0;
4050         }
4051
4052         /* clear all local breakpoint enable flags */
4053         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4054
4055         /*
4056          * TODO: What about debug traps on tss switch?
4057          *       Are we supposed to inject them and update dr6?
4058          */
4059
4060         return 1;
4061 }
4062
4063 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4064 {
4065         unsigned long exit_qualification;
4066         gpa_t gpa;
4067         int gla_validity;
4068
4069         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4070
4071         if (exit_qualification & (1 << 6)) {
4072                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4073                 return -EINVAL;
4074         }
4075
4076         gla_validity = (exit_qualification >> 7) & 0x3;
4077         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4078                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4079                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4080                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4081                         vmcs_readl(GUEST_LINEAR_ADDRESS));
4082                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4083                         (long unsigned int)exit_qualification);
4084                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4085                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4086                 return 0;
4087         }
4088
4089         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4090         trace_kvm_page_fault(gpa, exit_qualification);
4091         return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4092 }
4093
4094 static u64 ept_rsvd_mask(u64 spte, int level)
4095 {
4096         int i;
4097         u64 mask = 0;
4098
4099         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4100                 mask |= (1ULL << i);
4101
4102         if (level > 2)
4103                 /* bits 7:3 reserved */
4104                 mask |= 0xf8;
4105         else if (level == 2) {
4106                 if (spte & (1ULL << 7))
4107                         /* 2MB ref, bits 20:12 reserved */
4108                         mask |= 0x1ff000;
4109                 else
4110                         /* bits 6:3 reserved */
4111                         mask |= 0x78;
4112         }
4113
4114         return mask;
4115 }
4116
4117 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4118                                        int level)
4119 {
4120         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4121
4122         /* 010b (write-only) */
4123         WARN_ON((spte & 0x7) == 0x2);
4124
4125         /* 110b (write/execute) */
4126         WARN_ON((spte & 0x7) == 0x6);
4127
4128         /* 100b (execute-only) and value not supported by logical processor */
4129         if (!cpu_has_vmx_ept_execute_only())
4130                 WARN_ON((spte & 0x7) == 0x4);
4131
4132         /* not 000b */
4133         if ((spte & 0x7)) {
4134                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4135
4136                 if (rsvd_bits != 0) {
4137                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4138                                          __func__, rsvd_bits);
4139                         WARN_ON(1);
4140                 }
4141
4142                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4143                         u64 ept_mem_type = (spte & 0x38) >> 3;
4144
4145                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
4146                             ept_mem_type == 7) {
4147                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4148                                                 __func__, ept_mem_type);
4149                                 WARN_ON(1);
4150                         }
4151                 }
4152         }
4153 }
4154
4155 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4156 {
4157         u64 sptes[4];
4158         int nr_sptes, i;
4159         gpa_t gpa;
4160
4161         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4162
4163         printk(KERN_ERR "EPT: Misconfiguration.\n");
4164         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4165
4166         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4167
4168         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4169                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4170
4171         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4172         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4173
4174         return 0;
4175 }
4176
4177 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4178 {
4179         u32 cpu_based_vm_exec_control;
4180
4181         /* clear pending NMI */
4182         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4183         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4184         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4185         ++vcpu->stat.nmi_window_exits;
4186         kvm_make_request(KVM_REQ_EVENT, vcpu);
4187
4188         return 1;
4189 }
4190
4191 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4192 {
4193         struct vcpu_vmx *vmx = to_vmx(vcpu);
4194         enum emulation_result err = EMULATE_DONE;
4195         int ret = 1;
4196         u32 cpu_exec_ctrl;
4197         bool intr_window_requested;
4198
4199         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4200         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4201
4202         while (!guest_state_valid(vcpu)) {
4203                 if (intr_window_requested
4204                     && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4205                         return handle_interrupt_window(&vmx->vcpu);
4206
4207                 err = emulate_instruction(vcpu, 0);
4208
4209                 if (err == EMULATE_DO_MMIO) {
4210                         ret = 0;
4211                         goto out;
4212                 }
4213
4214                 if (err != EMULATE_DONE)
4215                         return 0;
4216
4217                 if (signal_pending(current))
4218                         goto out;
4219                 if (need_resched())
4220                         schedule();
4221         }
4222
4223         vmx->emulation_required = 0;
4224 out:
4225         return ret;
4226 }
4227
4228 /*
4229  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4230  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4231  */
4232 static int handle_pause(struct kvm_vcpu *vcpu)
4233 {
4234         skip_emulated_instruction(vcpu);
4235         kvm_vcpu_on_spin(vcpu);
4236
4237         return 1;
4238 }
4239
4240 static int handle_invalid_op(struct kvm_vcpu *vcpu)
4241 {
4242         kvm_queue_exception(vcpu, UD_VECTOR);
4243         return 1;
4244 }
4245
4246 /*
4247  * Emulate the VMXON instruction.
4248  * Currently, we just remember that VMX is active, and do not save or even
4249  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4250  * do not currently need to store anything in that guest-allocated memory
4251  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4252  * argument is different from the VMXON pointer (which the spec says they do).
4253  */
4254 static int handle_vmon(struct kvm_vcpu *vcpu)
4255 {
4256         struct kvm_segment cs;
4257         struct vcpu_vmx *vmx = to_vmx(vcpu);
4258
4259         /* The Intel VMX Instruction Reference lists a bunch of bits that
4260          * are prerequisite to running VMXON, most notably cr4.VMXE must be
4261          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
4262          * Otherwise, we should fail with #UD. We test these now:
4263          */
4264         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
4265             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
4266             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4267                 kvm_queue_exception(vcpu, UD_VECTOR);
4268                 return 1;
4269         }
4270
4271         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4272         if (is_long_mode(vcpu) && !cs.l) {
4273                 kvm_queue_exception(vcpu, UD_VECTOR);
4274                 return 1;
4275         }
4276
4277         if (vmx_get_cpl(vcpu)) {
4278                 kvm_inject_gp(vcpu, 0);
4279                 return 1;
4280         }
4281
4282         vmx->nested.vmxon = true;
4283
4284         skip_emulated_instruction(vcpu);
4285         return 1;
4286 }
4287
4288 /*
4289  * Intel's VMX Instruction Reference specifies a common set of prerequisites
4290  * for running VMX instructions (except VMXON, whose prerequisites are
4291  * slightly different). It also specifies what exception to inject otherwise.
4292  */
4293 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
4294 {
4295         struct kvm_segment cs;
4296         struct vcpu_vmx *vmx = to_vmx(vcpu);
4297
4298         if (!vmx->nested.vmxon) {
4299                 kvm_queue_exception(vcpu, UD_VECTOR);
4300                 return 0;
4301         }
4302
4303         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4304         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
4305             (is_long_mode(vcpu) && !cs.l)) {
4306                 kvm_queue_exception(vcpu, UD_VECTOR);
4307                 return 0;
4308         }
4309
4310         if (vmx_get_cpl(vcpu)) {
4311                 kvm_inject_gp(vcpu, 0);
4312                 return 0;
4313         }
4314
4315         return 1;
4316 }
4317
4318 /*
4319  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
4320  * just stops using VMX.
4321  */
4322 static void free_nested(struct vcpu_vmx *vmx)
4323 {
4324         if (!vmx->nested.vmxon)
4325                 return;
4326         vmx->nested.vmxon = false;
4327         if (vmx->nested.current_vmptr != -1ull) {
4328                 kunmap(vmx->nested.current_vmcs12_page);
4329                 nested_release_page(vmx->nested.current_vmcs12_page);
4330                 vmx->nested.current_vmptr = -1ull;
4331                 vmx->nested.current_vmcs12 = NULL;
4332         }
4333 }
4334
4335 /* Emulate the VMXOFF instruction */
4336 static int handle_vmoff(struct kvm_vcpu *vcpu)
4337 {
4338         if (!nested_vmx_check_permission(vcpu))
4339                 return 1;
4340         free_nested(to_vmx(vcpu));
4341         skip_emulated_instruction(vcpu);
4342         return 1;
4343 }
4344
4345 /*
4346  * Decode the memory-address operand of a vmx instruction, as recorded on an
4347  * exit caused by such an instruction (run by a guest hypervisor).
4348  * On success, returns 0. When the operand is invalid, returns 1 and throws
4349  * #UD or #GP.
4350  */
4351 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
4352                                  unsigned long exit_qualification,
4353                                  u32 vmx_instruction_info, gva_t *ret)
4354 {
4355         /*
4356          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4357          * Execution", on an exit, vmx_instruction_info holds most of the
4358          * addressing components of the operand. Only the displacement part
4359          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4360          * For how an actual address is calculated from all these components,
4361          * refer to Vol. 1, "Operand Addressing".
4362          */
4363         int  scaling = vmx_instruction_info & 3;
4364         int  addr_size = (vmx_instruction_info >> 7) & 7;
4365         bool is_reg = vmx_instruction_info & (1u << 10);
4366         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4367         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4368         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4369         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4370         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4371
4372         if (is_reg) {
4373                 kvm_queue_exception(vcpu, UD_VECTOR);
4374                 return 1;
4375         }
4376
4377         /* Addr = segment_base + offset */
4378         /* offset = base + [index * scale] + displacement */
4379         *ret = vmx_get_segment_base(vcpu, seg_reg);
4380         if (base_is_valid)
4381                 *ret += kvm_register_read(vcpu, base_reg);
4382         if (index_is_valid)
4383                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
4384         *ret += exit_qualification; /* holds the displacement */
4385
4386         if (addr_size == 1) /* 32 bit */
4387                 *ret &= 0xffffffff;
4388
4389         /*
4390          * TODO: throw #GP (and return 1) in various cases that the VM*
4391          * instructions require it - e.g., offset beyond segment limit,
4392          * unusable or unreadable/unwritable segment, non-canonical 64-bit
4393          * address, and so on. Currently these are not checked.
4394          */
4395         return 0;
4396 }
4397
4398 /*
4399  * The exit handlers return 1 if the exit was handled fully and guest execution
4400  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
4401  * to be done to userspace and return 0.
4402  */
4403 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
4404         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
4405         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
4406         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
4407         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
4408         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
4409         [EXIT_REASON_CR_ACCESS]               = handle_cr,
4410         [EXIT_REASON_DR_ACCESS]               = handle_dr,
4411         [EXIT_REASON_CPUID]                   = handle_cpuid,
4412         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
4413         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
4414         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
4415         [EXIT_REASON_HLT]                     = handle_halt,
4416         [EXIT_REASON_INVD]                    = handle_invd,
4417         [EXIT_REASON_INVLPG]                  = handle_invlpg,
4418         [EXIT_REASON_VMCALL]                  = handle_vmcall,
4419         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
4420         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
4421         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
4422         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
4423         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
4424         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
4425         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
4426         [EXIT_REASON_VMOFF]                   = handle_vmoff,
4427         [EXIT_REASON_VMON]                    = handle_vmon,
4428         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
4429         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
4430         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
4431         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
4432         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
4433         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
4434         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
4435         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
4436         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
4437         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
4438         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
4439 };
4440
4441 static const int kvm_vmx_max_exit_handlers =
4442         ARRAY_SIZE(kvm_vmx_exit_handlers);
4443
4444 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4445 {
4446         *info1 = vmcs_readl(EXIT_QUALIFICATION);
4447         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
4448 }
4449
4450 /*
4451  * The guest has exited.  See if we can fix it or if we need userspace
4452  * assistance.
4453  */
4454 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
4455 {
4456         struct vcpu_vmx *vmx = to_vmx(vcpu);
4457         u32 exit_reason = vmx->exit_reason;
4458         u32 vectoring_info = vmx->idt_vectoring_info;
4459
4460         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
4461
4462         /* If guest state is invalid, start emulating */
4463         if (vmx->emulation_required && emulate_invalid_guest_state)
4464                 return handle_invalid_guest_state(vcpu);
4465
4466         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4467                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4468                 vcpu->run->fail_entry.hardware_entry_failure_reason
4469                         = exit_reason;
4470                 return 0;
4471         }
4472
4473         if (unlikely(vmx->fail)) {
4474                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4475                 vcpu->run->fail_entry.hardware_entry_failure_reason
4476                         = vmcs_read32(VM_INSTRUCTION_ERROR);
4477                 return 0;
4478         }
4479
4480         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
4481                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
4482                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
4483                         exit_reason != EXIT_REASON_TASK_SWITCH))
4484                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
4485                        "(0x%x) and exit reason is 0x%x\n",
4486                        __func__, vectoring_info, exit_reason);
4487
4488         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
4489                 if (vmx_interrupt_allowed(vcpu)) {
4490                         vmx->soft_vnmi_blocked = 0;
4491                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4492                            vcpu->arch.nmi_pending) {
4493                         /*
4494                          * This CPU don't support us in finding the end of an
4495                          * NMI-blocked window if the guest runs with IRQs
4496                          * disabled. So we pull the trigger after 1 s of
4497                          * futile waiting, but inform the user about this.
4498                          */
4499                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
4500                                "state on VCPU %d after 1 s timeout\n",
4501                                __func__, vcpu->vcpu_id);
4502                         vmx->soft_vnmi_blocked = 0;
4503                 }
4504         }
4505
4506         if (exit_reason < kvm_vmx_max_exit_handlers
4507             && kvm_vmx_exit_handlers[exit_reason])
4508                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
4509         else {
4510                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4511                 vcpu->run->hw.hardware_exit_reason = exit_reason;
4512         }
4513         return 0;
4514 }
4515
4516 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4517 {
4518         if (irr == -1 || tpr < irr) {
4519                 vmcs_write32(TPR_THRESHOLD, 0);
4520                 return;
4521         }
4522
4523         vmcs_write32(TPR_THRESHOLD, irr);
4524 }
4525
4526 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
4527 {
4528         u32 exit_intr_info;
4529
4530         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
4531               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
4532                 return;
4533
4534         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4535         exit_intr_info = vmx->exit_intr_info;
4536
4537         /* Handle machine checks before interrupts are enabled */
4538         if (is_machine_check(exit_intr_info))
4539                 kvm_machine_check();
4540
4541         /* We need to handle NMIs before interrupts are enabled */
4542         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
4543             (exit_intr_info & INTR_INFO_VALID_MASK)) {
4544                 kvm_before_handle_nmi(&vmx->vcpu);
4545                 asm("int $2");
4546                 kvm_after_handle_nmi(&vmx->vcpu);
4547         }
4548 }
4549
4550 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
4551 {
4552         u32 exit_intr_info;
4553         bool unblock_nmi;
4554         u8 vector;
4555         bool idtv_info_valid;
4556
4557         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
4558
4559         if (cpu_has_virtual_nmis()) {
4560                 if (vmx->nmi_known_unmasked)
4561                         return;
4562                 /*
4563                  * Can't use vmx->exit_intr_info since we're not sure what
4564                  * the exit reason is.
4565                  */
4566                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4567                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
4568                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
4569                 /*
4570                  * SDM 3: 27.7.1.2 (September 2008)
4571                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
4572                  * a guest IRET fault.
4573                  * SDM 3: 23.2.2 (September 2008)
4574                  * Bit 12 is undefined in any of the following cases:
4575                  *  If the VM exit sets the valid bit in the IDT-vectoring
4576                  *   information field.
4577                  *  If the VM exit is due to a double fault.
4578                  */
4579                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
4580                     vector != DF_VECTOR && !idtv_info_valid)
4581                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4582                                       GUEST_INTR_STATE_NMI);
4583                 else
4584                         vmx->nmi_known_unmasked =
4585                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
4586                                   & GUEST_INTR_STATE_NMI);
4587         } else if (unlikely(vmx->soft_vnmi_blocked))
4588                 vmx->vnmi_blocked_time +=
4589                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
4590 }
4591
4592 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
4593                                       u32 idt_vectoring_info,
4594                                       int instr_len_field,
4595                                       int error_code_field)
4596 {
4597         u8 vector;
4598         int type;
4599         bool idtv_info_valid;
4600
4601         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
4602
4603         vmx->vcpu.arch.nmi_injected = false;
4604         kvm_clear_exception_queue(&vmx->vcpu);
4605         kvm_clear_interrupt_queue(&vmx->vcpu);
4606
4607         if (!idtv_info_valid)
4608                 return;
4609
4610         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
4611
4612         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
4613         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
4614
4615         switch (type) {
4616         case INTR_TYPE_NMI_INTR:
4617                 vmx->vcpu.arch.nmi_injected = true;
4618                 /*
4619                  * SDM 3: 27.7.1.2 (September 2008)
4620                  * Clear bit "block by NMI" before VM entry if a NMI
4621                  * delivery faulted.
4622                  */
4623                 vmx_set_nmi_mask(&vmx->vcpu, false);
4624                 break;
4625         case INTR_TYPE_SOFT_EXCEPTION:
4626                 vmx->vcpu.arch.event_exit_inst_len =
4627                         vmcs_read32(instr_len_field);
4628                 /* fall through */
4629         case INTR_TYPE_HARD_EXCEPTION:
4630                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
4631                         u32 err = vmcs_read32(error_code_field);
4632                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
4633                 } else
4634                         kvm_queue_exception(&vmx->vcpu, vector);
4635                 break;
4636         case INTR_TYPE_SOFT_INTR:
4637                 vmx->vcpu.arch.event_exit_inst_len =
4638                         vmcs_read32(instr_len_field);
4639                 /* fall through */
4640         case INTR_TYPE_EXT_INTR:
4641                 kvm_queue_interrupt(&vmx->vcpu, vector,
4642                         type == INTR_TYPE_SOFT_INTR);
4643                 break;
4644         default:
4645                 break;
4646         }
4647 }
4648
4649 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
4650 {
4651         __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
4652                                   VM_EXIT_INSTRUCTION_LEN,
4653                                   IDT_VECTORING_ERROR_CODE);
4654 }
4655
4656 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
4657 {
4658         __vmx_complete_interrupts(to_vmx(vcpu),
4659                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
4660                                   VM_ENTRY_INSTRUCTION_LEN,
4661                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
4662
4663         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
4664 }
4665
4666 #ifdef CONFIG_X86_64
4667 #define R "r"
4668 #define Q "q"
4669 #else
4670 #define R "e"
4671 #define Q "l"
4672 #endif
4673
4674 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
4675 {
4676         struct vcpu_vmx *vmx = to_vmx(vcpu);
4677
4678         /* Record the guest's net vcpu time for enforced NMI injections. */
4679         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
4680                 vmx->entry_time = ktime_get();
4681
4682         /* Don't enter VMX if guest state is invalid, let the exit handler
4683            start emulation until we arrive back to a valid state */
4684         if (vmx->emulation_required && emulate_invalid_guest_state)
4685                 return;
4686
4687         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
4688                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
4689         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
4690                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
4691
4692         /* When single-stepping over STI and MOV SS, we must clear the
4693          * corresponding interruptibility bits in the guest state. Otherwise
4694          * vmentry fails as it then expects bit 14 (BS) in pending debug
4695          * exceptions being set, but that's not correct for the guest debugging
4696          * case. */
4697         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4698                 vmx_set_interrupt_shadow(vcpu, 0);
4699
4700         vmx->__launched = vmx->loaded_vmcs->launched;
4701         asm(
4702                 /* Store host registers */
4703                 "push %%"R"dx; push %%"R"bp;"
4704                 "push %%"R"cx \n\t" /* placeholder for guest rcx */
4705                 "push %%"R"cx \n\t"
4706                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
4707                 "je 1f \n\t"
4708                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4709                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
4710                 "1: \n\t"
4711                 /* Reload cr2 if changed */
4712                 "mov %c[cr2](%0), %%"R"ax \n\t"
4713                 "mov %%cr2, %%"R"dx \n\t"
4714                 "cmp %%"R"ax, %%"R"dx \n\t"
4715                 "je 2f \n\t"
4716                 "mov %%"R"ax, %%cr2 \n\t"
4717                 "2: \n\t"
4718                 /* Check if vmlaunch of vmresume is needed */
4719                 "cmpl $0, %c[launched](%0) \n\t"
4720                 /* Load guest registers.  Don't clobber flags. */
4721                 "mov %c[rax](%0), %%"R"ax \n\t"
4722                 "mov %c[rbx](%0), %%"R"bx \n\t"
4723                 "mov %c[rdx](%0), %%"R"dx \n\t"
4724                 "mov %c[rsi](%0), %%"R"si \n\t"
4725                 "mov %c[rdi](%0), %%"R"di \n\t"
4726                 "mov %c[rbp](%0), %%"R"bp \n\t"
4727 #ifdef CONFIG_X86_64
4728                 "mov %c[r8](%0),  %%r8  \n\t"
4729                 "mov %c[r9](%0),  %%r9  \n\t"
4730                 "mov %c[r10](%0), %%r10 \n\t"
4731                 "mov %c[r11](%0), %%r11 \n\t"
4732                 "mov %c[r12](%0), %%r12 \n\t"
4733                 "mov %c[r13](%0), %%r13 \n\t"
4734                 "mov %c[r14](%0), %%r14 \n\t"
4735                 "mov %c[r15](%0), %%r15 \n\t"
4736 #endif
4737                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
4738
4739                 /* Enter guest mode */
4740                 "jne .Llaunched \n\t"
4741                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
4742                 "jmp .Lkvm_vmx_return \n\t"
4743                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
4744                 ".Lkvm_vmx_return: "
4745                 /* Save guest registers, load host registers, keep flags */
4746                 "mov %0, %c[wordsize](%%"R"sp) \n\t"
4747                 "pop %0 \n\t"
4748                 "mov %%"R"ax, %c[rax](%0) \n\t"
4749                 "mov %%"R"bx, %c[rbx](%0) \n\t"
4750                 "pop"Q" %c[rcx](%0) \n\t"
4751                 "mov %%"R"dx, %c[rdx](%0) \n\t"
4752                 "mov %%"R"si, %c[rsi](%0) \n\t"
4753                 "mov %%"R"di, %c[rdi](%0) \n\t"
4754                 "mov %%"R"bp, %c[rbp](%0) \n\t"
4755 #ifdef CONFIG_X86_64
4756                 "mov %%r8,  %c[r8](%0) \n\t"
4757                 "mov %%r9,  %c[r9](%0) \n\t"
4758                 "mov %%r10, %c[r10](%0) \n\t"
4759                 "mov %%r11, %c[r11](%0) \n\t"
4760                 "mov %%r12, %c[r12](%0) \n\t"
4761                 "mov %%r13, %c[r13](%0) \n\t"
4762                 "mov %%r14, %c[r14](%0) \n\t"
4763                 "mov %%r15, %c[r15](%0) \n\t"
4764 #endif
4765                 "mov %%cr2, %%"R"ax   \n\t"
4766                 "mov %%"R"ax, %c[cr2](%0) \n\t"
4767
4768                 "pop  %%"R"bp; pop  %%"R"dx \n\t"
4769                 "setbe %c[fail](%0) \n\t"
4770               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
4771                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
4772                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
4773                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4774                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4775                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4776                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4777                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4778                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4779                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4780                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4781 #ifdef CONFIG_X86_64
4782                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4783                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4784                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4785                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4786                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4787                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4788                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4789                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4790 #endif
4791                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
4792                 [wordsize]"i"(sizeof(ulong))
4793               : "cc", "memory"
4794                 , R"ax", R"bx", R"di", R"si"
4795 #ifdef CONFIG_X86_64
4796                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4797 #endif
4798               );
4799
4800         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4801                                   | (1 << VCPU_EXREG_RFLAGS)
4802                                   | (1 << VCPU_EXREG_CPL)
4803                                   | (1 << VCPU_EXREG_PDPTR)
4804                                   | (1 << VCPU_EXREG_SEGMENTS)
4805                                   | (1 << VCPU_EXREG_CR3));
4806         vcpu->arch.regs_dirty = 0;
4807
4808         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4809
4810         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4811         vmx->loaded_vmcs->launched = 1;
4812
4813         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
4814
4815         vmx_complete_atomic_exit(vmx);
4816         vmx_recover_nmi_blocking(vmx);
4817         vmx_complete_interrupts(vmx);
4818 }
4819
4820 #undef R
4821 #undef Q
4822
4823 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4824 {
4825         struct vcpu_vmx *vmx = to_vmx(vcpu);
4826
4827         free_vpid(vmx);
4828         free_nested(vmx);
4829         free_loaded_vmcs(vmx->loaded_vmcs);
4830         kfree(vmx->guest_msrs);
4831         kvm_vcpu_uninit(vcpu);
4832         kmem_cache_free(kvm_vcpu_cache, vmx);
4833 }
4834
4835 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4836 {
4837         int err;
4838         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4839         int cpu;
4840
4841         if (!vmx)
4842                 return ERR_PTR(-ENOMEM);
4843
4844         allocate_vpid(vmx);
4845
4846         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4847         if (err)
4848                 goto free_vcpu;
4849
4850         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4851         err = -ENOMEM;
4852         if (!vmx->guest_msrs) {
4853                 goto uninit_vcpu;
4854         }
4855
4856         vmx->loaded_vmcs = &vmx->vmcs01;
4857         vmx->loaded_vmcs->vmcs = alloc_vmcs();
4858         if (!vmx->loaded_vmcs->vmcs)
4859                 goto free_msrs;
4860         if (!vmm_exclusive)
4861                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
4862         loaded_vmcs_init(vmx->loaded_vmcs);
4863         if (!vmm_exclusive)
4864                 kvm_cpu_vmxoff();
4865
4866         cpu = get_cpu();
4867         vmx_vcpu_load(&vmx->vcpu, cpu);
4868         vmx->vcpu.cpu = cpu;
4869         err = vmx_vcpu_setup(vmx);
4870         vmx_vcpu_put(&vmx->vcpu);
4871         put_cpu();
4872         if (err)
4873                 goto free_vmcs;
4874         if (vm_need_virtualize_apic_accesses(kvm))
4875                 err = alloc_apic_access_page(kvm);
4876                 if (err)
4877                         goto free_vmcs;
4878
4879         if (enable_ept) {
4880                 if (!kvm->arch.ept_identity_map_addr)
4881                         kvm->arch.ept_identity_map_addr =
4882                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4883                 err = -ENOMEM;
4884                 if (alloc_identity_pagetable(kvm) != 0)
4885                         goto free_vmcs;
4886                 if (!init_rmode_identity_map(kvm))
4887                         goto free_vmcs;
4888         }
4889
4890         vmx->nested.current_vmptr = -1ull;
4891         vmx->nested.current_vmcs12 = NULL;
4892
4893         return &vmx->vcpu;
4894
4895 free_vmcs:
4896         free_vmcs(vmx->loaded_vmcs->vmcs);
4897 free_msrs:
4898         kfree(vmx->guest_msrs);
4899 uninit_vcpu:
4900         kvm_vcpu_uninit(&vmx->vcpu);
4901 free_vcpu:
4902         free_vpid(vmx);
4903         kmem_cache_free(kvm_vcpu_cache, vmx);
4904         return ERR_PTR(err);
4905 }
4906
4907 static void __init vmx_check_processor_compat(void *rtn)
4908 {
4909         struct vmcs_config vmcs_conf;
4910
4911         *(int *)rtn = 0;
4912         if (setup_vmcs_config(&vmcs_conf) < 0)
4913                 *(int *)rtn = -EIO;
4914         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4915                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4916                                 smp_processor_id());
4917                 *(int *)rtn = -EIO;
4918         }
4919 }
4920
4921 static int get_ept_level(void)
4922 {
4923         return VMX_EPT_DEFAULT_GAW + 1;
4924 }
4925
4926 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4927 {
4928         u64 ret;
4929
4930         /* For VT-d and EPT combination
4931          * 1. MMIO: always map as UC
4932          * 2. EPT with VT-d:
4933          *   a. VT-d without snooping control feature: can't guarantee the
4934          *      result, try to trust guest.
4935          *   b. VT-d with snooping control feature: snooping control feature of
4936          *      VT-d engine can guarantee the cache correctness. Just set it
4937          *      to WB to keep consistent with host. So the same as item 3.
4938          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4939          *    consistent with host MTRR
4940          */
4941         if (is_mmio)
4942                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4943         else if (vcpu->kvm->arch.iommu_domain &&
4944                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4945                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4946                       VMX_EPT_MT_EPTE_SHIFT;
4947         else
4948                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4949                         | VMX_EPT_IPAT_BIT;
4950
4951         return ret;
4952 }
4953
4954 #define _ER(x) { EXIT_REASON_##x, #x }
4955
4956 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4957         _ER(EXCEPTION_NMI),
4958         _ER(EXTERNAL_INTERRUPT),
4959         _ER(TRIPLE_FAULT),
4960         _ER(PENDING_INTERRUPT),
4961         _ER(NMI_WINDOW),
4962         _ER(TASK_SWITCH),
4963         _ER(CPUID),
4964         _ER(HLT),
4965         _ER(INVLPG),
4966         _ER(RDPMC),
4967         _ER(RDTSC),
4968         _ER(VMCALL),
4969         _ER(VMCLEAR),
4970         _ER(VMLAUNCH),
4971         _ER(VMPTRLD),
4972         _ER(VMPTRST),
4973         _ER(VMREAD),
4974         _ER(VMRESUME),
4975         _ER(VMWRITE),
4976         _ER(VMOFF),
4977         _ER(VMON),
4978         _ER(CR_ACCESS),
4979         _ER(DR_ACCESS),
4980         _ER(IO_INSTRUCTION),
4981         _ER(MSR_READ),
4982         _ER(MSR_WRITE),
4983         _ER(MWAIT_INSTRUCTION),
4984         _ER(MONITOR_INSTRUCTION),
4985         _ER(PAUSE_INSTRUCTION),
4986         _ER(MCE_DURING_VMENTRY),
4987         _ER(TPR_BELOW_THRESHOLD),
4988         _ER(APIC_ACCESS),
4989         _ER(EPT_VIOLATION),
4990         _ER(EPT_MISCONFIG),
4991         _ER(WBINVD),
4992         { -1, NULL }
4993 };
4994
4995 #undef _ER
4996
4997 static int vmx_get_lpage_level(void)
4998 {
4999         if (enable_ept && !cpu_has_vmx_ept_1g_page())
5000                 return PT_DIRECTORY_LEVEL;
5001         else
5002                 /* For shadow and EPT supported 1GB page */
5003                 return PT_PDPE_LEVEL;
5004 }
5005
5006 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
5007 {
5008         struct kvm_cpuid_entry2 *best;
5009         struct vcpu_vmx *vmx = to_vmx(vcpu);
5010         u32 exec_control;
5011
5012         vmx->rdtscp_enabled = false;
5013         if (vmx_rdtscp_supported()) {
5014                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5015                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
5016                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
5017                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
5018                                 vmx->rdtscp_enabled = true;
5019                         else {
5020                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5021                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5022                                                 exec_control);
5023                         }
5024                 }
5025         }
5026 }
5027
5028 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5029 {
5030 }
5031
5032 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
5033                                struct x86_instruction_info *info,
5034                                enum x86_intercept_stage stage)
5035 {
5036         return X86EMUL_CONTINUE;
5037 }
5038
5039 static struct kvm_x86_ops vmx_x86_ops = {
5040         .cpu_has_kvm_support = cpu_has_kvm_support,
5041         .disabled_by_bios = vmx_disabled_by_bios,
5042         .hardware_setup = hardware_setup,
5043         .hardware_unsetup = hardware_unsetup,
5044         .check_processor_compatibility = vmx_check_processor_compat,
5045         .hardware_enable = hardware_enable,
5046         .hardware_disable = hardware_disable,
5047         .cpu_has_accelerated_tpr = report_flexpriority,
5048
5049         .vcpu_create = vmx_create_vcpu,
5050         .vcpu_free = vmx_free_vcpu,
5051         .vcpu_reset = vmx_vcpu_reset,
5052
5053         .prepare_guest_switch = vmx_save_host_state,
5054         .vcpu_load = vmx_vcpu_load,
5055         .vcpu_put = vmx_vcpu_put,
5056
5057         .set_guest_debug = set_guest_debug,
5058         .get_msr = vmx_get_msr,
5059         .set_msr = vmx_set_msr,
5060         .get_segment_base = vmx_get_segment_base,
5061         .get_segment = vmx_get_segment,
5062         .set_segment = vmx_set_segment,
5063         .get_cpl = vmx_get_cpl,
5064         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
5065         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
5066         .decache_cr3 = vmx_decache_cr3,
5067         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
5068         .set_cr0 = vmx_set_cr0,
5069         .set_cr3 = vmx_set_cr3,
5070         .set_cr4 = vmx_set_cr4,
5071         .set_efer = vmx_set_efer,
5072         .get_idt = vmx_get_idt,
5073         .set_idt = vmx_set_idt,
5074         .get_gdt = vmx_get_gdt,
5075         .set_gdt = vmx_set_gdt,
5076         .set_dr7 = vmx_set_dr7,
5077         .cache_reg = vmx_cache_reg,
5078         .get_rflags = vmx_get_rflags,
5079         .set_rflags = vmx_set_rflags,
5080         .fpu_activate = vmx_fpu_activate,
5081         .fpu_deactivate = vmx_fpu_deactivate,
5082
5083         .tlb_flush = vmx_flush_tlb,
5084
5085         .run = vmx_vcpu_run,
5086         .handle_exit = vmx_handle_exit,
5087         .skip_emulated_instruction = skip_emulated_instruction,
5088         .set_interrupt_shadow = vmx_set_interrupt_shadow,
5089         .get_interrupt_shadow = vmx_get_interrupt_shadow,
5090         .patch_hypercall = vmx_patch_hypercall,
5091         .set_irq = vmx_inject_irq,
5092         .set_nmi = vmx_inject_nmi,
5093         .queue_exception = vmx_queue_exception,
5094         .cancel_injection = vmx_cancel_injection,
5095         .interrupt_allowed = vmx_interrupt_allowed,
5096         .nmi_allowed = vmx_nmi_allowed,
5097         .get_nmi_mask = vmx_get_nmi_mask,
5098         .set_nmi_mask = vmx_set_nmi_mask,
5099         .enable_nmi_window = enable_nmi_window,
5100         .enable_irq_window = enable_irq_window,
5101         .update_cr8_intercept = update_cr8_intercept,
5102
5103         .set_tss_addr = vmx_set_tss_addr,
5104         .get_tdp_level = get_ept_level,
5105         .get_mt_mask = vmx_get_mt_mask,
5106
5107         .get_exit_info = vmx_get_exit_info,
5108         .exit_reasons_str = vmx_exit_reasons_str,
5109
5110         .get_lpage_level = vmx_get_lpage_level,
5111
5112         .cpuid_update = vmx_cpuid_update,
5113
5114         .rdtscp_supported = vmx_rdtscp_supported,
5115
5116         .set_supported_cpuid = vmx_set_supported_cpuid,
5117
5118         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
5119
5120         .set_tsc_khz = vmx_set_tsc_khz,
5121         .write_tsc_offset = vmx_write_tsc_offset,
5122         .adjust_tsc_offset = vmx_adjust_tsc_offset,
5123         .compute_tsc_offset = vmx_compute_tsc_offset,
5124
5125         .set_tdp_cr3 = vmx_set_cr3,
5126
5127         .check_intercept = vmx_check_intercept,
5128 };
5129
5130 static int __init vmx_init(void)
5131 {
5132         int r, i;
5133
5134         rdmsrl_safe(MSR_EFER, &host_efer);
5135
5136         for (i = 0; i < NR_VMX_MSR; ++i)
5137                 kvm_define_shared_msr(i, vmx_msr_index[i]);
5138
5139         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5140         if (!vmx_io_bitmap_a)
5141                 return -ENOMEM;
5142
5143         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5144         if (!vmx_io_bitmap_b) {
5145                 r = -ENOMEM;
5146                 goto out;
5147         }
5148
5149         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5150         if (!vmx_msr_bitmap_legacy) {
5151                 r = -ENOMEM;
5152                 goto out1;
5153         }
5154
5155         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5156         if (!vmx_msr_bitmap_longmode) {
5157                 r = -ENOMEM;
5158                 goto out2;
5159         }
5160
5161         /*
5162          * Allow direct access to the PC debug port (it is often used for I/O
5163          * delays, but the vmexits simply slow things down).
5164          */
5165         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5166         clear_bit(0x80, vmx_io_bitmap_a);
5167
5168         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5169
5170         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5171         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
5172
5173         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
5174
5175         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
5176                      __alignof__(struct vcpu_vmx), THIS_MODULE);
5177         if (r)
5178                 goto out3;
5179
5180         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
5181         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
5182         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
5183         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
5184         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
5185         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
5186
5187         if (enable_ept) {
5188                 bypass_guest_pf = 0;
5189                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
5190                                 VMX_EPT_EXECUTABLE_MASK);
5191                 kvm_enable_tdp();
5192         } else
5193                 kvm_disable_tdp();
5194
5195         if (bypass_guest_pf)
5196                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
5197
5198         return 0;
5199
5200 out3:
5201         free_page((unsigned long)vmx_msr_bitmap_longmode);
5202 out2:
5203         free_page((unsigned long)vmx_msr_bitmap_legacy);
5204 out1:
5205         free_page((unsigned long)vmx_io_bitmap_b);
5206 out:
5207         free_page((unsigned long)vmx_io_bitmap_a);
5208         return r;
5209 }
5210
5211 static void __exit vmx_exit(void)
5212 {
5213         free_page((unsigned long)vmx_msr_bitmap_legacy);
5214         free_page((unsigned long)vmx_msr_bitmap_longmode);
5215         free_page((unsigned long)vmx_io_bitmap_b);
5216         free_page((unsigned long)vmx_io_bitmap_a);
5217
5218         kvm_exit();
5219 }
5220
5221 module_init(vmx_init)
5222 module_exit(vmx_exit)