2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
38 #include <asm/virtext.h>
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64 enable_unrestricted_guest, bool, S_IRUGO);
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
72 static int __read_mostly yield_on_hlt = 1;
73 module_param(yield_on_hlt, bool, S_IRUGO);
75 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
76 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
77 #define KVM_GUEST_CR0_MASK \
78 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
79 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
80 (X86_CR0_WP | X86_CR0_NE)
81 #define KVM_VM_CR0_ALWAYS_ON \
82 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
83 #define KVM_CR4_GUEST_OWNED_BITS \
84 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
87 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
88 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
90 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
93 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
94 * ple_gap: upper bound on the amount of time between two successive
95 * executions of PAUSE in a loop. Also indicate if ple enabled.
96 * According to test, this time is usually smaller than 128 cycles.
97 * ple_window: upper bound on the amount of time a guest is allowed to execute
98 * in a PAUSE loop. Tests indicate that most spinlocks are held for
99 * less than 2^12 cycles
100 * Time is measured based on a counter that runs at the same rate as the TSC,
101 * refer SDM volume 3b section 21.6.13 & 22.1.3.
103 #define KVM_VMX_DEFAULT_PLE_GAP 128
104 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
105 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
106 module_param(ple_gap, int, S_IRUGO);
108 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
109 module_param(ple_window, int, S_IRUGO);
111 #define NR_AUTOLOAD_MSRS 1
119 struct shared_msr_entry {
126 struct kvm_vcpu vcpu;
127 struct list_head local_vcpus_link;
128 unsigned long host_rsp;
132 u32 idt_vectoring_info;
133 struct shared_msr_entry *guest_msrs;
137 u64 msr_host_kernel_gs_base;
138 u64 msr_guest_kernel_gs_base;
141 struct msr_autoload {
143 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
144 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
148 u16 fs_sel, gs_sel, ldt_sel;
149 int gs_ldt_reload_needed;
150 int fs_reload_needed;
155 struct kvm_save_segment {
160 } tr, es, ds, fs, gs;
163 bool emulation_required;
165 /* Support for vnmi-less CPUs */
166 int soft_vnmi_blocked;
168 s64 vnmi_blocked_time;
174 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
176 return container_of(vcpu, struct vcpu_vmx, vcpu);
179 static u64 construct_eptp(unsigned long root_hpa);
180 static void kvm_cpu_vmxon(u64 addr);
181 static void kvm_cpu_vmxoff(void);
182 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
184 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
185 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
186 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
187 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
189 static unsigned long *vmx_io_bitmap_a;
190 static unsigned long *vmx_io_bitmap_b;
191 static unsigned long *vmx_msr_bitmap_legacy;
192 static unsigned long *vmx_msr_bitmap_longmode;
194 static bool cpu_has_load_ia32_efer;
196 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
197 static DEFINE_SPINLOCK(vmx_vpid_lock);
199 static struct vmcs_config {
203 u32 pin_based_exec_ctrl;
204 u32 cpu_based_exec_ctrl;
205 u32 cpu_based_2nd_exec_ctrl;
210 static struct vmx_capability {
215 #define VMX_SEGMENT_FIELD(seg) \
216 [VCPU_SREG_##seg] = { \
217 .selector = GUEST_##seg##_SELECTOR, \
218 .base = GUEST_##seg##_BASE, \
219 .limit = GUEST_##seg##_LIMIT, \
220 .ar_bytes = GUEST_##seg##_AR_BYTES, \
223 static struct kvm_vmx_segment_field {
228 } kvm_vmx_segment_fields[] = {
229 VMX_SEGMENT_FIELD(CS),
230 VMX_SEGMENT_FIELD(DS),
231 VMX_SEGMENT_FIELD(ES),
232 VMX_SEGMENT_FIELD(FS),
233 VMX_SEGMENT_FIELD(GS),
234 VMX_SEGMENT_FIELD(SS),
235 VMX_SEGMENT_FIELD(TR),
236 VMX_SEGMENT_FIELD(LDTR),
239 static u64 host_efer;
241 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
244 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
245 * away by decrementing the array size.
247 static const u32 vmx_msr_index[] = {
249 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
251 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
253 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
255 static inline bool is_page_fault(u32 intr_info)
257 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
258 INTR_INFO_VALID_MASK)) ==
259 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
262 static inline bool is_no_device(u32 intr_info)
264 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
265 INTR_INFO_VALID_MASK)) ==
266 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
269 static inline bool is_invalid_opcode(u32 intr_info)
271 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
272 INTR_INFO_VALID_MASK)) ==
273 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
276 static inline bool is_external_interrupt(u32 intr_info)
278 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
279 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
282 static inline bool is_machine_check(u32 intr_info)
284 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
285 INTR_INFO_VALID_MASK)) ==
286 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
289 static inline bool cpu_has_vmx_msr_bitmap(void)
291 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
294 static inline bool cpu_has_vmx_tpr_shadow(void)
296 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
299 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
301 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
304 static inline bool cpu_has_secondary_exec_ctrls(void)
306 return vmcs_config.cpu_based_exec_ctrl &
307 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
310 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
312 return vmcs_config.cpu_based_2nd_exec_ctrl &
313 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
316 static inline bool cpu_has_vmx_flexpriority(void)
318 return cpu_has_vmx_tpr_shadow() &&
319 cpu_has_vmx_virtualize_apic_accesses();
322 static inline bool cpu_has_vmx_ept_execute_only(void)
324 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
327 static inline bool cpu_has_vmx_eptp_uncacheable(void)
329 return vmx_capability.ept & VMX_EPTP_UC_BIT;
332 static inline bool cpu_has_vmx_eptp_writeback(void)
334 return vmx_capability.ept & VMX_EPTP_WB_BIT;
337 static inline bool cpu_has_vmx_ept_2m_page(void)
339 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
342 static inline bool cpu_has_vmx_ept_1g_page(void)
344 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
347 static inline bool cpu_has_vmx_ept_4levels(void)
349 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
352 static inline bool cpu_has_vmx_invept_individual_addr(void)
354 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
357 static inline bool cpu_has_vmx_invept_context(void)
359 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
362 static inline bool cpu_has_vmx_invept_global(void)
364 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
367 static inline bool cpu_has_vmx_invvpid_single(void)
369 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
372 static inline bool cpu_has_vmx_invvpid_global(void)
374 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
377 static inline bool cpu_has_vmx_ept(void)
379 return vmcs_config.cpu_based_2nd_exec_ctrl &
380 SECONDARY_EXEC_ENABLE_EPT;
383 static inline bool cpu_has_vmx_unrestricted_guest(void)
385 return vmcs_config.cpu_based_2nd_exec_ctrl &
386 SECONDARY_EXEC_UNRESTRICTED_GUEST;
389 static inline bool cpu_has_vmx_ple(void)
391 return vmcs_config.cpu_based_2nd_exec_ctrl &
392 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
395 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
397 return flexpriority_enabled && irqchip_in_kernel(kvm);
400 static inline bool cpu_has_vmx_vpid(void)
402 return vmcs_config.cpu_based_2nd_exec_ctrl &
403 SECONDARY_EXEC_ENABLE_VPID;
406 static inline bool cpu_has_vmx_rdtscp(void)
408 return vmcs_config.cpu_based_2nd_exec_ctrl &
409 SECONDARY_EXEC_RDTSCP;
412 static inline bool cpu_has_virtual_nmis(void)
414 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
417 static inline bool cpu_has_vmx_wbinvd_exit(void)
419 return vmcs_config.cpu_based_2nd_exec_ctrl &
420 SECONDARY_EXEC_WBINVD_EXITING;
423 static inline bool report_flexpriority(void)
425 return flexpriority_enabled;
428 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
432 for (i = 0; i < vmx->nmsrs; ++i)
433 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
438 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
444 } operand = { vpid, 0, gva };
446 asm volatile (__ex(ASM_VMX_INVVPID)
447 /* CF==1 or ZF==1 --> rc = -1 */
449 : : "a"(&operand), "c"(ext) : "cc", "memory");
452 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
456 } operand = {eptp, gpa};
458 asm volatile (__ex(ASM_VMX_INVEPT)
459 /* CF==1 or ZF==1 --> rc = -1 */
460 "; ja 1f ; ud2 ; 1:\n"
461 : : "a" (&operand), "c" (ext) : "cc", "memory");
464 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
468 i = __find_msr_index(vmx, msr);
470 return &vmx->guest_msrs[i];
474 static void vmcs_clear(struct vmcs *vmcs)
476 u64 phys_addr = __pa(vmcs);
479 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
480 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
483 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
487 static void vmcs_load(struct vmcs *vmcs)
489 u64 phys_addr = __pa(vmcs);
492 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
493 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
496 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
500 static void __vcpu_clear(void *arg)
502 struct vcpu_vmx *vmx = arg;
503 int cpu = raw_smp_processor_id();
505 if (vmx->vcpu.cpu == cpu)
506 vmcs_clear(vmx->vmcs);
507 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
508 per_cpu(current_vmcs, cpu) = NULL;
509 list_del(&vmx->local_vcpus_link);
514 static void vcpu_clear(struct vcpu_vmx *vmx)
516 if (vmx->vcpu.cpu == -1)
518 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
521 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
526 if (cpu_has_vmx_invvpid_single())
527 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
530 static inline void vpid_sync_vcpu_global(void)
532 if (cpu_has_vmx_invvpid_global())
533 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
536 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
538 if (cpu_has_vmx_invvpid_single())
539 vpid_sync_vcpu_single(vmx);
541 vpid_sync_vcpu_global();
544 static inline void ept_sync_global(void)
546 if (cpu_has_vmx_invept_global())
547 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
550 static inline void ept_sync_context(u64 eptp)
553 if (cpu_has_vmx_invept_context())
554 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
560 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
563 if (cpu_has_vmx_invept_individual_addr())
564 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
567 ept_sync_context(eptp);
571 static unsigned long vmcs_readl(unsigned long field)
573 unsigned long value = 0;
575 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
576 : "+a"(value) : "d"(field) : "cc");
580 static u16 vmcs_read16(unsigned long field)
582 return vmcs_readl(field);
585 static u32 vmcs_read32(unsigned long field)
587 return vmcs_readl(field);
590 static u64 vmcs_read64(unsigned long field)
593 return vmcs_readl(field);
595 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
599 static noinline void vmwrite_error(unsigned long field, unsigned long value)
601 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
602 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
606 static void vmcs_writel(unsigned long field, unsigned long value)
610 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
611 : "=q"(error) : "a"(value), "d"(field) : "cc");
613 vmwrite_error(field, value);
616 static void vmcs_write16(unsigned long field, u16 value)
618 vmcs_writel(field, value);
621 static void vmcs_write32(unsigned long field, u32 value)
623 vmcs_writel(field, value);
626 static void vmcs_write64(unsigned long field, u64 value)
628 vmcs_writel(field, value);
629 #ifndef CONFIG_X86_64
631 vmcs_writel(field+1, value >> 32);
635 static void vmcs_clear_bits(unsigned long field, u32 mask)
637 vmcs_writel(field, vmcs_readl(field) & ~mask);
640 static void vmcs_set_bits(unsigned long field, u32 mask)
642 vmcs_writel(field, vmcs_readl(field) | mask);
645 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
649 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
650 (1u << NM_VECTOR) | (1u << DB_VECTOR);
651 if ((vcpu->guest_debug &
652 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
653 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
654 eb |= 1u << BP_VECTOR;
655 if (to_vmx(vcpu)->rmode.vm86_active)
658 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
659 if (vcpu->fpu_active)
660 eb &= ~(1u << NM_VECTOR);
661 vmcs_write32(EXCEPTION_BITMAP, eb);
664 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
667 struct msr_autoload *m = &vmx->msr_autoload;
669 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
670 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
671 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
675 for (i = 0; i < m->nr; ++i)
676 if (m->guest[i].index == msr)
682 m->guest[i] = m->guest[m->nr];
683 m->host[i] = m->host[m->nr];
684 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
685 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
688 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
689 u64 guest_val, u64 host_val)
692 struct msr_autoload *m = &vmx->msr_autoload;
694 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
695 vmcs_write64(GUEST_IA32_EFER, guest_val);
696 vmcs_write64(HOST_IA32_EFER, host_val);
697 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
698 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
702 for (i = 0; i < m->nr; ++i)
703 if (m->guest[i].index == msr)
708 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
709 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
712 m->guest[i].index = msr;
713 m->guest[i].value = guest_val;
714 m->host[i].index = msr;
715 m->host[i].value = host_val;
718 static void reload_tss(void)
721 * VT restores TR but not its size. Useless.
723 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
724 struct desc_struct *descs;
726 descs = (void *)gdt->address;
727 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
731 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
736 guest_efer = vmx->vcpu.arch.efer;
739 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
742 ignore_bits = EFER_NX | EFER_SCE;
744 ignore_bits |= EFER_LMA | EFER_LME;
745 /* SCE is meaningful only in long mode on Intel */
746 if (guest_efer & EFER_LMA)
747 ignore_bits &= ~(u64)EFER_SCE;
749 guest_efer &= ~ignore_bits;
750 guest_efer |= host_efer & ignore_bits;
751 vmx->guest_msrs[efer_offset].data = guest_efer;
752 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
754 clear_atomic_switch_msr(vmx, MSR_EFER);
755 /* On ept, can't emulate nx, and must switch nx atomically */
756 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
757 guest_efer = vmx->vcpu.arch.efer;
758 if (!(guest_efer & EFER_LMA))
759 guest_efer &= ~EFER_LME;
760 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
767 static unsigned long segment_base(u16 selector)
769 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
770 struct desc_struct *d;
771 unsigned long table_base;
774 if (!(selector & ~3))
777 table_base = gdt->address;
779 if (selector & 4) { /* from ldt */
780 u16 ldt_selector = kvm_read_ldt();
782 if (!(ldt_selector & ~3))
785 table_base = segment_base(ldt_selector);
787 d = (struct desc_struct *)(table_base + (selector & ~7));
788 v = get_desc_base(d);
790 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
791 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
796 static inline unsigned long kvm_read_tr_base(void)
799 asm("str %0" : "=g"(tr));
800 return segment_base(tr);
803 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
805 struct vcpu_vmx *vmx = to_vmx(vcpu);
808 if (vmx->host_state.loaded)
811 vmx->host_state.loaded = 1;
813 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
814 * allow segment selectors with cpl > 0 or ti == 1.
816 vmx->host_state.ldt_sel = kvm_read_ldt();
817 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
818 savesegment(fs, vmx->host_state.fs_sel);
819 if (!(vmx->host_state.fs_sel & 7)) {
820 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
821 vmx->host_state.fs_reload_needed = 0;
823 vmcs_write16(HOST_FS_SELECTOR, 0);
824 vmx->host_state.fs_reload_needed = 1;
826 savesegment(gs, vmx->host_state.gs_sel);
827 if (!(vmx->host_state.gs_sel & 7))
828 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
830 vmcs_write16(HOST_GS_SELECTOR, 0);
831 vmx->host_state.gs_ldt_reload_needed = 1;
835 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
836 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
838 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
839 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
843 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
844 if (is_long_mode(&vmx->vcpu))
845 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
847 for (i = 0; i < vmx->save_nmsrs; ++i)
848 kvm_set_shared_msr(vmx->guest_msrs[i].index,
849 vmx->guest_msrs[i].data,
850 vmx->guest_msrs[i].mask);
853 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
855 if (!vmx->host_state.loaded)
858 ++vmx->vcpu.stat.host_state_reload;
859 vmx->host_state.loaded = 0;
861 if (is_long_mode(&vmx->vcpu))
862 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
864 if (vmx->host_state.gs_ldt_reload_needed) {
865 kvm_load_ldt(vmx->host_state.ldt_sel);
867 load_gs_index(vmx->host_state.gs_sel);
869 loadsegment(gs, vmx->host_state.gs_sel);
872 if (vmx->host_state.fs_reload_needed)
873 loadsegment(fs, vmx->host_state.fs_sel);
876 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
878 if (current_thread_info()->status & TS_USEDFPU)
880 load_gdt(&__get_cpu_var(host_gdt));
883 static void vmx_load_host_state(struct vcpu_vmx *vmx)
886 __vmx_load_host_state(vmx);
891 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
892 * vcpu mutex is already taken.
894 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
896 struct vcpu_vmx *vmx = to_vmx(vcpu);
897 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
900 kvm_cpu_vmxon(phys_addr);
901 else if (vcpu->cpu != cpu)
904 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
905 per_cpu(current_vmcs, cpu) = vmx->vmcs;
906 vmcs_load(vmx->vmcs);
909 if (vcpu->cpu != cpu) {
910 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
911 unsigned long sysenter_esp;
913 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
915 list_add(&vmx->local_vcpus_link,
916 &per_cpu(vcpus_on_cpu, cpu));
920 * Linux uses per-cpu TSS and GDT, so set these when switching
923 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
924 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
926 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
927 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
931 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
933 __vmx_load_host_state(to_vmx(vcpu));
934 if (!vmm_exclusive) {
935 __vcpu_clear(to_vmx(vcpu));
940 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
944 if (vcpu->fpu_active)
946 vcpu->fpu_active = 1;
947 cr0 = vmcs_readl(GUEST_CR0);
948 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
949 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
950 vmcs_writel(GUEST_CR0, cr0);
951 update_exception_bitmap(vcpu);
952 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
953 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
956 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
958 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
960 vmx_decache_cr0_guest_bits(vcpu);
961 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
962 update_exception_bitmap(vcpu);
963 vcpu->arch.cr0_guest_owned_bits = 0;
964 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
965 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
968 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
970 unsigned long rflags, save_rflags;
972 rflags = vmcs_readl(GUEST_RFLAGS);
973 if (to_vmx(vcpu)->rmode.vm86_active) {
974 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
975 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
976 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
981 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
983 if (to_vmx(vcpu)->rmode.vm86_active) {
984 to_vmx(vcpu)->rmode.save_rflags = rflags;
985 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
987 vmcs_writel(GUEST_RFLAGS, rflags);
990 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
992 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
995 if (interruptibility & GUEST_INTR_STATE_STI)
996 ret |= KVM_X86_SHADOW_INT_STI;
997 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
998 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1003 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1005 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1006 u32 interruptibility = interruptibility_old;
1008 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1010 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1011 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1012 else if (mask & KVM_X86_SHADOW_INT_STI)
1013 interruptibility |= GUEST_INTR_STATE_STI;
1015 if ((interruptibility != interruptibility_old))
1016 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1019 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1023 rip = kvm_rip_read(vcpu);
1024 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1025 kvm_rip_write(vcpu, rip);
1027 /* skipping an emulated instruction also counts */
1028 vmx_set_interrupt_shadow(vcpu, 0);
1031 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1033 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1034 * explicitly skip the instruction because if the HLT state is set, then
1035 * the instruction is already executing and RIP has already been
1037 if (!yield_on_hlt &&
1038 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1039 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1042 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1043 bool has_error_code, u32 error_code,
1046 struct vcpu_vmx *vmx = to_vmx(vcpu);
1047 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1049 if (has_error_code) {
1050 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1051 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1054 if (vmx->rmode.vm86_active) {
1055 if (kvm_inject_realmode_interrupt(vcpu, nr) != EMULATE_DONE)
1056 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1060 if (kvm_exception_is_soft(nr)) {
1061 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1062 vmx->vcpu.arch.event_exit_inst_len);
1063 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1065 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1067 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1068 vmx_clear_hlt(vcpu);
1071 static bool vmx_rdtscp_supported(void)
1073 return cpu_has_vmx_rdtscp();
1077 * Swap MSR entry in host/guest MSR entry array.
1079 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1081 struct shared_msr_entry tmp;
1083 tmp = vmx->guest_msrs[to];
1084 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1085 vmx->guest_msrs[from] = tmp;
1089 * Set up the vmcs to automatically save and restore system
1090 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1091 * mode, as fiddling with msrs is very expensive.
1093 static void setup_msrs(struct vcpu_vmx *vmx)
1095 int save_nmsrs, index;
1096 unsigned long *msr_bitmap;
1098 vmx_load_host_state(vmx);
1100 #ifdef CONFIG_X86_64
1101 if (is_long_mode(&vmx->vcpu)) {
1102 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1104 move_msr_up(vmx, index, save_nmsrs++);
1105 index = __find_msr_index(vmx, MSR_LSTAR);
1107 move_msr_up(vmx, index, save_nmsrs++);
1108 index = __find_msr_index(vmx, MSR_CSTAR);
1110 move_msr_up(vmx, index, save_nmsrs++);
1111 index = __find_msr_index(vmx, MSR_TSC_AUX);
1112 if (index >= 0 && vmx->rdtscp_enabled)
1113 move_msr_up(vmx, index, save_nmsrs++);
1115 * MSR_STAR is only needed on long mode guests, and only
1116 * if efer.sce is enabled.
1118 index = __find_msr_index(vmx, MSR_STAR);
1119 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1120 move_msr_up(vmx, index, save_nmsrs++);
1123 index = __find_msr_index(vmx, MSR_EFER);
1124 if (index >= 0 && update_transition_efer(vmx, index))
1125 move_msr_up(vmx, index, save_nmsrs++);
1127 vmx->save_nmsrs = save_nmsrs;
1129 if (cpu_has_vmx_msr_bitmap()) {
1130 if (is_long_mode(&vmx->vcpu))
1131 msr_bitmap = vmx_msr_bitmap_longmode;
1133 msr_bitmap = vmx_msr_bitmap_legacy;
1135 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1140 * reads and returns guest's timestamp counter "register"
1141 * guest_tsc = host_tsc + tsc_offset -- 21.3
1143 static u64 guest_read_tsc(void)
1145 u64 host_tsc, tsc_offset;
1148 tsc_offset = vmcs_read64(TSC_OFFSET);
1149 return host_tsc + tsc_offset;
1153 * writes 'offset' into guest's timestamp counter offset register
1155 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1157 vmcs_write64(TSC_OFFSET, offset);
1160 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1162 u64 offset = vmcs_read64(TSC_OFFSET);
1163 vmcs_write64(TSC_OFFSET, offset + adjustment);
1167 * Reads an msr value (of 'msr_index') into 'pdata'.
1168 * Returns 0 on success, non-0 otherwise.
1169 * Assumes vcpu_load() was already called.
1171 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1174 struct shared_msr_entry *msr;
1177 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1181 switch (msr_index) {
1182 #ifdef CONFIG_X86_64
1184 data = vmcs_readl(GUEST_FS_BASE);
1187 data = vmcs_readl(GUEST_GS_BASE);
1189 case MSR_KERNEL_GS_BASE:
1190 vmx_load_host_state(to_vmx(vcpu));
1191 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1195 return kvm_get_msr_common(vcpu, msr_index, pdata);
1197 data = guest_read_tsc();
1199 case MSR_IA32_SYSENTER_CS:
1200 data = vmcs_read32(GUEST_SYSENTER_CS);
1202 case MSR_IA32_SYSENTER_EIP:
1203 data = vmcs_readl(GUEST_SYSENTER_EIP);
1205 case MSR_IA32_SYSENTER_ESP:
1206 data = vmcs_readl(GUEST_SYSENTER_ESP);
1209 if (!to_vmx(vcpu)->rdtscp_enabled)
1211 /* Otherwise falls through */
1213 vmx_load_host_state(to_vmx(vcpu));
1214 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1216 vmx_load_host_state(to_vmx(vcpu));
1220 return kvm_get_msr_common(vcpu, msr_index, pdata);
1228 * Writes msr value into into the appropriate "register".
1229 * Returns 0 on success, non-0 otherwise.
1230 * Assumes vcpu_load() was already called.
1232 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1234 struct vcpu_vmx *vmx = to_vmx(vcpu);
1235 struct shared_msr_entry *msr;
1238 switch (msr_index) {
1240 vmx_load_host_state(vmx);
1241 ret = kvm_set_msr_common(vcpu, msr_index, data);
1243 #ifdef CONFIG_X86_64
1245 vmcs_writel(GUEST_FS_BASE, data);
1248 vmcs_writel(GUEST_GS_BASE, data);
1250 case MSR_KERNEL_GS_BASE:
1251 vmx_load_host_state(vmx);
1252 vmx->msr_guest_kernel_gs_base = data;
1255 case MSR_IA32_SYSENTER_CS:
1256 vmcs_write32(GUEST_SYSENTER_CS, data);
1258 case MSR_IA32_SYSENTER_EIP:
1259 vmcs_writel(GUEST_SYSENTER_EIP, data);
1261 case MSR_IA32_SYSENTER_ESP:
1262 vmcs_writel(GUEST_SYSENTER_ESP, data);
1265 kvm_write_tsc(vcpu, data);
1267 case MSR_IA32_CR_PAT:
1268 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1269 vmcs_write64(GUEST_IA32_PAT, data);
1270 vcpu->arch.pat = data;
1273 ret = kvm_set_msr_common(vcpu, msr_index, data);
1276 if (!vmx->rdtscp_enabled)
1278 /* Check reserved bit, higher 32 bits should be zero */
1279 if ((data >> 32) != 0)
1281 /* Otherwise falls through */
1283 msr = find_msr_entry(vmx, msr_index);
1285 vmx_load_host_state(vmx);
1289 ret = kvm_set_msr_common(vcpu, msr_index, data);
1295 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1297 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1300 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1303 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1305 case VCPU_EXREG_PDPTR:
1307 ept_save_pdptrs(vcpu);
1314 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1316 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1317 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1319 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1321 update_exception_bitmap(vcpu);
1324 static __init int cpu_has_kvm_support(void)
1326 return cpu_has_vmx();
1329 static __init int vmx_disabled_by_bios(void)
1333 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1334 if (msr & FEATURE_CONTROL_LOCKED) {
1335 /* launched w/ TXT and VMX disabled */
1336 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1339 /* launched w/o TXT and VMX only enabled w/ TXT */
1340 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1341 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1342 && !tboot_enabled()) {
1343 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1344 "activate TXT before enabling KVM\n");
1347 /* launched w/o TXT and VMX disabled */
1348 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1349 && !tboot_enabled())
1356 static void kvm_cpu_vmxon(u64 addr)
1358 asm volatile (ASM_VMX_VMXON_RAX
1359 : : "a"(&addr), "m"(addr)
1363 static int hardware_enable(void *garbage)
1365 int cpu = raw_smp_processor_id();
1366 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1369 if (read_cr4() & X86_CR4_VMXE)
1372 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1373 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1375 test_bits = FEATURE_CONTROL_LOCKED;
1376 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1377 if (tboot_enabled())
1378 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1380 if ((old & test_bits) != test_bits) {
1381 /* enable and lock */
1382 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1384 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1386 if (vmm_exclusive) {
1387 kvm_cpu_vmxon(phys_addr);
1391 store_gdt(&__get_cpu_var(host_gdt));
1396 static void vmclear_local_vcpus(void)
1398 int cpu = raw_smp_processor_id();
1399 struct vcpu_vmx *vmx, *n;
1401 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1407 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1410 static void kvm_cpu_vmxoff(void)
1412 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1415 static void hardware_disable(void *garbage)
1417 if (vmm_exclusive) {
1418 vmclear_local_vcpus();
1421 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1424 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1425 u32 msr, u32 *result)
1427 u32 vmx_msr_low, vmx_msr_high;
1428 u32 ctl = ctl_min | ctl_opt;
1430 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1432 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1433 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1435 /* Ensure minimum (required) set of control bits are supported. */
1443 static __init bool allow_1_setting(u32 msr, u32 ctl)
1445 u32 vmx_msr_low, vmx_msr_high;
1447 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1448 return vmx_msr_high & ctl;
1451 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1453 u32 vmx_msr_low, vmx_msr_high;
1454 u32 min, opt, min2, opt2;
1455 u32 _pin_based_exec_control = 0;
1456 u32 _cpu_based_exec_control = 0;
1457 u32 _cpu_based_2nd_exec_control = 0;
1458 u32 _vmexit_control = 0;
1459 u32 _vmentry_control = 0;
1461 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1462 opt = PIN_BASED_VIRTUAL_NMIS;
1463 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1464 &_pin_based_exec_control) < 0)
1468 #ifdef CONFIG_X86_64
1469 CPU_BASED_CR8_LOAD_EXITING |
1470 CPU_BASED_CR8_STORE_EXITING |
1472 CPU_BASED_CR3_LOAD_EXITING |
1473 CPU_BASED_CR3_STORE_EXITING |
1474 CPU_BASED_USE_IO_BITMAPS |
1475 CPU_BASED_MOV_DR_EXITING |
1476 CPU_BASED_USE_TSC_OFFSETING |
1477 CPU_BASED_MWAIT_EXITING |
1478 CPU_BASED_MONITOR_EXITING |
1479 CPU_BASED_INVLPG_EXITING;
1482 min |= CPU_BASED_HLT_EXITING;
1484 opt = CPU_BASED_TPR_SHADOW |
1485 CPU_BASED_USE_MSR_BITMAPS |
1486 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1487 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1488 &_cpu_based_exec_control) < 0)
1490 #ifdef CONFIG_X86_64
1491 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1492 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1493 ~CPU_BASED_CR8_STORE_EXITING;
1495 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1497 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1498 SECONDARY_EXEC_WBINVD_EXITING |
1499 SECONDARY_EXEC_ENABLE_VPID |
1500 SECONDARY_EXEC_ENABLE_EPT |
1501 SECONDARY_EXEC_UNRESTRICTED_GUEST |
1502 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1503 SECONDARY_EXEC_RDTSCP;
1504 if (adjust_vmx_controls(min2, opt2,
1505 MSR_IA32_VMX_PROCBASED_CTLS2,
1506 &_cpu_based_2nd_exec_control) < 0)
1509 #ifndef CONFIG_X86_64
1510 if (!(_cpu_based_2nd_exec_control &
1511 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1512 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1514 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1515 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1517 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1518 CPU_BASED_CR3_STORE_EXITING |
1519 CPU_BASED_INVLPG_EXITING);
1520 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1521 vmx_capability.ept, vmx_capability.vpid);
1525 #ifdef CONFIG_X86_64
1526 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1528 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1529 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1530 &_vmexit_control) < 0)
1534 opt = VM_ENTRY_LOAD_IA32_PAT;
1535 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1536 &_vmentry_control) < 0)
1539 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1541 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1542 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1545 #ifdef CONFIG_X86_64
1546 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1547 if (vmx_msr_high & (1u<<16))
1551 /* Require Write-Back (WB) memory type for VMCS accesses. */
1552 if (((vmx_msr_high >> 18) & 15) != 6)
1555 vmcs_conf->size = vmx_msr_high & 0x1fff;
1556 vmcs_conf->order = get_order(vmcs_config.size);
1557 vmcs_conf->revision_id = vmx_msr_low;
1559 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1560 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1561 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1562 vmcs_conf->vmexit_ctrl = _vmexit_control;
1563 vmcs_conf->vmentry_ctrl = _vmentry_control;
1565 cpu_has_load_ia32_efer =
1566 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
1567 VM_ENTRY_LOAD_IA32_EFER)
1568 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
1569 VM_EXIT_LOAD_IA32_EFER);
1574 static struct vmcs *alloc_vmcs_cpu(int cpu)
1576 int node = cpu_to_node(cpu);
1580 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1583 vmcs = page_address(pages);
1584 memset(vmcs, 0, vmcs_config.size);
1585 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1589 static struct vmcs *alloc_vmcs(void)
1591 return alloc_vmcs_cpu(raw_smp_processor_id());
1594 static void free_vmcs(struct vmcs *vmcs)
1596 free_pages((unsigned long)vmcs, vmcs_config.order);
1599 static void free_kvm_area(void)
1603 for_each_possible_cpu(cpu) {
1604 free_vmcs(per_cpu(vmxarea, cpu));
1605 per_cpu(vmxarea, cpu) = NULL;
1609 static __init int alloc_kvm_area(void)
1613 for_each_possible_cpu(cpu) {
1616 vmcs = alloc_vmcs_cpu(cpu);
1622 per_cpu(vmxarea, cpu) = vmcs;
1627 static __init int hardware_setup(void)
1629 if (setup_vmcs_config(&vmcs_config) < 0)
1632 if (boot_cpu_has(X86_FEATURE_NX))
1633 kvm_enable_efer_bits(EFER_NX);
1635 if (!cpu_has_vmx_vpid())
1638 if (!cpu_has_vmx_ept() ||
1639 !cpu_has_vmx_ept_4levels()) {
1641 enable_unrestricted_guest = 0;
1644 if (!cpu_has_vmx_unrestricted_guest())
1645 enable_unrestricted_guest = 0;
1647 if (!cpu_has_vmx_flexpriority())
1648 flexpriority_enabled = 0;
1650 if (!cpu_has_vmx_tpr_shadow())
1651 kvm_x86_ops->update_cr8_intercept = NULL;
1653 if (enable_ept && !cpu_has_vmx_ept_2m_page())
1654 kvm_disable_largepages();
1656 if (!cpu_has_vmx_ple())
1659 return alloc_kvm_area();
1662 static __exit void hardware_unsetup(void)
1667 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1669 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1671 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1672 vmcs_write16(sf->selector, save->selector);
1673 vmcs_writel(sf->base, save->base);
1674 vmcs_write32(sf->limit, save->limit);
1675 vmcs_write32(sf->ar_bytes, save->ar);
1677 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1679 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1683 static void enter_pmode(struct kvm_vcpu *vcpu)
1685 unsigned long flags;
1686 struct vcpu_vmx *vmx = to_vmx(vcpu);
1688 vmx->emulation_required = 1;
1689 vmx->rmode.vm86_active = 0;
1691 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
1692 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1693 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1694 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1696 flags = vmcs_readl(GUEST_RFLAGS);
1697 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1698 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1699 vmcs_writel(GUEST_RFLAGS, flags);
1701 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1702 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1704 update_exception_bitmap(vcpu);
1706 if (emulate_invalid_guest_state)
1709 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1710 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1711 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1712 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1714 vmcs_write16(GUEST_SS_SELECTOR, 0);
1715 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1717 vmcs_write16(GUEST_CS_SELECTOR,
1718 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1719 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1722 static gva_t rmode_tss_base(struct kvm *kvm)
1724 if (!kvm->arch.tss_addr) {
1725 struct kvm_memslots *slots;
1728 slots = kvm_memslots(kvm);
1729 base_gfn = slots->memslots[0].base_gfn +
1730 kvm->memslots->memslots[0].npages - 3;
1731 return base_gfn << PAGE_SHIFT;
1733 return kvm->arch.tss_addr;
1736 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1738 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1740 save->selector = vmcs_read16(sf->selector);
1741 save->base = vmcs_readl(sf->base);
1742 save->limit = vmcs_read32(sf->limit);
1743 save->ar = vmcs_read32(sf->ar_bytes);
1744 vmcs_write16(sf->selector, save->base >> 4);
1745 vmcs_write32(sf->base, save->base & 0xffff0);
1746 vmcs_write32(sf->limit, 0xffff);
1747 vmcs_write32(sf->ar_bytes, 0xf3);
1748 if (save->base & 0xf)
1749 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
1750 " aligned when entering protected mode (seg=%d)",
1754 static void enter_rmode(struct kvm_vcpu *vcpu)
1756 unsigned long flags;
1757 struct vcpu_vmx *vmx = to_vmx(vcpu);
1759 if (enable_unrestricted_guest)
1762 vmx->emulation_required = 1;
1763 vmx->rmode.vm86_active = 1;
1765 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
1766 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1767 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1769 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1770 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1772 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1773 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1775 flags = vmcs_readl(GUEST_RFLAGS);
1776 vmx->rmode.save_rflags = flags;
1778 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1780 vmcs_writel(GUEST_RFLAGS, flags);
1781 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1782 update_exception_bitmap(vcpu);
1784 if (emulate_invalid_guest_state)
1785 goto continue_rmode;
1787 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1788 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1789 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1791 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1792 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1793 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1794 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1795 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1797 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1798 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1799 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1800 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1803 kvm_mmu_reset_context(vcpu);
1806 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1808 struct vcpu_vmx *vmx = to_vmx(vcpu);
1809 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1815 * Force kernel_gs_base reloading before EFER changes, as control
1816 * of this msr depends on is_long_mode().
1818 vmx_load_host_state(to_vmx(vcpu));
1819 vcpu->arch.efer = efer;
1820 if (efer & EFER_LMA) {
1821 vmcs_write32(VM_ENTRY_CONTROLS,
1822 vmcs_read32(VM_ENTRY_CONTROLS) |
1823 VM_ENTRY_IA32E_MODE);
1826 vmcs_write32(VM_ENTRY_CONTROLS,
1827 vmcs_read32(VM_ENTRY_CONTROLS) &
1828 ~VM_ENTRY_IA32E_MODE);
1830 msr->data = efer & ~EFER_LME;
1835 #ifdef CONFIG_X86_64
1837 static void enter_lmode(struct kvm_vcpu *vcpu)
1841 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1842 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1843 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1845 vmcs_write32(GUEST_TR_AR_BYTES,
1846 (guest_tr_ar & ~AR_TYPE_MASK)
1847 | AR_TYPE_BUSY_64_TSS);
1849 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1852 static void exit_lmode(struct kvm_vcpu *vcpu)
1854 vmcs_write32(VM_ENTRY_CONTROLS,
1855 vmcs_read32(VM_ENTRY_CONTROLS)
1856 & ~VM_ENTRY_IA32E_MODE);
1857 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1862 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1864 vpid_sync_context(to_vmx(vcpu));
1866 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1868 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1872 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1874 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1876 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1877 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1880 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
1882 if (enable_ept && is_paging(vcpu))
1883 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
1884 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1887 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1889 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1891 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1892 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1895 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1897 if (!test_bit(VCPU_EXREG_PDPTR,
1898 (unsigned long *)&vcpu->arch.regs_dirty))
1901 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1902 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
1903 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
1904 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
1905 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1909 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1911 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1912 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1913 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1914 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1915 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1918 __set_bit(VCPU_EXREG_PDPTR,
1919 (unsigned long *)&vcpu->arch.regs_avail);
1920 __set_bit(VCPU_EXREG_PDPTR,
1921 (unsigned long *)&vcpu->arch.regs_dirty);
1924 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1926 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1928 struct kvm_vcpu *vcpu)
1930 vmx_decache_cr3(vcpu);
1931 if (!(cr0 & X86_CR0_PG)) {
1932 /* From paging/starting to nonpaging */
1933 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1934 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1935 (CPU_BASED_CR3_LOAD_EXITING |
1936 CPU_BASED_CR3_STORE_EXITING));
1937 vcpu->arch.cr0 = cr0;
1938 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1939 } else if (!is_paging(vcpu)) {
1940 /* From nonpaging to paging */
1941 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1942 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1943 ~(CPU_BASED_CR3_LOAD_EXITING |
1944 CPU_BASED_CR3_STORE_EXITING));
1945 vcpu->arch.cr0 = cr0;
1946 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1949 if (!(cr0 & X86_CR0_WP))
1950 *hw_cr0 &= ~X86_CR0_WP;
1953 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1955 struct vcpu_vmx *vmx = to_vmx(vcpu);
1956 unsigned long hw_cr0;
1958 if (enable_unrestricted_guest)
1959 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1960 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1962 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1964 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1967 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1970 #ifdef CONFIG_X86_64
1971 if (vcpu->arch.efer & EFER_LME) {
1972 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1974 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1980 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1982 if (!vcpu->fpu_active)
1983 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
1985 vmcs_writel(CR0_READ_SHADOW, cr0);
1986 vmcs_writel(GUEST_CR0, hw_cr0);
1987 vcpu->arch.cr0 = cr0;
1990 static u64 construct_eptp(unsigned long root_hpa)
1994 /* TODO write the value reading from MSR */
1995 eptp = VMX_EPT_DEFAULT_MT |
1996 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1997 eptp |= (root_hpa & PAGE_MASK);
2002 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2004 unsigned long guest_cr3;
2009 eptp = construct_eptp(cr3);
2010 vmcs_write64(EPT_POINTER, eptp);
2011 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2012 vcpu->kvm->arch.ept_identity_map_addr;
2013 ept_load_pdptrs(vcpu);
2016 vmx_flush_tlb(vcpu);
2017 vmcs_writel(GUEST_CR3, guest_cr3);
2020 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2022 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2023 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2025 vcpu->arch.cr4 = cr4;
2027 if (!is_paging(vcpu)) {
2028 hw_cr4 &= ~X86_CR4_PAE;
2029 hw_cr4 |= X86_CR4_PSE;
2030 } else if (!(cr4 & X86_CR4_PAE)) {
2031 hw_cr4 &= ~X86_CR4_PAE;
2035 vmcs_writel(CR4_READ_SHADOW, cr4);
2036 vmcs_writel(GUEST_CR4, hw_cr4);
2039 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2040 struct kvm_segment *var, int seg)
2042 struct vcpu_vmx *vmx = to_vmx(vcpu);
2043 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2044 struct kvm_save_segment *save;
2047 if (vmx->rmode.vm86_active
2048 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2049 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2050 || seg == VCPU_SREG_GS)
2051 && !emulate_invalid_guest_state) {
2053 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2054 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2055 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2056 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2057 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2060 var->selector = save->selector;
2061 var->base = save->base;
2062 var->limit = save->limit;
2064 if (seg == VCPU_SREG_TR
2065 || var->selector == vmcs_read16(sf->selector))
2066 goto use_saved_rmode_seg;
2068 var->base = vmcs_readl(sf->base);
2069 var->limit = vmcs_read32(sf->limit);
2070 var->selector = vmcs_read16(sf->selector);
2071 ar = vmcs_read32(sf->ar_bytes);
2072 use_saved_rmode_seg:
2073 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2075 var->type = ar & 15;
2076 var->s = (ar >> 4) & 1;
2077 var->dpl = (ar >> 5) & 3;
2078 var->present = (ar >> 7) & 1;
2079 var->avl = (ar >> 12) & 1;
2080 var->l = (ar >> 13) & 1;
2081 var->db = (ar >> 14) & 1;
2082 var->g = (ar >> 15) & 1;
2083 var->unusable = (ar >> 16) & 1;
2086 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2088 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2089 struct kvm_segment s;
2091 if (to_vmx(vcpu)->rmode.vm86_active) {
2092 vmx_get_segment(vcpu, &s, seg);
2095 return vmcs_readl(sf->base);
2098 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2100 if (!is_protmode(vcpu))
2103 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
2106 return vmcs_read16(GUEST_CS_SELECTOR) & 3;
2109 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2116 ar = var->type & 15;
2117 ar |= (var->s & 1) << 4;
2118 ar |= (var->dpl & 3) << 5;
2119 ar |= (var->present & 1) << 7;
2120 ar |= (var->avl & 1) << 12;
2121 ar |= (var->l & 1) << 13;
2122 ar |= (var->db & 1) << 14;
2123 ar |= (var->g & 1) << 15;
2125 if (ar == 0) /* a 0 value means unusable */
2126 ar = AR_UNUSABLE_MASK;
2131 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2132 struct kvm_segment *var, int seg)
2134 struct vcpu_vmx *vmx = to_vmx(vcpu);
2135 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2138 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2139 vmcs_write16(sf->selector, var->selector);
2140 vmx->rmode.tr.selector = var->selector;
2141 vmx->rmode.tr.base = var->base;
2142 vmx->rmode.tr.limit = var->limit;
2143 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2146 vmcs_writel(sf->base, var->base);
2147 vmcs_write32(sf->limit, var->limit);
2148 vmcs_write16(sf->selector, var->selector);
2149 if (vmx->rmode.vm86_active && var->s) {
2151 * Hack real-mode segments into vm86 compatibility.
2153 if (var->base == 0xffff0000 && var->selector == 0xf000)
2154 vmcs_writel(sf->base, 0xf0000);
2157 ar = vmx_segment_access_rights(var);
2160 * Fix the "Accessed" bit in AR field of segment registers for older
2162 * IA32 arch specifies that at the time of processor reset the
2163 * "Accessed" bit in the AR field of segment registers is 1. And qemu
2164 * is setting it to 0 in the usedland code. This causes invalid guest
2165 * state vmexit when "unrestricted guest" mode is turned on.
2166 * Fix for this setup issue in cpu_reset is being pushed in the qemu
2167 * tree. Newer qemu binaries with that qemu fix would not need this
2170 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2171 ar |= 0x1; /* Accessed */
2173 vmcs_write32(sf->ar_bytes, ar);
2176 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2178 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
2180 *db = (ar >> 14) & 1;
2181 *l = (ar >> 13) & 1;
2184 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2186 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2187 dt->address = vmcs_readl(GUEST_IDTR_BASE);
2190 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2192 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2193 vmcs_writel(GUEST_IDTR_BASE, dt->address);
2196 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2198 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2199 dt->address = vmcs_readl(GUEST_GDTR_BASE);
2202 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2204 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2205 vmcs_writel(GUEST_GDTR_BASE, dt->address);
2208 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2210 struct kvm_segment var;
2213 vmx_get_segment(vcpu, &var, seg);
2214 ar = vmx_segment_access_rights(&var);
2216 if (var.base != (var.selector << 4))
2218 if (var.limit != 0xffff)
2226 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2228 struct kvm_segment cs;
2229 unsigned int cs_rpl;
2231 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2232 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2236 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2240 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2241 if (cs.dpl > cs_rpl)
2244 if (cs.dpl != cs_rpl)
2250 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2254 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2256 struct kvm_segment ss;
2257 unsigned int ss_rpl;
2259 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2260 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2264 if (ss.type != 3 && ss.type != 7)
2268 if (ss.dpl != ss_rpl) /* DPL != RPL */
2276 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2278 struct kvm_segment var;
2281 vmx_get_segment(vcpu, &var, seg);
2282 rpl = var.selector & SELECTOR_RPL_MASK;
2290 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2291 if (var.dpl < rpl) /* DPL < RPL */
2295 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2301 static bool tr_valid(struct kvm_vcpu *vcpu)
2303 struct kvm_segment tr;
2305 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2309 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2311 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2319 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2321 struct kvm_segment ldtr;
2323 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2327 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2337 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2339 struct kvm_segment cs, ss;
2341 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2342 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2344 return ((cs.selector & SELECTOR_RPL_MASK) ==
2345 (ss.selector & SELECTOR_RPL_MASK));
2349 * Check if guest state is valid. Returns true if valid, false if
2351 * We assume that registers are always usable
2353 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2355 /* real mode guest state checks */
2356 if (!is_protmode(vcpu)) {
2357 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2359 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2361 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2363 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2365 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2367 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2370 /* protected mode guest state checks */
2371 if (!cs_ss_rpl_check(vcpu))
2373 if (!code_segment_valid(vcpu))
2375 if (!stack_segment_valid(vcpu))
2377 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2379 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2381 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2383 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2385 if (!tr_valid(vcpu))
2387 if (!ldtr_valid(vcpu))
2391 * - Add checks on RIP
2392 * - Add checks on RFLAGS
2398 static int init_rmode_tss(struct kvm *kvm)
2402 int r, idx, ret = 0;
2404 idx = srcu_read_lock(&kvm->srcu);
2405 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2406 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2409 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2410 r = kvm_write_guest_page(kvm, fn++, &data,
2411 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2414 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2417 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2421 r = kvm_write_guest_page(kvm, fn, &data,
2422 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2429 srcu_read_unlock(&kvm->srcu, idx);
2433 static int init_rmode_identity_map(struct kvm *kvm)
2436 pfn_t identity_map_pfn;
2441 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2442 printk(KERN_ERR "EPT: identity-mapping pagetable "
2443 "haven't been allocated!\n");
2446 if (likely(kvm->arch.ept_identity_pagetable_done))
2449 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2450 idx = srcu_read_lock(&kvm->srcu);
2451 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2454 /* Set up identity-mapping pagetable for EPT in real mode */
2455 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2456 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2457 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2458 r = kvm_write_guest_page(kvm, identity_map_pfn,
2459 &tmp, i * sizeof(tmp), sizeof(tmp));
2463 kvm->arch.ept_identity_pagetable_done = true;
2466 srcu_read_unlock(&kvm->srcu, idx);
2470 static void seg_setup(int seg)
2472 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2475 vmcs_write16(sf->selector, 0);
2476 vmcs_writel(sf->base, 0);
2477 vmcs_write32(sf->limit, 0xffff);
2478 if (enable_unrestricted_guest) {
2480 if (seg == VCPU_SREG_CS)
2481 ar |= 0x08; /* code segment */
2485 vmcs_write32(sf->ar_bytes, ar);
2488 static int alloc_apic_access_page(struct kvm *kvm)
2490 struct kvm_userspace_memory_region kvm_userspace_mem;
2493 mutex_lock(&kvm->slots_lock);
2494 if (kvm->arch.apic_access_page)
2496 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2497 kvm_userspace_mem.flags = 0;
2498 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2499 kvm_userspace_mem.memory_size = PAGE_SIZE;
2500 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2504 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2506 mutex_unlock(&kvm->slots_lock);
2510 static int alloc_identity_pagetable(struct kvm *kvm)
2512 struct kvm_userspace_memory_region kvm_userspace_mem;
2515 mutex_lock(&kvm->slots_lock);
2516 if (kvm->arch.ept_identity_pagetable)
2518 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2519 kvm_userspace_mem.flags = 0;
2520 kvm_userspace_mem.guest_phys_addr =
2521 kvm->arch.ept_identity_map_addr;
2522 kvm_userspace_mem.memory_size = PAGE_SIZE;
2523 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2527 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2528 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2530 mutex_unlock(&kvm->slots_lock);
2534 static void allocate_vpid(struct vcpu_vmx *vmx)
2541 spin_lock(&vmx_vpid_lock);
2542 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2543 if (vpid < VMX_NR_VPIDS) {
2545 __set_bit(vpid, vmx_vpid_bitmap);
2547 spin_unlock(&vmx_vpid_lock);
2550 static void free_vpid(struct vcpu_vmx *vmx)
2554 spin_lock(&vmx_vpid_lock);
2556 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2557 spin_unlock(&vmx_vpid_lock);
2560 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2562 int f = sizeof(unsigned long);
2564 if (!cpu_has_vmx_msr_bitmap())
2568 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2569 * have the write-low and read-high bitmap offsets the wrong way round.
2570 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2572 if (msr <= 0x1fff) {
2573 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2574 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2575 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2577 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2578 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2582 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2585 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2586 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2590 * Sets up the vmcs for emulated real mode.
2592 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2594 u32 host_sysenter_cs, msr_low, msr_high;
2600 unsigned long kvm_vmx_return;
2604 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2605 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2607 if (cpu_has_vmx_msr_bitmap())
2608 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2610 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2613 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2614 vmcs_config.pin_based_exec_ctrl);
2616 exec_control = vmcs_config.cpu_based_exec_ctrl;
2617 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2618 exec_control &= ~CPU_BASED_TPR_SHADOW;
2619 #ifdef CONFIG_X86_64
2620 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2621 CPU_BASED_CR8_LOAD_EXITING;
2625 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2626 CPU_BASED_CR3_LOAD_EXITING |
2627 CPU_BASED_INVLPG_EXITING;
2628 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2630 if (cpu_has_secondary_exec_ctrls()) {
2631 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2632 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2634 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2636 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2638 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2639 enable_unrestricted_guest = 0;
2641 if (!enable_unrestricted_guest)
2642 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2644 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2645 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2649 vmcs_write32(PLE_GAP, ple_gap);
2650 vmcs_write32(PLE_WINDOW, ple_window);
2653 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2654 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2655 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2657 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
2658 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2659 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2661 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2662 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2663 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2664 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
2665 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
2666 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2667 #ifdef CONFIG_X86_64
2668 rdmsrl(MSR_FS_BASE, a);
2669 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2670 rdmsrl(MSR_GS_BASE, a);
2671 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2673 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2674 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2677 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2679 native_store_idt(&dt);
2680 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
2682 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2683 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2684 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2685 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2686 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2687 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2688 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2690 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2691 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2692 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2693 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2694 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2695 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2697 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2698 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2699 host_pat = msr_low | ((u64) msr_high << 32);
2700 vmcs_write64(HOST_IA32_PAT, host_pat);
2702 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2703 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2704 host_pat = msr_low | ((u64) msr_high << 32);
2705 /* Write the default value follow host pat */
2706 vmcs_write64(GUEST_IA32_PAT, host_pat);
2707 /* Keep arch.pat sync with GUEST_IA32_PAT */
2708 vmx->vcpu.arch.pat = host_pat;
2711 for (i = 0; i < NR_VMX_MSR; ++i) {
2712 u32 index = vmx_msr_index[i];
2713 u32 data_low, data_high;
2716 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2718 if (wrmsr_safe(index, data_low, data_high) < 0)
2720 vmx->guest_msrs[j].index = i;
2721 vmx->guest_msrs[j].data = 0;
2722 vmx->guest_msrs[j].mask = -1ull;
2726 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2728 /* 22.2.1, 20.8.1 */
2729 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2731 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2732 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2734 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2735 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2737 kvm_write_tsc(&vmx->vcpu, 0);
2742 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2744 struct vcpu_vmx *vmx = to_vmx(vcpu);
2748 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2750 vmx->rmode.vm86_active = 0;
2752 vmx->soft_vnmi_blocked = 0;
2754 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2755 kvm_set_cr8(&vmx->vcpu, 0);
2756 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2757 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2758 msr |= MSR_IA32_APICBASE_BSP;
2759 kvm_set_apic_base(&vmx->vcpu, msr);
2761 ret = fx_init(&vmx->vcpu);
2765 seg_setup(VCPU_SREG_CS);
2767 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2768 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2770 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2771 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2772 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2774 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2775 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2778 seg_setup(VCPU_SREG_DS);
2779 seg_setup(VCPU_SREG_ES);
2780 seg_setup(VCPU_SREG_FS);
2781 seg_setup(VCPU_SREG_GS);
2782 seg_setup(VCPU_SREG_SS);
2784 vmcs_write16(GUEST_TR_SELECTOR, 0);
2785 vmcs_writel(GUEST_TR_BASE, 0);
2786 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2787 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2789 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2790 vmcs_writel(GUEST_LDTR_BASE, 0);
2791 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2792 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2794 vmcs_write32(GUEST_SYSENTER_CS, 0);
2795 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2796 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2798 vmcs_writel(GUEST_RFLAGS, 0x02);
2799 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2800 kvm_rip_write(vcpu, 0xfff0);
2802 kvm_rip_write(vcpu, 0);
2803 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2805 vmcs_writel(GUEST_DR7, 0x400);
2807 vmcs_writel(GUEST_GDTR_BASE, 0);
2808 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2810 vmcs_writel(GUEST_IDTR_BASE, 0);
2811 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2813 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2814 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2815 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2817 /* Special registers */
2818 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2822 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2824 if (cpu_has_vmx_tpr_shadow()) {
2825 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2826 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2827 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2828 __pa(vmx->vcpu.arch.apic->regs));
2829 vmcs_write32(TPR_THRESHOLD, 0);
2832 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2833 vmcs_write64(APIC_ACCESS_ADDR,
2834 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2837 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2839 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2840 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2841 vmx_set_cr4(&vmx->vcpu, 0);
2842 vmx_set_efer(&vmx->vcpu, 0);
2843 vmx_fpu_activate(&vmx->vcpu);
2844 update_exception_bitmap(&vmx->vcpu);
2846 vpid_sync_context(vmx);
2850 /* HACK: Don't enable emulation on guest boot/reset */
2851 vmx->emulation_required = 0;
2857 static void enable_irq_window(struct kvm_vcpu *vcpu)
2859 u32 cpu_based_vm_exec_control;
2861 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2862 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2863 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2866 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2868 u32 cpu_based_vm_exec_control;
2870 if (!cpu_has_virtual_nmis()) {
2871 enable_irq_window(vcpu);
2875 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
2876 enable_irq_window(vcpu);
2879 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2880 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2881 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2884 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2886 struct vcpu_vmx *vmx = to_vmx(vcpu);
2888 int irq = vcpu->arch.interrupt.nr;
2890 trace_kvm_inj_virq(irq);
2892 ++vcpu->stat.irq_injections;
2893 if (vmx->rmode.vm86_active) {
2894 if (kvm_inject_realmode_interrupt(vcpu, irq) != EMULATE_DONE)
2895 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2898 intr = irq | INTR_INFO_VALID_MASK;
2899 if (vcpu->arch.interrupt.soft) {
2900 intr |= INTR_TYPE_SOFT_INTR;
2901 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2902 vmx->vcpu.arch.event_exit_inst_len);
2904 intr |= INTR_TYPE_EXT_INTR;
2905 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2906 vmx_clear_hlt(vcpu);
2909 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2911 struct vcpu_vmx *vmx = to_vmx(vcpu);
2913 if (!cpu_has_virtual_nmis()) {
2915 * Tracking the NMI-blocked state in software is built upon
2916 * finding the next open IRQ window. This, in turn, depends on
2917 * well-behaving guests: They have to keep IRQs disabled at
2918 * least as long as the NMI handler runs. Otherwise we may
2919 * cause NMI nesting, maybe breaking the guest. But as this is
2920 * highly unlikely, we can live with the residual risk.
2922 vmx->soft_vnmi_blocked = 1;
2923 vmx->vnmi_blocked_time = 0;
2926 ++vcpu->stat.nmi_injections;
2927 if (vmx->rmode.vm86_active) {
2928 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR) != EMULATE_DONE)
2929 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2932 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2933 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2934 vmx_clear_hlt(vcpu);
2937 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2939 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2942 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2943 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
2944 | GUEST_INTR_STATE_NMI));
2947 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2949 if (!cpu_has_virtual_nmis())
2950 return to_vmx(vcpu)->soft_vnmi_blocked;
2951 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
2954 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2956 struct vcpu_vmx *vmx = to_vmx(vcpu);
2958 if (!cpu_has_virtual_nmis()) {
2959 if (vmx->soft_vnmi_blocked != masked) {
2960 vmx->soft_vnmi_blocked = masked;
2961 vmx->vnmi_blocked_time = 0;
2965 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2966 GUEST_INTR_STATE_NMI);
2968 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2969 GUEST_INTR_STATE_NMI);
2973 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2975 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2976 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2977 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2980 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2983 struct kvm_userspace_memory_region tss_mem = {
2984 .slot = TSS_PRIVATE_MEMSLOT,
2985 .guest_phys_addr = addr,
2986 .memory_size = PAGE_SIZE * 3,
2990 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2993 kvm->arch.tss_addr = addr;
2994 if (!init_rmode_tss(kvm))
3000 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3001 int vec, u32 err_code)
3004 * Instruction with address size override prefix opcode 0x67
3005 * Cause the #SS fault with 0 error code in VM86 mode.
3007 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3008 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3011 * Forward all other exceptions that are valid in real mode.
3012 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3013 * the required debugging infrastructure rework.
3017 if (vcpu->guest_debug &
3018 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3020 kvm_queue_exception(vcpu, vec);
3024 * Update instruction length as we may reinject the exception
3025 * from user space while in guest debugging mode.
3027 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3028 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3029 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3040 kvm_queue_exception(vcpu, vec);
3047 * Trigger machine check on the host. We assume all the MSRs are already set up
3048 * by the CPU and that we still run on the same CPU as the MCE occurred on.
3049 * We pass a fake environment to the machine check handler because we want
3050 * the guest to be always treated like user space, no matter what context
3051 * it used internally.
3053 static void kvm_machine_check(void)
3055 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3056 struct pt_regs regs = {
3057 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3058 .flags = X86_EFLAGS_IF,
3061 do_machine_check(®s, 0);
3065 static int handle_machine_check(struct kvm_vcpu *vcpu)
3067 /* already handled by vcpu_run */
3071 static int handle_exception(struct kvm_vcpu *vcpu)
3073 struct vcpu_vmx *vmx = to_vmx(vcpu);
3074 struct kvm_run *kvm_run = vcpu->run;
3075 u32 intr_info, ex_no, error_code;
3076 unsigned long cr2, rip, dr6;
3078 enum emulation_result er;
3080 vect_info = vmx->idt_vectoring_info;
3081 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3083 if (is_machine_check(intr_info))
3084 return handle_machine_check(vcpu);
3086 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3087 !is_page_fault(intr_info)) {
3088 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3089 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3090 vcpu->run->internal.ndata = 2;
3091 vcpu->run->internal.data[0] = vect_info;
3092 vcpu->run->internal.data[1] = intr_info;
3096 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3097 return 1; /* already handled by vmx_vcpu_run() */
3099 if (is_no_device(intr_info)) {
3100 vmx_fpu_activate(vcpu);
3104 if (is_invalid_opcode(intr_info)) {
3105 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3106 if (er != EMULATE_DONE)
3107 kvm_queue_exception(vcpu, UD_VECTOR);
3112 rip = kvm_rip_read(vcpu);
3113 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3114 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3115 if (is_page_fault(intr_info)) {
3116 /* EPT won't cause page fault directly */
3119 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3120 trace_kvm_page_fault(cr2, error_code);
3122 if (kvm_event_needs_reinjection(vcpu))
3123 kvm_mmu_unprotect_page_virt(vcpu, cr2);
3124 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3127 if (vmx->rmode.vm86_active &&
3128 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3130 if (vcpu->arch.halt_request) {
3131 vcpu->arch.halt_request = 0;
3132 return kvm_emulate_halt(vcpu);
3137 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3140 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3141 if (!(vcpu->guest_debug &
3142 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3143 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3144 kvm_queue_exception(vcpu, DB_VECTOR);
3147 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3148 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3152 * Update instruction length as we may reinject #BP from
3153 * user space while in guest debugging mode. Reading it for
3154 * #DB as well causes no harm, it is not used in that case.
3156 vmx->vcpu.arch.event_exit_inst_len =
3157 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3158 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3159 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3160 kvm_run->debug.arch.exception = ex_no;
3163 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3164 kvm_run->ex.exception = ex_no;
3165 kvm_run->ex.error_code = error_code;
3171 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3173 ++vcpu->stat.irq_exits;
3177 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3179 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3183 static int handle_io(struct kvm_vcpu *vcpu)
3185 unsigned long exit_qualification;
3186 int size, in, string;
3189 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3190 string = (exit_qualification & 16) != 0;
3191 in = (exit_qualification & 8) != 0;
3193 ++vcpu->stat.io_exits;
3196 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3198 port = exit_qualification >> 16;
3199 size = (exit_qualification & 7) + 1;
3200 skip_emulated_instruction(vcpu);
3202 return kvm_fast_pio_out(vcpu, size, port);
3206 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3209 * Patch in the VMCALL instruction:
3211 hypercall[0] = 0x0f;
3212 hypercall[1] = 0x01;
3213 hypercall[2] = 0xc1;
3216 static int handle_cr(struct kvm_vcpu *vcpu)
3218 unsigned long exit_qualification, val;
3223 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3224 cr = exit_qualification & 15;
3225 reg = (exit_qualification >> 8) & 15;
3226 switch ((exit_qualification >> 4) & 3) {
3227 case 0: /* mov to cr */
3228 val = kvm_register_read(vcpu, reg);
3229 trace_kvm_cr_write(cr, val);
3232 err = kvm_set_cr0(vcpu, val);
3233 kvm_complete_insn_gp(vcpu, err);
3236 err = kvm_set_cr3(vcpu, val);
3237 kvm_complete_insn_gp(vcpu, err);
3240 err = kvm_set_cr4(vcpu, val);
3241 kvm_complete_insn_gp(vcpu, err);
3244 u8 cr8_prev = kvm_get_cr8(vcpu);
3245 u8 cr8 = kvm_register_read(vcpu, reg);
3246 err = kvm_set_cr8(vcpu, cr8);
3247 kvm_complete_insn_gp(vcpu, err);
3248 if (irqchip_in_kernel(vcpu->kvm))
3250 if (cr8_prev <= cr8)
3252 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3258 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3259 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3260 skip_emulated_instruction(vcpu);
3261 vmx_fpu_activate(vcpu);
3263 case 1: /*mov from cr*/
3266 val = kvm_read_cr3(vcpu);
3267 kvm_register_write(vcpu, reg, val);
3268 trace_kvm_cr_read(cr, val);
3269 skip_emulated_instruction(vcpu);
3272 val = kvm_get_cr8(vcpu);
3273 kvm_register_write(vcpu, reg, val);
3274 trace_kvm_cr_read(cr, val);
3275 skip_emulated_instruction(vcpu);
3280 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3281 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3282 kvm_lmsw(vcpu, val);
3284 skip_emulated_instruction(vcpu);
3289 vcpu->run->exit_reason = 0;
3290 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3291 (int)(exit_qualification >> 4) & 3, cr);
3295 static int handle_dr(struct kvm_vcpu *vcpu)
3297 unsigned long exit_qualification;
3300 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3301 if (!kvm_require_cpl(vcpu, 0))
3303 dr = vmcs_readl(GUEST_DR7);
3306 * As the vm-exit takes precedence over the debug trap, we
3307 * need to emulate the latter, either for the host or the
3308 * guest debugging itself.
3310 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3311 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3312 vcpu->run->debug.arch.dr7 = dr;
3313 vcpu->run->debug.arch.pc =
3314 vmcs_readl(GUEST_CS_BASE) +
3315 vmcs_readl(GUEST_RIP);
3316 vcpu->run->debug.arch.exception = DB_VECTOR;
3317 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3320 vcpu->arch.dr7 &= ~DR7_GD;
3321 vcpu->arch.dr6 |= DR6_BD;
3322 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3323 kvm_queue_exception(vcpu, DB_VECTOR);
3328 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3329 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3330 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3331 if (exit_qualification & TYPE_MOV_FROM_DR) {
3333 if (!kvm_get_dr(vcpu, dr, &val))